Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*
  2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 38#include <linux/ipv6.h>
 39#include <linux/poll.h>
 40#include <net/sock.h>
 41
 42#include "rds.h"
 43
 44/* this is just used for stats gathering :/ */
 45static DEFINE_SPINLOCK(rds_sock_lock);
 46static unsigned long rds_sock_count;
 47static LIST_HEAD(rds_sock_list);
 48DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 49
 50/*
 51 * This is called as the final descriptor referencing this socket is closed.
 52 * We have to unbind the socket so that another socket can be bound to the
 53 * address it was using.
 54 *
 55 * We have to be careful about racing with the incoming path.  sock_orphan()
 56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 57 * messages shouldn't be queued.
 58 */
 59static int rds_release(struct socket *sock)
 60{
 61	struct sock *sk = sock->sk;
 62	struct rds_sock *rs;
 63
 64	if (!sk)
 65		goto out;
 66
 67	rs = rds_sk_to_rs(sk);
 68
 69	sock_orphan(sk);
 70	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 71	 * that ensures the recv path has completed messing
 72	 * with the socket. */
 73	rds_clear_recv_queue(rs);
 74	rds_cong_remove_socket(rs);
 75
 76	rds_remove_bound(rs);
 77
 78	rds_send_drop_to(rs, NULL);
 79	rds_rdma_drop_keys(rs);
 80	rds_notify_queue_get(rs, NULL);
 81	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
 82
 83	spin_lock_bh(&rds_sock_lock);
 84	list_del_init(&rs->rs_item);
 85	rds_sock_count--;
 86	spin_unlock_bh(&rds_sock_lock);
 87
 88	rds_trans_put(rs->rs_transport);
 89
 90	sock->sk = NULL;
 91	sock_put(sk);
 92out:
 93	return 0;
 94}
 95
 96/*
 97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 98 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
105void rds_wake_sk_sleep(struct rds_sock *rs)
106{
107	unsigned long flags;
108
109	read_lock_irqsave(&rs->rs_recv_lock, flags);
110	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112}
113
114static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115		       int peer)
116{
 
117	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118	struct sockaddr_in6 *sin6;
119	struct sockaddr_in *sin;
120	int uaddr_len;
121
122	/* racey, don't care */
123	if (peer) {
124		if (ipv6_addr_any(&rs->rs_conn_addr))
125			return -ENOTCONN;
126
127		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128			sin = (struct sockaddr_in *)uaddr;
129			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130			sin->sin_family = AF_INET;
131			sin->sin_port = rs->rs_conn_port;
132			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133			uaddr_len = sizeof(*sin);
134		} else {
135			sin6 = (struct sockaddr_in6 *)uaddr;
136			sin6->sin6_family = AF_INET6;
137			sin6->sin6_port = rs->rs_conn_port;
138			sin6->sin6_addr = rs->rs_conn_addr;
139			sin6->sin6_flowinfo = 0;
140			/* scope_id is the same as in the bound address. */
141			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142			uaddr_len = sizeof(*sin6);
143		}
144	} else {
145		/* If socket is not yet bound and the socket is connected,
146		 * set the return address family to be the same as the
147		 * connected address, but with 0 address value.  If it is not
148		 * connected, set the family to be AF_UNSPEC (value 0) and
149		 * the address size to be that of an IPv4 address.
150		 */
151		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153				sin = (struct sockaddr_in *)uaddr;
154				memset(sin, 0, sizeof(*sin));
155				sin->sin_family = AF_UNSPEC;
156				return sizeof(*sin);
157			}
158
159#if IS_ENABLED(CONFIG_IPV6)
160			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161			      IPV6_ADDR_MAPPED)) {
162				sin6 = (struct sockaddr_in6 *)uaddr;
163				memset(sin6, 0, sizeof(*sin6));
164				sin6->sin6_family = AF_INET6;
165				return sizeof(*sin6);
166			}
167#endif
168
169			sin = (struct sockaddr_in *)uaddr;
170			memset(sin, 0, sizeof(*sin));
171			sin->sin_family = AF_INET;
172			return sizeof(*sin);
173		}
174		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175			sin = (struct sockaddr_in *)uaddr;
176			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177			sin->sin_family = AF_INET;
178			sin->sin_port = rs->rs_bound_port;
179			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180			uaddr_len = sizeof(*sin);
181		} else {
182			sin6 = (struct sockaddr_in6 *)uaddr;
183			sin6->sin6_family = AF_INET6;
184			sin6->sin6_port = rs->rs_bound_port;
185			sin6->sin6_addr = rs->rs_bound_addr;
186			sin6->sin6_flowinfo = 0;
187			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188			uaddr_len = sizeof(*sin6);
189		}
190	}
191
192	return uaddr_len;
 
