Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * These functions implement the sctp_outq class. The outqueue handles
11 * bundling and queueing of outgoing SCTP chunks.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Perry Melange <pmelange@null.cc.uic.edu>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Jon Grimm <jgrimm@us.ibm.com>
25 */
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/types.h>
30#include <linux/list.h> /* For struct list_head */
31#include <linux/socket.h>
32#include <linux/ip.h>
33#include <linux/slab.h>
34#include <net/sock.h> /* For skb_set_owner_w */
35
36#include <net/sctp/sctp.h>
37#include <net/sctp/sm.h>
38#include <net/sctp/stream_sched.h>
39#include <trace/events/sctp.h>
40
41/* Declare internal functions here. */
42static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
43static void sctp_check_transmitted(struct sctp_outq *q,
44 struct list_head *transmitted_queue,
45 struct sctp_transport *transport,
46 union sctp_addr *saddr,
47 struct sctp_sackhdr *sack,
48 __u32 *highest_new_tsn);
49
50static void sctp_mark_missing(struct sctp_outq *q,
51 struct list_head *transmitted_queue,
52 struct sctp_transport *transport,
53 __u32 highest_new_tsn,
54 int count_of_newacks);
55
56static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
57
58/* Add data to the front of the queue. */
59static inline void sctp_outq_head_data(struct sctp_outq *q,
60 struct sctp_chunk *ch)
61{
62 struct sctp_stream_out_ext *oute;
63 __u16 stream;
64
65 list_add(&ch->list, &q->out_chunk_list);
66 q->out_qlen += ch->skb->len;
67
68 stream = sctp_chunk_stream_no(ch);
69 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
70 list_add(&ch->stream_list, &oute->outq);
71}
72
73/* Take data from the front of the queue. */
74static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
75{
76 return q->sched->dequeue(q);
77}
78
79/* Add data chunk to the end of the queue. */
80static inline void sctp_outq_tail_data(struct sctp_outq *q,
81 struct sctp_chunk *ch)
82{
83 struct sctp_stream_out_ext *oute;
84 __u16 stream;
85
86 list_add_tail(&ch->list, &q->out_chunk_list);
87 q->out_qlen += ch->skb->len;
88
89 stream = sctp_chunk_stream_no(ch);
90 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
91 list_add_tail(&ch->stream_list, &oute->outq);
92}
93
94/*
95 * SFR-CACC algorithm:
96 * D) If count_of_newacks is greater than or equal to 2
97 * and t was not sent to the current primary then the
98 * sender MUST NOT increment missing report count for t.
99 */
100static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
101 struct sctp_transport *transport,
102 int count_of_newacks)
103{
104 if (count_of_newacks >= 2 && transport != primary)
105 return 1;
106 return 0;
107}
108
109/*
110 * SFR-CACC algorithm:
111 * F) If count_of_newacks is less than 2, let d be the
112 * destination to which t was sent. If cacc_saw_newack
113 * is 0 for destination d, then the sender MUST NOT
114 * increment missing report count for t.
115 */
116static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
117 int count_of_newacks)
118{
119 if (count_of_newacks < 2 &&
120 (transport && !transport->cacc.cacc_saw_newack))
121 return 1;
122 return 0;
123}
124
125/*
126 * SFR-CACC algorithm:
127 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
128 * execute steps C, D, F.
129 *
130 * C has been implemented in sctp_outq_sack
131 */
132static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
133 struct sctp_transport *transport,
134 int count_of_newacks)
135{
136 if (!primary->cacc.cycling_changeover) {
137 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
138 return 1;
139 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
140 return 1;
141 return 0;
142 }
143 return 0;
144}
145
146/*
147 * SFR-CACC algorithm:
148 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
149 * than next_tsn_at_change of the current primary, then
150 * the sender MUST NOT increment missing report count
151 * for t.
152 */
153static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
154{
155 if (primary->cacc.cycling_changeover &&
156 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
157 return 1;
158 return 0;
159}
160
161/*
162 * SFR-CACC algorithm:
163 * 3) If the missing report count for TSN t is to be
164 * incremented according to [RFC2960] and
165 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
166 * then the sender MUST further execute steps 3.1 and
167 * 3.2 to determine if the missing report count for
168 * TSN t SHOULD NOT be incremented.
169 *
170 * 3.3) If 3.1 and 3.2 do not dictate that the missing
171 * report count for t should not be incremented, then
172 * the sender SHOULD increment missing report count for
173 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
174 */
175static inline int sctp_cacc_skip(struct sctp_transport *primary,
176 struct sctp_transport *transport,
177 int count_of_newacks,
178 __u32 tsn)
179{
180 if (primary->cacc.changeover_active &&
181 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
182 sctp_cacc_skip_3_2(primary, tsn)))
183 return 1;
184 return 0;
185}
186
187/* Initialize an existing sctp_outq. This does the boring stuff.
188 * You still need to define handlers if you really want to DO
189 * something with this structure...
190 */
191void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
192{
193 memset(q, 0, sizeof(struct sctp_outq));
194
195 q->asoc = asoc;
196 INIT_LIST_HEAD(&q->out_chunk_list);
197 INIT_LIST_HEAD(&q->control_chunk_list);
198 INIT_LIST_HEAD(&q->retransmit);
199 INIT_LIST_HEAD(&q->sacked);
200 INIT_LIST_HEAD(&q->abandoned);
201 sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
202}
203
204/* Free the outqueue structure and any related pending chunks.
205 */
206static void __sctp_outq_teardown(struct sctp_outq *q)
207{
208 struct sctp_transport *transport;
209 struct list_head *lchunk, *temp;
210 struct sctp_chunk *chunk, *tmp;
211
212 /* Throw away unacknowledged chunks. */
213 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
214 transports) {
215 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
216 chunk = list_entry(lchunk, struct sctp_chunk,
217 transmitted_list);
218 /* Mark as part of a failed message. */
219 sctp_chunk_fail(chunk, q->error);
220 sctp_chunk_free(chunk);
221 }
222 }
223
224 /* Throw away chunks that have been gap ACKed. */
225 list_for_each_safe(lchunk, temp, &q->sacked) {
226 list_del_init(lchunk);
227 chunk = list_entry(lchunk, struct sctp_chunk,
228 transmitted_list);
229 sctp_chunk_fail(chunk, q->error);
230 sctp_chunk_free(chunk);
231 }
232
233 /* Throw away any chunks in the retransmit queue. */
234 list_for_each_safe(lchunk, temp, &q->retransmit) {
235 list_del_init(lchunk);
236 chunk = list_entry(lchunk, struct sctp_chunk,
237 transmitted_list);
238 sctp_chunk_fail(chunk, q->error);
239 sctp_chunk_free(chunk);
240 }
241
242 /* Throw away any chunks that are in the abandoned queue. */
243 list_for_each_safe(lchunk, temp, &q->abandoned) {
244 list_del_init(lchunk);
245 chunk = list_entry(lchunk, struct sctp_chunk,
246 transmitted_list);
247 sctp_chunk_fail(chunk, q->error);
248 sctp_chunk_free(chunk);
249 }
250
251 /* Throw away any leftover data chunks. */
252 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
253 sctp_sched_dequeue_done(q, chunk);
254
255 /* Mark as send failure. */
256 sctp_chunk_fail(chunk, q->error);
257 sctp_chunk_free(chunk);
258 }
259
260 /* Throw away any leftover control chunks. */
261 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
262 list_del_init(&chunk->list);
263 sctp_chunk_free(chunk);
264 }
265}
266
267void sctp_outq_teardown(struct sctp_outq *q)
268{
269 __sctp_outq_teardown(q);
270 sctp_outq_init(q->asoc, q);
271}
272
273/* Free the outqueue structure and any related pending chunks. */
274void sctp_outq_free(struct sctp_outq *q)
275{
276 /* Throw away leftover chunks. */
277 __sctp_outq_teardown(q);
278}
279
280/* Put a new chunk in an sctp_outq. */
281void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
282{
283 struct net *net = q->asoc->base.net;
284
285 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
286 chunk && chunk->chunk_hdr ?
287 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
288 "illegal chunk");
289
290 /* If it is data, queue it up, otherwise, send it
291 * immediately.
292 */
293 if (sctp_chunk_is_data(chunk)) {
294 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
295 __func__, q, chunk, chunk && chunk->chunk_hdr ?
296 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
297 "illegal chunk");
298
299 sctp_outq_tail_data(q, chunk);
300 if (chunk->asoc->peer.prsctp_capable &&
301 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
302 chunk->asoc->sent_cnt_removable++;
303 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
304 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
305 else
306 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
307 } else {
308 list_add_tail(&chunk->list, &q->control_chunk_list);
309 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
310 }
311
312 if (!q->cork)
313 sctp_outq_flush(q, 0, gfp);
314}
315
316/* Insert a chunk into the sorted list based on the TSNs. The retransmit list
317 * and the abandoned list are in ascending order.
318 */
319static void sctp_insert_list(struct list_head *head, struct list_head *new)
320{
321 struct list_head *pos;
322 struct sctp_chunk *nchunk, *lchunk;
323 __u32 ntsn, ltsn;
324 int done = 0;
325
326 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
327 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
328
329 list_for_each(pos, head) {
330 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
331 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
332 if (TSN_lt(ntsn, ltsn)) {
333 list_add(new, pos->prev);
334 done = 1;
335 break;
336 }
337 }
338 if (!done)
339 list_add_tail(new, head);
340}
341
342static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
343 struct sctp_sndrcvinfo *sinfo,
344 struct list_head *queue, int msg_len)
345{
346 struct sctp_chunk *chk, *temp;
347
348 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
349 struct sctp_stream_out *streamout;
350
351 if (!chk->msg->abandoned &&
352 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
353 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
354 continue;
355
356 chk->msg->abandoned = 1;
357 list_del_init(&chk->transmitted_list);
358 sctp_insert_list(&asoc->outqueue.abandoned,
359 &chk->transmitted_list);
360
361 streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
362 asoc->sent_cnt_removable--;
363 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
364 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
365
366 if (queue != &asoc->outqueue.retransmit &&
367 !chk->tsn_gap_acked) {
368 if (chk->transport)
369 chk->transport->flight_size -=
370 sctp_data_size(chk);
371 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
372 }
373
374 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
375 if (msg_len <= 0)
376 break;
377 }
378
379 return msg_len;
380}
381
382static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
383 struct sctp_sndrcvinfo *sinfo, int msg_len)
384{
385 struct sctp_outq *q = &asoc->outqueue;
386 struct sctp_chunk *chk, *temp;
387
388 q->sched->unsched_all(&asoc->stream);
389
390 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
391 if (!chk->msg->abandoned &&
392 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
393 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
394 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
395 continue;
396
397 chk->msg->abandoned = 1;
398 sctp_sched_dequeue_common(q, chk);
399 asoc->sent_cnt_removable--;
400 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
401 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
402 struct sctp_stream_out *streamout =
403 SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
404
405 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
406 }
407
408 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
409 sctp_chunk_free(chk);
410 if (msg_len <= 0)
411 break;
412 }
413
414 q->sched->sched_all(&asoc->stream);
415
416 return msg_len;
417}
418
419/* Abandon the chunks according their priorities */
420void sctp_prsctp_prune(struct sctp_association *asoc,
421 struct sctp_sndrcvinfo *sinfo, int msg_len)
422{
423 struct sctp_transport *transport;
424
425 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
426 return;
427
428 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
429 &asoc->outqueue.retransmit,
430 msg_len);
431 if (msg_len <= 0)
432 return;
433
434 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
435 transports) {
436 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
437 &transport->transmitted,
438 msg_len);
439 if (msg_len <= 0)
440 return;
441 }
442
443 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
444}
445
446/* Mark all the eligible packets on a transport for retransmission. */
447void sctp_retransmit_mark(struct sctp_outq *q,
448 struct sctp_transport *transport,
449 __u8 reason)
450{
451 struct list_head *lchunk, *ltemp;
452 struct sctp_chunk *chunk;
453
454 /* Walk through the specified transmitted queue. */
455 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
456 chunk = list_entry(lchunk, struct sctp_chunk,
457 transmitted_list);
458
459 /* If the chunk is abandoned, move it to abandoned list. */
460 if (sctp_chunk_abandoned(chunk)) {
461 list_del_init(lchunk);
462 sctp_insert_list(&q->abandoned, lchunk);
463
464 /* If this chunk has not been previousely acked,
465 * stop considering it 'outstanding'. Our peer
466 * will most likely never see it since it will
467 * not be retransmitted
468 */
469 if (!chunk->tsn_gap_acked) {
470 if (chunk->transport)
471 chunk->transport->flight_size -=
472 sctp_data_size(chunk);
473 q->outstanding_bytes -= sctp_data_size(chunk);
474 q->asoc->peer.rwnd += sctp_data_size(chunk);
475 }
476 continue;
477 }
478
479 /* If we are doing retransmission due to a timeout or pmtu
480 * discovery, only the chunks that are not yet acked should
481 * be added to the retransmit queue.
482 */
483 if ((reason == SCTP_RTXR_FAST_RTX &&
484 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
485 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
486 /* RFC 2960 6.2.1 Processing a Received SACK
487 *
488 * C) Any time a DATA chunk is marked for
489 * retransmission (via either T3-rtx timer expiration
490 * (Section 6.3.3) or via fast retransmit
491 * (Section 7.2.4)), add the data size of those
492 * chunks to the rwnd.
493 */
494 q->asoc->peer.rwnd += sctp_data_size(chunk);
495 q->outstanding_bytes -= sctp_data_size(chunk);
496 if (chunk->transport)
497 transport->flight_size -= sctp_data_size(chunk);
498
499 /* sctpimpguide-05 Section 2.8.2
500 * M5) If a T3-rtx timer expires, the
501 * 'TSN.Missing.Report' of all affected TSNs is set
502 * to 0.
503 */
504 chunk->tsn_missing_report = 0;
505
506 /* If a chunk that is being used for RTT measurement
507 * has to be retransmitted, we cannot use this chunk
508 * anymore for RTT measurements. Reset rto_pending so
509 * that a new RTT measurement is started when a new
510 * data chunk is sent.
511 */
512 if (chunk->rtt_in_progress) {
513 chunk->rtt_in_progress = 0;
514 transport->rto_pending = 0;
515 }
516
517 /* Move the chunk to the retransmit queue. The chunks
518 * on the retransmit queue are always kept in order.
519 */
520 list_del_init(lchunk);
521 sctp_insert_list(&q->retransmit, lchunk);
522 }
523 }
524
525 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
526 "flight_size:%d, pba:%d\n", __func__, transport, reason,
527 transport->cwnd, transport->ssthresh, transport->flight_size,
528 transport->partial_bytes_acked);
529}
530
531/* Mark all the eligible packets on a transport for retransmission and force
532 * one packet out.
