Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.14.15
  1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
  2/* af_can.c - Protocol family CAN core module
  3 *            (used by different CAN protocol modules)
  4 *
  5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
  6 * All rights reserved.
  7 *
  8 * Redistribution and use in source and binary forms, with or without
  9 * modification, are permitted provided that the following conditions
 10 * are met:
 11 * 1. Redistributions of source code must retain the above copyright
 12 *    notice, this list of conditions and the following disclaimer.
 13 * 2. Redistributions in binary form must reproduce the above copyright
 14 *    notice, this list of conditions and the following disclaimer in the
 15 *    documentation and/or other materials provided with the distribution.
 16 * 3. Neither the name of Volkswagen nor the names of its contributors
 17 *    may be used to endorse or promote products derived from this software
 18 *    without specific prior written permission.
 19 *
 20 * Alternatively, provided that this notice is retained in full, this
 21 * software may be distributed under the terms of the GNU General
 22 * Public License ("GPL") version 2, in which case the provisions of the
 23 * GPL apply INSTEAD OF those given above.
 24 *
 25 * The provided data structures and external interfaces from this code
 26 * are not restricted to be used by modules with a GPL compatible license.
 27 *
 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 39 * DAMAGE.
 40 *
 41 */
 42
 43#include <linux/module.h>
 44#include <linux/stddef.h>
 45#include <linux/init.h>
 46#include <linux/kmod.h>
 47#include <linux/slab.h>
 48#include <linux/list.h>
 49#include <linux/spinlock.h>
 50#include <linux/rcupdate.h>
 51#include <linux/uaccess.h>
 52#include <linux/net.h>
 53#include <linux/netdevice.h>
 54#include <linux/socket.h>
 55#include <linux/if_ether.h>
 56#include <linux/if_arp.h>
 57#include <linux/skbuff.h>
 58#include <linux/can.h>
 59#include <linux/can/core.h>
 60#include <linux/can/skb.h>
 61#include <linux/can/can-ml.h>
 62#include <linux/ratelimit.h>
 63#include <net/net_namespace.h>
 64#include <net/sock.h>
 65
 66#include "af_can.h"
 67
 68MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
 69MODULE_LICENSE("Dual BSD/GPL");
 70MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
 71	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
 72
 73MODULE_ALIAS_NETPROTO(PF_CAN);
 74
 75static int stats_timer __read_mostly = 1;
 76module_param(stats_timer, int, 0444);
 77MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
 78
 79static struct kmem_cache *rcv_cache __read_mostly;
 80
 81/* table of registered CAN protocols */
 82static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
 83static DEFINE_MUTEX(proto_tab_lock);
 84
 85static atomic_t skbcounter = ATOMIC_INIT(0);
 86
 87/* af_can socket functions */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88
 89void can_sock_destruct(struct sock *sk)
 90{
 91	skb_queue_purge(&sk->sk_receive_queue);
 92	skb_queue_purge(&sk->sk_error_queue);
 93}
 94EXPORT_SYMBOL(can_sock_destruct);
 95
 96static const struct can_proto *can_get_proto(int protocol)
 97{
 98	const struct can_proto *cp;
 99
100	rcu_read_lock();
101	cp = rcu_dereference(proto_tab[protocol]);
102	if (cp && !try_module_get(cp->prot->owner))
103		cp = NULL;
104	rcu_read_unlock();
105
106	return cp;
107}
108
109static inline void can_put_proto(const struct can_proto *cp)
110{
111	module_put(cp->prot->owner);
112}
113
114static int can_create(struct net *net, struct socket *sock, int protocol,
115		      int kern)
116{
117	struct sock *sk;
118	const struct can_proto *cp;
119	int err = 0;
120
121	sock->state = SS_UNCONNECTED;
122
123	if (protocol < 0 || protocol >= CAN_NPROTO)
124		return -EINVAL;
125
126	cp = can_get_proto(protocol);
127
128#ifdef CONFIG_MODULES
129	if (!cp) {
130		/* try to load protocol module if kernel is modular */
131
132		err = request_module("can-proto-%d", protocol);
133
134		/* In case of error we only print a message but don't
 
135		 * return the error code immediately.  Below we will
136		 * return -EPROTONOSUPPORT
137		 */
138		if (err)
139			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140					   protocol);
141
142		cp = can_get_proto(protocol);
143	}
144#endif
145
146	/* check for available protocol and correct usage */
147
148	if (!cp)
149		return -EPROTONOSUPPORT;
150
151	if (cp->type != sock->type) {
152		err = -EPROTOTYPE;
153		goto errout;
154	}
155
156	sock->ops = cp->ops;
157
158	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159	if (!sk) {
160		err = -ENOMEM;
161		goto errout;
162	}
163
164	sock_init_data(sock, sk);
165	sk->sk_destruct = can_sock_destruct;
166
167	if (sk->sk_prot->init)
168		err = sk->sk_prot->init(sk);
169
170	if (err) {
171		/* release sk on errors */
172		sock_orphan(sk);
173		sock_put(sk);
174	}
175
176 errout:
177	can_put_proto(cp);
178	return err;
179}
180
181/* af_can tx path */
 
 
182
183/**
184 * can_send - transmit a CAN frame (optional with local loopback)
185 * @skb: pointer to socket buffer with CAN frame in data section
186 * @loop: loopback for listeners on local CAN sockets (recommended default!)
187 *
188 * Due to the loopback this routine must not be called from hardirq context.
189 *
190 * Return:
191 *  0 on success
192 *  -ENETDOWN when the selected interface is down
193 *  -ENOBUFS on full driver queue (see net_xmit_errno())
194 *  -ENOMEM when local loopback failed at calling skb_clone()
195 *  -EPERM when trying to send on a non-CAN interface
196 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197 *  -EINVAL when the skb->data does not contain a valid CAN frame
198 */
199int can_send(struct sk_buff *skb, int loop)
200{
201	struct sk_buff *newskb = NULL;
202	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
203	struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
204	int err = -EINVAL;
205
206	if (skb->len == CAN_MTU) {
207		skb->protocol = htons(ETH_P_CAN);
208		if (unlikely(cfd->len > CAN_MAX_DLEN))
209			goto inval_skb;
210	} else if (skb->len == CANFD_MTU) {
211		skb->protocol = htons(ETH_P_CANFD);
212		if (unlikely(cfd->len > CANFD_MAX_DLEN))
213			goto inval_skb;
214	} else {
215		goto inval_skb;
216	}
217
218	/* Make sure the CAN frame can pass the selected CAN netdevice.
 
