Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64bit can do a quick check without holding jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32bit cannot do that because the store of tick_next_period
  68	 * consists of two 32bit stores and the first store could move it
  69	 * to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on jiffies_lock and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Reevaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 
 
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the jiffies_seq protected job */
 118	jiffies_64 += ticks;
 119
 120	/*
 121	 * Keep the tick_next_period variable up to date.
 122	 */
 123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125	if (IS_ENABLED(CONFIG_64BIT)) {
 126		/*
 127		 * Pairs with smp_load_acquire() in the lockless quick
 128		 * check above and ensures that the update to jiffies_64 is
 129		 * not reordered vs. the store to tick_next_period, neither
 130		 * by the compiler nor by the CPU.
 131		 */
 132		smp_store_release(&tick_next_period, nextp);
 133	} else {
 134		/*
 135		 * A plain store is good enough on 32bit as the quick check
 136		 * above is protected by the sequence count.
 137		 */
 138		tick_next_period = nextp;
 139	}
 140
 141	/*
 142	 * Release the sequence count. calc_global_load() below is not
 143	 * protected by it, but jiffies_lock needs to be held to prevent
 144	 * concurrent invocations.
 145	 */
 146	write_seqcount_end(&jiffies_seq);
 147
 148	calc_global_load();
 149
 150	raw_spin_unlock(&jiffies_lock);
 151	update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159	ktime_t period;
 160
 161	raw_spin_lock(&jiffies_lock);
 162	write_seqcount_begin(&jiffies_seq);
 163	/* Did we start the jiffies update yet ? */
 164	if (last_jiffies_update == 0)
 165		last_jiffies_update = tick_next_period;
 166	period = last_jiffies_update;
 167	write_seqcount_end(&jiffies_seq);
 168	raw_spin_unlock(&jiffies_lock);
 169	return period;
 170}
 171
 172static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 173{
 174	int cpu = smp_processor_id();
 175
 176#ifdef CONFIG_NO_HZ_COMMON
 177	/*
 178	 * Check if the do_timer duty was dropped. We don't care about
 179	 * concurrency: This happens only when the CPU in charge went
 180	 * into a long sleep. If two CPUs happen to assign themselves to
 181	 * this duty, then the jiffies update is still serialized by
 182	 * jiffies_lock.
 183	 *
 184	 * If nohz_full is enabled, this should not happen because the
 185	 * tick_do_timer_cpu never relinquishes.
 186	 */
 187	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 188#ifdef CONFIG_NO_HZ_FULL
 189		WARN_ON(tick_nohz_full_running);
 190#endif
 191		tick_do_timer_cpu = cpu;
 192	}
 193#endif
 194
 195	/* Check, if the jiffies need an update */
 196	if (tick_do_timer_cpu == cpu)
 197		tick_do_update_jiffies64(now);
 198
 199	if (ts->inidle)
 200		ts->got_idle_tick = 1;
 201}
 202
 203static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 204{
 205#ifdef CONFIG_NO_HZ_COMMON
 206	/*
 207	 * When we are idle and the tick is stopped, we have to touch
 208	 * the watchdog as we might not schedule for a really long
 209	 * time. This happens on complete idle SMP systems while
 210	 * waiting on the login prompt. We also increment the "start of
 211	 * idle" jiffy stamp so the idle accounting adjustment we do
 212	 * when we go busy again does not account too much ticks.
 213	 */
 214	if (ts->tick_stopped) {
 215		touch_softlockup_watchdog_sched();
 216		if (is_idle_task(current))
 217			ts->idle_jiffies++;
 218		/*
 219		 * In case the current tick fired too early past its expected
 220		 * expiration, make sure we don't bypass the next clock reprogramming
 221		 * to the same deadline.
 222		 */
 223		ts->next_tick = 0;
 224	}
 225#endif
 226	update_process_times(user_mode(regs));
 227	profile_tick(CPU_PROFILING);
 228}
 229#endif
 230
 231#ifdef CONFIG_NO_HZ_FULL
 232cpumask_var_t tick_nohz_full_mask;
 233EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 234bool tick_nohz_full_running;
 235EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 236static atomic_t tick_dep_mask;
 237
 238static bool check_tick_dependency(atomic_t *dep)
 239{
 240	int val = atomic_read(dep);
 241
 242	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 243		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 244		return true;
 245	}
 246
 247	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 248		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 249		return true;
 250	}
 251
 252	if (val & TICK_DEP_MASK_SCHED) {
 253		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 254		return true;
 255	}
 256
 257	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 258		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 259		return true;
 260	}
 261
 262	if (val & TICK_DEP_MASK_RCU) {
 263		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 264		return true;
 265	}
 266
 267	return false;
 268}
 269
 270static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 271{
 272	lockdep_assert_irqs_disabled();
 273
 274	if (unlikely(!cpu_online(cpu)))
 275		return false;
 276
 277	if (check_tick_dependency(&tick_dep_mask))
 278		return false;
 279
 280	if (check_tick_dependency(&ts->tick_dep_mask))
 281		return false;
 282
 283	if (check_tick_dependency(&current->tick_dep_mask))
 284		return false;
 285
 286	if (check_tick_dependency(&current->signal->tick_dep_mask))
 287		return false;
 288
 289	return true;
 290}
 291
 292static void nohz_full_kick_func(struct irq_work *work)
 293{
 294	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 295}
 296
 297static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 298	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 
 299
 300/*
 301 * Kick this CPU if it's full dynticks in order to force it to
 302 * re-evaluate its dependency on the tick and restart it if necessary.
 303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 304 * is NMI safe.
 305 */
 306static void tick_nohz_full_kick(void)
 307{
 308	if (!tick_nohz_full_cpu(smp_processor_id()))
 309		return;
 310
 311	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 312}
 313
 314/*
 315 * Kick the CPU if it's full dynticks in order to force it to
 316 * re-evaluate its dependency on the tick and restart it if necessary.
 317 */
 318void tick_nohz_full_kick_cpu(int cpu)
 319{
 320	if (!tick_nohz_full_cpu(cpu))
 321		return;
 322
 323	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 324}
 325
 326static void tick_nohz_kick_task(struct task_struct *tsk)
 327{
 328	int cpu;
 329
 330	/*
 331	 * If the task is not running, run_posix_cpu_timers()
 332	 * has nothing to elapse, IPI can then be spared.
 333	 *
 334	 * activate_task()                      STORE p->tick_dep_mask
 335	 *   STORE p->on_rq
 336	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 337	 *   LOCK rq->lock                      LOAD p->on_rq
 338	 *   smp_mb__after_spin_lock()
 339	 *   tick_nohz_task_switch()
 340	 *     LOAD p->tick_dep_mask
 341	 */
 342	if (!sched_task_on_rq(tsk))
 343		return;
 344
 345	/*
 346	 * If the task concurrently migrates to another CPU,
 347	 * we guarantee it sees the new tick dependency upon
 348	 * schedule.
 349	 *
 350	 * set_task_cpu(p, cpu);
 351	 *   STORE p->cpu = @cpu
 352	 * __schedule() (switch to task 'p')
 353	 *   LOCK rq->lock
 354	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 355	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 356	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 357	 */
 358	cpu = task_cpu(tsk);
 359
 360	preempt_disable();
 361	if (cpu_online(cpu))
 362		tick_nohz_full_kick_cpu(cpu);
 363	preempt_enable();
 364}
 365
 366/*
 367 * Kick all full dynticks CPUs in order to force these to re-evaluate
 368 * their dependency on the tick and restart it if necessary.
 369 */
 370static void tick_nohz_full_kick_all(void)
 371{
 372	int cpu;
 373
 374	if (!tick_nohz_full_running)
 375		return;
 376
 377	preempt_disable();
 378	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 379		tick_nohz_full_kick_cpu(cpu);
 380	preempt_enable();
 381}
 382
 383static void tick_nohz_dep_set_all(atomic_t *dep,
 384				  enum tick_dep_bits bit)
 385{
 386	int prev;
 387
 388	prev = atomic_fetch_or(BIT(bit), dep);
 389	if (!prev)
 390		tick_nohz_full_kick_all();
 391}
 392
 393/*
 394 * Set a global tick dependency. Used by perf events that rely on freq and
 395 * by unstable clock.
 396 */
 397void tick_nohz_dep_set(enum tick_dep_bits bit)
 398{
 399	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 400}
 401
 402void tick_nohz_dep_clear(enum tick_dep_bits bit)
 403{
 404	atomic_andnot(BIT(bit), &tick_dep_mask);
 405}
 406
 407/*
 408 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 409 * manage events throttling.
 410 */
 411void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 412{
 413	int prev;
 414	struct tick_sched *ts;
 415
 416	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 417
 418	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 419	if (!prev) {
 420		preempt_disable();
 421		/* Perf needs local kick that is NMI safe */
 422		if (cpu == smp_processor_id()) {
 423			tick_nohz_full_kick();
 424		} else {
 425			/* Remote irq work not NMI-safe */
 426			if (!WARN_ON_ONCE(in_nmi()))
 427				tick_nohz_full_kick_cpu(cpu);
 428		}
 429		preempt_enable();
 430	}
 431}
 432EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 433
 434void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 435{
 436	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 437
 438	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 439}
 440EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 441
 442/*
 443 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 444 * in order to elapse per task timers.
 445 */
 446void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 447{
 448	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 449		tick_nohz_kick_task(tsk);
 
 
 