533 */
534void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
535 enum sctp_retransmit_reason reason)
536{
537 struct net *net = q->asoc->base.net;
538
539 switch (reason) {
540 case SCTP_RTXR_T3_RTX:
541 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
542 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
543 /* Update the retran path if the T3-rtx timer has expired for
544 * the current retran path.
545 */
546 if (transport == transport->asoc->peer.retran_path)
547 sctp_assoc_update_retran_path(transport->asoc);
548 transport->asoc->rtx_data_chunks +=
549 transport->asoc->unack_data;
550 break;
551 case SCTP_RTXR_FAST_RTX:
552 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
553 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
554 q->fast_rtx = 1;
555 break;
556 case SCTP_RTXR_PMTUD:
557 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
558 break;
559 case SCTP_RTXR_T1_RTX:
560 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
561 transport->asoc->init_retries++;
562 break;
563 default:
564 BUG();
565 }
566
567 sctp_retransmit_mark(q, transport, reason);
568
569 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
570 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
571 * following the procedures outlined in C1 - C5.
572 */
573 if (reason == SCTP_RTXR_T3_RTX)
574 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
575
576 /* Flush the queues only on timeout, since fast_rtx is only
577 * triggered during sack processing and the queue
578 * will be flushed at the end.
579 */
580 if (reason != SCTP_RTXR_FAST_RTX)
581 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
582}
583
584/*
585 * Transmit DATA chunks on the retransmit queue. Upon return from
586 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
587 * need to be transmitted by the caller.
588 * We assume that pkt->transport has already been set.
589 *
590 * The return value is a normal kernel error return value.
591 */
592static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
593 int rtx_timeout, int *start_timer, gfp_t gfp)
594{
595 struct sctp_transport *transport = pkt->transport;
596 struct sctp_chunk *chunk, *chunk1;
597 struct list_head *lqueue;
598 enum sctp_xmit status;
599 int error = 0;
600 int timer = 0;
601 int done = 0;
602 int fast_rtx;
603
604 lqueue = &q->retransmit;
605 fast_rtx = q->fast_rtx;
606
607 /* This loop handles time-out retransmissions, fast retransmissions,
608 * and retransmissions due to opening of whindow.
609 *
610 * RFC 2960 6.3.3 Handle T3-rtx Expiration
611 *
612 * E3) Determine how many of the earliest (i.e., lowest TSN)
613 * outstanding DATA chunks for the address for which the
614 * T3-rtx has expired will fit into a single packet, subject
615 * to the MTU constraint for the path corresponding to the
616 * destination transport address to which the retransmission
617 * is being sent (this may be different from the address for
618 * which the timer expires [see Section 6.4]). Call this value
619 * K. Bundle and retransmit those K DATA chunks in a single
620 * packet to the destination endpoint.
621 *
622 * [Just to be painfully clear, if we are retransmitting
623 * because a timeout just happened, we should send only ONE
624 * packet of retransmitted data.]
625 *
626 * For fast retransmissions we also send only ONE packet. However,
627 * if we are just flushing the queue due to open window, we'll
628 * try to send as much as possible.
629 */
630 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
631 /* If the chunk is abandoned, move it to abandoned list. */
632 if (sctp_chunk_abandoned(chunk)) {
633 list_del_init(&chunk->transmitted_list);
634 sctp_insert_list(&q->abandoned,
635 &chunk->transmitted_list);
636 continue;
637 }
638
639 /* Make sure that Gap Acked TSNs are not retransmitted. A
640 * simple approach is just to move such TSNs out of the
641 * way and into a 'transmitted' queue and skip to the
642 * next chunk.
643 */
644 if (chunk->tsn_gap_acked) {
645 list_move_tail(&chunk->transmitted_list,
646 &transport->transmitted);
647 continue;
648 }
649
650 /* If we are doing fast retransmit, ignore non-fast_rtransmit
651 * chunks
652 */
653 if (fast_rtx && !chunk->fast_retransmit)
654 continue;
655
656redo:
657 /* Attempt to append this chunk to the packet. */
658 status = sctp_packet_append_chunk(pkt, chunk);
659
660 switch (status) {
661 case SCTP_XMIT_PMTU_FULL:
662 if (!pkt->has_data && !pkt->has_cookie_echo) {
663 /* If this packet did not contain DATA then
664 * retransmission did not happen, so do it
665 * again. We'll ignore the error here since
666 * control chunks are already freed so there
667 * is nothing we can do.
668 */
669 sctp_packet_transmit(pkt, gfp);
670 goto redo;
671 }
672
673 /* Send this packet. */
674 error = sctp_packet_transmit(pkt, gfp);
675
676 /* If we are retransmitting, we should only
677 * send a single packet.
678 * Otherwise, try appending this chunk again.
679 */
680 if (rtx_timeout || fast_rtx)
681 done = 1;
682 else
683 goto redo;
684
685 /* Bundle next chunk in the next round. */
686 break;
687
688 case SCTP_XMIT_RWND_FULL:
689 /* Send this packet. */
690 error = sctp_packet_transmit(pkt, gfp);
691
692 /* Stop sending DATA as there is no more room
693 * at the receiver.
694 */
695 done = 1;
696 break;
697
698 case SCTP_XMIT_DELAY:
699 /* Send this packet. */
700 error = sctp_packet_transmit(pkt, gfp);
701
702 /* Stop sending DATA because of nagle delay. */
703 done = 1;
704 break;
705
706 default:
707 /* The append was successful, so add this chunk to
708 * the transmitted list.
709 */
710 list_move_tail(&chunk->transmitted_list,
711 &transport->transmitted);
712
713 /* Mark the chunk as ineligible for fast retransmit
714 * after it is retransmitted.
715 */
716 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
717 chunk->fast_retransmit = SCTP_DONT_FRTX;
718
719 q->asoc->stats.rtxchunks++;
720 break;
721 }
722
723 /* Set the timer if there were no errors */
724 if (!error && !timer)
725 timer = 1;
726
727 if (done)
728 break;
729 }
730
731 /* If we are here due to a retransmit timeout or a fast
732 * retransmit and if there are any chunks left in the retransmit
733 * queue that could not fit in the PMTU sized packet, they need
734 * to be marked as ineligible for a subsequent fast retransmit.
735 */
736 if (rtx_timeout || fast_rtx) {
737 list_for_each_entry(chunk1, lqueue, transmitted_list) {
738 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
739 chunk1->fast_retransmit = SCTP_DONT_FRTX;
740 }
741 }
742
743 *start_timer = timer;
744
745 /* Clear fast retransmit hint */
746 if (fast_rtx)
747 q->fast_rtx = 0;
748
749 return error;
750}
751
752/* Cork the outqueue so queued chunks are really queued. */
753void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
754{
755 if (q->cork)
756 q->cork = 0;
757
758 sctp_outq_flush(q, 0, gfp);
759}
760
761static int sctp_packet_singleton(struct sctp_transport *transport,
762 struct sctp_chunk *chunk, gfp_t gfp)
763{
764 const struct sctp_association *asoc = transport->asoc;
765 const __u16 sport = asoc->base.bind_addr.port;
766 const __u16 dport = asoc->peer.port;
767 const __u32 vtag = asoc->peer.i.init_tag;
768 struct sctp_packet singleton;
769
770 sctp_packet_init(&singleton, transport, sport, dport);
771 sctp_packet_config(&singleton, vtag, 0);
772 if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) {
773 list_del_init(&chunk->list);
774 sctp_chunk_free(chunk);
775 return -ENOMEM;
776 }
777 return sctp_packet_transmit(&singleton, gfp);
778}
779
780/* Struct to hold the context during sctp outq flush */
781struct sctp_flush_ctx {
782 struct sctp_outq *q;
783 /* Current transport being used. It's NOT the same as curr active one */
784 struct sctp_transport *transport;
785 /* These transports have chunks to send. */
786 struct list_head transport_list;
787 struct sctp_association *asoc;
788 /* Packet on the current transport above */
789 struct sctp_packet *packet;
790 gfp_t gfp;
791};
792
793/* transport: current transport */
794static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
795 struct sctp_chunk *chunk)
796{
797 struct sctp_transport *new_transport = chunk->transport;
798
799 if (!new_transport) {
800 if (!sctp_chunk_is_data(chunk)) {
801 /* If we have a prior transport pointer, see if
802 * the destination address of the chunk
803 * matches the destination address of the
804 * current transport. If not a match, then
805 * try to look up the transport with a given
806 * destination address. We do this because
807 * after processing ASCONFs, we may have new
808 * transports created.
809 */
810 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
811 &ctx->transport->ipaddr))
812 new_transport = ctx->transport;
813 else
814 new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
815 &chunk->dest);
816 }
817
818 /* if we still don't have a new transport, then
819 * use the current active path.
820 */
821 if (!new_transport)
822 new_transport = ctx->asoc->peer.active_path;
823 } else {
824 __u8 type;
825
826 switch (new_transport->state) {
827 case SCTP_INACTIVE:
828 case SCTP_UNCONFIRMED:
829 case SCTP_PF:
830 /* If the chunk is Heartbeat or Heartbeat Ack,
831 * send it to chunk->transport, even if it's
832 * inactive.
833 *
834 * 3.3.6 Heartbeat Acknowledgement:
835 * ...
836 * A HEARTBEAT ACK is always sent to the source IP
837 * address of the IP datagram containing the
838 * HEARTBEAT chunk to which this ack is responding.
839 * ...
840 *
841 * ASCONF_ACKs also must be sent to the source.
842 */
843 type = chunk->chunk_hdr->type;
844 if (type != SCTP_CID_HEARTBEAT &&
845 type != SCTP_CID_HEARTBEAT_ACK &&
846 type != SCTP_CID_ASCONF_ACK)
847 new_transport = ctx->asoc->peer.active_path;
848 break;
849 default:
850 break;
851 }
852 }
853
854 /* Are we switching transports? Take care of transport locks. */
855 if (new_transport != ctx->transport) {
856 ctx->transport = new_transport;
857 ctx->packet = &ctx->transport->packet;
858
859 if (list_empty(&ctx->transport->send_ready))
860 list_add_tail(&ctx->transport->send_ready,
861 &ctx->transport_list);
862
863 sctp_packet_config(ctx->packet,
864 ctx->asoc->peer.i.init_tag,
865 ctx->asoc->peer.ecn_capable);
866 /* We've switched transports, so apply the
867 * Burst limit to the new transport.
868 */
869 sctp_transport_burst_limited(ctx->transport);
870 }
871}
872
873static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
874{
875 struct sctp_chunk *chunk, *tmp;
876 enum sctp_xmit status;
877 int one_packet, error;
878
879 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
880 one_packet = 0;
881
882 /* RFC 5061, 5.3
883 * F1) This means that until such time as the ASCONF
884 * containing the add is acknowledged, the sender MUST
885 * NOT use the new IP address as a source for ANY SCTP
886 * packet except on carrying an ASCONF Chunk.
887 */
888 if (ctx->asoc->src_out_of_asoc_ok &&
889 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
890 continue;
891
892 list_del_init(&chunk->list);
893
894 /* Pick the right transport to use. Should always be true for
895 * the first chunk as we don't have a transport by then.
896 */
897 sctp_outq_select_transport(ctx, chunk);
898
899 switch (chunk->chunk_hdr->type) {
900 /* 6.10 Bundling
901 * ...
902 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
903 * COMPLETE with any other chunks. [Send them immediately.]
904 */
905 case SCTP_CID_INIT:
906 case SCTP_CID_INIT_ACK:
907 case SCTP_CID_SHUTDOWN_COMPLETE:
908 error = sctp_packet_singleton(ctx->transport, chunk,
909 ctx->gfp);
910 if (error < 0) {
911 ctx->asoc->base.sk->sk_err = -error;
912 return;
913 }
914 break;
915
916 case SCTP_CID_ABORT:
917 if (sctp_test_T_bit(chunk))
918 ctx->packet->vtag = ctx->asoc->c.my_vtag;
919 fallthrough;
920
921 /* The following chunks are "response" chunks, i.e.
922 * they are generated in response to something we
923 * received. If we are sending these, then we can
924 * send only 1 packet containing these chunks.
925 */
926 case SCTP_CID_HEARTBEAT_ACK:
927 case SCTP_CID_SHUTDOWN_ACK:
928 case SCTP_CID_COOKIE_ACK:
929 case SCTP_CID_COOKIE_ECHO:
930 case SCTP_CID_ERROR:
931 case SCTP_CID_ECN_CWR:
932 case SCTP_CID_ASCONF_ACK:
933 one_packet = 1;
934 fallthrough;
935
936 case SCTP_CID_HEARTBEAT:
937 if (chunk->pmtu_probe) {
938 sctp_packet_singleton(ctx->transport, chunk, ctx->gfp);
939 break;
940 }
941 fallthrough;
942 case SCTP_CID_SACK:
943 case SCTP_CID_SHUTDOWN:
944 case SCTP_CID_ECN_ECNE:
945 case SCTP_CID_ASCONF:
946 case SCTP_CID_FWD_TSN:
947 case SCTP_CID_I_FWD_TSN:
948 case SCTP_CID_RECONF:
949 status = sctp_packet_transmit_chunk(ctx->packet, chunk,
950 one_packet, ctx->gfp);
951 if (status != SCTP_XMIT_OK) {
952 /* put the chunk back */
953 list_add(&chunk->list, &ctx->q->control_chunk_list);
954 break;
955 }
956
957 ctx->asoc->stats.octrlchunks++;
958 /* PR-SCTP C5) If a FORWARD TSN is sent, the
959 * sender MUST assure that at least one T3-rtx
960 * timer is running.
961 */
962 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
963 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
964 sctp_transport_reset_t3_rtx(ctx->transport);
965 ctx->transport->last_time_sent = jiffies;
966 }
967
968 if (chunk == ctx->asoc->strreset_chunk)
969 sctp_transport_reset_reconf_timer(ctx->transport);
970
971 break;
972
973 default:
974 /* We built a chunk with an illegal type! */
975 BUG();
976 }
977 }
978}
979
980/* Returns false if new data shouldn't be sent */
981static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
982 int rtx_timeout)
983{
984 int error, start_timer = 0;
985
986 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
987 return false;
988
989 if (ctx->transport != ctx->asoc->peer.retran_path) {
990 /* Switch transports & prepare the packet. */
991 ctx->transport = ctx->asoc->peer.retran_path;
992 ctx->packet = &ctx->transport->packet;
993
994 if (list_empty(&ctx->transport->send_ready))
995 list_add_tail(&ctx->transport->send_ready,
996 &ctx->transport_list);
997
998 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
999 ctx->asoc->peer.ecn_capable);
1000 }
1001
1002 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1003 &start_timer, ctx->gfp);
1004 if (error < 0)
1005 ctx->asoc->base.sk->sk_err = -error;
1006
1007 if (start_timer) {
1008 sctp_transport_reset_t3_rtx(ctx->transport);
1009 ctx->transport->last_time_sent = jiffies;
1010 }
1011
1012 /* This can happen on COOKIE-ECHO resend. Only
1013 * one chunk can get bundled with a COOKIE-ECHO.
