Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
 
 
  19#include "xfs_trace.h"
 
 
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t	*xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
 
 
 
 
 
 
 
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
 
 
 
 
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
 
 
 
 
  43	struct xlog_in_core	*iclog);
  44STATIC int
  45xlog_state_get_iclog_space(
  46	struct xlog		*log,
  47	int			len,
  48	struct xlog_in_core	**iclog,
  49	struct xlog_ticket	*ticket,
  50	int			*continued_write,
  51	int			*logoffsetp);
 
 
 
 
  52STATIC void
  53xlog_state_switch_iclogs(
  54	struct xlog		*log,
  55	struct xlog_in_core	*iclog,
  56	int			eventual_size);
  57STATIC void
 
 
 
 
 
  58xlog_grant_push_ail(
  59	struct xlog		*log,
  60	int			need_bytes);
  61STATIC void
  62xlog_sync(
  63	struct xlog		*log,
  64	struct xlog_in_core	*iclog);
 
 
 
 
 
  65#if defined(DEBUG)
  66STATIC void
  67xlog_verify_dest_ptr(
  68	struct xlog		*log,
  69	void			*ptr);
  70STATIC void
  71xlog_verify_grant_tail(
  72	struct xlog *log);
  73STATIC void
  74xlog_verify_iclog(
  75	struct xlog		*log,
  76	struct xlog_in_core	*iclog,
  77	int			count);
 
  78STATIC void
  79xlog_verify_tail_lsn(
  80	struct xlog		*log,
  81	struct xlog_in_core	*iclog);
 
  82#else
  83#define xlog_verify_dest_ptr(a,b)
  84#define xlog_verify_grant_tail(a)
  85#define xlog_verify_iclog(a,b,c)
  86#define xlog_verify_tail_lsn(a,b)
  87#endif
  88
  89STATIC int
  90xlog_iclogs_empty(
  91	struct xlog		*log);
  92
  93static int
  94xfs_log_cover(struct xfs_mount *);
  95
  96static void
  97xlog_grant_sub_space(
  98	struct xlog		*log,
  99	atomic64_t		*head,
 100	int			bytes)
 101{
 102	int64_t	head_val = atomic64_read(head);
 103	int64_t new, old;
 104
 105	do {
 106		int	cycle, space;
 107
 108		xlog_crack_grant_head_val(head_val, &cycle, &space);
 109
 110		space -= bytes;
 111		if (space < 0) {
 112			space += log->l_logsize;
 113			cycle--;
 114		}
 115
 116		old = head_val;
 117		new = xlog_assign_grant_head_val(cycle, space);
 118		head_val = atomic64_cmpxchg(head, old, new);
 119	} while (head_val != old);
 120}
 121
 122static void
 123xlog_grant_add_space(
 124	struct xlog		*log,
 125	atomic64_t		*head,
 126	int			bytes)
 127{
 128	int64_t	head_val = atomic64_read(head);
 129	int64_t new, old;
 130
 131	do {
 132		int		tmp;
 133		int		cycle, space;
 134
 135		xlog_crack_grant_head_val(head_val, &cycle, &space);
 136
 137		tmp = log->l_logsize - space;
 138		if (tmp > bytes)
 139			space += bytes;
 140		else {
 141			space = bytes - tmp;
 142			cycle++;
 143		}
 144
 145		old = head_val;
 146		new = xlog_assign_grant_head_val(cycle, space);
 147		head_val = atomic64_cmpxchg(head, old, new);
 148	} while (head_val != old);
 149}
 150
 151STATIC void
 152xlog_grant_head_init(
 153	struct xlog_grant_head	*head)
 154{
 155	xlog_assign_grant_head(&head->grant, 1, 0);
 156	INIT_LIST_HEAD(&head->waiters);
 157	spin_lock_init(&head->lock);
 158}
 159
 160STATIC void
 161xlog_grant_head_wake_all(
 162	struct xlog_grant_head	*head)
 163{
 164	struct xlog_ticket	*tic;
 165
 166	spin_lock(&head->lock);
 167	list_for_each_entry(tic, &head->waiters, t_queue)
 168		wake_up_process(tic->t_task);
 169	spin_unlock(&head->lock);
 170}
 171
 172static inline int
 173xlog_ticket_reservation(
 174	struct xlog		*log,
 175	struct xlog_grant_head	*head,
 176	struct xlog_ticket	*tic)
 177{
 178	if (head == &log->l_write_head) {
 179		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 180		return tic->t_unit_res;
 181	} else {
 182		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 183			return tic->t_unit_res * tic->t_cnt;
 184		else
 185			return tic->t_unit_res;
 186	}
 187}
 188
 189STATIC bool
 190xlog_grant_head_wake(
 191	struct xlog		*log,
 192	struct xlog_grant_head	*head,
 193	int			*free_bytes)
 194{
 195	struct xlog_ticket	*tic;
 196	int			need_bytes;
 197	bool			woken_task = false;
 198
 199	list_for_each_entry(tic, &head->waiters, t_queue) {
 200
 201		/*
 202		 * There is a chance that the size of the CIL checkpoints in
 203		 * progress at the last AIL push target calculation resulted in
 204		 * limiting the target to the log head (l_last_sync_lsn) at the
 205		 * time. This may not reflect where the log head is now as the
 206		 * CIL checkpoints may have completed.
 207		 *
 208		 * Hence when we are woken here, it may be that the head of the
 209		 * log that has moved rather than the tail. As the tail didn't
 210		 * move, there still won't be space available for the
 211		 * reservation we require.  However, if the AIL has already
 212		 * pushed to the target defined by the old log head location, we
 213		 * will hang here waiting for something else to update the AIL
 214		 * push target.
 215		 *
 216		 * Therefore, if there isn't space to wake the first waiter on
 217		 * the grant head, we need to push the AIL again to ensure the
 218		 * target reflects both the current log tail and log head
 219		 * position before we wait for the tail to move again.
 220		 */
 221
 222		need_bytes = xlog_ticket_reservation(log, head, tic);
 223		if (*free_bytes < need_bytes) {
 224			if (!woken_task)
 225				xlog_grant_push_ail(log, need_bytes);
 226			return false;
 227		}
 228
 229		*free_bytes -= need_bytes;
 230		trace_xfs_log_grant_wake_up(log, tic);
 231		wake_up_process(tic->t_task);
 232		woken_task = true;
 233	}
 234
 235	return true;
 236}
 237
 238STATIC int
 239xlog_grant_head_wait(
 240	struct xlog		*log,
 241	struct xlog_grant_head	*head,
 242	struct xlog_ticket	*tic,
 243	int			need_bytes) __releases(&head->lock)
 244					    __acquires(&head->lock)
 245{
 246	list_add_tail(&tic->t_queue, &head->waiters);
 247
 248	do {
 249		if (XLOG_FORCED_SHUTDOWN(log))
 250			goto shutdown;
 251		xlog_grant_push_ail(log, need_bytes);
 252
 253		__set_current_state(TASK_UNINTERRUPTIBLE);
 254		spin_unlock(&head->lock);
 255
 256		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 257
 258		trace_xfs_log_grant_sleep(log, tic);
 259		schedule();
 260		trace_xfs_log_grant_wake(log, tic);
 261
 262		spin_lock(&head->lock);
 263		if (XLOG_FORCED_SHUTDOWN(log))
 264			goto shutdown;
 265	} while (xlog_space_left(log, &head->grant) < need_bytes);
 266
 267	list_del_init(&tic->t_queue);
 268	return 0;
 269shutdown:
 270	list_del_init(&tic->t_queue);
 271	return -EIO;
 272}
 273
 274/*
 275 * Atomically get the log space required for a log ticket.
 276 *
 277 * Once a ticket gets put onto head->waiters, it will only return after the
 278 * needed reservation is satisfied.
 279 *
 280 * This function is structured so that it has a lock free fast path. This is
 281 * necessary because every new transaction reservation will come through this
 282 * path. Hence any lock will be globally hot if we take it unconditionally on
 283 * every pass.
 284 *
 285 * As tickets are only ever moved on and off head->waiters under head->lock, we
 286 * only need to take that lock if we are going to add the ticket to the queue
 287 * and sleep. We can avoid taking the lock if the ticket was never added to
 288 * head->waiters because the t_queue list head will be empty and we hold the
 289 * only reference to it so it can safely be checked unlocked.
 290 */
 291STATIC int
 292xlog_grant_head_check(
 293	struct xlog		*log,
 294	struct xlog_grant_head	*head,
 295	struct xlog_ticket	*tic,
 296	int			*need_bytes)
 297{
 298	int			free_bytes;
 299	int			error = 0;
 300
 301	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 302
 303	/*
 304	 * If there are other waiters on the queue then give them a chance at
 305	 * logspace before us.  Wake up the first waiters, if we do not wake
 306	 * up all the waiters then go to sleep waiting for more free space,
 307	 * otherwise try to get some space for this transaction.
 308	 */
 309	*need_bytes = xlog_ticket_reservation(log, head, tic);
 310	free_bytes = xlog_space_left(log, &head->grant);
 311	if (!list_empty_careful(&head->waiters)) {
 312		spin_lock(&head->lock);
 313		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 314		    free_bytes < *need_bytes) {
 315			error = xlog_grant_head_wait(log, head, tic,
 316						     *need_bytes);
 317		}
 318		spin_unlock(&head->lock);
 319	} else if (free_bytes < *need_bytes) {
 320		spin_lock(&head->lock);
 321		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 322		spin_unlock(&head->lock);
 323	}
 324
 325	return error;
 326}
 327
 328static void
 329xlog_tic_reset_res(xlog_ticket_t *tic)
 330{
 331	tic->t_res_num = 0;
 332	tic->t_res_arr_sum = 0;
 333	tic->t_res_num_ophdrs = 0;
 334}
 335
 336static void
 337xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 338{
 339	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 340		/* add to overflow and start again */
 341		tic->t_res_o_flow += tic->t_res_arr_sum;
 342		tic->t_res_num = 0;
 343		tic->t_res_arr_sum = 0;
 344	}
 345
 346	tic->t_res_arr[tic->t_res_num].r_len = len;
 347	tic->t_res_arr[tic->t_res_num].r_type = type;
 348	tic->t_res_arr_sum += len;
 349	tic->t_res_num++;
 350}
 351
 352bool
 353xfs_log_writable(
 354	struct xfs_mount	*mp)
 355{
 356	/*
 357	 * Do not write to the log on norecovery mounts, if the data or log
 358	 * devices are read-only, or if the filesystem is shutdown. Read-only
 359	 * mounts allow internal writes for log recovery and unmount purposes,
 360	 * so don't restrict that case.
 361	 */
 362	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
 363		return false;
 364	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 365		return false;
 366	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 367		return false;
 368	if (XFS_FORCED_SHUTDOWN(mp))
 369		return false;
 370	return true;
 371}
 372
 373/*
 374 * Replenish the byte reservation required by moving the grant write head.
 375 */
 376int
 377xfs_log_regrant(
 378	struct xfs_mount	*mp,
 379	struct xlog_ticket	*tic)
 380{
 381	struct xlog		*log = mp->m_log;
 382	int			need_bytes;
 383	int			error = 0;
 384
 385	if (XLOG_FORCED_SHUTDOWN(log))
 386		return -EIO;
 387
 388	XFS_STATS_INC(mp, xs_try_logspace);
 389
 390	/*
 391	 * This is a new transaction on the ticket, so we need to change the
 392	 * transaction ID so that the next transaction has a different TID in
 393	 * the log. Just add one to the existing tid so that we can see chains
 394	 * of rolling transactions in the log easily.
 395	 */
 396	tic->t_tid++;
 397
 398	xlog_grant_push_ail(log, tic->t_unit_res);
 399
 400	tic->t_curr_res = tic->t_unit_res;
 401	xlog_tic_reset_res(tic);
 402
 403	if (tic->t_cnt > 0)
 404		return 0;
 405
 406	trace_xfs_log_regrant(log, tic);
 407
 408	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 409				      &need_bytes);
 410	if (error)
 411		goto out_error;
 412
 413	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 414	trace_xfs_log_regrant_exit(log, tic);
 415	xlog_verify_grant_tail(log);
 416	return 0;
 417
 418out_error:
 419	/*
 420	 * If we are failing, make sure the ticket doesn't have any current
 421	 * reservations.  We don't want to add this back when the ticket/
 422	 * transaction gets cancelled.
 423	 */
 424	tic->t_curr_res = 0;
 425	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 426	return error;
 427}
 428
 429/*
 430 * Reserve log space and return a ticket corresponding to the reservation.
 431 *
 432 * Each reservation is going to reserve extra space for a log record header.
 433 * When writes happen to the on-disk log, we don't subtract the length of the
 434 * log record header from any reservation.  By wasting space in each
 435 * reservation, we prevent over allocation problems.
 436 */
 437int
 438xfs_log_reserve(
 439	struct xfs_mount	*mp,
 440	int		 	unit_bytes,
 441	int		 	cnt,
 442	struct xlog_ticket	**ticp,
 443	uint8_t		 	client,
 444	bool			permanent)
 
 445{
 446	struct xlog		*log = mp->m_log;
 447	struct xlog_ticket	*tic;
 448	int			need_bytes;
 449	int			error = 0;
 450
 451	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 452
 453	if (XLOG_FORCED_SHUTDOWN(log))
 454		return -EIO;
 455
 456	XFS_STATS_INC(mp, xs_try_logspace);
 457
 458	ASSERT(*ticp == NULL);
 459	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 
 
 
 
 
 460	*ticp = tic;
 461
 462	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 463					    : tic->t_unit_res);
 464
 465	trace_xfs_log_reserve(log, tic);
 466
 467	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 468				      &need_bytes);
 469	if (error)
 470		goto out_error;
 471
 472	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 473	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 474	trace_xfs_log_reserve_exit(log, tic);
 475	xlog_verify_grant_tail(log);
 476	return 0;
 477
 478out_error:
 479	/*
 480	 * If we are failing, make sure the ticket doesn't have any current
 481	 * reservations.  We don't want to add this back when the ticket/
 482	 * transaction gets cancelled.
 483	 */
 484	tic->t_curr_res = 0;
 485	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 486	return error;
 487}
 488
 
 489/*
 490 * Flush iclog to disk if this is the last reference to the given iclog and the
 491 * it is in the WANT_SYNC state.
 492 *
 493 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
 494 * does not match, there may be metadata on disk that must be persisted before
 495 * this iclog is written.  To satisfy that requirement, set the
 496 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
 497 * log tail value.
 498 *
 499 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 500 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 501 * written to stable storage, and implies that a commit record is contained
 502 * within the iclog. We need to ensure that the log tail does not move beyond
 503 * the tail that the first commit record in the iclog ordered against, otherwise
 504 * correct recovery of that checkpoint becomes dependent on future operations
 505 * performed on this iclog.
 506 *
 507 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 508 * current tail into iclog. Once the iclog tail is set, future operations must
 509 * not modify it, otherwise they potentially violate ordering constraints for
 510 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 511 * the iclog will get zeroed on activation of the iclog after sync, so we
 512 * always capture the tail lsn on the iclog on the first NEED_FUA release
 513 * regardless of the number of active reference counts on this iclog.
 514 */
 515
 516int
 517xlog_state_release_iclog(
 518	struct xlog		*log,
 519	struct xlog_in_core	*iclog,
 520	xfs_lsn_t		old_tail_lsn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521{
 522	xfs_lsn_t		tail_lsn;
 523	lockdep_assert_held(&log->l_icloglock);
 524
 525	trace_xlog_iclog_release(iclog, _RET_IP_);
 526	if (iclog->ic_state == XLOG_STATE_IOERROR)
 527		return -EIO;
 
 
 
 
 
 
 
 528
 529	/*
 530	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 531	 * of the tail LSN into the iclog so we guarantee that the log tail does
 532	 * not move between deciding if a cache flush is required and writing
 533	 * the LSN into the iclog below.
 534	 */
 535	if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 536		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 537
 538		if (old_tail_lsn && tail_lsn != old_tail_lsn)
 539			iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
 540
 541		if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
 542		    !iclog->ic_header.h_tail_lsn)
 543			iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 
 
 
 
 
 
 
 
 
 
 
 544	}
 545
 546	if (!atomic_dec_and_test(&iclog->ic_refcnt))
 547		return 0;
 
 548
 549	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 550		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 551		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	}
 
 
 
 553
 554	iclog->ic_state = XLOG_STATE_SYNCING;
 555	if (!iclog->ic_header.h_tail_lsn)
 556		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 557	xlog_verify_tail_lsn(log, iclog);
 558	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 
 
 
 
 559
 560	spin_unlock(&log->l_icloglock);
 561	xlog_sync(log, iclog);
 562	spin_lock(&log->l_icloglock);
 563	return 0;
 564}
 565
 566/*
 567 * Mount a log filesystem
 568 *
 569 * mp		- ubiquitous xfs mount point structure
 570 * log_target	- buftarg of on-disk log device
 571 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 572 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 573 *
 574 * Return error or zero.
 575 */
 576int
 577xfs_log_mount(
 578	xfs_mount_t	*mp,
 579	xfs_buftarg_t	*log_target,
 580	xfs_daddr_t	blk_offset,
 581	int		num_bblks)
 582{
 583	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
 584	int		error = 0;
 585	int		min_logfsbs;
 586
 587	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 588		xfs_notice(mp, "Mounting V%d Filesystem",
 589			   XFS_SB_VERSION_NUM(&mp->m_sb));
 590	} else {
 591		xfs_notice(mp,
 592"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 593			   XFS_SB_VERSION_NUM(&mp->m_sb));
 594		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 595	}
 596
 597	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 598	if (IS_ERR(mp->m_log)) {
 599		error = PTR_ERR(mp->m_log);
 600		goto out;
 601	}
 602
 603	/*
 604	 * Validate the given log space and drop a critical message via syslog
 605	 * if the log size is too small that would lead to some unexpected
 606	 * situations in transaction log space reservation stage.
 607	 *
 608	 * Note: we can't just reject the mount if the validation fails.  This
 609	 * would mean that people would have to downgrade their kernel just to
 610	 * remedy the situation as there is no way to grow the log (short of
 611	 * black magic surgery with xfs_db).
 612	 *
 613	 * We can, however, reject mounts for CRC format filesystems, as the
 614	 * mkfs binary being used to make the filesystem should never create a
 615	 * filesystem with a log that is too small.
 616	 */
 617	min_logfsbs = xfs_log_calc_minimum_size(mp);
 618
 619	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 620		xfs_warn(mp,
 621		"Log size %d blocks too small, minimum size is %d blocks",
 622			 mp->m_sb.sb_logblocks, min_logfsbs);
 623		error = -EINVAL;
 624	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 625		xfs_warn(mp,
 626		"Log size %d blocks too large, maximum size is %lld blocks",
 627			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 628		error = -EINVAL;
 629	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 630		xfs_warn(mp,
 631		"log size %lld bytes too large, maximum size is %lld bytes",
 632			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 633			 XFS_MAX_LOG_BYTES);
 634		error = -EINVAL;
 635	} else if (mp->m_sb.sb_logsunit > 1 &&
 636		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 637		xfs_warn(mp,
 638		"log stripe unit %u bytes must be a multiple of block size",
 639			 mp->m_sb.sb_logsunit);
 640		error = -EINVAL;
 641		fatal = true;
 642	}
 643	if (error) {
 644		/*
 645		 * Log check errors are always fatal on v5; or whenever bad
 646		 * metadata leads to a crash.
 647		 */
 648		if (fatal) {
 649			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 650			ASSERT(0);
 651			goto out_free_log;
 652		}
 653		xfs_crit(mp, "Log size out of supported range.");
 654		xfs_crit(mp,
 655"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 656	}
 657
 658	/*
 659	 * Initialize the AIL now we have a log.
 660	 */
 661	error = xfs_trans_ail_init(mp);
 662	if (error) {
 663		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 664		goto out_free_log;
 665	}
 666	mp->m_log->l_ailp = mp->m_ail;
 667
 668	/*
 669	 * skip log recovery on a norecovery mount.  pretend it all
 670	 * just worked.
 671	 */
 672	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 673		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 674
 675		if (readonly)
 676			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 677
 678		error = xlog_recover(mp->m_log);
 679
 680		if (readonly)
 681			mp->m_flags |= XFS_MOUNT_RDONLY;
 682		if (error) {
 683			xfs_warn(mp, "log mount/recovery failed: error %d",
 684				error);
 685			xlog_recover_cancel(mp->m_log);
 686			goto out_destroy_ail;
 687		}
 688	}
 689
 690	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 691			       "log");
 692	if (error)
 693		goto out_destroy_ail;
 694
 695	/* Normal transactions can now occur */
 696	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 697
 698	/*
 699	 * Now the log has been fully initialised and we know were our
 700	 * space grant counters are, we can initialise the permanent ticket
 701	 * needed for delayed logging to work.
 702	 */
 703	xlog_cil_init_post_recovery(mp->m_log);
 704
 705	return 0;
 706
 707out_destroy_ail:
 708	xfs_trans_ail_destroy(mp);
 709out_free_log:
 710	xlog_dealloc_log(mp->m_log);
 711out:
 712	return error;
 713}
 714
 715/*
 716 * Finish the recovery of the file system.  This is separate from the
 717 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 718 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 719 * here.
 720 *
 721 * If we finish recovery successfully, start the background log work. If we are
 722 * not doing recovery, then we have a RO filesystem and we don't need to start
 723 * it.
 724 */
 725int
 726xfs_log_mount_finish(
 727	struct xfs_mount	*mp)
 728{
 729	int	error = 0;
 730	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 731	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 732
 733	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 734		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 735		return 0;
 736	} else if (readonly) {
 737		/* Allow unlinked processing to proceed */
 738		mp->m_flags &= ~XFS_MOUNT_RDONLY;
 739	}
 740
 741	/*
 742	 * During the second phase of log recovery, we need iget and
 743	 * iput to behave like they do for an active filesystem.
 744	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 745	 * of inodes before we're done replaying log items on those
 746	 * inodes.  Turn it off immediately after recovery finishes
 747	 * so that we don't leak the quota inodes if subsequent mount
 748	 * activities fail.
 749	 *
 750	 * We let all inodes involved in redo item processing end up on
 751	 * the LRU instead of being evicted immediately so that if we do
 752	 * something to an unlinked inode, the irele won't cause
 753	 * premature truncation and freeing of the inode, which results
 754	 * in log recovery failure.  We have to evict the unreferenced
 755	 * lru inodes after clearing SB_ACTIVE because we don't
 756	 * otherwise clean up the lru if there's a subsequent failure in
 757	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 758	 * else (e.g. quotacheck) references the inodes before the
 759	 * mount failure occurs.
 760	 */
 761	mp->m_super->s_flags |= SB_ACTIVE;
 762	error = xlog_recover_finish(mp->m_log);
 763	if (!error)
 764		xfs_log_work_queue(mp);
 765	mp->m_super->s_flags &= ~SB_ACTIVE;
 766	evict_inodes(mp->m_super);
 767
 768	/*
 769	 * Drain the buffer LRU after log recovery. This is required for v4
 770	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 771	 * but we do it unconditionally to make sure we're always in a clean
 772	 * cache state after mount.
 773	 *
 774	 * Don't push in the error case because the AIL may have pending intents
 775	 * that aren't removed until recovery is cancelled.
 776	 */
 777	if (!error && recovered) {
 778		xfs_log_force(mp, XFS_LOG_SYNC);
 779		xfs_ail_push_all_sync(mp->m_ail);
 780	}
 781	xfs_buftarg_drain(mp->m_ddev_targp);
 782
 783	if (readonly)
 784		mp->m_flags |= XFS_MOUNT_RDONLY;
 785
 786	/* Make sure the log is dead if we're returning failure. */
 787	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
 788
 789	return error;
 790}
 791
 792/*
 793 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 794 * the log.
 795 */
 796void
 797xfs_log_mount_cancel(
 798	struct xfs_mount	*mp)
 799{
 800	xlog_recover_cancel(mp->m_log);
 
 
 801	xfs_log_unmount(mp);
 802}
 803
 804/*
 805 * Flush out the iclog to disk ensuring that device caches are flushed and
 806 * the iclog hits stable storage before any completion waiters are woken.
 807 */
 808static inline int
 809xlog_force_iclog(
 810	struct xlog_in_core	*iclog)
 811{
 812	atomic_inc(&iclog->ic_refcnt);
 813	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 814	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 815		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 816	return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
 817}
 818
 819/*
 820 * Wait for the iclog and all prior iclogs to be written disk as required by the
 821 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 822 * have been ordered and callbacks run before we are woken here, hence
 823 * guaranteeing that all the iclogs up to this one are on stable storage.
 
 824 */
 825int
 826xlog_wait_on_iclog(
 827	struct xlog_in_core	*iclog)
 828		__releases(iclog->ic_log->l_icloglock)
 829{
 830	struct xlog		*log = iclog->ic_log;
 831
 832	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 833	if (!XLOG_FORCED_SHUTDOWN(log) &&
 834	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 835	    iclog->ic_state != XLOG_STATE_DIRTY) {
 836		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 837		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 838	} else {
 839		spin_unlock(&log->l_icloglock);
 840	}
 841
 842	if (XLOG_FORCED_SHUTDOWN(log))
 843		return -EIO;
 844	return 0;
 845}
 846
 847/*
 848 * Write out an unmount record using the ticket provided. We have to account for
 849 * the data space used in the unmount ticket as this write is not done from a
 850 * transaction context that has already done the accounting for us.
 
 
 851 */
 852static int
 853xlog_write_unmount_record(
 854	struct xlog		*log,
 855	struct xlog_ticket	*ticket)
 856{
 857	struct xfs_unmount_log_format ulf = {
 858		.magic = XLOG_UNMOUNT_TYPE,
 859	};
 860	struct xfs_log_iovec reg = {
 861		.i_addr = &ulf,
 862		.i_len = sizeof(ulf),
 863		.i_type = XLOG_REG_TYPE_UNMOUNT,
 864	};
 865	struct xfs_log_vec vec = {
 866		.lv_niovecs = 1,
 867		.lv_iovecp = &reg,
 868	};
 869
 870	/* account for space used by record data */
 871	ticket->t_curr_res -= sizeof(ulf);
 872
 873	return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
 874}
 875
 876/*
 877 * Mark the filesystem clean by writing an unmount record to the head of the
 878 * log.
 879 */
 880static void
 881xlog_unmount_write(
 882	struct xlog		*log)
 883{
 884	struct xfs_mount	*mp = log->l_mp;
 885	struct xlog_in_core	*iclog;
 886	struct xlog_ticket	*tic = NULL;
 887	int			error;
 888
 889	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 890	if (error)
 891		goto out_err;
 892
 893	error = xlog_write_unmount_record(log, tic);
 894	/*
 895	 * At this point, we're umounting anyway, so there's no point in
 896	 * transitioning log state to IOERROR. Just continue...
 897	 */
 898out_err:
 899	if (error)
 900		xfs_alert(mp, "%s: unmount record failed", __func__);
 901
 902	spin_lock(&log->l_icloglock);
 903	iclog = log->l_iclog;
 904	error = xlog_force_iclog(iclog);
 905	xlog_wait_on_iclog(iclog);
 906
 907	if (tic) {
 908		trace_xfs_log_umount_write(log, tic);
 909		xfs_log_ticket_ungrant(log, tic);
 910	}
 911}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912
 913static void
 914xfs_log_unmount_verify_iclog(
 915	struct xlog		*log)
 916{
 917	struct xlog_in_core	*iclog = log->l_iclog;
 918
 919	do {
 920		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 921		ASSERT(iclog->ic_offset == 0);
 922	} while ((iclog = iclog->ic_next) != log->l_iclog);
 923}
 924
 925/*
 926 * Unmount record used to have a string "Unmount filesystem--" in the
 927 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 928 * We just write the magic number now since that particular field isn't
 929 * currently architecture converted and "Unmount" is a bit foo.
 930 * As far as I know, there weren't any dependencies on the old behaviour.
 931 */
 932static void
 933xfs_log_unmount_write(
 934	struct xfs_mount	*mp)
 935{
 936	struct xlog		*log = mp->m_log;
 937
 938	if (!xfs_log_writable(mp))
 939		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941	xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 942
 943	if (XLOG_FORCED_SHUTDOWN(log))
 944		return;
 945
 946	/*
 947	 * If we think the summary counters are bad, avoid writing the unmount
 948	 * record to force log recovery at next mount, after which the summary
 949	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 950	 * more details.
 951	 */
 952	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 953			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 954		xfs_alert(mp, "%s: will fix summary counters at next mount",
 955				__func__);
 956		return;
 957	}
 958
 959	xfs_log_unmount_verify_iclog(log);
 960	xlog_unmount_write(log);
 961}
 962
 963/*
 964 * Empty the log for unmount/freeze.
 965 *
 966 * To do this, we first need to shut down the background log work so it is not
 967 * trying to cover the log as we clean up. We then need to unpin all objects in
 968 * the log so we can then flush them out. Once they have completed their IO and
 969 * run the callbacks removing themselves from the AIL, we can cover the log.
 