 450}
 451EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 452
 453void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 454{
 455	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 458
 459/*
 460 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 461 * per process timers.
 462 */
 463void tick_nohz_dep_set_signal(struct task_struct *tsk,
 464			      enum tick_dep_bits bit)
 465{
 466	int prev;
 467	struct signal_struct *sig = tsk->signal;
 468
 469	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 470	if (!prev) {
 471		struct task_struct *t;
 472
 473		lockdep_assert_held(&tsk->sighand->siglock);
 474		__for_each_thread(sig, t)
 475			tick_nohz_kick_task(t);
 476	}
 477}
 478
 479void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 480{
 481	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 482}
 483
 484/*
 485 * Re-evaluate the need for the tick as we switch the current task.
 486 * It might need the tick due to per task/process properties:
 487 * perf events, posix CPU timers, ...
 488 */
 489void __tick_nohz_task_switch(void)
 490{
 
 491	struct tick_sched *ts;
 492
 
 
 493	if (!tick_nohz_full_cpu(smp_processor_id()))
 494		return;
 495
 496	ts = this_cpu_ptr(&tick_cpu_sched);
 497
 498	if (ts->tick_stopped) {
 499		if (atomic_read(&current->tick_dep_mask) ||
 500		    atomic_read(&current->signal->tick_dep_mask))
 501			tick_nohz_full_kick();
 502	}
 
 
 503}
 504
 505/* Get the boot-time nohz CPU list from the kernel parameters. */
 506void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 507{
 508	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 509	cpumask_copy(tick_nohz_full_mask, cpumask);
 510	tick_nohz_full_running = true;
 511}
 512EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 513
 514static int tick_nohz_cpu_down(unsigned int cpu)
 515{
 516	/*
 517	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 518	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 519	 * CPUs. It must remain online when nohz full is enabled.
 520	 */
 521	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 522		return -EBUSY;
 523	return 0;
 524}
 525
 526void __init tick_nohz_init(void)
 527{
 528	int cpu, ret;
 529
 530	if (!tick_nohz_full_running)
 531		return;
 532
 533	/*
 534	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 535	 * locking contexts. But then we need irq work to raise its own
 536	 * interrupts to avoid circular dependency on the tick
 537	 */
 538	if (!arch_irq_work_has_interrupt()) {
 539		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 540		cpumask_clear(tick_nohz_full_mask);
 541		tick_nohz_full_running = false;
 542		return;
 543	}
 544
 545	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 546			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 547		cpu = smp_processor_id();
 548
 549		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 550			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 551				"for timekeeping\n", cpu);
 552			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 553		}
 554	}
 555
 556	for_each_cpu(cpu, tick_nohz_full_mask)
 557		context_tracking_cpu_set(cpu);
 558
 559	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 560					"kernel/nohz:predown", NULL,
 561					tick_nohz_cpu_down);
 562	WARN_ON(ret < 0);
 563	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 564		cpumask_pr_args(tick_nohz_full_mask));
 565}
 566#endif
 567
 568/*
 569 * NOHZ - aka dynamic tick functionality
 570 */
 571#ifdef CONFIG_NO_HZ_COMMON
 572/*
 573 * NO HZ enabled ?
 574 */
 575bool tick_nohz_enabled __read_mostly  = true;
 576unsigned long tick_nohz_active  __read_mostly;
 577/*
 578 * Enable / Disable tickless mode
 579 */
 580static int __init setup_tick_nohz(char *str)
 581{
 582	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 583}
 584
 585__setup("nohz=", setup_tick_nohz);
 586
 587bool tick_nohz_tick_stopped(void)
 588{
 589	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 590
 591	return ts->tick_stopped;
 592}
 593
 594bool tick_nohz_tick_stopped_cpu(int cpu)
 595{
 596	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 597
 598	return ts->tick_stopped;
 599}
 600
 601/**
 602 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 603 *
 604 * Called from interrupt entry when the CPU was idle
 605 *
 606 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 607 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 608 * value. We do this unconditionally on any CPU, as we don't know whether the
 609 * CPU, which has the update task assigned is in a long sleep.
 610 */
 611static void tick_nohz_update_jiffies(ktime_t now)
 612{
 613	unsigned long flags;
 614
 615	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 616
 617	local_irq_save(flags);
 618	tick_do_update_jiffies64(now);
 619	local_irq_restore(flags);
 620
 621	touch_softlockup_watchdog_sched();
 622}
 623
 624/*
 625 * Updates the per-CPU time idle statistics counters
 626 */
 627static void
 628update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 629{
 630	ktime_t delta;
 631
 632	if (ts->idle_active) {
 633		delta = ktime_sub(now, ts->idle_entrytime);
 634		if (nr_iowait_cpu(cpu) > 0)
 635			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 636		else
 637			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 638		ts->idle_entrytime = now;
 639	}
 640
 641	if (last_update_time)
 642		*last_update_time = ktime_to_us(now);
 643
 644}
 645
 646static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 647{
 648	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 649	ts->idle_active = 0;
 650
 651	sched_clock_idle_wakeup_event();
 652}
 653
 654static void tick_nohz_start_idle(struct tick_sched *ts)
 655{
 656	ts->idle_entrytime = ktime_get();
 657	ts->idle_active = 1;
 658	sched_clock_idle_sleep_event();
 659}
 660
 661/**
 662 * get_cpu_idle_time_us - get the total idle time of a CPU
 663 * @cpu: CPU number to query
 664 * @last_update_time: variable to store update time in. Do not update
 665 * counters if NULL.
 666 *
 667 * Return the cumulative idle time (since boot) for a given
 668 * CPU, in microseconds.
 669 *
 670 * This time is measured via accounting rather than sampling,
 671 * and is as accurate as ktime_get() is.
 672 *
 673 * This function returns -1 if NOHZ is not enabled.
 674 */
 675u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 676{
 677	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 678	ktime_t now, idle;
 679
 680	if (!tick_nohz_active)
 681		return -1;
 682
 683	now = ktime_get();
 684	if (last_update_time) {
 685		update_ts_time_stats(cpu, ts, now, last_update_time);
 686		idle = ts->idle_sleeptime;
 687	} else {
 688		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 689			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 690
 691			idle = ktime_add(ts->idle_sleeptime, delta);
 692		} else {
 693			idle = ts->idle_sleeptime;
 694		}
 695	}
 696
 697	return ktime_to_us(idle);
 698
 699}
 700EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 701
 702/**
 703 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 704 * @cpu: CPU number to query
 705 * @last_update_time: variable to store update time in. Do not update
 706 * counters if NULL.
 707 *
 708 * Return the cumulative iowait time (since boot) for a given
 709 * CPU, in microseconds.
 710 *
 711 * This time is measured via accounting rather than sampling,
 712 * and is as accurate as ktime_get() is.
 713 *
 714 * This function returns -1 if NOHZ is not enabled.
 715 */
 716u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 717{
 718	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 719	ktime_t now, iowait;
 720
 721	if (!tick_nohz_active)
 722		return -1;
 723
 724	now = ktime_get();
 725	if (last_update_time) {
 726		update_ts_time_stats(cpu, ts, now, last_update_time);
 727		iowait = ts->iowait_sleeptime;
 728	} else {
 729		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 730			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 731
 732			iowait = ktime_add(ts->iowait_sleeptime, delta);
 733		} else {
 734			iowait = ts->iowait_sleeptime;
 735		}
 736	}
 737
 738	return ktime_to_us(iowait);
 739}
 740EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 741
 742static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 743{
 744	hrtimer_cancel(&ts->sched_timer);
 745	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 746
 747	/* Forward the time to expire in the future */
 748	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 749
 750	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 751		hrtimer_start_expires(&ts->sched_timer,
 752				      HRTIMER_MODE_ABS_PINNED_HARD);
 753	} else {
 754		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 755	}
 756
 757	/*
 758	 * Reset to make sure next tick stop doesn't get fooled by past
 759	 * cached clock deadline.
 760	 */
 761	ts->next_tick = 0;
 762}
 763
 764static inline bool local_timer_softirq_pending(void)
 765{
 766	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 767}
 768
 769static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 770{
 771	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 772	unsigned long basejiff;
 773	unsigned int seq;
 774
 775	/* Read jiffies and the time when jiffies were updated last */
 776	do {
 777		seq = read_seqcount_begin(&jiffies_seq);
 778		basemono = last_jiffies_update;
 779		basejiff = jiffies;
 780	} while (read_seqcount_retry(&jiffies_seq, seq));
 781	ts->last_jiffies = basejiff;
 782	ts->timer_expires_base = basemono;
 783
 784	/*
 785	 * Keep the periodic tick, when RCU, architecture or irq_work
 786	 * requests it.
 787	 * Aside of that check whether the local timer softirq is
 788	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 789	 * because there is an already expired timer, so it will request
 790	 * immediate expiry, which rearms the hardware timer with a
 791	 * minimal delta which brings us back to this place
 792	 * immediately. Lather, rinse and repeat...
 793	 */
 794	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 795	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 796		next_tick = basemono + TICK_NSEC;
 797	} else {
 798		/*
 799		 * Get the next pending timer. If high resolution
 800		 * timers are enabled this only takes the timer wheel
 801		 * timers into account. If high resolution timers are
 802		 * disabled this also looks at the next expiring
 803		 * hrtimer.
 804		 */
 805		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 806		ts->next_timer = next_tmr;
 807		/* Take the next rcu event into account */
 808		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 809	}
 810
 811	/*
 812	 * If the tick is due in the next period, keep it ticking or
 813	 * force prod the timer.
 814	 */
 815	delta = next_tick - basemono;
 816	if (delta <= (u64)TICK_NSEC) {
 817		/*
 818		 * Tell the timer code that the base is not idle, i.e. undo
 819		 * the effect of get_next_timer_interrupt():
 820		 */
 821		timer_clear_idle();
 822		/*
 823		 * We've not stopped the tick yet, and there's a timer in the
 824		 * next period, so no point in stopping it either, bail.
 825		 */
 826		if (!ts->tick_stopped) {
 827			ts->timer_expires = 0;
 828			goto out;
 829		}
 830	}
 831
 832	/*
 833	 * If this CPU is the one which had the do_timer() duty last, we limit
 834	 * the sleep time to the timekeeping max_deferment value.
 835	 * Otherwise we can sleep as long as we want.
 836	 */
 837	delta = timekeeping_max_deferment();
 838	if (cpu != tick_do_timer_cpu &&
 839	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 840		delta = KTIME_MAX;
 841
 842	/* Calculate the next expiry time */
 843	if (delta < (KTIME_MAX - basemono))
 844		expires = basemono + delta;
 845	else
 846		expires = KTIME_MAX;
 847
 848	ts->timer_expires = min_t(u64, expires, next_tick);
 849
 850out:
 851	return ts->timer_expires;
 852}
 853
 854static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 855{
 856	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 857	u64 basemono = ts->timer_expires_base;
 858	u64 expires = ts->timer_expires;
 859	ktime_t tick = expires;
 860
 861	/* Make sure we won't be trying to stop it twice in a row. */
 862	ts->timer_expires_base = 0;
 863
 864	/*
 865	 * If this CPU is the one which updates jiffies, then give up
 866	 * the assignment and let it be taken by the CPU which runs
 867	 * the tick timer next, which might be this CPU as well. If we
 868	 * don't drop this here the jiffies might be stale and
 869	 * do_timer() never invoked. Keep track of the fact that it
 870	 * was the one which had the do_timer() duty last.
 871	 */
 872	if (cpu == tick_do_timer_cpu) {
 873		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874		ts->do_timer_last = 1;
 875	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 876		ts->do_timer_last = 0;
 877	}
 878
 879	/* Skip reprogram of event if its not changed */
 880	if (ts->tick_stopped && (expires == ts->next_tick)) {
 881		/* Sanity check: make sure clockevent is actually programmed */
 882		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 883			return;
 884
 885		WARN_ON_ONCE(1);
 886		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 887			    basemono, ts->next_tick, dev->next_event,
 888			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 889	}
 890
 891	/*
 892	 * nohz_stop_sched_tick can be called several times before
 893	 * the nohz_restart_sched_tick is called. This happens when
 894	 * interrupts arrive which do not cause a reschedule. In the
 895	 * first call we save the current tick time, so we can restart
 896	 * the scheduler tick in nohz_restart_sched_tick.
 897	 */
 898	if (!ts->tick_stopped) {
 899		calc_load_nohz_start();
 