 
193}
194
195/*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 *  -	there is data on the receive queue.
202 *  -	to signal that a previously congested destination may have become
203 *	uncongested
204 *  -	A notification has been queued to the socket (this can be a congestion
205 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
212static __poll_t rds_poll(struct file *file, struct socket *sock,
213			     poll_table *wait)
214{
215	struct sock *sk = sock->sk;
216	struct rds_sock *rs = rds_sk_to_rs(sk);
217	__poll_t mask = 0;
218	unsigned long flags;
219
220	poll_wait(file, sk_sleep(sk), wait);
221
222	if (rs->rs_seen_congestion)
223		poll_wait(file, &rds_poll_waitq, wait);
224
225	read_lock_irqsave(&rs->rs_recv_lock, flags);
226	if (!rs->rs_cong_monitor) {
227		/* When a congestion map was updated, we signal EPOLLIN for
228		 * "historical" reasons. Applications can also poll for
229		 * WRBAND instead. */
230		if (rds_cong_updated_since(&rs->rs_cong_track))
231			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232	} else {
233		spin_lock(&rs->rs_lock);
234		if (rs->rs_cong_notify)
235			mask |= (EPOLLIN | EPOLLRDNORM);
236		spin_unlock(&rs->rs_lock);
237	}
238	if (!list_empty(&rs->rs_recv_queue) ||
239	    !list_empty(&rs->rs_notify_queue) ||
240	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241		mask |= (EPOLLIN | EPOLLRDNORM);
242	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243		mask |= (EPOLLOUT | EPOLLWRNORM);
244	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245		mask |= POLLERR;
246	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248	/* clear state any time we wake a seen-congested socket */
249	if (mask)
250		rs->rs_seen_congestion = 0;
251
252	return mask;
253}
254
255static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256{
257	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258	rds_tos_t utos, tos = 0;
259
260	switch (cmd) {
261	case SIOCRDSSETTOS:
262		if (get_user(utos, (rds_tos_t __user *)arg))
263			return -EFAULT;
264
265		if (rs->rs_transport &&
266		    rs->rs_transport->get_tos_map)
267			tos = rs->rs_transport->get_tos_map(utos);
268		else
269			return -ENOIOCTLCMD;
270
271		spin_lock_bh(&rds_sock_lock);
272		if (rs->rs_tos || rs->rs_conn) {
273			spin_unlock_bh(&rds_sock_lock);
274			return -EINVAL;
275		}
276		rs->rs_tos = tos;
277		spin_unlock_bh(&rds_sock_lock);
278		break;
279	case SIOCRDSGETTOS:
280		spin_lock_bh(&rds_sock_lock);
281		tos = rs->rs_tos;
282		spin_unlock_bh(&rds_sock_lock);
283		if (put_user(tos, (rds_tos_t __user *)arg))
284			return -EFAULT;
285		break;
286	default:
287		return -ENOIOCTLCMD;
288	}
289
290	return 0;
291}
292
293static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
 
294{
295	struct sockaddr_in6 sin6;
296	struct sockaddr_in sin;
297	int ret = 0;
298
299	/* racing with another thread binding seems ok here */
300	if (ipv6_addr_any(&rs->rs_bound_addr)) {
301		ret = -ENOTCONN; /* XXX not a great errno */
302		goto out;
303	}
304
305	if (len < sizeof(struct sockaddr_in)) {
306		ret = -EINVAL;
307		goto out;
308	} else if (len < sizeof(struct sockaddr_in6)) {
309		/* Assume IPv4 */
310		if (copy_from_sockptr(&sin, optval,
311				sizeof(struct sockaddr_in))) {
312			ret = -EFAULT;
313			goto out;
314		}
315		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316		sin6.sin6_port = sin.sin_port;
317	} else {
318		if (copy_from_sockptr(&sin6, optval,
319				   sizeof(struct sockaddr_in6))) {
320			ret = -EFAULT;
321			goto out;
322		}
323	}
324
325	rds_send_drop_to(rs, &sin6);
 
 
 
 
 
326out:
327	return ret;
328}
329
330static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331			       int optlen)
332{
333	int value;
334
335	if (optlen < sizeof(int))
336		return -EINVAL;
337	if (copy_from_sockptr(&value, optval, sizeof(int)))
338		return -EFAULT;
339	*optvar = !!value;
340	return 0;
341}
342
343static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
 
344{
345	int ret;
346
347	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348	if (ret == 0) {
349		if (rs->rs_cong_monitor) {
350			rds_cong_add_socket(rs);
351		} else {
352			rds_cong_remove_socket(rs);
353			rs->rs_cong_mask = 0;
354			rs->rs_cong_notify = 0;
355		}
356	}
357	return ret;
358}
359
360static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
 