 970 */
 971int
 972xfs_log_quiesce(
 973	struct xfs_mount	*mp)
 974{
 975	cancel_delayed_work_sync(&mp->m_log->l_work);
 976	xfs_log_force(mp, XFS_LOG_SYNC);
 977
 978	/*
 979	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 980	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
 981	 * xfs_buf_iowait() cannot be used because it was pushed with the
 982	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 983	 * the IO to complete.
 984	 */
 985	xfs_ail_push_all_sync(mp->m_ail);
 986	xfs_buftarg_wait(mp->m_ddev_targp);
 987	xfs_buf_lock(mp->m_sb_bp);
 988	xfs_buf_unlock(mp->m_sb_bp);
 989
 990	return xfs_log_cover(mp);
 991}
 992
 993void
 994xfs_log_clean(
 995	struct xfs_mount	*mp)
 996{
 997	xfs_log_quiesce(mp);
 998	xfs_log_unmount_write(mp);
 999}
1000
1001/*
1002 * Shut down and release the AIL and Log.
1003 *
1004 * During unmount, we need to ensure we flush all the dirty metadata objects
1005 * from the AIL so that the log is empty before we write the unmount record to
1006 * the log. Once this is done, we can tear down the AIL and the log.
1007 */
1008void
1009xfs_log_unmount(
1010	struct xfs_mount	*mp)
1011{
1012	xfs_log_clean(mp);
1013
1014	xfs_buftarg_drain(mp->m_ddev_targp);
1015
1016	xfs_trans_ail_destroy(mp);
1017
1018	xfs_sysfs_del(&mp->m_log->l_kobj);
1019
1020	xlog_dealloc_log(mp->m_log);
1021}
1022
1023void
1024xfs_log_item_init(
1025	struct xfs_mount	*mp,
1026	struct xfs_log_item	*item,
1027	int			type,
1028	const struct xfs_item_ops *ops)
1029{
1030	item->li_mountp = mp;
1031	item->li_ailp = mp->m_ail;
1032	item->li_type = type;
1033	item->li_ops = ops;
1034	item->li_lv = NULL;
1035
1036	INIT_LIST_HEAD(&item->li_ail);
1037	INIT_LIST_HEAD(&item->li_cil);
1038	INIT_LIST_HEAD(&item->li_bio_list);
1039	INIT_LIST_HEAD(&item->li_trans);
1040}
1041
1042/*
1043 * Wake up processes waiting for log space after we have moved the log tail.
1044 */
1045void
1046xfs_log_space_wake(
1047	struct xfs_mount	*mp)
1048{
1049	struct xlog		*log = mp->m_log;
1050	int			free_bytes;
1051
1052	if (XLOG_FORCED_SHUTDOWN(log))
1053		return;
1054
1055	if (!list_empty_careful(&log->l_write_head.waiters)) {
1056		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1057
1058		spin_lock(&log->l_write_head.lock);
1059		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1060		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1061		spin_unlock(&log->l_write_head.lock);
1062	}
1063
1064	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1065		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1066
1067		spin_lock(&log->l_reserve_head.lock);
1068		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1069		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1070		spin_unlock(&log->l_reserve_head.lock);
1071	}
1072}
1073
1074/*
1075 * Determine if we have a transaction that has gone to disk that needs to be
1076 * covered. To begin the transition to the idle state firstly the log needs to
1077 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1078 * we start attempting to cover the log.
1079 *
1080 * Only if we are then in a state where covering is needed, the caller is
1081 * informed that dummy transactions are required to move the log into the idle
1082 * state.
1083 *
1084 * If there are any items in the AIl or CIL, then we do not want to attempt to
1085 * cover the log as we may be in a situation where there isn't log space
1086 * available to run a dummy transaction and this can lead to deadlocks when the
1087 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1088 * there's no point in running a dummy transaction at this point because we
1089 * can't start trying to idle the log until both the CIL and AIL are empty.
1090 */
1091static bool
1092xfs_log_need_covered(
1093	struct xfs_mount	*mp)
1094{
1095	struct xlog		*log = mp->m_log;
1096	bool			needed = false;
 
 
 
1097
1098	if (!xlog_cil_empty(log))
1099		return false;
1100
1101	spin_lock(&log->l_icloglock);
1102	switch (log->l_covered_state) {
1103	case XLOG_STATE_COVER_DONE:
1104	case XLOG_STATE_COVER_DONE2:
1105	case XLOG_STATE_COVER_IDLE:
1106		break;
1107	case XLOG_STATE_COVER_NEED:
1108	case XLOG_STATE_COVER_NEED2:
1109		if (xfs_ail_min_lsn(log->l_ailp))
1110			break;
1111		if (!xlog_iclogs_empty(log))
1112			break;
1113
1114		needed = true;
1115		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1116			log->l_covered_state = XLOG_STATE_COVER_DONE;
1117		else
1118			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1119		break;
1120	default:
1121		needed = true;
1122		break;
1123	}
1124	spin_unlock(&log->l_icloglock);
1125	return needed;
1126}
1127
1128/*
1129 * Explicitly cover the log. This is similar to background log covering but
1130 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1131 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1132 * must all be empty.
1133 */
1134static int
1135xfs_log_cover(
1136	struct xfs_mount	*mp)
1137{
1138	int			error = 0;
1139	bool			need_covered;
1140
1141	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1142	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1143	       XFS_FORCED_SHUTDOWN(mp));
1144
1145	if (!xfs_log_writable(mp))
1146		return 0;
1147
1148	/*
1149	 * xfs_log_need_covered() is not idempotent because it progresses the
1150	 * state machine if the log requires covering. Therefore, we must call
1151	 * this function once and use the result until we've issued an sb sync.
1152	 * Do so first to make that abundantly clear.
1153	 *
1154	 * Fall into the covering sequence if the log needs covering or the
1155	 * mount has lazy superblock accounting to sync to disk. The sb sync
1156	 * used for covering accumulates the in-core counters, so covering
1157	 * handles this for us.
1158	 */
1159	need_covered = xfs_log_need_covered(mp);
1160	if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1161		return 0;
1162
1163	/*
1164	 * To cover the log, commit the superblock twice (at most) in
1165	 * independent checkpoints. The first serves as a reference for the
1166	 * tail pointer. The sync transaction and AIL push empties the AIL and
1167	 * updates the in-core tail to the LSN of the first checkpoint. The
1168	 * second commit updates the on-disk tail with the in-core LSN,
1169	 * covering the log. Push the AIL one more time to leave it empty, as
1170	 * we found it.
1171	 */
1172	do {
1173		error = xfs_sync_sb(mp, true);
1174		if (error)
1175			break;
1176		xfs_ail_push_all_sync(mp->m_ail);
1177	} while (xfs_log_need_covered(mp));
1178
1179	return error;
1180}
1181
1182/*
1183 * We may be holding the log iclog lock upon entering this routine.
1184 */
1185xfs_lsn_t
1186xlog_assign_tail_lsn_locked(
1187	struct xfs_mount	*mp)
1188{
1189	struct xlog		*log = mp->m_log;
1190	struct xfs_log_item	*lip;
1191	xfs_lsn_t		tail_lsn;
1192
1193	assert_spin_locked(&mp->m_ail->ail_lock);
1194
1195	/*
1196	 * To make sure we always have a valid LSN for the log tail we keep
1197	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1198	 * and use that when the AIL was empty.
1199	 */
1200	lip = xfs_ail_min(mp->m_ail);
1201	if (lip)
1202		tail_lsn = lip->li_lsn;
1203	else
1204		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1205	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1206	atomic64_set(&log->l_tail_lsn, tail_lsn);
1207	return tail_lsn;
1208}
1209
1210xfs_lsn_t
1211xlog_assign_tail_lsn(
1212	struct xfs_mount	*mp)
1213{
1214	xfs_lsn_t		tail_lsn;
1215
1216	spin_lock(&mp->m_ail->ail_lock);
1217	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1218	spin_unlock(&mp->m_ail->ail_lock);
1219
1220	return tail_lsn;
1221}
1222
1223/*
1224 * Return the space in the log between the tail and the head.  The head
1225 * is passed in the cycle/bytes formal parms.  In the special case where
1226 * the reserve head has wrapped passed the tail, this calculation is no
1227 * longer valid.  In this case, just return 0 which means there is no space
1228 * in the log.  This works for all places where this function is called
1229 * with the reserve head.  Of course, if the write head were to ever
1230 * wrap the tail, we should blow up.  Rather than catch this case here,
1231 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1232 *
1233 * This code also handles the case where the reservation head is behind
1234 * the tail.  The details of this case are described below, but the end
1235 * result is that we return the size of the log as the amount of space left.
1236 */
1237STATIC int
1238xlog_space_left(
1239	struct xlog	*log,
1240	atomic64_t	*head)
1241{
1242	int		free_bytes;
1243	int		tail_bytes;
1244	int		tail_cycle;
1245	int		head_cycle;
1246	int		head_bytes;
1247
1248	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1249	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1250	tail_bytes = BBTOB(tail_bytes);
1251	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1252		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1253	else if (tail_cycle + 1 < head_cycle)
1254		return 0;
1255	else if (tail_cycle < head_cycle) {
1256		ASSERT(tail_cycle == (head_cycle - 1));
1257		free_bytes = tail_bytes - head_bytes;
1258	} else {
1259		/*
1260		 * The reservation head is behind the tail.
1261		 * In this case we just want to return the size of the
1262		 * log as the amount of space left.
1263		 */
1264		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1265		xfs_alert(log->l_mp,
1266			  "  tail_cycle = %d, tail_bytes = %d",
1267			  tail_cycle, tail_bytes);
1268		xfs_alert(log->l_mp,
1269			  "  GH   cycle = %d, GH   bytes = %d",
1270			  head_cycle, head_bytes);
1271		ASSERT(0);
1272		free_bytes = log->l_logsize;
1273	}
1274	return free_bytes;
1275}
1276
1277
1278static void
1279xlog_ioend_work(
1280	struct work_struct	*work)
 
 
 
 
 
1281{
1282	struct xlog_in_core     *iclog =
1283		container_of(work, struct xlog_in_core, ic_end_io_work);
1284	struct xlog		*log = iclog->ic_log;
1285	int			error;
1286
1287	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1288#ifdef DEBUG
1289	/* treat writes with injected CRC errors as failed */
1290	if (iclog->ic_fail_crc)
1291		error = -EIO;
1292#endif
1293
1294	/*
1295	 * Race to shutdown the filesystem if we see an error.
1296	 */
1297	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1298		xfs_alert(log->l_mp, "log I/O error %d", error);
1299		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 
 
 
 
 
1300	}
1301
1302	xlog_state_done_syncing(iclog);
1303	bio_uninit(&iclog->ic_bio);
 
1304
1305	/*
1306	 * Drop the lock to signal that we are done. Nothing references the
1307	 * iclog after this, so an unmount waiting on this lock can now tear it
1308	 * down safely. As such, it is unsafe to reference the iclog after the
1309	 * unlock as we could race with it being freed.
1310	 */
1311	up(&iclog->ic_sema);
1312}
1313
1314/*
1315 * Return size of each in-core log record buffer.
1316 *
1317 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1318 *
1319 * If the filesystem blocksize is too large, we may need to choose a
1320 * larger size since the directory code currently logs entire blocks.
1321 */
 
1322STATIC void
1323xlog_get_iclog_buffer_size(
1324	struct xfs_mount	*mp,
1325	struct xlog		*log)
1326{
1327	if (mp->m_logbufs <= 0)
1328		mp->m_logbufs = XLOG_MAX_ICLOGS;
1329	if (mp->m_logbsize <= 0)
1330		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1331
1332	log->l_iclog_bufs = mp->m_logbufs;
1333	log->l_iclog_size = mp->m_logbsize;
 
 
1334
1335	/*
1336	 * # headers = size / 32k - one header holds cycles from 32k of data.
1337	 */
1338	log->l_iclog_heads =
1339		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1340	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1341}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343void
1344xfs_log_work_queue(
1345	struct xfs_mount        *mp)
1346{
1347	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1348				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1349}
1350
1351/*
1352 * Every sync period we need to unpin all items in the AIL and push them to
1353 * disk. If there is nothing dirty, then we might need to cover the log to
1354 * indicate that the filesystem is idle.
1355 */
1356static void
1357xfs_log_worker(
1358	struct work_struct	*work)
1359{
1360	struct xlog		*log = container_of(to_delayed_work(work),
1361						struct xlog, l_work);
1362	struct xfs_mount	*mp = log->l_mp;
1363
1364	/* dgc: errors ignored - not fatal and nowhere to report them */
1365	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1366		/*
1367		 * Dump a transaction into the log that contains no real change.
1368		 * This is needed to stamp the current tail LSN into the log
1369		 * during the covering operation.
1370		 *
1371		 * We cannot use an inode here for this - that will push dirty
1372		 * state back up into the VFS and then periodic inode flushing
1373		 * will prevent log covering from making progress. Hence we
1374		 * synchronously log the superblock instead to ensure the
1375		 * superblock is immediately unpinned and can be written back.
1376		 */
1377		xfs_sync_sb(mp, true);
1378	} else
1379		xfs_log_force(mp, 0);
1380
1381	/* start pushing all the metadata that is currently dirty */
1382	xfs_ail_push_all(mp->m_ail);
1383
1384	/* queue us up again */
1385	xfs_log_work_queue(mp);
1386}
1387
1388/*
1389 * This routine initializes some of the log structure for a given mount point.
1390 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1391 * some other stuff may be filled in too.
1392 */
1393STATIC struct xlog *
1394xlog_alloc_log(
1395	struct xfs_mount	*mp,
1396	struct xfs_buftarg	*log_target,
1397	xfs_daddr_t		blk_offset,
1398	int			num_bblks)
1399{
1400	struct xlog		*log;
1401	xlog_rec_header_t	*head;
1402	xlog_in_core_t		**iclogp;
1403	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 
1404	int			i;
1405	int			error = -ENOMEM;
1406	uint			log2_size = 0;
1407
1408	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1409	if (!log) {
1410		xfs_warn(mp, "Log allocation failed: No memory!");
1411		goto out;
1412	}
1413
1414	log->l_mp	   = mp;
1415	log->l_targ	   = log_target;
1416	log->l_logsize     = BBTOB(num_bblks);
1417	log->l_logBBstart  = blk_offset;
1418	log->l_logBBsize   = num_bblks;
1419	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1420	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1421	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1422
1423	log->l_prev_block  = -1;
1424	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1425	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1426	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1427	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1428
1429	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1430		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1431	else
1432		log->l_iclog_roundoff = BBSIZE;
1433
1434	xlog_grant_head_init(&log->l_reserve_head);
1435	xlog_grant_head_init(&log->l_write_head);
1436
1437	error = -EFSCORRUPTED;
1438	if (xfs_sb_version_hassector(&mp->m_sb)) {
1439	        log2_size = mp->m_sb.sb_logsectlog;
1440		if (log2_size < BBSHIFT) {
1441			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1442				log2_size, BBSHIFT);
1443			goto out_free_log;
1444		}
1445
1446	        log2_size -= BBSHIFT;
1447		if (log2_size > mp->m_sectbb_log) {
1448			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1449				log2_size, mp->m_sectbb_log);
1450			goto out_free_log;
1451		}
1452
1453		/* for larger sector sizes, must have v2 or external log */
1454		if (log2_size && log->l_logBBstart > 0 &&
1455			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1456			xfs_warn(mp,
1457		"log sector size (0x%x) invalid for configuration.",
1458				log2_size);
1459			goto out_free_log;
1460		}
1461	}
1462	log->l_sectBBsize = 1 << log2_size;
1463
1464	xlog_get_iclog_buffer_size(mp, log);
1465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466	spin_lock_init(&log->l_icloglock);
1467	init_waitqueue_head(&log->l_flush_wait);
1468
1469	iclogp = &log->l_iclog;
1470	/*
1471	 * The amount of memory to allocate for the iclog structure is
1472	 * rather funky due to the way the structure is defined.  It is
1473	 * done this way so that we can use different sizes for machines
1474	 * with different amounts of memory.  See the definition of
1475	 * xlog_in_core_t in xfs_log_priv.h for details.
1476	 */
1477	ASSERT(log->l_iclog_size >= 4096);
1478	for (i = 0; i < log->l_iclog_bufs; i++) {
1479		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1480		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1481				sizeof(struct bio_vec);
1482
1483		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1484		if (!iclog)
1485			goto out_free_iclog;
1486
1487		*iclogp = iclog;
1488		iclog->ic_prev = prev_iclog;
1489		prev_iclog = iclog;
1490
1491		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1492						KM_MAYFAIL | KM_ZERO);
1493		if (!iclog->ic_data)
1494			goto out_free_iclog;
 
 
 
 
 
 
 
 
 
1495#ifdef DEBUG
1496		log->l_iclog_bak[i] = &iclog->ic_header;
1497#endif
1498		head = &iclog->ic_header;
1499		memset(head, 0, sizeof(xlog_rec_header_t));
1500		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1501		head->h_version = cpu_to_be32(
1502			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1503		head->h_size = cpu_to_be32(log->l_iclog_size);
1504		/* new fields */
1505		head->h_fmt = cpu_to_be32(XLOG_FMT);
1506		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1507
1508		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1509		iclog->ic_state = XLOG_STATE_ACTIVE;
1510		iclog->ic_log = log;
1511		atomic_set(&iclog->ic_refcnt, 0);
1512		INIT_LIST_HEAD(&iclog->ic_callbacks);
 
1513		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1514
1515		init_waitqueue_head(&iclog->ic_force_wait);
1516		init_waitqueue_head(&iclog->ic_write_wait);
1517		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1518		sema_init(&iclog->ic_sema, 1);
1519
1520		iclogp = &iclog->ic_next;
1521	}
1522	*iclogp = log->l_iclog;			/* complete ring */
1523	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1524
1525	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1526			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1527				    WQ_HIGHPRI),
1528			0, mp->m_super->s_id);
1529	if (!log->l_ioend_workqueue)
1530		goto out_free_iclog;
1531
1532	error = xlog_cil_init(log);
1533	if (error)
1534		goto out_destroy_workqueue;
1535	return log;
1536
1537out_destroy_workqueue:
1538	destroy_workqueue(log->l_ioend_workqueue);
1539out_free_iclog:
1540	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1541		prev_iclog = iclog->ic_next;
1542		kmem_free(iclog->ic_data);
 
1543		kmem_free(iclog);
1544		if (prev_iclog == log->l_iclog)
1545			break;
1546	}
 
 
1547out_free_log:
1548	kmem_free(log);
1549out:
1550	return ERR_PTR(error);
1551}	/* xlog_alloc_log */
1552
 
1553/*
1554 * Write out the commit record of a transaction associated with the given
1555 * ticket to close off a running log write. Return the lsn of the commit record.
1556 */
1557int
1558xlog_commit_record(
1559	struct xlog		*log,
1560	struct xlog_ticket	*ticket,
1561	struct xlog_in_core	**iclog,
1562	xfs_lsn_t		*lsn)
1563{
 
 
1564	struct xfs_log_iovec reg = {
1565		.i_addr = NULL,
1566		.i_len = 0,
1567		.i_type = XLOG_REG_TYPE_COMMIT,
1568	};
1569	struct xfs_log_vec vec = {
1570		.lv_niovecs = 1,
1571		.lv_iovecp = &reg,
1572	};
1573	int	error;
1574
1575	if (XLOG_FORCED_SHUTDOWN(log))
1576		return -EIO;
1577
1578	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
 
 
1579	if (error)
1580		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1581	return error;
1582}
1583
1584/*
1585 * Compute the LSN that we'd need to push the log tail towards in order to have
1586 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1587 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1588 * log free space already meets all three thresholds, this function returns
1589 * NULLCOMMITLSN.
1590 */
1591xfs_lsn_t
1592xlog_grant_push_threshold(
1593	struct xlog	*log,
1594	int		need_bytes)
1595{
1596	xfs_lsn_t	threshold_lsn = 0;
1597	xfs_lsn_t	last_sync_lsn;
1598	int		free_blocks;
1599	int		free_bytes;
1600	int		threshold_block;
1601	int		threshold_cycle;
1602	int		free_threshold;
1603
1604	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605
1606	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607	free_blocks = BTOBBT(free_bytes);
1608
1609	/*
1610	 * Set the threshold for the minimum number of free blocks in the
1611	 * log to the maximum of what the caller needs, one quarter of the
1612	 * log, and 256 blocks.
1613	 */
1614	free_threshold = BTOBB(need_bytes);
1615	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1616	free_threshold = max(free_threshold, 256);
1617	if (free_blocks >= free_threshold)
1618		return NULLCOMMITLSN;
1619
1620	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621						&threshold_block);
1622	threshold_block += free_threshold;
1623	if (threshold_block >= log->l_logBBsize) {
1624		threshold_block -= log->l_logBBsize;
1625		threshold_cycle += 1;
1626	}
1627	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628					threshold_block);
1629	/*
1630	 * Don't pass in an lsn greater than the lsn of the last
1631	 * log record known to be on disk. Use a snapshot of the last sync lsn
1632	 * so that it doesn't change between the compare and the set.
1633	 */
1634	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636		threshold_lsn = last_sync_lsn;
1637
1638	return threshold_lsn;
1639}
1640
1641/*
1642 * Push the tail of the log if we need to do so to maintain the free log space
1643 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1644 * policy which pushes on an lsn which is further along in the log once we
1645 * reach the high water mark.  In this manner, we would be creating a low water
1646 * mark.
1647 */
1648STATIC void
1649xlog_grant_push_ail(
1650	struct xlog	*log,
1651	int		need_bytes)
1652{
1653	xfs_lsn_t	threshold_lsn;
1654
1655	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1656	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1657		return;
1658
1659	/*
1660	 * Get the transaction layer to kick the dirty buffers out to
1661	 * disk asynchronously. No point in trying to do this if
1662	 * the filesystem is shutting down.
1663	 */
1664	xfs_ail_push(log->l_ailp, threshold_lsn);
 
1665}
1666
1667/*
1668 * Stamp cycle number in every block
1669 */
1670STATIC void
1671xlog_pack_data(
1672	struct xlog		*log,
1673	struct xlog_in_core	*iclog,
1674	int			roundoff)
1675{
1676	int			i, j, k;
1677	int			size = iclog->ic_offset + roundoff;
1678	__be32			cycle_lsn;
1679	char			*dp;
1680
1681	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1682
1683	dp = iclog->ic_datap;
1684	for (i = 0; i < BTOBB(size); i++) {
1685		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1686			break;
1687		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1688		*(__be32 *)dp = cycle_lsn;
1689		dp += BBSIZE;
1690	}
1691
1692	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1693		xlog_in_core_2_t *xhdr = iclog->ic_data;
1694
1695		for ( ; i < BTOBB(size); i++) {
1696			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1697			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1698			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1699			*(__be32 *)dp = cycle_lsn;
1700			dp += BBSIZE;
1701		}
1702
1703		for (i = 1; i < log->l_iclog_heads; i++)
1704			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1705	}
1706}
1707
1708/*
1709 * Calculate the checksum for a log buffer.
1710 *
1711 * This is a little more complicated than it should be because the various
1712 * headers and the actual data are non-contiguous.
1713 */
1714__le32
1715xlog_cksum(
1716	struct xlog		*log,
1717	struct xlog_rec_header	*rhead,
1718	char			*dp,
1719	int			size)
1720{
1721	uint32_t		crc;
1722
1723	/* first generate the crc for the record header ... */
1724	crc = xfs_start_cksum_update((char *)rhead,
1725			      sizeof(struct xlog_rec_header),
1726			      offsetof(struct xlog_rec_header, h_crc));
1727
1728	/* ... then for additional cycle data for v2 logs ... */
1729	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1730		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1731		int		i;
1732		int		xheads;
1733
1734		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
 
 
1735
1736		for (i = 1; i < xheads; i++) {
1737			crc = crc32c(crc, &xhdr[i].hic_xheader,
1738				     sizeof(struct xlog_rec_ext_header));
1739		}
1740	}
1741
1742	/* ... and finally for the payload */
1743	crc = crc32c(crc, dp, size);
1744
1745	return xfs_end_cksum(crc);
1746}
1747
1748static void
1749xlog_bio_end_io(
1750	struct bio		*bio)
1751{
1752	struct xlog_in_core	*iclog = bio->bi_private;
1753
1754	queue_work(iclog->ic_log->l_ioend_workqueue,
1755		   &iclog->ic_end_io_work);
1756}
1757
1758static int
1759xlog_map_iclog_data(
1760	struct bio		*bio,
1761	void			*data,
1762	size_t			count)
1763{
1764	do {
1765		struct page	*page = kmem_to_page(data);
1766		unsigned int	off = offset_in_page(data);
1767		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1768
1769		if (bio_add_page(bio, page, len, off) != len)
1770			return -EIO;
1771
1772		data += len;
1773		count -= len;
1774	} while (count);
1775
1776	return 0;
1777}
1778
1779STATIC void
1780xlog_write_iclog(
1781	struct xlog		*log,
1782	struct xlog_in_core	*iclog,
1783	uint64_t		bno,
1784	unsigned int		count)
1785{
1786	ASSERT(bno < log->l_logBBsize);
1787	trace_xlog_iclog_write(iclog, _RET_IP_);
1788
1789	/*
1790	 * We lock the iclogbufs here so that we can serialise against I/O
1791	 * completion during unmount.  We might be processing a shutdown
1792	 * triggered during unmount, and that can occur asynchronously to the
1793	 * unmount thread, and hence we need to ensure that completes before
1794	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1795	 * across the log IO to archieve that.
1796	 */
1797	down(&iclog->ic_sema);
1798	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1799		/*
1800		 * It would seem logical to return EIO here, but we rely on
1801		 * the log state machine to propagate I/O errors instead of
1802		 * doing it here.  We kick of the state machine and unlock
1803		 * the buffer manually, the code needs to be kept in sync
1804		 * with the I/O completion path.
1805		 */
1806		xlog_state_done_syncing(iclog);
1807		up(&iclog->ic_sema);
1808		return;
1809	}
1810
1811	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1812	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1813	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1814	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1815	iclog->ic_bio.bi_private = iclog;
1816
1817	/*
1818	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1819	 * IOs coming immediately after this one. This prevents the block layer
1820	 * writeback throttle from throttling log writes behind background
1821	 * metadata writeback and causing priority inversions.
1822	 */
1823	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1824	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1825		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1826		/*
1827		 * For external log devices, we also need to flush the data
1828		 * device cache first to ensure all metadata writeback covered
1829		 * by the LSN in this iclog is on stable storage. This is slow,
1830		 * but it *must* complete before we issue the external log IO.
1831		 */
1832		if (log->l_targ != log->l_mp->m_ddev_targp)
1833			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1834	}
1835	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1836		iclog->ic_bio.bi_opf |= REQ_FUA;
1837
1838	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1839
1840	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1841		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1842		return;
1843	}
1844	if (is_vmalloc_addr(iclog->ic_data))
1845		flush_kernel_vmap_range(iclog->ic_data, count);
1846
1847	/*
1848	 * If this log buffer would straddle the end of the log we will have
1849	 * to split it up into two bios, so that we can continue at the start.
1850	 */
1851	if (bno + BTOBB(count) > log->l_logBBsize) {
1852		struct bio *split;
1853
1854		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1855				  GFP_NOIO, &fs_bio_set);
1856		bio_chain(split, &iclog->ic_bio);
1857		submit_bio(split);
1858
1859		/* restart at logical offset zero for the remainder */
1860		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1861	}
1862
1863	submit_bio(&iclog->ic_bio);
1864}
1865
1866/*
1867 * We need to bump cycle number for the part of the iclog that is
1868 * written to the start of the log. Watch out for the header magic
1869 * number case, though.
1870 */
1871static void
1872xlog_split_iclog(
1873	struct xlog		*log,
1874	void			*data,
1875	uint64_t		bno,
1876	unsigned int		count)
1877{
1878	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1879	unsigned int		i;
1880
1881	for (i = split_offset; i < count; i += BBSIZE) {
1882		uint32_t cycle = get_unaligned_be32(data + i);
1883
1884		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1885			cycle++;
1886		put_unaligned_be32(cycle, data + i);
1887	}
1888}
1889
1890static int
1891xlog_calc_iclog_size(
1892	struct xlog		*log,
1893	struct xlog_in_core	*iclog,
1894	uint32_t		*roundoff)
1895{
1896	uint32_t		count_init, count;
1897
1898	/* Add for LR header */
1899	count_init = log->l_iclog_hsize + iclog->ic_offset;
1900	count = roundup(count_init, log->l_iclog_roundoff);
1901
1902	*roundoff = count - count_init;
1903
1904	ASSERT(count >= count_init);
1905	ASSERT(*roundoff < log->l_iclog_roundoff);
1906	return count;
1907}
1908
1909/*
1910 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1911 * fashion.  Previously, we should have moved the current iclog
1912 * ptr in the log to point to the next available iclog.  This allows further
1913 * write to continue while this code syncs out an iclog ready to go.
1914 * Before an in-core log can be written out, the data section must be scanned
1915 * to save away the 1st word of each BBSIZE block into the header.  We replace
1916 * it with the current cycle count.  Each BBSIZE block is tagged with the
1917 * cycle count because there in an implicit assumption that drives will
1918 * guarantee that entire 512 byte blocks get written at once.  In other words,
1919 * we can't have part of a 512 byte block written and part not written.  By
1920 * tagging each block, we will know which blocks are valid when recovering
1921 * after an unclean shutdown.
1922 *
1923 * This routine is single threaded on the iclog.  No other thread can be in
1924 * this routine with the same iclog.  Changing contents of iclog can there-
1925 * fore be done without grabbing the state machine lock.  Updating the global
1926 * log will require grabbing the lock though.
1927 *
1928 * The entire log manager uses a logical block numbering scheme.  Only
1929 * xlog_write_iclog knows about the fact that the log may not start with
1930 * block zero on a given device.
 
