Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 
 
 
 
 
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
 
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/of_clk.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/sched/clock.h>
  57#include <linux/processor.h>
  58#include <asm/trace.h>
  59
  60#include <asm/interrupt.h>
  61#include <asm/io.h>
 
  62#include <asm/nvram.h>
  63#include <asm/cache.h>
  64#include <asm/machdep.h>
  65#include <linux/uaccess.h>
  66#include <asm/time.h>
  67#include <asm/prom.h>
  68#include <asm/irq.h>
  69#include <asm/div64.h>
  70#include <asm/smp.h>
  71#include <asm/vdso_datapage.h>
  72#include <asm/firmware.h>
  73#include <asm/asm-prototypes.h>
  74
  75/* powerpc clocksource/clockevent code */
  76
  77#include <linux/clockchips.h>
  78#include <linux/timekeeper_internal.h>
  79
  80static u64 timebase_read(struct clocksource *);
 
 
 
 
 
 
 
 
 
  81static struct clocksource clocksource_timebase = {
  82	.name         = "timebase",
  83	.rating       = 400,
  84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  85	.mask         = CLOCKSOURCE_MASK(64),
  86	.read         = timebase_read,
  87	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
  88};
  89
  90#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  91u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  92
  93static int decrementer_set_next_event(unsigned long evt,
  94				      struct clock_event_device *dev);
  95static int decrementer_shutdown(struct clock_event_device *evt);
  96
  97struct clock_event_device decrementer_clockevent = {
  98	.name			= "decrementer",
  99	.rating			= 200,
 100	.irq			= 0,
 101	.set_next_event		= decrementer_set_next_event,
 102	.set_state_oneshot_stopped = decrementer_shutdown,
 103	.set_state_shutdown	= decrementer_shutdown,
 104	.tick_resume		= decrementer_shutdown,
 105	.features		= CLOCK_EVT_FEAT_ONESHOT |
 106				  CLOCK_EVT_FEAT_C3STOP,
 107};
 108EXPORT_SYMBOL(decrementer_clockevent);
 109
 110DEFINE_PER_CPU(u64, decrementers_next_tb);
 111static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 112
 113#define XSEC_PER_SEC (1024*1024)
 114
 115#ifdef CONFIG_PPC64
 116#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 117#else
 118/* compute ((xsec << 12) * max) >> 32 */
 119#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 120#endif
 121
 122unsigned long tb_ticks_per_jiffy;
 123unsigned long tb_ticks_per_usec = 100; /* sane default */
 124EXPORT_SYMBOL(tb_ticks_per_usec);
 125unsigned long tb_ticks_per_sec;
 126EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 127
 128DEFINE_SPINLOCK(rtc_lock);
 129EXPORT_SYMBOL_GPL(rtc_lock);
 130
 131static u64 tb_to_ns_scale __read_mostly;
 132static unsigned tb_to_ns_shift __read_mostly;
 133static u64 boot_tb __read_mostly;
 134
 135extern struct timezone sys_tz;
 136static long timezone_offset;
 137
 138unsigned long ppc_proc_freq;
 139EXPORT_SYMBOL_GPL(ppc_proc_freq);
 140unsigned long ppc_tb_freq;
 141EXPORT_SYMBOL_GPL(ppc_tb_freq);
 142
 143bool tb_invalid;
 144
 145#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 146/*
 147 * Factor for converting from cputime_t (timebase ticks) to
 148 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 
 149 */
 
 
 150u64 __cputime_usec_factor;
 151EXPORT_SYMBOL(__cputime_usec_factor);
 
 
 
 
 
 
 
 
 152
 153#ifdef CONFIG_PPC_SPLPAR
 154void (*dtl_consumer)(struct dtl_entry *, u64);
 155#endif
 156
 157static void calc_cputime_factors(void)
 158{
 159	struct div_result res;
 160
 
 
 161	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 162	__cputime_usec_factor = res.result_low;
 
 
 
 
 163}
 164
 165/*
 166 * Read the SPURR on systems that have it, otherwise the PURR,
 167 * or if that doesn't exist return the timebase value passed in.
 168 */
 169static inline unsigned long read_spurr(unsigned long tb)
 170{
 171	if (cpu_has_feature(CPU_FTR_SPURR))
 172		return mfspr(SPRN_SPURR);
 173	if (cpu_has_feature(CPU_FTR_PURR))
 174		return mfspr(SPRN_PURR);
 175	return tb;
 176}
 177
 178#ifdef CONFIG_PPC_SPLPAR
 179
 180#include <asm/dtl.h>
 181
 182/*
 183 * Scan the dispatch trace log and count up the stolen time.
 184 * Should be called with interrupts disabled.
 185 */
 186static u64 scan_dispatch_log(u64 stop_tb)
 187{
 188	u64 i = local_paca->dtl_ridx;
 189	struct dtl_entry *dtl = local_paca->dtl_curr;
 190	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 191	struct lppaca *vpa = local_paca->lppaca_ptr;
 192	u64 tb_delta;
 193	u64 stolen = 0;
 194	u64 dtb;
 195
 196	if (!dtl)
 197		return 0;
 198
 199	if (i == be64_to_cpu(vpa->dtl_idx))
 200		return 0;
 201	while (i < be64_to_cpu(vpa->dtl_idx)) {
 202		dtb = be64_to_cpu(dtl->timebase);
 203		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 204			be32_to_cpu(dtl->ready_to_enqueue_time);
 205		barrier();
 206		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 207			/* buffer has overflowed */
 208			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 209			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 210			continue;
 211		}
 212		if (dtb > stop_tb)
 213			break;
 214		if (dtl_consumer)
 215			dtl_consumer(dtl, i);
 216		stolen += tb_delta;
 217		++i;
 218		++dtl;
 219		if (dtl == dtl_end)
 220			dtl = local_paca->dispatch_log;
 221	}
 222	local_paca->dtl_ridx = i;
 223	local_paca->dtl_curr = dtl;
 224	return stolen;
 225}
 226
 227/*
 228 * Accumulate stolen time by scanning the dispatch trace log.
 229 * Called on entry from user mode.
 230 */
 231void notrace accumulate_stolen_time(void)
 232{
 233	u64 sst, ust;
 234	struct cpu_accounting_data *acct = &local_paca->accounting;
 235
 236	sst = scan_dispatch_log(acct->starttime_user);
 237	ust = scan_dispatch_log(acct->starttime);
 238	acct->stime -= sst;
 239	acct->utime -= ust;
 240	acct->steal_time += ust + sst;
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 243static inline u64 calculate_stolen_time(u64 stop_tb)
 244{
 245	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 246		return 0;
 247
 248	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 249		return scan_dispatch_log(stop_tb);
 
 
 250
 251	return 0;
 
 
 252}
 253
 254#else /* CONFIG_PPC_SPLPAR */
 255static inline u64 calculate_stolen_time(u64 stop_tb)
 256{
 257	return 0;
 258}
 259
 260#endif /* CONFIG_PPC_SPLPAR */
 261
 262/*
 263 * Account time for a transition between system, hard irq
 264 * or soft irq state.
 265 */
 266static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 267					unsigned long now, unsigned long stime)
 268{
 269	unsigned long stime_scaled = 0;
 270#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 271	unsigned long nowscaled, deltascaled;
 272	unsigned long utime, utime_scaled;
 273
 
 
 
 274	nowscaled = read_spurr(now);
 275	deltascaled = nowscaled - acct->startspurr;
 276	acct->startspurr = nowscaled;
 277	utime = acct->utime - acct->utime_sspurr;
 278	acct->utime_sspurr = acct->utime;
 
 
 
 
 
 
 