219	 * As structs can_frame and canfd_frame are similar, we can provide
220	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
221	 */
222	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
223		err = -EMSGSIZE;
224		goto inval_skb;
225	}
226
227	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
228		err = -EPERM;
229		goto inval_skb;
230	}
231
232	if (unlikely(!(skb->dev->flags & IFF_UP))) {
233		err = -ENETDOWN;
234		goto inval_skb;
235	}
236
237	skb->ip_summed = CHECKSUM_UNNECESSARY;
238
239	skb_reset_mac_header(skb);
240	skb_reset_network_header(skb);
241	skb_reset_transport_header(skb);
242
243	if (loop) {
244		/* local loopback of sent CAN frames */
245
246		/* indication for the CAN driver: do loopback */
247		skb->pkt_type = PACKET_LOOPBACK;
248
249		/* The reference to the originating sock may be required
 
250		 * by the receiving socket to check whether the frame is
251		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
252		 * Therefore we have to ensure that skb->sk remains the
253		 * reference to the originating sock by restoring skb->sk
254		 * after each skb_clone() or skb_orphan() usage.
255		 */
256
257		if (!(skb->dev->flags & IFF_ECHO)) {
258			/* If the interface is not capable to do loopback
 
259			 * itself, we do it here.
260			 */
261			newskb = skb_clone(skb, GFP_ATOMIC);
262			if (!newskb) {
263				kfree_skb(skb);
264				return -ENOMEM;
265			}
266
267			can_skb_set_owner(newskb, skb->sk);
268			newskb->ip_summed = CHECKSUM_UNNECESSARY;
269			newskb->pkt_type = PACKET_BROADCAST;
270		}
271	} else {
272		/* indication for the CAN driver: no loopback required */
273		skb->pkt_type = PACKET_HOST;
274	}
275
276	/* send to netdevice */
277	err = dev_queue_xmit(skb);
278	if (err > 0)
279		err = net_xmit_errno(err);
280
281	if (err) {
282		kfree_skb(newskb);
283		return err;
284	}
285
286	if (newskb)
287		netif_rx_ni(newskb);
288
289	/* update statistics */
290	pkg_stats->tx_frames++;
291	pkg_stats->tx_frames_delta++;
292
293	return 0;
294
295inval_skb:
296	kfree_skb(skb);
297	return err;
298}
299EXPORT_SYMBOL(can_send);
300
301/* af_can rx path */
 
 
302
303static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
304							struct net_device *dev)
305{
306	if (dev) {
307		struct can_ml_priv *can_ml = can_get_ml_priv(dev);
308		return &can_ml->dev_rcv_lists;
309	} else {
310		return net->can.rx_alldev_list;
311	}
312}
313
314/**
315 * effhash - hash function for 29 bit CAN identifier reduction
316 * @can_id: 29 bit CAN identifier
317 *
318 * Description:
319 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
320 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
321 *  (see CAN_EFF_RCV_HASH_BITS definition)
322 *
323 * Return:
324 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
325 */
326static unsigned int effhash(canid_t can_id)
327{
328	unsigned int hash;
329
330	hash = can_id;
331	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
332	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
333
334	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
335}
336
337/**
338 * can_rcv_list_find - determine optimal filterlist inside device filter struct
339 * @can_id: pointer to CAN identifier of a given can_filter
340 * @mask: pointer to CAN mask of a given can_filter
341 * @dev_rcv_lists: pointer to the device filter struct
342 *
343 * Description:
344 *  Returns the optimal filterlist to reduce the filter handling in the
345 *  receive path. This function is called by service functions that need
346 *  to register or unregister a can_filter in the filter lists.
347 *
348 *  A filter matches in general, when
349 *
350 *          <received_can_id> & mask == can_id & mask
351 *
352 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
353 *  relevant bits for the filter.
354 *
355 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
356 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
357 *  frames there is a special filterlist and a special rx path filter handling.
358 *
359 * Return:
360 *  Pointer to optimal filterlist for the given can_id/mask pair.
361 *  Consistency checked mask.
362 *  Reduced can_id to have a preprocessed filter compare value.
363 */
364static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
365					    struct can_dev_rcv_lists *dev_rcv_lists)
366{
367	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
368
369	/* filter for error message frames in extra filterlist */
370	if (*mask & CAN_ERR_FLAG) {
371		/* clear CAN_ERR_FLAG in filter entry */
372		*mask &= CAN_ERR_MASK;
373		return &dev_rcv_lists->rx[RX_ERR];
374	}
375
376	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
377
378#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
379
380	/* ensure valid values in can_mask for 'SFF only' frame filtering */
381	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
382		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
383
384	/* reduce condition testing at receive time */
385	*can_id &= *mask;
386
387	/* inverse can_id/can_mask filter */
388	if (inv)
389		return &dev_rcv_lists->rx[RX_INV];
390
391	/* mask == 0 => no condition testing at receive time */
392	if (!(*mask))
393		return &dev_rcv_lists->rx[RX_ALL];
394
395	/* extra filterlists for the subscription of a single non-RTR can_id */
396	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
397	    !(*can_id & CAN_RTR_FLAG)) {
 
398		if (*can_id & CAN_EFF_FLAG) {
399			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
400				return &dev_rcv_lists->rx_eff[effhash(*can_id)];
401		} else {
402			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
403				return &dev_rcv_lists->rx_sff[*can_id];
404		}
405	}
406
407	/* default: filter via can_id/can_mask */
408	return &dev_rcv_lists->rx[RX_FIL];
409}
410
411/**
412 * can_rx_register - subscribe CAN frames from a specific interface
413 * @net: the applicable net namespace
414 * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
415 * @can_id: CAN identifier (see description)
416 * @mask: CAN mask (see description)
417 * @func: callback function on filter match
418 * @data: returned parameter for callback function
419 * @ident: string for calling module identification
420 * @sk: socket pointer (might be NULL)
421 *
422 * Description:
423 *  Invokes the callback function with the received sk_buff and the given
424 *  parameter 'data' on a matching receive filter. A filter matches, when
425 *
426 *          <received_can_id> & mask == can_id & mask
427 *
428 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
429 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
430 *
431 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
432 *  the callback function is running. The callback function must *not* free
433 *  the given sk_buff while processing it's task. When the given sk_buff is
434 *  needed after the end of the callback function it must be cloned inside
435 *  the callback function with skb_clone().
436 *
437 * Return:
438 *  0 on success
439 *  -ENOMEM on missing cache mem to create subscription entry
440 *  -ENODEV unknown device
441 */
442int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
443		    canid_t mask, void (*func)(struct sk_buff *, void *),
444		    void *data, char *ident, struct sock *sk)
445{
446	struct receiver *rcv;
447	struct hlist_head *rcv_list;
448	struct can_dev_rcv_lists *dev_rcv_lists;
449	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
450	int err = 0;
451
452	/* insert new receiver  (dev,canid,mask) -> (func,data) */
453
454	if (dev && dev->type != ARPHRD_CAN)
455		return -ENODEV;
456
457	if (dev && !net_eq(net, dev_net(dev)))
458		return -ENODEV;
459
460	rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461	if (!rcv)
462		return -ENOMEM;
463
464	spin_lock_bh(&net->can.rcvlists_lock);
465
466	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
467	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
469	rcv->can_id = can_id;
470	rcv->mask = mask;
471	rcv->matches = 0;
472	rcv->func = func;
473	rcv->data = data;
474	rcv->ident = ident;
475	rcv->sk = sk;
476
477	hlist_add_head_rcu(&rcv->list, rcv_list);
478	dev_rcv_lists->entries++;
479
480	rcv_lists_stats->rcv_entries++;
481	rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
482					       rcv_lists_stats->rcv_entries);
483	spin_unlock_bh(&net->can.rcvlists_lock);
484
485	return err;
486}
487EXPORT_SYMBOL(can_rx_register);
488
489/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
 