 900		quiet_vmstat();
 901
 902		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 903		ts->tick_stopped = 1;
 904		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 905	}
 906
 907	ts->next_tick = tick;
 908
 909	/*
 910	 * If the expiration time == KTIME_MAX, then we simply stop
 911	 * the tick timer.
 912	 */
 913	if (unlikely(expires == KTIME_MAX)) {
 914		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 915			hrtimer_cancel(&ts->sched_timer);
 916		return;
 917	}
 918
 919	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 920		hrtimer_start(&ts->sched_timer, tick,
 921			      HRTIMER_MODE_ABS_PINNED_HARD);
 922	} else {
 923		hrtimer_set_expires(&ts->sched_timer, tick);
 924		tick_program_event(tick, 1);
 925	}
 926}
 927
 928static void tick_nohz_retain_tick(struct tick_sched *ts)
 929{
 930	ts->timer_expires_base = 0;
 931}
 932
 933#ifdef CONFIG_NO_HZ_FULL
 934static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 935{
 936	if (tick_nohz_next_event(ts, cpu))
 937		tick_nohz_stop_tick(ts, cpu);
 938	else
 939		tick_nohz_retain_tick(ts);
 940}
 941#endif /* CONFIG_NO_HZ_FULL */
 942
 943static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 944{
 945	/* Update jiffies first */
 946	tick_do_update_jiffies64(now);
 
 947
 948	/*
 949	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 950	 * the clock forward checks in the enqueue path:
 951	 */
 952	timer_clear_idle();
 953
 954	calc_load_nohz_stop();
 955	touch_softlockup_watchdog_sched();
 956	/*
 957	 * Cancel the scheduled timer and restore the tick
 958	 */
 959	ts->tick_stopped  = 0;
 
 
 960	tick_nohz_restart(ts, now);
 961}
 962
 963static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 964					 ktime_t now)
 965{
 966#ifdef CONFIG_NO_HZ_FULL
 967	int cpu = smp_processor_id();
 968
 969	if (can_stop_full_tick(cpu, ts))
 970		tick_nohz_stop_sched_tick(ts, cpu);
 971	else if (ts->tick_stopped)
 972		tick_nohz_restart_sched_tick(ts, now);
 973#endif
 974}
 975
 976static void tick_nohz_full_update_tick(struct tick_sched *ts)
 977{
 978	if (!tick_nohz_full_cpu(smp_processor_id()))
 979		return;
 980
 981	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 982		return;
 983
 984	__tick_nohz_full_update_tick(ts, ktime_get());
 
 
 
 
 985}
 986
 987static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 988{
 989	/*
 990	 * If this CPU is offline and it is the one which updates
 991	 * jiffies, then give up the assignment and let it be taken by
 992	 * the CPU which runs the tick timer next. If we don't drop
 993	 * this here the jiffies might be stale and do_timer() never
 994	 * invoked.
 995	 */
 996	if (unlikely(!cpu_online(cpu))) {
 997		if (cpu == tick_do_timer_cpu)
 998			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 999		/*
1000		 * Make sure the CPU doesn't get fooled by obsolete tick
1001		 * deadline if it comes back online later.
1002		 */
1003		ts->next_tick = 0;
1004		return false;
1005	}
1006
1007	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1008		return false;
1009
1010	if (need_resched())
1011		return false;
1012
1013	if (unlikely(local_softirq_pending())) {
1014		static int ratelimit;
1015
1016		if (ratelimit < 10 && !local_bh_blocked() &&
1017		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1018			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1019				(unsigned int) local_softirq_pending());
1020			ratelimit++;
1021		}
1022		return false;
1023	}
1024
1025	if (tick_nohz_full_enabled()) {
1026		/*
1027		 * Keep the tick alive to guarantee timekeeping progression
1028		 * if there are full dynticks CPUs around
1029		 */
1030		if (tick_do_timer_cpu == cpu)
1031			return false;
1032
1033		/* Should not happen for nohz-full */
1034		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 
 
1035			return false;
1036	}
1037
1038	return true;
1039}
1040
1041static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1042{
1043	ktime_t expires;
1044	int cpu = smp_processor_id();
1045
1046	/*
1047	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1048	 * tick timer expiration time is known already.
1049	 */
1050	if (ts->timer_expires_base)
1051		expires = ts->timer_expires;
1052	else if (can_stop_idle_tick(cpu, ts))
1053		expires = tick_nohz_next_event(ts, cpu);
1054	else
1055		return;
1056
1057	ts->idle_calls++;
1058
1059	if (expires > 0LL) {
1060		int was_stopped = ts->tick_stopped;
1061
1062		tick_nohz_stop_tick(ts, cpu);
1063
1064		ts->idle_sleeps++;
1065		ts->idle_expires = expires;
1066
1067		if (!was_stopped && ts->tick_stopped) {
1068			ts->idle_jiffies = ts->last_jiffies;
1069			nohz_balance_enter_idle(cpu);
1070		}
1071	} else {
1072		tick_nohz_retain_tick(ts);
1073	}
1074}
1075
1076/**
1077 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1078 *
1079 * When the next event is more than a tick into the future, stop the idle tick
1080 */
1081void tick_nohz_idle_stop_tick(void)
1082{
1083	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1084}
1085
1086void tick_nohz_idle_retain_tick(void)
1087{
1088	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1089	/*
1090	 * Undo the effect of get_next_timer_interrupt() called from
1091	 * tick_nohz_next_event().
1092	 */
1093	timer_clear_idle();
1094}
1095
1096/**
1097 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1098 *
1099 * Called when we start the idle loop.
1100 */
1101void tick_nohz_idle_enter(void)
1102{
1103	struct tick_sched *ts;
1104
1105	lockdep_assert_irqs_enabled();
1106
1107	local_irq_disable();
1108
1109	ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111	WARN_ON_ONCE(ts->timer_expires_base);
1112
1113	ts->inidle = 1;
1114	tick_nohz_start_idle(ts);
1115
1116	local_irq_enable();
1117}
1118
1119/**
1120 * tick_nohz_irq_exit - update next tick event from interrupt exit
1121 *
1122 * When an interrupt fires while we are idle and it doesn't cause
1123 * a reschedule, it may still add, modify or delete a timer, enqueue
1124 * an RCU callback, etc...
1125 * So we need to re-calculate and reprogram the next tick event.
1126 */
1127void tick_nohz_irq_exit(void)
1128{
1129	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1130
1131	if (ts->inidle)
1132		tick_nohz_start_idle(ts);
1133	else
1134		tick_nohz_full_update_tick(ts);
1135}
1136
1137/**
1138 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1139 */
1140bool tick_nohz_idle_got_tick(void)
1141{
1142	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1143
1144	if (ts->got_idle_tick) {
1145		ts->got_idle_tick = 0;
1146		return true;
1147	}
1148	return false;
1149}
1150
1151/**
1152 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1153 * or the tick, whatever that expires first. Note that, if the tick has been
1154 * stopped, it returns the next hrtimer.
1155 *
1156 * Called from power state control code with interrupts disabled
1157 */
1158ktime_t tick_nohz_get_next_hrtimer(void)
1159{
1160	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1161}
1162
1163/**
1164 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1165 * @delta_next: duration until the next event if the tick cannot be stopped
1166 *
1167 * Called from power state control code with interrupts disabled.
1168 *
1169 * The return value of this function and/or the value returned by it through the
1170 * @delta_next pointer can be negative which must be taken into account by its
1171 * callers.
1172 */
1173ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1174{
1175	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1176	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177	int cpu = smp_processor_id();
1178	/*
1179	 * The idle entry time is expected to be a sufficient approximation of
1180	 * the current time at this point.
1181	 */
1182	ktime_t now = ts->idle_entrytime;
1183	ktime_t next_event;
1184
1185	WARN_ON_ONCE(!ts->inidle);
1186
1187	*delta_next = ktime_sub(dev->next_event, now);
1188
1189	if (!can_stop_idle_tick(cpu, ts))
1190		return *delta_next;
1191
1192	next_event = tick_nohz_next_event(ts, cpu);
1193	if (!next_event)
1194		return *delta_next;
1195
1196	/*
1197	 * If the next highres timer to expire is earlier than next_event, the
1198	 * idle governor needs to know that.
1199	 */
1200	next_event = min_t(u64, next_event,
1201			   hrtimer_next_event_without(&ts->sched_timer));
1202
1203	return ktime_sub(next_event, now);
1204}
1205
1206/**
1207 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1208 * for a particular CPU.
1209 *
1210 * Called from the schedutil frequency scaling governor in scheduler context.
1211 */
1212unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1213{
1214	struct tick_sched *ts = tick_get_tick_sched(cpu);
1215
1216	return ts->idle_calls;
1217}
1218
1219/**
1220 * tick_nohz_get_idle_calls - return the current idle calls counter value
1221 *
1222 * Called from the schedutil frequency scaling governor in scheduler context.
1223 */
1224unsigned long tick_nohz_get_idle_calls(void)
1225{
1226	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1227
1228	return ts->idle_calls;
1229}
1230
1231static void tick_nohz_account_idle_time(struct tick_sched *ts,
1232					ktime_t now)
1233{
 