361{
362	int t_type;
363
364	if (rs->rs_transport)
365		return -EOPNOTSUPP; /* previously attached to transport */
366
367	if (optlen != sizeof(int))
368		return -EINVAL;
369
370	if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371		return -EFAULT;
372
373	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374		return -EINVAL;
375
376	rs->rs_transport = rds_trans_get(t_type);
377
378	return rs->rs_transport ? 0 : -ENOPROTOOPT;
379}
380
381static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382				 int optlen, int optname)
383{
384	int val, valbool;
385
386	if (optlen != sizeof(int))
387		return -EFAULT;
388
389	if (copy_from_sockptr(&val, optval, sizeof(int)))
390		return -EFAULT;
391
392	valbool = val ? 1 : 0;
393
394	if (optname == SO_TIMESTAMP_NEW)
395		sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397	if (valbool)
398		sock_set_flag(sk, SOCK_RCVTSTAMP);
399	else
400		sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402	return 0;
403}
404
405static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406				  int optlen)
407{
408	struct rds_rx_trace_so trace;
409	int i;
410
411	if (optlen != sizeof(struct rds_rx_trace_so))
412		return -EFAULT;
413
414	if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415		return -EFAULT;
416
417	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418		return -EFAULT;
419
420	rs->rs_rx_traces = trace.rx_traces;
421	for (i = 0; i < rs->rs_rx_traces; i++) {
422		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
423			rs->rs_rx_traces = 0;
424			return -EFAULT;
425		}
426		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427	}
428
429	return 0;
430}
431
432static int rds_setsockopt(struct socket *sock, int level, int optname,
433			  sockptr_t optval, unsigned int optlen)
434{
435	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436	int ret;
437
438	if (level != SOL_RDS) {
439		ret = -ENOPROTOOPT;
440		goto out;
441	}
442
443	switch (optname) {
444	case RDS_CANCEL_SENT_TO:
445		ret = rds_cancel_sent_to(rs, optval, optlen);
446		break;
447	case RDS_GET_MR:
448		ret = rds_get_mr(rs, optval, optlen);
449		break;
450	case RDS_GET_MR_FOR_DEST:
451		ret = rds_get_mr_for_dest(rs, optval, optlen);
452		break;
453	case RDS_FREE_MR:
454		ret = rds_free_mr(rs, optval, optlen);
455		break;
456	case RDS_RECVERR:
457		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458		break;
459	case RDS_CONG_MONITOR:
460		ret = rds_cong_monitor(rs, optval, optlen);
461		break;
462	case SO_RDS_TRANSPORT:
463		lock_sock(sock->sk);
464		ret = rds_set_transport(rs, optval, optlen);
465		release_sock(sock->sk);
466		break;
467	case SO_TIMESTAMP_OLD:
468	case SO_TIMESTAMP_NEW:
469		lock_sock(sock->sk);
470		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471		release_sock(sock->sk);
472		break;
473	case SO_RDS_MSG_RXPATH_LATENCY:
474		ret = rds_recv_track_latency(rs, optval, optlen);
475		break;
476	default:
477		ret = -ENOPROTOOPT;
478	}
479out:
480	return ret;
481}
482
483static int rds_getsockopt(struct socket *sock, int level, int optname,
484			  char __user *optval, int __user *optlen)
485{
486	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487	int ret = -ENOPROTOOPT, len;
488	int trans;
489
490	if (level != SOL_RDS)
491		goto out;
492
493	if (get_user(len, optlen)) {
494		ret = -EFAULT;
495		goto out;
496	}
497
498	switch (optname) {
499	case RDS_INFO_FIRST ... RDS_INFO_LAST:
500		ret = rds_info_getsockopt(sock, optname, optval,
501					  optlen);
502		break;
503
504	case RDS_RECVERR:
505		if (len < sizeof(int))
506			ret = -EINVAL;
507		else
508		if (put_user(rs->rs_recverr, (int __user *) optval) ||
509		    put_user(sizeof(int), optlen))
510			ret = -EFAULT;
511		else
512			ret = 0;
513		break;
514	case SO_RDS_TRANSPORT:
515		if (len < sizeof(int)) {
516			ret = -EINVAL;
517			break;
518		}
519		trans = (rs->rs_transport ? rs->rs_transport->t_type :
520			 RDS_TRANS_NONE); /* unbound */
521		if (put_user(trans, (int __user *)optval) ||
522		    put_user(sizeof(int), optlen))
523			ret = -EFAULT;
524		else
525			ret = 0;
526		break;
527	default:
528		break;
529	}
530
531out:
532	return ret;
533
534}
535
536static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537		       int addr_len, int flags)
538{
539	struct sock *sk = sock->sk;
540	struct sockaddr_in *sin;
541	struct rds_sock *rs = rds_sk_to_rs(sk);
542	int ret = 0;
543
544	if (addr_len < offsetofend(struct sockaddr, sa_family))
545		return -EINVAL;
546
547	lock_sock(sk);
548
549	switch (uaddr->sa_family) {
550	case AF_INET:
551		sin = (struct sockaddr_in *)uaddr;
552		if (addr_len < sizeof(struct sockaddr_in)) {
553			ret = -EINVAL;
554			break;
555		}
556		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557			ret = -EDESTADDRREQ;
558			break;
559		}
560		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562			ret = -EINVAL;
563			break;
564		}
565		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566		rs->rs_conn_port = sin->sin_port;
567		break;
568
569#if IS_ENABLED(CONFIG_IPV6)
570	case AF_INET6: {
571		struct sockaddr_in6 *sin6;
572		int addr_type;
573
574		sin6 = (struct sockaddr_in6 *)uaddr;
575		if (addr_len < sizeof(struct sockaddr_in6)) {
576			ret = -EINVAL;
577			break;
578		}
579		addr_type = ipv6_addr_type(&sin6->sin6_addr);
580		if (!(addr_type & IPV6_ADDR_UNICAST)) {
581			__be32 addr4;
582
583			if (!(addr_type & IPV6_ADDR_MAPPED)) {
584				ret = -EPROTOTYPE;
585				break;
586			}
587
588			/* It is a mapped address.  Need to do some sanity
589			 * checks.
590			 */
591			addr4 = sin6->sin6_addr.s6_addr32[3];
592			if (addr4 == htonl(INADDR_ANY) ||
593			    addr4 == htonl(INADDR_BROADCAST) ||
594			    ipv4_is_multicast(addr4)) {
595				ret = -EPROTOTYPE;
596				break;
597			}
598		}
599
600		if (addr_type & IPV6_ADDR_LINKLOCAL) {
601			/* If socket is arleady bound to a link local address,
602			 * the peer address must be on the same link.
603			 */
604			if (sin6->sin6_scope_id == 0 ||
605			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
606			     rs->rs_bound_scope_id &&
607			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608				ret = -EINVAL;
609				break;
610			}
611			/* Remember the connected address scope ID.  It will
612			 * be checked against the binding local address when
613			 * the socket is bound.
614			 */
615			rs->rs_bound_scope_id = sin6->sin6_scope_id;
616		}
617		rs->rs_conn_addr = sin6->sin6_addr;
618		rs->rs_conn_port = sin6->sin6_port;
619		break;
620	}
621#endif
622
623	default:
624		ret = -EAFNOSUPPORT;
625		break;
626	}
627
 
 
 
 
 
 
 
 
 
