Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR 2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 [LOCKDOWN_KCORE] = "/proc/kcore access",
64 [LOCKDOWN_KPROBES] = "use of kprobes",
65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 [LOCKDOWN_PERF] = "unsafe use of perf",
67 [LOCKDOWN_TRACEFS] = "use of tracefs",
68 [LOCKDOWN_XMON_RW] = "xmon read and write access",
69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71};
72
73struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76static struct kmem_cache *lsm_file_cache;
77static struct kmem_cache *lsm_inode_cache;
78
79char *lsm_names;
80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82/* Boot-time LSM user choice */
83static __initdata const char *chosen_lsm_order;
84static __initdata const char *chosen_major_lsm;
85
86static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88/* Ordered list of LSMs to initialize. */
89static __initdata struct lsm_info **ordered_lsms;
90static __initdata struct lsm_info *exclusive;
91
92static __initdata bool debug;
93#define init_debug(...) \
94 do { \
95 if (debug) \
96 pr_info(__VA_ARGS__); \
97 } while (0)
98
99static bool __init is_enabled(struct lsm_info *lsm)
100{
101 if (!lsm->enabled)
102 return false;
103
104 return *lsm->enabled;
105}
106
107/* Mark an LSM's enabled flag. */
108static int lsm_enabled_true __initdata = 1;
109static int lsm_enabled_false __initdata = 0;
110static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111{
112 /*
113 * When an LSM hasn't configured an enable variable, we can use
114 * a hard-coded location for storing the default enabled state.
115 */
116 if (!lsm->enabled) {
117 if (enabled)
118 lsm->enabled = &lsm_enabled_true;
119 else
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_true) {
122 if (!enabled)
123 lsm->enabled = &lsm_enabled_false;
124 } else if (lsm->enabled == &lsm_enabled_false) {
125 if (enabled)
126 lsm->enabled = &lsm_enabled_true;
127 } else {
128 *lsm->enabled = enabled;
129 }
130}
131
132/* Is an LSM already listed in the ordered LSMs list? */
133static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134{
135 struct lsm_info **check;
136
137 for (check = ordered_lsms; *check; check++)
138 if (*check == lsm)
139 return true;
140
141 return false;
142}
143
144/* Append an LSM to the list of ordered LSMs to initialize. */
145static int last_lsm __initdata;
146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147{
148 /* Ignore duplicate selections. */
149 if (exists_ordered_lsm(lsm))
150 return;
151
152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 return;
154
155 /* Enable this LSM, if it is not already set. */
156 if (!lsm->enabled)
157 lsm->enabled = &lsm_enabled_true;
158 ordered_lsms[last_lsm++] = lsm;
159
160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 is_enabled(lsm) ? "en" : "dis");
162}
163
164/* Is an LSM allowed to be initialized? */
165static bool __init lsm_allowed(struct lsm_info *lsm)
166{
167 /* Skip if the LSM is disabled. */
168 if (!is_enabled(lsm))
169 return false;
170
171 /* Not allowed if another exclusive LSM already initialized. */
172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 init_debug("exclusive disabled: %s\n", lsm->name);
174 return false;
175 }
176
177 return true;
178}
179
180static void __init lsm_set_blob_size(int *need, int *lbs)
181{
182 int offset;
183
184 if (*need > 0) {
185 offset = *lbs;
186 *lbs += *need;
187 *need = offset;
188 }
189}
190
191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192{
193 if (!needed)
194 return;
195
196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 /*
199 * The inode blob gets an rcu_head in addition to
200 * what the modules might need.
201 */
202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209}
210
211/* Prepare LSM for initialization. */
212static void __init prepare_lsm(struct lsm_info *lsm)
213{
214 int enabled = lsm_allowed(lsm);
215
216 /* Record enablement (to handle any following exclusive LSMs). */
217 set_enabled(lsm, enabled);
218
219 /* If enabled, do pre-initialization work. */
220 if (enabled) {
221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 exclusive = lsm;
223 init_debug("exclusive chosen: %s\n", lsm->name);
224 }
225
226 lsm_set_blob_sizes(lsm->blobs);
227 }
228}
229
230/* Initialize a given LSM, if it is enabled. */
231static void __init initialize_lsm(struct lsm_info *lsm)
232{
233 if (is_enabled(lsm)) {
234 int ret;
235
236 init_debug("initializing %s\n", lsm->name);
237 ret = lsm->init();
238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 }
240}
241
242/* Populate ordered LSMs list from comma-separated LSM name list. */
243static void __init ordered_lsm_parse(const char *order, const char *origin)
244{
245 struct lsm_info *lsm;
246 char *sep, *name, *next;
247
248 /* LSM_ORDER_FIRST is always first. */
249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 if (lsm->order == LSM_ORDER_FIRST)
251 append_ordered_lsm(lsm, "first");
252 }
253
254 /* Process "security=", if given. */
255 if (chosen_major_lsm) {
256 struct lsm_info *major;
257
258 /*
259 * To match the original "security=" behavior, this
260 * explicitly does NOT fallback to another Legacy Major
261 * if the selected one was separately disabled: disable
262 * all non-matching Legacy Major LSMs.