1014 */
1015 if (ctx->packet->has_cookie_echo)
1016 return false;
1017
1018 /* Don't send new data if there is still data
1019 * waiting to retransmit.
1020 */
1021 if (!list_empty(&ctx->q->retransmit))
1022 return false;
1023
1024 return true;
1025}
1026
1027static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1028 int rtx_timeout)
1029{
1030 struct sctp_chunk *chunk;
1031 enum sctp_xmit status;
1032
1033 /* Is it OK to send data chunks? */
1034 switch (ctx->asoc->state) {
1035 case SCTP_STATE_COOKIE_ECHOED:
1036 /* Only allow bundling when this packet has a COOKIE-ECHO
1037 * chunk.
1038 */
1039 if (!ctx->packet || !ctx->packet->has_cookie_echo)
1040 return;
1041
1042 fallthrough;
1043 case SCTP_STATE_ESTABLISHED:
1044 case SCTP_STATE_SHUTDOWN_PENDING:
1045 case SCTP_STATE_SHUTDOWN_RECEIVED:
1046 break;
1047
1048 default:
1049 /* Do nothing. */
1050 return;
1051 }
1052
1053 /* RFC 2960 6.1 Transmission of DATA Chunks
1054 *
1055 * C) When the time comes for the sender to transmit,
1056 * before sending new DATA chunks, the sender MUST
1057 * first transmit any outstanding DATA chunks which
1058 * are marked for retransmission (limited by the
1059 * current cwnd).
1060 */
1061 if (!list_empty(&ctx->q->retransmit) &&
1062 !sctp_outq_flush_rtx(ctx, rtx_timeout))
1063 return;
1064
1065 /* Apply Max.Burst limitation to the current transport in
1066 * case it will be used for new data. We are going to
1067 * rest it before we return, but we want to apply the limit
1068 * to the currently queued data.
1069 */
1070 if (ctx->transport)
1071 sctp_transport_burst_limited(ctx->transport);
1072
1073 /* Finally, transmit new packets. */
1074 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1075 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1076 __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1077
1078 /* Has this chunk expired? */
1079 if (sctp_chunk_abandoned(chunk)) {
1080 sctp_sched_dequeue_done(ctx->q, chunk);
1081 sctp_chunk_fail(chunk, 0);
1082 sctp_chunk_free(chunk);
1083 continue;
1084 }
1085
1086 if (stream_state == SCTP_STREAM_CLOSED) {
1087 sctp_outq_head_data(ctx->q, chunk);
1088 break;
1089 }
1090
1091 sctp_outq_select_transport(ctx, chunk);
1092
1093 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1094 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1095 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1096 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1097 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1098 refcount_read(&chunk->skb->users) : -1);
1099
1100 /* Add the chunk to the packet. */
1101 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1102 ctx->gfp);
1103 if (status != SCTP_XMIT_OK) {
1104 /* We could not append this chunk, so put
1105 * the chunk back on the output queue.
1106 */
1107 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1108 __func__, ntohl(chunk->subh.data_hdr->tsn),
1109 status);
1110
1111 sctp_outq_head_data(ctx->q, chunk);
1112 break;
1113 }
1114
1115 /* The sender is in the SHUTDOWN-PENDING state,
1116 * The sender MAY set the I-bit in the DATA
1117 * chunk header.
1118 */
1119 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1120 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1121 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1122 ctx->asoc->stats.ouodchunks++;
1123 else
1124 ctx->asoc->stats.oodchunks++;
1125
1126 /* Only now it's safe to consider this
1127 * chunk as sent, sched-wise.
1128 */
1129 sctp_sched_dequeue_done(ctx->q, chunk);
1130
1131 list_add_tail(&chunk->transmitted_list,
1132 &ctx->transport->transmitted);
1133
1134 sctp_transport_reset_t3_rtx(ctx->transport);
1135 ctx->transport->last_time_sent = jiffies;
1136
1137 /* Only let one DATA chunk get bundled with a
1138 * COOKIE-ECHO chunk.
1139 */
1140 if (ctx->packet->has_cookie_echo)
1141 break;
1142 }
1143}
1144
1145static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1146{
1147 struct sock *sk = ctx->asoc->base.sk;
1148 struct list_head *ltransport;
1149 struct sctp_packet *packet;
1150 struct sctp_transport *t;
1151 int error = 0;
1152
1153 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1154 t = list_entry(ltransport, struct sctp_transport, send_ready);
1155 packet = &t->packet;
1156 if (!sctp_packet_empty(packet)) {
1157 rcu_read_lock();
1158 if (t->dst && __sk_dst_get(sk) != t->dst) {
1159 dst_hold(t->dst);
1160 sk_setup_caps(sk, t->dst);
1161 }
1162 rcu_read_unlock();
1163 error = sctp_packet_transmit(packet, ctx->gfp);
1164 if (error < 0)
1165 ctx->q->asoc->base.sk->sk_err = -error;
1166 }
1167
1168 /* Clear the burst limited state, if any */
1169 sctp_transport_burst_reset(t);
1170 }
1171}
1172
1173/* Try to flush an outqueue.
1174 *
1175 * Description: Send everything in q which we legally can, subject to
1176 * congestion limitations.
1177 * * Note: This function can be called from multiple contexts so appropriate
1178 * locking concerns must be made. Today we use the sock lock to protect
1179 * this function.
1180 */
1181
1182static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1183{
1184 struct sctp_flush_ctx ctx = {
1185 .q = q,
1186 .transport = NULL,
1187 .transport_list = LIST_HEAD_INIT(ctx.transport_list),
1188 .asoc = q->asoc,
1189 .packet = NULL,
1190 .gfp = gfp,
1191 };
1192
1193 /* 6.10 Bundling
1194 * ...
1195 * When bundling control chunks with DATA chunks, an
1196 * endpoint MUST place control chunks first in the outbound
1197 * SCTP packet. The transmitter MUST transmit DATA chunks
1198 * within a SCTP packet in increasing order of TSN.
1199 * ...
1200 */
1201
1202 sctp_outq_flush_ctrl(&ctx);
1203
1204 if (q->asoc->src_out_of_asoc_ok)
1205 goto sctp_flush_out;
1206
1207 sctp_outq_flush_data(&ctx, rtx_timeout);
1208
1209sctp_flush_out:
1210
1211 sctp_outq_flush_transports(&ctx);
1212}
1213
1214/* Update unack_data based on the incoming SACK chunk */
1215static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1216 struct sctp_sackhdr *sack)
1217{
1218 union sctp_sack_variable *frags;
1219 __u16 unack_data;
1220 int i;
1221
1222 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1223
1224 frags = sack->variable;
1225 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1226 unack_data -= ((ntohs(frags[i].gab.end) -
1227 ntohs(frags[i].gab.start) + 1));
1228 }
1229
1230 assoc->unack_data = unack_data;
1231}
1232
1233/* This is where we REALLY process a SACK.
1234 *
1235 * Process the SACK against the outqueue. Mostly, this just frees
1236 * things off the transmitted queue.
1237 */
1238int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1239{
1240 struct sctp_association *asoc = q->asoc;
1241 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1242 struct sctp_transport *transport;
1243 struct sctp_chunk *tchunk = NULL;
1244 struct list_head *lchunk, *transport_list, *temp;
1245 union sctp_sack_variable *frags = sack->variable;
1246 __u32 sack_ctsn, ctsn, tsn;
1247 __u32 highest_tsn, highest_new_tsn;
1248 __u32 sack_a_rwnd;
1249 unsigned int outstanding;
1250 struct sctp_transport *primary = asoc->peer.primary_path;
1251 int count_of_newacks = 0;
1252 int gap_ack_blocks;
1253 u8 accum_moved = 0;
1254
1255 /* Grab the association's destination address list. */
1256 transport_list = &asoc->peer.transport_addr_list;
1257
1258 /* SCTP path tracepoint for congestion control debugging. */
1259 if (trace_sctp_probe_path_enabled()) {
1260 list_for_each_entry(transport, transport_list, transports)
1261 trace_sctp_probe_path(transport, asoc);
1262 }
1263
1264 sack_ctsn = ntohl(sack->cum_tsn_ack);
1265 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1266 asoc->stats.gapcnt += gap_ack_blocks;
1267 /*
1268 * SFR-CACC algorithm:
1269 * On receipt of a SACK the sender SHOULD execute the
1270 * following statements.
1271 *
1272 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1273 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1274 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1275 * all destinations.
1276 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1277 * is set the receiver of the SACK MUST take the following actions:
1278 *
1279 * A) Initialize the cacc_saw_newack to 0 for all destination
1280 * addresses.
1281 *
1282 * Only bother if changeover_active is set. Otherwise, this is
1283 * totally suboptimal to do on every SACK.
1284 */
1285 if (primary->cacc.changeover_active) {
1286 u8 clear_cycling = 0;
1287
1288 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1289 primary->cacc.changeover_active = 0;
1290 clear_cycling = 1;
1291 }
1292
1293 if (clear_cycling || gap_ack_blocks) {
1294 list_for_each_entry(transport, transport_list,
1295 transports) {
1296 if (clear_cycling)
1297 transport->cacc.cycling_changeover = 0;
1298 if (gap_ack_blocks)
1299 transport->cacc.cacc_saw_newack = 0;
1300 }
1301 }
1302 }
1303
1304 /* Get the highest TSN in the sack. */
1305 highest_tsn = sack_ctsn;
1306 if (gap_ack_blocks)
1307 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1308
1309 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1310 asoc->highest_sacked = highest_tsn;
1311
1312 highest_new_tsn = sack_ctsn;
1313
1314 /* Run through the retransmit queue. Credit bytes received
1315 * and free those chunks that we can.
1316 */
1317 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1318
1319 /* Run through the transmitted queue.
1320 * Credit bytes received and free those chunks which we can.
1321 *
1322 * This is a MASSIVE candidate for optimization.
1323 */
1324 list_for_each_entry(transport, transport_list, transports) {
1325 sctp_check_transmitted(q, &transport->transmitted,
1326 transport, &chunk->source, sack,
1327 &highest_new_tsn);
1328 /*
1329 * SFR-CACC algorithm:
1330 * C) Let count_of_newacks be the number of
1331 * destinations for which cacc_saw_newack is set.
1332 */
1333 if (transport->cacc.cacc_saw_newack)
1334 count_of_newacks++;
1335 }
1336
1337 /* Move the Cumulative TSN Ack Point if appropriate. */
1338 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1339 asoc->ctsn_ack_point = sack_ctsn;
1340 accum_moved = 1;
1341 }
1342
1343 if (gap_ack_blocks) {
1344
1345 if (asoc->fast_recovery && accum_moved)
1346 highest_new_tsn = highest_tsn;
1347
1348 list_for_each_entry(transport, transport_list, transports)
1349 sctp_mark_missing(q, &transport->transmitted, transport,
1350 highest_new_tsn, count_of_newacks);
1351 }
1352
1353 /* Update unack_data field in the assoc. */
1354 sctp_sack_update_unack_data(asoc, sack);
1355
1356 ctsn = asoc->ctsn_ack_point;
1357
1358 /* Throw away stuff rotting on the sack queue. */
1359 list_for_each_safe(lchunk, temp, &q->sacked) {
1360 tchunk = list_entry(lchunk, struct sctp_chunk,
1361 transmitted_list);
1362 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1363 if (TSN_lte(tsn, ctsn)) {
1364 list_del_init(&tchunk->transmitted_list);
1365 if (asoc->peer.prsctp_capable &&
1366 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1367 asoc->sent_cnt_removable--;
1368 sctp_chunk_free(tchunk);
1369 }
1370 }
1371
1372 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1373 * number of bytes still outstanding after processing the
1374 * Cumulative TSN Ack and the Gap Ack Blocks.
1375 */
1376
1377 sack_a_rwnd = ntohl(sack->a_rwnd);
1378 asoc->peer.zero_window_announced = !sack_a_rwnd;
1379 outstanding = q->outstanding_bytes;
1380
1381 if (outstanding < sack_a_rwnd)
1382 sack_a_rwnd -= outstanding;
1383 else
1384 sack_a_rwnd = 0;
1385
1386 asoc->peer.rwnd = sack_a_rwnd;
1387
1388 asoc->stream.si->generate_ftsn(q, sack_ctsn);
1389
1390 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1391 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1392 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1393 asoc->adv_peer_ack_point);
1394
1395 return sctp_outq_is_empty(q);
1396}
1397
1398/* Is the outqueue empty?
1399 * The queue is empty when we have not pending data, no in-flight data
1400 * and nothing pending retransmissions.
1401 */
1402int sctp_outq_is_empty(const struct sctp_outq *q)
1403{
1404 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1405 list_empty(&q->retransmit);
1406}
1407
1408/********************************************************************
1409 * 2nd Level Abstractions
1410 ********************************************************************/
1411
1412/* Go through a transport's transmitted list or the association's retransmit
1413 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1414 * The retransmit list will not have an associated transport.
1415 *
1416 * I added coherent debug information output. --xguo
1417 *
1418 * Instead of printing 'sacked' or 'kept' for each TSN on the
1419 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1420 * KEPT TSN6-TSN7, etc.
1421 */
1422static void sctp_check_transmitted(struct sctp_outq *q,
1423 struct list_head *transmitted_queue,
1424 struct sctp_transport *transport,
1425 union sctp_addr *saddr,
1426 struct sctp_sackhdr *sack,
1427 __u32 *highest_new_tsn_in_sack)
1428{
1429 struct list_head *lchunk;
1430 struct sctp_chunk *tchunk;
1431 struct list_head tlist;
1432 __u32 tsn;
1433 __u32 sack_ctsn;
1434 __u32 rtt;
1435 __u8 restart_timer = 0;
1436 int bytes_acked = 0;
1437 int migrate_bytes = 0;
1438 bool forward_progress = false;
1439
1440 sack_ctsn = ntohl(sack->cum_tsn_ack);
1441
1442 INIT_LIST_HEAD(&tlist);
1443
1444 /* The while loop will skip empty transmitted queues. */
1445 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1446 tchunk = list_entry(lchunk, struct sctp_chunk,
1447 transmitted_list);
1448
1449 if (sctp_chunk_abandoned(tchunk)) {
1450 /* Move the chunk to abandoned list. */
1451 sctp_insert_list(&q->abandoned, lchunk);
1452
1453 /* If this chunk has not been acked, stop
1454 * considering it as 'outstanding'.