1234	unsigned long ticks;
1235
1236	ts->idle_exittime = now;
1237
1238	if (vtime_accounting_enabled_this_cpu())
1239		return;
1240	/*
1241	 * We stopped the tick in idle. Update process times would miss the
1242	 * time we slept as update_process_times does only a 1 tick
1243	 * accounting. Enforce that this is accounted to idle !
1244	 */
1245	ticks = jiffies - ts->idle_jiffies;
1246	/*
1247	 * We might be one off. Do not randomly account a huge number of ticks!
1248	 */
1249	if (ticks && ticks < LONG_MAX)
1250		account_idle_ticks(ticks);
 
1251}
1252
1253void tick_nohz_idle_restart_tick(void)
1254{
1255	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257	if (ts->tick_stopped) {
1258		ktime_t now = ktime_get();
1259		tick_nohz_restart_sched_tick(ts, now);
1260		tick_nohz_account_idle_time(ts, now);
1261	}
1262}
1263
1264static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1265{
1266	if (tick_nohz_full_cpu(smp_processor_id()))
1267		__tick_nohz_full_update_tick(ts, now);
1268	else
1269		tick_nohz_restart_sched_tick(ts, now);
1270
1271	tick_nohz_account_idle_time(ts, now);
 
1272}
1273
1274/**
1275 * tick_nohz_idle_exit - restart the idle tick from the idle task
1276 *
1277 * Restart the idle tick when the CPU is woken up from idle
1278 * This also exit the RCU extended quiescent state. The CPU
1279 * can use RCU again after this function is called.
1280 */
1281void tick_nohz_idle_exit(void)
1282{
1283	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1284	bool idle_active, tick_stopped;
1285	ktime_t now;
1286
1287	local_irq_disable();
1288
1289	WARN_ON_ONCE(!ts->inidle);
1290	WARN_ON_ONCE(ts->timer_expires_base);
1291
1292	ts->inidle = 0;
1293	idle_active = ts->idle_active;
1294	tick_stopped = ts->tick_stopped;
1295
1296	if (idle_active || tick_stopped)
1297		now = ktime_get();
1298
1299	if (idle_active)
1300		tick_nohz_stop_idle(ts, now);
1301
1302	if (tick_stopped)
1303		tick_nohz_idle_update_tick(ts, now);
1304
1305	local_irq_enable();
1306}
1307
1308/*
1309 * The nohz low res interrupt handler
1310 */
1311static void tick_nohz_handler(struct clock_event_device *dev)
1312{
1313	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1314	struct pt_regs *regs = get_irq_regs();
1315	ktime_t now = ktime_get();
1316
1317	dev->next_event = KTIME_MAX;
1318
1319	tick_sched_do_timer(ts, now);
1320	tick_sched_handle(ts, regs);
1321
1322	/* No need to reprogram if we are running tickless  */
1323	if (unlikely(ts->tick_stopped))
1324		return;
1325
1326	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1327	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1328}
1329
1330static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1331{
1332	if (!tick_nohz_enabled)
1333		return;
1334	ts->nohz_mode = mode;
1335	/* One update is enough */
1336	if (!test_and_set_bit(0, &tick_nohz_active))
1337		timers_update_nohz();
1338}
1339
1340/**
1341 * tick_nohz_switch_to_nohz - switch to nohz mode
1342 */
1343static void tick_nohz_switch_to_nohz(void)
1344{
1345	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1346	ktime_t next;
1347
1348	if (!tick_nohz_enabled)
1349		return;
1350
1351	if (tick_switch_to_oneshot(tick_nohz_handler))
1352		return;
1353
1354	/*
1355	 * Recycle the hrtimer in ts, so we can share the
1356	 * hrtimer_forward with the highres code.
1357	 */
1358	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1359	/* Get the next period */
1360	next = tick_init_jiffy_update();
1361
1362	hrtimer_set_expires(&ts->sched_timer, next);
1363	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1364	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1365	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1366}
1367
1368static inline void tick_nohz_irq_enter(void)
1369{
1370	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371	ktime_t now;
1372
1373	if (!ts->idle_active && !ts->tick_stopped)
1374		return;
1375	now = ktime_get();
1376	if (ts->idle_active)
1377		tick_nohz_stop_idle(ts, now);
1378	if (ts->tick_stopped)
1379		tick_nohz_update_jiffies(now);
1380}
1381
1382#else
1383
1384static inline void tick_nohz_switch_to_nohz(void) { }
1385static inline void tick_nohz_irq_enter(void) { }
1386static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1387
1388#endif /* CONFIG_NO_HZ_COMMON */
1389
1390/*
1391 * Called from irq_enter to notify about the possible interruption of idle()
1392 */
1393void tick_irq_enter(void)
1394{
1395	tick_check_oneshot_broadcast_this_cpu();
1396	tick_nohz_irq_enter();
1397}
1398
1399/*
1400 * High resolution timer specific code
1401 */
1402#ifdef CONFIG_HIGH_RES_TIMERS
1403/*
1404 * We rearm the timer until we get disabled by the idle code.
1405 * Called with interrupts disabled.
1406 */
1407static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1408{
1409	struct tick_sched *ts =
1410		container_of(timer, struct tick_sched, sched_timer);
1411	struct pt_regs *regs = get_irq_regs();
1412	ktime_t now = ktime_get();
1413
1414	tick_sched_do_timer(ts, now);
1415
1416	/*
1417	 * Do not call, when we are not in irq context and have
1418	 * no valid regs pointer
1419	 */
1420	if (regs)
1421		tick_sched_handle(ts, regs);
1422	else
1423		ts->next_tick = 0;
1424
1425	/* No need to reprogram if we are in idle or full dynticks mode */
1426	if (unlikely(ts->tick_stopped))
1427		return HRTIMER_NORESTART;
1428
1429	hrtimer_forward(timer, now, TICK_NSEC);
1430
1431	return HRTIMER_RESTART;
1432}
1433
1434static int sched_skew_tick;
1435
1436static int __init skew_tick(char *str)
1437{
1438	get_option(&str, &sched_skew_tick);
1439
1440	return 0;
1441}
1442early_param("skew_tick", skew_tick);
1443
1444/**
1445 * tick_setup_sched_timer - setup the tick emulation timer
1446 */
1447void tick_setup_sched_timer(void)
1448{
1449	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1450	ktime_t now = ktime_get();
1451
1452	/*
1453	 * Emulate tick processing via per-CPU hrtimers:
1454	 */
1455	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1456	ts->sched_timer.function = tick_sched_timer;
1457
1458	/* Get the next period (per-CPU) */
1459	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1460
1461	/* Offset the tick to avert jiffies_lock contention. */
1462	if (sched_skew_tick) {
1463		u64 offset = TICK_NSEC >> 1;
1464		do_div(offset, num_possible_cpus());
1465		offset *= smp_processor_id();
1466		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1467	}
1468
1469	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1470	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1471	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1472}
1473#endif /* HIGH_RES_TIMERS */
1474
1475#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1476void tick_cancel_sched_timer(int cpu)
1477{
1478	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1479
1480# ifdef CONFIG_HIGH_RES_TIMERS
1481	if (ts->sched_timer.base)
1482		hrtimer_cancel(&ts->sched_timer);
1483# endif
1484
1485	memset(ts, 0, sizeof(*ts));
1486}
1487#endif
1488
1489/**
1490 * Async notification about clocksource changes
1491 */
1492void tick_clock_notify(void)
1493{
1494	int cpu;
1495
1496	for_each_possible_cpu(cpu)
1497		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1498}
1499
1500/*
1501 * Async notification about clock event changes
1502 */
1503void tick_oneshot_notify(void)
1504{
1505	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1506
1507	set_bit(0, &ts->check_clocks);
1508}
1509
1510/**
1511 * Check, if a change happened, which makes oneshot possible.
1512 *
1513 * Called cyclic from the hrtimer softirq (driven by the timer
1514 * softirq) allow_nohz signals, that we can switch into low-res nohz
1515 * mode, because high resolution timers are disabled (either compile
1516 * or runtime). Called with interrupts disabled.
1517 */
1518int tick_check_oneshot_change(int allow_nohz)
1519{
1520	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1521
1522	if (!test_and_clear_bit(0, &ts->check_clocks))
1523		return 0;
1524
1525	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1526		return 0;
1527
1528	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1529		return 0;
1530
1531	if (!allow_nohz)
1532		return 1;
1533
1534	tick_nohz_switch_to_nohz();
1535	return 0;
1536}
v4.17
 