263 */
264 for (major = __start_lsm_info; major < __end_lsm_info;
265 major++) {
266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 strcmp(major->name, chosen_major_lsm) != 0) {
268 set_enabled(major, false);
269 init_debug("security=%s disabled: %s\n",
270 chosen_major_lsm, major->name);
271 }
272 }
273 }
274
275 sep = kstrdup(order, GFP_KERNEL);
276 next = sep;
277 /* Walk the list, looking for matching LSMs. */
278 while ((name = strsep(&next, ",")) != NULL) {
279 bool found = false;
280
281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 if (lsm->order == LSM_ORDER_MUTABLE &&
283 strcmp(lsm->name, name) == 0) {
284 append_ordered_lsm(lsm, origin);
285 found = true;
286 }
287 }
288
289 if (!found)
290 init_debug("%s ignored: %s\n", origin, name);
291 }
292
293 /* Process "security=", if given. */
294 if (chosen_major_lsm) {
295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 if (exists_ordered_lsm(lsm))
297 continue;
298 if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 append_ordered_lsm(lsm, "security=");
300 }
301 }
302
303 /* Disable all LSMs not in the ordered list. */
304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 if (exists_ordered_lsm(lsm))
306 continue;
307 set_enabled(lsm, false);
308 init_debug("%s disabled: %s\n", origin, lsm->name);
309 }
310
311 kfree(sep);
312}
313
314static void __init lsm_early_cred(struct cred *cred);
315static void __init lsm_early_task(struct task_struct *task);
316
317static int lsm_append(const char *new, char **result);
318
319static void __init ordered_lsm_init(void)
320{
321 struct lsm_info **lsm;
322
323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 GFP_KERNEL);
325
326 if (chosen_lsm_order) {
327 if (chosen_major_lsm) {
328 pr_info("security= is ignored because it is superseded by lsm=\n");
329 chosen_major_lsm = NULL;
330 }
331 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 } else
333 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335 for (lsm = ordered_lsms; *lsm; lsm++)
336 prepare_lsm(*lsm);
337
338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
339 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
345
346 /*
347 * Create any kmem_caches needed for blobs
348 */
349 if (blob_sizes.lbs_file)
350 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 blob_sizes.lbs_file, 0,
352 SLAB_PANIC, NULL);
353 if (blob_sizes.lbs_inode)
354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 blob_sizes.lbs_inode, 0,
356 SLAB_PANIC, NULL);
357
358 lsm_early_cred((struct cred *) current->cred);
359 lsm_early_task(current);
360 for (lsm = ordered_lsms; *lsm; lsm++)
361 initialize_lsm(*lsm);
362
363 kfree(ordered_lsms);
364}
365
366int __init early_security_init(void)
367{
368 int i;
369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 struct lsm_info *lsm;
371
372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 i++)
374 INIT_HLIST_HEAD(&list[i]);
375
376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 if (!lsm->enabled)
378 lsm->enabled = &lsm_enabled_true;
379 prepare_lsm(lsm);
380 initialize_lsm(lsm);
381 }
382
383 return 0;
384}
385
386/**
387 * security_init - initializes the security framework
388 *
389 * This should be called early in the kernel initialization sequence.
390 */
391int __init security_init(void)
392{
393 struct lsm_info *lsm;
394
395 pr_info("Security Framework initializing\n");
396
397 /*
398 * Append the names of the early LSM modules now that kmalloc() is
399 * available
400 */
401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 if (lsm->enabled)
403 lsm_append(lsm->name, &lsm_names);
404 }
405
406 /* Load LSMs in specified order. */
407 ordered_lsm_init();
408
409 return 0;
410}
411
412/* Save user chosen LSM */
413static int __init choose_major_lsm(char *str)
414{
415 chosen_major_lsm = str;
416 return 1;
417}
418__setup("security=", choose_major_lsm);
419
420/* Explicitly choose LSM initialization order. */
421static int __init choose_lsm_order(char *str)
422{
423 chosen_lsm_order = str;
424 return 1;
425}
426__setup("lsm=", choose_lsm_order);
427
428/* Enable LSM order debugging. */
429static int __init enable_debug(char *str)
430{
431 debug = true;
432 return 1;
433}
434__setup("lsm.debug", enable_debug);
435
436static bool match_last_lsm(const char *list, const char *lsm)
437{
438 const char *last;
439
440 if (WARN_ON(!list || !lsm))
441 return false;
442 last = strrchr(list, ',');
443 if (last)
444 /* Pass the comma, strcmp() will check for '\0' */
445 last++;
446 else
447 last = list;
448 return !strcmp(last, lsm);
449}
450
451static int lsm_append(const char *new, char **result)
452{
453 char *cp;
454
455 if (*result == NULL) {
456 *result = kstrdup(new, GFP_KERNEL);
457 if (*result == NULL)
458 return -ENOMEM;
459 } else {
460 /* Check if it is the last registered name */
461 if (match_last_lsm(*result, new))
462 return 0;
463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 if (cp == NULL)
465 return -ENOMEM;
466 kfree(*result);
467 *result = cp;
468 }
469 return 0;
470}
471
472/**
473 * security_add_hooks - Add a modules hooks to the hook lists.
474 * @hooks: the hooks to add
475 * @count: the number of hooks to add
476 * @lsm: the name of the security module
477 *
478 * Each LSM has to register its hooks with the infrastructure.
479 */
480void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 char *lsm)
482{
483 int i;
484
485 for (i = 0; i < count; i++) {
486 hooks[i].lsm = lsm;
487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 }
489
490 /*
491 * Don't try to append during early_security_init(), we'll come back
492 * and fix this up afterwards.
493 */
494 if (slab_is_available()) {
495 if (lsm_append(lsm, &lsm_names) < 0)
496 panic("%s - Cannot get early memory.\n", __func__);
497 }
498}
499
500int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501{
502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 event, data);
504}
505EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
507int register_blocking_lsm_notifier(struct notifier_block *nb)
508{
509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 nb);
511}
512EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
514int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515{
516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 nb);
518}
519EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521/**
522 * lsm_cred_alloc - allocate a composite cred blob
523 * @cred: the cred that needs a blob
524 * @gfp: allocation type
525 *
526 * Allocate the cred blob for all the modules
527 *
528 * Returns 0, or -ENOMEM if memory can't be allocated.