1455 */
1456 if (transmitted_queue != &q->retransmit &&
1457 !tchunk->tsn_gap_acked) {
1458 if (tchunk->transport)
1459 tchunk->transport->flight_size -=
1460 sctp_data_size(tchunk);
1461 q->outstanding_bytes -= sctp_data_size(tchunk);
1462 }
1463 continue;
1464 }
1465
1466 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1467 if (sctp_acked(sack, tsn)) {
1468 /* If this queue is the retransmit queue, the
1469 * retransmit timer has already reclaimed
1470 * the outstanding bytes for this chunk, so only
1471 * count bytes associated with a transport.
1472 */
1473 if (transport && !tchunk->tsn_gap_acked) {
1474 /* If this chunk is being used for RTT
1475 * measurement, calculate the RTT and update
1476 * the RTO using this value.
1477 *
1478 * 6.3.1 C5) Karn's algorithm: RTT measurements
1479 * MUST NOT be made using packets that were
1480 * retransmitted (and thus for which it is
1481 * ambiguous whether the reply was for the
1482 * first instance of the packet or a later
1483 * instance).
1484 */
1485 if (!sctp_chunk_retransmitted(tchunk) &&
1486 tchunk->rtt_in_progress) {
1487 tchunk->rtt_in_progress = 0;
1488 rtt = jiffies - tchunk->sent_at;
1489 sctp_transport_update_rto(transport,
1490 rtt);
1491 }
1492
1493 if (TSN_lte(tsn, sack_ctsn)) {
1494 /*
1495 * SFR-CACC algorithm:
1496 * 2) If the SACK contains gap acks
1497 * and the flag CHANGEOVER_ACTIVE is
1498 * set the receiver of the SACK MUST
1499 * take the following action:
1500 *
1501 * B) For each TSN t being acked that
1502 * has not been acked in any SACK so
1503 * far, set cacc_saw_newack to 1 for
1504 * the destination that the TSN was
1505 * sent to.
1506 */
1507 if (sack->num_gap_ack_blocks &&
1508 q->asoc->peer.primary_path->cacc.
1509 changeover_active)
1510 transport->cacc.cacc_saw_newack
1511 = 1;
1512 }
1513 }
1514
1515 /* If the chunk hasn't been marked as ACKED,
1516 * mark it and account bytes_acked if the
1517 * chunk had a valid transport (it will not
1518 * have a transport if ASCONF had deleted it
1519 * while DATA was outstanding).
1520 */
1521 if (!tchunk->tsn_gap_acked) {
1522 tchunk->tsn_gap_acked = 1;
1523 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1524 *highest_new_tsn_in_sack = tsn;
1525 bytes_acked += sctp_data_size(tchunk);
1526 if (!tchunk->transport)
1527 migrate_bytes += sctp_data_size(tchunk);
1528 forward_progress = true;
1529 }
1530
1531 if (TSN_lte(tsn, sack_ctsn)) {
1532 /* RFC 2960 6.3.2 Retransmission Timer Rules
1533 *
1534 * R3) Whenever a SACK is received
1535 * that acknowledges the DATA chunk
1536 * with the earliest outstanding TSN
1537 * for that address, restart T3-rtx
1538 * timer for that address with its
1539 * current RTO.
1540 */
1541 restart_timer = 1;
1542 forward_progress = true;
1543
1544 list_add_tail(&tchunk->transmitted_list,
1545 &q->sacked);
1546 } else {
1547 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1548 * M2) Each time a SACK arrives reporting
1549 * 'Stray DATA chunk(s)' record the highest TSN
1550 * reported as newly acknowledged, call this
1551 * value 'HighestTSNinSack'. A newly
1552 * acknowledged DATA chunk is one not
1553 * previously acknowledged in a SACK.
1554 *
1555 * When the SCTP sender of data receives a SACK
1556 * chunk that acknowledges, for the first time,
1557 * the receipt of a DATA chunk, all the still
1558 * unacknowledged DATA chunks whose TSN is
1559 * older than that newly acknowledged DATA
1560 * chunk, are qualified as 'Stray DATA chunks'.
1561 */
1562 list_add_tail(lchunk, &tlist);
1563 }
1564 } else {
1565 if (tchunk->tsn_gap_acked) {
1566 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1567 __func__, tsn);
1568
1569 tchunk->tsn_gap_acked = 0;
1570
1571 if (tchunk->transport)
1572 bytes_acked -= sctp_data_size(tchunk);
1573
1574 /* RFC 2960 6.3.2 Retransmission Timer Rules
1575 *
1576 * R4) Whenever a SACK is received missing a
1577 * TSN that was previously acknowledged via a
1578 * Gap Ack Block, start T3-rtx for the
1579 * destination address to which the DATA
1580 * chunk was originally
1581 * transmitted if it is not already running.
1582 */
1583 restart_timer = 1;
1584 }
1585
1586 list_add_tail(lchunk, &tlist);
1587 }
1588 }
1589
1590 if (transport) {
1591 if (bytes_acked) {
1592 struct sctp_association *asoc = transport->asoc;
1593
1594 /* We may have counted DATA that was migrated
1595 * to this transport due to DEL-IP operation.
1596 * Subtract those bytes, since the were never
1597 * send on this transport and shouldn't be
1598 * credited to this transport.
1599 */
1600 bytes_acked -= migrate_bytes;
1601
1602 /* 8.2. When an outstanding TSN is acknowledged,
1603 * the endpoint shall clear the error counter of
1604 * the destination transport address to which the
1605 * DATA chunk was last sent.
1606 * The association's overall error counter is
1607 * also cleared.
1608 */
1609 transport->error_count = 0;
1610 transport->asoc->overall_error_count = 0;
1611 forward_progress = true;
1612
1613 /*
1614 * While in SHUTDOWN PENDING, we may have started
1615 * the T5 shutdown guard timer after reaching the
1616 * retransmission limit. Stop that timer as soon
1617 * as the receiver acknowledged any data.
1618 */
1619 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1620 del_timer(&asoc->timers
1621 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1622 sctp_association_put(asoc);
1623
1624 /* Mark the destination transport address as
1625 * active if it is not so marked.
1626 */
1627 if ((transport->state == SCTP_INACTIVE ||
1628 transport->state == SCTP_UNCONFIRMED) &&
1629 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1630 sctp_assoc_control_transport(
1631 transport->asoc,
1632 transport,
1633 SCTP_TRANSPORT_UP,
1634 SCTP_RECEIVED_SACK);
1635 }
1636
1637 sctp_transport_raise_cwnd(transport, sack_ctsn,
1638 bytes_acked);
1639
1640 transport->flight_size -= bytes_acked;
1641 if (transport->flight_size == 0)
1642 transport->partial_bytes_acked = 0;
1643 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1644 } else {
1645 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1646 * When a sender is doing zero window probing, it
1647 * should not timeout the association if it continues
1648 * to receive new packets from the receiver. The
1649 * reason is that the receiver MAY keep its window
1650 * closed for an indefinite time.
1651 * A sender is doing zero window probing when the
1652 * receiver's advertised window is zero, and there is
1653 * only one data chunk in flight to the receiver.
1654 *
1655 * Allow the association to timeout while in SHUTDOWN
1656 * PENDING or SHUTDOWN RECEIVED in case the receiver
1657 * stays in zero window mode forever.
1658 */
1659 if (!q->asoc->peer.rwnd &&
1660 !list_empty(&tlist) &&
1661 (sack_ctsn+2 == q->asoc->next_tsn) &&
1662 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1663 pr_debug("%s: sack received for zero window "
1664 "probe:%u\n", __func__, sack_ctsn);
1665
1666 q->asoc->overall_error_count = 0;
1667 transport->error_count = 0;
1668 }
1669 }
1670
1671 /* RFC 2960 6.3.2 Retransmission Timer Rules
1672 *
1673 * R2) Whenever all outstanding data sent to an address have
1674 * been acknowledged, turn off the T3-rtx timer of that
1675 * address.
1676 */
1677 if (!transport->flight_size) {
1678 if (del_timer(&transport->T3_rtx_timer))
1679 sctp_transport_put(transport);
1680 } else if (restart_timer) {
1681 if (!mod_timer(&transport->T3_rtx_timer,
1682 jiffies + transport->rto))
1683 sctp_transport_hold(transport);
1684 }
1685
1686 if (forward_progress) {
1687 if (transport->dst)
1688 sctp_transport_dst_confirm(transport);
1689 }
1690 }
1691
1692 list_splice(&tlist, transmitted_queue);
1693}
1694
1695/* Mark chunks as missing and consequently may get retransmitted. */
1696static void sctp_mark_missing(struct sctp_outq *q,
1697 struct list_head *transmitted_queue,
1698 struct sctp_transport *transport,
1699 __u32 highest_new_tsn_in_sack,
1700 int count_of_newacks)
1701{
1702 struct sctp_chunk *chunk;
1703 __u32 tsn;
1704 char do_fast_retransmit = 0;
1705 struct sctp_association *asoc = q->asoc;
1706 struct sctp_transport *primary = asoc->peer.primary_path;
1707
1708 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1709
1710 tsn = ntohl(chunk->subh.data_hdr->tsn);
1711
1712 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1713 * 'Unacknowledged TSN's', if the TSN number of an
1714 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1715 * value, increment the 'TSN.Missing.Report' count on that
1716 * chunk if it has NOT been fast retransmitted or marked for
1717 * fast retransmit already.
1718 */
1719 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1720 !chunk->tsn_gap_acked &&
1721 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1722
1723 /* SFR-CACC may require us to skip marking
1724 * this chunk as missing.
1725 */
1726 if (!transport || !sctp_cacc_skip(primary,
1727 chunk->transport,
1728 count_of_newacks, tsn)) {
1729 chunk->tsn_missing_report++;
1730
1731 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1732 __func__, tsn, chunk->tsn_missing_report);
1733 }
1734 }
1735 /*
1736 * M4) If any DATA chunk is found to have a
1737 * 'TSN.Missing.Report'
1738 * value larger than or equal to 3, mark that chunk for
1739 * retransmission and start the fast retransmit procedure.
1740 */
1741
1742 if (chunk->tsn_missing_report >= 3) {
1743 chunk->fast_retransmit = SCTP_NEED_FRTX;
1744 do_fast_retransmit = 1;
1745 }
1746 }
1747
1748 if (transport) {
1749 if (do_fast_retransmit)
1750 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1751
1752 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1753 "flight_size:%d, pba:%d\n", __func__, transport,
1754 transport->cwnd, transport->ssthresh,
1755 transport->flight_size, transport->partial_bytes_acked);
1756 }
1757}
1758
1759/* Is the given TSN acked by this packet? */
1760static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1761{
1762 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1763 union sctp_sack_variable *frags;
1764 __u16 tsn_offset, blocks;
1765 int i;
1766
1767 if (TSN_lte(tsn, ctsn))
1768 goto pass;
1769
1770 /* 3.3.4 Selective Acknowledgment (SACK) (3):
1771 *
1772 * Gap Ack Blocks:
1773 * These fields contain the Gap Ack Blocks. They are repeated
1774 * for each Gap Ack Block up to the number of Gap Ack Blocks
1775 * defined in the Number of Gap Ack Blocks field. All DATA
1776 * chunks with TSNs greater than or equal to (Cumulative TSN
1777 * Ack + Gap Ack Block Start) and less than or equal to
1778 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1779 * Block are assumed to have been received correctly.
1780 */
1781
1782 frags = sack->variable;
1783 blocks = ntohs(sack->num_gap_ack_blocks);
1784 tsn_offset = tsn - ctsn;
1785 for (i = 0; i < blocks; ++i) {
1786 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1787 tsn_offset <= ntohs(frags[i].gab.end))
1788 goto pass;
1789 }
1790
1791 return 0;
1792pass:
1793 return 1;
1794}
1795
1796static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1797 int nskips, __be16 stream)
1798{
1799 int i;
1800
1801 for (i = 0; i < nskips; i++) {
1802 if (skiplist[i].stream == stream)
1803 return i;
1804 }
1805 return i;
1806}
1807
1808/* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1809void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1810{
1811 struct sctp_association *asoc = q->asoc;
1812 struct sctp_chunk *ftsn_chunk = NULL;
1813 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1814 int nskips = 0;
1815 int skip_pos = 0;
1816 __u32 tsn;
1817 struct sctp_chunk *chunk;
1818 struct list_head *lchunk, *temp;
1819
1820 if (!asoc->peer.prsctp_capable)
1821 return;
1822
1823 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1824 * received SACK.
1825 *
1826 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1827 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1828 */
1829 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1830 asoc->adv_peer_ack_point = ctsn;
1831
1832 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1833 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1834 * the chunk next in the out-queue space is marked as "abandoned" as
1835 * shown in the following example:
1836 *
1837 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1838 * and the Advanced.Peer.Ack.Point is updated to this value:
1839 *
1840 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1841 * normal SACK processing local advancement
1842 * ... ...
1843 * Adv.Ack.Pt-> 102 acked 102 acked
1844 * 103 abandoned 103 abandoned
1845 * 104 abandoned Adv.Ack.P-> 104 abandoned
1846 * 105 105
1847 * 106 acked 106 acked
1848 * ... ...
1849 *
1850 * In this example, the data sender successfully advanced the
1851 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1852 */
1853 list_for_each_safe(lchunk, temp, &q->abandoned) {
1854 chunk = list_entry(lchunk, struct sctp_chunk,
1855 transmitted_list);
1856 tsn = ntohl(chunk->subh.data_hdr->tsn);
1857
1858 /* Remove any chunks in the abandoned queue that are acked by
1859 * the ctsn.
1860 */
1861 if (TSN_lte(tsn, ctsn)) {
1862 list_del_init(lchunk);
1863 sctp_chunk_free(chunk);
1864 } else {
1865 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1866 asoc->adv_peer_ack_point = tsn;
1867 if (chunk->chunk_hdr->flags &
1868 SCTP_DATA_UNORDERED)
1869 continue;
1870 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1871 nskips,
1872 chunk->subh.data_hdr->stream);
1873 ftsn_skip_arr[skip_pos].stream =
1874 chunk->subh.data_hdr->stream;
1875 ftsn_skip_arr[skip_pos].ssn =
1876 chunk->subh.data_hdr->ssn;
1877 if (skip_pos == nskips)
1878 nskips++;
1879 if (nskips == 10)
1880 break;
1881 } else
1882 break;
1883 }
1884 }
1885
1886 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1887 * is greater than the Cumulative TSN ACK carried in the received
1888 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1889 * chunk containing the latest value of the
1890 * "Advanced.Peer.Ack.Point".