 279
 280	/*
 281	 * Because we don't read the SPURR on every kernel entry/exit,
 282	 * deltascaled includes both user and system SPURR ticks.
 283	 * Apportion these ticks to system SPURR ticks and user
 284	 * SPURR ticks in the same ratio as the system time (delta)
 285	 * and user time (udelta) values obtained from the timebase
 286	 * over the same interval.  The system ticks get accounted here;
 287	 * the user ticks get saved up in paca->user_time_scaled to be
 288	 * used by account_process_tick.
 289	 */
 290	stime_scaled = stime;
 291	utime_scaled = utime;
 292	if (deltascaled != stime + utime) {
 293		if (utime) {
 294			stime_scaled = deltascaled * stime / (stime + utime);
 295			utime_scaled = deltascaled - stime_scaled;
 296		} else {
 297			stime_scaled = deltascaled;
 298		}
 299	}
 300	acct->utime_scaled += utime_scaled;
 301#endif
 302
 303	return stime_scaled;
 304}
 305
 306static unsigned long vtime_delta(struct cpu_accounting_data *acct,
 307				 unsigned long *stime_scaled,
 308				 unsigned long *steal_time)
 309{
 310	unsigned long now, stime;
 311
 312	WARN_ON_ONCE(!irqs_disabled());
 313
 314	now = mftb();
 315	stime = now - acct->starttime;
 316	acct->starttime = now;
 317
 318	*stime_scaled = vtime_delta_scaled(acct, now, stime);
 319
 320	*steal_time = calculate_stolen_time(now);
 321
 322	return stime;
 323}
 324
 325static void vtime_delta_kernel(struct cpu_accounting_data *acct,
 326			       unsigned long *stime, unsigned long *stime_scaled)
 327{
 328	unsigned long steal_time;
 329
 330	*stime = vtime_delta(acct, stime_scaled, &steal_time);
 331	*stime -= min(*stime, steal_time);
 332	acct->steal_time += steal_time;
 333}
 334
 335void vtime_account_kernel(struct task_struct *tsk)
 336{
 337	struct cpu_accounting_data *acct = get_accounting(tsk);
 338	unsigned long stime, stime_scaled;
 339
 340	vtime_delta_kernel(acct, &stime, &stime_scaled);
 341
 342	if (tsk->flags & PF_VCPU) {
 343		acct->gtime += stime;
 344#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 345		acct->utime_scaled += stime_scaled;
 346#endif
 347	} else {
 348		acct->stime += stime;
 349#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 350		acct->stime_scaled += stime_scaled;
 351#endif
 352	}
 353}
 354EXPORT_SYMBOL_GPL(vtime_account_kernel);
 355
 356void vtime_account_idle(struct task_struct *tsk)
 357{
 358	unsigned long stime, stime_scaled, steal_time;
 359	struct cpu_accounting_data *acct = get_accounting(tsk);
 360
 361	stime = vtime_delta(acct, &stime_scaled, &steal_time);
 362	acct->idle_time += stime + steal_time;
 363}
 364
 365static void vtime_account_irq_field(struct cpu_accounting_data *acct,
 366				    unsigned long *field)
 367{
 368	unsigned long stime, stime_scaled;
 369
 370	vtime_delta_kernel(acct, &stime, &stime_scaled);
 371	*field += stime;
 372#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 373	acct->stime_scaled += stime_scaled;
 374#endif
 375}
 376
 377void vtime_account_softirq(struct task_struct *tsk)
 378{
 379	struct cpu_accounting_data *acct = get_accounting(tsk);
 380	vtime_account_irq_field(acct, &acct->softirq_time);
 381}
 382
 383void vtime_account_hardirq(struct task_struct *tsk)
 384{
 385	struct cpu_accounting_data *acct = get_accounting(tsk);
 386	vtime_account_irq_field(acct, &acct->hardirq_time);
 387}
 388
 389static void vtime_flush_scaled(struct task_struct *tsk,
 390			       struct cpu_accounting_data *acct)
 391{
 392#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 393	if (acct->utime_scaled)
 394		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 395	if (acct->stime_scaled)
 396		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 397
 398	acct->utime_scaled = 0;
 399	acct->utime_sspurr = 0;
 400	acct->stime_scaled = 0;
 401#endif
 402}
 403
 404/*
 405 * Account the whole cputime accumulated in the paca
 
 
 406 * Must be called with interrupts disabled.
 407 * Assumes that vtime_account_kernel/idle() has been called
 408 * recently (i.e. since the last entry from usermode) so that
 409 * get_paca()->user_time_scaled is up to date.
 410 */
 411void vtime_flush(struct task_struct *tsk)
 412{
 413	struct cpu_accounting_data *acct = get_accounting(tsk);
 414
 415	if (acct->utime)
 416		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 417
 418	if (acct->gtime)
 419		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 420
 421	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 422		account_steal_time(cputime_to_nsecs(acct->steal_time));
 423		acct->steal_time = 0;
 424	}
 425
 426	if (acct->idle_time)
 427		account_idle_time(cputime_to_nsecs(acct->idle_time));
 428
 429	if (acct->stime)
 430		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 431					  CPUTIME_SYSTEM);
 432
 433	if (acct->hardirq_time)
 434		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 435					  CPUTIME_IRQ);
 436	if (acct->softirq_time)
 437		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 438					  CPUTIME_SOFTIRQ);
 439
 440	vtime_flush_scaled(tsk, acct);
 441
 442	acct->utime = 0;
 443	acct->gtime = 0;
 444	acct->idle_time = 0;
 445	acct->stime = 0;
 446	acct->hardirq_time = 0;
 447	acct->softirq_time = 0;
 448}
 449
 450#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 451#define calc_cputime_factors()
 452#endif
 453
 454void __delay(unsigned long loops)
 455{
 456	unsigned long start;
 
 457
 458	spin_begin();
 459	if (tb_invalid) {
 460		/*
 461		 * TB is in error state and isn't ticking anymore.
 462		 * HMI handler was unable to recover from TB error.
 463		 * Return immediately, so that kernel won't get stuck here.
 464		 */
 465		spin_cpu_relax();
 466	} else {
 467		start = mftb();
 468		while (mftb() - start < loops)
 469			spin_cpu_relax();
 