1931 */
1932STATIC void
 
1933xlog_sync(
1934	struct xlog		*log,
1935	struct xlog_in_core	*iclog)
1936{
1937	unsigned int		count;		/* byte count of bwrite */
1938	unsigned int		roundoff;       /* roundoff to BB or stripe */
1939	uint64_t		bno;
1940	unsigned int		size;
 
 
 
 
 
1941
 
1942	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1943	trace_xlog_iclog_sync(iclog, _RET_IP_);
1944
1945	count = xlog_calc_iclog_size(log, iclog, &roundoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	/* move grant heads by roundoff in sync */
1948	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1949	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1950
1951	/* put cycle number in every block */
1952	xlog_pack_data(log, iclog, roundoff); 
1953
1954	/* real byte length */
1955	size = iclog->ic_offset;
1956	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1957		size += roundoff;
1958	iclog->ic_header.h_len = cpu_to_be32(size);
1959
1960	XFS_STATS_INC(log->l_mp, xs_log_writes);
1961	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1962
1963	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1964
1965	/* Do we need to split this write into 2 parts? */
1966	if (bno + BTOBB(count) > log->l_logBBsize)
1967		xlog_split_iclog(log, &iclog->ic_header, bno, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968
1969	/* calculcate the checksum */
1970	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1971					    iclog->ic_datap, size);
 
1972	/*
1973	 * Intentionally corrupt the log record CRC based on the error injection
1974	 * frequency, if defined. This facilitates testing log recovery in the
1975	 * event of torn writes. Hence, set the IOABORT state to abort the log
1976	 * write on I/O completion and shutdown the fs. The subsequent mount
1977	 * detects the bad CRC and attempts to recover.
1978	 */
1979#ifdef DEBUG
1980	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1981		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1982		iclog->ic_fail_crc = true;
1983		xfs_warn(log->l_mp,
1984	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1985			 be64_to_cpu(iclog->ic_header.h_lsn));
1986	}
1987#endif
1988	xlog_verify_iclog(log, iclog, count);
1989	xlog_write_iclog(log, iclog, bno, count);
1990}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992/*
1993 * Deallocate a log structure
1994 */
1995STATIC void
1996xlog_dealloc_log(
1997	struct xlog	*log)
1998{
1999	xlog_in_core_t	*iclog, *next_iclog;
2000	int		i;
2001
2002	xlog_cil_destroy(log);
2003
2004	/*
2005	 * Cycle all the iclogbuf locks to make sure all log IO completion
2006	 * is done before we tear down these buffers.
2007	 */
2008	iclog = log->l_iclog;
2009	for (i = 0; i < log->l_iclog_bufs; i++) {
2010		down(&iclog->ic_sema);
2011		up(&iclog->ic_sema);
2012		iclog = iclog->ic_next;
2013	}
2014
 
 
 
 
 
 
 
 
 
 
2015	iclog = log->l_iclog;
2016	for (i = 0; i < log->l_iclog_bufs; i++) {
 
2017		next_iclog = iclog->ic_next;
2018		kmem_free(iclog->ic_data);
2019		kmem_free(iclog);
2020		iclog = next_iclog;
2021	}
 
2022
2023	log->l_mp->m_log = NULL;
2024	destroy_workqueue(log->l_ioend_workqueue);
2025	kmem_free(log);
2026}
2027
2028/*
2029 * Update counters atomically now that memcpy is done.
2030 */
 
2031static inline void
2032xlog_state_finish_copy(
2033	struct xlog		*log,
2034	struct xlog_in_core	*iclog,
2035	int			record_cnt,
2036	int			copy_bytes)
2037{
2038	lockdep_assert_held(&log->l_icloglock);
2039
2040	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2041	iclog->ic_offset += copy_bytes;
2042}
 
 
 
 
 
2043
2044/*
2045 * print out info relating to regions written which consume
2046 * the reservation
2047 */
2048void
2049xlog_print_tic_res(
2050	struct xfs_mount	*mp,
2051	struct xlog_ticket	*ticket)
2052{
2053	uint i;
2054	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2055
2056	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2057#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2058	static char *res_type_str[] = {
2059	    REG_TYPE_STR(BFORMAT, "bformat"),
2060	    REG_TYPE_STR(BCHUNK, "bchunk"),
2061	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2062	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2063	    REG_TYPE_STR(IFORMAT, "iformat"),
2064	    REG_TYPE_STR(ICORE, "icore"),
2065	    REG_TYPE_STR(IEXT, "iext"),
2066	    REG_TYPE_STR(IBROOT, "ibroot"),
2067	    REG_TYPE_STR(ILOCAL, "ilocal"),
2068	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2069	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2070	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2071	    REG_TYPE_STR(QFORMAT, "qformat"),
2072	    REG_TYPE_STR(DQUOT, "dquot"),
2073	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2074	    REG_TYPE_STR(LRHEADER, "LR header"),
2075	    REG_TYPE_STR(UNMOUNT, "unmount"),
2076	    REG_TYPE_STR(COMMIT, "commit"),
2077	    REG_TYPE_STR(TRANSHDR, "trans header"),
2078	    REG_TYPE_STR(ICREATE, "inode create"),
2079	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2080	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2081	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2082	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2083	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2084	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2085	};
2086	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2087#undef REG_TYPE_STR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088
2089	xfs_warn(mp, "ticket reservation summary:");
 
 
 
 
 
2090	xfs_warn(mp, "  unit res    = %d bytes",
2091		 ticket->t_unit_res);
2092	xfs_warn(mp, "  current res = %d bytes",
2093		 ticket->t_curr_res);
2094	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2095		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2096	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2097		 ticket->t_res_num_ophdrs, ophdr_spc);
2098	xfs_warn(mp, "  ophdr + reg = %u bytes",
2099		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2100	xfs_warn(mp, "  num regions = %u",
2101		 ticket->t_res_num);
2102
2103	for (i = 0; i < ticket->t_res_num; i++) {
2104		uint r_type = ticket->t_res_arr[i].r_type;
2105		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2106			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2107			    "bad-rtype" : res_type_str[r_type]),
2108			    ticket->t_res_arr[i].r_len);
2109	}
2110}
2111
2112/*
2113 * Print a summary of the transaction.
2114 */
2115void
2116xlog_print_trans(
2117	struct xfs_trans	*tp)
2118{
2119	struct xfs_mount	*mp = tp->t_mountp;
2120	struct xfs_log_item	*lip;
2121
2122	/* dump core transaction and ticket info */
2123	xfs_warn(mp, "transaction summary:");
2124	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2125	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2126	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2127
2128	xlog_print_tic_res(mp, tp->t_ticket);
2129
2130	/* dump each log item */
2131	list_for_each_entry(lip, &tp->t_items, li_trans) {
2132		struct xfs_log_vec	*lv = lip->li_lv;
2133		struct xfs_log_iovec	*vec;
2134		int			i;
2135
2136		xfs_warn(mp, "log item: ");
2137		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2138		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2139		if (!lv)
2140			continue;
2141		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2142		xfs_warn(mp, "  size	= %d", lv->lv_size);
2143		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2144		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2145
2146		/* dump each iovec for the log item */
2147		vec = lv->lv_iovecp;
2148		for (i = 0; i < lv->lv_niovecs; i++) {
2149			int dumplen = min(vec->i_len, 32);
2150
2151			xfs_warn(mp, "  iovec[%d]", i);
2152			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2153			xfs_warn(mp, "    len	= %d", vec->i_len);
2154			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2155			xfs_hex_dump(vec->i_addr, dumplen);
2156
2157			vec++;
2158		}
2159	}
2160}
2161
2162/*
2163 * Calculate the potential space needed by the log vector.  We may need a start
2164 * record, and each region gets its own struct xlog_op_header and may need to be
2165 * double word aligned.
2166 */
2167static int
2168xlog_write_calc_vec_length(
2169	struct xlog_ticket	*ticket,
2170	struct xfs_log_vec	*log_vector,
2171	uint			optype)
2172{
2173	struct xfs_log_vec	*lv;
2174	int			headers = 0;
2175	int			len = 0;
2176	int			i;
2177
2178	if (optype & XLOG_START_TRANS)
 
2179		headers++;
2180
2181	for (lv = log_vector; lv; lv = lv->lv_next) {
2182		/* we don't write ordered log vectors */
2183		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2184			continue;
2185
2186		headers += lv->lv_niovecs;
2187
2188		for (i = 0; i < lv->lv_niovecs; i++) {
2189			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2190
2191			len += vecp->i_len;
2192			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2193		}
2194	}
2195
2196	ticket->t_res_num_ophdrs += headers;
2197	len += headers * sizeof(struct xlog_op_header);
2198
2199	return len;
2200}
2201
2202static void
 
 
 
 
2203xlog_write_start_rec(
2204	struct xlog_op_header	*ophdr,
2205	struct xlog_ticket	*ticket)
2206{
 
 
 
2207	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2208	ophdr->oh_clientid = ticket->t_clientid;
2209	ophdr->oh_len = 0;
2210	ophdr->oh_flags = XLOG_START_TRANS;
2211	ophdr->oh_res2 = 0;
 
 
 
 
2212}
2213
2214static xlog_op_header_t *
2215xlog_write_setup_ophdr(
2216	struct xlog		*log,
2217	struct xlog_op_header	*ophdr,
2218	struct xlog_ticket	*ticket,
2219	uint			flags)
2220{
2221	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2222	ophdr->oh_clientid = ticket->t_clientid;
2223	ophdr->oh_res2 = 0;
2224
2225	/* are we copying a commit or unmount record? */
2226	ophdr->oh_flags = flags;
2227
2228	/*
2229	 * We've seen logs corrupted with bad transaction client ids.  This
2230	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2231	 * and shut down the filesystem.
2232	 */
2233	switch (ophdr->oh_clientid)  {
2234	case XFS_TRANSACTION:
2235	case XFS_VOLUME:
2236	case XFS_LOG:
2237		break;
2238	default:
2239		xfs_warn(log->l_mp,
2240			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2241			ophdr->oh_clientid, ticket);
2242		return NULL;
2243	}
2244
2245	return ophdr;
2246}
2247
2248/*
2249 * Set up the parameters of the region copy into the log. This has
2250 * to handle region write split across multiple log buffers - this
2251 * state is kept external to this function so that this code can
2252 * be written in an obvious, self documenting manner.
2253 */
2254static int
2255xlog_write_setup_copy(
2256	struct xlog_ticket	*ticket,
2257	struct xlog_op_header	*ophdr,
2258	int			space_available,
2259	int			space_required,
2260	int			*copy_off,
2261	int			*copy_len,
2262	int			*last_was_partial_copy,
2263	int			*bytes_consumed)
2264{
2265	int			still_to_copy;
2266
2267	still_to_copy = space_required - *bytes_consumed;
2268	*copy_off = *bytes_consumed;
2269
2270	if (still_to_copy <= space_available) {
2271		/* write of region completes here */
2272		*copy_len = still_to_copy;
2273		ophdr->oh_len = cpu_to_be32(*copy_len);
2274		if (*last_was_partial_copy)
2275			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2276		*last_was_partial_copy = 0;
2277		*bytes_consumed = 0;
2278		return 0;
2279	}
2280
2281	/* partial write of region, needs extra log op header reservation */
2282	*copy_len = space_available;
2283	ophdr->oh_len = cpu_to_be32(*copy_len);
2284	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2285	if (*last_was_partial_copy)
2286		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2287	*bytes_consumed += *copy_len;
2288	(*last_was_partial_copy)++;
2289
2290	/* account for new log op header */
2291	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2292	ticket->t_res_num_ophdrs++;
2293
2294	return sizeof(struct xlog_op_header);
2295}
2296
2297static int
2298xlog_write_copy_finish(
2299	struct xlog		*log,
2300	struct xlog_in_core	*iclog,
2301	uint			flags,
2302	int			*record_cnt,
2303	int			*data_cnt,
2304	int			*partial_copy,
2305	int			*partial_copy_len,
2306	int			log_offset,
2307	struct xlog_in_core	**commit_iclog)
2308{
2309	int			error;
2310
2311	if (*partial_copy) {
2312		/*
2313		 * This iclog has already been marked WANT_SYNC by
2314		 * xlog_state_get_iclog_space.
2315		 */
2316		spin_lock(&log->l_icloglock);
2317		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2318		*record_cnt = 0;
2319		*data_cnt = 0;
2320		goto release_iclog;
2321	}
2322
2323	*partial_copy = 0;
2324	*partial_copy_len = 0;
2325
2326	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2327		/* no more space in this iclog - push it. */
2328		spin_lock(&log->l_icloglock);
2329		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2330		*record_cnt = 0;
2331		*data_cnt = 0;
2332
2333		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2334			xlog_state_switch_iclogs(log, iclog, 0);
2335		else
2336			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2337			       iclog->ic_state == XLOG_STATE_IOERROR);
2338		if (!commit_iclog)
2339			goto release_iclog;
2340		spin_unlock(&log->l_icloglock);
 
 
 
2341		ASSERT(flags & XLOG_COMMIT_TRANS);
2342		*commit_iclog = iclog;
2343	}
2344
2345	return 0;
2346
2347release_iclog:
2348	error = xlog_state_release_iclog(log, iclog, 0);
2349	spin_unlock(&log->l_icloglock);
2350	return error;
2351}
2352
2353/*
2354 * Write some region out to in-core log
2355 *
2356 * This will be called when writing externally provided regions or when
2357 * writing out a commit record for a given transaction.
2358 *
2359 * General algorithm:
2360 *	1. Find total length of this write.  This may include adding to the
2361 *		lengths passed in.
2362 *	2. Check whether we violate the tickets reservation.
2363 *	3. While writing to this iclog
2364 *	    A. Reserve as much space in this iclog as can get
2365 *	    B. If this is first write, save away start lsn
2366 *	    C. While writing this region:
2367 *		1. If first write of transaction, write start record
2368 *		2. Write log operation header (header per region)
2369 *		3. Find out if we can fit entire region into this iclog
2370 *		4. Potentially, verify destination memcpy ptr
2371 *		5. Memcpy (partial) region
2372 *		6. If partial copy, release iclog; otherwise, continue
2373 *			copying more regions into current iclog
2374 *	4. Mark want sync bit (in simulation mode)
2375 *	5. Release iclog for potential flush to on-disk log.
2376 *
2377 * ERRORS:
2378 * 1.	Panic if reservation is overrun.  This should never happen since
2379 *	reservation amounts are generated internal to the filesystem.
2380 * NOTES:
2381 * 1. Tickets are single threaded data structures.
2382 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2383 *	syncing routine.  When a single log_write region needs to span
2384 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2385 *	on all log operation writes which don't contain the end of the
2386 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2387 *	operation which contains the end of the continued log_write region.
2388 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2389 *	we don't really know exactly how much space will be used.  As a result,
2390 *	we don't update ic_offset until the end when we know exactly how many
2391 *	bytes have been written out.
2392 */
2393int
2394xlog_write(
2395	struct xlog		*log,
2396	struct xfs_log_vec	*log_vector,
2397	struct xlog_ticket	*ticket,
2398	xfs_lsn_t		*start_lsn,
2399	struct xlog_in_core	**commit_iclog,
2400	uint			optype)
2401{
2402	struct xlog_in_core	*iclog = NULL;
2403	struct xfs_log_vec	*lv = log_vector;
2404	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2405	int			index = 0;
2406	int			len;
 
2407	int			partial_copy = 0;
2408	int			partial_copy_len = 0;
2409	int			contwr = 0;
2410	int			record_cnt = 0;
2411	int			data_cnt = 0;
2412	int			error = 0;
 
 
 
 
2413
2414	/*
2415	 * If this is a commit or unmount transaction, we don't need a start
2416	 * record to be written.  We do, however, have to account for the
2417	 * commit or unmount header that gets written. Hence we always have
2418	 * to account for an extra xlog_op_header here.
2419	 */
2420	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2421	if (ticket->t_curr_res < 0) {
2422		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2423		     "ctx ticket reservation ran out. Need to up reservation");
 
 
 
 
 
 
 
2424		xlog_print_tic_res(log->l_mp, ticket);
2425		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2426	}
2427
2428	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2429	if (start_lsn)
2430		*start_lsn = 0;
2431	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2432		void		*ptr;
2433		int		log_offset;
2434
2435		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2436						   &contwr, &log_offset);
2437		if (error)
2438			return error;
2439
2440		ASSERT(log_offset <= iclog->ic_size - 1);
2441		ptr = iclog->ic_datap + log_offset;
2442
2443		/* Start_lsn is the first lsn written to. */
2444		if (start_lsn && !*start_lsn)
2445			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2446
2447		/*
2448		 * This loop writes out as many regions as can fit in the amount
2449		 * of space which was allocated by xlog_state_get_iclog_space().
2450		 */
2451		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2452			struct xfs_log_iovec	*reg;
2453			struct xlog_op_header	*ophdr;
 
2454			int			copy_len;
2455			int			copy_off;
2456			bool			ordered = false;
2457			bool			wrote_start_rec = false;
2458
2459			/* ordered log vectors have no regions to write */
2460			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2461				ASSERT(lv->lv_niovecs == 0);
2462				ordered = true;
2463				goto next_lv;
2464			}
2465
2466			reg = &vecp[index];
2467			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2468			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2469
2470			/*
2471			 * Before we start formatting log vectors, we need to
2472			 * write a start record. Only do this for the first
2473			 * iclog we write to.
2474			 */
2475			if (optype & XLOG_START_TRANS) {
2476				xlog_write_start_rec(ptr, ticket);
2477				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478						sizeof(struct xlog_op_header));
2479				optype &= ~XLOG_START_TRANS;
2480				wrote_start_rec = true;
2481			}
2482
2483			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2484			if (!ophdr)
2485				return -EIO;
2486
2487			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488					   sizeof(struct xlog_op_header));
2489
2490			len += xlog_write_setup_copy(ticket, ophdr,
2491						     iclog->ic_size-log_offset,
2492						     reg->i_len,
2493						     &copy_off, &copy_len,
2494						     &partial_copy,
2495						     &partial_copy_len);
2496			xlog_verify_dest_ptr(log, ptr);
2497
2498			/*
2499			 * Copy region.
2500			 *
2501			 * Unmount records just log an opheader, so can have
2502			 * empty payloads with no data region to copy. Hence we
2503			 * only copy the payload if the vector says it has data
2504			 * to copy.
2505			 */
2506			ASSERT(copy_len >= 0);
2507			if (copy_len > 0) {
2508				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510						   copy_len);
2511			}
2512			copy_len += sizeof(struct xlog_op_header);
2513			record_cnt++;
2514			if (wrote_start_rec) {
2515				copy_len += sizeof(struct xlog_op_header);
2516				record_cnt++;
2517			}
2518			data_cnt += contwr ? copy_len : 0;
2519
2520			error = xlog_write_copy_finish(log, iclog, optype,
2521						       &record_cnt, &data_cnt,
2522						       &partial_copy,
2523						       &partial_copy_len,
2524						       log_offset,
2525						       commit_iclog);
2526			if (error)
2527				return error;
2528
2529			/*
2530			 * if we had a partial copy, we need to get more iclog
2531			 * space but we don't want to increment the region
2532			 * index because there is still more is this region to
2533			 * write.
2534			 *
2535			 * If we completed writing this region, and we flushed
2536			 * the iclog (indicated by resetting of the record
2537			 * count), then we also need to get more log space. If
2538			 * this was the last record, though, we are done and
2539			 * can just return.
2540			 */
2541			if (partial_copy)
2542				break;
2543
2544			if (++index == lv->lv_niovecs) {
2545next_lv:
2546				lv = lv->lv_next;
2547				index = 0;
2548				if (lv)
2549					vecp = lv->lv_iovecp;
2550			}
2551			if (record_cnt == 0 && !ordered) {
2552				if (!lv)
2553					return 0;
2554				break;
2555			}
2556		}
2557	}
2558
2559	ASSERT(len == 0);
2560
2561	spin_lock(&log->l_icloglock);
2562	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2563	if (commit_iclog) {
2564		ASSERT(optype & XLOG_COMMIT_TRANS);
2565		*commit_iclog = iclog;
2566	} else {
2567		error = xlog_state_release_iclog(log, iclog, 0);
2568	}
2569	spin_unlock(&log->l_icloglock);
2570
2571	return error;
 
 
2572}
2573
2574static void
2575xlog_state_activate_iclog(
2576	struct xlog_in_core	*iclog,
2577	int			*iclogs_changed)
2578{
2579	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2580	trace_xlog_iclog_activate(iclog, _RET_IP_);
2581
2582	/*
2583	 * If the number of ops in this iclog indicate it just contains the
2584	 * dummy transaction, we can change state into IDLE (the second time
2585	 * around). Otherwise we should change the state into NEED a dummy.
2586	 * We don't need to cover the dummy.
2587	 */
2588	if (*iclogs_changed == 0 &&
2589	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2590		*iclogs_changed = 1;
2591	} else {
2592		/*
2593		 * We have two dirty iclogs so start over.  This could also be
2594		 * num of ops indicating this is not the dummy going out.
2595		 */
2596		*iclogs_changed = 2;
2597	}
2598
2599	iclog->ic_state	= XLOG_STATE_ACTIVE;
2600	iclog->ic_offset = 0;
2601	iclog->ic_header.h_num_logops = 0;
2602	memset(iclog->ic_header.h_cycle_data, 0,
2603		sizeof(iclog->ic_header.h_cycle_data));
2604	iclog->ic_header.h_lsn = 0;
2605	iclog->ic_header.h_tail_lsn = 0;
2606}
2607
2608/*
2609 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2610 * ACTIVE after iclog I/O has completed.
 
 
 
 
2611 */
2612static void
2613xlog_state_activate_iclogs(
2614	struct xlog		*log,
2615	int			*iclogs_changed)
2616{
2617	struct xlog_in_core	*iclog = log->l_iclog;
 
2618
 
2619	do {
2620		if (iclog->ic_state == XLOG_STATE_DIRTY)
2621			xlog_state_activate_iclog(iclog, iclogs_changed);
2622		/*
2623		 * The ordering of marking iclogs ACTIVE must be maintained, so
2624		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2625		 */
2626		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2627			break;
2628	} while ((iclog = iclog->ic_next) != log->l_iclog);
2629}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2630
2631static int
2632xlog_covered_state(
2633	int			prev_state,
2634	int			iclogs_changed)
2635{
2636	/*
2637	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2638	 * wrote the first covering record (DONE). We go to IDLE if we just
2639	 * wrote the second covering record (DONE2) and remain in IDLE until a
2640	 * non-covering write occurs.
2641	 */
2642	switch (prev_state) {
2643	case XLOG_STATE_COVER_IDLE:
2644		if (iclogs_changed == 1)
2645			return XLOG_STATE_COVER_IDLE;
2646		fallthrough;
2647	case XLOG_STATE_COVER_NEED:
2648	case XLOG_STATE_COVER_NEED2:
2649		break;
2650	case XLOG_STATE_COVER_DONE:
2651		if (iclogs_changed == 1)
2652			return XLOG_STATE_COVER_NEED2;
2653		break;
2654	case XLOG_STATE_COVER_DONE2:
2655		if (iclogs_changed == 1)
2656			return XLOG_STATE_COVER_IDLE;
2657		break;
2658	default:
2659		ASSERT(0);
2660	}
2661
2662	return XLOG_STATE_COVER_NEED;
2663}
2664
2665STATIC void
2666xlog_state_clean_iclog(
2667	struct xlog		*log,
2668	struct xlog_in_core	*dirty_iclog)
2669{
2670	int			iclogs_changed = 0;
2671
2672	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2673
2674	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
 
 
 
 
 
2675
2676	xlog_state_activate_iclogs(log, &iclogs_changed);
2677	wake_up_all(&dirty_iclog->ic_force_wait);
 
 
 
 
2678
2679	if (iclogs_changed) {
2680		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2681				iclogs_changed);
2682	}
2683}
2684
2685STATIC xfs_lsn_t
2686xlog_get_lowest_lsn(
2687	struct xlog		*log)
2688{
2689	struct xlog_in_core	*iclog = log->l_iclog;
2690	xfs_lsn_t		lowest_lsn = 0, lsn;
2691
 
 
2692	do {
2693		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2694		    iclog->ic_state == XLOG_STATE_DIRTY)
2695			continue;
2696
2697		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2698		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2699			lowest_lsn = lsn;
2700	} while ((iclog = iclog->ic_next) != log->l_iclog);
2701
 
 
2702	return lowest_lsn;
2703}
2704
2705/*
2706 * Completion of a iclog IO does not imply that a transaction has completed, as
2707 * transactions can be large enough to span many iclogs. We cannot change the
2708 * tail of the log half way through a transaction as this may be the only
2709 * transaction in the log and moving the tail to point to the middle of it
2710 * will prevent recovery from finding the start of the transaction. Hence we
2711 * should only update the last_sync_lsn if this iclog contains transaction
2712 * completion callbacks on it.
2713 *
2714 * We have to do this before we drop the icloglock to ensure we are the only one
2715 * that can update it.
2716 *
2717 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2718 * the reservation grant head pushing. This is due to the fact that the push
2719 * target is bound by the current last_sync_lsn value. Hence if we have a large
2720 * amount of log space bound up in this committing transaction then the
2721 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2722 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2723 * should push the AIL to ensure the push target (and hence the grant head) is
2724 * no longer bound by the old log head location and can move forwards and make
2725 * progress again.
2726 */
2727static void
2728xlog_state_set_callback(
2729	struct xlog		*log,
2730	struct xlog_in_core	*iclog,
2731	xfs_lsn_t		header_lsn)
2732{
2733	trace_xlog_iclog_callback(iclog, _RET_IP_);
2734	iclog->ic_state = XLOG_STATE_CALLBACK;
2735
2736	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737			   header_lsn) <= 0);
2738
2739	if (list_empty_careful(&iclog->ic_callbacks))
2740		return;
2741
2742	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743	xlog_grant_push_ail(log, 0);
2744}
2745
2746/*
2747 * Return true if we need to stop processing, false to continue to the next
2748 * iclog. The caller will need to run callbacks if the iclog is returned in the
2749 * XLOG_STATE_CALLBACK state.
2750 */
2751static bool
2752xlog_state_iodone_process_iclog(
2753	struct xlog		*log,
2754	struct xlog_in_core	*iclog,
2755	bool			*ioerror)
2756{
2757	xfs_lsn_t		lowest_lsn;
2758	xfs_lsn_t		header_lsn;
2759
2760	switch (iclog->ic_state) {
2761	case XLOG_STATE_ACTIVE:
2762	case XLOG_STATE_DIRTY:
2763		/*
2764		 * Skip all iclogs in the ACTIVE & DIRTY states:
2765		 */
2766		return false;
2767	case XLOG_STATE_IOERROR:
2768		/*
2769		 * Between marking a filesystem SHUTDOWN and stopping the log,
2770		 * we do flush all iclogs to disk (if there wasn't a log I/O
2771		 * error). So, we do want things to go smoothly in case of just
2772		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2773		 */
2774		*ioerror = true;
2775		return false;
2776	case XLOG_STATE_DONE_SYNC:
2777		/*
2778		 * Now that we have an iclog that is in the DONE_SYNC state, do
2779		 * one more check here to see if we have chased our tail around.
2780		 * If this is not the lowest lsn iclog, then we will leave it
2781		 * for another completion to process.
2782		 */
2783		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784		lowest_lsn = xlog_get_lowest_lsn(log);
2785		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786			return false;
2787		xlog_state_set_callback(log, iclog, header_lsn);
2788		return false;
2789	default:
2790		/*
2791		 * Can only perform callbacks in order.  Since this iclog is not
2792		 * in the DONE_SYNC state, we skip the rest and just try to
2793		 * clean up.
2794		 */
2795		return true;
2796	}
2797}
2798
2799STATIC void
2800xlog_state_do_callback(
2801	struct xlog		*log)
 
 
2802{
2803	struct xlog_in_core	*iclog;
2804	struct xlog_in_core	*first_iclog;
2805	bool			cycled_icloglock;
2806	bool			ioerror;
2807	int			flushcnt = 0;
2808	int			repeats = 0;
 
 
 
 
 
 
2809
2810	spin_lock(&log->l_icloglock);
 
 
 
 
 
2811	do {
2812		/*
2813		 * Scan all iclogs starting with the one pointed to by the
2814		 * log.  Reset this starting point each time the log is
2815		 * unlocked (during callbacks).
2816		 *
2817		 * Keep looping through iclogs until one full pass is made
2818		 * without running any callbacks.
2819		 */
2820		first_iclog = log->l_iclog;
2821		iclog = log->l_iclog;
2822		cycled_icloglock = false;
2823		ioerror = false;
2824		repeats++;
2825
2826		do {
2827			LIST_HEAD(cb_list);
2828
2829			if (xlog_state_iodone_process_iclog(log, iclog,
2830							&ioerror))
2831				break;
2832
2833			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2834			    iclog->ic_state != XLOG_STATE_IOERROR) {
2835				iclog = iclog->ic_next;
2836				continue;
2837			}
2838			list_splice_init(&iclog->ic_callbacks, &cb_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839			spin_unlock(&log->l_icloglock);
2840
2841			trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2842			xlog_cil_process_committed(&cb_list);
2843			trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2844			cycled_icloglock = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2845
2846			spin_lock(&log->l_icloglock);
2847			if (XLOG_FORCED_SHUTDOWN(log))
2848				wake_up_all(&iclog->ic_force_wait);
2849			else
2850				xlog_state_clean_iclog(log, iclog);
 
 
 
 
 
 
 
 
 
 
2851			iclog = iclog->ic_next;
2852		} while (first_iclog != iclog);
2853
2854		if (repeats > 5000) {
2855			flushcnt += repeats;
2856			repeats = 0;
2857			xfs_warn(log->l_mp,
2858				"%s: possible infinite loop (%d iterations)",
2859				__func__, flushcnt);
2860		}
2861	} while (!ioerror && cycled_icloglock);
2862
2863	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2864	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2865		wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866
 
 
2867	spin_unlock(&log->l_icloglock);
 
 
 
2868}
2869
2870
2871/*
2872 * Finish transitioning this iclog to the dirty state.
2873 *
2874 * Make sure that we completely execute this routine only when this is
2875 * the last call to the iclog.  There is a good chance that iclog flushes,
2876 * when we reach the end of the physical log, get turned into 2 separate
2877 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2878 * routine.  By using the reference count bwritecnt, we guarantee that only
2879 * the second completion goes through.
2880 *
2881 * Callbacks could take time, so they are done outside the scope of the
2882 * global state machine log lock.
2883 */
2884STATIC void
2885xlog_state_done_syncing(
2886	struct xlog_in_core	*iclog)
 
2887{
2888	struct xlog		*log = iclog->ic_log;
2889
2890	spin_lock(&log->l_icloglock);
 
 
 
2891	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2892	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
 
2893
2894	/*
2895	 * If we got an error, either on the first buffer, or in the case of
2896	 * split log writes, on the second, we shut down the file system and
2897	 * no iclogs should ever be attempted to be written to disk again.
 