 
490static void can_rx_delete_receiver(struct rcu_head *rp)
491{
492	struct receiver *rcv = container_of(rp, struct receiver, rcu);
493	struct sock *sk = rcv->sk;
494
495	kmem_cache_free(rcv_cache, rcv);
496	if (sk)
497		sock_put(sk);
498}
499
500/**
501 * can_rx_unregister - unsubscribe CAN frames from a specific interface
502 * @net: the applicable net namespace
503 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
504 * @can_id: CAN identifier
505 * @mask: CAN mask
506 * @func: callback function on filter match
507 * @data: returned parameter for callback function
508 *
509 * Description:
510 *  Removes subscription entry depending on given (subscription) values.
511 */
512void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
513		       canid_t mask, void (*func)(struct sk_buff *, void *),
514		       void *data)
515{
516	struct receiver *rcv = NULL;
517	struct hlist_head *rcv_list;
518	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
519	struct can_dev_rcv_lists *dev_rcv_lists;
520
521	if (dev && dev->type != ARPHRD_CAN)
522		return;
523
524	if (dev && !net_eq(net, dev_net(dev)))
525		return;
526
527	spin_lock_bh(&net->can.rcvlists_lock);
 
 
 
 
 
 
 
 
528
529	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
530	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
531
532	/* Search the receiver list for the item to delete.  This should
 
533	 * exist, since no receiver may be unregistered that hasn't
534	 * been registered before.
535	 */
536	hlist_for_each_entry_rcu(rcv, rcv_list, list) {
537		if (rcv->can_id == can_id && rcv->mask == mask &&
538		    rcv->func == func && rcv->data == data)
 
539			break;
540	}
541
542	/* Check for bugs in CAN protocol implementations using af_can.c:
543	 * 'rcv' will be NULL if no matching list item was found for removal.
544	 * As this case may potentially happen when closing a socket while
545	 * the notifier for removing the CAN netdev is running we just print
546	 * a warning here.
547	 */
548	if (!rcv) {
549		pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
550			DNAME(dev), can_id, mask);
 
551		goto out;
552	}
553
554	hlist_del_rcu(&rcv->list);
555	dev_rcv_lists->entries--;
556
557	if (rcv_lists_stats->rcv_entries > 0)
558		rcv_lists_stats->rcv_entries--;
 
 
 
 
 
 
559
560 out:
561	spin_unlock_bh(&net->can.rcvlists_lock);
562
563	/* schedule the receiver item for deletion */
564	if (rcv) {
565		if (rcv->sk)
566			sock_hold(rcv->sk);
567		call_rcu(&rcv->rcu, can_rx_delete_receiver);
568	}
569}
570EXPORT_SYMBOL(can_rx_unregister);
571
572static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
573{
574	rcv->func(skb, rcv->data);
575	rcv->matches++;
576}
577
578static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
579{
580	struct receiver *rcv;
581	int matches = 0;
582	struct can_frame *cf = (struct can_frame *)skb->data;
583	canid_t can_id = cf->can_id;
584
585	if (dev_rcv_lists->entries == 0)
586		return 0;
587
588	if (can_id & CAN_ERR_FLAG) {
589		/* check for error message frame entries only */
590		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
591			if (can_id & rcv->mask) {
592				deliver(skb, rcv);
593				matches++;
594			}
595		}
596		return matches;
597	}
598
599	/* check for unfiltered entries */
600	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
601		deliver(skb, rcv);
602		matches++;
603	}
604
605	/* check for can_id/mask entries */
606	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
607		if ((can_id & rcv->mask) == rcv->can_id) {
608			deliver(skb, rcv);
609			matches++;
610		}
611	}
612
613	/* check for inverted can_id/mask entries */
614	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
615		if ((can_id & rcv->mask) != rcv->can_id) {
616			deliver(skb, rcv);
617			matches++;
618		}
619	}
620
621	/* check filterlists for single non-RTR can_ids */
622	if (can_id & CAN_RTR_FLAG)
623		return matches;
624
625	if (can_id & CAN_EFF_FLAG) {
626		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
627			if (rcv->can_id == can_id) {
628				deliver(skb, rcv);
629				matches++;
630			}
631		}
632	} else {
633		can_id &= CAN_SFF_MASK;
634		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
635			deliver(skb, rcv);
636			matches++;
637		}
638	}
639
640	return matches;
641}
642
643static void can_receive(struct sk_buff *skb, struct net_device *dev)
644{
645	struct can_dev_rcv_lists *dev_rcv_lists;
646	struct net *net = dev_net(dev);
647	struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
648	int matches;
649
650	/* update statistics */
651	pkg_stats->rx_frames++;
652	pkg_stats->rx_frames_delta++;
653
654	/* create non-zero unique skb identifier together with *skb */
655	while (!(can_skb_prv(skb)->skbcnt))
656		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
657
658	rcu_read_lock();
659
660	/* deliver the packet to sockets listening on all devices */
661	matches = can_rcv_filter(net->can.rx_alldev_list, skb);
662
663	/* find receive list for this device */
664	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
665	matches += can_rcv_filter(dev_rcv_lists, skb);
 
666
667	rcu_read_unlock();
668
669	/* consume the skbuff allocated by the netdevice driver */
670	consume_skb(skb);
671
672	if (matches > 0) {
673		pkg_stats->matches++;
674		pkg_stats->matches_delta++;
675	}
676}
677
678static int can_rcv(struct sk_buff *skb, struct net_device *dev,
679		   struct packet_type *pt, struct net_device *orig_dev)
680{
681	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
682
683	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU)) {
684		pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
685			     dev->type, skb->len);
686		goto free_skb;
687	}
688
689	/* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
690	if (unlikely(cfd->len > CAN_MAX_DLEN)) {
691		pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d, datalen %d\n",
692			     dev->type, skb->len, cfd->len);
693		goto free_skb;
 
694	}
695
696	can_receive(skb, dev);
697	return NET_RX_SUCCESS;
698
699free_skb:
700	kfree_skb(skb);
701	return NET_RX_DROP;
702}
703
704static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
705		     struct packet_type *pt, struct net_device *orig_dev)
706{
707	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
708
709	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU)) {
710		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
711			     dev->type, skb->len);
712		goto free_skb;
713	}
714
715	/* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
716	if (unlikely(cfd->len > CANFD_MAX_DLEN)) {
717		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d, datalen %d\n",
718			     dev->type, skb->len, cfd->len);
719		goto free_skb;
 
720	}
721
722	can_receive(skb, dev);
723	return NET_RX_SUCCESS;
724
725free_skb:
726	kfree_skb(skb);
727	return NET_RX_DROP;
728}
729
730/* af_can protocol functions */
 