529 */
530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531{
532 if (blob_sizes.lbs_cred == 0) {
533 cred->security = NULL;
534 return 0;
535 }
536
537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 if (cred->security == NULL)
539 return -ENOMEM;
540 return 0;
541}
542
543/**
544 * lsm_early_cred - during initialization allocate a composite cred blob
545 * @cred: the cred that needs a blob
546 *
547 * Allocate the cred blob for all the modules
548 */
549static void __init lsm_early_cred(struct cred *cred)
550{
551 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553 if (rc)
554 panic("%s: Early cred alloc failed.\n", __func__);
555}
556
557/**
558 * lsm_file_alloc - allocate a composite file blob
559 * @file: the file that needs a blob
560 *
561 * Allocate the file blob for all the modules
562 *
563 * Returns 0, or -ENOMEM if memory can't be allocated.
564 */
565static int lsm_file_alloc(struct file *file)
566{
567 if (!lsm_file_cache) {
568 file->f_security = NULL;
569 return 0;
570 }
571
572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 if (file->f_security == NULL)
574 return -ENOMEM;
575 return 0;
576}
577
578/**
579 * lsm_inode_alloc - allocate a composite inode blob
580 * @inode: the inode that needs a blob
581 *
582 * Allocate the inode blob for all the modules
583 *
584 * Returns 0, or -ENOMEM if memory can't be allocated.
585 */
586int lsm_inode_alloc(struct inode *inode)
587{
588 if (!lsm_inode_cache) {
589 inode->i_security = NULL;
590 return 0;
591 }
592
593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 if (inode->i_security == NULL)
595 return -ENOMEM;
596 return 0;
597}
598
599/**
600 * lsm_task_alloc - allocate a composite task blob
601 * @task: the task that needs a blob
602 *
603 * Allocate the task blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
607static int lsm_task_alloc(struct task_struct *task)
608{
609 if (blob_sizes.lbs_task == 0) {
610 task->security = NULL;
611 return 0;
612 }
613
614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 if (task->security == NULL)
616 return -ENOMEM;
617 return 0;
618}
619
620/**
621 * lsm_ipc_alloc - allocate a composite ipc blob
622 * @kip: the ipc that needs a blob
623 *
624 * Allocate the ipc blob for all the modules
625 *
626 * Returns 0, or -ENOMEM if memory can't be allocated.
627 */
628static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629{
630 if (blob_sizes.lbs_ipc == 0) {
631 kip->security = NULL;
632 return 0;
633 }
634
635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 if (kip->security == NULL)
637 return -ENOMEM;
638 return 0;
639}
640
641/**
642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643 * @mp: the msg_msg that needs a blob
644 *
645 * Allocate the ipc blob for all the modules
646 *
647 * Returns 0, or -ENOMEM if memory can't be allocated.
648 */
649static int lsm_msg_msg_alloc(struct msg_msg *mp)
650{
651 if (blob_sizes.lbs_msg_msg == 0) {
652 mp->security = NULL;
653 return 0;
654 }
655
656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 if (mp->security == NULL)
658 return -ENOMEM;
659 return 0;
660}
661
662/**
663 * lsm_early_task - during initialization allocate a composite task blob
664 * @task: the task that needs a blob
665 *
666 * Allocate the task blob for all the modules
667 */
668static void __init lsm_early_task(struct task_struct *task)
669{
670 int rc = lsm_task_alloc(task);
671
672 if (rc)
673 panic("%s: Early task alloc failed.\n", __func__);
674}
675
676/**
677 * lsm_superblock_alloc - allocate a composite superblock blob
678 * @sb: the superblock that needs a blob
679 *
680 * Allocate the superblock blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
684static int lsm_superblock_alloc(struct super_block *sb)
685{
686 if (blob_sizes.lbs_superblock == 0) {
687 sb->s_security = NULL;
688 return 0;
689 }
690
691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 if (sb->s_security == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/*
698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699 * can be accessed with:
700 *
701 * LSM_RET_DEFAULT(<hook_name>)
702 *
703 * The macros below define static constants for the default value of each
704 * LSM hook.
705 */
706#define LSM_RET_DEFAULT(NAME) (NAME##_default)
707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713#include <linux/lsm_hook_defs.h>
714#undef LSM_HOOK
715
716/*
717 * Hook list operation macros.
718 *
719 * call_void_hook:
720 * This is a hook that does not return a value.
721 *
722 * call_int_hook:
723 * This is a hook that returns a value.