 470	}
 471	spin_end();
 472}
 473EXPORT_SYMBOL(__delay);
 474
 475void udelay(unsigned long usecs)
 476{
 477	__delay(tb_ticks_per_usec * usecs);
 478}
 479EXPORT_SYMBOL(udelay);
 480
 481#ifdef CONFIG_SMP
 482unsigned long profile_pc(struct pt_regs *regs)
 483{
 484	unsigned long pc = instruction_pointer(regs);
 485
 486	if (in_lock_functions(pc))
 487		return regs->link;
 488
 489	return pc;
 490}
 491EXPORT_SYMBOL(profile_pc);
 492#endif
 493
 494#ifdef CONFIG_IRQ_WORK
 495
 496/*
 497 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 498 */
 499#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 500static inline void set_irq_work_pending_flag(void)
 501{
 502	asm volatile("stb %0,%1(13)" : :
 503		"r" (1),
 504		"i" (offsetof(struct paca_struct, irq_work_pending)));
 505}
 506
 507static inline void clear_irq_work_pending(void)
 508{
 509	asm volatile("stb %0,%1(13)" : :
 510		"r" (0),
 511		"i" (offsetof(struct paca_struct, irq_work_pending)));
 512}
 513
 514#else /* 32-bit */
 515
 516DEFINE_PER_CPU(u8, irq_work_pending);
 517
 518#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 519#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 520#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 521
 522#endif /* 32 vs 64 bit */
 523
 524void arch_irq_work_raise(void)
 525{
 526	/*
 527	 * 64-bit code that uses irq soft-mask can just cause an immediate
 528	 * interrupt here that gets soft masked, if this is called under
 529	 * local_irq_disable(). It might be possible to prevent that happening
 530	 * by noticing interrupts are disabled and setting decrementer pending
 531	 * to be replayed when irqs are enabled. The problem there is that
 532	 * tracing can call irq_work_raise, including in code that does low
 533	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
 534	 * which could get tangled up if we're messing with the same state
 535	 * here.
 536	 */
 537	preempt_disable();
 538	set_irq_work_pending_flag();
 539	set_dec(1);
 540	preempt_enable();
 541}
 542
 543#else  /* CONFIG_IRQ_WORK */
 544
 545#define test_irq_work_pending()	0
 546#define clear_irq_work_pending()
 547
 548#endif /* CONFIG_IRQ_WORK */
 549
 550/*
 551 * timer_interrupt - gets called when the decrementer overflows,
 552 * with interrupts disabled.
 553 */
 554DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
 555{
 556	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 557	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 558	struct pt_regs *old_regs;
 559	u64 now;
 560
 561	/*
 562	 * Some implementations of hotplug will get timer interrupts while
 563	 * offline, just ignore these.
 564	 */
 565	if (unlikely(!cpu_online(smp_processor_id()))) {
 566		set_dec(decrementer_max);
 567		return;
 568	}
 569
 570	/* Ensure a positive value is written to the decrementer, or else
 571	 * some CPUs will continue to take decrementer exceptions. When the
 572	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 573	 * 31 bits, which is about 4 seconds on most systems, which gives
 574	 * the watchdog a chance of catching timer interrupt hard lockups.
 575	 */
 576	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 577		set_dec(0x7fffffff);
 578	else
 579		set_dec(decrementer_max);
 580
 581	/* Conditionally hard-enable interrupts now that the DEC has been
 582	 * bumped to its maximum value
 583	 */
 584	may_hard_irq_enable();
 585
 586
 587#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 588	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 589		__do_IRQ(regs);
 590#endif
 591
 592	old_regs = set_irq_regs(regs);
 593
 594	trace_timer_interrupt_entry(regs);
 595
 596	if (test_irq_work_pending()) {
 597		clear_irq_work_pending();
 598		irq_work_run();
 599	}
 600
 601	now = get_tb();
 602	if (now >= *next_tb) {
 603		*next_tb = ~(u64)0;
 604		if (evt->event_handler)
 605			evt->event_handler(evt);
 606		__this_cpu_inc(irq_stat.timer_irqs_event);
 607	} else {
 608		now = *next_tb - now;
 609		if (now <= decrementer_max)
 610			set_dec(now);
 611		/* We may have raced with new irq work */
 612		if (test_irq_work_pending())
 613			set_dec(1);
 614		__this_cpu_inc(irq_stat.timer_irqs_others);
 615	}
 616
 617	trace_timer_interrupt_exit(regs);
 
 
 
 
 
 
 618
 619	set_irq_regs(old_regs);
 620}
 621EXPORT_SYMBOL(timer_interrupt);
 622
 623#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 624void timer_broadcast_interrupt(void)
 
 
 
 625{
 
 626	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 627
 628	*next_tb = ~(u64)0;
 629	tick_receive_broadcast();
 630	__this_cpu_inc(irq_stat.broadcast_irqs_event);
 631}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632#endif
 633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634#ifdef CONFIG_SUSPEND
 635static void generic_suspend_disable_irqs(void)
 636{
 637	/* Disable the decrementer, so that it doesn't interfere
 638	 * with suspending.
 639	 */
 640
 641	set_dec(decrementer_max);
 642	local_irq_disable();
 643	set_dec(decrementer_max);
 644}
 645
 646static void generic_suspend_enable_irqs(void)
 647{
 648	local_irq_enable();
 649}
 650
 651/* Overrides the weak version in kernel/power/main.c */
 652void arch_suspend_disable_irqs(void)
 653{
 654	if (ppc_md.suspend_disable_irqs)
 655		ppc_md.suspend_disable_irqs();
 656	generic_suspend_disable_irqs();
 657}
 658
 659/* Overrides the weak version in kernel/power/main.c */
 660void arch_suspend_enable_irqs(void)
 661{
 662	generic_suspend_enable_irqs();
 663	if (ppc_md.suspend_enable_irqs)
 664		ppc_md.suspend_enable_irqs();
 665}
 666#endif
 667
 668unsigned long long tb_to_ns(unsigned long long ticks)
 669{
 670	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 671}
 672EXPORT_SYMBOL_GPL(tb_to_ns);
 673
 674/*
 675 * Scheduler clock - returns current time in nanosec units.
 676 *
 677 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 678 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 679 * are 64-bit unsigned numbers.
 680 */
 681notrace unsigned long long sched_clock(void)
 682{
 
 
 683	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 684}
 685
 686
 687#ifdef CONFIG_PPC_PSERIES
 688
 689/*
 690 * Running clock - attempts to give a view of time passing for a virtualised
 691 * kernels.
 692 * Uses the VTB register if available otherwise a next best guess.
 693 */
 694unsigned long long running_clock(void)
 695{
 696	/*
 697	 * Don't read the VTB as a host since KVM does not switch in host
 698	 * timebase into the VTB when it takes a guest off the CPU, reading the
 699	 * VTB would result in reading 'last switched out' guest VTB.
 700	 *
 701	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 702	 * would be unsafe to rely only on the #ifdef above.
 703	 */
 704	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 705	    cpu_has_feature(CPU_FTR_ARCH_207S))
 706		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 707
 708	/*
 709	 * This is a next best approximation without a VTB.
 710	 * On a host which is running bare metal there should never be any stolen
 711	 * time and on a host which doesn't do any virtualisation TB *should* equal
 712	 * VTB so it makes no difference anyway.
 713	 */
 714	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 715}
 716#endif
 717
 718static int __init get_freq(char *name, int cells, unsigned long *val)
 719{
 720	struct device_node *cpu;
 721	const __be32 *fp;
 722	int found = 0;
 723
 724	/* The cpu node should have timebase and clock frequency properties */
 725	cpu = of_find_node_by_type(NULL, "cpu");
 726
 727	if (cpu) {
 728		fp = of_get_property(cpu, name, NULL);
 729		if (fp) {
 730			found = 1;
 731			*val = of_read_ulong(fp, cells);
 732		}
 733
 734		of_node_put(cpu);
 735	}
 736
 737	return found;
 738}
 739
 740static void start_cpu_decrementer(void)
 741{
 742#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 743	unsigned int tcr;
 744
 745	/* Clear any pending timer interrupts */
 746	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 747
 748	tcr = mfspr(SPRN_TCR);
 749	/*
 750	 * The watchdog may have already been enabled by u-boot. So leave
 751	 * TRC[WP] (Watchdog Period) alone.
 752	 */
 753	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 754	tcr |= TCR_DIE;		/* Enable decrementer */
 755	mtspr(SPRN_TCR, tcr);
 756#endif
 757}
 758
 759void __init generic_calibrate_decr(void)
 760{
 761	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 762
 763	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 764	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 765
 766		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 767				"(not found)\n");
 768	}
 769
 770	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 771
 772	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 773	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 774
 775		printk(KERN_ERR "WARNING: Estimating processor frequency "
 776				"(not found)\n");
 777	}
 778}
 779
 780int update_persistent_clock64(struct timespec64 now)
 781{
 782	struct rtc_time tm;
 783
 784	if (!ppc_md.set_rtc_time)
 785		return -ENODEV;
 786
 787	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 
 