628	release_sock(sk);
629	return ret;
630}
631
632static struct proto rds_proto = {
633	.name	  = "RDS",
634	.owner	  = THIS_MODULE,
635	.obj_size = sizeof(struct rds_sock),
636};
637
638static const struct proto_ops rds_proto_ops = {
639	.family =	AF_RDS,
640	.owner =	THIS_MODULE,
641	.release =	rds_release,
642	.bind =		rds_bind,
643	.connect =	rds_connect,
644	.socketpair =	sock_no_socketpair,
645	.accept =	sock_no_accept,
646	.getname =	rds_getname,
647	.poll =		rds_poll,
648	.ioctl =	rds_ioctl,
649	.listen =	sock_no_listen,
650	.shutdown =	sock_no_shutdown,
651	.setsockopt =	rds_setsockopt,
652	.getsockopt =	rds_getsockopt,
653	.sendmsg =	rds_sendmsg,
654	.recvmsg =	rds_recvmsg,
655	.mmap =		sock_no_mmap,
656	.sendpage =	sock_no_sendpage,
657};
658
659static void rds_sock_destruct(struct sock *sk)
660{
661	struct rds_sock *rs = rds_sk_to_rs(sk);
662
663	WARN_ON((&rs->rs_item != rs->rs_item.next ||
664		 &rs->rs_item != rs->rs_item.prev));
665}
666
667static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
668{
669	struct rds_sock *rs;
670
671	sock_init_data(sock, sk);
672	sock->ops		= &rds_proto_ops;
673	sk->sk_protocol		= protocol;
674	sk->sk_destruct		= rds_sock_destruct;
675
676	rs = rds_sk_to_rs(sk);
677	spin_lock_init(&rs->rs_lock);
678	rwlock_init(&rs->rs_recv_lock);
679	INIT_LIST_HEAD(&rs->rs_send_queue);
680	INIT_LIST_HEAD(&rs->rs_recv_queue);
681	INIT_LIST_HEAD(&rs->rs_notify_queue);
682	INIT_LIST_HEAD(&rs->rs_cong_list);
683	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
684	spin_lock_init(&rs->rs_rdma_lock);
685	rs->rs_rdma_keys = RB_ROOT;
686	rs->rs_rx_traces = 0;
687	rs->rs_tos = 0;
688	rs->rs_conn = NULL;
689
690	spin_lock_bh(&rds_sock_lock);
691	list_add_tail(&rs->rs_item, &rds_sock_list);
692	rds_sock_count++;
693	spin_unlock_bh(&rds_sock_lock);
694
695	return 0;
696}
697
698static int rds_create(struct net *net, struct socket *sock, int protocol,
699		      int kern)
700{
701	struct sock *sk;
702
703	if (sock->type != SOCK_SEQPACKET || protocol)
704		return -ESOCKTNOSUPPORT;
705
706	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
707	if (!sk)
708		return -ENOMEM;
709
710	return __rds_create(sock, sk, protocol);
711}
712
713void rds_sock_addref(struct rds_sock *rs)
714{
715	sock_hold(rds_rs_to_sk(rs));
716}
717
718void rds_sock_put(struct rds_sock *rs)
719{
720	sock_put(rds_rs_to_sk(rs));
721}
722
723static const struct net_proto_family rds_family_ops = {
724	.family =	AF_RDS,
725	.create =	rds_create,
726	.owner	=	THIS_MODULE,
727};
728
729static void rds_sock_inc_info(struct socket *sock, unsigned int len,
730			      struct rds_info_iterator *iter,
731			      struct rds_info_lengths *lens)
732{
733	struct rds_sock *rs;
734	struct rds_incoming *inc;
735	unsigned int total = 0;
736
737	len /= sizeof(struct rds_info_message);
738
739	spin_lock_bh(&rds_sock_lock);
740
741	list_for_each_entry(rs, &rds_sock_list, rs_item) {
742		/* This option only supports IPv4 sockets. */
743		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
744			continue;
745
746		read_lock(&rs->rs_recv_lock);
747
748		/* XXX too lazy to maintain counts.. */
749		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
750			total++;
751			if (total <= len)
752				rds_inc_info_copy(inc, iter,
753						  inc->i_saddr.s6_addr32[3],
754						  rs->rs_bound_addr_v4,
755						  1);
756		}
757
758		read_unlock(&rs->rs_recv_lock);
759	}
760
761	spin_unlock_bh(&rds_sock_lock);
762
763	lens->nr = total;
764	lens->each = sizeof(struct rds_info_message);
765}
766
767#if IS_ENABLED(CONFIG_IPV6)
768static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
769			       struct rds_info_iterator *iter,
770			       struct rds_info_lengths *lens)
771{
772	struct rds_incoming *inc;
773	unsigned int total = 0;
774	struct rds_sock *rs;
775
776	len /= sizeof(struct rds6_info_message);
777
778	spin_lock_bh(&rds_sock_lock);
779
780	list_for_each_entry(rs, &rds_sock_list, rs_item) {
781		read_lock(&rs->rs_recv_lock);
782
783		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
784			total++;
785			if (total <= len)
786				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
787						   &rs->rs_bound_addr, 1);
788		}
789
790		read_unlock(&rs->rs_recv_lock);
791	}
792
793	spin_unlock_bh(&rds_sock_lock);
794
795	lens->nr = total;
796	lens->each = sizeof(struct rds6_info_message);
797}
798#endif
799
800static void rds_sock_info(struct socket *sock, unsigned int len,
801			  struct rds_info_iterator *iter,
802			  struct rds_info_lengths *lens)
803{
804	struct rds_info_socket sinfo;
805	unsigned int cnt = 0;
806	struct rds_sock *rs;
807
808	len /= sizeof(struct rds_info_socket);
809
810	spin_lock_bh(&rds_sock_lock);
811
812	if (len < rds_sock_count) {
813		cnt = rds_sock_count;
814		goto out;
815	}
816
817	list_for_each_entry(rs, &rds_sock_list, rs_item) {
818		/* This option only supports IPv4 sockets. */
819		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
820			continue;
821		sinfo.sndbuf = rds_sk_sndbuf(rs);
822		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
823		sinfo.bound_addr = rs->rs_bound_addr_v4;
824		sinfo.connected_addr = rs->rs_conn_addr_v4;
825		sinfo.bound_port = rs->rs_bound_port;
826		sinfo.connected_port = rs->rs_conn_port;
827		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
828
829		rds_info_copy(iter, &sinfo, sizeof(sinfo));
830		cnt++;
831	}
832
833out:
834	lens->nr = cnt;
835	lens->each = sizeof(struct rds_info_socket);
836
837	spin_unlock_bh(&rds_sock_lock);
838}
839
840#if IS_ENABLED(CONFIG_IPV6)
841static void rds6_sock_info(struct socket *sock, unsigned int len,
842			   struct rds_info_iterator *iter,
843			   struct rds_info_lengths *lens)
844{
845	struct rds6_info_socket sinfo6;
846	struct rds_sock *rs;
847
848	len /= sizeof(struct rds6_info_socket);
849
850	spin_lock_bh(&rds_sock_lock);
851
852	if (len < rds_sock_count)
853		goto out;
854
855	list_for_each_entry(rs, &rds_sock_list, rs_item) {
856		sinfo6.sndbuf = rds_sk_sndbuf(rs);
857		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
858		sinfo6.bound_addr = rs->rs_bound_addr;
859		sinfo6.connected_addr = rs->rs_conn_addr;
860		sinfo6.bound_port = rs->rs_bound_port;
861		sinfo6.connected_port = rs->rs_conn_port;
862		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
863
864		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
865	}
866
867 out:
868	lens->nr = rds_sock_count;
869	lens->each = sizeof(struct rds6_info_socket);
870
871	spin_unlock_bh(&rds_sock_lock);
872}
873#endif
874
875static void rds_exit(void)
876{
877	sock_unregister(rds_family_ops.family);
878	proto_unregister(&rds_proto);
879	rds_conn_exit();
880	rds_cong_exit();
881	rds_sysctl_exit();
882	rds_threads_exit();
883	rds_stats_exit();
884	rds_page_exit();
885	rds_bind_lock_destroy();
886	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
887	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
888#if IS_ENABLED(CONFIG_IPV6)
889	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
890	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
891#endif
892}
893module_exit(rds_exit);
894
895u32 rds_gen_num;
896
897static int rds_init(void)
898{
899	int ret;
900
901	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
902
903	ret = rds_bind_lock_init();
904	if (ret)
905		goto out;
906
907	ret = rds_conn_init();
908	if (ret)
909		goto out_bind;
910
911	ret = rds_threads_init();
912	if (ret)
913		goto out_conn;
914	ret = rds_sysctl_init();
915	if (ret)
916		goto out_threads;
917	ret = rds_stats_init();
918	if (ret)
919		goto out_sysctl;
920	ret = proto_register(&rds_proto, 1);
921	if (ret)
922		goto out_stats;
923	ret = sock_register(&rds_family_ops);
924	if (ret)
925		goto out_proto;
926
927	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
928	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
929#if IS_ENABLED(CONFIG_IPV6)
930	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
931	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
932#endif
933
934	goto out;
935
936out_proto:
937	proto_unregister(&rds_proto);
938out_stats:
939	rds_stats_exit();
940out_sysctl:
941	rds_sysctl_exit();
942out_threads:
943	rds_threads_exit();
944out_conn:
945	rds_conn_exit();
946	rds_cong_exit();
947	rds_page_exit();
948out_bind:
949	rds_bind_lock_destroy();
950out:
951	return ret;
952}
953module_init(rds_init);
954
955#define DRV_VERSION     "4.0"
956#define DRV_RELDATE     "Feb 12, 2009"
957
958MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
959MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
960		   " v" DRV_VERSION " (" DRV_RELDATE ")");
961MODULE_VERSION(DRV_VERSION);
962MODULE_LICENSE("Dual BSD/GPL");
963MODULE_ALIAS_NETPROTO(PF_RDS);
v4.17
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 
 38#include <linux/poll.h>
 39#include <net/sock.h>
 40
 41#include "rds.h"
 42
 43/* this is just used for stats gathering :/ */
 44static DEFINE_SPINLOCK(rds_sock_lock);
 45static unsigned long rds_sock_count;
 46static LIST_HEAD(rds_sock_list);
 47DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 48
 49/*
 50 * This is called as the final descriptor referencing this socket is closed.
 51 * We have to unbind the socket so that another socket can be bound to the
 52 * address it was using.
 53 *
 54 * We have to be careful about racing with the incoming path.  sock_orphan()
 55 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 56 * messages shouldn't be queued.
 57 */
 58static int rds_release(struct socket *sock)
 59{
 60	struct sock *sk = sock->sk;
 61	struct rds_sock *rs;
 62
 63	if (!sk)
 64		goto out;
 65
 66	rs = rds_sk_to_rs(sk);
 67
 68	sock_orphan(sk);
 69	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 70	 * that ensures the recv path has completed messing
 71	 * with the socket. */
 72	rds_clear_recv_queue(rs);
 73	rds_cong_remove_socket(rs);
 74
 75	rds_remove_bound(rs);
 76
 77	rds_send_drop_to(rs, NULL);
 78	rds_rdma_drop_keys(rs);
 79	rds_notify_queue_get(rs, NULL);
 80	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
 81
 82	spin_lock_bh(&rds_sock_lock);
 83	list_del_init(&rs->rs_item);
 84	rds_sock_count--;
 85	spin_unlock_bh(&rds_sock_lock);
 86
 87	rds_trans_put(rs->rs_transport);
 88
 89	sock->sk = NULL;
 90	sock_put(sk);
 91out:
 92	return 0;
 93}
 94
 95/*
 96 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 97 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 98 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
 99 * this seems more conservative.
100 * NB - normally, one would use sk_callback_lock for this, but we can
101 * get here from interrupts, whereas the network code grabs sk_callback_lock
102 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
103 */
104void rds_wake_sk_sleep(struct rds_sock *rs)
105{
106	unsigned long flags;
107
108	read_lock_irqsave(&rs->rs_recv_lock, flags);
109	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
110	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
111}
112
113static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
114		       int peer)
115{
116	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
117	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118
119	memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
 