2898	 */
2899	if (!XLOG_FORCED_SHUTDOWN(log)) {
2900		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
 
 
 
2901		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2902	}
2903
2904	/*
2905	 * Someone could be sleeping prior to writing out the next
2906	 * iclog buffer, we wake them all, one will get to do the
2907	 * I/O, the others get to wait for the result.
2908	 */
2909	wake_up_all(&iclog->ic_write_wait);
2910	spin_unlock(&log->l_icloglock);
2911	xlog_state_do_callback(log);
2912}
 
2913
2914/*
2915 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2916 * sleep.  We wait on the flush queue on the head iclog as that should be
2917 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2918 * we will wait here and all new writes will sleep until a sync completes.
2919 *
2920 * The in-core logs are used in a circular fashion. They are not used
2921 * out-of-order even when an iclog past the head is free.
2922 *
2923 * return:
2924 *	* log_offset where xlog_write() can start writing into the in-core
2925 *		log's data space.
2926 *	* in-core log pointer to which xlog_write() should write.
2927 *	* boolean indicating this is a continued write to an in-core log.
2928 *		If this is the last write, then the in-core log's offset field
2929 *		needs to be incremented, depending on the amount of data which
2930 *		is copied.
2931 */
2932STATIC int
2933xlog_state_get_iclog_space(
2934	struct xlog		*log,
2935	int			len,
2936	struct xlog_in_core	**iclogp,
2937	struct xlog_ticket	*ticket,
2938	int			*continued_write,
2939	int			*logoffsetp)
2940{
2941	int		  log_offset;
2942	xlog_rec_header_t *head;
2943	xlog_in_core_t	  *iclog;
 
2944
2945restart:
2946	spin_lock(&log->l_icloglock);
2947	if (XLOG_FORCED_SHUTDOWN(log)) {
2948		spin_unlock(&log->l_icloglock);
2949		return -EIO;
2950	}
2951
2952	iclog = log->l_iclog;
2953	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2954		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2955
2956		/* Wait for log writes to have flushed */
2957		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2958		goto restart;
2959	}
2960
2961	head = &iclog->ic_header;
2962
2963	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2964	log_offset = iclog->ic_offset;
2965
2966	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2967
2968	/* On the 1st write to an iclog, figure out lsn.  This works
2969	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2970	 * committing to.  If the offset is set, that's how many blocks
2971	 * must be written.
2972	 */
2973	if (log_offset == 0) {
2974		ticket->t_curr_res -= log->l_iclog_hsize;
2975		xlog_tic_add_region(ticket,
2976				    log->l_iclog_hsize,
2977				    XLOG_REG_TYPE_LRHEADER);
2978		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2979		head->h_lsn = cpu_to_be64(
2980			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2981		ASSERT(log->l_curr_block >= 0);
2982	}
2983
2984	/* If there is enough room to write everything, then do it.  Otherwise,
2985	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2986	 * bit is on, so this will get flushed out.  Don't update ic_offset
2987	 * until you know exactly how many bytes get copied.  Therefore, wait
2988	 * until later to update ic_offset.
2989	 *
2990	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2991	 * can fit into remaining data section.
2992	 */
2993	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2994		int		error = 0;
2995
2996		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998		/*
2999		 * If we are the only one writing to this iclog, sync it to
3000		 * disk.  We need to do an atomic compare and decrement here to
3001		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3002		 * xlog_state_release_iclog() when there is more than one
3003		 * reference to the iclog.
3004		 */
3005		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3006			error = xlog_state_release_iclog(log, iclog, 0);
3007		spin_unlock(&log->l_icloglock);
3008		if (error)
3009			return error;
 
 
 
 
3010		goto restart;
3011	}
3012
3013	/* Do we have enough room to write the full amount in the remainder
3014	 * of this iclog?  Or must we continue a write on the next iclog and
3015	 * mark this iclog as completely taken?  In the case where we switch
3016	 * iclogs (to mark it taken), this particular iclog will release/sync
3017	 * to disk in xlog_write().
3018	 */
3019	if (len <= iclog->ic_size - iclog->ic_offset) {
3020		*continued_write = 0;
3021		iclog->ic_offset += len;
3022	} else {
3023		*continued_write = 1;
3024		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3025	}
3026	*iclogp = iclog;
3027
3028	ASSERT(iclog->ic_offset <= iclog->ic_size);
3029	spin_unlock(&log->l_icloglock);
3030
3031	*logoffsetp = log_offset;
3032	return 0;
3033}
3034
3035/*
3036 * The first cnt-1 times a ticket goes through here we don't need to move the
3037 * grant write head because the permanent reservation has reserved cnt times the
3038 * unit amount.  Release part of current permanent unit reservation and reset
3039 * current reservation to be one units worth.  Also move grant reservation head
3040 * forward.
3041 */
3042void
3043xfs_log_ticket_regrant(
3044	struct xlog		*log,
3045	struct xlog_ticket	*ticket)
3046{
3047	trace_xfs_log_ticket_regrant(log, ticket);
3048
3049	if (ticket->t_cnt > 0)
3050		ticket->t_cnt--;
3051
3052	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3053					ticket->t_curr_res);
3054	xlog_grant_sub_space(log, &log->l_write_head.grant,
3055					ticket->t_curr_res);
3056	ticket->t_curr_res = ticket->t_unit_res;
3057	xlog_tic_reset_res(ticket);
3058
3059	trace_xfs_log_ticket_regrant_sub(log, ticket);
3060
3061	/* just return if we still have some of the pre-reserved space */
3062	if (!ticket->t_cnt) {
3063		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3064				     ticket->t_unit_res);
3065		trace_xfs_log_ticket_regrant_exit(log, ticket);
3066
3067		ticket->t_curr_res = ticket->t_unit_res;
3068		xlog_tic_reset_res(ticket);
3069	}
 
 
 
 
 
3070
3071	xfs_log_ticket_put(ticket);
3072}
3073
3074/*
3075 * Give back the space left from a reservation.
3076 *
3077 * All the information we need to make a correct determination of space left
3078 * is present.  For non-permanent reservations, things are quite easy.  The
3079 * count should have been decremented to zero.  We only need to deal with the
3080 * space remaining in the current reservation part of the ticket.  If the
3081 * ticket contains a permanent reservation, there may be left over space which
3082 * needs to be released.  A count of N means that N-1 refills of the current
3083 * reservation can be done before we need to ask for more space.  The first
3084 * one goes to fill up the first current reservation.  Once we run out of
3085 * space, the count will stay at zero and the only space remaining will be
3086 * in the current reservation field.
3087 */
3088void
3089xfs_log_ticket_ungrant(
3090	struct xlog		*log,
3091	struct xlog_ticket	*ticket)
3092{
3093	int			bytes;
3094
3095	trace_xfs_log_ticket_ungrant(log, ticket);
3096
3097	if (ticket->t_cnt > 0)
3098		ticket->t_cnt--;
3099
3100	trace_xfs_log_ticket_ungrant_sub(log, ticket);
 
3101
3102	/*
3103	 * If this is a permanent reservation ticket, we may be able to free
3104	 * up more space based on the remaining count.
3105	 */
3106	bytes = ticket->t_curr_res;
3107	if (ticket->t_cnt > 0) {
3108		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3109		bytes += ticket->t_unit_res*ticket->t_cnt;
3110	}
3111
3112	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3113	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3114
3115	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3116
3117	xfs_log_space_wake(log->l_mp);
3118	xfs_log_ticket_put(ticket);
3119}
3120
3121/*
3122 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3123 * the current iclog pointer to the next iclog in the ring.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124 */
3125STATIC void
3126xlog_state_switch_iclogs(
3127	struct xlog		*log,
3128	struct xlog_in_core	*iclog,
3129	int			eventual_size)
3130{
3131	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3132	assert_spin_locked(&log->l_icloglock);
3133	trace_xlog_iclog_switch(iclog, _RET_IP_);
3134
3135	if (!eventual_size)
3136		eventual_size = iclog->ic_offset;
3137	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3138	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3139	log->l_prev_block = log->l_curr_block;
3140	log->l_prev_cycle = log->l_curr_cycle;
3141
3142	/* roll log?: ic_offset changed later */
3143	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3144
3145	/* Round up to next log-sunit */
3146	if (log->l_iclog_roundoff > BBSIZE) {
3147		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
 
3148		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3149	}
3150
3151	if (log->l_curr_block >= log->l_logBBsize) {
3152		/*
3153		 * Rewind the current block before the cycle is bumped to make
3154		 * sure that the combined LSN never transiently moves forward
3155		 * when the log wraps to the next cycle. This is to support the
3156		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3157		 * other cases should acquire l_icloglock.
3158		 */
3159		log->l_curr_block -= log->l_logBBsize;
3160		ASSERT(log->l_curr_block >= 0);
3161		smp_wmb();
3162		log->l_curr_cycle++;
3163		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3164			log->l_curr_cycle++;
3165	}
3166	ASSERT(iclog == log->l_iclog);
3167	log->l_iclog = iclog->ic_next;
3168}
3169
3170/*
3171 * Force the iclog to disk and check if the iclog has been completed before
3172 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3173 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3174 * If completion has already occurred, tell the caller so that it can avoid an
3175 * unnecessary wait on the iclog.
3176 */
3177static int
3178xlog_force_and_check_iclog(
3179	struct xlog_in_core	*iclog,
3180	bool			*completed)
3181{
3182	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3183	int			error;
3184
3185	*completed = false;
3186	error = xlog_force_iclog(iclog);
3187	if (error)
3188		return error;
3189
3190	/*
3191	 * If the iclog has already been completed and reused the header LSN
3192	 * will have been rewritten by completion
3193	 */
3194	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3195		*completed = true;
3196	return 0;
3197}
3198
3199/*
3200 * Write out all data in the in-core log as of this exact moment in time.
3201 *
3202 * Data may be written to the in-core log during this call.  However,
3203 * we don't guarantee this data will be written out.  A change from past
3204 * implementation means this routine will *not* write out zero length LRs.
3205 *
3206 * Basically, we try and perform an intelligent scan of the in-core logs.
3207 * If we determine there is no flushable data, we just return.  There is no
3208 * flushable data if:
3209 *
3210 *	1. the current iclog is active and has no data; the previous iclog
3211 *		is in the active or dirty state.
3212 *	2. the current iclog is drity, and the previous iclog is in the
3213 *		active or dirty state.
3214 *
3215 * We may sleep if:
3216 *
3217 *	1. the current iclog is not in the active nor dirty state.
3218 *	2. the current iclog dirty, and the previous iclog is not in the
3219 *		active nor dirty state.
3220 *	3. the current iclog is active, and there is another thread writing
3221 *		to this particular iclog.
3222 *	4. a) the current iclog is active and has no other writers
3223 *	   b) when we return from flushing out this iclog, it is still
3224 *		not in the active nor dirty state.
3225 */
3226int
3227xfs_log_force(
3228	struct xfs_mount	*mp,
3229	uint			flags)
 
3230{
3231	struct xlog		*log = mp->m_log;
3232	struct xlog_in_core	*iclog;
 
3233
3234	XFS_STATS_INC(mp, xs_log_force);
3235	trace_xfs_log_force(mp, 0, _RET_IP_);
3236
3237	xlog_cil_force(log);
3238
3239	spin_lock(&log->l_icloglock);
3240	iclog = log->l_iclog;
3241	if (iclog->ic_state == XLOG_STATE_IOERROR)
3242		goto out_error;
3243
3244	trace_xlog_iclog_force(iclog, _RET_IP_);
 
 
 
 
3245
3246	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3247	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3248	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
3249		/*
3250		 * If the head is dirty or (active and empty), then we need to
3251		 * look at the previous iclog.
3252		 *
3253		 * If the previous iclog is active or dirty we are done.  There
3254		 * is nothing to sync out. Otherwise, we attach ourselves to the
3255		 * previous iclog and go to sleep.
3256		 */
3257		iclog = iclog->ic_prev;
3258	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3259		if (atomic_read(&iclog->ic_refcnt) == 0) {
3260			/* We have exclusive access to this iclog. */
3261			bool	completed;
3262
3263			if (xlog_force_and_check_iclog(iclog, &completed))
3264				goto out_error;
3265
3266			if (completed)
3267				goto out_unlock;
3268		} else {
3269			/*
3270			 * Someone else is still writing to this iclog, so we
3271			 * need to ensure that when they release the iclog it
3272			 * gets synced immediately as we may be waiting on it.
3273			 */
3274			xlog_state_switch_iclogs(log, iclog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275		}
3276	}
3277
3278	/*
3279	 * The iclog we are about to wait on may contain the checkpoint pushed
3280	 * by the above xlog_cil_force() call, but it may not have been pushed
3281	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3282	 * are flushed when this iclog is written.
3283	 */
3284	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3285		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3286
3287	if (flags & XFS_LOG_SYNC)
3288		return xlog_wait_on_iclog(iclog);
3289out_unlock:
3290	spin_unlock(&log->l_icloglock);
3291	return 0;
3292out_error:
3293	spin_unlock(&log->l_icloglock);
3294	return -EIO;
3295}
3296
3297static int
3298xlog_force_lsn(
3299	struct xlog		*log,
3300	xfs_lsn_t		lsn,
3301	uint			flags,
3302	int			*log_flushed,
3303	bool			already_slept)
3304{
3305	struct xlog_in_core	*iclog;
3306	bool			completed;
3307
3308	spin_lock(&log->l_icloglock);
3309	iclog = log->l_iclog;
3310	if (iclog->ic_state == XLOG_STATE_IOERROR)
3311		goto out_error;
3312
3313	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3314		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3315		iclog = iclog->ic_next;
3316		if (iclog == log->l_iclog)
3317			goto out_unlock;
3318	}
3319
3320	switch (iclog->ic_state) {
3321	case XLOG_STATE_ACTIVE:
3322		/*
3323		 * We sleep here if we haven't already slept (e.g. this is the
3324		 * first time we've looked at the correct iclog buf) and the
3325		 * buffer before us is going to be sync'ed.  The reason for this
3326		 * is that if we are doing sync transactions here, by waiting
3327		 * for the previous I/O to complete, we can allow a few more
3328		 * transactions into this iclog before we close it down.
3329		 *
3330		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3331		 * refcnt so we can release the log (which drops the ref count).
3332		 * The state switch keeps new transaction commits from using
3333		 * this buffer.  When the current commits finish writing into
3334		 * the buffer, the refcount will drop to zero and the buffer
3335		 * will go out then.
3336		 */
3337		if (!already_slept &&
3338		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3339		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3340			xlog_wait(&iclog->ic_prev->ic_write_wait,
3341					&log->l_icloglock);
3342			return -EAGAIN;
3343		}
3344		if (xlog_force_and_check_iclog(iclog, &completed))
3345			goto out_error;
3346		if (log_flushed)
3347			*log_flushed = 1;
3348		if (completed)
3349			goto out_unlock;
3350		break;
3351	case XLOG_STATE_WANT_SYNC:
3352		/*
3353		 * This iclog may contain the checkpoint pushed by the
3354		 * xlog_cil_force_seq() call, but there are other writers still
3355		 * accessing it so it hasn't been pushed to disk yet. Like the
3356		 * ACTIVE case above, we need to make sure caches are flushed
3357		 * when this iclog is written.
3358		 */
3359		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3360		break;
3361	default:
3362		/*
3363		 * The entire checkpoint was written by the CIL force and is on
3364		 * its way to disk already. It will be stable when it
3365		 * completes, so we don't need to manipulate caches here at all.
3366		 * We just need to wait for completion if necessary.
3367		 */
3368		break;
3369	}
 
 
 
3370
3371	if (flags & XFS_LOG_SYNC)
3372		return xlog_wait_on_iclog(iclog);
3373out_unlock:
3374	spin_unlock(&log->l_icloglock);
3375	return 0;
3376out_error:
3377	spin_unlock(&log->l_icloglock);
3378	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379}
3380
3381/*
3382 * Force the in-core log to disk for a specific LSN.
3383 *
3384 * Find in-core log with lsn.
3385 *	If it is in the DIRTY state, just return.
3386 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3387 *		state and go to sleep or return.
3388 *	If it is in any other state, go to sleep or return.
3389 *
3390 * Synchronous forces are implemented with a wait queue.  All callers trying
3391 * to force a given lsn to disk must wait on the queue attached to the
3392 * specific in-core log.  When given in-core log finally completes its write
3393 * to disk, that thread will wake up all threads waiting on the queue.
 
3394 */
3395int
3396xfs_log_force_seq(
3397	struct xfs_mount	*mp,
3398	xfs_csn_t		seq,
3399	uint			flags,
3400	int			*log_flushed)
3401{
3402	struct xlog		*log = mp->m_log;
3403	xfs_lsn_t		lsn;
3404	int			ret;
3405	ASSERT(seq != 0);
 
3406
3407	XFS_STATS_INC(mp, xs_log_force);
3408	trace_xfs_log_force(mp, seq, _RET_IP_);
3409
3410	lsn = xlog_cil_force_seq(log, seq);
3411	if (lsn == NULLCOMMITLSN)
3412		return 0;
3413
3414	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3415	if (ret == -EAGAIN) {
3416		XFS_STATS_INC(mp, xs_log_force_sleep);
3417		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418	}
3419	return ret;
3420}
3421
 
 
 
 
 
 
 
 
3422/*
3423 * Free a used ticket when its refcount falls to zero.
3424 */
3425void
3426xfs_log_ticket_put(
3427	xlog_ticket_t	*ticket)
3428{
3429	ASSERT(atomic_read(&ticket->t_ref) > 0);
3430	if (atomic_dec_and_test(&ticket->t_ref))
3431		kmem_cache_free(xfs_log_ticket_zone, ticket);
3432}
3433
3434xlog_ticket_t *
3435xfs_log_ticket_get(
3436	xlog_ticket_t	*ticket)
3437{
3438	ASSERT(atomic_read(&ticket->t_ref) > 0);
3439	atomic_inc(&ticket->t_ref);
3440	return ticket;
3441}
3442
3443/*
3444 * Figure out the total log space unit (in bytes) that would be
3445 * required for a log ticket.
3446 */
3447static int
3448xlog_calc_unit_res(
3449	struct xlog		*log,
3450	int			unit_bytes)
3451{
 
3452	int			iclog_space;
3453	uint			num_headers;
3454
3455	/*
3456	 * Permanent reservations have up to 'cnt'-1 active log operations
3457	 * in the log.  A unit in this case is the amount of space for one
3458	 * of these log operations.  Normal reservations have a cnt of 1
3459	 * and their unit amount is the total amount of space required.
3460	 *
3461	 * The following lines of code account for non-transaction data
3462	 * which occupy space in the on-disk log.
3463	 *
3464	 * Normal form of a transaction is:
3465	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3466	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3467	 *
3468	 * We need to account for all the leadup data and trailer data
3469	 * around the transaction data.
3470	 * And then we need to account for the worst case in terms of using
3471	 * more space.
3472	 * The worst case will happen if:
3473	 * - the placement of the transaction happens to be such that the
3474	 *   roundoff is at its maximum
3475	 * - the transaction data is synced before the commit record is synced
3476	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3477	 *   Therefore the commit record is in its own Log Record.
3478	 *   This can happen as the commit record is called with its
3479	 *   own region to xlog_write().
3480	 *   This then means that in the worst case, roundoff can happen for
3481	 *   the commit-rec as well.
3482	 *   The commit-rec is smaller than padding in this scenario and so it is
3483	 *   not added separately.
3484	 */
3485
3486	/* for trans header */
3487	unit_bytes += sizeof(xlog_op_header_t);
3488	unit_bytes += sizeof(xfs_trans_header_t);
3489
3490	/* for start-rec */
3491	unit_bytes += sizeof(xlog_op_header_t);
3492
3493	/*
3494	 * for LR headers - the space for data in an iclog is the size minus
3495	 * the space used for the headers. If we use the iclog size, then we
3496	 * undercalculate the number of headers required.
3497	 *
3498	 * Furthermore - the addition of op headers for split-recs might
3499	 * increase the space required enough to require more log and op
3500	 * headers, so take that into account too.
3501	 *
3502	 * IMPORTANT: This reservation makes the assumption that if this
3503	 * transaction is the first in an iclog and hence has the LR headers
3504	 * accounted to it, then the remaining space in the iclog is
3505	 * exclusively for this transaction.  i.e. if the transaction is larger
3506	 * than the iclog, it will be the only thing in that iclog.
3507	 * Fundamentally, this means we must pass the entire log vector to
3508	 * xlog_write to guarantee this.
3509	 */
3510	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3511	num_headers = howmany(unit_bytes, iclog_space);
3512
3513	/* for split-recs - ophdrs added when data split over LRs */
3514	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3515
3516	/* add extra header reservations if we overrun */
3517	while (!num_headers ||
3518	       howmany(unit_bytes, iclog_space) > num_headers) {
3519		unit_bytes += sizeof(xlog_op_header_t);
3520		num_headers++;
3521	}
3522	unit_bytes += log->l_iclog_hsize * num_headers;
3523
3524	/* for commit-rec LR header - note: padding will subsume the ophdr */
3525	unit_bytes += log->l_iclog_hsize;
3526
3527	/* roundoff padding for transaction data and one for commit record */
3528	unit_bytes += 2 * log->l_iclog_roundoff;
 
 
 
 
 
 
3529
3530	return unit_bytes;
3531}
3532
3533int
3534xfs_log_calc_unit_res(
3535	struct xfs_mount	*mp,
3536	int			unit_bytes)
3537{
3538	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3539}
3540
3541/*
3542 * Allocate and initialise a new log ticket.
3543 */
3544struct xlog_ticket *
3545xlog_ticket_alloc(
3546	struct xlog		*log,
3547	int			unit_bytes,
3548	int			cnt,
3549	char			client,
3550	bool			permanent)
 
3551{
3552	struct xlog_ticket	*tic;
3553	int			unit_res;
3554
3555	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
 
 
3556
3557	unit_res = xlog_calc_unit_res(log, unit_bytes);
3558
3559	atomic_set(&tic->t_ref, 1);
3560	tic->t_task		= current;
3561	INIT_LIST_HEAD(&tic->t_queue);
3562	tic->t_unit_res		= unit_res;
3563	tic->t_curr_res		= unit_res;
3564	tic->t_cnt		= cnt;
3565	tic->t_ocnt		= cnt;
3566	tic->t_tid		= prandom_u32();
3567	tic->t_clientid		= client;
 
 
3568	if (permanent)
3569		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3570
3571	xlog_tic_reset_res(tic);
3572
3573	return tic;
3574}
3575
 
 
 
 
 
 
 
3576#if defined(DEBUG)
3577/*
3578 * Make sure that the destination ptr is within the valid data region of
3579 * one of the iclogs.  This uses backup pointers stored in a different
3580 * part of the log in case we trash the log structure.
3581 */
3582STATIC void
3583xlog_verify_dest_ptr(
3584	struct xlog	*log,
3585	void		*ptr)
3586{
3587	int i;
3588	int good_ptr = 0;
3589
3590	for (i = 0; i < log->l_iclog_bufs; i++) {
3591		if (ptr >= log->l_iclog_bak[i] &&
3592		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3593			good_ptr++;
3594	}
3595
3596	if (!good_ptr)
3597		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3598}
3599
3600/*
3601 * Check to make sure the grant write head didn't just over lap the tail.  If
3602 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3603 * the cycles differ by exactly one and check the byte count.
3604 *
3605 * This check is run unlocked, so can give false positives. Rather than assert
3606 * on failures, use a warn-once flag and a panic tag to allow the admin to
3607 * determine if they want to panic the machine when such an error occurs. For
3608 * debug kernels this will have the same effect as using an assert but, unlinke
3609 * an assert, it can be turned off at runtime.
3610 */
3611STATIC void
3612xlog_verify_grant_tail(
3613	struct xlog	*log)
3614{
3615	int		tail_cycle, tail_blocks;
3616	int		cycle, space;
3617
3618	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3619	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3620	if (tail_cycle != cycle) {
3621		if (cycle - 1 != tail_cycle &&
3622		    !(log->l_flags & XLOG_TAIL_WARN)) {
3623			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3624				"%s: cycle - 1 != tail_cycle", __func__);
3625			log->l_flags |= XLOG_TAIL_WARN;
3626		}
3627
3628		if (space > BBTOB(tail_blocks) &&
3629		    !(log->l_flags & XLOG_TAIL_WARN)) {
3630			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3631				"%s: space > BBTOB(tail_blocks)", __func__);
3632			log->l_flags |= XLOG_TAIL_WARN;
3633		}
3634	}
3635}
3636
3637/* check if it will fit */
3638STATIC void
3639xlog_verify_tail_lsn(
3640	struct xlog		*log,
3641	struct xlog_in_core	*iclog)
 
3642{
3643	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3644	int		blocks;
3645
3646    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3647	blocks =
3648	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3649	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3650		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3651    } else {
3652	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3653
3654	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3655		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3656
3657	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3658	if (blocks < BTOBB(iclog->ic_offset) + 1)
3659		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3660    }
3661}
3662
3663/*
3664 * Perform a number of checks on the iclog before writing to disk.
3665 *
3666 * 1. Make sure the iclogs are still circular
3667 * 2. Make sure we have a good magic number
3668 * 3. Make sure we don't have magic numbers in the data
3669 * 4. Check fields of each log operation header for:
3670 *	A. Valid client identifier
3671 *	B. tid ptr value falls in valid ptr space (user space code)
3672 *	C. Length in log record header is correct according to the
3673 *		individual operation headers within record.
3674 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3675 *	log, check the preceding blocks of the physical log to make sure all
3676 *	the cycle numbers agree with the current cycle number.
3677 */
3678STATIC void
3679xlog_verify_iclog(
3680	struct xlog		*log,
3681	struct xlog_in_core	*iclog,
3682	int			count)
 
3683{
3684	xlog_op_header_t	*ophead;
3685	xlog_in_core_t		*icptr;
3686	xlog_in_core_2_t	*xhdr;
3687	void			*base_ptr, *ptr, *p;
3688	ptrdiff_t		field_offset;
3689	uint8_t			clientid;
3690	int			len, i, j, k, op_len;
3691	int			idx;
3692
3693	/* check validity of iclog pointers */
3694	spin_lock(&log->l_icloglock);
3695	icptr = log->l_iclog;
3696	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3697		ASSERT(icptr);
3698
3699	if (icptr != log->l_iclog)
3700		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3701	spin_unlock(&log->l_icloglock);
3702
3703	/* check log magic numbers */
3704	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3705		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3706
3707	base_ptr = ptr = &iclog->ic_header;
3708	p = &iclog->ic_header;
3709	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3710		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3711			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3712				__func__);
3713	}
3714
3715	/* check fields */
3716	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3717	base_ptr = ptr = iclog->ic_datap;
3718	ophead = ptr;
3719	xhdr = iclog->ic_data;
3720	for (i = 0; i < len; i++) {
3721		ophead = ptr;
3722
3723		/* clientid is only 1 byte */
3724		p = &ophead->oh_clientid;
3725		field_offset = p - base_ptr;
3726		if (field_offset & 0x1ff) {
3727			clientid = ophead->oh_clientid;
3728		} else {
3729			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3730			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3731				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3732				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3733				clientid = xlog_get_client_id(
3734					xhdr[j].hic_xheader.xh_cycle_data[k]);
3735			} else {
3736				clientid = xlog_get_client_id(
3737					iclog->ic_header.h_cycle_data[idx]);
3738			}
3739		}
3740		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3741			xfs_warn(log->l_mp,
3742				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3743				__func__, clientid, ophead,
3744				(unsigned long)field_offset);
3745
3746		/* check length */
3747		p = &ophead->oh_len;
3748		field_offset = p - base_ptr;
3749		if (field_offset & 0x1ff) {
3750			op_len = be32_to_cpu(ophead->oh_len);
3751		} else {
3752			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3753				    (uintptr_t)iclog->ic_datap);
3754			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3755				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3756				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3757				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3758			} else {
3759				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3760			}
3761		}
3762		ptr += sizeof(xlog_op_header_t) + op_len;
3763	}
3764}
3765#endif
3766
3767/*
3768 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3769 */
3770STATIC int
3771xlog_state_ioerror(
3772	struct xlog	*log)
3773{
3774	xlog_in_core_t	*iclog, *ic;
3775
3776	iclog = log->l_iclog;
3777	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3778		/*
3779		 * Mark all the incore logs IOERROR.
3780		 * From now on, no log flushes will result.
3781		 */
3782		ic = iclog;
3783		do {
3784			ic->ic_state = XLOG_STATE_IOERROR;
3785			ic = ic->ic_next;
3786		} while (ic != iclog);
3787		return 0;
3788	}
3789	/*
3790	 * Return non-zero, if state transition has already happened.
3791	 */
3792	return 1;
3793}
3794
3795/*
3796 * This is called from xfs_force_shutdown, when we're forcibly
3797 * shutting down the filesystem, typically because of an IO error.
3798 * Our main objectives here are to make sure that:
3799 *	a. if !logerror, flush the logs to disk. Anything modified
3800 *	   after this is ignored.
3801 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3802 *	   parties to find out, 'atomically'.
3803 *	c. those who're sleeping on log reservations, pinned objects and
3804 *	    other resources get woken up, and be told the bad news.
3805 *	d. nothing new gets queued up after (b) and (c) are done.
3806 *
3807 * Note: for the !logerror case we need to flush the regions held in memory out
3808 * to disk first. This needs to be done before the log is marked as shutdown,
3809 * otherwise the iclog writes will fail.
3810 */
3811int
3812xfs_log_force_umount(
3813	struct xfs_mount	*mp,
3814	int			logerror)
3815{
3816	struct xlog	*log;
3817	int		retval;
3818
3819	log = mp->m_log;
3820
3821	/*
3822	 * If this happens during log recovery, don't worry about
3823	 * locking; the log isn't open for business yet.
3824	 */
3825	if (!log ||
3826	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3827		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3828		if (mp->m_sb_bp)
3829			mp->m_sb_bp->b_flags |= XBF_DONE;
3830		return 0;
3831	}
3832
3833	/*
3834	 * Somebody could've already done the hard work for us.
3835	 * No need to get locks for this.
3836	 */
3837	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3838		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3839		return 1;
3840	}
3841
3842	/*
3843	 * Flush all the completed transactions to disk before marking the log
3844	 * being shut down. We need to do it in this order to ensure that
3845	 * completed operations are safely on disk before we shut down, and that
3846	 * we don't have to issue any buffer IO after the shutdown flags are set
3847	 * to guarantee this.
3848	 */
3849	if (!logerror)
3850		xfs_log_force(mp, XFS_LOG_SYNC);
3851
3852	/*
3853	 * mark the filesystem and the as in a shutdown state and wake
3854	 * everybody up to tell them the bad news.
3855	 */
3856	spin_lock(&log->l_icloglock);
3857	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3858	if (mp->m_sb_bp)
3859		mp->m_sb_bp->b_flags |= XBF_DONE;
3860
3861	/*
3862	 * Mark the log and the iclogs with IO error flags to prevent any
3863	 * further log IO from being issued or completed.
3864	 */
3865	log->l_flags |= XLOG_IO_ERROR;
3866	retval = xlog_state_ioerror(log);
3867	spin_unlock(&log->l_icloglock);
3868
3869	/*
3870	 * We don't want anybody waiting for log reservations after this. That
3871	 * means we have to wake up everybody queued up on reserveq as well as
3872	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3873	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3874	 * action is protected by the grant locks.
3875	 */
3876	xlog_grant_head_wake_all(&log->l_reserve_head);
3877	xlog_grant_head_wake_all(&log->l_write_head);
3878
3879	/*
3880	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3881	 * as if the log writes were completed. The abort handling in the log
3882	 * item committed callback functions will do this again under lock to
3883	 * avoid races.
3884	 */
3885	spin_lock(&log->l_cilp->xc_push_lock);
3886	wake_up_all(&log->l_cilp->xc_commit_wait);
3887	spin_unlock(&log->l_cilp->xc_push_lock);
3888	xlog_state_do_callback(log);
 
 
 
3889
 
 
 
 
 
 
 
 
 
3890	/* return non-zero if log IOERROR transition had already happened */
3891	return retval;
3892}
3893
3894STATIC int
3895xlog_iclogs_empty(
3896	struct xlog	*log)
3897{
3898	xlog_in_core_t	*iclog;
3899
3900	iclog = log->l_iclog;
3901	do {
3902		/* endianness does not matter here, zero is zero in
3903		 * any language.
3904		 */
3905		if (iclog->ic_header.h_num_logops)
3906			return 0;
3907		iclog = iclog->ic_next;
3908	} while (iclog != log->l_iclog);
3909	return 1;
3910}
3911
3912/*
3913 * Verify that an LSN stamped into a piece of metadata is valid. This is
3914 * intended for use in read verifiers on v5 superblocks.
3915 */
3916bool
3917xfs_log_check_lsn(
3918	struct xfs_mount	*mp,
3919	xfs_lsn_t		lsn)
3920{
3921	struct xlog		*log = mp->m_log;
3922	bool			valid;
3923
3924	/*
3925	 * norecovery mode skips mount-time log processing and unconditionally
3926	 * resets the in-core LSN. We can't validate in this mode, but
3927	 * modifications are not allowed anyways so just return true.
3928	 */
3929	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3930		return true;
3931
3932	/*
3933	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3934	 * handled by recovery and thus safe to ignore here.
3935	 */
3936	if (lsn == NULLCOMMITLSN)
3937		return true;
3938
3939	valid = xlog_valid_lsn(mp->m_log, lsn);
3940
3941	/* warn the user about what's gone wrong before verifier failure */
3942	if (!valid) {
3943		spin_lock(&log->l_icloglock);
3944		xfs_warn(mp,
3945"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3946"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3947			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3948			 log->l_curr_cycle, log->l_curr_block);
3949		spin_unlock(&log->l_icloglock);
3950	}
3951
3952	return valid;
3953}
3954
3955bool
3956xfs_log_in_recovery(
3957	struct xfs_mount	*mp)
3958{
3959	struct xlog		*log = mp->m_log;
3960
3961	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3962}
v4.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
 