 
731
732/**
733 * can_proto_register - register CAN transport protocol
734 * @cp: pointer to CAN protocol structure
735 *
736 * Return:
737 *  0 on success
738 *  -EINVAL invalid (out of range) protocol number
739 *  -EBUSY  protocol already in use
740 *  -ENOBUF if proto_register() fails
741 */
742int can_proto_register(const struct can_proto *cp)
743{
744	int proto = cp->protocol;
745	int err = 0;
746
747	if (proto < 0 || proto >= CAN_NPROTO) {
748		pr_err("can: protocol number %d out of range\n", proto);
749		return -EINVAL;
750	}
751
752	err = proto_register(cp->prot, 0);
753	if (err < 0)
754		return err;
755
756	mutex_lock(&proto_tab_lock);
757
758	if (rcu_access_pointer(proto_tab[proto])) {
759		pr_err("can: protocol %d already registered\n", proto);
760		err = -EBUSY;
761	} else {
762		RCU_INIT_POINTER(proto_tab[proto], cp);
763	}
764
765	mutex_unlock(&proto_tab_lock);
766
767	if (err < 0)
768		proto_unregister(cp->prot);
769
770	return err;
771}
772EXPORT_SYMBOL(can_proto_register);
773
774/**
775 * can_proto_unregister - unregister CAN transport protocol
776 * @cp: pointer to CAN protocol structure
777 */
778void can_proto_unregister(const struct can_proto *cp)
779{
780	int proto = cp->protocol;
781
782	mutex_lock(&proto_tab_lock);
783	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
784	RCU_INIT_POINTER(proto_tab[proto], NULL);
785	mutex_unlock(&proto_tab_lock);
786
787	synchronize_rcu();
788
789	proto_unregister(cp->prot);
790}
791EXPORT_SYMBOL(can_proto_unregister);
792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793static int can_pernet_init(struct net *net)
794{
795	spin_lock_init(&net->can.rcvlists_lock);
796	net->can.rx_alldev_list =
797		kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
798	if (!net->can.rx_alldev_list)
799		goto out;
800	net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
801	if (!net->can.pkg_stats)
802		goto out_free_rx_alldev_list;
803	net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
804	if (!net->can.rcv_lists_stats)
805		goto out_free_pkg_stats;
806
807	if (IS_ENABLED(CONFIG_PROC_FS)) {
808		/* the statistics are updated every second (timer triggered) */
809		if (stats_timer) {
810			timer_setup(&net->can.stattimer, can_stat_update,
811				    0);
812			mod_timer(&net->can.stattimer,
813				  round_jiffies(jiffies + HZ));
814		}
815		net->can.pkg_stats->jiffies_init = jiffies;
816		can_init_proc(net);
817	}
818
819	return 0;
820
821 out_free_pkg_stats:
822	kfree(net->can.pkg_stats);
823 out_free_rx_alldev_list:
824	kfree(net->can.rx_alldev_list);
825 out:
826	return -ENOMEM;
827}
828
829static void can_pernet_exit(struct net *net)
830{
 
 
831	if (IS_ENABLED(CONFIG_PROC_FS)) {
832		can_remove_proc(net);
833		if (stats_timer)
834			del_timer_sync(&net->can.stattimer);
 
 
 
 
 
 
 
 
 
 
 
 
835	}
 
836
837	kfree(net->can.rx_alldev_list);
838	kfree(net->can.pkg_stats);
839	kfree(net->can.rcv_lists_stats);
840}
841
842/* af_can module init/exit functions */
 
 
843
844static struct packet_type can_packet __read_mostly = {
845	.type = cpu_to_be16(ETH_P_CAN),
846	.func = can_rcv,
847};
848
849static struct packet_type canfd_packet __read_mostly = {
850	.type = cpu_to_be16(ETH_P_CANFD),
851	.func = canfd_rcv,
852};
853
854static const struct net_proto_family can_family_ops = {
855	.family = PF_CAN,
856	.create = can_create,
857	.owner  = THIS_MODULE,
858};
859
 
 
 
 
 
860static struct pernet_operations can_pernet_ops __read_mostly = {
861	.init = can_pernet_init,
862	.exit = can_pernet_exit,
863};
864
865static __init int can_init(void)
866{
867	int err;
868
869	/* check for correct padding to be able to use the structs similarly */
870	BUILD_BUG_ON(offsetof(struct can_frame, len) !=
871		     offsetof(struct canfd_frame, len) ||
872		     offsetof(struct can_frame, data) !=
873		     offsetof(struct canfd_frame, data));
874
875	pr_info("can: controller area network core\n");
876
877	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
878				      0, 0, NULL);
879	if (!rcv_cache)
880		return -ENOMEM;
881
882	err = register_pernet_subsys(&can_pernet_ops);
883	if (err)
884		goto out_pernet;
885
886	/* protocol register */
887	err = sock_register(&can_family_ops);
888	if (err)
889		goto out_sock;
890
891	dev_add_pack(&can_packet);
892	dev_add_pack(&canfd_packet);
893
894	return 0;
895
896out_sock:
897	unregister_pernet_subsys(&can_pernet_ops);
898out_pernet:
899	kmem_cache_destroy(rcv_cache);
900
901	return err;
902}
903
904static __exit void can_exit(void)
905{
906	/* protocol unregister */
907	dev_remove_pack(&canfd_packet);
908	dev_remove_pack(&can_packet);
 
909	sock_unregister(PF_CAN);
910
911	unregister_pernet_subsys(&can_pernet_ops);
912
913	rcu_barrier(); /* Wait for completion of call_rcu()'s */
914
915	kmem_cache_destroy(rcv_cache);
916}
917
918module_init(can_init);
919module_exit(can_exit);
v4.17
   1/*
   2 * af_can.c - Protocol family CAN core module
   3 *            (used by different CAN protocol modules)
   4 *
   5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the name of Volkswagen nor the names of its contributors
  17 *    may be used to endorse or promote products derived from this software
  18 *    without specific prior written permission.
  19 *
  20 * Alternatively, provided that this notice is retained in full, this
  21 * software may be distributed under the terms of the GNU General
  22 * Public License ("GPL") version 2, in which case the provisions of the
  23 * GPL apply INSTEAD OF those given above.
  24 *
  25 * The provided data structures and external interfaces from this code
  26 * are not restricted to be used by modules with a GPL compatible license.
  27 *
  28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 *
  41 */
  42
  43#include <linux/module.h>
  44#include <linux/stddef.h>
  45#include <linux/init.h>
  46#include <linux/kmod.h>
  47#include <linux/slab.h>
  48#include <linux/list.h>
  49#include <linux/spinlock.h>
  50#include <linux/rcupdate.h>
  51#include <linux/uaccess.h>
  52#include <linux/net.h>
  53#include <linux/netdevice.h>
  54#include <linux/socket.h>
  55#include <linux/if_ether.h>
  56#include <linux/if_arp.h>
  57#include <linux/skbuff.h>
  58#include <linux/can.h>
  59#include <linux/can/core.h>
  60#include <linux/can/skb.h>
 