724 */
725
726#define call_void_hook(FUNC, ...) \
727 do { \
728 struct security_hook_list *P; \
729 \
730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 P->hook.FUNC(__VA_ARGS__); \
732 } while (0)
733
734#define call_int_hook(FUNC, IRC, ...) ({ \
735 int RC = IRC; \
736 do { \
737 struct security_hook_list *P; \
738 \
739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 RC = P->hook.FUNC(__VA_ARGS__); \
741 if (RC != 0) \
742 break; \
743 } \
744 } while (0); \
745 RC; \
746})
747
748/* Security operations */
749
750int security_binder_set_context_mgr(struct task_struct *mgr)
751{
752 return call_int_hook(binder_set_context_mgr, 0, mgr);
753}
754
755int security_binder_transaction(struct task_struct *from,
756 struct task_struct *to)
757{
758 return call_int_hook(binder_transaction, 0, from, to);
759}
760
761int security_binder_transfer_binder(struct task_struct *from,
762 struct task_struct *to)
763{
764 return call_int_hook(binder_transfer_binder, 0, from, to);
765}
766
767int security_binder_transfer_file(struct task_struct *from,
768 struct task_struct *to, struct file *file)
769{
770 return call_int_hook(binder_transfer_file, 0, from, to, file);
771}
772
773int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774{
775 return call_int_hook(ptrace_access_check, 0, child, mode);
776}
777
778int security_ptrace_traceme(struct task_struct *parent)
779{
780 return call_int_hook(ptrace_traceme, 0, parent);
781}
782
783int security_capget(struct task_struct *target,
784 kernel_cap_t *effective,
785 kernel_cap_t *inheritable,
786 kernel_cap_t *permitted)
787{
788 return call_int_hook(capget, 0, target,
789 effective, inheritable, permitted);
790}
791
792int security_capset(struct cred *new, const struct cred *old,
793 const kernel_cap_t *effective,
794 const kernel_cap_t *inheritable,
795 const kernel_cap_t *permitted)
796{
797 return call_int_hook(capset, 0, new, old,
798 effective, inheritable, permitted);
799}
800
801int security_capable(const struct cred *cred,
802 struct user_namespace *ns,
803 int cap,
804 unsigned int opts)
805{
806 return call_int_hook(capable, 0, cred, ns, cap, opts);
807}
808
809int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810{
811 return call_int_hook(quotactl, 0, cmds, type, id, sb);
812}
813
814int security_quota_on(struct dentry *dentry)
815{
816 return call_int_hook(quota_on, 0, dentry);
817}
818
819int security_syslog(int type)
820{
821 return call_int_hook(syslog, 0, type);
822}
823
824int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825{
826 return call_int_hook(settime, 0, ts, tz);
827}
828
829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830{
831 struct security_hook_list *hp;
832 int cap_sys_admin = 1;
833 int rc;
834
835 /*
836 * The module will respond with a positive value if
837 * it thinks the __vm_enough_memory() call should be
838 * made with the cap_sys_admin set. If all of the modules
839 * agree that it should be set it will. If any module
840 * thinks it should not be set it won't.
841 */
842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 rc = hp->hook.vm_enough_memory(mm, pages);
844 if (rc <= 0) {
845 cap_sys_admin = 0;
846 break;
847 }
848 }
849 return __vm_enough_memory(mm, pages, cap_sys_admin);
850}
851
852int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853{
854 return call_int_hook(bprm_creds_for_exec, 0, bprm);
855}
856
857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858{
859 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860}
861
862int security_bprm_check(struct linux_binprm *bprm)
863{
864 int ret;
865
866 ret = call_int_hook(bprm_check_security, 0, bprm);
867 if (ret)
868 return ret;
869 return ima_bprm_check(bprm);
870}
871
872void security_bprm_committing_creds(struct linux_binprm *bprm)
873{
874 call_void_hook(bprm_committing_creds, bprm);
875}
876
877void security_bprm_committed_creds(struct linux_binprm *bprm)
878{
879 call_void_hook(bprm_committed_creds, bprm);
880}
881
882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883{
884 return call_int_hook(fs_context_dup, 0, fc, src_fc);
885}
886
887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888{
889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890}
891
892int security_sb_alloc(struct super_block *sb)
893{
894 int rc = lsm_superblock_alloc(sb);
895
896 if (unlikely(rc))
897 return rc;
898 rc = call_int_hook(sb_alloc_security, 0, sb);
899 if (unlikely(rc))
900 security_sb_free(sb);
901 return rc;
902}
903
904void security_sb_delete(struct super_block *sb)
905{
906 call_void_hook(sb_delete, sb);
907}
908
909void security_sb_free(struct super_block *sb)
910{
911 call_void_hook(sb_free_security, sb);
912 kfree(sb->s_security);
913 sb->s_security = NULL;
914}
915
916void security_free_mnt_opts(void **mnt_opts)
917{
918 if (!*mnt_opts)
919 return;
920 call_void_hook(sb_free_mnt_opts, *mnt_opts);
921 *mnt_opts = NULL;
922}
923EXPORT_SYMBOL(security_free_mnt_opts);
924
925int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926{
927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928}
929EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
931int security_sb_mnt_opts_compat(struct super_block *sb,
932 void *mnt_opts)
933{
934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935}
936EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
938int security_sb_remount(struct super_block *sb,
939 void *mnt_opts)
940{
941 return call_int_hook(sb_remount, 0, sb, mnt_opts);
942}
943EXPORT_SYMBOL(security_sb_remount);
944
945int security_sb_kern_mount(struct super_block *sb)
946{
947 return call_int_hook(sb_kern_mount, 0, sb);
948}
949
950int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951{
952 return call_int_hook(sb_show_options, 0, m, sb);
953}
954
955int security_sb_statfs(struct dentry *dentry)
956{
957 return call_int_hook(sb_statfs, 0, dentry);
958}
959
960int security_sb_mount(const char *dev_name, const struct path *path,
961 const char *type, unsigned long flags, void *data)
962{
963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964}
965
966int security_sb_umount(struct vfsmount *mnt, int flags)
967{
968 return call_int_hook(sb_umount, 0, mnt, flags);
969}
970
971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972{
973 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974}
975
976int security_sb_set_mnt_opts(struct super_block *sb,
977 void *mnt_opts,
978 unsigned long kern_flags,
979 unsigned long *set_kern_flags)
980{
981 return call_int_hook(sb_set_mnt_opts,
982 mnt_opts ? -EOPNOTSUPP : 0, sb,
983 mnt_opts, kern_flags, set_kern_flags);
984}
985EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
987int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988 struct super_block *newsb,
989 unsigned long kern_flags,
990 unsigned long *set_kern_flags)
991{
992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993 kern_flags, set_kern_flags);
994}
995EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
997int security_add_mnt_opt(const char *option, const char *val, int len,
998 void **mnt_opts)
999{
1000 return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001 option, val, len, mnt_opts);
1002}
1003EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005int security_move_mount(const struct path *from_path, const struct path *to_path)
1006{
1007 return call_int_hook(move_mount, 0, from_path, to_path);
1008}
1009
1010int security_path_notify(const struct path *path, u64 mask,
1011 unsigned int obj_type)
1012{
1013 return call_int_hook(path_notify, 0, path, mask, obj_type);
1014}
1015
1016int security_inode_alloc(struct inode *inode)
1017{
1018 int rc = lsm_inode_alloc(inode);
1019
1020 if (unlikely(rc))
1021 return rc;
1022 rc = call_int_hook(inode_alloc_security, 0, inode);
1023 if (unlikely(rc))
1024 security_inode_free(inode);
1025 return rc;
1026}
1027
1028static void inode_free_by_rcu(struct rcu_head *head)
1029{
1030 /*
1031 * The rcu head is at the start of the inode blob
1032 */
1033 kmem_cache_free(lsm_inode_cache, head);
1034}
1035
1036void security_inode_free(struct inode *inode)
1037{
1038 integrity_inode_free(inode);
1039 call_void_hook(inode_free_security, inode);
1040 /*
1041 * The inode may still be referenced in a path walk and
1042 * a call to security_inode_permission() can be made
1043 * after inode_free_security() is called. Ideally, the VFS
1044 * wouldn't do this, but fixing that is a much harder
1045 * job. For now, simply free the i_security via RCU, and
1046 * leave the current inode->i_security pointer intact.
1047 * The inode will be freed after the RCU grace period too.
1048 */
1049 if (inode->i_security)
1050 call_rcu((struct rcu_head *)inode->i_security,
1051 inode_free_by_rcu);
1052}
1053
1054int security_dentry_init_security(struct dentry *dentry, int mode,
1055 const struct qstr *name, void **ctx,
1056 u32 *ctxlen)
1057{
1058 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059 name, ctx, ctxlen);
1060}
1061EXPORT_SYMBOL(security_dentry_init_security);
1062
1063int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064 struct qstr *name,
1065 const struct cred *old, struct cred *new)
1066{
1067 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068 name, old, new);
1069}
1070EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072int security_inode_init_security(struct inode *inode, struct inode *dir,
1073 const struct qstr *qstr,
1074 const initxattrs initxattrs, void *fs_data)
1075{
1076 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078 int ret;
1079
1080 if (unlikely(IS_PRIVATE(inode)))
1081 return 0;
1082
1083 if (!initxattrs)
1084 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085 dir, qstr, NULL, NULL, NULL);
1086 memset(new_xattrs, 0, sizeof(new_xattrs));
1087 lsm_xattr = new_xattrs;
1088 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089 &lsm_xattr->name,
1090 &lsm_xattr->value,
1091 &lsm_xattr->value_len);
1092 if (ret)
1093 goto out;
1094
1095 evm_xattr = lsm_xattr + 1;
1096 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097 if (ret)
1098 goto out;
1099 ret = initxattrs(inode, new_xattrs, fs_data);
1100out:
1101 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102 kfree(xattr->value);
1103 return (ret == -EOPNOTSUPP) ? 0 : ret;
1104}
1105EXPORT_SYMBOL(security_inode_init_security);
1106
1107int security_inode_init_security_anon(struct inode *inode,
1108 const struct qstr *name,
1109 const struct inode *context_inode)
1110{
1111 return call_int_hook(inode_init_security_anon, 0, inode, name,
1112 context_inode);
1113}
1114
1115int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116 const struct qstr *qstr, const char **name,
1117 void **value, size_t *len)
1118{
1119 if (unlikely(IS_PRIVATE(inode)))
1120 return -EOPNOTSUPP;
1121 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122 qstr, name, value, len);
1123}
1124EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126#ifdef CONFIG_SECURITY_PATH
1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128 unsigned int dev)
1129{
1130 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131 return 0;
1132 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133}
1134EXPORT_SYMBOL(security_path_mknod);
1135
1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137{
1138 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139 return 0;
1140 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141}
1142EXPORT_SYMBOL(security_path_mkdir);
1143
1144int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145{
1146 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147 return 0;
1148 return call_int_hook(path_rmdir, 0, dir, dentry);
1149}
1150
1151int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152{
1153 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154 return 0;
1155 return call_int_hook(path_unlink, 0, dir, dentry);
1156}
1157EXPORT_SYMBOL(security_path_unlink);
1158
1159int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160 const char *old_name)
1161{
1162 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163 return 0;
1164 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165}
1166
1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168 struct dentry *new_dentry)
1169{
1170 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171 return 0;
1172 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173}
1174
1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176 const struct path *new_dir, struct dentry *new_dentry,
1177 unsigned int flags)
1178{
1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181 return 0;
1182
1183 if (flags & RENAME_EXCHANGE) {
1184 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185 old_dir, old_dentry);
1186 if (err)
1187 return err;
1188 }
1189
1190 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191 new_dentry);
1192}
1193EXPORT_SYMBOL(security_path_rename);
1194
1195int security_path_truncate(const struct path *path)
1196{
1197 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198 return 0;
1199 return call_int_hook(path_truncate, 0, path);
1200}
1201
1202int security_path_chmod(const struct path *path, umode_t mode)
1203{
1204 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205 return 0;