 788
 789	return ppc_md.set_rtc_time(&tm);
 790}
 791
 792static void __read_persistent_clock(struct timespec64 *ts)
 793{
 794	struct rtc_time tm;
 795	static int first = 1;
 796
 797	ts->tv_nsec = 0;
 798	/* XXX this is a litle fragile but will work okay in the short term */
 799	if (first) {
 800		first = 0;
 801		if (ppc_md.time_init)
 802			timezone_offset = ppc_md.time_init();
 803
 804		/* get_boot_time() isn't guaranteed to be safe to call late */
 805		if (ppc_md.get_boot_time) {
 806			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 807			return;
 808		}
 809	}
 810	if (!ppc_md.get_rtc_time) {
 811		ts->tv_sec = 0;
 812		return;
 813	}
 814	ppc_md.get_rtc_time(&tm);
 815
 816	ts->tv_sec = rtc_tm_to_time64(&tm);
 
 817}
 818
 819void read_persistent_clock64(struct timespec64 *ts)
 820{
 821	__read_persistent_clock(ts);
 822
 823	/* Sanitize it in case real time clock is set below EPOCH */
 824	if (ts->tv_sec < 0) {
 825		ts->tv_sec = 0;
 826		ts->tv_nsec = 0;
 827	}
 828		
 829}
 830
 831/* clocksource code */
 832static notrace u64 timebase_read(struct clocksource *cs)
 833{
 834	return (u64)get_tb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837static void __init clocksource_init(void)
 838{
 839	struct clocksource *clock = &clocksource_timebase;
 
 
 
 
 
 840
 841	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 842		printk(KERN_ERR "clocksource: %s is already registered\n",
 843		       clock->name);
 844		return;
 845	}
 846
 847	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 848	       clock->name, clock->mult, clock->shift);
 849}
 850
 851static int decrementer_set_next_event(unsigned long evt,
 852				      struct clock_event_device *dev)
 853{
 854	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
 855	set_dec(evt);
 856
 857	/* We may have raced with new irq work */
 858	if (test_irq_work_pending())
 859		set_dec(1);
 860
 861	return 0;
 862}
 863
 864static int decrementer_shutdown(struct clock_event_device *dev)
 865{
 866	decrementer_set_next_event(decrementer_max, dev);
 867	return 0;
 868}
 869
 
 
 
 
 
 
 
 
 
 870static void register_decrementer_clockevent(int cpu)
 871{
 872	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 873
 874	*dec = decrementer_clockevent;
 875	dec->cpumask = cpumask_of(cpu);
 876
 877	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
 878
 879	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 880		    dec->name, dec->mult, dec->shift, cpu);
 881
 882	/* Set values for KVM, see kvm_emulate_dec() */
 883	decrementer_clockevent.mult = dec->mult;
 884	decrementer_clockevent.shift = dec->shift;
 885}
 886
 887static void enable_large_decrementer(void)
 888{
 889	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 890		return;
 891
 892	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
 893		return;
 894
 895	/*
 896	 * If we're running as the hypervisor we need to enable the LD manually
 897	 * otherwise firmware should have done it for us.
 898	 */
 899	if (cpu_has_feature(CPU_FTR_HVMODE))
 900		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
 901}
 902
 903static void __init set_decrementer_max(void)
 904{
 905	struct device_node *cpu;
 906	u32 bits = 32;
 907
 908	/* Prior to ISAv3 the decrementer is always 32 bit */
 909	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 910		return;
 911
 912	cpu = of_find_node_by_type(NULL, "cpu");
 913
 914	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
 915		if (bits > 64 || bits < 32) {
 916			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
 917			bits = 32;
 918		}
 919
 920		/* calculate the signed maximum given this many bits */
 921		decrementer_max = (1ul << (bits - 1)) - 1;
 922	}
 923
 924	of_node_put(cpu);
 925
 926	pr_info("time_init: %u bit decrementer (max: %llx)\n",
 927		bits, decrementer_max);
 928}
 929
 930static void __init init_decrementer_clockevent(void)
 931{
 932	register_decrementer_clockevent(smp_processor_id());
 933}
 934
 935void secondary_cpu_time_init(void)
 936{
 937	/* Enable and test the large decrementer for this cpu */
 938	enable_large_decrementer();
 939
 940	/* Start the decrementer on CPUs that have manual control
 941	 * such as BookE
 942	 */
 943	start_cpu_decrementer();
 944
 945	/* FIME: Should make unrelatred change to move snapshot_timebase
 946	 * call here ! */
 947	register_decrementer_clockevent(smp_processor_id());
 948}
 949
 950/* This function is only called on the boot processor */
 951void __init time_init(void)
 952{
 953	struct div_result res;
 954	u64 scale;
 955	unsigned shift;
 956
 957	/* Normal PowerPC with timebase register */
 958	ppc_md.calibrate_decr();
 959	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 960	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 961	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 962	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 
 
 
 
 
 963
 964	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 965	tb_ticks_per_sec = ppc_tb_freq;
 966	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 967	calc_cputime_factors();
 
 968
 969	/*
 970	 * Compute scale factor for sched_clock.
 971	 * The calibrate_decr() function has set tb_ticks_per_sec,
 972	 * which is the timebase frequency.
 973	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 974	 * the 128-bit result as a 64.64 fixed-point number.
 975	 * We then shift that number right until it is less than 1.0,
 976	 * giving us the scale factor and shift count to use in
 977	 * sched_clock().
 978	 */
 979	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 980	scale = res.result_low;
 981	for (shift = 0; res.result_high != 0; ++shift) {
 982		scale = (scale >> 1) | (res.result_high << 63);
 983		res.result_high >>= 1;
 984	}
 985	tb_to_ns_scale = scale;
 986	tb_to_ns_shift = shift;
 987	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 988	boot_tb = get_tb();
 989
 990	/* If platform provided a timezone (pmac), we correct the time */
 991	if (timezone_offset) {
 992		sys_tz.tz_minuteswest = -timezone_offset / 60;
 993		sys_tz.tz_dsttime = 0;
 994	}
 995
 
 996	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 997
 998	/* initialise and enable the large decrementer (if we have one) */
 999	set_decrementer_max();
1000	enable_large_decrementer();
1001
1002	/* Start the decrementer on CPUs that have manual control
1003	 * such as BookE
1004	 */
1005	start_cpu_decrementer();
1006
1007	/* Register the clocksource */
1008	clocksource_init();
1009
1010	init_decrementer_clockevent();
1011	tick_setup_hrtimer_broadcast();
1012
 
1013	of_clk_init(NULL);
1014	enable_sched_clock_irqtime();
1015}
1016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017/*
1018 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1019 * result.
1020 */
1021void div128_by_32(u64 dividend_high, u64 dividend_low,
1022		  unsigned divisor, struct div_result *dr)
1023{
1024	unsigned long a, b, c, d;
1025	unsigned long w, x, y, z;
1026	u64 ra, rb, rc;
1027
1028	a = dividend_high >> 32;
1029	b = dividend_high & 0xffffffff;
1030	c = dividend_low >> 32;
1031	d = dividend_low & 0xffffffff;
1032
1033	w = a / divisor;
1034	ra = ((u64)(a - (w * divisor)) << 32) + b;
1035
1036	rb = ((u64) do_div(ra, divisor) << 32) + c;
1037	x = ra;
1038
1039	rc = ((u64) do_div(rb, divisor) << 32) + d;
1040	y = rb;
1041
1042	do_div(rc, divisor);
1043	z = rc;
1044
1045	dr->result_high = ((u64)w << 32) + x;
1046	dr->result_low  = ((u64)y << 32) + z;
1047
1048}
1049
1050/* We don't need to calibrate delay, we use the CPU timebase for that */
1051void calibrate_delay(void)
1052{
1053	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1054	 * as the number of __delay(1) in a jiffy, so make it so
1055	 */
1056	loops_per_jiffy = tb_ticks_per_jiffy;
1057}
1058
1059#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1060static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1061{
1062	ppc_md.get_rtc_time(tm);
1063	return 0;
1064}
1065
1066static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1067{
1068	if (!ppc_md.set_rtc_time)
1069		return -EOPNOTSUPP;
1070
1071	if (ppc_md.set_rtc_time(tm) < 0)
1072		return -EOPNOTSUPP;
1073
1074	return 0;
1075}
1076
1077static const struct rtc_class_ops rtc_generic_ops = {
1078	.read_time = rtc_generic_get_time,
1079	.set_time = rtc_generic_set_time,
1080};
1081
1082static int __init rtc_init(void)
1083{
1084	struct platform_device *pdev;
1085
1086	if (!ppc_md.get_rtc_time)
1087		return -ENODEV;
1088
1089	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1090					     &rtc_generic_ops,
1091					     sizeof(rtc_generic_ops));
1092
1093	return PTR_ERR_OR_ZERO(pdev);
1094}
1095
1096device_initcall(rtc_init);
1097#endif
v4.6
 