120
121	/* racey, don't care */
122	if (peer) {
123		if (!rs->rs_conn_addr)
124			return -ENOTCONN;
125
126		sin->sin_port = rs->rs_conn_port;
127		sin->sin_addr.s_addr = rs->rs_conn_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128	} else {
129		sin->sin_port = rs->rs_bound_port;
130		sin->sin_addr.s_addr = rs->rs_bound_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
132
133	sin->sin_family = AF_INET;
134
135	return sizeof(*sin);
136}
137
138/*
139 * RDS' poll is without a doubt the least intuitive part of the interface,
140 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
141 * a network protocol.
142 *
143 * EPOLLIN is asserted if
144 *  -	there is data on the receive queue.
145 *  -	to signal that a previously congested destination may have become
146 *	uncongested
147 *  -	A notification has been queued to the socket (this can be a congestion
148 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
149 *
150 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
151 * however, that the next sendmsg() call will succeed. If the application tries
152 * to send to a congested destination, the system call may still fail (and
153 * return ENOBUFS).
154 */
155static __poll_t rds_poll(struct file *file, struct socket *sock,
156			     poll_table *wait)
157{
158	struct sock *sk = sock->sk;
159	struct rds_sock *rs = rds_sk_to_rs(sk);
160	__poll_t mask = 0;
161	unsigned long flags;
162
163	poll_wait(file, sk_sleep(sk), wait);
164
165	if (rs->rs_seen_congestion)
166		poll_wait(file, &rds_poll_waitq, wait);
167
168	read_lock_irqsave(&rs->rs_recv_lock, flags);
169	if (!rs->rs_cong_monitor) {
170		/* When a congestion map was updated, we signal EPOLLIN for
171		 * "historical" reasons. Applications can also poll for
172		 * WRBAND instead. */
173		if (rds_cong_updated_since(&rs->rs_cong_track))
174			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
175	} else {
176		spin_lock(&rs->rs_lock);
177		if (rs->rs_cong_notify)
178			mask |= (EPOLLIN | EPOLLRDNORM);
179		spin_unlock(&rs->rs_lock);
180	}
181	if (!list_empty(&rs->rs_recv_queue) ||
182	    !list_empty(&rs->rs_notify_queue) ||
183	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
184		mask |= (EPOLLIN | EPOLLRDNORM);
185	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
186		mask |= (EPOLLOUT | EPOLLWRNORM);
187	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
188		mask |= POLLERR;
189	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
190
191	/* clear state any time we wake a seen-congested socket */
192	if (mask)
193		rs->rs_seen_congestion = 0;
194
195	return mask;
196}
197
198static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
199{
200	return -ENOIOCTLCMD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201}
202
203static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
204			      int len)
205{
 