  61#include <linux/ratelimit.h>
  62#include <net/net_namespace.h>
  63#include <net/sock.h>
  64
  65#include "af_can.h"
  66
  67MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
  68MODULE_LICENSE("Dual BSD/GPL");
  69MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
  70	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
  71
  72MODULE_ALIAS_NETPROTO(PF_CAN);
  73
  74static int stats_timer __read_mostly = 1;
  75module_param(stats_timer, int, 0444);
  76MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
  77
  78static struct kmem_cache *rcv_cache __read_mostly;
  79
  80/* table of registered CAN protocols */
  81static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
  82static DEFINE_MUTEX(proto_tab_lock);
  83
  84static atomic_t skbcounter = ATOMIC_INIT(0);
  85
  86/*
  87 * af_can socket functions
  88 */
  89
  90int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  91{
  92	struct sock *sk = sock->sk;
  93
  94	switch (cmd) {
  95
  96	case SIOCGSTAMP:
  97		return sock_get_timestamp(sk, (struct timeval __user *)arg);
  98
  99	default:
 100		return -ENOIOCTLCMD;
 101	}
 102}
 103EXPORT_SYMBOL(can_ioctl);
 104
 105static void can_sock_destruct(struct sock *sk)
 106{
 107	skb_queue_purge(&sk->sk_receive_queue);
 
 108}
 
 109
 110static const struct can_proto *can_get_proto(int protocol)
 111{
 112	const struct can_proto *cp;
 113
 114	rcu_read_lock();
 115	cp = rcu_dereference(proto_tab[protocol]);
 116	if (cp && !try_module_get(cp->prot->owner))
 117		cp = NULL;
 118	rcu_read_unlock();
 119
 120	return cp;
 121}
 122
 123static inline void can_put_proto(const struct can_proto *cp)
 124{
 125	module_put(cp->prot->owner);
 126}
 127
 128static int can_create(struct net *net, struct socket *sock, int protocol,
 129		      int kern)
 130{
 131	struct sock *sk;
 132	const struct can_proto *cp;
 133	int err = 0;
 134
 135	sock->state = SS_UNCONNECTED;
 136
 137	if (protocol < 0 || protocol >= CAN_NPROTO)
 138		return -EINVAL;
 139
 140	cp = can_get_proto(protocol);
 141
 142#ifdef CONFIG_MODULES
 143	if (!cp) {
 144		/* try to load protocol module if kernel is modular */
 145
 146		err = request_module("can-proto-%d", protocol);
 147
 148		/*
 149		 * In case of error we only print a message but don't
 150		 * return the error code immediately.  Below we will
 151		 * return -EPROTONOSUPPORT
 152		 */
 153		if (err)
 154			printk_ratelimited(KERN_ERR "can: request_module "
 155			       "(can-proto-%d) failed.\n", protocol);
 156
 157		cp = can_get_proto(protocol);
 158	}
 159#endif
 160
 161	/* check for available protocol and correct usage */
 162
 163	if (!cp)
 164		return -EPROTONOSUPPORT;
 165
 166	if (cp->type != sock->type) {
 167		err = -EPROTOTYPE;
 168		goto errout;
 169	}
 170
 171	sock->ops = cp->ops;
 172
 173	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
 174	if (!sk) {
 175		err = -ENOMEM;
 176		goto errout;
 177	}
 178
 179	sock_init_data(sock, sk);
 180	sk->sk_destruct = can_sock_destruct;
 181
 182	if (sk->sk_prot->init)
 183		err = sk->sk_prot->init(sk);
 184
 185	if (err) {
 186		/* release sk on errors */
 187		sock_orphan(sk);
 188		sock_put(sk);
 189	}
 190
 191 errout:
 192	can_put_proto(cp);
 193	return err;
 194}
 195
 196/*
 197 * af_can tx path
 198 */
 199
 200/**
 201 * can_send - transmit a CAN frame (optional with local loopback)
 202 * @skb: pointer to socket buffer with CAN frame in data section
 203 * @loop: loopback for listeners on local CAN sockets (recommended default!)
 204 *
 205 * Due to the loopback this routine must not be called from hardirq context.
 206 *
 207 * Return:
 208 *  0 on success
 209 *  -ENETDOWN when the selected interface is down
 210 *  -ENOBUFS on full driver queue (see net_xmit_errno())
 211 *  -ENOMEM when local loopback failed at calling skb_clone()
 212 *  -EPERM when trying to send on a non-CAN interface
 213 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
 214 *  -EINVAL when the skb->data does not contain a valid CAN frame
 215 */
 216int can_send(struct sk_buff *skb, int loop)
 217{
 218	struct sk_buff *newskb = NULL;
 219	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 220	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
 221	int err = -EINVAL;
 222
 223	if (skb->len == CAN_MTU) {
 224		skb->protocol = htons(ETH_P_CAN);
 225		if (unlikely(cfd->len > CAN_MAX_DLEN))
 226			goto inval_skb;
 227	} else if (skb->len == CANFD_MTU) {
 228		skb->protocol = htons(ETH_P_CANFD);
 229		if (unlikely(cfd->len > CANFD_MAX_DLEN))
 230			goto inval_skb;
 231	} else
 232		goto inval_skb;
 
 233
 234	/*
 235	 * Make sure the CAN frame can pass the selected CAN netdevice.
 236	 * As structs can_frame and canfd_frame are similar, we can provide
 237	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
 238	 */
 239	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
 240		err = -EMSGSIZE;
 241		goto inval_skb;
 242	}
 243
 244	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
 245		err = -EPERM;
 246		goto inval_skb;
 247	}
 248
 249	if (unlikely(!(skb->dev->flags & IFF_UP))) {
 250		err = -ENETDOWN;
 251		goto inval_skb;
 252	}
 253
 254	skb->ip_summed = CHECKSUM_UNNECESSARY;
 255
 256	skb_reset_mac_header(skb);
 257	skb_reset_network_header(skb);
 258	skb_reset_transport_header(skb);
 259
 260	if (loop) {
 261		/* local loopback of sent CAN frames */
 262
 263		/* indication for the CAN driver: do loopback */
 264		skb->pkt_type = PACKET_LOOPBACK;
 265
 266		/*
 267		 * The reference to the originating sock may be required
 268		 * by the receiving socket to check whether the frame is
 269		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
 270		 * Therefore we have to ensure that skb->sk remains the
 271		 * reference to the originating sock by restoring skb->sk
 272		 * after each skb_clone() or skb_orphan() usage.
 273		 */
 274
 275		if (!(skb->dev->flags & IFF_ECHO)) {
 276			/*
 277			 * If the interface is not capable to do loopback
 278			 * itself, we do it here.
 279			 */
 280			newskb = skb_clone(skb, GFP_ATOMIC);
 281			if (!newskb) {
 282				kfree_skb(skb);
 283				return -ENOMEM;
 284			}
 285
 286			can_skb_set_owner(newskb, skb->sk);
 287			newskb->ip_summed = CHECKSUM_UNNECESSARY;
 288			newskb->pkt_type = PACKET_BROADCAST;
 289		}
 290	} else {
 291		/* indication for the CAN driver: no loopback required */
 292		skb->pkt_type = PACKET_HOST;
 293	}
 294
 295	/* send to netdevice */
 296	err = dev_queue_xmit(skb);
 297	if (err > 0)
 298		err = net_xmit_errno(err);
 299
 300	if (err) {
 301		kfree_skb(newskb);
 302		return err;
 303	}
 304
 305	if (newskb)
 306		netif_rx_ni(newskb);
 307
 308	/* update statistics */
 309	can_stats->tx_frames++;
 310	can_stats->tx_frames_delta++;
 311
 312	return 0;
 313
 314inval_skb:
 315	kfree_skb(skb);
 316	return err;
 317}
 318EXPORT_SYMBOL(can_send);
 319
 320/*
 321 * af_can rx path
 322 */
 323
 324static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
 325						struct net_device *dev)
 326{
 327	if (!dev)
 328		return net->can.can_rx_alldev_list;
 329	else
 330		return (struct can_dev_rcv_lists *)dev->ml_priv;
 