1891 *
1892 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1893 * list each stream and sequence number in the forwarded TSN. This
1894 * information will enable the receiver to easily find any
1895 * stranded TSN's waiting on stream reorder queues. Each stream
1896 * SHOULD only be reported once; this means that if multiple
1897 * abandoned messages occur in the same stream then only the
1898 * highest abandoned stream sequence number is reported. If the
1899 * total size of the FORWARD TSN does NOT fit in a single MTU then
1900 * the sender of the FORWARD TSN SHOULD lower the
1901 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1902 * single MTU.
1903 */
1904 if (asoc->adv_peer_ack_point > ctsn)
1905 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1906 nskips, &ftsn_skip_arr[0]);
1907
1908 if (ftsn_chunk) {
1909 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1910 SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS);
1911 }
1912}
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 */
41
42#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44#include <linux/types.h>
45#include <linux/list.h> /* For struct list_head */
46#include <linux/socket.h>
47#include <linux/ip.h>
48#include <linux/slab.h>
49#include <net/sock.h> /* For skb_set_owner_w */
50
51#include <net/sctp/sctp.h>
52#include <net/sctp/sm.h>
53#include <net/sctp/stream_sched.h>
54
55/* Declare internal functions here. */
56static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57static void sctp_check_transmitted(struct sctp_outq *q,
58 struct list_head *transmitted_queue,
59 struct sctp_transport *transport,
60 union sctp_addr *saddr,
61 struct sctp_sackhdr *sack,
62 __u32 *highest_new_tsn);
63
64static void sctp_mark_missing(struct sctp_outq *q,
65 struct list_head *transmitted_queue,
66 struct sctp_transport *transport,
67 __u32 highest_new_tsn,
68 int count_of_newacks);
69
70static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
71
72/* Add data to the front of the queue. */
73static inline void sctp_outq_head_data(struct sctp_outq *q,
74 struct sctp_chunk *ch)
75{
76 struct sctp_stream_out_ext *oute;
77 __u16 stream;
78
79 list_add(&ch->list, &q->out_chunk_list);
80 q->out_qlen += ch->skb->len;
81
82 stream = sctp_chunk_stream_no(ch);
83 oute = q->asoc->stream.out[stream].ext;
84 list_add(&ch->stream_list, &oute->outq);
85}
86
87/* Take data from the front of the queue. */
88static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89{
90 return q->sched->dequeue(q);
91}
92
93/* Add data chunk to the end of the queue. */
94static inline void sctp_outq_tail_data(struct sctp_outq *q,
95 struct sctp_chunk *ch)
96{
97 struct sctp_stream_out_ext *oute;
98 __u16 stream;
99
100 list_add_tail(&ch->list, &q->out_chunk_list);
101 q->out_qlen += ch->skb->len;
102
103 stream = sctp_chunk_stream_no(ch);
104 oute = q->asoc->stream.out[stream].ext;
105 list_add_tail(&ch->stream_list, &oute->outq);
106}
107
108/*
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
113 */
114static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 struct sctp_transport *transport,
116 int count_of_newacks)
117{
118 if (count_of_newacks >= 2 && transport != primary)
119 return 1;
120 return 0;
121}
122
123/*
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
129 */
130static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 int count_of_newacks)
132{
133 if (count_of_newacks < 2 &&
134 (transport && !transport->cacc.cacc_saw_newack))
135 return 1;
136 return 0;
137}
138
139/*
140 * SFR-CACC algorithm:
141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142 * execute steps C, D, F.
143 *
144 * C has been implemented in sctp_outq_sack
145 */
146static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 struct sctp_transport *transport,
148 int count_of_newacks)
149{
150 if (!primary->cacc.cycling_changeover) {
151 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 return 1;
153 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 return 1;
155 return 0;
156 }
157 return 0;
158}
159
160/*
161 * SFR-CACC algorithm:
162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163 * than next_tsn_at_change of the current primary, then
164 * the sender MUST NOT increment missing report count
165 * for t.
166 */
167static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
168{
169 if (primary->cacc.cycling_changeover &&
170 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 return 1;
172 return 0;
173}
174
175/*
176 * SFR-CACC algorithm:
177 * 3) If the missing report count for TSN t is to be
178 * incremented according to [RFC2960] and
179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180 * then the sender MUST further execute steps 3.1 and
181 * 3.2 to determine if the missing report count for
182 * TSN t SHOULD NOT be incremented.
183 *
184 * 3.3) If 3.1 and 3.2 do not dictate that the missing
185 * report count for t should not be incremented, then
186 * the sender SHOULD increment missing report count for
187 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188 */
189static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 struct sctp_transport *transport,
191 int count_of_newacks,
192 __u32 tsn)
193{
194 if (primary->cacc.changeover_active &&
195 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 sctp_cacc_skip_3_2(primary, tsn)))
197 return 1;
198 return 0;
199}
200
201/* Initialize an existing sctp_outq. This does the boring stuff.
202 * You still need to define handlers if you really want to DO
203 * something with this structure...
204 */
205void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
206{
207 memset(q, 0, sizeof(struct sctp_outq));
208
209 q->asoc = asoc;
210 INIT_LIST_HEAD(&q->out_chunk_list);
211 INIT_LIST_HEAD(&q->control_chunk_list);
212 INIT_LIST_HEAD(&q->retransmit);
213 INIT_LIST_HEAD(&q->sacked);
214 INIT_LIST_HEAD(&q->abandoned);
215 sctp_sched_set_sched(asoc, SCTP_SS_FCFS);
216}
217
218/* Free the outqueue structure and any related pending chunks.
219 */
220static void __sctp_outq_teardown(struct sctp_outq *q)
221{
222 struct sctp_transport *transport;
223 struct list_head *lchunk, *temp;
224 struct sctp_chunk *chunk, *tmp;
225
226 /* Throw away unacknowledged chunks. */
227 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
228 transports) {
229 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
230 chunk = list_entry(lchunk, struct sctp_chunk,
231 transmitted_list);
232 /* Mark as part of a failed message. */
233 sctp_chunk_fail(chunk, q->error);
234 sctp_chunk_free(chunk);
235 }
236 }
237
238 /* Throw away chunks that have been gap ACKed. */
239 list_for_each_safe(lchunk, temp, &q->sacked) {
240 list_del_init(lchunk);
241 chunk = list_entry(lchunk, struct sctp_chunk,
242 transmitted_list);
243 sctp_chunk_fail(chunk, q->error);
244 sctp_chunk_free(chunk);
245 }
246
247 /* Throw away any chunks in the retransmit queue. */
248 list_for_each_safe(lchunk, temp, &q->retransmit) {
249 list_del_init(lchunk);
250 chunk = list_entry(lchunk, struct sctp_chunk,
251 transmitted_list);
252 sctp_chunk_fail(chunk, q->error);
253 sctp_chunk_free(chunk);
254 }
255
256 /* Throw away any chunks that are in the abandoned queue. */
257 list_for_each_safe(lchunk, temp, &q->abandoned) {
258 list_del_init(lchunk);
259 chunk = list_entry(lchunk, struct sctp_chunk,
260 transmitted_list);
261 sctp_chunk_fail(chunk, q->error);
262 sctp_chunk_free(chunk);
263 }
264
265 /* Throw away any leftover data chunks. */
266 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
267 sctp_sched_dequeue_done(q, chunk);
268
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk, q->error);
271 sctp_chunk_free(chunk);
272 }
273
274 /* Throw away any leftover control chunks. */
275 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
276 list_del_init(&chunk->list);
277 sctp_chunk_free(chunk);
278 }
279}
280
281void sctp_outq_teardown(struct sctp_outq *q)
282{
283 __sctp_outq_teardown(q);
284 sctp_outq_init(q->asoc, q);
285}
286
287/* Free the outqueue structure and any related pending chunks. */
288void sctp_outq_free(struct sctp_outq *q)
289{
290 /* Throw away leftover chunks. */
291 __sctp_outq_teardown(q);
292}
293
294/* Put a new chunk in an sctp_outq. */
295void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
296{
297 struct net *net = sock_net(q->asoc->base.sk);
298
299 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
300 chunk && chunk->chunk_hdr ?
301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
302 "illegal chunk");
303
304 /* If it is data, queue it up, otherwise, send it
305 * immediately.
306 */
307 if (sctp_chunk_is_data(chunk)) {
308 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
309 __func__, q, chunk, chunk && chunk->chunk_hdr ?
310 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
311 "illegal chunk");
312
313 sctp_outq_tail_data(q, chunk);
314 if (chunk->asoc->peer.prsctp_capable &&
315 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
316 chunk->asoc->sent_cnt_removable++;
317 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
318 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
319 else
320 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
321 } else {
322 list_add_tail(&chunk->list, &q->control_chunk_list);
323 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
324 }
325
326 if (!q->cork)
327 sctp_outq_flush(q, 0, gfp);
328}
329
330/* Insert a chunk into the sorted list based on the TSNs. The retransmit list
331 * and the abandoned list are in ascending order.
332 */
333static void sctp_insert_list(struct list_head *head, struct list_head *new)
334{
335 struct list_head *pos;
336 struct sctp_chunk *nchunk, *lchunk;
337 __u32 ntsn, ltsn;
338 int done = 0;
339
340 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
341 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
342
343 list_for_each(pos, head) {
344 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
345 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
346 if (TSN_lt(ntsn, ltsn)) {
347 list_add(new, pos->prev);
348 done = 1;
349 break;
350 }
351 }
352 if (!done)
353 list_add_tail(new, head);
354}
355
356static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
357 struct sctp_sndrcvinfo *sinfo,
358 struct list_head *queue, int msg_len)
359{
360 struct sctp_chunk *chk, *temp;
361
362 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
363 struct sctp_stream_out *streamout;
364
365 if (!chk->msg->abandoned &&
366 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
367 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
368 continue;
369
370 chk->msg->abandoned = 1;
371 list_del_init(&chk->transmitted_list);
372 sctp_insert_list(&asoc->outqueue.abandoned,
373 &chk->transmitted_list);
374
375 streamout = &asoc->stream.out[chk->sinfo.sinfo_stream];
376 asoc->sent_cnt_removable--;
377 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
378 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
379
380 if (queue != &asoc->outqueue.retransmit &&
381 !chk->tsn_gap_acked) {
382 if (chk->transport)
383 chk->transport->flight_size -=
384 sctp_data_size(chk);
385 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
386 }
387
388 msg_len -= SCTP_DATA_SNDSIZE(chk) +
389 sizeof(struct sk_buff) +
390 sizeof(struct sctp_chunk);
391 if (msg_len <= 0)
392 break;
393 }
394
395 return msg_len;
396}
397
398static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
399 struct sctp_sndrcvinfo *sinfo, int msg_len)
400{
401 struct sctp_outq *q = &asoc->outqueue;
402 struct sctp_chunk *chk, *temp;
403
404 q->sched->unsched_all(&asoc->stream);
405
406 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
407 if (!chk->msg->abandoned &&
408 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
409 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
410 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
411 continue;
412
413 chk->msg->abandoned = 1;
414 sctp_sched_dequeue_common(q, chk);
415 asoc->sent_cnt_removable--;
416 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
417 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
418 struct sctp_stream_out *streamout =
419 &asoc->stream.out[chk->sinfo.sinfo_stream];
420
421 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
422 }
423
424 msg_len -= SCTP_DATA_SNDSIZE(chk) +
425 sizeof(struct sk_buff) +
426 sizeof(struct sctp_chunk);
427 sctp_chunk_free(chk);
428 if (msg_len <= 0)
429 break;
430 }
431
432 q->sched->sched_all(&asoc->stream);
433
434 return msg_len;
435}
436
437/* Abandon the chunks according their priorities */
438void sctp_prsctp_prune(struct sctp_association *asoc,
439 struct sctp_sndrcvinfo *sinfo, int msg_len)
440{
441 struct sctp_transport *transport;
442
443 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
444 return;
445
446 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
447 &asoc->outqueue.retransmit,
448 msg_len);
449 if (msg_len <= 0)
450 return;
451
452 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
453 transports) {
454 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
455 &transport->transmitted,
456 msg_len);
457 if (msg_len <= 0)
458 return;
459 }
460
461 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
462}
463
464/* Mark all the eligible packets on a transport for retransmission. */
465void sctp_retransmit_mark(struct sctp_outq *q,
466 struct sctp_transport *transport,
467 __u8 reason)
468{
469 struct list_head *lchunk, *ltemp;
470 struct sctp_chunk *chunk;
471
472 /* Walk through the specified transmitted queue. */
473 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
474 chunk = list_entry(lchunk, struct sctp_chunk,
475 transmitted_list);
476
477 /* If the chunk is abandoned, move it to abandoned list. */
478 if (sctp_chunk_abandoned(chunk)) {
479 list_del_init(lchunk);
480 sctp_insert_list(&q->abandoned, lchunk);
481
482 /* If this chunk has not been previousely acked,
483 * stop considering it 'outstanding'. Our peer
484 * will most likely never see it since it will
485 * not be retransmitted
486 */
487 if (!chunk->tsn_gap_acked) {
488 if (chunk->transport)
489 chunk->transport->flight_size -=
490 sctp_data_size(chunk);
491 q->outstanding_bytes -= sctp_data_size(chunk);
492 q->asoc->peer.rwnd += sctp_data_size(chunk);
493 }
494 continue;
495 }
496
497 /* If we are doing retransmission due to a timeout or pmtu
498 * discovery, only the chunks that are not yet acked should
499 * be added to the retransmit queue.
500 */
501 if ((reason == SCTP_RTXR_FAST_RTX &&
502 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
503 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
504 /* RFC 2960 6.2.1 Processing a Received SACK
505 *
506 * C) Any time a DATA chunk is marked for
507 * retransmission (via either T3-rtx timer expiration
508 * (Section 6.3.3) or via fast retransmit
509 * (Section 7.2.4)), add the data size of those
510 * chunks to the rwnd.
511 */
512 q->asoc->peer.rwnd += sctp_data_size(chunk);
513 q->outstanding_bytes -= sctp_data_size(chunk);
514 if (chunk->transport)
515 transport->flight_size -= sctp_data_size(chunk);
516
517 /* sctpimpguide-05 Section 2.8.2
518 * M5) If a T3-rtx timer expires, the
519 * 'TSN.Missing.Report' of all affected TSNs is set
520 * to 0.
521 */
522 chunk->tsn_missing_report = 0;
523
524 /* If a chunk that is being used for RTT measurement
525 * has to be retransmitted, we cannot use this chunk
526 * anymore for RTT measurements. Reset rto_pending so
527 * that a new RTT measurement is started when a new
528 * data chunk is sent.