206	struct sockaddr_in sin;
207	int ret = 0;
208
209	/* racing with another thread binding seems ok here */
210	if (rs->rs_bound_addr == 0) {
211		ret = -ENOTCONN; /* XXX not a great errno */
212		goto out;
213	}
214
215	if (len < sizeof(struct sockaddr_in)) {
216		ret = -EINVAL;
217		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218	}
219
220	if (copy_from_user(&sin, optval, sizeof(sin))) {
221		ret = -EFAULT;
222		goto out;
223	}
224
225	rds_send_drop_to(rs, &sin);
226out:
227	return ret;
228}
229
230static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
231			       int optlen)
232{
233	int value;
234
235	if (optlen < sizeof(int))
236		return -EINVAL;
237	if (get_user(value, (int __user *) optval))
238		return -EFAULT;
239	*optvar = !!value;
240	return 0;
241}
242
243static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
244			    int optlen)
245{
246	int ret;
247
248	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
249	if (ret == 0) {
250		if (rs->rs_cong_monitor) {
251			rds_cong_add_socket(rs);
252		} else {
253			rds_cong_remove_socket(rs);
254			rs->rs_cong_mask = 0;
255			rs->rs_cong_notify = 0;
256		}
257	}
258	return ret;
259}
260
261static int rds_set_transport(struct rds_sock *rs, char __user *optval,
262			     int optlen)
263{
264	int t_type;
265
266	if (rs->rs_transport)
267		return -EOPNOTSUPP; /* previously attached to transport */
268
269	if (optlen != sizeof(int))
270		return -EINVAL;
271
272	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
273		return -EFAULT;
274
275	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
276		return -EINVAL;
277
278	rs->rs_transport = rds_trans_get(t_type);
279
280	return rs->rs_transport ? 0 : -ENOPROTOOPT;
281}
282
283static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
284				 int optlen)
285{
286	int val, valbool;
287
288	if (optlen != sizeof(int))
289		return -EFAULT;
290
291	if (get_user(val, (int __user *)optval))
292		return -EFAULT;
293
294	valbool = val ? 1 : 0;
295
 
 
 