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/nmi.h>
  21#include <linux/profile.h>
  22#include <linux/sched/signal.h>
  23#include <linux/sched/clock.h>
  24#include <linux/sched/stat.h>
  25#include <linux/sched/nohz.h>
 
  26#include <linux/module.h>
  27#include <linux/irq_work.h>
  28#include <linux/posix-timers.h>
  29#include <linux/context_tracking.h>
  30#include <linux/mm.h>
  31
  32#include <asm/irq_regs.h>
  33
  34#include "tick-internal.h"
  35
  36#include <trace/events/timer.h>
  37
  38/*
  39 * Per-CPU nohz control structure
  40 */
  41static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  42
  43struct tick_sched *tick_get_tick_sched(int cpu)
  44{
  45	return &per_cpu(tick_cpu_sched, cpu);
  46}
  47
  48#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  49/*
  50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 
 
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 0;
  60	ktime_t delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
 
 
  62	/*
  63	 * Do a quick check without holding jiffies_lock:
 
  64	 */
  65	delta = ktime_sub(now, last_jiffies_update);
  66	if (delta < tick_period)
  67		return;
 
  68
  69	/* Reevaluate with jiffies_lock held */
  70	write_seqlock(&jiffies_lock);
  71
  72	delta = ktime_sub(now, last_jiffies_update);
  73	if (delta >= tick_period) {
 
 
  74
  75		delta = ktime_sub(delta, tick_period);
  76		last_jiffies_update = ktime_add(last_jiffies_update,
  77						tick_period);
  78
  79		/* Slow path for long timeouts */
  80		if (unlikely(delta >= tick_period)) {
  81			s64 incr = ktime_to_ns(tick_period);
 
 
 
  82
  83			ticks = ktime_divns(delta, incr);
 
  84
  85			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  86							   incr * ticks);
  87		}
  88		do_timer(++ticks);
  89
  90		/* Keep the tick_next_period variable up to date */
  91		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
  92	} else {
  93		write_sequnlock(&jiffies_lock);
  94		return;
 
 
 
  95	}
  96	write_sequnlock(&jiffies_lock);
 
 
 
 
 
 
 
 
 
 
  97	update_wall_time();
  98}
  99
 100/*
 101 * Initialize and return retrieve the jiffies update.
 102 */
 103static ktime_t tick_init_jiffy_update(void)
 104{
 105	ktime_t period;
 106
 107	write_seqlock(&jiffies_lock);
 
 108	/* Did we start the jiffies update yet ? */
 109	if (last_jiffies_update == 0)
 110		last_jiffies_update = tick_next_period;
 111	period = last_jiffies_update;
 112	write_sequnlock(&jiffies_lock);
 
 113	return period;
 114}
 115
 116static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 117{
 118	int cpu = smp_processor_id();
 119
 120#ifdef CONFIG_NO_HZ_COMMON
 121	/*
 122	 * Check if the do_timer duty was dropped. We don't care about
 123	 * concurrency: This happens only when the CPU in charge went
 124	 * into a long sleep. If two CPUs happen to assign themselves to
 125	 * this duty, then the jiffies update is still serialized by
 126	 * jiffies_lock.
 
 
 
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 129	    && !tick_nohz_full_cpu(cpu))
 
 
 130		tick_do_timer_cpu = cpu;
 
 131#endif
 132
 133	/* Check, if the jiffies need an update */
 134	if (tick_do_timer_cpu == cpu)
 135		tick_do_update_jiffies64(now);
 136
 137	if (ts->inidle)
 138		ts->got_idle_tick = 1;
 139}
 140
 141static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 142{
 143#ifdef CONFIG_NO_HZ_COMMON
 144	/*
 145	 * When we are idle and the tick is stopped, we have to touch
 146	 * the watchdog as we might not schedule for a really long
 147	 * time. This happens on complete idle SMP systems while
 148	 * waiting on the login prompt. We also increment the "start of
 149	 * idle" jiffy stamp so the idle accounting adjustment we do
 150	 * when we go busy again does not account too much ticks.
 151	 */
 152	if (ts->tick_stopped) {
 153		touch_softlockup_watchdog_sched();
 154		if (is_idle_task(current))
 155			ts->idle_jiffies++;
 156		/*
 157		 * In case the current tick fired too early past its expected
 158		 * expiration, make sure we don't bypass the next clock reprogramming
 159		 * to the same deadline.
 160		 */
 161		ts->next_tick = 0;
 162	}
 163#endif
 164	update_process_times(user_mode(regs));
 165	profile_tick(CPU_PROFILING);
 166}
 167#endif
 168
 169#ifdef CONFIG_NO_HZ_FULL
 170cpumask_var_t tick_nohz_full_mask;
 
 171bool tick_nohz_full_running;
 
 172static atomic_t tick_dep_mask;
 173
 174static bool check_tick_dependency(atomic_t *dep)
 175{
 176	int val = atomic_read(dep);
 177
 178	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 179		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 180		return true;
 181	}
 182
 183	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 184		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 185		return true;
 186	}
 187
 188	if (val & TICK_DEP_MASK_SCHED) {
 189		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 190		return true;
 191	}
 192
 193	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 194		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 195		return true;
 196	}
 197
 
 
 
 
 
 198	return false;
 199}
 200
 201static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 202{
 203	lockdep_assert_irqs_disabled();
 204
 205	if (unlikely(!cpu_online(cpu)))
 206		return false;
 207
 208	if (check_tick_dependency(&tick_dep_mask))
 209		return false;
 210
 211	if (check_tick_dependency(&ts->tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&current->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->signal->tick_dep_mask))
 218		return false;
 219
 220	return true;
 221}
 222
 223static void nohz_full_kick_func(struct irq_work *work)
 224{
 225	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 226}
 227
 228static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 229	.func = nohz_full_kick_func,
 230};
 231
 232/*
 233 * Kick this CPU if it's full dynticks in order to force it to
 234 * re-evaluate its dependency on the tick and restart it if necessary.
 235 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 236 * is NMI safe.
 237 */
 238static void tick_nohz_full_kick(void)
 239{
 240	if (!tick_nohz_full_cpu(smp_processor_id()))
 241		return;
 242
 243	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 244}
 245
 246/*
 247 * Kick the CPU if it's full dynticks in order to force it to
 248 * re-evaluate its dependency on the tick and restart it if necessary.
 249 */
 250void tick_nohz_full_kick_cpu(int cpu)
 251{
 252	if (!tick_nohz_full_cpu(cpu))
 253		return;
 254
 255	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 256}
 257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258/*
 259 * Kick all full dynticks CPUs in order to force these to re-evaluate
 260 * their dependency on the tick and restart it if necessary.
 261 */
 262static void tick_nohz_full_kick_all(void)
 263{
 264	int cpu;
 265
 266	if (!tick_nohz_full_running)
 267		return;
 268
 269	preempt_disable();
 270	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 271		tick_nohz_full_kick_cpu(cpu);
 272	preempt_enable();
 273}
 274
 275static void tick_nohz_dep_set_all(atomic_t *dep,
 276				  enum tick_dep_bits bit)
 277{
 278	int prev;
 279
 280	prev = atomic_fetch_or(BIT(bit), dep);
 281	if (!prev)
 282		tick_nohz_full_kick_all();
 283}
 284
 285/*
 286 * Set a global tick dependency. Used by perf events that rely on freq and
 287 * by unstable clock.
 288 */
 289void tick_nohz_dep_set(enum tick_dep_bits bit)
 290{
 291	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 292}
 293
 294void tick_nohz_dep_clear(enum tick_dep_bits bit)
 295{
 296	atomic_andnot(BIT(bit), &tick_dep_mask);
 297}
 298
 299/*
 300 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 301 * manage events throttling.
 302 */
 303void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 304{
 305	int prev;
 306	struct tick_sched *ts;
 307
 308	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 309
 310	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 311	if (!prev) {
 312		preempt_disable();
 313		/* Perf needs local kick that is NMI safe */
 314		if (cpu == smp_processor_id()) {
 315			tick_nohz_full_kick();
 316		} else {
 317			/* Remote irq work not NMI-safe */
 318			if (!WARN_ON_ONCE(in_nmi()))
 319				tick_nohz_full_kick_cpu(cpu);
 320		}
 321		preempt_enable();
 322	}
 323}
 
 324
 325void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 326{
 327	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 330}
 
 331
 332/*
 333 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 334 * per task timers.
 335 */
 336void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 337{
 338	/*
 339	 * We could optimize this with just kicking the target running the task
 340	 * if that noise matters for nohz full users.
 341	 */
 342	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 343}
 
 344
 345void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 346{
 347	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 348}
 
 349
 350/*
 351 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 352 * per process timers.
 353 */
 354void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 
 355{
 356	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 
 
 
 
 
 
 
 
 
 