 
 331}
 332
 333/**
 334 * effhash - hash function for 29 bit CAN identifier reduction
 335 * @can_id: 29 bit CAN identifier
 336 *
 337 * Description:
 338 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
 339 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
 340 *  (see CAN_EFF_RCV_HASH_BITS definition)
 341 *
 342 * Return:
 343 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
 344 */
 345static unsigned int effhash(canid_t can_id)
 346{
 347	unsigned int hash;
 348
 349	hash = can_id;
 350	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
 351	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
 352
 353	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
 354}
 355
 356/**
 357 * find_rcv_list - determine optimal filterlist inside device filter struct
 358 * @can_id: pointer to CAN identifier of a given can_filter
 359 * @mask: pointer to CAN mask of a given can_filter
 360 * @d: pointer to the device filter struct
 361 *
 362 * Description:
 363 *  Returns the optimal filterlist to reduce the filter handling in the
 364 *  receive path. This function is called by service functions that need
 365 *  to register or unregister a can_filter in the filter lists.
 366 *
 367 *  A filter matches in general, when
 368 *
 369 *          <received_can_id> & mask == can_id & mask
 370 *
 371 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
 372 *  relevant bits for the filter.
 373 *
 374 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
 375 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
 376 *  frames there is a special filterlist and a special rx path filter handling.
 377 *
 378 * Return:
 379 *  Pointer to optimal filterlist for the given can_id/mask pair.
 380 *  Constistency checked mask.
 381 *  Reduced can_id to have a preprocessed filter compare value.
 382 */
 383static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
 384					struct can_dev_rcv_lists *d)
 385{
 386	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
 387
 388	/* filter for error message frames in extra filterlist */
 389	if (*mask & CAN_ERR_FLAG) {
 390		/* clear CAN_ERR_FLAG in filter entry */
 391		*mask &= CAN_ERR_MASK;
 392		return &d->rx[RX_ERR];
 393	}
 394
 395	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
 396
 397#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
 398
 399	/* ensure valid values in can_mask for 'SFF only' frame filtering */
 400	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
 401		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
 402
 403	/* reduce condition testing at receive time */
 404	*can_id &= *mask;
 405
 406	/* inverse can_id/can_mask filter */
 407	if (inv)
 408		return &d->rx[RX_INV];
 409
 410	/* mask == 0 => no condition testing at receive time */
 411	if (!(*mask))
 412		return &d->rx[RX_ALL];
 413
 414	/* extra filterlists for the subscription of a single non-RTR can_id */
 415	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
 416	    !(*can_id & CAN_RTR_FLAG)) {
 417
 418		if (*can_id & CAN_EFF_FLAG) {
 419			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
 420				return &d->rx_eff[effhash(*can_id)];
 421		} else {
 422			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
 423				return &d->rx_sff[*can_id];
 424		}
 425	}
 426
 427	/* default: filter via can_id/can_mask */
 428	return &d->rx[RX_FIL];
 429}
 430
 431/**
 432 * can_rx_register - subscribe CAN frames from a specific interface
 433 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
 
 434 * @can_id: CAN identifier (see description)
 435 * @mask: CAN mask (see description)
 436 * @func: callback function on filter match
 437 * @data: returned parameter for callback function
 438 * @ident: string for calling module identification
 439 * @sk: socket pointer (might be NULL)
 440 *
 441 * Description:
 442 *  Invokes the callback function with the received sk_buff and the given
 443 *  parameter 'data' on a matching receive filter. A filter matches, when
 444 *
 445 *          <received_can_id> & mask == can_id & mask
 446 *
 447 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
 448 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
 449 *
 450 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
 451 *  the callback function is running. The callback function must *not* free
 452 *  the given sk_buff while processing it's task. When the given sk_buff is
 453 *  needed after the end of the callback function it must be cloned inside
 454 *  the callback function with skb_clone().
 455 *
 456 * Return:
 457 *  0 on success
 458 *  -ENOMEM on missing cache mem to create subscription entry
 459 *  -ENODEV unknown device
 460 */
 461int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
 462		    canid_t mask, void (*func)(struct sk_buff *, void *),
 463		    void *data, char *ident, struct sock *sk)
 464{
 465	struct receiver *r;
 466	struct hlist_head *rl;
 467	struct can_dev_rcv_lists *d;
 468	struct s_pstats *can_pstats = net->can.can_pstats;
 469	int err = 0;
 470
 471	/* insert new receiver  (dev,canid,mask) -> (func,data) */
 472
 473	if (dev && dev->type != ARPHRD_CAN)
 474		return -ENODEV;
 475
 476	if (dev && !net_eq(net, dev_net(dev)))
 477		return -ENODEV;
 478
 479	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
 480	if (!r)
 481		return -ENOMEM;
 482
 483	spin_lock(&net->can.can_rcvlists_lock);
 484
 485	d = find_dev_rcv_lists(net, dev);
 486	if (d) {
 487		rl = find_rcv_list(&can_id, &mask, d);
 488
 489		r->can_id  = can_id;
 490		r->mask    = mask;
 491		r->matches = 0;
 492		r->func    = func;
 493		r->data    = data;
 494		r->ident   = ident;
 495		r->sk      = sk;
 496
 497		hlist_add_head_rcu(&r->list, rl);
 498		d->entries++;
 499
 500		can_pstats->rcv_entries++;
 501		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
 502			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
 503	} else {
 504		kmem_cache_free(rcv_cache, r);
 505		err = -ENODEV;
 506	}
 507
 508	spin_unlock(&net->can.can_rcvlists_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510	return err;
 511}
 512EXPORT_SYMBOL(can_rx_register);
 513
 514/*
 515 * can_rx_delete_receiver - rcu callback for single receiver entry removal
 516 */
 517static void can_rx_delete_receiver(struct rcu_head *rp)
 518{
 519	struct receiver *r = container_of(rp, struct receiver, rcu);
 520	struct sock *sk = r->sk;
 521
 522	kmem_cache_free(rcv_cache, r);
 523	if (sk)
 524		sock_put(sk);
 525}
 526
 527/**
 528 * can_rx_unregister - unsubscribe CAN frames from a specific interface
 