529 */
530 if (chunk->rtt_in_progress) {
531 chunk->rtt_in_progress = 0;
532 transport->rto_pending = 0;
533 }
534
535 /* Move the chunk to the retransmit queue. The chunks
536 * on the retransmit queue are always kept in order.
537 */
538 list_del_init(lchunk);
539 sctp_insert_list(&q->retransmit, lchunk);
540 }
541 }
542
543 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
544 "flight_size:%d, pba:%d\n", __func__, transport, reason,
545 transport->cwnd, transport->ssthresh, transport->flight_size,
546 transport->partial_bytes_acked);
547}
548
549/* Mark all the eligible packets on a transport for retransmission and force
550 * one packet out.
551 */
552void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
553 enum sctp_retransmit_reason reason)
554{
555 struct net *net = sock_net(q->asoc->base.sk);
556
557 switch (reason) {
558 case SCTP_RTXR_T3_RTX:
559 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
560 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
561 /* Update the retran path if the T3-rtx timer has expired for
562 * the current retran path.
563 */
564 if (transport == transport->asoc->peer.retran_path)
565 sctp_assoc_update_retran_path(transport->asoc);
566 transport->asoc->rtx_data_chunks +=
567 transport->asoc->unack_data;
568 break;
569 case SCTP_RTXR_FAST_RTX:
570 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
571 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
572 q->fast_rtx = 1;
573 break;
574 case SCTP_RTXR_PMTUD:
575 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
576 break;
577 case SCTP_RTXR_T1_RTX:
578 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
579 transport->asoc->init_retries++;
580 break;
581 default:
582 BUG();
583 }
584
585 sctp_retransmit_mark(q, transport, reason);
586
587 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
588 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
589 * following the procedures outlined in C1 - C5.
590 */
591 if (reason == SCTP_RTXR_T3_RTX)
592 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
593
594 /* Flush the queues only on timeout, since fast_rtx is only
595 * triggered during sack processing and the queue
596 * will be flushed at the end.
597 */
598 if (reason != SCTP_RTXR_FAST_RTX)
599 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
600}
601
602/*
603 * Transmit DATA chunks on the retransmit queue. Upon return from
604 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
605 * need to be transmitted by the caller.
606 * We assume that pkt->transport has already been set.
607 *
608 * The return value is a normal kernel error return value.
609 */
610static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
611 int rtx_timeout, int *start_timer)
612{
613 struct sctp_transport *transport = pkt->transport;
614 struct sctp_chunk *chunk, *chunk1;
615 struct list_head *lqueue;
616 enum sctp_xmit status;
617 int error = 0;
618 int timer = 0;
619 int done = 0;
620 int fast_rtx;
621
622 lqueue = &q->retransmit;
623 fast_rtx = q->fast_rtx;
624
625 /* This loop handles time-out retransmissions, fast retransmissions,
626 * and retransmissions due to opening of whindow.
627 *
628 * RFC 2960 6.3.3 Handle T3-rtx Expiration
629 *
630 * E3) Determine how many of the earliest (i.e., lowest TSN)
631 * outstanding DATA chunks for the address for which the
632 * T3-rtx has expired will fit into a single packet, subject
633 * to the MTU constraint for the path corresponding to the
634 * destination transport address to which the retransmission
635 * is being sent (this may be different from the address for
636 * which the timer expires [see Section 6.4]). Call this value
637 * K. Bundle and retransmit those K DATA chunks in a single
638 * packet to the destination endpoint.
639 *
640 * [Just to be painfully clear, if we are retransmitting
641 * because a timeout just happened, we should send only ONE
642 * packet of retransmitted data.]
643 *
644 * For fast retransmissions we also send only ONE packet. However,
645 * if we are just flushing the queue due to open window, we'll
646 * try to send as much as possible.
647 */
648 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
649 /* If the chunk is abandoned, move it to abandoned list. */
650 if (sctp_chunk_abandoned(chunk)) {
651 list_del_init(&chunk->transmitted_list);
652 sctp_insert_list(&q->abandoned,
653 &chunk->transmitted_list);
654 continue;
655 }
656
657 /* Make sure that Gap Acked TSNs are not retransmitted. A
658 * simple approach is just to move such TSNs out of the
659 * way and into a 'transmitted' queue and skip to the
660 * next chunk.
661 */
662 if (chunk->tsn_gap_acked) {
663 list_move_tail(&chunk->transmitted_list,
664 &transport->transmitted);
665 continue;
666 }
667
668 /* If we are doing fast retransmit, ignore non-fast_rtransmit
669 * chunks
670 */
671 if (fast_rtx && !chunk->fast_retransmit)
672 continue;
673
674redo:
675 /* Attempt to append this chunk to the packet. */
676 status = sctp_packet_append_chunk(pkt, chunk);
677
678 switch (status) {
679 case SCTP_XMIT_PMTU_FULL:
680 if (!pkt->has_data && !pkt->has_cookie_echo) {
681 /* If this packet did not contain DATA then
682 * retransmission did not happen, so do it
683 * again. We'll ignore the error here since
684 * control chunks are already freed so there
685 * is nothing we can do.
686 */
687 sctp_packet_transmit(pkt, GFP_ATOMIC);
688 goto redo;
689 }
690
691 /* Send this packet. */
692 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
693
694 /* If we are retransmitting, we should only
695 * send a single packet.
696 * Otherwise, try appending this chunk again.
697 */
698 if (rtx_timeout || fast_rtx)
699 done = 1;
700 else
701 goto redo;
702
703 /* Bundle next chunk in the next round. */
704 break;
705
706 case SCTP_XMIT_RWND_FULL:
707 /* Send this packet. */
708 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
709
710 /* Stop sending DATA as there is no more room
711 * at the receiver.
712 */
713 done = 1;
714 break;
715
716 case SCTP_XMIT_DELAY:
717 /* Send this packet. */
718 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
719
720 /* Stop sending DATA because of nagle delay. */
721 done = 1;
722 break;
723
724 default:
725 /* The append was successful, so add this chunk to
726 * the transmitted list.
727 */
728 list_move_tail(&chunk->transmitted_list,
729 &transport->transmitted);
730
731 /* Mark the chunk as ineligible for fast retransmit
732 * after it is retransmitted.
733 */
734 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
735 chunk->fast_retransmit = SCTP_DONT_FRTX;
736
737 q->asoc->stats.rtxchunks++;
738 break;
739 }
740
741 /* Set the timer if there were no errors */
742 if (!error && !timer)
743 timer = 1;
744
745 if (done)
746 break;
747 }
748
749 /* If we are here due to a retransmit timeout or a fast
750 * retransmit and if there are any chunks left in the retransmit
751 * queue that could not fit in the PMTU sized packet, they need
752 * to be marked as ineligible for a subsequent fast retransmit.
753 */
754 if (rtx_timeout || fast_rtx) {
755 list_for_each_entry(chunk1, lqueue, transmitted_list) {
756 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
757 chunk1->fast_retransmit = SCTP_DONT_FRTX;
758 }
759 }
760
761 *start_timer = timer;
762
763 /* Clear fast retransmit hint */
764 if (fast_rtx)
765 q->fast_rtx = 0;
766
767 return error;
768}
769
770/* Cork the outqueue so queued chunks are really queued. */
771void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
772{
773 if (q->cork)
774 q->cork = 0;
775
776 sctp_outq_flush(q, 0, gfp);
777}
778
779
780/*
781 * Try to flush an outqueue.
782 *
783 * Description: Send everything in q which we legally can, subject to
784 * congestion limitations.
785 * * Note: This function can be called from multiple contexts so appropriate
786 * locking concerns must be made. Today we use the sock lock to protect
787 * this function.
788 */
789static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
790{
791 struct sctp_packet *packet;
792 struct sctp_packet singleton;
793 struct sctp_association *asoc = q->asoc;
794 __u16 sport = asoc->base.bind_addr.port;
795 __u16 dport = asoc->peer.port;
796 __u32 vtag = asoc->peer.i.init_tag;
797 struct sctp_transport *transport = NULL;
798 struct sctp_transport *new_transport;
799 struct sctp_chunk *chunk, *tmp;
800 enum sctp_xmit status;
801 int error = 0;
802 int start_timer = 0;
803 int one_packet = 0;
804
805 /* These transports have chunks to send. */
806 struct list_head transport_list;
807 struct list_head *ltransport;
808
809 INIT_LIST_HEAD(&transport_list);
810 packet = NULL;
811
812 /*
813 * 6.10 Bundling
814 * ...
815 * When bundling control chunks with DATA chunks, an
816 * endpoint MUST place control chunks first in the outbound
817 * SCTP packet. The transmitter MUST transmit DATA chunks
818 * within a SCTP packet in increasing order of TSN.
819 * ...
820 */
821
822 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
823 /* RFC 5061, 5.3
824 * F1) This means that until such time as the ASCONF
825 * containing the add is acknowledged, the sender MUST
826 * NOT use the new IP address as a source for ANY SCTP
827 * packet except on carrying an ASCONF Chunk.
828 */
829 if (asoc->src_out_of_asoc_ok &&
830 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
831 continue;
832
833 list_del_init(&chunk->list);
834
835 /* Pick the right transport to use. */
836 new_transport = chunk->transport;
837
838 if (!new_transport) {
839 /*
840 * If we have a prior transport pointer, see if
841 * the destination address of the chunk
842 * matches the destination address of the
843 * current transport. If not a match, then
844 * try to look up the transport with a given
845 * destination address. We do this because
846 * after processing ASCONFs, we may have new
847 * transports created.
848 */
849 if (transport &&
850 sctp_cmp_addr_exact(&chunk->dest,
851 &transport->ipaddr))
852 new_transport = transport;
853 else
854 new_transport = sctp_assoc_lookup_paddr(asoc,
855 &chunk->dest);
856
857 /* if we still don't have a new transport, then
858 * use the current active path.
859 */
860 if (!new_transport)
861 new_transport = asoc->peer.active_path;
862 } else if ((new_transport->state == SCTP_INACTIVE) ||
863 (new_transport->state == SCTP_UNCONFIRMED) ||
864 (new_transport->state == SCTP_PF)) {
865 /* If the chunk is Heartbeat or Heartbeat Ack,
866 * send it to chunk->transport, even if it's
867 * inactive.
868 *
869 * 3.3.6 Heartbeat Acknowledgement:
870 * ...
871 * A HEARTBEAT ACK is always sent to the source IP
872 * address of the IP datagram containing the
873 * HEARTBEAT chunk to which this ack is responding.
874 * ...
875 *
876 * ASCONF_ACKs also must be sent to the source.
877 */
878 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
879 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
880 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
881 new_transport = asoc->peer.active_path;
882 }
883
884 /* Are we switching transports?
885 * Take care of transport locks.
886 */
887 if (new_transport != transport) {
888 transport = new_transport;
889 if (list_empty(&transport->send_ready)) {
890 list_add_tail(&transport->send_ready,
891 &transport_list);
892 }
893 packet = &transport->packet;
894 sctp_packet_config(packet, vtag,
895 asoc->peer.ecn_capable);
896 }
897
898 switch (chunk->chunk_hdr->type) {
899 /*
900 * 6.10 Bundling
901 * ...
902 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
903 * COMPLETE with any other chunks. [Send them immediately.]
904 */
905 case SCTP_CID_INIT:
906 case SCTP_CID_INIT_ACK:
907 case SCTP_CID_SHUTDOWN_COMPLETE:
908 sctp_packet_init(&singleton, transport, sport, dport);
909 sctp_packet_config(&singleton, vtag, 0);
910 sctp_packet_append_chunk(&singleton, chunk);
911 error = sctp_packet_transmit(&singleton, gfp);
912 if (error < 0) {
913 asoc->base.sk->sk_err = -error;
914 return;
915 }
916 break;
917
918 case SCTP_CID_ABORT:
919 if (sctp_test_T_bit(chunk))
920 packet->vtag = asoc->c.my_vtag;
921 /* fallthru */
922 /* The following chunks are "response" chunks, i.e.
923 * they are generated in response to something we
924 * received. If we are sending these, then we can
925 * send only 1 packet containing these chunks.
926 */
927 case SCTP_CID_HEARTBEAT_ACK:
928 case SCTP_CID_SHUTDOWN_ACK:
929 case SCTP_CID_COOKIE_ACK:
930 case SCTP_CID_COOKIE_ECHO:
931 case SCTP_CID_ERROR:
932 case SCTP_CID_ECN_CWR:
933 case SCTP_CID_ASCONF_ACK:
934 one_packet = 1;
935 /* Fall through */
936
937 case SCTP_CID_SACK:
938 case SCTP_CID_HEARTBEAT:
939 case SCTP_CID_SHUTDOWN:
940 case SCTP_CID_ECN_ECNE:
941 case SCTP_CID_ASCONF:
942 case SCTP_CID_FWD_TSN:
943 case SCTP_CID_I_FWD_TSN:
944 case SCTP_CID_RECONF:
945 status = sctp_packet_transmit_chunk(packet, chunk,
946 one_packet, gfp);
947 if (status != SCTP_XMIT_OK) {
948 /* put the chunk back */
949 list_add(&chunk->list, &q->control_chunk_list);
950 break;
951 }
952
953 asoc->stats.octrlchunks++;
954 /* PR-SCTP C5) If a FORWARD TSN is sent, the
955 * sender MUST assure that at least one T3-rtx
956 * timer is running.
957 */
958 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
959 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
960 sctp_transport_reset_t3_rtx(transport);
961 transport->last_time_sent = jiffies;
962 }
963
964 if (chunk == asoc->strreset_chunk)
965 sctp_transport_reset_reconf_timer(transport);
966
967 break;
968
969 default:
970 /* We built a chunk with an illegal type! */
971 BUG();
972 }
973 }
974
975 if (q->asoc->src_out_of_asoc_ok)
976 goto sctp_flush_out;
977
978 /* Is it OK to send data chunks? */
979 switch (asoc->state) {
980 case SCTP_STATE_COOKIE_ECHOED:
981 /* Only allow bundling when this packet has a COOKIE-ECHO
982 * chunk.
983 */
984 if (!packet || !packet->has_cookie_echo)
985 break;
986
987 /* fallthru */
988 case SCTP_STATE_ESTABLISHED:
989 case SCTP_STATE_SHUTDOWN_PENDING:
990 case SCTP_STATE_SHUTDOWN_RECEIVED:
991 /*
992 * RFC 2960 6.1 Transmission of DATA Chunks
993 *
994 * C) When the time comes for the sender to transmit,
995 * before sending new DATA chunks, the sender MUST
996 * first transmit any outstanding DATA chunks which
997 * are marked for retransmission (limited by the
998 * current cwnd).