1206 return call_int_hook(path_chmod, 0, path, mode);
1207}
1208
1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210{
1211 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212 return 0;
1213 return call_int_hook(path_chown, 0, path, uid, gid);
1214}
1215
1216int security_path_chroot(const struct path *path)
1217{
1218 return call_int_hook(path_chroot, 0, path);
1219}
1220#endif
1221
1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223{
1224 if (unlikely(IS_PRIVATE(dir)))
1225 return 0;
1226 return call_int_hook(inode_create, 0, dir, dentry, mode);
1227}
1228EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231 struct dentry *new_dentry)
1232{
1233 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234 return 0;
1235 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236}
1237
1238int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239{
1240 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241 return 0;
1242 return call_int_hook(inode_unlink, 0, dir, dentry);
1243}
1244
1245int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246 const char *old_name)
1247{
1248 if (unlikely(IS_PRIVATE(dir)))
1249 return 0;
1250 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251}
1252
1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254{
1255 if (unlikely(IS_PRIVATE(dir)))
1256 return 0;
1257 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258}
1259EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262{
1263 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264 return 0;
1265 return call_int_hook(inode_rmdir, 0, dir, dentry);
1266}
1267
1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269{
1270 if (unlikely(IS_PRIVATE(dir)))
1271 return 0;
1272 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273}
1274
1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276 struct inode *new_dir, struct dentry *new_dentry,
1277 unsigned int flags)
1278{
1279 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281 return 0;
1282
1283 if (flags & RENAME_EXCHANGE) {
1284 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285 old_dir, old_dentry);
1286 if (err)
1287 return err;
1288 }
1289
1290 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291 new_dir, new_dentry);
1292}
1293
1294int security_inode_readlink(struct dentry *dentry)
1295{
1296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297 return 0;
1298 return call_int_hook(inode_readlink, 0, dentry);
1299}
1300
1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302 bool rcu)
1303{
1304 if (unlikely(IS_PRIVATE(inode)))
1305 return 0;
1306 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307}
1308
1309int security_inode_permission(struct inode *inode, int mask)
1310{
1311 if (unlikely(IS_PRIVATE(inode)))
1312 return 0;
1313 return call_int_hook(inode_permission, 0, inode, mask);
1314}
1315
1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317{
1318 int ret;
1319
1320 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321 return 0;
1322 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323 if (ret)
1324 return ret;
1325 return evm_inode_setattr(dentry, attr);
1326}
1327EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329int security_inode_getattr(const struct path *path)
1330{
1331 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332 return 0;
1333 return call_int_hook(inode_getattr, 0, path);
1334}
1335
1336int security_inode_setxattr(struct user_namespace *mnt_userns,
1337 struct dentry *dentry, const char *name,
1338 const void *value, size_t size, int flags)
1339{
1340 int ret;
1341
1342 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343 return 0;
1344 /*
1345 * SELinux and Smack integrate the cap call,
1346 * so assume that all LSMs supplying this call do so.
1347 */
1348 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349 size, flags);
1350
1351 if (ret == 1)
1352 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353 if (ret)
1354 return ret;
1355 ret = ima_inode_setxattr(dentry, name, value, size);
1356 if (ret)
1357 return ret;
1358 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359}
1360
1361void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362 const void *value, size_t size, int flags)
1363{
1364 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365 return;
1366 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367 evm_inode_post_setxattr(dentry, name, value, size);
1368}
1369
1370int security_inode_getxattr(struct dentry *dentry, const char *name)
1371{
1372 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373 return 0;
1374 return call_int_hook(inode_getxattr, 0, dentry, name);
1375}
1376
1377int security_inode_listxattr(struct dentry *dentry)
1378{
1379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380 return 0;
1381 return call_int_hook(inode_listxattr, 0, dentry);
1382}
1383
1384int security_inode_removexattr(struct user_namespace *mnt_userns,
1385 struct dentry *dentry, const char *name)
1386{
1387 int ret;
1388
1389 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390 return 0;
1391 /*
1392 * SELinux and Smack integrate the cap call,
1393 * so assume that all LSMs supplying this call do so.
1394 */
1395 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396 if (ret == 1)
1397 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398 if (ret)
1399 return ret;
1400 ret = ima_inode_removexattr(dentry, name);
1401 if (ret)
1402 return ret;
1403 return evm_inode_removexattr(mnt_userns, dentry, name);
1404}
1405
1406int security_inode_need_killpriv(struct dentry *dentry)
1407{
1408 return call_int_hook(inode_need_killpriv, 0, dentry);
1409}
1410
1411int security_inode_killpriv(struct user_namespace *mnt_userns,
1412 struct dentry *dentry)
1413{
1414 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415}
1416
1417int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418 struct inode *inode, const char *name,
1419 void **buffer, bool alloc)
1420{
1421 struct security_hook_list *hp;
1422 int rc;
1423
1424 if (unlikely(IS_PRIVATE(inode)))
1425 return LSM_RET_DEFAULT(inode_getsecurity);
1426 /*
1427 * Only one module will provide an attribute with a given name.
1428 */
1429 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432 return rc;
1433 }
1434 return LSM_RET_DEFAULT(inode_getsecurity);
1435}
1436
1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438{
1439 struct security_hook_list *hp;
1440 int rc;
1441
1442 if (unlikely(IS_PRIVATE(inode)))
1443 return LSM_RET_DEFAULT(inode_setsecurity);
1444 /*
1445 * Only one module will provide an attribute with a given name.