 529 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
 530 * @can_id: CAN identifier
 531 * @mask: CAN mask
 532 * @func: callback function on filter match
 533 * @data: returned parameter for callback function
 534 *
 535 * Description:
 536 *  Removes subscription entry depending on given (subscription) values.
 537 */
 538void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
 539		       canid_t mask, void (*func)(struct sk_buff *, void *),
 540		       void *data)
 541{
 542	struct receiver *r = NULL;
 543	struct hlist_head *rl;
 544	struct s_pstats *can_pstats = net->can.can_pstats;
 545	struct can_dev_rcv_lists *d;
 546
 547	if (dev && dev->type != ARPHRD_CAN)
 548		return;
 549
 550	if (dev && !net_eq(net, dev_net(dev)))
 551		return;
 552
 553	spin_lock(&net->can.can_rcvlists_lock);
 554
 555	d = find_dev_rcv_lists(net, dev);
 556	if (!d) {
 557		pr_err("BUG: receive list not found for "
 558		       "dev %s, id %03X, mask %03X\n",
 559		       DNAME(dev), can_id, mask);
 560		goto out;
 561	}
 562
 563	rl = find_rcv_list(&can_id, &mask, d);
 
 564
 565	/*
 566	 * Search the receiver list for the item to delete.  This should
 567	 * exist, since no receiver may be unregistered that hasn't
 568	 * been registered before.
 569	 */
 570
 571	hlist_for_each_entry_rcu(r, rl, list) {
 572		if (r->can_id == can_id && r->mask == mask &&
 573		    r->func == func && r->data == data)
 574			break;
 575	}
 576
 577	/*
 578	 * Check for bugs in CAN protocol implementations using af_can.c:
 579	 * 'r' will be NULL if no matching list item was found for removal.
 
 
 580	 */
 581
 582	if (!r) {
 583		WARN(1, "BUG: receive list entry not found for dev %s, "
 584		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
 585		goto out;
 586	}
 587
 588	hlist_del_rcu(&r->list);
 589	d->entries--;
 590
 591	if (can_pstats->rcv_entries > 0)
 592		can_pstats->rcv_entries--;
 593
 594	/* remove device structure requested by NETDEV_UNREGISTER */
 595	if (d->remove_on_zero_entries && !d->entries) {
 596		kfree(d);
 597		dev->ml_priv = NULL;
 598	}
 599
 600 out:
 601	spin_unlock(&net->can.can_rcvlists_lock);
 602
 603	/* schedule the receiver item for deletion */
 604	if (r) {
 605		if (r->sk)
 606			sock_hold(r->sk);
 607		call_rcu(&r->rcu, can_rx_delete_receiver);
 608	}
 609}
 610EXPORT_SYMBOL(can_rx_unregister);
 611
 612static inline void deliver(struct sk_buff *skb, struct receiver *r)
 613{
 614	r->func(skb, r->data);
 615	r->matches++;
 616}
 617
 618static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
 619{
 620	struct receiver *r;
 621	int matches = 0;
 622	struct can_frame *cf = (struct can_frame *)skb->data;
 623	canid_t can_id = cf->can_id;
 624
 625	if (d->entries == 0)
 626		return 0;
 627
 628	if (can_id & CAN_ERR_FLAG) {
 629		/* check for error message frame entries only */
 630		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
 631			if (can_id & r->mask) {
 632				deliver(skb, r);
 633				matches++;
 634			}
 635		}
 636		return matches;
 637	}
 638
 639	/* check for unfiltered entries */
 640	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
 641		deliver(skb, r);
 642		matches++;
 643	}
 644
 645	/* check for can_id/mask entries */
 646	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
 647		if ((can_id & r->mask) == r->can_id) {
 648			deliver(skb, r);
 649			matches++;
 650		}
 651	}
 652
 653	/* check for inverted can_id/mask entries */
 654	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
 655		if ((can_id & r->mask) != r->can_id) {
 656			deliver(skb, r);
 657			matches++;
 658		}
 659	}
 660
 661	/* check filterlists for single non-RTR can_ids */
 662	if (can_id & CAN_RTR_FLAG)
 663		return matches;
 664
 665	if (can_id & CAN_EFF_FLAG) {
 666		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
 667			if (r->can_id == can_id) {
 668				deliver(skb, r);
 669				matches++;
 670			}
 671		}
 672	} else {
 673		can_id &= CAN_SFF_MASK;
 674		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
 675			deliver(skb, r);
 676			matches++;
 677		}
 678	}
 679
 680	return matches;
 681}
 682
 683static void can_receive(struct sk_buff *skb, struct net_device *dev)
 684{
 685	struct can_dev_rcv_lists *d;
 686	struct net *net = dev_net(dev);
 687	struct s_stats *can_stats = net->can.can_stats;
 688	int matches;
 689
 690	/* update statistics */
 691	can_stats->rx_frames++;
 692	can_stats->rx_frames_delta++;
 693
 694	/* create non-zero unique skb identifier together with *skb */
 695	while (!(can_skb_prv(skb)->skbcnt))
 696		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
 697
 698	rcu_read_lock();
 699
 700	/* deliver the packet to sockets listening on all devices */
 701	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
 702
 703	/* find receive list for this device */
 704	d = find_dev_rcv_lists(net, dev);
 705	if (d)
 706		matches += can_rcv_filter(d, skb);
 707
 708	rcu_read_unlock();
 709
 710	/* consume the skbuff allocated by the netdevice driver */
 711	consume_skb(skb);
 712
 713	if (matches > 0) {
 714		can_stats->matches++;
 715		can_stats->matches_delta++;
 716	}
 717}
 718
 719static int can_rcv(struct sk_buff *skb, struct net_device *dev,
 720		   struct packet_type *pt, struct net_device *orig_dev)
 721{
 722	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 723
 724	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
 725		     cfd->len > CAN_MAX_DLEN)) {
 726		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
 
 
 
 
 
 
 727			     dev->type, skb->len, cfd->len);
 728		kfree_skb(skb);
 729		return NET_RX_DROP;
 730	}
 731
 732	can_receive(skb, dev);
 733	return NET_RX_SUCCESS;
 
 
 
 
 734}
 735
 736static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
 737		   struct packet_type *pt, struct net_device *orig_dev)
 738{
 739	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 740
 741	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
 742		     cfd->len > CANFD_MAX_DLEN)) {
 743		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
 
 
 
 
 
 
 744			     dev->type, skb->len, cfd->len);
 745		kfree_skb(skb);
 746		return NET_RX_DROP;
 747	}
 748
 749	can_receive(skb, dev);
 750	return NET_RX_SUCCESS;
 
 
 
 
 751}
 752
 753/*
 754 * af_can protocol functions
 755 */
 756
 757/**
 758 * can_proto_register - register CAN transport protocol
 759 * @cp: pointer to CAN protocol structure
 760 *
 761 * Return:
 762 *  0 on success
 763 *  -EINVAL invalid (out of range) protocol number
 764 *  -EBUSY  protocol already in use
 765 *  -ENOBUF if proto_register() fails
 766 */
 767int can_proto_register(const struct can_proto *cp)
 768{
 769	int proto = cp->protocol;
 770	int err = 0;
 771
 772	if (proto < 0 || proto >= CAN_NPROTO) {
 773		pr_err("can: protocol number %d out of range\n", proto);
 774		return -EINVAL;
 775	}
 776
 777	err = proto_register(cp->prot, 0);
 778	if (err < 0)
 779		return err;
 780
 781	mutex_lock(&proto_tab_lock);
 782
 783	if (rcu_access_pointer(proto_tab[proto])) {
 784		pr_err("can: protocol %d already registered\n", proto);
 785		err = -EBUSY;
 786	} else
 787		RCU_INIT_POINTER(proto_tab[proto], cp);
 