999 */
1000 if (!list_empty(&q->retransmit)) {
1001 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
1002 goto sctp_flush_out;
1003 if (transport == asoc->peer.retran_path)
1004 goto retran;
1005
1006 /* Switch transports & prepare the packet. */
1007
1008 transport = asoc->peer.retran_path;
1009
1010 if (list_empty(&transport->send_ready)) {
1011 list_add_tail(&transport->send_ready,
1012 &transport_list);
1013 }
1014
1015 packet = &transport->packet;
1016 sctp_packet_config(packet, vtag,
1017 asoc->peer.ecn_capable);
1018 retran:
1019 error = sctp_outq_flush_rtx(q, packet,
1020 rtx_timeout, &start_timer);
1021 if (error < 0)
1022 asoc->base.sk->sk_err = -error;
1023
1024 if (start_timer) {
1025 sctp_transport_reset_t3_rtx(transport);
1026 transport->last_time_sent = jiffies;
1027 }
1028
1029 /* This can happen on COOKIE-ECHO resend. Only
1030 * one chunk can get bundled with a COOKIE-ECHO.
1031 */
1032 if (packet->has_cookie_echo)
1033 goto sctp_flush_out;
1034
1035 /* Don't send new data if there is still data
1036 * waiting to retransmit.
1037 */
1038 if (!list_empty(&q->retransmit))
1039 goto sctp_flush_out;
1040 }
1041
1042 /* Apply Max.Burst limitation to the current transport in
1043 * case it will be used for new data. We are going to
1044 * rest it before we return, but we want to apply the limit
1045 * to the currently queued data.
1046 */
1047 if (transport)
1048 sctp_transport_burst_limited(transport);
1049
1050 /* Finally, transmit new packets. */
1051 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1052 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1053
1054 /* Has this chunk expired? */
1055 if (sctp_chunk_abandoned(chunk)) {
1056 sctp_sched_dequeue_done(q, chunk);
1057 sctp_chunk_fail(chunk, 0);
1058 sctp_chunk_free(chunk);
1059 continue;
1060 }
1061
1062 if (asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) {
1063 sctp_outq_head_data(q, chunk);
1064 goto sctp_flush_out;
1065 }
1066
1067 /* If there is a specified transport, use it.
1068 * Otherwise, we want to use the active path.
1069 */
1070 new_transport = chunk->transport;
1071 if (!new_transport ||
1072 ((new_transport->state == SCTP_INACTIVE) ||
1073 (new_transport->state == SCTP_UNCONFIRMED) ||
1074 (new_transport->state == SCTP_PF)))
1075 new_transport = asoc->peer.active_path;
1076 if (new_transport->state == SCTP_UNCONFIRMED) {
1077 WARN_ONCE(1, "Attempt to send packet on unconfirmed path.");
1078 sctp_sched_dequeue_done(q, chunk);
1079 sctp_chunk_fail(chunk, 0);
1080 sctp_chunk_free(chunk);
1081 continue;
1082 }
1083
1084 /* Change packets if necessary. */
1085 if (new_transport != transport) {
1086 transport = new_transport;
1087
1088 /* Schedule to have this transport's
1089 * packet flushed.
1090 */
1091 if (list_empty(&transport->send_ready)) {
1092 list_add_tail(&transport->send_ready,
1093 &transport_list);
1094 }
1095
1096 packet = &transport->packet;
1097 sctp_packet_config(packet, vtag,
1098 asoc->peer.ecn_capable);
1099 /* We've switched transports, so apply the
1100 * Burst limit to the new transport.
1101 */
1102 sctp_transport_burst_limited(transport);
1103 }
1104
1105 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1106 "skb->users:%d\n",
1107 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1108 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1109 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1110 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1111 refcount_read(&chunk->skb->users) : -1);
1112
1113 /* Add the chunk to the packet. */
1114 status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1115
1116 switch (status) {
1117 case SCTP_XMIT_PMTU_FULL:
1118 case SCTP_XMIT_RWND_FULL:
1119 case SCTP_XMIT_DELAY:
1120 /* We could not append this chunk, so put
1121 * the chunk back on the output queue.
1122 */
1123 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1124 __func__, ntohl(chunk->subh.data_hdr->tsn),
1125 status);
1126
1127 sctp_outq_head_data(q, chunk);
1128 goto sctp_flush_out;
1129
1130 case SCTP_XMIT_OK:
1131 /* The sender is in the SHUTDOWN-PENDING state,
1132 * The sender MAY set the I-bit in the DATA
1133 * chunk header.
1134 */
1135 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1136 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1137 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1138 asoc->stats.ouodchunks++;
1139 else
1140 asoc->stats.oodchunks++;
1141
1142 /* Only now it's safe to consider this
1143 * chunk as sent, sched-wise.
1144 */
1145 sctp_sched_dequeue_done(q, chunk);
1146
1147 break;
1148
1149 default:
1150 BUG();
1151 }
1152
1153 /* BUG: We assume that the sctp_packet_transmit()
1154 * call below will succeed all the time and add the
1155 * chunk to the transmitted list and restart the
1156 * timers.
1157 * It is possible that the call can fail under OOM
1158 * conditions.
1159 *
1160 * Is this really a problem? Won't this behave
1161 * like a lost TSN?
1162 */
1163 list_add_tail(&chunk->transmitted_list,
1164 &transport->transmitted);
1165
1166 sctp_transport_reset_t3_rtx(transport);
1167 transport->last_time_sent = jiffies;
1168
1169 /* Only let one DATA chunk get bundled with a
1170 * COOKIE-ECHO chunk.
1171 */
1172 if (packet->has_cookie_echo)
1173 goto sctp_flush_out;
1174 }
1175 break;
1176
1177 default:
1178 /* Do nothing. */
1179 break;
1180 }
1181
1182sctp_flush_out:
1183
1184 /* Before returning, examine all the transports touched in
1185 * this call. Right now, we bluntly force clear all the
1186 * transports. Things might change after we implement Nagle.
1187 * But such an examination is still required.
1188 *
1189 * --xguo
1190 */
1191 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1192 struct sctp_transport *t = list_entry(ltransport,
1193 struct sctp_transport,
1194 send_ready);
1195 packet = &t->packet;
1196 if (!sctp_packet_empty(packet)) {
1197 error = sctp_packet_transmit(packet, gfp);
1198 if (error < 0)
1199 asoc->base.sk->sk_err = -error;
1200 }
1201
1202 /* Clear the burst limited state, if any */
1203 sctp_transport_burst_reset(t);
1204 }
1205}
1206
1207/* Update unack_data based on the incoming SACK chunk */
1208static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1209 struct sctp_sackhdr *sack)
1210{
1211 union sctp_sack_variable *frags;
1212 __u16 unack_data;
1213 int i;
1214
1215 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1216
1217 frags = sack->variable;
1218 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1219 unack_data -= ((ntohs(frags[i].gab.end) -
1220 ntohs(frags[i].gab.start) + 1));
1221 }
1222
1223 assoc->unack_data = unack_data;
1224}
1225
1226/* This is where we REALLY process a SACK.
1227 *
1228 * Process the SACK against the outqueue. Mostly, this just frees
1229 * things off the transmitted queue.
1230 */
1231int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1232{
1233 struct sctp_association *asoc = q->asoc;
1234 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1235 struct sctp_transport *transport;
1236 struct sctp_chunk *tchunk = NULL;
1237 struct list_head *lchunk, *transport_list, *temp;
1238 union sctp_sack_variable *frags = sack->variable;
1239 __u32 sack_ctsn, ctsn, tsn;
1240 __u32 highest_tsn, highest_new_tsn;
1241 __u32 sack_a_rwnd;
1242 unsigned int outstanding;
1243 struct sctp_transport *primary = asoc->peer.primary_path;
1244 int count_of_newacks = 0;
1245 int gap_ack_blocks;
1246 u8 accum_moved = 0;
1247
1248 /* Grab the association's destination address list. */
1249 transport_list = &asoc->peer.transport_addr_list;
1250
1251 sack_ctsn = ntohl(sack->cum_tsn_ack);
1252 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1253 asoc->stats.gapcnt += gap_ack_blocks;
1254 /*
1255 * SFR-CACC algorithm:
1256 * On receipt of a SACK the sender SHOULD execute the
1257 * following statements.
1258 *
1259 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1260 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1261 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1262 * all destinations.
1263 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1264 * is set the receiver of the SACK MUST take the following actions:
1265 *
1266 * A) Initialize the cacc_saw_newack to 0 for all destination
1267 * addresses.
1268 *
1269 * Only bother if changeover_active is set. Otherwise, this is
1270 * totally suboptimal to do on every SACK.
1271 */
1272 if (primary->cacc.changeover_active) {
1273 u8 clear_cycling = 0;
1274
1275 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1276 primary->cacc.changeover_active = 0;
1277 clear_cycling = 1;
1278 }
1279
1280 if (clear_cycling || gap_ack_blocks) {
1281 list_for_each_entry(transport, transport_list,
1282 transports) {
1283 if (clear_cycling)
1284 transport->cacc.cycling_changeover = 0;
1285 if (gap_ack_blocks)
1286 transport->cacc.cacc_saw_newack = 0;
1287 }
1288 }
1289 }
1290
1291 /* Get the highest TSN in the sack. */
1292 highest_tsn = sack_ctsn;
1293 if (gap_ack_blocks)
1294 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1295
1296 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1297 asoc->highest_sacked = highest_tsn;
1298
1299 highest_new_tsn = sack_ctsn;
1300
1301 /* Run through the retransmit queue. Credit bytes received
1302 * and free those chunks that we can.
1303 */
1304 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1305
1306 /* Run through the transmitted queue.
1307 * Credit bytes received and free those chunks which we can.
1308 *
1309 * This is a MASSIVE candidate for optimization.
1310 */
1311 list_for_each_entry(transport, transport_list, transports) {
1312 sctp_check_transmitted(q, &transport->transmitted,
1313 transport, &chunk->source, sack,
1314 &highest_new_tsn);
1315 /*
1316 * SFR-CACC algorithm:
1317 * C) Let count_of_newacks be the number of
1318 * destinations for which cacc_saw_newack is set.
1319 */
1320 if (transport->cacc.cacc_saw_newack)
1321 count_of_newacks++;
1322 }
1323
1324 /* Move the Cumulative TSN Ack Point if appropriate. */
1325 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1326 asoc->ctsn_ack_point = sack_ctsn;
1327 accum_moved = 1;
1328 }
1329
1330 if (gap_ack_blocks) {
1331
1332 if (asoc->fast_recovery && accum_moved)
1333 highest_new_tsn = highest_tsn;
1334
1335 list_for_each_entry(transport, transport_list, transports)
1336 sctp_mark_missing(q, &transport->transmitted, transport,
1337 highest_new_tsn, count_of_newacks);
1338 }
1339
1340 /* Update unack_data field in the assoc. */
1341 sctp_sack_update_unack_data(asoc, sack);
1342
1343 ctsn = asoc->ctsn_ack_point;
1344
1345 /* Throw away stuff rotting on the sack queue. */
1346 list_for_each_safe(lchunk, temp, &q->sacked) {
1347 tchunk = list_entry(lchunk, struct sctp_chunk,
1348 transmitted_list);
1349 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1350 if (TSN_lte(tsn, ctsn)) {
1351 list_del_init(&tchunk->transmitted_list);
1352 if (asoc->peer.prsctp_capable &&
1353 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1354 asoc->sent_cnt_removable--;
1355 sctp_chunk_free(tchunk);
1356 }
1357 }
1358
1359 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1360 * number of bytes still outstanding after processing the
1361 * Cumulative TSN Ack and the Gap Ack Blocks.
1362 */
1363
1364 sack_a_rwnd = ntohl(sack->a_rwnd);
1365 asoc->peer.zero_window_announced = !sack_a_rwnd;
1366 outstanding = q->outstanding_bytes;
1367
1368 if (outstanding < sack_a_rwnd)
1369 sack_a_rwnd -= outstanding;
1370 else
1371 sack_a_rwnd = 0;
1372
1373 asoc->peer.rwnd = sack_a_rwnd;
1374
1375 asoc->stream.si->generate_ftsn(q, sack_ctsn);
1376
1377 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1378 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1379 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1380 asoc->adv_peer_ack_point);
1381
1382 return sctp_outq_is_empty(q);
1383}
1384
1385/* Is the outqueue empty?
1386 * The queue is empty when we have not pending data, no in-flight data
1387 * and nothing pending retransmissions.
1388 */
1389int sctp_outq_is_empty(const struct sctp_outq *q)
1390{
1391 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1392 list_empty(&q->retransmit);
1393}
1394
1395/********************************************************************
1396 * 2nd Level Abstractions
1397 ********************************************************************/
1398
1399/* Go through a transport's transmitted list or the association's retransmit
1400 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1401 * The retransmit list will not have an associated transport.
1402 *
1403 * I added coherent debug information output. --xguo
1404 *
1405 * Instead of printing 'sacked' or 'kept' for each TSN on the
1406 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1407 * KEPT TSN6-TSN7, etc.
1408 */
1409static void sctp_check_transmitted(struct sctp_outq *q,
1410 struct list_head *transmitted_queue,
1411 struct sctp_transport *transport,
1412 union sctp_addr *saddr,
1413 struct sctp_sackhdr *sack,
1414 __u32 *highest_new_tsn_in_sack)
1415{
1416 struct list_head *lchunk;
1417 struct sctp_chunk *tchunk;
1418 struct list_head tlist;
1419 __u32 tsn;
1420 __u32 sack_ctsn;
1421 __u32 rtt;
1422 __u8 restart_timer = 0;
1423 int bytes_acked = 0;
1424 int migrate_bytes = 0;
1425 bool forward_progress = false;
1426
1427 sack_ctsn = ntohl(sack->cum_tsn_ack);
1428
1429 INIT_LIST_HEAD(&tlist);
1430
1431 /* The while loop will skip empty transmitted queues. */
1432 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1433 tchunk = list_entry(lchunk, struct sctp_chunk,
1434 transmitted_list);
1435
1436 if (sctp_chunk_abandoned(tchunk)) {
1437 /* Move the chunk to abandoned list. */
1438 sctp_insert_list(&q->abandoned, lchunk);
1439
1440 /* If this chunk has not been acked, stop
1441 * considering it as 'outstanding'.
1442 */
1443 if (transmitted_queue != &q->retransmit &&
1444 !tchunk->tsn_gap_acked) {
1445 if (tchunk->transport)
1446 tchunk->transport->flight_size -=
1447 sctp_data_size(tchunk);
1448 q->outstanding_bytes -= sctp_data_size(tchunk);
1449 }
1450 continue;
1451 }
1452
1453 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1454 if (sctp_acked(sack, tsn)) {
1455 /* If this queue is the retransmit queue, the
1456 * retransmit timer has already reclaimed
1457 * the outstanding bytes for this chunk, so only
1458 * count bytes associated with a transport.