1446 */
1447 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449 flags);
1450 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451 return rc;
1452 }
1453 return LSM_RET_DEFAULT(inode_setsecurity);
1454}
1455
1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457{
1458 if (unlikely(IS_PRIVATE(inode)))
1459 return 0;
1460 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461}
1462EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464void security_inode_getsecid(struct inode *inode, u32 *secid)
1465{
1466 call_void_hook(inode_getsecid, inode, secid);
1467}
1468
1469int security_inode_copy_up(struct dentry *src, struct cred **new)
1470{
1471 return call_int_hook(inode_copy_up, 0, src, new);
1472}
1473EXPORT_SYMBOL(security_inode_copy_up);
1474
1475int security_inode_copy_up_xattr(const char *name)
1476{
1477 struct security_hook_list *hp;
1478 int rc;
1479
1480 /*
1481 * The implementation can return 0 (accept the xattr), 1 (discard the
1482 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483 * any other error code incase of an error.
1484 */
1485 hlist_for_each_entry(hp,
1486 &security_hook_heads.inode_copy_up_xattr, list) {
1487 rc = hp->hook.inode_copy_up_xattr(name);
1488 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489 return rc;
1490 }
1491
1492 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493}
1494EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497 struct kernfs_node *kn)
1498{
1499 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500}
1501
1502int security_file_permission(struct file *file, int mask)
1503{
1504 int ret;
1505
1506 ret = call_int_hook(file_permission, 0, file, mask);
1507 if (ret)
1508 return ret;
1509
1510 return fsnotify_perm(file, mask);
1511}
1512
1513int security_file_alloc(struct file *file)
1514{
1515 int rc = lsm_file_alloc(file);
1516
1517 if (rc)
1518 return rc;
1519 rc = call_int_hook(file_alloc_security, 0, file);
1520 if (unlikely(rc))
1521 security_file_free(file);
1522 return rc;
1523}
1524
1525void security_file_free(struct file *file)
1526{
1527 void *blob;
1528
1529 call_void_hook(file_free_security, file);
1530
1531 blob = file->f_security;
1532 if (blob) {
1533 file->f_security = NULL;
1534 kmem_cache_free(lsm_file_cache, blob);
1535 }
1536}
1537
1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539{
1540 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541}
1542EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545{
1546 /*
1547 * Does we have PROT_READ and does the application expect
1548 * it to imply PROT_EXEC? If not, nothing to talk about...
1549 */
1550 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551 return prot;
1552 if (!(current->personality & READ_IMPLIES_EXEC))
1553 return prot;
1554 /*
1555 * if that's an anonymous mapping, let it.
1556 */
1557 if (!file)
1558 return prot | PROT_EXEC;
1559 /*
1560 * ditto if it's not on noexec mount, except that on !MMU we need
1561 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562 */
1563 if (!path_noexec(&file->f_path)) {
1564#ifndef CONFIG_MMU
1565 if (file->f_op->mmap_capabilities) {
1566 unsigned caps = file->f_op->mmap_capabilities(file);
1567 if (!(caps & NOMMU_MAP_EXEC))
1568 return prot;
1569 }
1570#endif
1571 return prot | PROT_EXEC;
1572 }
1573 /* anything on noexec mount won't get PROT_EXEC */
1574 return prot;
1575}
1576
1577int security_mmap_file(struct file *file, unsigned long prot,
1578 unsigned long flags)
1579{
1580 int ret;
1581 ret = call_int_hook(mmap_file, 0, file, prot,
1582 mmap_prot(file, prot), flags);
1583 if (ret)
1584 return ret;
1585 return ima_file_mmap(file, prot);
1586}
1587
1588int security_mmap_addr(unsigned long addr)
1589{
1590 return call_int_hook(mmap_addr, 0, addr);
1591}
1592
1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594 unsigned long prot)
1595{
1596 int ret;
1597
1598 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599 if (ret)
1600 return ret;
1601 return ima_file_mprotect(vma, prot);
1602}
1603
1604int security_file_lock(struct file *file, unsigned int cmd)
1605{
1606 return call_int_hook(file_lock, 0, file, cmd);
1607}
1608
1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610{
1611 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612}
1613
1614void security_file_set_fowner(struct file *file)
1615{
1616 call_void_hook(file_set_fowner, file);
1617}
1618
1619int security_file_send_sigiotask(struct task_struct *tsk,
1620 struct fown_struct *fown, int sig)
1621{
1622 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623}
1624
1625int security_file_receive(struct file *file)
1626{
1627 return call_int_hook(file_receive, 0, file);
1628}
1629
1630int security_file_open(struct file *file)
1631{
1632 int ret;
1633
1634 ret = call_int_hook(file_open, 0, file);
1635 if (ret)
1636 return ret;
1637
1638 return fsnotify_perm(file, MAY_OPEN);
1639}
1640
1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642{
1643 int rc = lsm_task_alloc(task);
1644
1645 if (rc)
1646 return rc;
1647 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648 if (unlikely(rc))
1649 security_task_free(task);
1650 return rc;
1651}
1652
1653void security_task_free(struct task_struct *task)
1654{
1655 call_void_hook(task_free, task);
1656
1657 kfree(task->security);
1658 task->security = NULL;
1659}
1660
1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662{
1663 int rc = lsm_cred_alloc(cred, gfp);
1664
1665 if (rc)
1666 return rc;
1667
1668 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669 if (unlikely(rc))
1670 security_cred_free(cred);
1671 return rc;
1672}
1673
1674void security_cred_free(struct cred *cred)
1675{
1676 /*
1677 * There is a failure case in prepare_creds() that
1678 * may result in a call here with ->security being NULL.