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
 
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
 
 
 
 
  58#include <asm/trace.h>
  59
 
  60#include <asm/io.h>
  61#include <asm/processor.h>
  62#include <asm/nvram.h>
  63#include <asm/cache.h>
  64#include <asm/machdep.h>
  65#include <asm/uaccess.h>
  66#include <asm/time.h>
  67#include <asm/prom.h>
  68#include <asm/irq.h>
  69#include <asm/div64.h>
  70#include <asm/smp.h>
  71#include <asm/vdso_datapage.h>
  72#include <asm/firmware.h>
  73#include <asm/cputime.h>
  74
  75/* powerpc clocksource/clockevent code */
  76
  77#include <linux/clockchips.h>
  78#include <linux/timekeeper_internal.h>
  79
  80static cycle_t rtc_read(struct clocksource *);
  81static struct clocksource clocksource_rtc = {
  82	.name         = "rtc",
  83	.rating       = 400,
  84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  85	.mask         = CLOCKSOURCE_MASK(64),
  86	.read         = rtc_read,
  87};
  88
  89static cycle_t timebase_read(struct clocksource *);
  90static struct clocksource clocksource_timebase = {
  91	.name         = "timebase",
  92	.rating       = 400,
  93	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  94	.mask         = CLOCKSOURCE_MASK(64),
  95	.read         = timebase_read,
 
  96};
  97
  98#define DECREMENTER_MAX	0x7fffffff
 
  99
 100static int decrementer_set_next_event(unsigned long evt,
 101				      struct clock_event_device *dev);
 102static int decrementer_shutdown(struct clock_event_device *evt);
 103
 104struct clock_event_device decrementer_clockevent = {
 105	.name			= "decrementer",
 106	.rating			= 200,
 107	.irq			= 0,
 108	.set_next_event		= decrementer_set_next_event,
 
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 
 
 149#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 150/*
 151 * Factors for converting from cputime_t (timebase ticks) to
 152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 153 * These are all stored as 0.64 fixed-point binary fractions.
 154 */
 155u64 __cputime_jiffies_factor;
 156EXPORT_SYMBOL(__cputime_jiffies_factor);
 157u64 __cputime_usec_factor;
 158EXPORT_SYMBOL(__cputime_usec_factor);
 159u64 __cputime_sec_factor;
 160EXPORT_SYMBOL(__cputime_sec_factor);
 161u64 __cputime_clockt_factor;
 162EXPORT_SYMBOL(__cputime_clockt_factor);
 163DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 164DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 165
 166cputime_t cputime_one_jiffy;
 167
 
 168void (*dtl_consumer)(struct dtl_entry *, u64);
 
 169
 170static void calc_cputime_factors(void)
 171{
 172	struct div_result res;
 173
 174	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 175	__cputime_jiffies_factor = res.result_low;
 176	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177	__cputime_usec_factor = res.result_low;
 178	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 179	__cputime_sec_factor = res.result_low;
 180	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 181	__cputime_clockt_factor = res.result_low;
 182}
 183
 184/*
 185 * Read the SPURR on systems that have it, otherwise the PURR,
 186 * or if that doesn't exist return the timebase value passed in.
 187 */
 188static u64 read_spurr(u64 tb)
 189{
 190	if (cpu_has_feature(CPU_FTR_SPURR))
 191		return mfspr(SPRN_SPURR);
 192	if (cpu_has_feature(CPU_FTR_PURR))
 193		return mfspr(SPRN_PURR);
 194	return tb;
 195}
 196
 197#ifdef CONFIG_PPC_SPLPAR
 198
 
 
 199/*
 200 * Scan the dispatch trace log and count up the stolen time.
 201 * Should be called with interrupts disabled.
 202 */
 203static u64 scan_dispatch_log(u64 stop_tb)
 204{
 205	u64 i = local_paca->dtl_ridx;
 206	struct dtl_entry *dtl = local_paca->dtl_curr;
 207	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 208	struct lppaca *vpa = local_paca->lppaca_ptr;
 209	u64 tb_delta;
 210	u64 stolen = 0;
 211	u64 dtb;
 212
 213	if (!dtl)
 214		return 0;
 215
 216	if (i == be64_to_cpu(vpa->dtl_idx))
 217		return 0;
 218	while (i < be64_to_cpu(vpa->dtl_idx)) {
 219		dtb = be64_to_cpu(dtl->timebase);
 220		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 221			be32_to_cpu(dtl->ready_to_enqueue_time);
 222		barrier();
 223		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 224			/* buffer has overflowed */
 225			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 226			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 227			continue;
 228		}
 229		if (dtb > stop_tb)
 230			break;
 231		if (dtl_consumer)
 232			dtl_consumer(dtl, i);
 233		stolen += tb_delta;
 234		++i;
 235		++dtl;
 236		if (dtl == dtl_end)
 237			dtl = local_paca->dispatch_log;
 238	}
 239	local_paca->dtl_ridx = i;
 240	local_paca->dtl_curr = dtl;
 241	return stolen;
 242}
 243
 244/*
 245 * Accumulate stolen time by scanning the dispatch trace log.
 246 * Called on entry from user mode.
 247 */
 248void accumulate_stolen_time(void)
 249{
 250	u64 sst, ust;
 
 251
 252	u8 save_soft_enabled = local_paca->soft_enabled;
 253
 254	/* We are called early in the exception entry, before
 255	 * soft/hard_enabled are sync'ed to the expected state
 256	 * for the exception. We are hard disabled but the PACA
 257	 * needs to reflect that so various debug stuff doesn't
 258	 * complain
 259	 */
 260	local_paca->soft_enabled = 0;
 261
 262	sst = scan_dispatch_log(local_paca->starttime_user);
 263	ust = scan_dispatch_log(local_paca->starttime);
 264	local_paca->system_time -= sst;
 265	local_paca->user_time -= ust;
 266	local_paca->stolen_time += ust + sst;
 267
 268	local_paca->soft_enabled = save_soft_enabled;
 269}
 270
 271static inline u64 calculate_stolen_time(u64 stop_tb)
 272{
 273	u64 stolen = 0;
 
 274
 275	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 276		stolen = scan_dispatch_log(stop_tb);
 277		get_paca()->system_time -= stolen;
 278	}
 279
 280	stolen += get_paca()->stolen_time;
 281	get_paca()->stolen_time = 0;
 282	return stolen;
 283}
 284
 285#else /* CONFIG_PPC_SPLPAR */
 286static inline u64 calculate_stolen_time(u64 stop_tb)
 287{
 288	return 0;
 289}
 290
 291#endif /* CONFIG_PPC_SPLPAR */
 292
 293/*
 294 * Account time for a transition between system, hard irq
 295 * or soft irq state.
 296 */
 297static u64 vtime_delta(struct task_struct *tsk,
 298			u64 *sys_scaled, u64 *stolen)
 299{
 300	u64 now, nowscaled, deltascaled;
 301	u64 udelta, delta, user_scaled;
 