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
  30#include "xfs_log_recover.h"
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50	struct xfs_mount	*mp,
  51	struct xfs_buftarg	*log_target,
  52	xfs_daddr_t		blk_offset,
  53	int			num_bblks);
  54STATIC int
  55xlog_space_left(
  56	struct xlog		*log,
  57	atomic64_t		*head);
  58STATIC int
  59xlog_sync(
  60	struct xlog		*log,
  61	struct xlog_in_core	*iclog);
  62STATIC void
  63xlog_dealloc_log(
  64	struct xlog		*log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70	struct xlog		*log,
  71	int			aborted,
  72	struct xlog_in_core	*iclog);
  73STATIC int
  74xlog_state_get_iclog_space(
  75	struct xlog		*log,
  76	int			len,
  77	struct xlog_in_core	**iclog,
  78	struct xlog_ticket	*ticket,
  79	int			*continued_write,
  80	int			*logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83	struct xlog		*log,
  84	struct xlog_in_core	*iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87	struct xlog		*log,
  88	struct xlog_in_core	*iclog,
  89	int			eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92	struct xlog		*log,
  93	struct xlog_in_core	*iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97	struct xlog		*log,
  98	int			need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101	struct xlog		*log,
 102	struct xlog_ticket	*ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105	struct xlog		*log,
 106	struct xlog_ticket	*ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111	struct xlog		*log,
 112	void			*ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115	struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118	struct xlog		*log,
 119	struct xlog_in_core	*iclog,
 120	int			count,
 121	bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124	struct xlog		*log,
 125	struct xlog_in_core	*iclog,
 126	xfs_lsn_t		tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136	struct xlog		*log);
 137
 
 
 
 138static void
 139xlog_grant_sub_space(
 140	struct xlog		*log,
 141	atomic64_t		*head,
 142	int			bytes)
 143{
 144	int64_t	head_val = atomic64_read(head);
 145	int64_t new, old;
 146
 147	do {
 148		int	cycle, space;
 149
 150		xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152		space -= bytes;
 153		if (space < 0) {
 154			space += log->l_logsize;
 155			cycle--;
 156		}
 157
 158		old = head_val;
 159		new = xlog_assign_grant_head_val(cycle, space);
 160		head_val = atomic64_cmpxchg(head, old, new);
 161	} while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166	struct xlog		*log,
 167	atomic64_t		*head,
 168	int			bytes)
 169{
 170	int64_t	head_val = atomic64_read(head);
 171	int64_t new, old;
 172
 173	do {
 174		int		tmp;
 175		int		cycle, space;
 176
 177		xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179		tmp = log->l_logsize - space;
 180		if (tmp > bytes)
 181			space += bytes;
 182		else {
 183			space = bytes - tmp;
 184			cycle++;
 185		}
 186
 187		old = head_val;
 188		new = xlog_assign_grant_head_val(cycle, space);
 189		head_val = atomic64_cmpxchg(head, old, new);
 190	} while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195	struct xlog_grant_head	*head)
 196{
 197	xlog_assign_grant_head(&head->grant, 1, 0);
 198	INIT_LIST_HEAD(&head->waiters);
 199	spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204	struct xlog_grant_head	*head)
 205{
 206	struct xlog_ticket	*tic;
 207
 208	spin_lock(&head->lock);
 209	list_for_each_entry(tic, &head->waiters, t_queue)
 210		wake_up_process(tic->t_task);
 211	spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216	struct xlog		*log,
 217	struct xlog_grant_head	*head,
 218	struct xlog_ticket	*tic)
 219{
 220	if (head == &log->l_write_head) {
 221		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222		return tic->t_unit_res;
 223	} else {
 224		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225			return tic->t_unit_res * tic->t_cnt;
 226		else
 227			return tic->t_unit_res;
 228	}
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233	struct xlog		*log,
 234	struct xlog_grant_head	*head,
 235	int			*free_bytes)
 236{
 237	struct xlog_ticket	*tic;
 238	int			need_bytes;
 
 239
 240	list_for_each_entry(tic, &head->waiters, t_queue) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241		need_bytes = xlog_ticket_reservation(log, head, tic);
 242		if (*free_bytes < need_bytes)
 
 
 243			return false;
 
 244
 245		*free_bytes -= need_bytes;
 246		trace_xfs_log_grant_wake_up(log, tic);
 247		wake_up_process(tic->t_task);
 
 248	}
 249
 250	return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255	struct xlog		*log,
 256	struct xlog_grant_head	*head,
 257	struct xlog_ticket	*tic,
 258	int			need_bytes) __releases(&head->lock)
 259					    __acquires(&head->lock)
 260{
 261	list_add_tail(&tic->t_queue, &head->waiters);
 262
 263	do {
 264		if (XLOG_FORCED_SHUTDOWN(log))
 265			goto shutdown;
 266		xlog_grant_push_ail(log, need_bytes);
 267
 268		__set_current_state(TASK_UNINTERRUPTIBLE);
 269		spin_unlock(&head->lock);
 270
 271		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273		trace_xfs_log_grant_sleep(log, tic);
 274		schedule();
 275		trace_xfs_log_grant_wake(log, tic);
 276
 277		spin_lock(&head->lock);
 278		if (XLOG_FORCED_SHUTDOWN(log))
 279			goto shutdown;
 280	} while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282	list_del_init(&tic->t_queue);
 283	return 0;
 284shutdown:
 285	list_del_init(&tic->t_queue);
 286	return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308	struct xlog		*log,
 309	struct xlog_grant_head	*head,
 310	struct xlog_ticket	*tic,
 311	int			*need_bytes)
 312{
 313	int			free_bytes;
 314	int			error = 0;
 315
 316	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318	/*
 319	 * If there are other waiters on the queue then give them a chance at
 320	 * logspace before us.  Wake up the first waiters, if we do not wake
 321	 * up all the waiters then go to sleep waiting for more free space,
 322	 * otherwise try to get some space for this transaction.
 323	 */
 324	*need_bytes = xlog_ticket_reservation(log, head, tic);
 325	free_bytes = xlog_space_left(log, &head->grant);
 326	if (!list_empty_careful(&head->waiters)) {
 327		spin_lock(&head->lock);
 328		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329		    free_bytes < *need_bytes) {
 330			error = xlog_grant_head_wait(log, head, tic,
 331						     *need_bytes);
 332		}
 333		spin_unlock(&head->lock);
 334	} else if (free_bytes < *need_bytes) {
 335		spin_lock(&head->lock);
 336		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337		spin_unlock(&head->lock);
 338	}
 339
 340	return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 345{
 346	tic->t_res_num = 0;
 347	tic->t_res_arr_sum = 0;
 348	tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355		/* add to overflow and start again */
 356		tic->t_res_o_flow += tic->t_res_arr_sum;
 357		tic->t_res_num = 0;
 358		tic->t_res_arr_sum = 0;
 359	}
 360
 361	tic->t_res_arr[tic->t_res_num].r_len = len;
 362	tic->t_res_arr[tic->t_res_num].r_type = type;
 363	tic->t_res_arr_sum += len;
 364	tic->t_res_num++;
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372	struct xfs_mount	*mp,
 373	struct xlog_ticket	*tic)
 374{
 375	struct xlog		*log = mp->m_log;
 376	int			need_bytes;
 377	int			error = 0;
 378
 379	if (XLOG_FORCED_SHUTDOWN(log))
 380		return -EIO;
 381
 382	XFS_STATS_INC(mp, xs_try_logspace);
 383
 384	/*
 385	 * This is a new transaction on the ticket, so we need to change the
 386	 * transaction ID so that the next transaction has a different TID in
 387	 * the log. Just add one to the existing tid so that we can see chains
 388	 * of rolling transactions in the log easily.
 389	 */
 390	tic->t_tid++;
 391
 392	xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394	tic->t_curr_res = tic->t_unit_res;
 395	xlog_tic_reset_res(tic);
 396
 397	if (tic->t_cnt > 0)
 398		return 0;
 399
 400	trace_xfs_log_regrant(log, tic);
 401
 402	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403				      &need_bytes);
 404	if (error)
 405		goto out_error;
 406
 407	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408	trace_xfs_log_regrant_exit(log, tic);
 409	xlog_verify_grant_tail(log);
 410	return 0;
 411
 412out_error:
 413	/*
 414	 * If we are failing, make sure the ticket doesn't have any current
 415	 * reservations.  We don't want to add this back when the ticket/
 416	 * transaction gets cancelled.
 417	 */
 418	tic->t_curr_res = 0;
 419	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 420	return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433	struct xfs_mount	*mp,
 434	int		 	unit_bytes,
 435	int		 	cnt,
 436	struct xlog_ticket	**ticp,
 437	__uint8_t	 	client,
 438	bool			permanent,
 439	uint		 	t_type)
 440{
 441	struct xlog		*log = mp->m_log;
 442	struct xlog_ticket	*tic;
 443	int			need_bytes;
 444	int			error = 0;
 445
 446	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 447
 448	if (XLOG_FORCED_SHUTDOWN(log))
 449		return -EIO;
 450
 451	XFS_STATS_INC(mp, xs_try_logspace);
 452
 453	ASSERT(*ticp == NULL);
 454	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 455				KM_SLEEP | KM_MAYFAIL);
 456	if (!tic)
 457		return -ENOMEM;
 458
 459	tic->t_trans_type = t_type;
 460	*ticp = tic;
 461
 462	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 463					    : tic->t_unit_res);
 464
 465	trace_xfs_log_reserve(log, tic);
 466
 467	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 468				      &need_bytes);
 469	if (error)
 470		goto out_error;
 471
 472	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 473	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 474	trace_xfs_log_reserve_exit(log, tic);
 475	xlog_verify_grant_tail(log);
 476	return 0;
 477
 478out_error:
 479	/*
 480	 * If we are failing, make sure the ticket doesn't have any current
 481	 * reservations.  We don't want to add this back when the ticket/
 482	 * transaction gets cancelled.
 483	 */
 484	tic->t_curr_res = 0;
 485	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 486	return error;
 487}
 488
 489
 490/*
 491 * NOTES:
 
 492 *
 493 *	1. currblock field gets updated at startup and after in-core logs
 494 *		marked as with WANT_SYNC.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495 */
 496
 497/*
 498 * This routine is called when a user of a log manager ticket is done with
 499 * the reservation.  If the ticket was ever used, then a commit record for
 500 * the associated transaction is written out as a log operation header with
 501 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 502 * a given ticket.  If the ticket was one with a permanent reservation, then
 503 * a few operations are done differently.  Permanent reservation tickets by
 504 * default don't release the reservation.  They just commit the current
 505 * transaction with the belief that the reservation is still needed.  A flag
 506 * must be passed in before permanent reservations are actually released.
 507 * When these type of tickets are not released, they need to be set into
 508 * the inited state again.  By doing this, a start record will be written
 509 * out when the next write occurs.
 510 */
 511xfs_lsn_t
 512xfs_log_done(
 513	struct xfs_mount	*mp,
 514	struct xlog_ticket	*ticket,
 515	struct xlog_in_core	**iclog,
 516	bool			regrant)
 517{
 518	struct xlog		*log = mp->m_log;
 519	xfs_lsn_t		lsn = 0;
 520
 521	if (XLOG_FORCED_SHUTDOWN(log) ||
 522	    /*
 523	     * If nothing was ever written, don't write out commit record.
 524	     * If we get an error, just continue and give back the log ticket.
 525	     */
 526	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 527	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 528		lsn = (xfs_lsn_t) -1;
 529		regrant = false;
 530	}
 531
 
 
 
 
 
 
 
 
 532
 533	if (!regrant) {
 534		trace_xfs_log_done_nonperm(log, ticket);
 535
 536		/*
 537		 * Release ticket if not permanent reservation or a specific
 538		 * request has been made to release a permanent reservation.
 539		 */
 540		xlog_ungrant_log_space(log, ticket);
 541	} else {
 542		trace_xfs_log_done_perm(log, ticket);
 543
 544		xlog_regrant_reserve_log_space(log, ticket);
 545		/* If this ticket was a permanent reservation and we aren't
 546		 * trying to release it, reset the inited flags; so next time
 547		 * we write, a start record will be written out.
 548		 */
 549		ticket->t_flags |= XLOG_TIC_INITED;
 550	}
 551
 552	xfs_log_ticket_put(ticket);
 553	return lsn;
 554}
 555
 556/*
 557 * Attaches a new iclog I/O completion callback routine during
 558 * transaction commit.  If the log is in error state, a non-zero
 559 * return code is handed back and the caller is responsible for
 560 * executing the callback at an appropriate time.
 561 */
 562int
 563xfs_log_notify(
 564	struct xfs_mount	*mp,
 565	struct xlog_in_core	*iclog,
 566	xfs_log_callback_t	*cb)
 567{
 568	int	abortflg;
 569
 570	spin_lock(&iclog->ic_callback_lock);
 571	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 572	if (!abortflg) {
 573		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 574			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 575		cb->cb_next = NULL;
 576		*(iclog->ic_callback_tail) = cb;
 577		iclog->ic_callback_tail = &(cb->cb_next);
 578	}
 579	spin_unlock(&iclog->ic_callback_lock);
 580	return abortflg;
 581}
 582
 583int
 584xfs_log_release_iclog(
 585	struct xfs_mount	*mp,
 586	struct xlog_in_core	*iclog)
 587{
 588	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 589		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 590		return -EIO;
 591	}
 592
 
 
 
 593	return 0;
 594}
 595
 596/*
 597 * Mount a log filesystem
 598 *
 599 * mp		- ubiquitous xfs mount point structure
 600 * log_target	- buftarg of on-disk log device
 601 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 602 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 603 *
 604 * Return error or zero.
 605 */
 606int
 607xfs_log_mount(
 608	xfs_mount_t	*mp,
 609	xfs_buftarg_t	*log_target,
 610	xfs_daddr_t	blk_offset,
 611	int		num_bblks)
 612{
 
 613	int		error = 0;
 614	int		min_logfsbs;
 615
 616	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 617		xfs_notice(mp, "Mounting V%d Filesystem",
 618			   XFS_SB_VERSION_NUM(&mp->m_sb));
 619	} else {
 620		xfs_notice(mp,
 621"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 622			   XFS_SB_VERSION_NUM(&mp->m_sb));
 623		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 624	}
 625
 626	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 627	if (IS_ERR(mp->m_log)) {
 628		error = PTR_ERR(mp->m_log);
 629		goto out;
 630	}
 631
 632	/*
 633	 * Validate the given log space and drop a critical message via syslog
 634	 * if the log size is too small that would lead to some unexpected
 635	 * situations in transaction log space reservation stage.
 636	 *
 637	 * Note: we can't just reject the mount if the validation fails.  This
 638	 * would mean that people would have to downgrade their kernel just to
 639	 * remedy the situation as there is no way to grow the log (short of
 640	 * black magic surgery with xfs_db).
 641	 *
 642	 * We can, however, reject mounts for CRC format filesystems, as the
 643	 * mkfs binary being used to make the filesystem should never create a
 644	 * filesystem with a log that is too small.
 645	 */
 646	min_logfsbs = xfs_log_calc_minimum_size(mp);
 647
 648	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 649		xfs_warn(mp,
 650		"Log size %d blocks too small, minimum size is %d blocks",
 651			 mp->m_sb.sb_logblocks, min_logfsbs);
 652		error = -EINVAL;
 653	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 654		xfs_warn(mp,
 655		"Log size %d blocks too large, maximum size is %lld blocks",
 656			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 657		error = -EINVAL;
 658	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 659		xfs_warn(mp,
 660		"log size %lld bytes too large, maximum size is %lld bytes",
 661			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 662			 XFS_MAX_LOG_BYTES);
 663		error = -EINVAL;
 
 
 
 
 
 
 
 664	}
 665	if (error) {
 666		if (xfs_sb_version_hascrc(&mp->m_sb)) {
 
 
 
 
 667			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 668			ASSERT(0);
 669			goto out_free_log;
 670		}
 671		xfs_crit(mp, "Log size out of supported range.");
 672		xfs_crit(mp,
 673"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 674	}
 675
 676	/*
 677	 * Initialize the AIL now we have a log.
 678	 */
 679	error = xfs_trans_ail_init(mp);
 680	if (error) {
 681		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 682		goto out_free_log;
 683	}
 684	mp->m_log->l_ailp = mp->m_ail;
 685
 686	/*
 687	 * skip log recovery on a norecovery mount.  pretend it all
 688	 * just worked.
 689	 */
 690	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 691		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 692
 693		if (readonly)
 694			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 695
 696		error = xlog_recover(mp->m_log);
 697
 698		if (readonly)
 699			mp->m_flags |= XFS_MOUNT_RDONLY;
 700		if (error) {
 701			xfs_warn(mp, "log mount/recovery failed: error %d",
 702				error);
 703			xlog_recover_cancel(mp->m_log);
 704			goto out_destroy_ail;
 705		}
 706	}
 707
 708	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 709			       "log");
 710	if (error)
 711		goto out_destroy_ail;
 712
 713	/* Normal transactions can now occur */
 714	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 715
 716	/*
 717	 * Now the log has been fully initialised and we know were our
 718	 * space grant counters are, we can initialise the permanent ticket
 719	 * needed for delayed logging to work.
 720	 */
 721	xlog_cil_init_post_recovery(mp->m_log);
 722
 723	return 0;
 724
 725out_destroy_ail:
 726	xfs_trans_ail_destroy(mp);
 727out_free_log:
 728	xlog_dealloc_log(mp->m_log);
 729out:
 730	return error;
 731}
 732
 733/*
 734 * Finish the recovery of the file system.  This is separate from the
 735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 737 * here.
 738 *
 739 * If we finish recovery successfully, start the background log work. If we are
 740 * not doing recovery, then we have a RO filesystem and we don't need to start
 741 * it.
 742 */
 743int
 744xfs_log_mount_finish(
 745	struct xfs_mount	*mp)
 746{
 747	int	error = 0;
 
 
 748
 749	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 750		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 751		return 0;
 
 
 
 752	}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754	error = xlog_recover_finish(mp->m_log);
 755	if (!error)
 756		xfs_log_work_queue(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	return error;
 759}
 760
 761/*
 762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 763 * the log.
 764 */
 765int
 766xfs_log_mount_cancel(
 767	struct xfs_mount	*mp)
 768{
 769	int			error;
 770
 771	error = xlog_recover_cancel(mp->m_log);
 772	xfs_log_unmount(mp);
 
 773
 774	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 775}
 776
 777/*
 778 * Final log writes as part of unmount.
 779 *
 780 * Mark the filesystem clean as unmount happens.  Note that during relocation
 781 * this routine needs to be executed as part of source-bag while the
 782 * deallocation must not be done until source-end.
 783 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785/*
 786 * Unmount record used to have a string "Unmount filesystem--" in the
 787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 788 * We just write the magic number now since that particular field isn't
 789 * currently architecture converted and "Unmount" is a bit foo.
 790 * As far as I know, there weren't any dependencies on the old behaviour.
 791 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793int
 794xfs_log_unmount_write(xfs_mount_t *mp)
 
 
 
 
 
 
 
 
 
 
 
 795{
 796	struct xlog	 *log = mp->m_log;
 797	xlog_in_core_t	 *iclog;
 798#ifdef DEBUG
 799	xlog_in_core_t	 *first_iclog;
 800#endif
 801	xlog_ticket_t	*tic = NULL;
 802	xfs_lsn_t	 lsn;
 803	int		 error;
 804
 
 805	/*
 806	 * Don't write out unmount record on read-only mounts.
 807	 * Or, if we are doing a forced umount (typically because of IO errors).
 808	 */
 809	if (mp->m_flags & XFS_MOUNT_RDONLY)
 810		return 0;
 
 811
 812	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 813	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 
 
 814
 815#ifdef DEBUG
 816	first_iclog = iclog = log->l_iclog;
 817	do {
 818		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 819			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 820			ASSERT(iclog->ic_offset == 0);
 821		}
 822		iclog = iclog->ic_next;
 823	} while (iclog != first_iclog);
 824#endif
 825	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 826		error = xfs_log_reserve(mp, 600, 1, &tic,
 827					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 828		if (!error) {
 829			/* the data section must be 32 bit size aligned */
 830			struct {
 831			    __uint16_t magic;
 832			    __uint16_t pad1;
 833			    __uint32_t pad2; /* may as well make it 64 bits */
 834			} magic = {
 835				.magic = XLOG_UNMOUNT_TYPE,
 836			};
 837			struct xfs_log_iovec reg = {
 838				.i_addr = &magic,
 839				.i_len = sizeof(magic),
 840				.i_type = XLOG_REG_TYPE_UNMOUNT,
 841			};
 842			struct xfs_log_vec vec = {
 843				.lv_niovecs = 1,
 844				.lv_iovecp = &reg,
 845			};
 846
 847			/* remove inited flag, and account for space used */
 848			tic->t_flags = 0;
 849			tic->t_curr_res -= sizeof(magic);
 850			error = xlog_write(log, &vec, tic, &lsn,
 851					   NULL, XLOG_UNMOUNT_TRANS);
 852			/*
 853			 * At this point, we're umounting anyway,
 854			 * so there's no point in transitioning log state
 855			 * to IOERROR. Just continue...
 856			 */
 857		}
 858
 859		if (error)
 860			xfs_alert(mp, "%s: unmount record failed", __func__);
 
 
 
 861
 
 
 
 
 
 862
 863		spin_lock(&log->l_icloglock);
 864		iclog = log->l_iclog;
 865		atomic_inc(&iclog->ic_refcnt);
 866		xlog_state_want_sync(log, iclog);
 867		spin_unlock(&log->l_icloglock);
 868		error = xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 869
 870		spin_lock(&log->l_icloglock);
 871		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 872		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 873			if (!XLOG_FORCED_SHUTDOWN(log)) {
 874				xlog_wait(&iclog->ic_force_wait,
 875							&log->l_icloglock);
 876			} else {
 877				spin_unlock(&log->l_icloglock);
 878			}
 879		} else {
 880			spin_unlock(&log->l_icloglock);
 881		}
 882		if (tic) {
 883			trace_xfs_log_umount_write(log, tic);
 884			xlog_ungrant_log_space(log, tic);
 885			xfs_log_ticket_put(tic);
 886		}
 887	} else {
 888		/*
 889		 * We're already in forced_shutdown mode, couldn't
 890		 * even attempt to write out the unmount transaction.
 891		 *
 892		 * Go through the motions of sync'ing and releasing
 893		 * the iclog, even though no I/O will actually happen,
 894		 * we need to wait for other log I/Os that may already
 895		 * be in progress.  Do this as a separate section of
 896		 * code so we'll know if we ever get stuck here that
 897		 * we're in this odd situation of trying to unmount
 898		 * a file system that went into forced_shutdown as
 899		 * the result of an unmount..
 900		 */
 901		spin_lock(&log->l_icloglock);
 902		iclog = log->l_iclog;
 903		atomic_inc(&iclog->ic_refcnt);
 904
 905		xlog_state_want_sync(log, iclog);
 906		spin_unlock(&log->l_icloglock);
 907		error =  xlog_state_release_iclog(log, iclog);
 908
 909		spin_lock(&log->l_icloglock);
 
 910
 911		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 912			|| iclog->ic_state == XLOG_STATE_DIRTY
 913			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 914
 915				xlog_wait(&iclog->ic_force_wait,
 916							&log->l_icloglock);
 917		} else {
 918			spin_unlock(&log->l_icloglock);
 919		}
 
 
 920	}
 921
 922	return error;
 923}	/* xfs_log_unmount_write */
 
 924
 925/*
 926 * Empty the log for unmount/freeze.
 927 *
 928 * To do this, we first need to shut down the background log work so it is not
 929 * trying to cover the log as we clean up. We then need to unpin all objects in
 930 * the log so we can then flush them out. Once they have completed their IO and
 931 * run the callbacks removing themselves from the AIL, we can write the unmount
 932 * record.
 933 */
 934void
 935xfs_log_quiesce(
 936	struct xfs_mount	*mp)
 937{
 938	cancel_delayed_work_sync(&mp->m_log->l_work);
 939	xfs_log_force(mp, XFS_LOG_SYNC);
 940
 941	/*
 942	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 943	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
 944	 * xfs_buf_iowait() cannot be used because it was pushed with the
 945	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 946	 * the IO to complete.
 947	 */
 948	xfs_ail_push_all_sync(mp->m_ail);
 949	xfs_wait_buftarg(mp->m_ddev_targp);
 950	xfs_buf_lock(mp->m_sb_bp);
 951	xfs_buf_unlock(mp->m_sb_bp);
 952
 
 
 
 
 
 
 
 
 953	xfs_log_unmount_write(mp);
 954}
 955
 956/*
 957 * Shut down and release the AIL and Log.
 958 *
 959 * During unmount, we need to ensure we flush all the dirty metadata objects
 960 * from the AIL so that the log is empty before we write the unmount record to
 961 * the log. Once this is done, we can tear down the AIL and the log.
 962 */
 963void
 964xfs_log_unmount(
 965	struct xfs_mount	*mp)
 966{
 967	xfs_log_quiesce(mp);
 
 
 968
 969	xfs_trans_ail_destroy(mp);
 970
 971	xfs_sysfs_del(&mp->m_log->l_kobj);
 972
 973	xlog_dealloc_log(mp->m_log);
 974}
 975
 976void
 977xfs_log_item_init(
 978	struct xfs_mount	*mp,
 979	struct xfs_log_item	*item,
 980	int			type,
 981	const struct xfs_item_ops *ops)
 982{
 983	item->li_mountp = mp;
 984	item->li_ailp = mp->m_ail;
 985	item->li_type = type;
 986	item->li_ops = ops;
 987	item->li_lv = NULL;
 988
 989	INIT_LIST_HEAD(&item->li_ail);
 990	INIT_LIST_HEAD(&item->li_cil);
 
 
 991}
 992
 993/*
 994 * Wake up processes waiting for log space after we have moved the log tail.
 995 */
 996void
 997xfs_log_space_wake(
 998	struct xfs_mount	*mp)
 999{
1000	struct xlog		*log = mp->m_log;
1001	int			free_bytes;
1002
1003	if (XLOG_FORCED_SHUTDOWN(log))
1004		return;
1005
1006	if (!list_empty_careful(&log->l_write_head.waiters)) {
1007		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009		spin_lock(&log->l_write_head.lock);
1010		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012		spin_unlock(&log->l_write_head.lock);
1013	}
1014
1015	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018		spin_lock(&log->l_reserve_head.lock);
1019		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021		spin_unlock(&log->l_reserve_head.lock);
1022	}
1023}
1024
1025/*
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1030 *
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1034 *
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 */
1042int
1043xfs_log_need_covered(xfs_mount_t *mp)
 
1044{
1045	struct xlog	*log = mp->m_log;
1046	int		needed = 0;
1047
1048	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049		return 0;
1050
1051	if (!xlog_cil_empty(log))
1052		return 0;
1053
1054	spin_lock(&log->l_icloglock);
1055	switch (log->l_covered_state) {
1056	case XLOG_STATE_COVER_DONE:
1057	case XLOG_STATE_COVER_DONE2:
1058	case XLOG_STATE_COVER_IDLE:
1059		break;
1060	case XLOG_STATE_COVER_NEED:
1061	case XLOG_STATE_COVER_NEED2:
1062		if (xfs_ail_min_lsn(log->l_ailp))
1063			break;
1064		if (!xlog_iclogs_empty(log))
1065			break;
1066
1067		needed = 1;
1068		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069			log->l_covered_state = XLOG_STATE_COVER_DONE;
1070		else
1071			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072		break;
1073	default:
1074		needed = 1;
1075		break;
1076	}
1077	spin_unlock(&log->l_icloglock);
1078	return needed;
1079}
1080
1081/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * We may be holding the log iclog lock upon entering this routine.
1083 */
1084xfs_lsn_t
1085xlog_assign_tail_lsn_locked(
1086	struct xfs_mount	*mp)
1087{
1088	struct xlog		*log = mp->m_log;
1089	struct xfs_log_item	*lip;
1090	xfs_lsn_t		tail_lsn;
1091
1092	assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094	/*
1095	 * To make sure we always have a valid LSN for the log tail we keep
1096	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097	 * and use that when the AIL was empty.
1098	 */
1099	lip = xfs_ail_min(mp->m_ail);
1100	if (lip)
1101		tail_lsn = lip->li_lsn;
1102	else
1103		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105	atomic64_set(&log->l_tail_lsn, tail_lsn);
1106	return tail_lsn;
1107}
1108
1109xfs_lsn_t
1110xlog_assign_tail_lsn(
1111	struct xfs_mount	*mp)
1112{
1113	xfs_lsn_t		tail_lsn;
1114
1115	spin_lock(&mp->m_ail->xa_lock);
1116	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117	spin_unlock(&mp->m_ail->xa_lock);
1118
1119	return tail_lsn;
1120}
1121
1122/*
1123 * Return the space in the log between the tail and the head.  The head
1124 * is passed in the cycle/bytes formal parms.  In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid.  In this case, just return 0 which means there is no space
1127 * in the log.  This works for all places where this function is called
1128 * with the reserve head.  Of course, if the write head were to ever
1129 * wrap the tail, we should blow up.  Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131 *
1132 * This code also handles the case where the reservation head is behind
1133 * the tail.  The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1135 */
1136STATIC int
1137xlog_space_left(
1138	struct xlog	*log,
1139	atomic64_t	*head)
1140{
1141	int		free_bytes;
1142	int		tail_bytes;
1143	int		tail_cycle;
1144	int		head_cycle;
1145	int		head_bytes;
1146
1147	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149	tail_bytes = BBTOB(tail_bytes);
1150	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152	else if (tail_cycle + 1 < head_cycle)
1153		return 0;
1154	else if (tail_cycle < head_cycle) {
1155		ASSERT(tail_cycle == (head_cycle - 1));
1156		free_bytes = tail_bytes - head_bytes;
1157	} else {
1158		/*
1159		 * The reservation head is behind the tail.
1160		 * In this case we just want to return the size of the
1161		 * log as the amount of space left.
1162		 */
1163		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164		xfs_alert(log->l_mp,
1165			  "  tail_cycle = %d, tail_bytes = %d",
1166			  tail_cycle, tail_bytes);
1167		xfs_alert(log->l_mp,
1168			  "  GH   cycle = %d, GH   bytes = %d",
1169			  head_cycle, head_bytes);
1170		ASSERT(0);
1171		free_bytes = log->l_logsize;
1172	}
1173	return free_bytes;
1174}
1175
1176
1177/*
1178 * Log function which is called when an io completes.
1179 *
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1182 */
1183void
1184xlog_iodone(xfs_buf_t *bp)
1185{
1186	struct xlog_in_core	*iclog = bp->b_fspriv;
1187	struct xlog		*l = iclog->ic_log;
1188	int			aborted = 0;
1189
1190	/*
1191	 * Race to shutdown the filesystem if we see an error or the iclog is in
1192	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193	 * CRC errors into log recovery.
1194	 */
1195	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196			   XFS_RANDOM_IODONE_IOERR) ||
1197	    iclog->ic_state & XLOG_STATE_IOABORT) {
1198		if (iclog->ic_state & XLOG_STATE_IOABORT)
1199			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200
1201		xfs_buf_ioerror_alert(bp, __func__);
1202		xfs_buf_stale(bp);
1203		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204		/*
1205		 * This flag will be propagated to the trans-committed
1206		 * callback routines to let them know that the log-commit
1207		 * didn't succeed.
1208		 */
1209		aborted = XFS_LI_ABORTED;
1210	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211		aborted = XFS_LI_ABORTED;
1212	}
1213
1214	/* log I/O is always issued ASYNC */
1215	ASSERT(bp->b_flags & XBF_ASYNC);
1216	xlog_state_done_syncing(iclog, aborted);
1217
1218	/*
1219	 * drop the buffer lock now that we are done. Nothing references
1220	 * the buffer after this, so an unmount waiting on this lock can now
1221	 * tear it down safely. As such, it is unsafe to reference the buffer
1222	 * (bp) after the unlock as we could race with it being freed.
1223	 */
1224	xfs_buf_unlock(bp);
1225}
1226
1227/*
1228 * Return size of each in-core log record buffer.
1229 *
1230 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231 *
1232 * If the filesystem blocksize is too large, we may need to choose a
1233 * larger size since the directory code currently logs entire blocks.
1234 */
1235
1236STATIC void
1237xlog_get_iclog_buffer_size(
1238	struct xfs_mount	*mp,
1239	struct xlog		*log)
1240{
1241	int size;
1242	int xhdrs;
 