 357}
 358
 359void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 360{
 361	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 362}
 363
 364/*
 365 * Re-evaluate the need for the tick as we switch the current task.
 366 * It might need the tick due to per task/process properties:
 367 * perf events, posix CPU timers, ...
 368 */
 369void __tick_nohz_task_switch(void)
 370{
 371	unsigned long flags;
 372	struct tick_sched *ts;
 373
 374	local_irq_save(flags);
 375
 376	if (!tick_nohz_full_cpu(smp_processor_id()))
 377		goto out;
 378
 379	ts = this_cpu_ptr(&tick_cpu_sched);
 380
 381	if (ts->tick_stopped) {
 382		if (atomic_read(&current->tick_dep_mask) ||
 383		    atomic_read(&current->signal->tick_dep_mask))
 384			tick_nohz_full_kick();
 385	}
 386out:
 387	local_irq_restore(flags);
 388}
 389
 390/* Get the boot-time nohz CPU list from the kernel parameters. */
 391void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 392{
 393	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 394	cpumask_copy(tick_nohz_full_mask, cpumask);
 395	tick_nohz_full_running = true;
 396}
 
 397
 398static int tick_nohz_cpu_down(unsigned int cpu)
 399{
 400	/*
 401	 * The boot CPU handles housekeeping duty (unbound timers,
 402	 * workqueues, timekeeping, ...) on behalf of full dynticks
 403	 * CPUs. It must remain online when nohz full is enabled.
 404	 */
 405	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 406		return -EBUSY;
 407	return 0;
 408}
 409
 410void __init tick_nohz_init(void)
 411{
 412	int cpu, ret;
 413
 414	if (!tick_nohz_full_running)
 415		return;
 416
 417	/*
 418	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 419	 * locking contexts. But then we need irq work to raise its own
 420	 * interrupts to avoid circular dependency on the tick
 421	 */
 422	if (!arch_irq_work_has_interrupt()) {
 423		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 424		cpumask_clear(tick_nohz_full_mask);
 425		tick_nohz_full_running = false;
 426		return;
 427	}
 428
 429	cpu = smp_processor_id();
 430
 431	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 432		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 433			cpu);
 434		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 
 
 
 435	}
 436
 437	for_each_cpu(cpu, tick_nohz_full_mask)
 438		context_tracking_cpu_set(cpu);
 439
 440	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 441					"kernel/nohz:predown", NULL,
 442					tick_nohz_cpu_down);
 443	WARN_ON(ret < 0);
 444	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 445		cpumask_pr_args(tick_nohz_full_mask));
 446}
 447#endif
 448
 449/*
 450 * NOHZ - aka dynamic tick functionality
 451 */
 452#ifdef CONFIG_NO_HZ_COMMON
 453/*
 454 * NO HZ enabled ?
 455 */
 456bool tick_nohz_enabled __read_mostly  = true;
 457unsigned long tick_nohz_active  __read_mostly;
 458/*
 459 * Enable / Disable tickless mode
 460 */
 461static int __init setup_tick_nohz(char *str)
 462{
 463	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 464}
 465
 466__setup("nohz=", setup_tick_nohz);
 467
 468bool tick_nohz_tick_stopped(void)
 469{
 470	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 471
 472	return ts->tick_stopped;
 473}
 474
 475bool tick_nohz_tick_stopped_cpu(int cpu)
 476{
 477	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 478
 479	return ts->tick_stopped;
 480}
 481
 482/**
 483 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 484 *
 485 * Called from interrupt entry when the CPU was idle
 486 *
 487 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 488 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 489 * value. We do this unconditionally on any CPU, as we don't know whether the
 490 * CPU, which has the update task assigned is in a long sleep.
 491 */
 492static void tick_nohz_update_jiffies(ktime_t now)
 493{
 494	unsigned long flags;
 495
 496	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 497
 498	local_irq_save(flags);
 499	tick_do_update_jiffies64(now);
 500	local_irq_restore(flags);
 501
 502	touch_softlockup_watchdog_sched();
 503}
 504
 505/*
 506 * Updates the per-CPU time idle statistics counters
 507 */
 508static void
 509update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 510{
 511	ktime_t delta;
 512
 513	if (ts->idle_active) {
 514		delta = ktime_sub(now, ts->idle_entrytime);
 515		if (nr_iowait_cpu(cpu) > 0)
 516			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 517		else
 518			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 519		ts->idle_entrytime = now;
 520	}
 521
 522	if (last_update_time)
 523		*last_update_time = ktime_to_us(now);
 524
 525}
 526
 527static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 528{
 529	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 530	ts->idle_active = 0;
 531
 532	sched_clock_idle_wakeup_event();
 533}
 534
 535static void tick_nohz_start_idle(struct tick_sched *ts)
 536{
 537	ts->idle_entrytime = ktime_get();
 538	ts->idle_active = 1;
 539	sched_clock_idle_sleep_event();
 540}
 541
 542/**
 543 * get_cpu_idle_time_us - get the total idle time of a CPU
 544 * @cpu: CPU number to query
 545 * @last_update_time: variable to store update time in. Do not update
 546 * counters if NULL.
 547 *
 548 * Return the cumulative idle time (since boot) for a given
 549 * CPU, in microseconds.
 550 *
 551 * This time is measured via accounting rather than sampling,
 552 * and is as accurate as ktime_get() is.
 553 *
 554 * This function returns -1 if NOHZ is not enabled.
 555 */
 556u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 557{
 558	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 559	ktime_t now, idle;
 560
 561	if (!tick_nohz_active)
 562		return -1;
 563
 564	now = ktime_get();
 565	if (last_update_time) {
 566		update_ts_time_stats(cpu, ts, now, last_update_time);
 567		idle = ts->idle_sleeptime;
 568	} else {
 569		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 570			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 571
 572			idle = ktime_add(ts->idle_sleeptime, delta);
 573		} else {
 574			idle = ts->idle_sleeptime;
 575		}
 576	}
 577
 578	return ktime_to_us(idle);
 579
 580}
 581EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 582
 583/**
 584 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 585 * @cpu: CPU number to query
 586 * @last_update_time: variable to store update time in. Do not update
 587 * counters if NULL.
 588 *
 589 * Return the cumulative iowait time (since boot) for a given
 590 * CPU, in microseconds.
 591 *
 592 * This time is measured via accounting rather than sampling,
 593 * and is as accurate as ktime_get() is.
 594 *
 595 * This function returns -1 if NOHZ is not enabled.
 596 */
 597u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 598{
 599	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 600	ktime_t now, iowait;
 601
 602	if (!tick_nohz_active)
 603		return -1;
 604
 605	now = ktime_get();
 606	if (last_update_time) {
 607		update_ts_time_stats(cpu, ts, now, last_update_time);
 608		iowait = ts->iowait_sleeptime;
 609	} else {
 610		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 611			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 612
 613			iowait = ktime_add(ts->iowait_sleeptime, delta);
 614		} else {
 615			iowait = ts->iowait_sleeptime;
 616		}
 617	}
 618
 619	return ktime_to_us(iowait);
 620}
 621EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 622
 623static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 624{
 625	hrtimer_cancel(&ts->sched_timer);
 626	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 627
 628	/* Forward the time to expire in the future */
 629	hrtimer_forward(&ts->sched_timer, now, tick_period);
 630
 631	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 632		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 633	else
 
 634		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 
 635
 636	/*
 637	 * Reset to make sure next tick stop doesn't get fooled by past
 638	 * cached clock deadline.
 639	 */
 640	ts->next_tick = 0;
 641}
 642
 643static inline bool local_timer_softirq_pending(void)
 644{
 645	return local_softirq_pending() & TIMER_SOFTIRQ;
 646}
 647
 648static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 649{
 650	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 651	unsigned long seq, basejiff;
 