296	if (valbool)
297		sock_set_flag(sk, SOCK_RCVTSTAMP);
298	else
299		sock_reset_flag(sk, SOCK_RCVTSTAMP);
300
301	return 0;
302}
303
304static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
305				  int optlen)
306{
307	struct rds_rx_trace_so trace;
308	int i;
309
310	if (optlen != sizeof(struct rds_rx_trace_so))
311		return -EFAULT;
312
313	if (copy_from_user(&trace, optval, sizeof(trace)))
314		return -EFAULT;
315
316	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
317		return -EFAULT;
318
319	rs->rs_rx_traces = trace.rx_traces;
320	for (i = 0; i < rs->rs_rx_traces; i++) {
321		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
322			rs->rs_rx_traces = 0;
323			return -EFAULT;
324		}
325		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
326	}
327
328	return 0;
329}
330
331static int rds_setsockopt(struct socket *sock, int level, int optname,
332			  char __user *optval, unsigned int optlen)
333{
334	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
335	int ret;
336
337	if (level != SOL_RDS) {
338		ret = -ENOPROTOOPT;
339		goto out;
340	}
341
342	switch (optname) {
343	case RDS_CANCEL_SENT_TO:
344		ret = rds_cancel_sent_to(rs, optval, optlen);
345		break;
346	case RDS_GET_MR:
347		ret = rds_get_mr(rs, optval, optlen);
348		break;
349	case RDS_GET_MR_FOR_DEST:
350		ret = rds_get_mr_for_dest(rs, optval, optlen);
351		break;
352	case RDS_FREE_MR:
353		ret = rds_free_mr(rs, optval, optlen);
354		break;
355	case RDS_RECVERR:
356		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
357		break;
358	case RDS_CONG_MONITOR:
359		ret = rds_cong_monitor(rs, optval, optlen);
360		break;
361	case SO_RDS_TRANSPORT:
362		lock_sock(sock->sk);
363		ret = rds_set_transport(rs, optval, optlen);
364		release_sock(sock->sk);
365		break;
366	case SO_TIMESTAMP:
 
367		lock_sock(sock->sk);
368		ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
369		release_sock(sock->sk);
370		break;
371	case SO_RDS_MSG_RXPATH_LATENCY:
372		ret = rds_recv_track_latency(rs, optval, optlen);
373		break;
374	default:
375		ret = -ENOPROTOOPT;
376	}
377out:
378	return ret;
379}
380
381static int rds_getsockopt(struct socket *sock, int level, int optname,
382			  char __user *optval, int __user *optlen)
383{
384	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
385	int ret = -ENOPROTOOPT, len;
386	int trans;
387
388	if (level != SOL_RDS)
389		goto out;
390
391	if (get_user(len, optlen)) {
392		ret = -EFAULT;
393		goto out;
394	}
395
396	switch (optname) {
397	case RDS_INFO_FIRST ... RDS_INFO_LAST:
398		ret = rds_info_getsockopt(sock, optname, optval,
399					  optlen);
400		break;
401
402	case RDS_RECVERR:
403		if (len < sizeof(int))
404			ret = -EINVAL;
405		else
406		if (put_user(rs->rs_recverr, (int __user *) optval) ||
407		    put_user(sizeof(int), optlen))
408			ret = -EFAULT;
409		else
410			ret = 0;
411		break;
412	case SO_RDS_TRANSPORT:
413		if (len < sizeof(int)) {
414			ret = -EINVAL;
415			break;
416		}
417		trans = (rs->rs_transport ? rs->rs_transport->t_type :
418			 RDS_TRANS_NONE); /* unbound */
419		if (put_user(trans, (int __user *)optval) ||
420		    put_user(sizeof(int), optlen))
421			ret = -EFAULT;
422		else
423			ret = 0;
424		break;
425	default:
426		break;
427	}
428
429out:
430	return ret;
431
432}
433
434static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
435		       int addr_len, int flags)
436{
437	struct sock *sk = sock->sk;
438	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
439	struct rds_sock *rs = rds_sk_to_rs(sk);
440	int ret = 0;
441
 
 
 
442	lock_sock(sk);
443
444	if (addr_len != sizeof(struct sockaddr_in)) {
445		ret = -EINVAL;
446		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447	}
 
448
449	if (sin->sin_family != AF_INET) {
450		ret = -EAFNOSUPPORT;
451		goto out;
452	}
453
454	if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
455		ret = -EDESTADDRREQ;
456		goto out;
457	}
458
459	rs->rs_conn_addr = sin->sin_addr.s_addr;
460	rs->rs_conn_port = sin->sin_port;
461
462out:
463	release_sock(sk);
464	return ret;
465}
466
467static struct proto rds_proto = {
468	.name	  = "RDS",
469	.owner	  = THIS_MODULE,
470	.obj_size = sizeof(struct rds_sock),
471};
472
473static const struct proto_ops rds_proto_ops = {
474	.family =	AF_RDS,
475	.owner =	THIS_MODULE,
476	.release =	rds_release,
477	.bind =		rds_bind,
478	.connect =	rds_connect,
479	.socketpair =	sock_no_socketpair,
480	.accept =	sock_no_accept,
481	.getname =	rds_getname,
482	.poll =		rds_poll,
483	.ioctl =	rds_ioctl,
484	.listen =	sock_no_listen,
485	.shutdown =	sock_no_shutdown,
486	.setsockopt =	rds_setsockopt,
487	.getsockopt =	rds_getsockopt,
488	.sendmsg =	rds_sendmsg,
489	.recvmsg =	rds_recvmsg,
490	.mmap =		sock_no_mmap,
491	.sendpage =	sock_no_sendpage,
492};
493
494static void rds_sock_destruct(struct sock *sk)
495{
496	struct rds_sock *rs = rds_sk_to_rs(sk);
497
498	WARN_ON((&rs->rs_item != rs->rs_item.next ||
499		 &rs->rs_item != rs->rs_item.prev));
500}
501
502static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
503{
504	struct rds_sock *rs;
505
506	sock_init_data(sock, sk);
507	sock->ops		= &rds_proto_ops;
508	sk->sk_protocol		= protocol;
509	sk->sk_destruct		= rds_sock_destruct;
510
511	rs = rds_sk_to_rs(sk);
512	spin_lock_init(&rs->rs_lock);
513	rwlock_init(&rs->rs_recv_lock);
514	INIT_LIST_HEAD(&rs->rs_send_queue);
515	INIT_LIST_HEAD(&rs->rs_recv_queue);
516	INIT_LIST_HEAD(&rs->rs_notify_queue);
517	INIT_LIST_HEAD(&rs->rs_cong_list);
518	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
519	spin_lock_init(&rs->rs_rdma_lock);
520	rs->rs_rdma_keys = RB_ROOT;
521	rs->rs_rx_traces = 0;
 