 
1243
1244	if (mp->m_logbufs <= 0)
1245		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246	else
1247		log->l_iclog_bufs = mp->m_logbufs;
1248
1249	/*
1250	 * Buffer size passed in from mount system call.
1251	 */
1252	if (mp->m_logbsize > 0) {
1253		size = log->l_iclog_size = mp->m_logbsize;
1254		log->l_iclog_size_log = 0;
1255		while (size != 1) {
1256			log->l_iclog_size_log++;
1257			size >>= 1;
1258		}
1259
1260		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261			/* # headers = size / 32k
1262			 * one header holds cycles from 32k of data
1263			 */
1264
1265			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267				xhdrs++;
1268			log->l_iclog_hsize = xhdrs << BBSHIFT;
1269			log->l_iclog_heads = xhdrs;
1270		} else {
1271			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272			log->l_iclog_hsize = BBSIZE;
1273			log->l_iclog_heads = 1;
1274		}
1275		goto done;
1276	}
1277
1278	/* All machines use 32kB buffers by default. */
1279	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281
1282	/* the default log size is 16k or 32k which is one header sector */
1283	log->l_iclog_hsize = BBSIZE;
1284	log->l_iclog_heads = 1;
1285
1286done:
1287	/* are we being asked to make the sizes selected above visible? */
1288	if (mp->m_logbufs == 0)
1289		mp->m_logbufs = log->l_iclog_bufs;
1290	if (mp->m_logbsize == 0)
1291		mp->m_logbsize = log->l_iclog_size;
1292}	/* xlog_get_iclog_buffer_size */
1293
1294
1295void
1296xfs_log_work_queue(
1297	struct xfs_mount        *mp)
1298{
1299	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301}
1302
1303/*
1304 * Every sync period we need to unpin all items in the AIL and push them to
1305 * disk. If there is nothing dirty, then we might need to cover the log to
1306 * indicate that the filesystem is idle.
1307 */
1308void
1309xfs_log_worker(
1310	struct work_struct	*work)
1311{
1312	struct xlog		*log = container_of(to_delayed_work(work),
1313						struct xlog, l_work);
1314	struct xfs_mount	*mp = log->l_mp;
1315
1316	/* dgc: errors ignored - not fatal and nowhere to report them */
1317	if (xfs_log_need_covered(mp)) {
1318		/*
1319		 * Dump a transaction into the log that contains no real change.
1320		 * This is needed to stamp the current tail LSN into the log
1321		 * during the covering operation.
1322		 *
1323		 * We cannot use an inode here for this - that will push dirty
1324		 * state back up into the VFS and then periodic inode flushing
1325		 * will prevent log covering from making progress. Hence we
1326		 * synchronously log the superblock instead to ensure the
1327		 * superblock is immediately unpinned and can be written back.
1328		 */
1329		xfs_sync_sb(mp, true);
1330	} else
1331		xfs_log_force(mp, 0);
1332
1333	/* start pushing all the metadata that is currently dirty */
1334	xfs_ail_push_all(mp->m_ail);
1335
1336	/* queue us up again */
1337	xfs_log_work_queue(mp);
1338}
1339
1340/*
1341 * This routine initializes some of the log structure for a given mount point.
1342 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1343 * some other stuff may be filled in too.
1344 */
1345STATIC struct xlog *
1346xlog_alloc_log(
1347	struct xfs_mount	*mp,
1348	struct xfs_buftarg	*log_target,
1349	xfs_daddr_t		blk_offset,
1350	int			num_bblks)
1351{
1352	struct xlog		*log;
1353	xlog_rec_header_t	*head;
1354	xlog_in_core_t		**iclogp;
1355	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1356	xfs_buf_t		*bp;
1357	int			i;
1358	int			error = -ENOMEM;
1359	uint			log2_size = 0;
1360
1361	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362	if (!log) {
1363		xfs_warn(mp, "Log allocation failed: No memory!");
1364		goto out;
1365	}
1366
1367	log->l_mp	   = mp;
1368	log->l_targ	   = log_target;
1369	log->l_logsize     = BBTOB(num_bblks);
1370	log->l_logBBstart  = blk_offset;
1371	log->l_logBBsize   = num_bblks;
1372	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1374	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375
1376	log->l_prev_block  = -1;
1377	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1381
 
 
 
 
 
1382	xlog_grant_head_init(&log->l_reserve_head);
1383	xlog_grant_head_init(&log->l_write_head);
1384
1385	error = -EFSCORRUPTED;
1386	if (xfs_sb_version_hassector(&mp->m_sb)) {
1387	        log2_size = mp->m_sb.sb_logsectlog;
1388		if (log2_size < BBSHIFT) {
1389			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390				log2_size, BBSHIFT);
1391			goto out_free_log;
1392		}
1393
1394	        log2_size -= BBSHIFT;
1395		if (log2_size > mp->m_sectbb_log) {
1396			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397				log2_size, mp->m_sectbb_log);
1398			goto out_free_log;
1399		}
1400
1401		/* for larger sector sizes, must have v2 or external log */
1402		if (log2_size && log->l_logBBstart > 0 &&
1403			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404			xfs_warn(mp,
1405		"log sector size (0x%x) invalid for configuration.",
1406				log2_size);
1407			goto out_free_log;
1408		}
1409	}
1410	log->l_sectBBsize = 1 << log2_size;
1411
1412	xlog_get_iclog_buffer_size(mp, log);
1413
1414	/*
1415	 * Use a NULL block for the extra log buffer used during splits so that
1416	 * it will trigger errors if we ever try to do IO on it without first
1417	 * having set it up properly.
1418	 */
1419	error = -ENOMEM;
1420	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421			   BTOBB(log->l_iclog_size), 0);
1422	if (!bp)
1423		goto out_free_log;
1424
1425	/*
1426	 * The iclogbuf buffer locks are held over IO but we are not going to do
1427	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1428	 * when appropriately.
1429	 */
1430	ASSERT(xfs_buf_islocked(bp));
1431	xfs_buf_unlock(bp);
1432
1433	/* use high priority wq for log I/O completion */
1434	bp->b_ioend_wq = mp->m_log_workqueue;
1435	bp->b_iodone = xlog_iodone;
1436	log->l_xbuf = bp;
1437
1438	spin_lock_init(&log->l_icloglock);
1439	init_waitqueue_head(&log->l_flush_wait);
1440
1441	iclogp = &log->l_iclog;
1442	/*
1443	 * The amount of memory to allocate for the iclog structure is
1444	 * rather funky due to the way the structure is defined.  It is
1445	 * done this way so that we can use different sizes for machines
1446	 * with different amounts of memory.  See the definition of
1447	 * xlog_in_core_t in xfs_log_priv.h for details.
1448	 */
1449	ASSERT(log->l_iclog_size >= 4096);
1450	for (i=0; i < log->l_iclog_bufs; i++) {
1451		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452		if (!*iclogp)
 
 
 
 
1453			goto out_free_iclog;
1454
1455		iclog = *iclogp;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460						BTOBB(log->l_iclog_size), 0);
1461		if (!bp)
1462			goto out_free_iclog;
1463
1464		ASSERT(xfs_buf_islocked(bp));
1465		xfs_buf_unlock(bp);
1466
1467		/* use high priority wq for log I/O completion */
1468		bp->b_ioend_wq = mp->m_log_workqueue;
1469		bp->b_iodone = xlog_iodone;
1470		iclog->ic_bp = bp;
1471		iclog->ic_data = bp->b_addr;
1472#ifdef DEBUG
1473		log->l_iclog_bak[i] = &iclog->ic_header;
1474#endif
1475		head = &iclog->ic_header;
1476		memset(head, 0, sizeof(xlog_rec_header_t));
1477		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478		head->h_version = cpu_to_be32(
1479			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480		head->h_size = cpu_to_be32(log->l_iclog_size);
1481		/* new fields */
1482		head->h_fmt = cpu_to_be32(XLOG_FMT);
1483		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484
1485		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486		iclog->ic_state = XLOG_STATE_ACTIVE;
1487		iclog->ic_log = log;
1488		atomic_set(&iclog->ic_refcnt, 0);
1489		spin_lock_init(&iclog->ic_callback_lock);
1490		iclog->ic_callback_tail = &(iclog->ic_callback);
1491		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492
1493		init_waitqueue_head(&iclog->ic_force_wait);
1494		init_waitqueue_head(&iclog->ic_write_wait);
 
 
1495
1496		iclogp = &iclog->ic_next;
1497	}
1498	*iclogp = log->l_iclog;			/* complete ring */
1499	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1500
 
 
 
 
 
 
 
1501	error = xlog_cil_init(log);
1502	if (error)
1503		goto out_free_iclog;
1504	return log;
1505
 
 
1506out_free_iclog:
1507	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508		prev_iclog = iclog->ic_next;
1509		if (iclog->ic_bp)
1510			xfs_buf_free(iclog->ic_bp);
1511		kmem_free(iclog);
 
 
1512	}
1513	spinlock_destroy(&log->l_icloglock);
1514	xfs_buf_free(log->l_xbuf);
1515out_free_log:
1516	kmem_free(log);
1517out:
1518	return ERR_PTR(error);
1519}	/* xlog_alloc_log */
1520
1521
1522/*
1523 * Write out the commit record of a transaction associated with the given
1524 * ticket.  Return the lsn of the commit record.
1525 */
1526STATIC int
1527xlog_commit_record(
1528	struct xlog		*log,
1529	struct xlog_ticket	*ticket,
1530	struct xlog_in_core	**iclog,
1531	xfs_lsn_t		*commitlsnp)
1532{
1533	struct xfs_mount *mp = log->l_mp;
1534	int	error;
1535	struct xfs_log_iovec reg = {
1536		.i_addr = NULL,
1537		.i_len = 0,
1538		.i_type = XLOG_REG_TYPE_COMMIT,
1539	};
1540	struct xfs_log_vec vec = {
1541		.lv_niovecs = 1,
1542		.lv_iovecp = &reg,
1543	};
 
 
 
 
1544
1545	ASSERT_ALWAYS(iclog);
1546	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547					XLOG_COMMIT_TRANS);
1548	if (error)
1549		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550	return error;
1551}
1552
1553/*
1554 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555 * log space.  This code pushes on the lsn which would supposedly free up
1556 * the 25% which we want to leave free.  We may need to adopt a policy which
1557 * pushes on an lsn which is further along in the log once we reach the high
1558 * water mark.  In this manner, we would be creating a low water mark.
1559 */
1560STATIC void
1561xlog_grant_push_ail(
1562	struct xlog	*log,
1563	int		need_bytes)
1564{
1565	xfs_lsn_t	threshold_lsn = 0;
1566	xfs_lsn_t	last_sync_lsn;
1567	int		free_blocks;
1568	int		free_bytes;
1569	int		threshold_block;
1570	int		threshold_cycle;
1571	int		free_threshold;
1572
1573	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
1575	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576	free_blocks = BTOBBT(free_bytes);
1577
1578	/*
1579	 * Set the threshold for the minimum number of free blocks in the
1580	 * log to the maximum of what the caller needs, one quarter of the
1581	 * log, and 256 blocks.
1582	 */
1583	free_threshold = BTOBB(need_bytes);
1584	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585	free_threshold = MAX(free_threshold, 256);
1586	if (free_blocks >= free_threshold)
1587		return;
1588
1589	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590						&threshold_block);
1591	threshold_block += free_threshold;
1592	if (threshold_block >= log->l_logBBsize) {
1593		threshold_block -= log->l_logBBsize;
1594		threshold_cycle += 1;
1595	}
1596	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597					threshold_block);
1598	/*
1599	 * Don't pass in an lsn greater than the lsn of the last
1600	 * log record known to be on disk. Use a snapshot of the last sync lsn
1601	 * so that it doesn't change between the compare and the set.
1602	 */
1603	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605		threshold_lsn = last_sync_lsn;
1606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607	/*
1608	 * Get the transaction layer to kick the dirty buffers out to
1609	 * disk asynchronously. No point in trying to do this if
1610	 * the filesystem is shutting down.
1611	 */
1612	if (!XLOG_FORCED_SHUTDOWN(log))
1613		xfs_ail_push(log->l_ailp, threshold_lsn);
1614}
1615
1616/*
1617 * Stamp cycle number in every block
1618 */
1619STATIC void
1620xlog_pack_data(
1621	struct xlog		*log,
1622	struct xlog_in_core	*iclog,
1623	int			roundoff)
1624{
1625	int			i, j, k;
1626	int			size = iclog->ic_offset + roundoff;
1627	__be32			cycle_lsn;
1628	char			*dp;
1629
1630	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631
1632	dp = iclog->ic_datap;
1633	for (i = 0; i < BTOBB(size); i++) {
1634		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635			break;
1636		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637		*(__be32 *)dp = cycle_lsn;
1638		dp += BBSIZE;
1639	}
1640
1641	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642		xlog_in_core_2_t *xhdr = iclog->ic_data;
1643
1644		for ( ; i < BTOBB(size); i++) {
1645			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648			*(__be32 *)dp = cycle_lsn;
1649			dp += BBSIZE;
1650		}
1651
1652		for (i = 1; i < log->l_iclog_heads; i++)
1653			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654	}
1655}
1656
1657/*
1658 * Calculate the checksum for a log buffer.
1659 *
1660 * This is a little more complicated than it should be because the various
1661 * headers and the actual data are non-contiguous.
1662 */
1663__le32
1664xlog_cksum(
1665	struct xlog		*log,
1666	struct xlog_rec_header	*rhead,
1667	char			*dp,
1668	int			size)
1669{
1670	__uint32_t		crc;
1671
1672	/* first generate the crc for the record header ... */
1673	crc = xfs_start_cksum((char *)rhead,
1674			      sizeof(struct xlog_rec_header),
1675			      offsetof(struct xlog_rec_header, h_crc));
1676
1677	/* ... then for additional cycle data for v2 logs ... */
1678	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680		int		i;
1681		int		xheads;
1682
1683		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684		if (size % XLOG_HEADER_CYCLE_SIZE)
1685			xheads++;
1686
1687		for (i = 1; i < xheads; i++) {
1688			crc = crc32c(crc, &xhdr[i].hic_xheader,
1689				     sizeof(struct xlog_rec_ext_header));
1690		}
1691	}
1692
1693	/* ... and finally for the payload */
1694	crc = crc32c(crc, dp, size);
1695
1696	return xfs_end_cksum(crc);
1697}
1698
1699/*
1700 * The bdstrat callback function for log bufs. This gives us a central
1701 * place to trap bufs in case we get hit by a log I/O error and need to
1702 * shutdown. Actually, in practice, even when we didn't get a log error,
1703 * we transition the iclogs to IOERROR state *after* flushing all existing
1704 * iclogs to disk. This is because we don't want anymore new transactions to be
1705 * started or completed afterwards.
1706 *
1707 * We lock the iclogbufs here so that we can serialise against IO completion
1708 * during unmount. We might be processing a shutdown triggered during unmount,
1709 * and that can occur asynchronously to the unmount thread, and hence we need to
1710 * ensure that completes before tearing down the iclogbufs. Hence we need to
1711 * hold the buffer lock across the log IO to acheive that.
1712 */
1713STATIC int
1714xlog_bdstrat(
1715	struct xfs_buf		*bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716{
1717	struct xlog_in_core	*iclog = bp->b_fspriv;
 
1718
1719	xfs_buf_lock(bp);
1720	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721		xfs_buf_ioerror(bp, -EIO);
1722		xfs_buf_stale(bp);
1723		xfs_buf_ioend(bp);
 
 
 
 
 
1724		/*
1725		 * It would seem logical to return EIO here, but we rely on
1726		 * the log state machine to propagate I/O errors instead of
1727		 * doing it here. Similarly, IO completion will unlock the
1728		 * buffer, so we don't do it here.
 
1729		 */
1730		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731	}
 
1732
1733	xfs_buf_submit(bp);
1734	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735}
1736
1737/*
1738 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1739 * fashion.  Previously, we should have moved the current iclog
1740 * ptr in the log to point to the next available iclog.  This allows further
1741 * write to continue while this code syncs out an iclog ready to go.
1742 * Before an in-core log can be written out, the data section must be scanned
1743 * to save away the 1st word of each BBSIZE block into the header.  We replace
1744 * it with the current cycle count.  Each BBSIZE block is tagged with the
1745 * cycle count because there in an implicit assumption that drives will
1746 * guarantee that entire 512 byte blocks get written at once.  In other words,
1747 * we can't have part of a 512 byte block written and part not written.  By
1748 * tagging each block, we will know which blocks are valid when recovering
1749 * after an unclean shutdown.
1750 *
1751 * This routine is single threaded on the iclog.  No other thread can be in
1752 * this routine with the same iclog.  Changing contents of iclog can there-
1753 * fore be done without grabbing the state machine lock.  Updating the global
1754 * log will require grabbing the lock though.
1755 *
1756 * The entire log manager uses a logical block numbering scheme.  Only
1757 * log_sync (and then only bwrite()) know about the fact that the log may
1758 * not start with block zero on a given device.  The log block start offset
1759 * is added immediately before calling bwrite().
1760 */
1761
1762STATIC int
1763xlog_sync(
1764	struct xlog		*log,
1765	struct xlog_in_core	*iclog)
1766{
1767	xfs_buf_t	*bp;
1768	int		i;
1769	uint		count;		/* byte count of bwrite */
1770	uint		count_init;	/* initial count before roundup */
1771	int		roundoff;       /* roundoff to BB or stripe */
1772	int		split = 0;	/* split write into two regions */
1773	int		error;
1774	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775	int		size;
1776
1777	XFS_STATS_INC(log->l_mp, xs_log_writes);
1778	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
1779
1780	/* Add for LR header */
1781	count_init = log->l_iclog_hsize + iclog->ic_offset;
1782
1783	/* Round out the log write size */
1784	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785		/* we have a v2 stripe unit to use */
1786		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787	} else {
1788		count = BBTOB(BTOBB(count_init));
1789	}
1790	roundoff = count - count_init;
1791	ASSERT(roundoff >= 0);
1792	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1793                roundoff < log->l_mp->m_sb.sb_logsunit)
1794		|| 
1795		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1796		 roundoff < BBTOB(1)));
1797
1798	/* move grant heads by roundoff in sync */
1799	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801
1802	/* put cycle number in every block */
1803	xlog_pack_data(log, iclog, roundoff); 
1804
1805	/* real byte length */
1806	size = iclog->ic_offset;
1807	if (v2)
1808		size += roundoff;
1809	iclog->ic_header.h_len = cpu_to_be32(size);
1810
1811	bp = iclog->ic_bp;
1812	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813
1814	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815
1816	/* Do we need to split this write into 2 parts? */
1817	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818		char		*dptr;
1819
1820		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822		iclog->ic_bwritecnt = 2;
1823
1824		/*
1825		 * Bump the cycle numbers at the start of each block in the
1826		 * part of the iclog that ends up in the buffer that gets
1827		 * written to the start of the log.
1828		 *
1829		 * Watch out for the header magic number case, though.
1830		 */
1831		dptr = (char *)&iclog->ic_header + count;
1832		for (i = 0; i < split; i += BBSIZE) {
1833			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835				cycle++;
1836			*(__be32 *)dptr = cpu_to_be32(cycle);
1837
1838			dptr += BBSIZE;
1839		}
1840	} else {
1841		iclog->ic_bwritecnt = 1;
1842	}
1843
1844	/* calculcate the checksum */
1845	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846					    iclog->ic_datap, size);
1847#ifdef DEBUG
1848	/*
1849	 * Intentionally corrupt the log record CRC based on the error injection
1850	 * frequency, if defined. This facilitates testing log recovery in the
1851	 * event of torn writes. Hence, set the IOABORT state to abort the log
1852	 * write on I/O completion and shutdown the fs. The subsequent mount
1853	 * detects the bad CRC and attempts to recover.
1854	 */
1855	if (log->l_badcrc_factor &&
1856	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1857		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858		iclog->ic_state |= XLOG_STATE_IOABORT;
1859		xfs_warn(log->l_mp,
1860	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861			 be64_to_cpu(iclog->ic_header.h_lsn));
1862	}
1863#endif
1864
1865	bp->b_io_length = BTOBB(count);
1866	bp->b_fspriv = iclog;
1867	bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1868	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1869
1870	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1871		bp->b_flags |= XBF_FUA;
1872
1873		/*
1874		 * Flush the data device before flushing the log to make
1875		 * sure all meta data written back from the AIL actually made
1876		 * it to disk before stamping the new log tail LSN into the
1877		 * log buffer.  For an external log we need to issue the
1878		 * flush explicitly, and unfortunately synchronously here;
1879		 * for an internal log we can simply use the block layer
1880		 * state machine for preflushes.
1881		 */
1882		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1883			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1884		else
1885			bp->b_flags |= XBF_FLUSH;
1886	}
1887
1888	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890
1891	xlog_verify_iclog(log, iclog, count, true);
1892
1893	/* account for log which doesn't start at block #0 */
1894	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895
1896	/*
1897	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898	 * is shutting down.
1899	 */
1900	error = xlog_bdstrat(bp);
1901	if (error) {
1902		xfs_buf_ioerror_alert(bp, "xlog_sync");
1903		return error;
1904	}
1905	if (split) {
1906		bp = iclog->ic_log->l_xbuf;
1907		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1908		xfs_buf_associate_memory(bp,
1909				(char *)&iclog->ic_header + count, split);
1910		bp->b_fspriv = iclog;
1911		bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1912		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1913		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1914			bp->b_flags |= XBF_FUA;
1915
1916		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1917		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1918
1919		/* account for internal log which doesn't start at block #0 */
1920		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1921		error = xlog_bdstrat(bp);
1922		if (error) {
1923			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1924			return error;
1925		}
1926	}
1927	return 0;
1928}	/* xlog_sync */
1929
1930/*
1931 * Deallocate a log structure
1932 */
1933STATIC void
1934xlog_dealloc_log(
1935	struct xlog	*log)
1936{
1937	xlog_in_core_t	*iclog, *next_iclog;
1938	int		i;
1939
1940	xlog_cil_destroy(log);
1941
1942	/*
1943	 * Cycle all the iclogbuf locks to make sure all log IO completion
1944	 * is done before we tear down these buffers.
1945	 */
1946	iclog = log->l_iclog;
1947	for (i = 0; i < log->l_iclog_bufs; i++) {
1948		xfs_buf_lock(iclog->ic_bp);
1949		xfs_buf_unlock(iclog->ic_bp);
1950		iclog = iclog->ic_next;
1951	}
1952
1953	/*
1954	 * Always need to ensure that the extra buffer does not point to memory
1955	 * owned by another log buffer before we free it. Also, cycle the lock
1956	 * first to ensure we've completed IO on it.
1957	 */
1958	xfs_buf_lock(log->l_xbuf);
1959	xfs_buf_unlock(log->l_xbuf);
1960	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1961	xfs_buf_free(log->l_xbuf);
1962
1963	iclog = log->l_iclog;
1964	for (i = 0; i < log->l_iclog_bufs; i++) {
1965		xfs_buf_free(iclog->ic_bp);
1966		next_iclog = iclog->ic_next;
 
1967		kmem_free(iclog);
1968		iclog = next_iclog;
1969	}
1970	spinlock_destroy(&log->l_icloglock);
1971
1972	log->l_mp->m_log = NULL;
 
1973	kmem_free(log);
1974}	/* xlog_dealloc_log */
1975
1976/*
1977 * Update counters atomically now that memcpy is done.
1978 */
1979/* ARGSUSED */
1980static inline void
1981xlog_state_finish_copy(
1982	struct xlog		*log,
1983	struct xlog_in_core	*iclog,
1984	int			record_cnt,
1985	int			copy_bytes)
1986{
1987	spin_lock(&log->l_icloglock);
1988
1989	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1990	iclog->ic_offset += copy_bytes;
1991
1992	spin_unlock(&log->l_icloglock);
1993}	/* xlog_state_finish_copy */
1994
1995
1996
1997
1998/*
1999 * print out info relating to regions written which consume
2000 * the reservation
2001 */
2002void
2003xlog_print_tic_res(
2004	struct xfs_mount	*mp,
2005	struct xlog_ticket	*ticket)
2006{
2007	uint i;
2008	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2009
2010	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2011#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2012	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2013	    REG_TYPE_STR(BFORMAT, "bformat"),
2014	    REG_TYPE_STR(BCHUNK, "bchunk"),
2015	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2016	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2017	    REG_TYPE_STR(IFORMAT, "iformat"),
2018	    REG_TYPE_STR(ICORE, "icore"),
2019	    REG_TYPE_STR(IEXT, "iext"),
2020	    REG_TYPE_STR(IBROOT, "ibroot"),
2021	    REG_TYPE_STR(ILOCAL, "ilocal"),
2022	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2023	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2024	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2025	    REG_TYPE_STR(QFORMAT, "qformat"),
2026	    REG_TYPE_STR(DQUOT, "dquot"),
2027	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2028	    REG_TYPE_STR(LRHEADER, "LR header"),
2029	    REG_TYPE_STR(UNMOUNT, "unmount"),
2030	    REG_TYPE_STR(COMMIT, "commit"),
2031	    REG_TYPE_STR(TRANSHDR, "trans header"),
2032	    REG_TYPE_STR(ICREATE, "inode create")
 
 
 
 
 
 
2033	};
 
2034#undef REG_TYPE_STR
2035#define TRANS_TYPE_STR(type)	[XFS_TRANS_##type] = #type
2036	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037	    TRANS_TYPE_STR(SETATTR_NOT_SIZE),
2038	    TRANS_TYPE_STR(SETATTR_SIZE),
2039	    TRANS_TYPE_STR(INACTIVE),
2040	    TRANS_TYPE_STR(CREATE),
2041	    TRANS_TYPE_STR(CREATE_TRUNC),
2042	    TRANS_TYPE_STR(TRUNCATE_FILE),
2043	    TRANS_TYPE_STR(REMOVE),
2044	    TRANS_TYPE_STR(LINK),
2045	    TRANS_TYPE_STR(RENAME),
2046	    TRANS_TYPE_STR(MKDIR),
2047	    TRANS_TYPE_STR(RMDIR),
2048	    TRANS_TYPE_STR(SYMLINK),
2049	    TRANS_TYPE_STR(SET_DMATTRS),
2050	    TRANS_TYPE_STR(GROWFS),
2051	    TRANS_TYPE_STR(STRAT_WRITE),
2052	    TRANS_TYPE_STR(DIOSTRAT),
2053	    TRANS_TYPE_STR(WRITEID),
2054	    TRANS_TYPE_STR(ADDAFORK),
2055	    TRANS_TYPE_STR(ATTRINVAL),
2056	    TRANS_TYPE_STR(ATRUNCATE),
2057	    TRANS_TYPE_STR(ATTR_SET),
2058	    TRANS_TYPE_STR(ATTR_RM),
2059	    TRANS_TYPE_STR(ATTR_FLAG),
2060	    TRANS_TYPE_STR(CLEAR_AGI_BUCKET),
2061	    TRANS_TYPE_STR(SB_CHANGE),
2062	    TRANS_TYPE_STR(DUMMY1),
2063	    TRANS_TYPE_STR(DUMMY2),
2064	    TRANS_TYPE_STR(QM_QUOTAOFF),
2065	    TRANS_TYPE_STR(QM_DQALLOC),
2066	    TRANS_TYPE_STR(QM_SETQLIM),
2067	    TRANS_TYPE_STR(QM_DQCLUSTER),
2068	    TRANS_TYPE_STR(QM_QINOCREATE),
2069	    TRANS_TYPE_STR(QM_QUOTAOFF_END),
2070	    TRANS_TYPE_STR(FSYNC_TS),
2071	    TRANS_TYPE_STR(GROWFSRT_ALLOC),
2072	    TRANS_TYPE_STR(GROWFSRT_ZERO),
2073	    TRANS_TYPE_STR(GROWFSRT_FREE),
2074	    TRANS_TYPE_STR(SWAPEXT),
2075	    TRANS_TYPE_STR(CHECKPOINT),
2076	    TRANS_TYPE_STR(ICREATE),
2077	    TRANS_TYPE_STR(CREATE_TMPFILE)
2078	};
2079#undef TRANS_TYPE_STR
2080
2081	xfs_warn(mp, "xlog_write: reservation summary:");
2082	xfs_warn(mp, "  trans type  = %s (%u)",
2083		 ((ticket->t_trans_type <= 0 ||
2084		   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2085		  "bad-trans-type" : trans_type_str[ticket->t_trans_type]),
2086		 ticket->t_trans_type);
2087	xfs_warn(mp, "  unit res    = %d bytes",
2088		 ticket->t_unit_res);
2089	xfs_warn(mp, "  current res = %d bytes",
2090		 ticket->t_curr_res);
2091	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094		 ticket->t_res_num_ophdrs, ophdr_spc);
2095	xfs_warn(mp, "  ophdr + reg = %u bytes",
2096		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097	xfs_warn(mp, "  num regions = %u",
2098		 ticket->t_res_num);
2099
2100	for (i = 0; i < ticket->t_res_num; i++) {
2101		uint r_type = ticket->t_res_arr[i].r_type;
2102		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104			    "bad-rtype" : res_type_str[r_type]),
2105			    ticket->t_res_arr[i].r_len);
2106	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107
2108	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2109		"xlog_write: reservation ran out. Need to up reservation");
2110	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2111}
2112
2113/*
2114 * Calculate the potential space needed by the log vector.  Each region gets
2115 * its own xlog_op_header_t and may need to be double word aligned.
 