 652
 653	/* Read jiffies and the time when jiffies were updated last */
 654	do {
 655		seq = read_seqbegin(&jiffies_lock);
 656		basemono = last_jiffies_update;
 657		basejiff = jiffies;
 658	} while (read_seqretry(&jiffies_lock, seq));
 659	ts->last_jiffies = basejiff;
 660	ts->timer_expires_base = basemono;
 661
 662	/*
 663	 * Keep the periodic tick, when RCU, architecture or irq_work
 664	 * requests it.
 665	 * Aside of that check whether the local timer softirq is
 666	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 667	 * because there is an already expired timer, so it will request
 668	 * immeditate expiry, which rearms the hardware timer with a
 669	 * minimal delta which brings us back to this place
 670	 * immediately. Lather, rinse and repeat...
 671	 */
 672	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 673	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 674		next_tick = basemono + TICK_NSEC;
 675	} else {
 676		/*
 677		 * Get the next pending timer. If high resolution
 678		 * timers are enabled this only takes the timer wheel
 679		 * timers into account. If high resolution timers are
 680		 * disabled this also looks at the next expiring
 681		 * hrtimer.
 682		 */
 683		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 684		ts->next_timer = next_tmr;
 685		/* Take the next rcu event into account */
 686		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 687	}
 688
 689	/*
 690	 * If the tick is due in the next period, keep it ticking or
 691	 * force prod the timer.
 692	 */
 693	delta = next_tick - basemono;
 694	if (delta <= (u64)TICK_NSEC) {
 695		/*
 696		 * Tell the timer code that the base is not idle, i.e. undo
 697		 * the effect of get_next_timer_interrupt():
 698		 */
 699		timer_clear_idle();
 700		/*
 701		 * We've not stopped the tick yet, and there's a timer in the
 702		 * next period, so no point in stopping it either, bail.
 703		 */
 704		if (!ts->tick_stopped) {
 705			ts->timer_expires = 0;
 706			goto out;
 707		}
 708	}
 709
 710	/*
 711	 * If this CPU is the one which had the do_timer() duty last, we limit
 712	 * the sleep time to the timekeeping max_deferment value.
 713	 * Otherwise we can sleep as long as we want.
 714	 */
 715	delta = timekeeping_max_deferment();
 716	if (cpu != tick_do_timer_cpu &&
 717	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 718		delta = KTIME_MAX;
 719
 720	/* Calculate the next expiry time */
 721	if (delta < (KTIME_MAX - basemono))
 722		expires = basemono + delta;
 723	else
 724		expires = KTIME_MAX;
 725
 726	ts->timer_expires = min_t(u64, expires, next_tick);
 727
 728out:
 729	return ts->timer_expires;
 730}
 731
 732static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 733{
 734	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 735	u64 basemono = ts->timer_expires_base;
 736	u64 expires = ts->timer_expires;
 737	ktime_t tick = expires;
 738
 739	/* Make sure we won't be trying to stop it twice in a row. */
 740	ts->timer_expires_base = 0;
 741
 742	/*
 743	 * If this CPU is the one which updates jiffies, then give up
 744	 * the assignment and let it be taken by the CPU which runs
 745	 * the tick timer next, which might be this CPU as well. If we
 746	 * don't drop this here the jiffies might be stale and
 747	 * do_timer() never invoked. Keep track of the fact that it
 748	 * was the one which had the do_timer() duty last.
 749	 */
 750	if (cpu == tick_do_timer_cpu) {
 751		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 752		ts->do_timer_last = 1;
 753	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 754		ts->do_timer_last = 0;
 755	}
 756
 757	/* Skip reprogram of event if its not changed */
 758	if (ts->tick_stopped && (expires == ts->next_tick)) {
 759		/* Sanity check: make sure clockevent is actually programmed */
 760		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 761			return;
 762
 763		WARN_ON_ONCE(1);
 764		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 765			    basemono, ts->next_tick, dev->next_event,
 766			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 767	}
 768
 769	/*
 770	 * nohz_stop_sched_tick can be called several times before
 771	 * the nohz_restart_sched_tick is called. This happens when
 772	 * interrupts arrive which do not cause a reschedule. In the
 773	 * first call we save the current tick time, so we can restart
 774	 * the scheduler tick in nohz_restart_sched_tick.
 775	 */
 776	if (!ts->tick_stopped) {
 777		calc_load_nohz_start();
 778		cpu_load_update_nohz_start();
 779		quiet_vmstat();
 780
 781		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 782		ts->tick_stopped = 1;
 783		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 784	}
 785
 786	ts->next_tick = tick;
 787
 788	/*
 789	 * If the expiration time == KTIME_MAX, then we simply stop
 790	 * the tick timer.
 791	 */
 792	if (unlikely(expires == KTIME_MAX)) {
 793		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 794			hrtimer_cancel(&ts->sched_timer);
 795		return;
 796	}
 797
 798	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 799		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 
 800	} else {
 801		hrtimer_set_expires(&ts->sched_timer, tick);
 802		tick_program_event(tick, 1);
 803	}
 804}
 805
 806static void tick_nohz_retain_tick(struct tick_sched *ts)
 807{
 808	ts->timer_expires_base = 0;
 809}
 810
 811#ifdef CONFIG_NO_HZ_FULL
 812static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 813{
 814	if (tick_nohz_next_event(ts, cpu))
 815		tick_nohz_stop_tick(ts, cpu);
 816	else
 817		tick_nohz_retain_tick(ts);
 818}
 819#endif /* CONFIG_NO_HZ_FULL */
 820
 821static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 822{
 823	/* Update jiffies first */
 824	tick_do_update_jiffies64(now);
 825	cpu_load_update_nohz_stop();
 826
 827	/*
 828	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 829	 * the clock forward checks in the enqueue path:
 830	 */
 831	timer_clear_idle();
 832
 833	calc_load_nohz_stop();
 834	touch_softlockup_watchdog_sched();
 835	/*
 836	 * Cancel the scheduled timer and restore the tick
 837	 */
 838	ts->tick_stopped  = 0;
 839	ts->idle_exittime = now;
 840
 841	tick_nohz_restart(ts, now);
 842}
 843
 844static void tick_nohz_full_update_tick(struct tick_sched *ts)
 
 845{
 846#ifdef CONFIG_NO_HZ_FULL
 847	int cpu = smp_processor_id();
 848
 849	if (!tick_nohz_full_cpu(cpu))
 
 
 
 
 
 
 
 
 
 850		return;
 851
 852	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 853		return;
 854
 855	if (can_stop_full_tick(cpu, ts))
 856		tick_nohz_stop_sched_tick(ts, cpu);
 857	else if (ts->tick_stopped)
 858		tick_nohz_restart_sched_tick(ts, ktime_get());
 859#endif
 860}
 861
 862static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 863{
 864	/*
 865	 * If this CPU is offline and it is the one which updates
 866	 * jiffies, then give up the assignment and let it be taken by
 867	 * the CPU which runs the tick timer next. If we don't drop
 868	 * this here the jiffies might be stale and do_timer() never
 869	 * invoked.
 870	 */
 871	if (unlikely(!cpu_online(cpu))) {
 872		if (cpu == tick_do_timer_cpu)
 873			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874		/*
 875		 * Make sure the CPU doesn't get fooled by obsolete tick
 876		 * deadline if it comes back online later.
 877		 */
 878		ts->next_tick = 0;
 879		return false;
 880	}
 881
 882	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 883		return false;
 884
 885	if (need_resched())
 886		return false;
 887
 888	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 889		static int ratelimit;
 890
 891		if (ratelimit < 10 &&
 892		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 893			pr_warn("NOHZ: local_softirq_pending %02x\n",
 894				(unsigned int) local_softirq_pending());
 895			ratelimit++;
 896		}
 897		return false;
 898	}
 899
 900	if (tick_nohz_full_enabled()) {
 901		/*
 902		 * Keep the tick alive to guarantee timekeeping progression
 903		 * if there are full dynticks CPUs around
 904		 */
 905		if (tick_do_timer_cpu == cpu)
 906			return false;
 907		/*
 908		 * Boot safety: make sure the timekeeping duty has been
 909		 * assigned before entering dyntick-idle mode,
 910		 */
 911		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 912			return false;
 913	}
 914
 915	return true;
 916}
 917
 918static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 919{
 920	ktime_t expires;
 921	int cpu = smp_processor_id();
 922
 923	/*
 924	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 925	 * tick timer expiration time is known already.
 926	 */
 927	if (ts->timer_expires_base)
 928		expires = ts->timer_expires;
 929	else if (can_stop_idle_tick(cpu, ts))
 930		expires = tick_nohz_next_event(ts, cpu);
 931	else
 932		return;
 933
 934	ts->idle_calls++;
 935
 936	if (expires > 0LL) {
 937		int was_stopped = ts->tick_stopped;
 938
 939		tick_nohz_stop_tick(ts, cpu);
 940
 941		ts->idle_sleeps++;
 942		ts->idle_expires = expires;
 943
 944		if (!was_stopped && ts->tick_stopped) {
 945			ts->idle_jiffies = ts->last_jiffies;
 946			nohz_balance_enter_idle(cpu);
 947		}
 948	} else {
 949		tick_nohz_retain_tick(ts);
 950	}
 951}
 952
 953/**
 954 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 955 *
 956 * When the next event is more than a tick into the future, stop the idle tick
 957 */
 958void tick_nohz_idle_stop_tick(void)
 959{
 960	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 961}
 962
 963void tick_nohz_idle_retain_tick(void)
 964{
 965	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 966	/*
 967	 * Undo the effect of get_next_timer_interrupt() called from
 968	 * tick_nohz_next_event().
 969	 */
 970	timer_clear_idle();
 971}
 972
 973/**
 974 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 975 *
 976 * Called when we start the idle loop.
 977 */
 978void tick_nohz_idle_enter(void)
 979{
 980	struct tick_sched *ts;
 981
 982	lockdep_assert_irqs_enabled();
 983
 984	local_irq_disable();
 985
 986	ts = this_cpu_ptr(&tick_cpu_sched);
 987
 988	WARN_ON_ONCE(ts->timer_expires_base);
 989
 990	ts->inidle = 1;
 991	tick_nohz_start_idle(ts);
 992
 993	local_irq_enable();
 994}
 995
 996/**
 997 * tick_nohz_irq_exit - update next tick event from interrupt exit
 998 *
 999 * When an interrupt fires while we are idle and it doesn't cause
1000 * a reschedule, it may still add, modify or delete a timer, enqueue
1001 * an RCU callback, etc...
1002 * So we need to re-calculate and reprogram the next tick event.
1003 */
1004void tick_nohz_irq_exit(void)
1005{
1006	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1007
1008	if (ts->inidle)
1009		tick_nohz_start_idle(ts);
1010	else
1011		tick_nohz_full_update_tick(ts);
1012}
1013
1014/**
1015 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1016 */
1017bool tick_nohz_idle_got_tick(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->got_idle_tick) {
1022		ts->got_idle_tick = 0;
1023		return true;
1024	}
1025	return false;
1026}
1027
1028/**
 
 
 
 
 
 
 
 
 
 
 
 
1029 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1030 * @delta_next: duration until the next event if the tick cannot be stopped
1031 *
1032 * Called from power state control code with interrupts disabled
 
 
 