 788
 789	mutex_unlock(&proto_tab_lock);
 790
 791	if (err < 0)
 792		proto_unregister(cp->prot);
 793
 794	return err;
 795}
 796EXPORT_SYMBOL(can_proto_register);
 797
 798/**
 799 * can_proto_unregister - unregister CAN transport protocol
 800 * @cp: pointer to CAN protocol structure
 801 */
 802void can_proto_unregister(const struct can_proto *cp)
 803{
 804	int proto = cp->protocol;
 805
 806	mutex_lock(&proto_tab_lock);
 807	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
 808	RCU_INIT_POINTER(proto_tab[proto], NULL);
 809	mutex_unlock(&proto_tab_lock);
 810
 811	synchronize_rcu();
 812
 813	proto_unregister(cp->prot);
 814}
 815EXPORT_SYMBOL(can_proto_unregister);
 816
 817/*
 818 * af_can notifier to create/remove CAN netdevice specific structs
 819 */
 820static int can_notifier(struct notifier_block *nb, unsigned long msg,
 821			void *ptr)
 822{
 823	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
 824	struct can_dev_rcv_lists *d;
 825
 826	if (dev->type != ARPHRD_CAN)
 827		return NOTIFY_DONE;
 828
 829	switch (msg) {
 830
 831	case NETDEV_REGISTER:
 832
 833		/* create new dev_rcv_lists for this device */
 834		d = kzalloc(sizeof(*d), GFP_KERNEL);
 835		if (!d)
 836			return NOTIFY_DONE;
 837		BUG_ON(dev->ml_priv);
 838		dev->ml_priv = d;
 839
 840		break;
 841
 842	case NETDEV_UNREGISTER:
 843		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
 844
 845		d = dev->ml_priv;
 846		if (d) {
 847			if (d->entries)
 848				d->remove_on_zero_entries = 1;
 849			else {
 850				kfree(d);
 851				dev->ml_priv = NULL;
 852			}
 853		} else
 854			pr_err("can: notifier: receive list not found for dev "
 855			       "%s\n", dev->name);
 856
 857		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
 858
 859		break;
 860	}
 861
 862	return NOTIFY_DONE;
 863}
 864
 865static int can_pernet_init(struct net *net)
 866{
 867	spin_lock_init(&net->can.can_rcvlists_lock);
 868	net->can.can_rx_alldev_list =
 869		kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
 870	if (!net->can.can_rx_alldev_list)
 871		goto out;
 872	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
 873	if (!net->can.can_stats)
 874		goto out_free_alldev_list;
 875	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
 876	if (!net->can.can_pstats)
 877		goto out_free_can_stats;
 878
 879	if (IS_ENABLED(CONFIG_PROC_FS)) {
 880		/* the statistics are updated every second (timer triggered) */
 881		if (stats_timer) {
 882			timer_setup(&net->can.can_stattimer, can_stat_update,
 883				    0);
 884			mod_timer(&net->can.can_stattimer,
 885				  round_jiffies(jiffies + HZ));
 886		}
 887		net->can.can_stats->jiffies_init = jiffies;
 888		can_init_proc(net);
 889	}
 890
 891	return 0;
 892
 893 out_free_can_stats:
 894	kfree(net->can.can_stats);
 895 out_free_alldev_list:
 896	kfree(net->can.can_rx_alldev_list);
 897 out:
 898	return -ENOMEM;
 899}
 900
 901static void can_pernet_exit(struct net *net)
 902{
 903	struct net_device *dev;
 904
 905	if (IS_ENABLED(CONFIG_PROC_FS)) {
 906		can_remove_proc(net);
 907		if (stats_timer)
 908			del_timer_sync(&net->can.can_stattimer);
 909	}
 910
 911	/* remove created dev_rcv_lists from still registered CAN devices */
 912	rcu_read_lock();
 913	for_each_netdev_rcu(net, dev) {
 914		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
 915			struct can_dev_rcv_lists *d = dev->ml_priv;
 916
 917			BUG_ON(d->entries);
 918			kfree(d);
 919			dev->ml_priv = NULL;
 920		}
 921	}
 922	rcu_read_unlock();
 923
 924	kfree(net->can.can_rx_alldev_list);
 925	kfree(net->can.can_stats);
 926	kfree(net->can.can_pstats);
 927}
 928
 929/*
 930 * af_can module init/exit functions
 931 */
 932
 933static struct packet_type can_packet __read_mostly = {
 934	.type = cpu_to_be16(ETH_P_CAN),
 935	.func = can_rcv,
 936};
 937
 938static struct packet_type canfd_packet __read_mostly = {
 939	.type = cpu_to_be16(ETH_P_CANFD),
 940	.func = canfd_rcv,
 941};
 942
 943static const struct net_proto_family can_family_ops = {
 944	.family = PF_CAN,
 945	.create = can_create,
 946	.owner  = THIS_MODULE,
 947};
 948
 949/* notifier block for netdevice event */
 950static struct notifier_block can_netdev_notifier __read_mostly = {
 951	.notifier_call = can_notifier,
 952};
 953
 954static struct pernet_operations can_pernet_ops __read_mostly = {
 955	.init = can_pernet_init,
 956	.exit = can_pernet_exit,
 957};
 958
 959static __init int can_init(void)
 960{
 
 
 961	/* check for correct padding to be able to use the structs similarly */
 962	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
 963		     offsetof(struct canfd_frame, len) ||
 964		     offsetof(struct can_frame, data) !=
 965		     offsetof(struct canfd_frame, data));
 966
 967	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
 968
 969	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
 970				      0, 0, NULL);
 971	if (!rcv_cache)
 972		return -ENOMEM;
 973
 974	register_pernet_subsys(&can_pernet_ops);
 
 
 975
 976	/* protocol register */
 977	sock_register(&can_family_ops);
 978	register_netdevice_notifier(&can_netdev_notifier);
 
 
 979	dev_add_pack(&can_packet);
 980	dev_add_pack(&canfd_packet);
 981
 982	return 0;
 
 
 
 
 
 
 
 983}
 984
 985static __exit void can_exit(void)
 986{
 987	/* protocol unregister */
 988	dev_remove_pack(&canfd_packet);
 989	dev_remove_pack(&can_packet);
 990	unregister_netdevice_notifier(&can_netdev_notifier);
 991	sock_unregister(PF_CAN);
 992
 993	unregister_pernet_subsys(&can_pernet_ops);
 994
 995	rcu_barrier(); /* Wait for completion of call_rcu()'s */
 996
 997	kmem_cache_destroy(rcv_cache);
 998}
 999
1000module_init(can_init);
1001module_exit(can_exit);