2116 */
2117static int
2118xlog_write_calc_vec_length(
2119	struct xlog_ticket	*ticket,
2120	struct xfs_log_vec	*log_vector)
 
2121{
2122	struct xfs_log_vec	*lv;
2123	int			headers = 0;
2124	int			len = 0;
2125	int			i;
2126
2127	/* acct for start rec of xact */
2128	if (ticket->t_flags & XLOG_TIC_INITED)
2129		headers++;
2130
2131	for (lv = log_vector; lv; lv = lv->lv_next) {
2132		/* we don't write ordered log vectors */
2133		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2134			continue;
2135
2136		headers += lv->lv_niovecs;
2137
2138		for (i = 0; i < lv->lv_niovecs; i++) {
2139			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2140
2141			len += vecp->i_len;
2142			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2143		}
2144	}
2145
2146	ticket->t_res_num_ophdrs += headers;
2147	len += headers * sizeof(struct xlog_op_header);
2148
2149	return len;
2150}
2151
2152/*
2153 * If first write for transaction, insert start record  We can't be trying to
2154 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2155 */
2156static int
2157xlog_write_start_rec(
2158	struct xlog_op_header	*ophdr,
2159	struct xlog_ticket	*ticket)
2160{
2161	if (!(ticket->t_flags & XLOG_TIC_INITED))
2162		return 0;
2163
2164	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2165	ophdr->oh_clientid = ticket->t_clientid;
2166	ophdr->oh_len = 0;
2167	ophdr->oh_flags = XLOG_START_TRANS;
2168	ophdr->oh_res2 = 0;
2169
2170	ticket->t_flags &= ~XLOG_TIC_INITED;
2171
2172	return sizeof(struct xlog_op_header);
2173}
2174
2175static xlog_op_header_t *
2176xlog_write_setup_ophdr(
2177	struct xlog		*log,
2178	struct xlog_op_header	*ophdr,
2179	struct xlog_ticket	*ticket,
2180	uint			flags)
2181{
2182	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2183	ophdr->oh_clientid = ticket->t_clientid;
2184	ophdr->oh_res2 = 0;
2185
2186	/* are we copying a commit or unmount record? */
2187	ophdr->oh_flags = flags;
2188
2189	/*
2190	 * We've seen logs corrupted with bad transaction client ids.  This
2191	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2192	 * and shut down the filesystem.
2193	 */
2194	switch (ophdr->oh_clientid)  {
2195	case XFS_TRANSACTION:
2196	case XFS_VOLUME:
2197	case XFS_LOG:
2198		break;
2199	default:
2200		xfs_warn(log->l_mp,
2201			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2202			ophdr->oh_clientid, ticket);
2203		return NULL;
2204	}
2205
2206	return ophdr;
2207}
2208
2209/*
2210 * Set up the parameters of the region copy into the log. This has
2211 * to handle region write split across multiple log buffers - this
2212 * state is kept external to this function so that this code can
2213 * be written in an obvious, self documenting manner.
2214 */
2215static int
2216xlog_write_setup_copy(
2217	struct xlog_ticket	*ticket,
2218	struct xlog_op_header	*ophdr,
2219	int			space_available,
2220	int			space_required,
2221	int			*copy_off,
2222	int			*copy_len,
2223	int			*last_was_partial_copy,
2224	int			*bytes_consumed)
2225{
2226	int			still_to_copy;
2227
2228	still_to_copy = space_required - *bytes_consumed;
2229	*copy_off = *bytes_consumed;
2230
2231	if (still_to_copy <= space_available) {
2232		/* write of region completes here */
2233		*copy_len = still_to_copy;
2234		ophdr->oh_len = cpu_to_be32(*copy_len);
2235		if (*last_was_partial_copy)
2236			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2237		*last_was_partial_copy = 0;
2238		*bytes_consumed = 0;
2239		return 0;
2240	}
2241
2242	/* partial write of region, needs extra log op header reservation */
2243	*copy_len = space_available;
2244	ophdr->oh_len = cpu_to_be32(*copy_len);
2245	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2246	if (*last_was_partial_copy)
2247		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2248	*bytes_consumed += *copy_len;
2249	(*last_was_partial_copy)++;
2250
2251	/* account for new log op header */
2252	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2253	ticket->t_res_num_ophdrs++;
2254
2255	return sizeof(struct xlog_op_header);
2256}
2257
2258static int
2259xlog_write_copy_finish(
2260	struct xlog		*log,
2261	struct xlog_in_core	*iclog,
2262	uint			flags,
2263	int			*record_cnt,
2264	int			*data_cnt,
2265	int			*partial_copy,
2266	int			*partial_copy_len,
2267	int			log_offset,
2268	struct xlog_in_core	**commit_iclog)
2269{
 
 
2270	if (*partial_copy) {
2271		/*
2272		 * This iclog has already been marked WANT_SYNC by
2273		 * xlog_state_get_iclog_space.
2274		 */
 
2275		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276		*record_cnt = 0;
2277		*data_cnt = 0;
2278		return xlog_state_release_iclog(log, iclog);
2279	}
2280
2281	*partial_copy = 0;
2282	*partial_copy_len = 0;
2283
2284	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285		/* no more space in this iclog - push it. */
 
2286		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2287		*record_cnt = 0;
2288		*data_cnt = 0;
2289
2290		spin_lock(&log->l_icloglock);
2291		xlog_state_want_sync(log, iclog);
 
 
 
 
 
2292		spin_unlock(&log->l_icloglock);
2293
2294		if (!commit_iclog)
2295			return xlog_state_release_iclog(log, iclog);
2296		ASSERT(flags & XLOG_COMMIT_TRANS);
2297		*commit_iclog = iclog;
2298	}
2299
2300	return 0;
 
 
 
 
 
2301}
2302
2303/*
2304 * Write some region out to in-core log
2305 *
2306 * This will be called when writing externally provided regions or when
2307 * writing out a commit record for a given transaction.
2308 *
2309 * General algorithm:
2310 *	1. Find total length of this write.  This may include adding to the
2311 *		lengths passed in.
2312 *	2. Check whether we violate the tickets reservation.
2313 *	3. While writing to this iclog
2314 *	    A. Reserve as much space in this iclog as can get
2315 *	    B. If this is first write, save away start lsn
2316 *	    C. While writing this region:
2317 *		1. If first write of transaction, write start record
2318 *		2. Write log operation header (header per region)
2319 *		3. Find out if we can fit entire region into this iclog
2320 *		4. Potentially, verify destination memcpy ptr
2321 *		5. Memcpy (partial) region
2322 *		6. If partial copy, release iclog; otherwise, continue
2323 *			copying more regions into current iclog
2324 *	4. Mark want sync bit (in simulation mode)
2325 *	5. Release iclog for potential flush to on-disk log.
2326 *
2327 * ERRORS:
2328 * 1.	Panic if reservation is overrun.  This should never happen since
2329 *	reservation amounts are generated internal to the filesystem.
2330 * NOTES:
2331 * 1. Tickets are single threaded data structures.
2332 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2333 *	syncing routine.  When a single log_write region needs to span
2334 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2335 *	on all log operation writes which don't contain the end of the
2336 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2337 *	operation which contains the end of the continued log_write region.
2338 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2339 *	we don't really know exactly how much space will be used.  As a result,
2340 *	we don't update ic_offset until the end when we know exactly how many
2341 *	bytes have been written out.
2342 */
2343int
2344xlog_write(
2345	struct xlog		*log,
2346	struct xfs_log_vec	*log_vector,
2347	struct xlog_ticket	*ticket,
2348	xfs_lsn_t		*start_lsn,
2349	struct xlog_in_core	**commit_iclog,
2350	uint			flags)
2351{
2352	struct xlog_in_core	*iclog = NULL;
2353	struct xfs_log_iovec	*vecp;
2354	struct xfs_log_vec	*lv;
 
2355	int			len;
2356	int			index;
2357	int			partial_copy = 0;
2358	int			partial_copy_len = 0;
2359	int			contwr = 0;
2360	int			record_cnt = 0;
2361	int			data_cnt = 0;
2362	int			error;
2363
2364	*start_lsn = 0;
2365
2366	len = xlog_write_calc_vec_length(ticket, log_vector);
2367
2368	/*
2369	 * Region headers and bytes are already accounted for.
2370	 * We only need to take into account start records and
2371	 * split regions in this function.
 
2372	 */
2373	if (ticket->t_flags & XLOG_TIC_INITED)
2374		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375
2376	/*
2377	 * Commit record headers need to be accounted for. These
2378	 * come in as separate writes so are easy to detect.
2379	 */
2380	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2381		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2382
2383	if (ticket->t_curr_res < 0)
2384		xlog_print_tic_res(log->l_mp, ticket);
 
 
2385
2386	index = 0;
2387	lv = log_vector;
2388	vecp = lv->lv_iovecp;
2389	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390		void		*ptr;
2391		int		log_offset;
2392
2393		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394						   &contwr, &log_offset);
2395		if (error)
2396			return error;
2397
2398		ASSERT(log_offset <= iclog->ic_size - 1);
2399		ptr = iclog->ic_datap + log_offset;
2400
2401		/* start_lsn is the first lsn written to. That's all we need. */
2402		if (!*start_lsn)
2403			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405		/*
2406		 * This loop writes out as many regions as can fit in the amount
2407		 * of space which was allocated by xlog_state_get_iclog_space().
2408		 */
2409		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410			struct xfs_log_iovec	*reg;
2411			struct xlog_op_header	*ophdr;
2412			int			start_rec_copy;
2413			int			copy_len;
2414			int			copy_off;
2415			bool			ordered = false;
 
2416
2417			/* ordered log vectors have no regions to write */
2418			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419				ASSERT(lv->lv_niovecs == 0);
2420				ordered = true;
2421				goto next_lv;
2422			}
2423
2424			reg = &vecp[index];
2425			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2426			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2427
2428			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429			if (start_rec_copy) {
2430				record_cnt++;
 
 
 
 
2431				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432						   start_rec_copy);
 
 
2433			}
2434
2435			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436			if (!ophdr)
2437				return -EIO;
2438
2439			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440					   sizeof(struct xlog_op_header));
2441
2442			len += xlog_write_setup_copy(ticket, ophdr,
2443						     iclog->ic_size-log_offset,
2444						     reg->i_len,
2445						     &copy_off, &copy_len,
2446						     &partial_copy,
2447						     &partial_copy_len);
2448			xlog_verify_dest_ptr(log, ptr);
2449
2450			/*
2451			 * Copy region.
2452			 *
2453			 * Unmount records just log an opheader, so can have
2454			 * empty payloads with no data region to copy. Hence we
2455			 * only copy the payload if the vector says it has data
2456			 * to copy.
2457			 */
2458			ASSERT(copy_len >= 0);
2459			if (copy_len > 0) {
2460				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462						   copy_len);
2463			}
2464			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465			record_cnt++;
 
 
 
 
2466			data_cnt += contwr ? copy_len : 0;
2467
2468			error = xlog_write_copy_finish(log, iclog, flags,
2469						       &record_cnt, &data_cnt,
2470						       &partial_copy,
2471						       &partial_copy_len,
2472						       log_offset,
2473						       commit_iclog);
2474			if (error)
2475				return error;
2476
2477			/*
2478			 * if we had a partial copy, we need to get more iclog
2479			 * space but we don't want to increment the region
2480			 * index because there is still more is this region to
2481			 * write.
2482			 *
2483			 * If we completed writing this region, and we flushed
2484			 * the iclog (indicated by resetting of the record
2485			 * count), then we also need to get more log space. If
2486			 * this was the last record, though, we are done and
2487			 * can just return.
2488			 */
2489			if (partial_copy)
2490				break;
2491
2492			if (++index == lv->lv_niovecs) {
2493next_lv:
2494				lv = lv->lv_next;
2495				index = 0;
2496				if (lv)
2497					vecp = lv->lv_iovecp;
2498			}
2499			if (record_cnt == 0 && ordered == false) {
2500				if (!lv)
2501					return 0;
2502				break;
2503			}
2504		}
2505	}
2506
2507	ASSERT(len == 0);
2508
 
2509	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510	if (!commit_iclog)
2511		return xlog_state_release_iclog(log, iclog);
 
 
 
 
 
2512
2513	ASSERT(flags & XLOG_COMMIT_TRANS);
2514	*commit_iclog = iclog;
2515	return 0;
2516}
2517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2518
2519/*****************************************************************************
2520 *
2521 *		State Machine functions
2522 *
2523 *****************************************************************************
2524 */
 
 
2525
2526/* Clean iclogs starting from the head.  This ordering must be
2527 * maintained, so an iclog doesn't become ACTIVE beyond one that
2528 * is SYNCING.  This is also required to maintain the notion that we use
2529 * a ordered wait queue to hold off would be writers to the log when every
2530 * iclog is trying to sync to disk.
2531 *
2532 * State Change: DIRTY -> ACTIVE
2533 */
2534STATIC void
2535xlog_state_clean_log(
2536	struct xlog *log)
 
2537{
2538	xlog_in_core_t	*iclog;
2539	int changed = 0;
2540
2541	iclog = log->l_iclog;
2542	do {
2543		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544			iclog->ic_state	= XLOG_STATE_ACTIVE;
2545			iclog->ic_offset       = 0;
2546			ASSERT(iclog->ic_callback == NULL);
2547			/*
2548			 * If the number of ops in this iclog indicate it just
2549			 * contains the dummy transaction, we can
2550			 * change state into IDLE (the second time around).
2551			 * Otherwise we should change the state into
2552			 * NEED a dummy.
2553			 * We don't need to cover the dummy.
2554			 */
2555			if (!changed &&
2556			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557			   		XLOG_COVER_OPS)) {
2558				changed = 1;
2559			} else {
2560				/*
2561				 * We have two dirty iclogs so start over
2562				 * This could also be num of ops indicates
2563				 * this is not the dummy going out.
2564				 */
2565				changed = 2;
2566			}
2567			iclog->ic_header.h_num_logops = 0;
2568			memset(iclog->ic_header.h_cycle_data, 0,
2569			      sizeof(iclog->ic_header.h_cycle_data));
2570			iclog->ic_header.h_lsn = 0;
2571		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572			/* do nothing */;
2573		else
2574			break;	/* stop cleaning */
2575		iclog = iclog->ic_next;
2576	} while (iclog != log->l_iclog);
2577
2578	/* log is locked when we are called */
 
 
 
 
2579	/*
2580	 * Change state for the dummy log recording.
2581	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2582	 * we are done writing the dummy record.
2583	 * If we are done with the second dummy recored (DONE2), then
2584	 * we go to IDLE.
2585	 */
2586	if (changed) {
2587		switch (log->l_covered_state) {
2588		case XLOG_STATE_COVER_IDLE:
2589		case XLOG_STATE_COVER_NEED:
2590		case XLOG_STATE_COVER_NEED2:
2591			log->l_covered_state = XLOG_STATE_COVER_NEED;
2592			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593
2594		case XLOG_STATE_COVER_DONE:
2595			if (changed == 1)
2596				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597			else
2598				log->l_covered_state = XLOG_STATE_COVER_NEED;
2599			break;
2600
2601		case XLOG_STATE_COVER_DONE2:
2602			if (changed == 1)
2603				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604			else
2605				log->l_covered_state = XLOG_STATE_COVER_NEED;
2606			break;
2607
2608		default:
2609			ASSERT(0);
2610		}
2611	}
2612}	/* xlog_state_clean_log */
2613
2614STATIC xfs_lsn_t
2615xlog_get_lowest_lsn(
2616	struct xlog	*log)
2617{
2618	xlog_in_core_t  *lsn_log;
2619	xfs_lsn_t	lowest_lsn, lsn;
2620
2621	lsn_log = log->l_iclog;
2622	lowest_lsn = 0;
2623	do {
2624	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2625		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2626		if ((lsn && !lowest_lsn) ||
2627		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
 
 
2628			lowest_lsn = lsn;
2629		}
2630	    }
2631	    lsn_log = lsn_log->ic_next;
2632	} while (lsn_log != log->l_iclog);
2633	return lowest_lsn;
2634}
2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636
2637STATIC void
2638xlog_state_do_callback(
2639	struct xlog		*log,
2640	int			aborted,
2641	struct xlog_in_core	*ciclog)
2642{
2643	xlog_in_core_t	   *iclog;
2644	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2645						 * processed all iclogs once */
2646	xfs_log_callback_t *cb, *cb_next;
2647	int		   flushcnt = 0;
2648	xfs_lsn_t	   lowest_lsn;
2649	int		   ioerrors;	/* counter: iclogs with errors */
2650	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2651	int		   funcdidcallbacks; /* flag: function did callbacks */
2652	int		   repeats;	/* for issuing console warnings if
2653					 * looping too many times */
2654	int		   wake = 0;
2655
2656	spin_lock(&log->l_icloglock);
2657	first_iclog = iclog = log->l_iclog;
2658	ioerrors = 0;
2659	funcdidcallbacks = 0;
2660	repeats = 0;
2661
2662	do {
2663		/*
2664		 * Scan all iclogs starting with the one pointed to by the
2665		 * log.  Reset this starting point each time the log is
2666		 * unlocked (during callbacks).
2667		 *
2668		 * Keep looping through iclogs until one full pass is made
2669		 * without running any callbacks.
2670		 */
2671		first_iclog = log->l_iclog;
2672		iclog = log->l_iclog;
2673		loopdidcallbacks = 0;
 
2674		repeats++;
2675
2676		do {
 
2677
2678			/* skip all iclogs in the ACTIVE & DIRTY states */
2679			if (iclog->ic_state &
2680			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
 
 
 
2681				iclog = iclog->ic_next;
2682				continue;
2683			}
2684
2685			/*
2686			 * Between marking a filesystem SHUTDOWN and stopping
2687			 * the log, we do flush all iclogs to disk (if there
2688			 * wasn't a log I/O error). So, we do want things to
2689			 * go smoothly in case of just a SHUTDOWN  w/o a
2690			 * LOG_IO_ERROR.
2691			 */
2692			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2693				/*
2694				 * Can only perform callbacks in order.  Since
2695				 * this iclog is not in the DONE_SYNC/
2696				 * DO_CALLBACK state, we skip the rest and
2697				 * just try to clean up.  If we set our iclog
2698				 * to DO_CALLBACK, we will not process it when
2699				 * we retry since a previous iclog is in the
2700				 * CALLBACK and the state cannot change since
2701				 * we are holding the l_icloglock.
2702				 */
2703				if (!(iclog->ic_state &
2704					(XLOG_STATE_DONE_SYNC |
2705						 XLOG_STATE_DO_CALLBACK))) {
2706					if (ciclog && (ciclog->ic_state ==
2707							XLOG_STATE_DONE_SYNC)) {
2708						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2709					}
2710					break;
2711				}
2712				/*
2713				 * We now have an iclog that is in either the
2714				 * DO_CALLBACK or DONE_SYNC states. The other
2715				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2716				 * caught by the above if and are going to
2717				 * clean (i.e. we aren't doing their callbacks)
2718				 * see the above if.
2719				 */
2720
2721				/*
2722				 * We will do one more check here to see if we
2723				 * have chased our tail around.
2724				 */
2725
2726				lowest_lsn = xlog_get_lowest_lsn(log);
2727				if (lowest_lsn &&
2728				    XFS_LSN_CMP(lowest_lsn,
2729						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2730					iclog = iclog->ic_next;
2731					continue; /* Leave this iclog for
2732						   * another thread */
2733				}
2734
2735				iclog->ic_state = XLOG_STATE_CALLBACK;
2736
2737
2738				/*
2739				 * Completion of a iclog IO does not imply that
2740				 * a transaction has completed, as transactions
2741				 * can be large enough to span many iclogs. We
2742				 * cannot change the tail of the log half way
2743				 * through a transaction as this may be the only
2744				 * transaction in the log and moving th etail to
2745				 * point to the middle of it will prevent
2746				 * recovery from finding the start of the
2747				 * transaction. Hence we should only update the
2748				 * last_sync_lsn if this iclog contains
2749				 * transaction completion callbacks on it.
2750				 *
2751				 * We have to do this before we drop the
2752				 * icloglock to ensure we are the only one that
2753				 * can update it.
2754				 */
2755				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2756					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2757				if (iclog->ic_callback)
2758					atomic64_set(&log->l_last_sync_lsn,
2759						be64_to_cpu(iclog->ic_header.h_lsn));
2760
2761			} else
2762				ioerrors++;
2763
2764			spin_unlock(&log->l_icloglock);
2765
2766			/*
2767			 * Keep processing entries in the callback list until
2768			 * we come around and it is empty.  We need to
2769			 * atomically see that the list is empty and change the
2770			 * state to DIRTY so that we don't miss any more
2771			 * callbacks being added.
2772			 */
2773			spin_lock(&iclog->ic_callback_lock);
2774			cb = iclog->ic_callback;
2775			while (cb) {
2776				iclog->ic_callback_tail = &(iclog->ic_callback);
2777				iclog->ic_callback = NULL;
2778				spin_unlock(&iclog->ic_callback_lock);
2779
2780				/* perform callbacks in the order given */
2781				for (; cb; cb = cb_next) {
2782					cb_next = cb->cb_next;
2783					cb->cb_func(cb->cb_arg, aborted);
2784				}
2785				spin_lock(&iclog->ic_callback_lock);
2786				cb = iclog->ic_callback;
2787			}
2788
2789			loopdidcallbacks++;
2790			funcdidcallbacks++;
2791
2792			spin_lock(&log->l_icloglock);
2793			ASSERT(iclog->ic_callback == NULL);
2794			spin_unlock(&iclog->ic_callback_lock);
2795			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2796				iclog->ic_state = XLOG_STATE_DIRTY;
2797
2798			/*
2799			 * Transition from DIRTY to ACTIVE if applicable.
2800			 * NOP if STATE_IOERROR.
2801			 */
2802			xlog_state_clean_log(log);
2803
2804			/* wake up threads waiting in xfs_log_force() */
2805			wake_up_all(&iclog->ic_force_wait);
2806
2807			iclog = iclog->ic_next;
2808		} while (first_iclog != iclog);
2809
2810		if (repeats > 5000) {
2811			flushcnt += repeats;
2812			repeats = 0;
2813			xfs_warn(log->l_mp,
2814				"%s: possible infinite loop (%d iterations)",
2815				__func__, flushcnt);
2816		}
2817	} while (!ioerrors && loopdidcallbacks);
2818
2819#ifdef DEBUG
2820	/*
2821	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2822	 * If the above loop finds an iclog earlier than the current iclog and
2823	 * in one of the syncing states, the current iclog is put into
2824	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2825	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2826	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2827	 * states.
2828	 *
2829	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2830	 * for ic_state == SYNCING.
2831	 */
2832	if (funcdidcallbacks) {
2833		first_iclog = iclog = log->l_iclog;
2834		do {
2835			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2836			/*
2837			 * Terminate the loop if iclogs are found in states
2838			 * which will cause other threads to clean up iclogs.
2839			 *
2840			 * SYNCING - i/o completion will go through logs
2841			 * DONE_SYNC - interrupt thread should be waiting for
2842			 *              l_icloglock
2843			 * IOERROR - give up hope all ye who enter here
2844			 */
2845			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2846			    iclog->ic_state & XLOG_STATE_SYNCING ||
2847			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2848			    iclog->ic_state == XLOG_STATE_IOERROR )
2849				break;
2850			iclog = iclog->ic_next;
2851		} while (first_iclog != iclog);
2852	}
2853#endif
2854
2855	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2856		wake = 1;
2857	spin_unlock(&log->l_icloglock);
2858
2859	if (wake)
2860		wake_up_all(&log->l_flush_wait);
2861}
2862
2863
2864/*
2865 * Finish transitioning this iclog to the dirty state.
2866 *
2867 * Make sure that we completely execute this routine only when this is
2868 * the last call to the iclog.  There is a good chance that iclog flushes,
2869 * when we reach the end of the physical log, get turned into 2 separate
2870 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2871 * routine.  By using the reference count bwritecnt, we guarantee that only
2872 * the second completion goes through.
2873 *
2874 * Callbacks could take time, so they are done outside the scope of the
2875 * global state machine log lock.
2876 */
2877STATIC void
2878xlog_state_done_syncing(
2879	xlog_in_core_t	*iclog,
2880	int		aborted)
2881{
2882	struct xlog	   *log = iclog->ic_log;
2883
2884	spin_lock(&log->l_icloglock);
2885
2886	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2887	       iclog->ic_state == XLOG_STATE_IOERROR);
2888	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2889	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2890
2891
2892	/*
2893	 * If we got an error, either on the first buffer, or in the case of
2894	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2895	 * and none should ever be attempted to be written to disk
2896	 * again.
2897	 */
2898	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2899		if (--iclog->ic_bwritecnt == 1) {
2900			spin_unlock(&log->l_icloglock);
2901			return;
2902		}
2903		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2904	}
2905
2906	/*
2907	 * Someone could be sleeping prior to writing out the next
2908	 * iclog buffer, we wake them all, one will get to do the
2909	 * I/O, the others get to wait for the result.
2910	 */
2911	wake_up_all(&iclog->ic_write_wait);
2912	spin_unlock(&log->l_icloglock);
2913	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2914}	/* xlog_state_done_syncing */
2915
2916
2917/*
2918 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2919 * sleep.  We wait on the flush queue on the head iclog as that should be
2920 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2921 * we will wait here and all new writes will sleep until a sync completes.
2922 *
2923 * The in-core logs are used in a circular fashion. They are not used
2924 * out-of-order even when an iclog past the head is free.
2925 *
2926 * return:
2927 *	* log_offset where xlog_write() can start writing into the in-core
2928 *		log's data space.
2929 *	* in-core log pointer to which xlog_write() should write.
2930 *	* boolean indicating this is a continued write to an in-core log.
2931 *		If this is the last write, then the in-core log's offset field
2932 *		needs to be incremented, depending on the amount of data which
2933 *		is copied.
2934 */
2935STATIC int
2936xlog_state_get_iclog_space(
2937	struct xlog		*log,
2938	int			len,
2939	struct xlog_in_core	**iclogp,
2940	struct xlog_ticket	*ticket,
2941	int			*continued_write,
2942	int			*logoffsetp)
2943{
2944	int		  log_offset;
2945	xlog_rec_header_t *head;
2946	xlog_in_core_t	  *iclog;
2947	int		  error;
2948
2949restart:
2950	spin_lock(&log->l_icloglock);
2951	if (XLOG_FORCED_SHUTDOWN(log)) {
2952		spin_unlock(&log->l_icloglock);
2953		return -EIO;
2954	}
2955
2956	iclog = log->l_iclog;
2957	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2958		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2959
2960		/* Wait for log writes to have flushed */
2961		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2962		goto restart;
2963	}
2964
2965	head = &iclog->ic_header;
2966
2967	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2968	log_offset = iclog->ic_offset;
2969
 
 
2970	/* On the 1st write to an iclog, figure out lsn.  This works
2971	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2972	 * committing to.  If the offset is set, that's how many blocks
2973	 * must be written.
2974	 */
2975	if (log_offset == 0) {
2976		ticket->t_curr_res -= log->l_iclog_hsize;
2977		xlog_tic_add_region(ticket,
2978				    log->l_iclog_hsize,
2979				    XLOG_REG_TYPE_LRHEADER);
2980		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2981		head->h_lsn = cpu_to_be64(
2982			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2983		ASSERT(log->l_curr_block >= 0);
2984	}
2985
2986	/* If there is enough room to write everything, then do it.  Otherwise,
2987	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2988	 * bit is on, so this will get flushed out.  Don't update ic_offset
2989	 * until you know exactly how many bytes get copied.  Therefore, wait
2990	 * until later to update ic_offset.
2991	 *
2992	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2993	 * can fit into remaining data section.
2994	 */
2995	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
 
 
2996		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998		/*
2999		 * If I'm the only one writing to this iclog, sync it to disk.
3000		 * We need to do an atomic compare and decrement here to avoid
3001		 * racing with concurrent atomic_dec_and_lock() calls in
3002		 * xlog_state_release_iclog() when there is more than one
3003		 * reference to the iclog.
3004		 */
3005		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3006			/* we are the only one */
3007			spin_unlock(&log->l_icloglock);
3008			error = xlog_state_release_iclog(log, iclog);
3009			if (error)
3010				return error;
3011		} else {
3012			spin_unlock(&log->l_icloglock);
3013		}
3014		goto restart;
3015	}
3016
3017	/* Do we have enough room to write the full amount in the remainder
3018	 * of this iclog?  Or must we continue a write on the next iclog and
3019	 * mark this iclog as completely taken?  In the case where we switch
3020	 * iclogs (to mark it taken), this particular iclog will release/sync
3021	 * to disk in xlog_write().
3022	 */
3023	if (len <= iclog->ic_size - iclog->ic_offset) {
3024		*continued_write = 0;
3025		iclog->ic_offset += len;
3026	} else {
3027		*continued_write = 1;
3028		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029	}
3030	*iclogp = iclog;
3031
3032	ASSERT(iclog->ic_offset <= iclog->ic_size);
3033	spin_unlock(&log->l_icloglock);
3034
3035	*logoffsetp = log_offset;
3036	return 0;
3037}	/* xlog_state_get_iclog_space */
3038
3039/* The first cnt-1 times through here we don't need to
3040 * move the grant write head because the permanent
3041 * reservation has reserved cnt times the unit amount.
3042 * Release part of current permanent unit reservation and
3043 * reset current reservation to be one units worth.  Also
3044 * move grant reservation head forward.
3045 */
3046STATIC void
3047xlog_regrant_reserve_log_space(
3048	struct xlog		*log,
3049	struct xlog_ticket	*ticket)
3050{
3051	trace_xfs_log_regrant_reserve_enter(log, ticket);
3052
3053	if (ticket->t_cnt > 0)
3054		ticket->t_cnt--;
3055
3056	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3057					ticket->t_curr_res);
3058	xlog_grant_sub_space(log, &log->l_write_head.grant,
3059					ticket->t_curr_res);
3060	ticket->t_curr_res = ticket->t_unit_res;
3061	xlog_tic_reset_res(ticket);
3062
3063	trace_xfs_log_regrant_reserve_sub(log, ticket);
3064
3065	/* just return if we still have some of the pre-reserved space */
3066	if (ticket->t_cnt > 0)
3067		return;
 
 
3068
3069	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070					ticket->t_unit_res);
3071
3072	trace_xfs_log_regrant_reserve_exit(log, ticket);
3073
3074	ticket->t_curr_res = ticket->t_unit_res;
3075	xlog_tic_reset_res(ticket);
3076}	/* xlog_regrant_reserve_log_space */
3077
 
 
3078
3079/*
3080 * Give back the space left from a reservation.
3081 *
3082 * All the information we need to make a correct determination of space left
3083 * is present.  For non-permanent reservations, things are quite easy.  The
3084 * count should have been decremented to zero.  We only need to deal with the
3085 * space remaining in the current reservation part of the ticket.  If the
3086 * ticket contains a permanent reservation, there may be left over space which
3087 * needs to be released.  A count of N means that N-1 refills of the current
3088 * reservation can be done before we need to ask for more space.  The first
3089 * one goes to fill up the first current reservation.  Once we run out of
3090 * space, the count will stay at zero and the only space remaining will be
3091 * in the current reservation field.
3092 */
3093STATIC void
3094xlog_ungrant_log_space(
3095	struct xlog		*log,
3096	struct xlog_ticket	*ticket)
3097{
3098	int	bytes;
 
 
3099
3100	if (ticket->t_cnt > 0)
3101		ticket->t_cnt--;
3102
3103	trace_xfs_log_ungrant_enter(log, ticket);
3104	trace_xfs_log_ungrant_sub(log, ticket);
3105
3106	/*
3107	 * If this is a permanent reservation ticket, we may be able to free
3108	 * up more space based on the remaining count.
3109	 */
3110	bytes = ticket->t_curr_res;
3111	if (ticket->t_cnt > 0) {
3112		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3113		bytes += ticket->t_unit_res*ticket->t_cnt;
3114	}
3115
3116	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3117	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3118
3119	trace_xfs_log_ungrant_exit(log, ticket);
3120
3121	xfs_log_space_wake(log->l_mp);
 