1459 */
1460 if (transport) {
1461 /* If this chunk is being used for RTT
1462 * measurement, calculate the RTT and update
1463 * the RTO using this value.
1464 *
1465 * 6.3.1 C5) Karn's algorithm: RTT measurements
1466 * MUST NOT be made using packets that were
1467 * retransmitted (and thus for which it is
1468 * ambiguous whether the reply was for the
1469 * first instance of the packet or a later
1470 * instance).
1471 */
1472 if (!tchunk->tsn_gap_acked &&
1473 !sctp_chunk_retransmitted(tchunk) &&
1474 tchunk->rtt_in_progress) {
1475 tchunk->rtt_in_progress = 0;
1476 rtt = jiffies - tchunk->sent_at;
1477 sctp_transport_update_rto(transport,
1478 rtt);
1479 }
1480 }
1481
1482 /* If the chunk hasn't been marked as ACKED,
1483 * mark it and account bytes_acked if the
1484 * chunk had a valid transport (it will not
1485 * have a transport if ASCONF had deleted it
1486 * while DATA was outstanding).
1487 */
1488 if (!tchunk->tsn_gap_acked) {
1489 tchunk->tsn_gap_acked = 1;
1490 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1491 *highest_new_tsn_in_sack = tsn;
1492 bytes_acked += sctp_data_size(tchunk);
1493 if (!tchunk->transport)
1494 migrate_bytes += sctp_data_size(tchunk);
1495 forward_progress = true;
1496 }
1497
1498 if (TSN_lte(tsn, sack_ctsn)) {
1499 /* RFC 2960 6.3.2 Retransmission Timer Rules
1500 *
1501 * R3) Whenever a SACK is received
1502 * that acknowledges the DATA chunk
1503 * with the earliest outstanding TSN
1504 * for that address, restart T3-rtx
1505 * timer for that address with its
1506 * current RTO.
1507 */
1508 restart_timer = 1;
1509 forward_progress = true;
1510
1511 if (!tchunk->tsn_gap_acked) {
1512 /*
1513 * SFR-CACC algorithm:
1514 * 2) If the SACK contains gap acks
1515 * and the flag CHANGEOVER_ACTIVE is
1516 * set the receiver of the SACK MUST
1517 * take the following action:
1518 *
1519 * B) For each TSN t being acked that
1520 * has not been acked in any SACK so
1521 * far, set cacc_saw_newack to 1 for
1522 * the destination that the TSN was
1523 * sent to.
1524 */
1525 if (transport &&
1526 sack->num_gap_ack_blocks &&
1527 q->asoc->peer.primary_path->cacc.
1528 changeover_active)
1529 transport->cacc.cacc_saw_newack
1530 = 1;
1531 }
1532
1533 list_add_tail(&tchunk->transmitted_list,
1534 &q->sacked);
1535 } else {
1536 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1537 * M2) Each time a SACK arrives reporting
1538 * 'Stray DATA chunk(s)' record the highest TSN
1539 * reported as newly acknowledged, call this
1540 * value 'HighestTSNinSack'. A newly
1541 * acknowledged DATA chunk is one not
1542 * previously acknowledged in a SACK.
1543 *
1544 * When the SCTP sender of data receives a SACK
1545 * chunk that acknowledges, for the first time,
1546 * the receipt of a DATA chunk, all the still
1547 * unacknowledged DATA chunks whose TSN is
1548 * older than that newly acknowledged DATA
1549 * chunk, are qualified as 'Stray DATA chunks'.
1550 */
1551 list_add_tail(lchunk, &tlist);
1552 }
1553 } else {
1554 if (tchunk->tsn_gap_acked) {
1555 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1556 __func__, tsn);
1557
1558 tchunk->tsn_gap_acked = 0;
1559
1560 if (tchunk->transport)
1561 bytes_acked -= sctp_data_size(tchunk);
1562
1563 /* RFC 2960 6.3.2 Retransmission Timer Rules
1564 *
1565 * R4) Whenever a SACK is received missing a
1566 * TSN that was previously acknowledged via a
1567 * Gap Ack Block, start T3-rtx for the
1568 * destination address to which the DATA
1569 * chunk was originally
1570 * transmitted if it is not already running.
1571 */
1572 restart_timer = 1;
1573 }
1574
1575 list_add_tail(lchunk, &tlist);
1576 }
1577 }
1578
1579 if (transport) {
1580 if (bytes_acked) {
1581 struct sctp_association *asoc = transport->asoc;
1582
1583 /* We may have counted DATA that was migrated
1584 * to this transport due to DEL-IP operation.
1585 * Subtract those bytes, since the were never
1586 * send on this transport and shouldn't be
1587 * credited to this transport.
1588 */
1589 bytes_acked -= migrate_bytes;
1590
1591 /* 8.2. When an outstanding TSN is acknowledged,
1592 * the endpoint shall clear the error counter of
1593 * the destination transport address to which the
1594 * DATA chunk was last sent.
1595 * The association's overall error counter is
1596 * also cleared.
1597 */
1598 transport->error_count = 0;
1599 transport->asoc->overall_error_count = 0;
1600 forward_progress = true;
1601
1602 /*
1603 * While in SHUTDOWN PENDING, we may have started
1604 * the T5 shutdown guard timer after reaching the
1605 * retransmission limit. Stop that timer as soon
1606 * as the receiver acknowledged any data.
1607 */
1608 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1609 del_timer(&asoc->timers
1610 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1611 sctp_association_put(asoc);
1612
1613 /* Mark the destination transport address as
1614 * active if it is not so marked.
1615 */
1616 if ((transport->state == SCTP_INACTIVE ||
1617 transport->state == SCTP_UNCONFIRMED) &&
1618 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1619 sctp_assoc_control_transport(
1620 transport->asoc,
1621 transport,
1622 SCTP_TRANSPORT_UP,
1623 SCTP_RECEIVED_SACK);
1624 }
1625
1626 sctp_transport_raise_cwnd(transport, sack_ctsn,
1627 bytes_acked);
1628
1629 transport->flight_size -= bytes_acked;
1630 if (transport->flight_size == 0)
1631 transport->partial_bytes_acked = 0;
1632 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1633 } else {
1634 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1635 * When a sender is doing zero window probing, it
1636 * should not timeout the association if it continues
1637 * to receive new packets from the receiver. The
1638 * reason is that the receiver MAY keep its window
1639 * closed for an indefinite time.
1640 * A sender is doing zero window probing when the
1641 * receiver's advertised window is zero, and there is
1642 * only one data chunk in flight to the receiver.
1643 *
1644 * Allow the association to timeout while in SHUTDOWN
1645 * PENDING or SHUTDOWN RECEIVED in case the receiver
1646 * stays in zero window mode forever.
1647 */
1648 if (!q->asoc->peer.rwnd &&
1649 !list_empty(&tlist) &&
1650 (sack_ctsn+2 == q->asoc->next_tsn) &&
1651 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1652 pr_debug("%s: sack received for zero window "
1653 "probe:%u\n", __func__, sack_ctsn);
1654
1655 q->asoc->overall_error_count = 0;
1656 transport->error_count = 0;
1657 }
1658 }
1659
1660 /* RFC 2960 6.3.2 Retransmission Timer Rules
1661 *
1662 * R2) Whenever all outstanding data sent to an address have
1663 * been acknowledged, turn off the T3-rtx timer of that
1664 * address.
1665 */
1666 if (!transport->flight_size) {
1667 if (del_timer(&transport->T3_rtx_timer))
1668 sctp_transport_put(transport);
1669 } else if (restart_timer) {
1670 if (!mod_timer(&transport->T3_rtx_timer,
1671 jiffies + transport->rto))
1672 sctp_transport_hold(transport);
1673 }
1674
1675 if (forward_progress) {
1676 if (transport->dst)
1677 sctp_transport_dst_confirm(transport);
1678 }
1679 }
1680
1681 list_splice(&tlist, transmitted_queue);
1682}
1683
1684/* Mark chunks as missing and consequently may get retransmitted. */
1685static void sctp_mark_missing(struct sctp_outq *q,
1686 struct list_head *transmitted_queue,
1687 struct sctp_transport *transport,
1688 __u32 highest_new_tsn_in_sack,
1689 int count_of_newacks)
1690{
1691 struct sctp_chunk *chunk;
1692 __u32 tsn;
1693 char do_fast_retransmit = 0;
1694 struct sctp_association *asoc = q->asoc;
1695 struct sctp_transport *primary = asoc->peer.primary_path;
1696
1697 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1698
1699 tsn = ntohl(chunk->subh.data_hdr->tsn);
1700
1701 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1702 * 'Unacknowledged TSN's', if the TSN number of an
1703 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1704 * value, increment the 'TSN.Missing.Report' count on that
1705 * chunk if it has NOT been fast retransmitted or marked for
1706 * fast retransmit already.
1707 */
1708 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1709 !chunk->tsn_gap_acked &&
1710 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1711
1712 /* SFR-CACC may require us to skip marking
1713 * this chunk as missing.
1714 */
1715 if (!transport || !sctp_cacc_skip(primary,
1716 chunk->transport,
1717 count_of_newacks, tsn)) {
1718 chunk->tsn_missing_report++;
1719
1720 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1721 __func__, tsn, chunk->tsn_missing_report);
1722 }
1723 }
1724 /*
1725 * M4) If any DATA chunk is found to have a
1726 * 'TSN.Missing.Report'
1727 * value larger than or equal to 3, mark that chunk for
1728 * retransmission and start the fast retransmit procedure.
1729 */
1730
1731 if (chunk->tsn_missing_report >= 3) {
1732 chunk->fast_retransmit = SCTP_NEED_FRTX;
1733 do_fast_retransmit = 1;
1734 }
1735 }
1736
1737 if (transport) {
1738 if (do_fast_retransmit)
1739 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1740
1741 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1742 "flight_size:%d, pba:%d\n", __func__, transport,
1743 transport->cwnd, transport->ssthresh,
1744 transport->flight_size, transport->partial_bytes_acked);
1745 }
1746}
1747
1748/* Is the given TSN acked by this packet? */
1749static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1750{
1751 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1752 union sctp_sack_variable *frags;
1753 __u16 tsn_offset, blocks;
1754 int i;
1755
1756 if (TSN_lte(tsn, ctsn))
1757 goto pass;
1758
1759 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1760 *
1761 * Gap Ack Blocks:
1762 * These fields contain the Gap Ack Blocks. They are repeated
1763 * for each Gap Ack Block up to the number of Gap Ack Blocks
1764 * defined in the Number of Gap Ack Blocks field. All DATA
1765 * chunks with TSNs greater than or equal to (Cumulative TSN
1766 * Ack + Gap Ack Block Start) and less than or equal to
1767 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1768 * Block are assumed to have been received correctly.
1769 */
1770
1771 frags = sack->variable;
1772 blocks = ntohs(sack->num_gap_ack_blocks);
1773 tsn_offset = tsn - ctsn;
1774 for (i = 0; i < blocks; ++i) {
1775 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1776 tsn_offset <= ntohs(frags[i].gab.end))
1777 goto pass;
1778 }
1779
1780 return 0;
1781pass:
1782 return 1;
1783}
1784
1785static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1786 int nskips, __be16 stream)
1787{
1788 int i;
1789
1790 for (i = 0; i < nskips; i++) {
1791 if (skiplist[i].stream == stream)
1792 return i;
1793 }
1794 return i;
1795}
1796
1797/* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1798void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1799{
1800 struct sctp_association *asoc = q->asoc;
1801 struct sctp_chunk *ftsn_chunk = NULL;
1802 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1803 int nskips = 0;
1804 int skip_pos = 0;
1805 __u32 tsn;
1806 struct sctp_chunk *chunk;
1807 struct list_head *lchunk, *temp;
1808
1809 if (!asoc->peer.prsctp_capable)
1810 return;
1811
1812 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1813 * received SACK.
1814 *
1815 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1816 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1817 */
1818 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1819 asoc->adv_peer_ack_point = ctsn;
1820
1821 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1822 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1823 * the chunk next in the out-queue space is marked as "abandoned" as
1824 * shown in the following example:
1825 *
1826 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1827 * and the Advanced.Peer.Ack.Point is updated to this value:
1828 *
1829 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1830 * normal SACK processing local advancement
1831 * ... ...
1832 * Adv.Ack.Pt-> 102 acked 102 acked
1833 * 103 abandoned 103 abandoned
1834 * 104 abandoned Adv.Ack.P-> 104 abandoned
1835 * 105 105
1836 * 106 acked 106 acked
1837 * ... ...
1838 *
1839 * In this example, the data sender successfully advanced the
1840 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1841 */
1842 list_for_each_safe(lchunk, temp, &q->abandoned) {
1843 chunk = list_entry(lchunk, struct sctp_chunk,
1844 transmitted_list);
1845 tsn = ntohl(chunk->subh.data_hdr->tsn);
1846
1847 /* Remove any chunks in the abandoned queue that are acked by
1848 * the ctsn.
1849 */
1850 if (TSN_lte(tsn, ctsn)) {
1851 list_del_init(lchunk);
1852 sctp_chunk_free(chunk);
1853 } else {
1854 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1855 asoc->adv_peer_ack_point = tsn;
1856 if (chunk->chunk_hdr->flags &
1857 SCTP_DATA_UNORDERED)
1858 continue;
1859 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1860 nskips,
1861 chunk->subh.data_hdr->stream);
1862 ftsn_skip_arr[skip_pos].stream =
1863 chunk->subh.data_hdr->stream;
1864 ftsn_skip_arr[skip_pos].ssn =
1865 chunk->subh.data_hdr->ssn;
1866 if (skip_pos == nskips)
1867 nskips++;
1868 if (nskips == 10)
1869 break;
1870 } else
1871 break;
1872 }
1873 }
1874
1875 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1876 * is greater than the Cumulative TSN ACK carried in the received
1877 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1878 * chunk containing the latest value of the
1879 * "Advanced.Peer.Ack.Point".
1880 *
1881 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1882 * list each stream and sequence number in the forwarded TSN. This
1883 * information will enable the receiver to easily find any
1884 * stranded TSN's waiting on stream reorder queues. Each stream
1885 * SHOULD only be reported once; this means that if multiple
1886 * abandoned messages occur in the same stream then only the
1887 * highest abandoned stream sequence number is reported. If the
1888 * total size of the FORWARD TSN does NOT fit in a single MTU then
1889 * the sender of the FORWARD TSN SHOULD lower the
1890 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1891 * single MTU.
1892 */
1893 if (asoc->adv_peer_ack_point > ctsn)
1894 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1895 nskips, &ftsn_skip_arr[0]);
1896
1897 if (ftsn_chunk) {
1898 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1899 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1900 }
1901}