 
 302
 303	WARN_ON_ONCE(!irqs_disabled());
 304
 305	now = mftb();
 306	nowscaled = read_spurr(now);
 307	get_paca()->system_time += now - get_paca()->starttime;
 308	get_paca()->starttime = now;
 309	deltascaled = nowscaled - get_paca()->startspurr;
 310	get_paca()->startspurr = nowscaled;
 311
 312	*stolen = calculate_stolen_time(now);
 313
 314	delta = get_paca()->system_time;
 315	get_paca()->system_time = 0;
 316	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 317	get_paca()->utime_sspurr = get_paca()->user_time;
 318
 319	/*
 320	 * Because we don't read the SPURR on every kernel entry/exit,
 321	 * deltascaled includes both user and system SPURR ticks.
 322	 * Apportion these ticks to system SPURR ticks and user
 323	 * SPURR ticks in the same ratio as the system time (delta)
 324	 * and user time (udelta) values obtained from the timebase
 325	 * over the same interval.  The system ticks get accounted here;
 326	 * the user ticks get saved up in paca->user_time_scaled to be
 327	 * used by account_process_tick.
 328	 */
 329	*sys_scaled = delta;
 330	user_scaled = udelta;
 331	if (deltascaled != delta + udelta) {
 332		if (udelta) {
 333			*sys_scaled = deltascaled * delta / (delta + udelta);
 334			user_scaled = deltascaled - *sys_scaled;
 335		} else {
 336			*sys_scaled = deltascaled;
 337		}
 338	}
 339	get_paca()->user_time_scaled += user_scaled;
 
 340
 341	return delta;
 342}
 343
 344void vtime_account_system(struct task_struct *tsk)
 
 
 345{
 346	u64 delta, sys_scaled, stolen;
 347
 348	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 349	account_system_time(tsk, 0, delta, sys_scaled);
 350	if (stolen)
 351		account_steal_time(stolen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352}
 353EXPORT_SYMBOL_GPL(vtime_account_system);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354
 355void vtime_account_idle(struct task_struct *tsk)
 356{
 357	u64 delta, sys_scaled, stolen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358
 359	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 360	account_idle_time(delta + stolen);
 
 
 361}
 362
 363/*
 364 * Transfer the user time accumulated in the paca
 365 * by the exception entry and exit code to the generic
 366 * process user time records.
 367 * Must be called with interrupts disabled.
 368 * Assumes that vtime_account_system/idle() has been called
 369 * recently (i.e. since the last entry from usermode) so that
 370 * get_paca()->user_time_scaled is up to date.
 371 */
 372void vtime_account_user(struct task_struct *tsk)
 373{
 374	cputime_t utime, utimescaled;
 
 
 
 
 
 
 375
 376	utime = get_paca()->user_time;
 377	utimescaled = get_paca()->user_time_scaled;
 378	get_paca()->user_time = 0;
 379	get_paca()->user_time_scaled = 0;
 380	get_paca()->utime_sspurr = 0;
 381	account_user_time(tsk, utime, utimescaled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383
 384#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 385#define calc_cputime_factors()
 386#endif
 387
 388void __delay(unsigned long loops)
 389{
 390	unsigned long start;
 391	int diff;
 392
 393	if (__USE_RTC()) {
 394		start = get_rtcl();
 395		do {
 396			/* the RTCL register wraps at 1000000000 */
 397			diff = get_rtcl() - start;
 398			if (diff < 0)
 399				diff += 1000000000;
 400		} while (diff < loops);
 401	} else {
 402		start = get_tbl();
 403		while (get_tbl() - start < loops)
 404			HMT_low();
 405		HMT_medium();
 406	}
 
 407}
 408EXPORT_SYMBOL(__delay);
 409
 410void udelay(unsigned long usecs)
 411{
 412	__delay(tb_ticks_per_usec * usecs);
 413}
 414EXPORT_SYMBOL(udelay);
 415
 416#ifdef CONFIG_SMP
 417unsigned long profile_pc(struct pt_regs *regs)
 418{
 419	unsigned long pc = instruction_pointer(regs);
 420
 421	if (in_lock_functions(pc))
 422		return regs->link;
 423
 424	return pc;
 425}
 426EXPORT_SYMBOL(profile_pc);
 427#endif
 428
 429#ifdef CONFIG_IRQ_WORK
 430
 431/*
 432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 433 */
 434#ifdef CONFIG_PPC64
 435static inline unsigned long test_irq_work_pending(void)
 436{
 437	unsigned long x;
 438
 439	asm volatile("lbz %0,%1(13)"
 440		: "=r" (x)
 441		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 442	return x;
 443}
 444
 445static inline void set_irq_work_pending_flag(void)
 446{
 447	asm volatile("stb %0,%1(13)" : :
 448		"r" (1),
 449		"i" (offsetof(struct paca_struct, irq_work_pending)));
 450}
 451
 452static inline void clear_irq_work_pending(void)
 453{
 454	asm volatile("stb %0,%1(13)" : :
 455		"r" (0),
 456		"i" (offsetof(struct paca_struct, irq_work_pending)));
 457}
 458
 459#else /* 32-bit */
 460
 461DEFINE_PER_CPU(u8, irq_work_pending);
 462
 463#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 464#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 465#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 466
 467#endif /* 32 vs 64 bit */
 468
 469void arch_irq_work_raise(void)
 470{
 
 
 
 
 
 
 
 
 
 
 
 471	preempt_disable();
 472	set_irq_work_pending_flag();
 473	set_dec(1);
 474	preempt_enable();
 475}
 476
 477#else  /* CONFIG_IRQ_WORK */
 478
 479#define test_irq_work_pending()	0
 480#define clear_irq_work_pending()
 481
 482#endif /* CONFIG_IRQ_WORK */
 483
 484static void __timer_interrupt(void)
 
 
 
 
 485{
 486	struct pt_regs *regs = get_irq_regs();
 487	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 488	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 489	u64 now;
 490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491	trace_timer_interrupt_entry(regs);
 492
 493	if (test_irq_work_pending()) {
 494		clear_irq_work_pending();
 495		irq_work_run();
 496	}
 497
 498	now = get_tb_or_rtc();
 499	if (now >= *next_tb) {
 500		*next_tb = ~(u64)0;
 501		if (evt->event_handler)
 502			evt->event_handler(evt);
 503		__this_cpu_inc(irq_stat.timer_irqs_event);
 504	} else {
 505		now = *next_tb - now;
 506		if (now <= DECREMENTER_MAX)
 507			set_dec((int)now);
 508		/* We may have raced with new irq work */
 509		if (test_irq_work_pending())
 510			set_dec(1);
 511		__this_cpu_inc(irq_stat.timer_irqs_others);
 512	}
 513
 514#ifdef CONFIG_PPC64
 515	/* collect purr register values often, for accurate calculations */
 516	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 517		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 518		cu->current_tb = mfspr(SPRN_PURR);
 519	}
 520#endif
 521
 522	trace_timer_interrupt_exit(regs);
 523}
 