3122}
3123
3124/*
3125 * Flush iclog to disk if this is the last reference to the given iclog and
3126 * the WANT_SYNC bit is set.
3127 *
3128 * When this function is entered, the iclog is not necessarily in the
3129 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3130 *
3131 *
3132 */
3133STATIC int
3134xlog_state_release_iclog(
3135	struct xlog		*log,
3136	struct xlog_in_core	*iclog)
3137{
3138	int		sync = 0;	/* do we sync? */
3139
3140	if (iclog->ic_state & XLOG_STATE_IOERROR)
3141		return -EIO;
3142
3143	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3144	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3145		return 0;
3146
3147	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3148		spin_unlock(&log->l_icloglock);
3149		return -EIO;
3150	}
3151	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3152	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3153
3154	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3155		/* update tail before writing to iclog */
3156		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3157		sync++;
3158		iclog->ic_state = XLOG_STATE_SYNCING;
3159		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3160		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3161		/* cycle incremented when incrementing curr_block */
3162	}
3163	spin_unlock(&log->l_icloglock);
3164
3165	/*
3166	 * We let the log lock go, so it's possible that we hit a log I/O
3167	 * error or some other SHUTDOWN condition that marks the iclog
3168	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3169	 * this iclog has consistent data, so we ignore IOERROR
3170	 * flags after this point.
3171	 */
3172	if (sync)
3173		return xlog_sync(log, iclog);
3174	return 0;
3175}	/* xlog_state_release_iclog */
3176
3177
3178/*
3179 * This routine will mark the current iclog in the ring as WANT_SYNC
3180 * and move the current iclog pointer to the next iclog in the ring.
3181 * When this routine is called from xlog_state_get_iclog_space(), the
3182 * exact size of the iclog has not yet been determined.  All we know is
3183 * that every data block.  We have run out of space in this log record.
3184 */
3185STATIC void
3186xlog_state_switch_iclogs(
3187	struct xlog		*log,
3188	struct xlog_in_core	*iclog,
3189	int			eventual_size)
3190{
3191	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 
 
 
3192	if (!eventual_size)
3193		eventual_size = iclog->ic_offset;
3194	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3195	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3196	log->l_prev_block = log->l_curr_block;
3197	log->l_prev_cycle = log->l_curr_cycle;
3198
3199	/* roll log?: ic_offset changed later */
3200	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3201
3202	/* Round up to next log-sunit */
3203	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3204	    log->l_mp->m_sb.sb_logsunit > 1) {
3205		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3206		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3207	}
3208
3209	if (log->l_curr_block >= log->l_logBBsize) {
3210		/*
3211		 * Rewind the current block before the cycle is bumped to make
3212		 * sure that the combined LSN never transiently moves forward
3213		 * when the log wraps to the next cycle. This is to support the
3214		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3215		 * other cases should acquire l_icloglock.
3216		 */
3217		log->l_curr_block -= log->l_logBBsize;
3218		ASSERT(log->l_curr_block >= 0);
3219		smp_wmb();
3220		log->l_curr_cycle++;
3221		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3222			log->l_curr_cycle++;
3223	}
3224	ASSERT(iclog == log->l_iclog);
3225	log->l_iclog = iclog->ic_next;
3226}	/* xlog_state_switch_iclogs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227
3228/*
3229 * Write out all data in the in-core log as of this exact moment in time.
3230 *
3231 * Data may be written to the in-core log during this call.  However,
3232 * we don't guarantee this data will be written out.  A change from past
3233 * implementation means this routine will *not* write out zero length LRs.
3234 *
3235 * Basically, we try and perform an intelligent scan of the in-core logs.
3236 * If we determine there is no flushable data, we just return.  There is no
3237 * flushable data if:
3238 *
3239 *	1. the current iclog is active and has no data; the previous iclog
3240 *		is in the active or dirty state.
3241 *	2. the current iclog is drity, and the previous iclog is in the
3242 *		active or dirty state.
3243 *
3244 * We may sleep if:
3245 *
3246 *	1. the current iclog is not in the active nor dirty state.
3247 *	2. the current iclog dirty, and the previous iclog is not in the
3248 *		active nor dirty state.
3249 *	3. the current iclog is active, and there is another thread writing
3250 *		to this particular iclog.
3251 *	4. a) the current iclog is active and has no other writers
3252 *	   b) when we return from flushing out this iclog, it is still
3253 *		not in the active nor dirty state.
3254 */
3255int
3256_xfs_log_force(
3257	struct xfs_mount	*mp,
3258	uint			flags,
3259	int			*log_flushed)
3260{
3261	struct xlog		*log = mp->m_log;
3262	struct xlog_in_core	*iclog;
3263	xfs_lsn_t		lsn;
3264
3265	XFS_STATS_INC(mp, xs_log_force);
 
3266
3267	xlog_cil_force(log);
3268
3269	spin_lock(&log->l_icloglock);
 
 
 
3270
3271	iclog = log->l_iclog;
3272	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3273		spin_unlock(&log->l_icloglock);
3274		return -EIO;
3275	}
3276
3277	/* If the head iclog is not active nor dirty, we just attach
3278	 * ourselves to the head and go to sleep.
3279	 */
3280	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3281	    iclog->ic_state == XLOG_STATE_DIRTY) {
3282		/*
3283		 * If the head is dirty or (active and empty), then
3284		 * we need to look at the previous iclog.  If the previous
3285		 * iclog is active or dirty we are done.  There is nothing
3286		 * to sync out.  Otherwise, we attach ourselves to the
 
3287		 * previous iclog and go to sleep.
3288		 */
3289		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3290		    (atomic_read(&iclog->ic_refcnt) == 0
3291		     && iclog->ic_offset == 0)) {
3292			iclog = iclog->ic_prev;
3293			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3294			    iclog->ic_state == XLOG_STATE_DIRTY)
3295				goto no_sleep;
3296			else
3297				goto maybe_sleep;
 
 
3298		} else {
3299			if (atomic_read(&iclog->ic_refcnt) == 0) {
3300				/* We are the only one with access to this
3301				 * iclog.  Flush it out now.  There should
3302				 * be a roundoff of zero to show that someone
3303				 * has already taken care of the roundoff from
3304				 * the previous sync.
3305				 */
3306				atomic_inc(&iclog->ic_refcnt);
3307				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3308				xlog_state_switch_iclogs(log, iclog, 0);
3309				spin_unlock(&log->l_icloglock);
3310
3311				if (xlog_state_release_iclog(log, iclog))
3312					return -EIO;
3313
3314				if (log_flushed)
3315					*log_flushed = 1;
3316				spin_lock(&log->l_icloglock);
3317				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3318				    iclog->ic_state != XLOG_STATE_DIRTY)
3319					goto maybe_sleep;
3320				else
3321					goto no_sleep;
3322			} else {
3323				/* Someone else is writing to this iclog.
3324				 * Use its call to flush out the data.  However,
3325				 * the other thread may not force out this LR,
3326				 * so we mark it WANT_SYNC.
3327				 */
3328				xlog_state_switch_iclogs(log, iclog, 0);
3329				goto maybe_sleep;
3330			}
3331		}
3332	}
3333
3334	/* By the time we come around again, the iclog could've been filled
3335	 * which would give it another lsn.  If we have a new lsn, just
3336	 * return because the relevant data has been flushed.
3337	 */
3338maybe_sleep:
3339	if (flags & XFS_LOG_SYNC) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3340		/*
3341		 * We must check if we're shutting down here, before
3342		 * we wait, while we're holding the l_icloglock.
3343		 * Then we check again after waking up, in case our
3344		 * sleep was disturbed by a bad news.
 
 
 
 
 
 
 
 
 
3345		 */
3346		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3347			spin_unlock(&log->l_icloglock);
3348			return -EIO;
 
 
 
3349		}
3350		XFS_STATS_INC(mp, xs_log_force_sleep);
3351		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3352		/*
3353		 * No need to grab the log lock here since we're
3354		 * only deciding whether or not to return EIO
3355		 * and the memory read should be atomic.
 
3356		 */
3357		if (iclog->ic_state & XLOG_STATE_IOERROR)
3358			return -EIO;
3359		if (log_flushed)
3360			*log_flushed = 1;
3361	} else {
3362
3363no_sleep:
3364		spin_unlock(&log->l_icloglock);
3365	}
 
3366	return 0;
3367}
3368
3369/*
3370 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3371 * about errors or whether the log was flushed or not. This is the normal
3372 * interface to use when trying to unpin items or move the log forward.
3373 */
3374void
3375xfs_log_force(
3376	xfs_mount_t	*mp,
3377	uint		flags)
3378{
3379	int	error;
3380
3381	trace_xfs_log_force(mp, 0);
3382	error = _xfs_log_force(mp, flags, NULL);
3383	if (error)
3384		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3385}
3386
3387/*
3388 * Force the in-core log to disk for a specific LSN.
3389 *
3390 * Find in-core log with lsn.
3391 *	If it is in the DIRTY state, just return.
3392 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3393 *		state and go to sleep or return.
3394 *	If it is in any other state, go to sleep or return.
3395 *
3396 * Synchronous forces are implemented with a signal variable. All callers
3397 * to force a given lsn to disk will wait on a the sv attached to the
3398 * specific in-core log.  When given in-core log finally completes its
3399 * write to disk, that thread will wake up all threads waiting on the
3400 * sv.
3401 */
3402int
3403_xfs_log_force_lsn(
3404	struct xfs_mount	*mp,
3405	xfs_lsn_t		lsn,
3406	uint			flags,
3407	int			*log_flushed)
3408{
3409	struct xlog		*log = mp->m_log;
3410	struct xlog_in_core	*iclog;
3411	int			already_slept = 0;
3412
3413	ASSERT(lsn != 0);
3414
3415	XFS_STATS_INC(mp, xs_log_force);
 
3416
3417	lsn = xlog_cil_force_lsn(log, lsn);
3418	if (lsn == NULLCOMMITLSN)
3419		return 0;
3420
3421try_again:
3422	spin_lock(&log->l_icloglock);
3423	iclog = log->l_iclog;
3424	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3425		spin_unlock(&log->l_icloglock);
3426		return -EIO;
3427	}
3428
3429	do {
3430		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3431			iclog = iclog->ic_next;
3432			continue;
3433		}
3434
3435		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3436			spin_unlock(&log->l_icloglock);
3437			return 0;
3438		}
3439
3440		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3441			/*
3442			 * We sleep here if we haven't already slept (e.g.
3443			 * this is the first time we've looked at the correct
3444			 * iclog buf) and the buffer before us is going to
3445			 * be sync'ed. The reason for this is that if we
3446			 * are doing sync transactions here, by waiting for
3447			 * the previous I/O to complete, we can allow a few
3448			 * more transactions into this iclog before we close
3449			 * it down.
3450			 *
3451			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3452			 * up the refcnt so we can release the log (which
3453			 * drops the ref count).  The state switch keeps new
3454			 * transaction commits from using this buffer.  When
3455			 * the current commits finish writing into the buffer,
3456			 * the refcount will drop to zero and the buffer will
3457			 * go out then.
3458			 */
3459			if (!already_slept &&
3460			    (iclog->ic_prev->ic_state &
3461			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3462				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3463
3464				XFS_STATS_INC(mp, xs_log_force_sleep);
3465
3466				xlog_wait(&iclog->ic_prev->ic_write_wait,
3467							&log->l_icloglock);
3468				if (log_flushed)
3469					*log_flushed = 1;
3470				already_slept = 1;
3471				goto try_again;
3472			}
3473			atomic_inc(&iclog->ic_refcnt);
3474			xlog_state_switch_iclogs(log, iclog, 0);
3475			spin_unlock(&log->l_icloglock);
3476			if (xlog_state_release_iclog(log, iclog))
3477				return -EIO;
3478			if (log_flushed)
3479				*log_flushed = 1;
3480			spin_lock(&log->l_icloglock);
3481		}
3482
3483		if ((flags & XFS_LOG_SYNC) && /* sleep */
3484		    !(iclog->ic_state &
3485		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3486			/*
3487			 * Don't wait on completion if we know that we've
3488			 * gotten a log write error.
3489			 */
3490			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3491				spin_unlock(&log->l_icloglock);
3492				return -EIO;
3493			}
3494			XFS_STATS_INC(mp, xs_log_force_sleep);
3495			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3496			/*
3497			 * No need to grab the log lock here since we're
3498			 * only deciding whether or not to return EIO
3499			 * and the memory read should be atomic.
3500			 */
3501			if (iclog->ic_state & XLOG_STATE_IOERROR)
3502				return -EIO;
3503
3504			if (log_flushed)
3505				*log_flushed = 1;
3506		} else {		/* just return */
3507			spin_unlock(&log->l_icloglock);
3508		}
3509
3510		return 0;
3511	} while (iclog != log->l_iclog);
3512
3513	spin_unlock(&log->l_icloglock);
3514	return 0;
3515}
3516
3517/*
3518 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3519 * about errors or whether the log was flushed or not. This is the normal
3520 * interface to use when trying to unpin items or move the log forward.
3521 */
3522void
3523xfs_log_force_lsn(
3524	xfs_mount_t	*mp,
3525	xfs_lsn_t	lsn,
3526	uint		flags)
3527{
3528	int	error;
3529
3530	trace_xfs_log_force(mp, lsn);
3531	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3532	if (error)
3533		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3534}
3535
3536/*
3537 * Called when we want to mark the current iclog as being ready to sync to
3538 * disk.
3539 */
3540STATIC void
3541xlog_state_want_sync(
3542	struct xlog		*log,
3543	struct xlog_in_core	*iclog)
3544{
3545	assert_spin_locked(&log->l_icloglock);
3546
3547	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3548		xlog_state_switch_iclogs(log, iclog, 0);
3549	} else {
3550		ASSERT(iclog->ic_state &
3551			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3552	}
 
3553}
3554
3555
3556/*****************************************************************************
3557 *
3558 *		TICKET functions
3559 *
3560 *****************************************************************************
3561 */
3562
3563/*
3564 * Free a used ticket when its refcount falls to zero.
3565 */
3566void
3567xfs_log_ticket_put(
3568	xlog_ticket_t	*ticket)
3569{
3570	ASSERT(atomic_read(&ticket->t_ref) > 0);
3571	if (atomic_dec_and_test(&ticket->t_ref))
3572		kmem_zone_free(xfs_log_ticket_zone, ticket);
3573}
3574
3575xlog_ticket_t *
3576xfs_log_ticket_get(
3577	xlog_ticket_t	*ticket)
3578{
3579	ASSERT(atomic_read(&ticket->t_ref) > 0);
3580	atomic_inc(&ticket->t_ref);
3581	return ticket;
3582}
3583
3584/*
3585 * Figure out the total log space unit (in bytes) that would be
3586 * required for a log ticket.
3587 */
3588int
3589xfs_log_calc_unit_res(
3590	struct xfs_mount	*mp,
3591	int			unit_bytes)
3592{
3593	struct xlog		*log = mp->m_log;
3594	int			iclog_space;
3595	uint			num_headers;
3596
3597	/*
3598	 * Permanent reservations have up to 'cnt'-1 active log operations
3599	 * in the log.  A unit in this case is the amount of space for one
3600	 * of these log operations.  Normal reservations have a cnt of 1
3601	 * and their unit amount is the total amount of space required.
3602	 *
3603	 * The following lines of code account for non-transaction data
3604	 * which occupy space in the on-disk log.
3605	 *
3606	 * Normal form of a transaction is:
3607	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3608	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3609	 *
3610	 * We need to account for all the leadup data and trailer data
3611	 * around the transaction data.
3612	 * And then we need to account for the worst case in terms of using
3613	 * more space.
3614	 * The worst case will happen if:
3615	 * - the placement of the transaction happens to be such that the
3616	 *   roundoff is at its maximum
3617	 * - the transaction data is synced before the commit record is synced
3618	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3619	 *   Therefore the commit record is in its own Log Record.
3620	 *   This can happen as the commit record is called with its
3621	 *   own region to xlog_write().
3622	 *   This then means that in the worst case, roundoff can happen for
3623	 *   the commit-rec as well.
3624	 *   The commit-rec is smaller than padding in this scenario and so it is
3625	 *   not added separately.
3626	 */
3627
3628	/* for trans header */
3629	unit_bytes += sizeof(xlog_op_header_t);
3630	unit_bytes += sizeof(xfs_trans_header_t);
3631
3632	/* for start-rec */
3633	unit_bytes += sizeof(xlog_op_header_t);
3634
3635	/*
3636	 * for LR headers - the space for data in an iclog is the size minus
3637	 * the space used for the headers. If we use the iclog size, then we
3638	 * undercalculate the number of headers required.
3639	 *
3640	 * Furthermore - the addition of op headers for split-recs might
3641	 * increase the space required enough to require more log and op
3642	 * headers, so take that into account too.
3643	 *
3644	 * IMPORTANT: This reservation makes the assumption that if this
3645	 * transaction is the first in an iclog and hence has the LR headers
3646	 * accounted to it, then the remaining space in the iclog is
3647	 * exclusively for this transaction.  i.e. if the transaction is larger
3648	 * than the iclog, it will be the only thing in that iclog.
3649	 * Fundamentally, this means we must pass the entire log vector to
3650	 * xlog_write to guarantee this.
3651	 */
3652	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3653	num_headers = howmany(unit_bytes, iclog_space);
3654
3655	/* for split-recs - ophdrs added when data split over LRs */
3656	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3657
3658	/* add extra header reservations if we overrun */
3659	while (!num_headers ||
3660	       howmany(unit_bytes, iclog_space) > num_headers) {
3661		unit_bytes += sizeof(xlog_op_header_t);
3662		num_headers++;
3663	}
3664	unit_bytes += log->l_iclog_hsize * num_headers;
3665
3666	/* for commit-rec LR header - note: padding will subsume the ophdr */
3667	unit_bytes += log->l_iclog_hsize;
3668
3669	/* for roundoff padding for transaction data and one for commit record */
3670	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3671		/* log su roundoff */
3672		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3673	} else {
3674		/* BB roundoff */
3675		unit_bytes += 2 * BBSIZE;
3676        }
3677
3678	return unit_bytes;
3679}
3680
 
 
 
 
 
 
 
 
3681/*
3682 * Allocate and initialise a new log ticket.
3683 */
3684struct xlog_ticket *
3685xlog_ticket_alloc(
3686	struct xlog		*log,
3687	int			unit_bytes,
3688	int			cnt,
3689	char			client,
3690	bool			permanent,
3691	xfs_km_flags_t		alloc_flags)
3692{
3693	struct xlog_ticket	*tic;
3694	int			unit_res;
3695
3696	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3697	if (!tic)
3698		return NULL;
3699
3700	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3701
3702	atomic_set(&tic->t_ref, 1);
3703	tic->t_task		= current;
3704	INIT_LIST_HEAD(&tic->t_queue);
3705	tic->t_unit_res		= unit_res;
3706	tic->t_curr_res		= unit_res;
3707	tic->t_cnt		= cnt;
3708	tic->t_ocnt		= cnt;
3709	tic->t_tid		= prandom_u32();
3710	tic->t_clientid		= client;
3711	tic->t_flags		= XLOG_TIC_INITED;
3712	tic->t_trans_type	= 0;
3713	if (permanent)
3714		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3715
3716	xlog_tic_reset_res(tic);
3717
3718	return tic;
3719}
3720
3721
3722/******************************************************************************
3723 *
3724 *		Log debug routines
3725 *
3726 ******************************************************************************
3727 */
3728#if defined(DEBUG)
3729/*
3730 * Make sure that the destination ptr is within the valid data region of
3731 * one of the iclogs.  This uses backup pointers stored in a different
3732 * part of the log in case we trash the log structure.
3733 */
3734void
3735xlog_verify_dest_ptr(
3736	struct xlog	*log,
3737	void		*ptr)
3738{
3739	int i;
3740	int good_ptr = 0;
3741
3742	for (i = 0; i < log->l_iclog_bufs; i++) {
3743		if (ptr >= log->l_iclog_bak[i] &&
3744		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3745			good_ptr++;
3746	}
3747
3748	if (!good_ptr)
3749		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3750}
3751
3752/*
3753 * Check to make sure the grant write head didn't just over lap the tail.  If
3754 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3755 * the cycles differ by exactly one and check the byte count.
3756 *
3757 * This check is run unlocked, so can give false positives. Rather than assert
3758 * on failures, use a warn-once flag and a panic tag to allow the admin to
3759 * determine if they want to panic the machine when such an error occurs. For
3760 * debug kernels this will have the same effect as using an assert but, unlinke
3761 * an assert, it can be turned off at runtime.
3762 */
3763STATIC void
3764xlog_verify_grant_tail(
3765	struct xlog	*log)
3766{
3767	int		tail_cycle, tail_blocks;
3768	int		cycle, space;
3769
3770	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3771	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3772	if (tail_cycle != cycle) {
3773		if (cycle - 1 != tail_cycle &&
3774		    !(log->l_flags & XLOG_TAIL_WARN)) {
3775			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3776				"%s: cycle - 1 != tail_cycle", __func__);
3777			log->l_flags |= XLOG_TAIL_WARN;
3778		}
3779
3780		if (space > BBTOB(tail_blocks) &&
3781		    !(log->l_flags & XLOG_TAIL_WARN)) {
3782			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3783				"%s: space > BBTOB(tail_blocks)", __func__);
3784			log->l_flags |= XLOG_TAIL_WARN;
3785		}
3786	}
3787}
3788
3789/* check if it will fit */
3790STATIC void
3791xlog_verify_tail_lsn(
3792	struct xlog		*log,
3793	struct xlog_in_core	*iclog,
3794	xfs_lsn_t		tail_lsn)
3795{
3796    int blocks;
 
3797
3798    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3799	blocks =
3800	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3801	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3802		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3803    } else {
3804	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3805
3806	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3807		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3808
3809	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3810	if (blocks < BTOBB(iclog->ic_offset) + 1)
3811		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3812    }
3813}	/* xlog_verify_tail_lsn */
3814
3815/*
3816 * Perform a number of checks on the iclog before writing to disk.
3817 *
3818 * 1. Make sure the iclogs are still circular
3819 * 2. Make sure we have a good magic number
3820 * 3. Make sure we don't have magic numbers in the data
3821 * 4. Check fields of each log operation header for:
3822 *	A. Valid client identifier
3823 *	B. tid ptr value falls in valid ptr space (user space code)
3824 *	C. Length in log record header is correct according to the
3825 *		individual operation headers within record.
3826 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3827 *	log, check the preceding blocks of the physical log to make sure all
3828 *	the cycle numbers agree with the current cycle number.
3829 */
3830STATIC void
3831xlog_verify_iclog(
3832	struct xlog		*log,
3833	struct xlog_in_core	*iclog,
3834	int			count,
3835	bool                    syncing)
3836{
3837	xlog_op_header_t	*ophead;
3838	xlog_in_core_t		*icptr;
3839	xlog_in_core_2_t	*xhdr;
3840	void			*base_ptr, *ptr, *p;
3841	ptrdiff_t		field_offset;
3842	__uint8_t		clientid;
3843	int			len, i, j, k, op_len;
3844	int			idx;
3845
3846	/* check validity of iclog pointers */
3847	spin_lock(&log->l_icloglock);
3848	icptr = log->l_iclog;
3849	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3850		ASSERT(icptr);
3851
3852	if (icptr != log->l_iclog)
3853		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3854	spin_unlock(&log->l_icloglock);
3855
3856	/* check log magic numbers */
3857	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3858		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3859
3860	base_ptr = ptr = &iclog->ic_header;
3861	p = &iclog->ic_header;
3862	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3863		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3864			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3865				__func__);
3866	}
3867
3868	/* check fields */
3869	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3870	base_ptr = ptr = iclog->ic_datap;
3871	ophead = ptr;
3872	xhdr = iclog->ic_data;
3873	for (i = 0; i < len; i++) {
3874		ophead = ptr;
3875
3876		/* clientid is only 1 byte */
3877		p = &ophead->oh_clientid;
3878		field_offset = p - base_ptr;
3879		if (!syncing || (field_offset & 0x1ff)) {
3880			clientid = ophead->oh_clientid;
3881		} else {
3882			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3883			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3884				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3885				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886				clientid = xlog_get_client_id(
3887					xhdr[j].hic_xheader.xh_cycle_data[k]);
3888			} else {
3889				clientid = xlog_get_client_id(
3890					iclog->ic_header.h_cycle_data[idx]);
3891			}
3892		}
3893		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3894			xfs_warn(log->l_mp,
3895				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3896				__func__, clientid, ophead,
3897				(unsigned long)field_offset);
3898
3899		/* check length */
3900		p = &ophead->oh_len;
3901		field_offset = p - base_ptr;
3902		if (!syncing || (field_offset & 0x1ff)) {
3903			op_len = be32_to_cpu(ophead->oh_len);
3904		} else {
3905			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3906				    (uintptr_t)iclog->ic_datap);
3907			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3908				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3909				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3910				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3911			} else {
3912				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3913			}
3914		}
3915		ptr += sizeof(xlog_op_header_t) + op_len;
3916	}
3917}	/* xlog_verify_iclog */
3918#endif
3919
3920/*
3921 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3922 */
3923STATIC int
3924xlog_state_ioerror(
3925	struct xlog	*log)
3926{
3927	xlog_in_core_t	*iclog, *ic;
3928
3929	iclog = log->l_iclog;
3930	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3931		/*
3932		 * Mark all the incore logs IOERROR.
3933		 * From now on, no log flushes will result.
3934		 */
3935		ic = iclog;
3936		do {
3937			ic->ic_state = XLOG_STATE_IOERROR;
3938			ic = ic->ic_next;
3939		} while (ic != iclog);
3940		return 0;
3941	}
3942	/*
3943	 * Return non-zero, if state transition has already happened.
3944	 */
3945	return 1;
3946}
3947
3948/*
3949 * This is called from xfs_force_shutdown, when we're forcibly
3950 * shutting down the filesystem, typically because of an IO error.
3951 * Our main objectives here are to make sure that:
3952 *	a. if !logerror, flush the logs to disk. Anything modified
3953 *	   after this is ignored.
3954 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3955 *	   parties to find out, 'atomically'.
3956 *	c. those who're sleeping on log reservations, pinned objects and
3957 *	    other resources get woken up, and be told the bad news.
3958 *	d. nothing new gets queued up after (b) and (c) are done.
3959 *
3960 * Note: for the !logerror case we need to flush the regions held in memory out
3961 * to disk first. This needs to be done before the log is marked as shutdown,
3962 * otherwise the iclog writes will fail.
3963 */
3964int
3965xfs_log_force_umount(
3966	struct xfs_mount	*mp,
3967	int			logerror)
3968{
3969	struct xlog	*log;
3970	int		retval;
3971
3972	log = mp->m_log;
3973
3974	/*
3975	 * If this happens during log recovery, don't worry about
3976	 * locking; the log isn't open for business yet.
3977	 */
3978	if (!log ||
3979	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3980		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981		if (mp->m_sb_bp)
3982			mp->m_sb_bp->b_flags |= XBF_DONE;
3983		return 0;
3984	}
3985
3986	/*
3987	 * Somebody could've already done the hard work for us.
3988	 * No need to get locks for this.
3989	 */
3990	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3991		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3992		return 1;
3993	}
3994
3995	/*
3996	 * Flush all the completed transactions to disk before marking the log
3997	 * being shut down. We need to do it in this order to ensure that
3998	 * completed operations are safely on disk before we shut down, and that
3999	 * we don't have to issue any buffer IO after the shutdown flags are set
4000	 * to guarantee this.
4001	 */
4002	if (!logerror)
4003		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4004
4005	/*
4006	 * mark the filesystem and the as in a shutdown state and wake
4007	 * everybody up to tell them the bad news.
4008	 */
4009	spin_lock(&log->l_icloglock);
4010	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4011	if (mp->m_sb_bp)
4012		mp->m_sb_bp->b_flags |= XBF_DONE;
4013
4014	/*
4015	 * Mark the log and the iclogs with IO error flags to prevent any
4016	 * further log IO from being issued or completed.
4017	 */
4018	log->l_flags |= XLOG_IO_ERROR;
4019	retval = xlog_state_ioerror(log);
4020	spin_unlock(&log->l_icloglock);
4021
4022	/*
4023	 * We don't want anybody waiting for log reservations after this. That
4024	 * means we have to wake up everybody queued up on reserveq as well as
4025	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4026	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4027	 * action is protected by the grant locks.
4028	 */
4029	xlog_grant_head_wake_all(&log->l_reserve_head);
4030	xlog_grant_head_wake_all(&log->l_write_head);
4031
4032	/*
4033	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4034	 * as if the log writes were completed. The abort handling in the log
4035	 * item committed callback functions will do this again under lock to
4036	 * avoid races.
4037	 */
 
4038	wake_up_all(&log->l_cilp->xc_commit_wait);
4039	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4040
4041#ifdef XFSERRORDEBUG
4042	{
4043		xlog_in_core_t	*iclog;
4044
4045		spin_lock(&log->l_icloglock);
4046		iclog = log->l_iclog;
4047		do {
4048			ASSERT(iclog->ic_callback == 0);
4049			iclog = iclog->ic_next;
4050		} while (iclog != log->l_iclog);
4051		spin_unlock(&log->l_icloglock);
4052	}
4053#endif
4054	/* return non-zero if log IOERROR transition had already happened */
4055	return retval;
4056}
4057
4058STATIC int
4059xlog_iclogs_empty(
4060	struct xlog	*log)
4061{
4062	xlog_in_core_t	*iclog;
4063
4064	iclog = log->l_iclog;
4065	do {
4066		/* endianness does not matter here, zero is zero in
4067		 * any language.
4068		 */
4069		if (iclog->ic_header.h_num_logops)
4070			return 0;
4071		iclog = iclog->ic_next;
4072	} while (iclog != log->l_iclog);
4073	return 1;
4074}
4075
4076/*
4077 * Verify that an LSN stamped into a piece of metadata is valid. This is
4078 * intended for use in read verifiers on v5 superblocks.
4079 */
4080bool
4081xfs_log_check_lsn(
4082	struct xfs_mount	*mp,
4083	xfs_lsn_t		lsn)
4084{
4085	struct xlog		*log = mp->m_log;
4086	bool			valid;
4087
4088	/*
4089	 * norecovery mode skips mount-time log processing and unconditionally
4090	 * resets the in-core LSN. We can't validate in this mode, but
4091	 * modifications are not allowed anyways so just return true.
4092	 */
4093	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4094		return true;
4095
4096	/*
4097	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4098	 * handled by recovery and thus safe to ignore here.
4099	 */
4100	if (lsn == NULLCOMMITLSN)
4101		return true;
4102
4103	valid = xlog_valid_lsn(mp->m_log, lsn);
4104
4105	/* warn the user about what's gone wrong before verifier failure */
4106	if (!valid) {
4107		spin_lock(&log->l_icloglock);
4108		xfs_warn(mp,
4109"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4110"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4111			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4112			 log->l_curr_cycle, log->l_curr_block);
4113		spin_unlock(&log->l_icloglock);
4114	}
4115
4116	return valid;
 
 
 
 
 
 
 
 
 
4117}