 
522
523	spin_lock_bh(&rds_sock_lock);
524	list_add_tail(&rs->rs_item, &rds_sock_list);
525	rds_sock_count++;
526	spin_unlock_bh(&rds_sock_lock);
527
528	return 0;
529}
530
531static int rds_create(struct net *net, struct socket *sock, int protocol,
532		      int kern)
533{
534	struct sock *sk;
535
536	if (sock->type != SOCK_SEQPACKET || protocol)
537		return -ESOCKTNOSUPPORT;
538
539	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
540	if (!sk)
541		return -ENOMEM;
542
543	return __rds_create(sock, sk, protocol);
544}
545
546void rds_sock_addref(struct rds_sock *rs)
547{
548	sock_hold(rds_rs_to_sk(rs));
549}
550
551void rds_sock_put(struct rds_sock *rs)
552{
553	sock_put(rds_rs_to_sk(rs));
554}
555
556static const struct net_proto_family rds_family_ops = {
557	.family =	AF_RDS,
558	.create =	rds_create,
559	.owner	=	THIS_MODULE,
560};
561
562static void rds_sock_inc_info(struct socket *sock, unsigned int len,
563			      struct rds_info_iterator *iter,
564			      struct rds_info_lengths *lens)
565{
566	struct rds_sock *rs;
567	struct rds_incoming *inc;
568	unsigned int total = 0;
569
570	len /= sizeof(struct rds_info_message);
571
572	spin_lock_bh(&rds_sock_lock);
573
574	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
 
575		read_lock(&rs->rs_recv_lock);
576
577		/* XXX too lazy to maintain counts.. */
578		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
579			total++;
580			if (total <= len)
581				rds_inc_info_copy(inc, iter, inc->i_saddr,
582						  rs->rs_bound_addr, 1);
 
 
583		}
584
585		read_unlock(&rs->rs_recv_lock);
586	}
587
588	spin_unlock_bh(&rds_sock_lock);
589
590	lens->nr = total;
591	lens->each = sizeof(struct rds_info_message);
592}
593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594static void rds_sock_info(struct socket *sock, unsigned int len,
595			  struct rds_info_iterator *iter,
596			  struct rds_info_lengths *lens)
597{
598	struct rds_info_socket sinfo;
 
599	struct rds_sock *rs;
600
601	len /= sizeof(struct rds_info_socket);
602
603	spin_lock_bh(&rds_sock_lock);
604
605	if (len < rds_sock_count)
 
606		goto out;
 
607
608	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
609		sinfo.sndbuf = rds_sk_sndbuf(rs);
610		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
611		sinfo.bound_addr = rs->rs_bound_addr;
612		sinfo.connected_addr = rs->rs_conn_addr;
613		sinfo.bound_port = rs->rs_bound_port;
614		sinfo.connected_port = rs->rs_conn_port;
615		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
616
617		rds_info_copy(iter, &sinfo, sizeof(sinfo));
 
618	}
619
620out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621	lens->nr = rds_sock_count;
622	lens->each = sizeof(struct rds_info_socket);
623
624	spin_unlock_bh(&rds_sock_lock);
625}
 
626
627static void rds_exit(void)
628{
629	sock_unregister(rds_family_ops.family);
630	proto_unregister(&rds_proto);
631	rds_conn_exit();
632	rds_cong_exit();
633	rds_sysctl_exit();
634	rds_threads_exit();
635	rds_stats_exit();
636	rds_page_exit();
637	rds_bind_lock_destroy();
638	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
639	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
640}
641module_exit(rds_exit);
642
643u32 rds_gen_num;
644
645static int rds_init(void)
646{
647	int ret;
648
649	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
650
651	ret = rds_bind_lock_init();
652	if (ret)
653		goto out;
654
655	ret = rds_conn_init();
656	if (ret)
657		goto out_bind;
658
659	ret = rds_threads_init();
660	if (ret)
661		goto out_conn;
662	ret = rds_sysctl_init();
663	if (ret)
664		goto out_threads;
665	ret = rds_stats_init();
666	if (ret)
667		goto out_sysctl;
668	ret = proto_register(&rds_proto, 1);
669	if (ret)
670		goto out_stats;
671	ret = sock_register(&rds_family_ops);
672	if (ret)
673		goto out_proto;
674
675	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
676	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
677
678	goto out;
679
680out_proto:
681	proto_unregister(&rds_proto);
682out_stats:
683	rds_stats_exit();
684out_sysctl:
685	rds_sysctl_exit();
686out_threads:
687	rds_threads_exit();
688out_conn:
689	rds_conn_exit();
690	rds_cong_exit();
691	rds_page_exit();
692out_bind:
693	rds_bind_lock_destroy();
694out:
695	return ret;
696}
697module_init(rds_init);
698
699#define DRV_VERSION     "4.0"
700#define DRV_RELDATE     "Feb 12, 2009"
701
702MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
703MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
704		   " v" DRV_VERSION " (" DRV_RELDATE ")");
705MODULE_VERSION(DRV_VERSION);
706MODULE_LICENSE("Dual BSD/GPL");
707MODULE_ALIAS_NETPROTO(PF_RDS);