 
1033 */
1034ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1035{
1036	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1037	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1038	int cpu = smp_processor_id();
1039	/*
1040	 * The idle entry time is expected to be a sufficient approximation of
1041	 * the current time at this point.
1042	 */
1043	ktime_t now = ts->idle_entrytime;
1044	ktime_t next_event;
1045
1046	WARN_ON_ONCE(!ts->inidle);
1047
1048	*delta_next = ktime_sub(dev->next_event, now);
1049
1050	if (!can_stop_idle_tick(cpu, ts))
1051		return *delta_next;
1052
1053	next_event = tick_nohz_next_event(ts, cpu);
1054	if (!next_event)
1055		return *delta_next;
1056
1057	/*
1058	 * If the next highres timer to expire is earlier than next_event, the
1059	 * idle governor needs to know that.
1060	 */
1061	next_event = min_t(u64, next_event,
1062			   hrtimer_next_event_without(&ts->sched_timer));
1063
1064	return ktime_sub(next_event, now);
1065}
1066
1067/**
1068 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1069 * for a particular CPU.
1070 *
1071 * Called from the schedutil frequency scaling governor in scheduler context.
1072 */
1073unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1074{
1075	struct tick_sched *ts = tick_get_tick_sched(cpu);
1076
1077	return ts->idle_calls;
1078}
1079
1080/**
1081 * tick_nohz_get_idle_calls - return the current idle calls counter value
1082 *
1083 * Called from the schedutil frequency scaling governor in scheduler context.
1084 */
1085unsigned long tick_nohz_get_idle_calls(void)
1086{
1087	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088
1089	return ts->idle_calls;
1090}
1091
1092static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 
1093{
1094#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1095	unsigned long ticks;
1096
1097	if (vtime_accounting_cpu_enabled())
 
 
1098		return;
1099	/*
1100	 * We stopped the tick in idle. Update process times would miss the
1101	 * time we slept as update_process_times does only a 1 tick
1102	 * accounting. Enforce that this is accounted to idle !
1103	 */
1104	ticks = jiffies - ts->idle_jiffies;
1105	/*
1106	 * We might be one off. Do not randomly account a huge number of ticks!
1107	 */
1108	if (ticks && ticks < LONG_MAX)
1109		account_idle_ticks(ticks);
1110#endif
1111}
1112
1113static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1114{
1115	tick_nohz_restart_sched_tick(ts, now);
1116	tick_nohz_account_idle_ticks(ts);
 
 
 
 
 
1117}
1118
1119void tick_nohz_idle_restart_tick(void)
1120{
1121	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
1122
1123	if (ts->tick_stopped)
1124		__tick_nohz_idle_restart_tick(ts, ktime_get());
1125}
1126
1127/**
1128 * tick_nohz_idle_exit - restart the idle tick from the idle task
1129 *
1130 * Restart the idle tick when the CPU is woken up from idle
1131 * This also exit the RCU extended quiescent state. The CPU
1132 * can use RCU again after this function is called.
1133 */
1134void tick_nohz_idle_exit(void)
1135{
1136	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137	bool idle_active, tick_stopped;
1138	ktime_t now;
1139
1140	local_irq_disable();
1141
1142	WARN_ON_ONCE(!ts->inidle);
1143	WARN_ON_ONCE(ts->timer_expires_base);
1144
1145	ts->inidle = 0;
1146	idle_active = ts->idle_active;
1147	tick_stopped = ts->tick_stopped;
1148
1149	if (idle_active || tick_stopped)
1150		now = ktime_get();
1151
1152	if (idle_active)
1153		tick_nohz_stop_idle(ts, now);
1154
1155	if (tick_stopped)
1156		__tick_nohz_idle_restart_tick(ts, now);
1157
1158	local_irq_enable();
1159}
1160
1161/*
1162 * The nohz low res interrupt handler
1163 */
1164static void tick_nohz_handler(struct clock_event_device *dev)
1165{
1166	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1167	struct pt_regs *regs = get_irq_regs();
1168	ktime_t now = ktime_get();
1169
1170	dev->next_event = KTIME_MAX;
1171
1172	tick_sched_do_timer(ts, now);
1173	tick_sched_handle(ts, regs);
1174
1175	/* No need to reprogram if we are running tickless  */
1176	if (unlikely(ts->tick_stopped))
1177		return;
1178
1179	hrtimer_forward(&ts->sched_timer, now, tick_period);
1180	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1181}
1182
1183static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1184{
1185	if (!tick_nohz_enabled)
1186		return;
1187	ts->nohz_mode = mode;
1188	/* One update is enough */
1189	if (!test_and_set_bit(0, &tick_nohz_active))
1190		timers_update_nohz();
1191}
1192
1193/**
1194 * tick_nohz_switch_to_nohz - switch to nohz mode
1195 */
1196static void tick_nohz_switch_to_nohz(void)
1197{
1198	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199	ktime_t next;
1200
1201	if (!tick_nohz_enabled)
1202		return;
1203
1204	if (tick_switch_to_oneshot(tick_nohz_handler))
1205		return;
1206
1207	/*
1208	 * Recycle the hrtimer in ts, so we can share the
1209	 * hrtimer_forward with the highres code.
1210	 */
1211	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1212	/* Get the next period */
1213	next = tick_init_jiffy_update();
1214
1215	hrtimer_set_expires(&ts->sched_timer, next);
1216	hrtimer_forward_now(&ts->sched_timer, tick_period);
1217	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1218	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1219}
1220
1221static inline void tick_nohz_irq_enter(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224	ktime_t now;
1225
1226	if (!ts->idle_active && !ts->tick_stopped)
1227		return;
1228	now = ktime_get();
1229	if (ts->idle_active)
1230		tick_nohz_stop_idle(ts, now);
1231	if (ts->tick_stopped)
1232		tick_nohz_update_jiffies(now);
1233}
1234
1235#else
1236
1237static inline void tick_nohz_switch_to_nohz(void) { }
1238static inline void tick_nohz_irq_enter(void) { }
1239static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1240
1241#endif /* CONFIG_NO_HZ_COMMON */
1242
1243/*
1244 * Called from irq_enter to notify about the possible interruption of idle()
1245 */
1246void tick_irq_enter(void)
1247{
1248	tick_check_oneshot_broadcast_this_cpu();
1249	tick_nohz_irq_enter();
1250}
1251
1252/*
1253 * High resolution timer specific code
1254 */
1255#ifdef CONFIG_HIGH_RES_TIMERS
1256/*
1257 * We rearm the timer until we get disabled by the idle code.
1258 * Called with interrupts disabled.
1259 */
1260static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1261{
1262	struct tick_sched *ts =
1263		container_of(timer, struct tick_sched, sched_timer);
1264	struct pt_regs *regs = get_irq_regs();
1265	ktime_t now = ktime_get();
1266
1267	tick_sched_do_timer(ts, now);
1268
1269	/*
1270	 * Do not call, when we are not in irq context and have
1271	 * no valid regs pointer
1272	 */
1273	if (regs)
1274		tick_sched_handle(ts, regs);
1275	else
1276		ts->next_tick = 0;
1277
1278	/* No need to reprogram if we are in idle or full dynticks mode */
1279	if (unlikely(ts->tick_stopped))
1280		return HRTIMER_NORESTART;
1281
1282	hrtimer_forward(timer, now, tick_period);
1283
1284	return HRTIMER_RESTART;
1285}
1286
1287static int sched_skew_tick;
1288
1289static int __init skew_tick(char *str)
1290{
1291	get_option(&str, &sched_skew_tick);
1292
1293	return 0;
1294}
1295early_param("skew_tick", skew_tick);
1296
1297/**
1298 * tick_setup_sched_timer - setup the tick emulation timer
1299 */
1300void tick_setup_sched_timer(void)
1301{
1302	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303	ktime_t now = ktime_get();
1304
1305	/*
1306	 * Emulate tick processing via per-CPU hrtimers:
1307	 */
1308	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1309	ts->sched_timer.function = tick_sched_timer;
1310
1311	/* Get the next period (per-CPU) */
1312	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1313
1314	/* Offset the tick to avert jiffies_lock contention. */
1315	if (sched_skew_tick) {
1316		u64 offset = ktime_to_ns(tick_period) >> 1;
1317		do_div(offset, num_possible_cpus());
1318		offset *= smp_processor_id();
1319		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1320	}
1321
1322	hrtimer_forward(&ts->sched_timer, now, tick_period);
1323	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1324	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1325}
1326#endif /* HIGH_RES_TIMERS */
1327
1328#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1329void tick_cancel_sched_timer(int cpu)
1330{
1331	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1332
1333# ifdef CONFIG_HIGH_RES_TIMERS
1334	if (ts->sched_timer.base)
1335		hrtimer_cancel(&ts->sched_timer);
1336# endif
1337
1338	memset(ts, 0, sizeof(*ts));
1339}
1340#endif
1341
1342/**
1343 * Async notification about clocksource changes
1344 */
1345void tick_clock_notify(void)
1346{
1347	int cpu;
1348
1349	for_each_possible_cpu(cpu)
1350		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1351}
1352
1353/*
1354 * Async notification about clock event changes
1355 */
1356void tick_oneshot_notify(void)
1357{
1358	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1359
1360	set_bit(0, &ts->check_clocks);
1361}
1362
1363/**
1364 * Check, if a change happened, which makes oneshot possible.
1365 *
1366 * Called cyclic from the hrtimer softirq (driven by the timer
1367 * softirq) allow_nohz signals, that we can switch into low-res nohz
1368 * mode, because high resolution timers are disabled (either compile
1369 * or runtime). Called with interrupts disabled.
1370 */
1371int tick_check_oneshot_change(int allow_nohz)
1372{
1373	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1374
1375	if (!test_and_clear_bit(0, &ts->check_clocks))
1376		return 0;
1377
1378	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1379		return 0;
1380
1381	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1382		return 0;
1383
1384	if (!allow_nohz)
1385		return 1;
1386
1387	tick_nohz_switch_to_nohz();
1388	return 0;
1389}