 524
 525/*
 526 * timer_interrupt - gets called when the decrementer overflows,
 527 * with interrupts disabled.
 528 */
 529void timer_interrupt(struct pt_regs * regs)
 530{
 531	struct pt_regs *old_regs;
 532	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 533
 534	/* Ensure a positive value is written to the decrementer, or else
 535	 * some CPUs will continue to take decrementer exceptions.
 536	 */
 537	set_dec(DECREMENTER_MAX);
 538
 539	/* Some implementations of hotplug will get timer interrupts while
 540	 * offline, just ignore these and we also need to set
 541	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 542	 * don't replay timer interrupt when return, otherwise we'll trap
 543	 * here infinitely :(
 544	 */
 545	if (!cpu_online(smp_processor_id())) {
 546		*next_tb = ~(u64)0;
 547		return;
 548	}
 549
 550	/* Conditionally hard-enable interrupts now that the DEC has been
 551	 * bumped to its maximum value
 552	 */
 553	may_hard_irq_enable();
 554
 555
 556#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 557	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 558		do_IRQ(regs);
 559#endif
 560
 561	old_regs = set_irq_regs(regs);
 562	irq_enter();
 563
 564	__timer_interrupt();
 565	irq_exit();
 566	set_irq_regs(old_regs);
 567}
 568
 569/*
 570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 571 * left pending on exit from a KVM guest.  We don't need to do anything
 572 * to clear them, as they are edge-triggered.
 573 */
 574void hdec_interrupt(struct pt_regs *regs)
 575{
 576}
 577
 578#ifdef CONFIG_SUSPEND
 579static void generic_suspend_disable_irqs(void)
 580{
 581	/* Disable the decrementer, so that it doesn't interfere
 582	 * with suspending.
 583	 */
 584
 585	set_dec(DECREMENTER_MAX);
 586	local_irq_disable();
 587	set_dec(DECREMENTER_MAX);
 588}
 589
 590static void generic_suspend_enable_irqs(void)
 591{
 592	local_irq_enable();
 593}
 594
 595/* Overrides the weak version in kernel/power/main.c */
 596void arch_suspend_disable_irqs(void)
 597{
 598	if (ppc_md.suspend_disable_irqs)
 599		ppc_md.suspend_disable_irqs();
 600	generic_suspend_disable_irqs();
 601}
 602
 603/* Overrides the weak version in kernel/power/main.c */
 604void arch_suspend_enable_irqs(void)
 605{
 606	generic_suspend_enable_irqs();
 607	if (ppc_md.suspend_enable_irqs)
 608		ppc_md.suspend_enable_irqs();
 609}
 610#endif
 611
 612unsigned long long tb_to_ns(unsigned long long ticks)
 613{
 614	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 615}
 616EXPORT_SYMBOL_GPL(tb_to_ns);
 617
 618/*
 619 * Scheduler clock - returns current time in nanosec units.
 620 *
 621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 623 * are 64-bit unsigned numbers.
 624 */
 625unsigned long long sched_clock(void)
 626{
 627	if (__USE_RTC())
 628		return get_rtc();
 629	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 630}
 631
 632
 633#ifdef CONFIG_PPC_PSERIES
 634
 635/*
 636 * Running clock - attempts to give a view of time passing for a virtualised
 637 * kernels.
 638 * Uses the VTB register if available otherwise a next best guess.
 639 */
 640unsigned long long running_clock(void)
 641{
 642	/*
 643	 * Don't read the VTB as a host since KVM does not switch in host
 644	 * timebase into the VTB when it takes a guest off the CPU, reading the
 645	 * VTB would result in reading 'last switched out' guest VTB.
 646	 *
 647	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 648	 * would be unsafe to rely only on the #ifdef above.
 649	 */
 650	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 651	    cpu_has_feature(CPU_FTR_ARCH_207S))
 652		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 653
 654	/*
 655	 * This is a next best approximation without a VTB.
 656	 * On a host which is running bare metal there should never be any stolen
 657	 * time and on a host which doesn't do any virtualisation TB *should* equal
 658	 * VTB so it makes no difference anyway.
 659	 */
 660	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 661}
 662#endif
 663
 664static int __init get_freq(char *name, int cells, unsigned long *val)
 665{
 666	struct device_node *cpu;
 667	const __be32 *fp;
 668	int found = 0;
 669
 670	/* The cpu node should have timebase and clock frequency properties */
 671	cpu = of_find_node_by_type(NULL, "cpu");
 672
 673	if (cpu) {
 674		fp = of_get_property(cpu, name, NULL);
 675		if (fp) {
 676			found = 1;
 677			*val = of_read_ulong(fp, cells);
 678		}
 679
 680		of_node_put(cpu);
 681	}
 682
 683	return found;
 684}
 685
 686static void start_cpu_decrementer(void)
 687{
 688#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 
 
 689	/* Clear any pending timer interrupts */
 690	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 691
 692	/* Enable decrementer interrupt */
 693	mtspr(SPRN_TCR, TCR_DIE);
 694#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 
 
 
 
 
 
 695}
 696
 697void __init generic_calibrate_decr(void)
 698{
 699	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 700
 701	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 702	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 703
 704		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 705				"(not found)\n");
 706	}
 707
 708	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 709
 710	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 711	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 712
 713		printk(KERN_ERR "WARNING: Estimating processor frequency "
 714				"(not found)\n");
 715	}
 716}
 717
 718int update_persistent_clock(struct timespec now)
 719{
 720	struct rtc_time tm;
 721
 722	if (!ppc_md.set_rtc_time)
 723		return -ENODEV;
 724
 725	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 726	tm.tm_year -= 1900;
 727	tm.tm_mon -= 1;
 728
 729	return ppc_md.set_rtc_time(&tm);
 730}
 731
 732static void __read_persistent_clock(struct timespec *ts)
 733{
 734	struct rtc_time tm;
 735	static int first = 1;
 736
 737	ts->tv_nsec = 0;
 738	/* XXX this is a litle fragile but will work okay in the short term */
 739	if (first) {
 740		first = 0;
 741		if (ppc_md.time_init)
 742			timezone_offset = ppc_md.time_init();
 743
 744		/* get_boot_time() isn't guaranteed to be safe to call late */
 745		if (ppc_md.get_boot_time) {
 746			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 747			return;
 748		}
 749	}
 750	if (!ppc_md.get_rtc_time) {
 751		ts->tv_sec = 0;
 752		return;
 753	}
 754	ppc_md.get_rtc_time(&tm);
 755
 756	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 757			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 758}
 759
 760void read_persistent_clock(struct timespec *ts)
 761{
 762	__read_persistent_clock(ts);
 763
 764	/* Sanitize it in case real time clock is set below EPOCH */
 765	if (ts->tv_sec < 0) {
 766		ts->tv_sec = 0;
 767		ts->tv_nsec = 0;
 768	}
 769		
 770}
 771
 772/* clocksource code */
 773static cycle_t rtc_read(struct clocksource *cs)
 774{
 775	return (cycle_t)get_rtc();
 776}
 777
 778static cycle_t timebase_read(struct clocksource *cs)
 779{
 780	return (cycle_t)get_tb();
 781}
 782
 783void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 784			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
 785{
 786	u64 new_tb_to_xs, new_stamp_xsec;
 787	u32 frac_sec;
 788
 789	if (clock != &clocksource_timebase)
 790		return;
 791
 792	/* Make userspace gettimeofday spin until we're done. */
 793	++vdso_data->tb_update_count;
 794	smp_mb();
 795
 796	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 797	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 798	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 799	do_div(new_stamp_xsec, 1000000000);
 800	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 801
 802	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 803	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 804	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 805
 806	/*
 807	 * tb_update_count is used to allow the userspace gettimeofday code
 808	 * to assure itself that it sees a consistent view of the tb_to_xs and
 809	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 810	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 811	 * the two values of tb_update_count match and are even then the
 812	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 813	 * loops back and reads them again until this criteria is met.
 814	 * We expect the caller to have done the first increment of
 815	 * vdso_data->tb_update_count already.
 816	 */
 817	vdso_data->tb_orig_stamp = cycle_last;
 818	vdso_data->stamp_xsec = new_stamp_xsec;
 819	vdso_data->tb_to_xs = new_tb_to_xs;
 820	vdso_data->wtom_clock_sec = wtm->tv_sec;
 821	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 822	vdso_data->stamp_xtime = *wall_time;
 823	vdso_data->stamp_sec_fraction = frac_sec;
 824	smp_wmb();
 825	++(vdso_data->tb_update_count);
 826}
 827
 828void update_vsyscall_tz(void)
 829{
 830	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 831	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 832}
 833
 834static void __init clocksource_init(void)
 835{
 836	struct clocksource *clock;
 837
 838	if (__USE_RTC())
 839		clock = &clocksource_rtc;
 840	else
 841		clock = &clocksource_timebase;
 842
 843	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 844		printk(KERN_ERR "clocksource: %s is already registered\n",
 845		       clock->name);
 846		return;
 847	}
 848
 849	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 850	       clock->name, clock->mult, clock->shift);
 851}
 852
 853static int decrementer_set_next_event(unsigned long evt,
 854				      struct clock_event_device *dev)
 855{
 856	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 857	set_dec(evt);
 858
 859	/* We may have raced with new irq work */
 860	if (test_irq_work_pending())
 861		set_dec(1);
 862
 863	return 0;
 864}
 865
 866static int decrementer_shutdown(struct clock_event_device *dev)
 867{
 868	decrementer_set_next_event(DECREMENTER_MAX, dev);
 869	return 0;
 870}
 871
 872/* Interrupt handler for the timer broadcast IPI */
 873void tick_broadcast_ipi_handler(void)
 874{
 875	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 876
 877	*next_tb = get_tb_or_rtc();
 878	__timer_interrupt();
 879}
 880
 881static void register_decrementer_clockevent(int cpu)
 882{
 883	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 884
 885	*dec = decrementer_clockevent;
 886	dec->cpumask = cpumask_of(cpu);
 887
 
 
 888	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 889		    dec->name, dec->mult, dec->shift, cpu);
 890
 891	clockevents_register_device(dec);
 
 
 892}
 893
 894static void __init init_decrementer_clockevent(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895{
 896	int cpu = smp_processor_id();
 
 897
 898	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 
 
 899
 900	decrementer_clockevent.max_delta_ns =
 901		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 902	decrementer_clockevent.min_delta_ns =
 903		clockevent_delta2ns(2, &decrementer_clockevent);
 
 
 
 904
 905	register_decrementer_clockevent(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 906}
 907
 908void secondary_cpu_time_init(void)
 909{
 
 
 
 910	/* Start the decrementer on CPUs that have manual control
 911	 * such as BookE
 912	 */
 913	start_cpu_decrementer();
 914
 915	/* FIME: Should make unrelatred change to move snapshot_timebase
 916	 * call here ! */
 917	register_decrementer_clockevent(smp_processor_id());
 918}
 919
 920/* This function is only called on the boot processor */
 921void __init time_init(void)
 922{
 923	struct div_result res;
 924	u64 scale;
 925	unsigned shift;
 926
 927	if (__USE_RTC()) {
 928		/* 601 processor: dec counts down by 128 every 128ns */
 929		ppc_tb_freq = 1000000000;
 930	} else {
 931		/* Normal PowerPC with timebase register */
 932		ppc_md.calibrate_decr();
 933		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 934		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 935		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 936		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 937	}
 938
 939	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 940	tb_ticks_per_sec = ppc_tb_freq;
 941	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 942	calc_cputime_factors();
 943	setup_cputime_one_jiffy();
 944
 945	/*
 946	 * Compute scale factor for sched_clock.
 947	 * The calibrate_decr() function has set tb_ticks_per_sec,
 948	 * which is the timebase frequency.
 949	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 950	 * the 128-bit result as a 64.64 fixed-point number.
 951	 * We then shift that number right until it is less than 1.0,
 952	 * giving us the scale factor and shift count to use in
 953	 * sched_clock().
 954	 */
 955	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 956	scale = res.result_low;
 957	for (shift = 0; res.result_high != 0; ++shift) {
 958		scale = (scale >> 1) | (res.result_high << 63);
 959		res.result_high >>= 1;
 960	}
 961	tb_to_ns_scale = scale;
 962	tb_to_ns_shift = shift;
 963	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 964	boot_tb = get_tb_or_rtc();
 965
 966	/* If platform provided a timezone (pmac), we correct the time */
 967	if (timezone_offset) {
 968		sys_tz.tz_minuteswest = -timezone_offset / 60;
 969		sys_tz.tz_dsttime = 0;
 970	}
 971
 972	vdso_data->tb_update_count = 0;
 973	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 974
 
 
 
 
 975	/* Start the decrementer on CPUs that have manual control
 976	 * such as BookE
 977	 */
 978	start_cpu_decrementer();
 979
 980	/* Register the clocksource */
 981	clocksource_init();
 982
 983	init_decrementer_clockevent();
 984	tick_setup_hrtimer_broadcast();
 985
 986#ifdef CONFIG_COMMON_CLK
 987	of_clk_init(NULL);
 988#endif
 989}
 990
 991
 992#define FEBRUARY	2
 993#define	STARTOFTIME	1970
 994#define SECDAY		86400L
 995#define SECYR		(SECDAY * 365)
 996#define	leapyear(year)		((year) % 4 == 0 && \
 997				 ((year) % 100 != 0 || (year) % 400 == 0))
 998#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
 999#define	days_in_month(a) 	(month_days[(a) - 1])
1000
1001static int month_days[12] = {
1002	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003};
1004
1005void to_tm(int tim, struct rtc_time * tm)
1006{
1007	register int    i;
1008	register long   hms, day;
1009
1010	day = tim / SECDAY;
1011	hms = tim % SECDAY;
1012
1013	/* Hours, minutes, seconds are easy */
1014	tm->tm_hour = hms / 3600;
1015	tm->tm_min = (hms % 3600) / 60;
1016	tm->tm_sec = (hms % 3600) % 60;
1017
1018	/* Number of years in days */
1019	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020		day -= days_in_year(i);
1021	tm->tm_year = i;
1022
1023	/* Number of months in days left */
1024	if (leapyear(tm->tm_year))
1025		days_in_month(FEBRUARY) = 29;
1026	for (i = 1; day >= days_in_month(i); i++)
1027		day -= days_in_month(i);
1028	days_in_month(FEBRUARY) = 28;
1029	tm->tm_mon = i;
1030
1031	/* Days are what is left over (+1) from all that. */
1032	tm->tm_mday = day + 1;
1033
1034	/*
1035	 * No-one uses the day of the week.
1036	 */
1037	tm->tm_wday = -1;
1038}
1039EXPORT_SYMBOL(to_tm);
1040
1041/*
1042 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1043 * result.
1044 */
1045void div128_by_32(u64 dividend_high, u64 dividend_low,
1046		  unsigned divisor, struct div_result *dr)
1047{
1048	unsigned long a, b, c, d;
1049	unsigned long w, x, y, z;
1050	u64 ra, rb, rc;
1051
1052	a = dividend_high >> 32;
1053	b = dividend_high & 0xffffffff;
1054	c = dividend_low >> 32;
1055	d = dividend_low & 0xffffffff;
1056
1057	w = a / divisor;
1058	ra = ((u64)(a - (w * divisor)) << 32) + b;
1059
1060	rb = ((u64) do_div(ra, divisor) << 32) + c;
1061	x = ra;
1062
1063	rc = ((u64) do_div(rb, divisor) << 32) + d;
1064	y = rb;
1065
1066	do_div(rc, divisor);
1067	z = rc;
1068
1069	dr->result_high = ((u64)w << 32) + x;
1070	dr->result_low  = ((u64)y << 32) + z;
1071
1072}
1073
1074/* We don't need to calibrate delay, we use the CPU timebase for that */
1075void calibrate_delay(void)
1076{
1077	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1078	 * as the number of __delay(1) in a jiffy, so make it so
1079	 */
1080	loops_per_jiffy = tb_ticks_per_jiffy;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083static int __init rtc_init(void)
1084{
1085	struct platform_device *pdev;
1086
1087	if (!ppc_md.get_rtc_time)
1088		return -ENODEV;
1089
1090	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 
 
1091
1092	return PTR_ERR_OR_ZERO(pdev);
1093}
1094
1095device_initcall(rtc_init);