1679 */
1680 if (unlikely(cred->security == NULL))
1681 return;
1682
1683 call_void_hook(cred_free, cred);
1684
1685 kfree(cred->security);
1686 cred->security = NULL;
1687}
1688
1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690{
1691 int rc = lsm_cred_alloc(new, gfp);
1692
1693 if (rc)
1694 return rc;
1695
1696 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697 if (unlikely(rc))
1698 security_cred_free(new);
1699 return rc;
1700}
1701
1702void security_transfer_creds(struct cred *new, const struct cred *old)
1703{
1704 call_void_hook(cred_transfer, new, old);
1705}
1706
1707void security_cred_getsecid(const struct cred *c, u32 *secid)
1708{
1709 *secid = 0;
1710 call_void_hook(cred_getsecid, c, secid);
1711}
1712EXPORT_SYMBOL(security_cred_getsecid);
1713
1714int security_kernel_act_as(struct cred *new, u32 secid)
1715{
1716 return call_int_hook(kernel_act_as, 0, new, secid);
1717}
1718
1719int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720{
1721 return call_int_hook(kernel_create_files_as, 0, new, inode);
1722}
1723
1724int security_kernel_module_request(char *kmod_name)
1725{
1726 int ret;
1727
1728 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729 if (ret)
1730 return ret;
1731 return integrity_kernel_module_request(kmod_name);
1732}
1733
1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735 bool contents)
1736{
1737 int ret;
1738
1739 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740 if (ret)
1741 return ret;
1742 return ima_read_file(file, id, contents);
1743}
1744EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747 enum kernel_read_file_id id)
1748{
1749 int ret;
1750
1751 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752 if (ret)
1753 return ret;
1754 return ima_post_read_file(file, buf, size, id);
1755}
1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759{
1760 int ret;
1761
1762 ret = call_int_hook(kernel_load_data, 0, id, contents);
1763 if (ret)
1764 return ret;
1765 return ima_load_data(id, contents);
1766}
1767EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769int security_kernel_post_load_data(char *buf, loff_t size,
1770 enum kernel_load_data_id id,
1771 char *description)
1772{
1773 int ret;
1774
1775 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776 description);
1777 if (ret)
1778 return ret;
1779 return ima_post_load_data(buf, size, id, description);
1780}
1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784 int flags)
1785{
1786 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787}
1788
1789int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790 int flags)
1791{
1792 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793}
1794
1795int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796{
1797 return call_int_hook(task_setpgid, 0, p, pgid);
1798}
1799
1800int security_task_getpgid(struct task_struct *p)
1801{
1802 return call_int_hook(task_getpgid, 0, p);
1803}
1804
1805int security_task_getsid(struct task_struct *p)
1806{
1807 return call_int_hook(task_getsid, 0, p);
1808}
1809
1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811{
1812 *secid = 0;
1813 call_void_hook(task_getsecid_subj, p, secid);
1814}
1815EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818{
1819 *secid = 0;
1820 call_void_hook(task_getsecid_obj, p, secid);
1821}
1822EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824int security_task_setnice(struct task_struct *p, int nice)
1825{
1826 return call_int_hook(task_setnice, 0, p, nice);
1827}
1828
1829int security_task_setioprio(struct task_struct *p, int ioprio)
1830{
1831 return call_int_hook(task_setioprio, 0, p, ioprio);
1832}
1833
1834int security_task_getioprio(struct task_struct *p)
1835{
1836 return call_int_hook(task_getioprio, 0, p);
1837}
1838
1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840 unsigned int flags)
1841{
1842 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843}
1844
1845int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846 struct rlimit *new_rlim)
1847{
1848 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849}
1850
1851int security_task_setscheduler(struct task_struct *p)
1852{
1853 return call_int_hook(task_setscheduler, 0, p);
1854}
1855
1856int security_task_getscheduler(struct task_struct *p)
1857{
1858 return call_int_hook(task_getscheduler, 0, p);
1859}
1860
1861int security_task_movememory(struct task_struct *p)
1862{
1863 return call_int_hook(task_movememory, 0, p);
1864}
1865
1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867 int sig, const struct cred *cred)
1868{
1869 return call_int_hook(task_kill, 0, p, info, sig, cred);
1870}
1871
1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873 unsigned long arg4, unsigned long arg5)
1874{
1875 int thisrc;
1876 int rc = LSM_RET_DEFAULT(task_prctl);
1877 struct security_hook_list *hp;
1878
1879 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882 rc = thisrc;
1883 if (thisrc != 0)
1884 break;
1885 }
1886 }
1887 return rc;
1888}
1889
1890void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891{
1892 call_void_hook(task_to_inode, p, inode);
1893}
1894
1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896{
1897 return call_int_hook(ipc_permission, 0, ipcp, flag);
1898}
1899
1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901{
1902 *secid = 0;
1903 call_void_hook(ipc_getsecid, ipcp, secid);
1904}
1905
1906int security_msg_msg_alloc(struct msg_msg *msg)
1907{
1908 int rc = lsm_msg_msg_alloc(msg);
1909
1910 if (unlikely(rc))
1911 return rc;
1912 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913 if (unlikely(rc))
1914 security_msg_msg_free(msg);
1915 return rc;
1916}
1917
1918void security_msg_msg_free(struct msg_msg *msg)
1919{
1920 call_void_hook(msg_msg_free_security, msg);
1921 kfree(msg->security);
1922 msg->security = NULL;
1923}
1924
1925int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926{
1927 int rc = lsm_ipc_alloc(msq);
1928
1929 if (unlikely(rc))
1930 return rc;
1931 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932 if (unlikely(rc))
1933 security_msg_queue_free(msq);
1934 return rc;
1935}
1936
1937void security_msg_queue_free(struct kern_ipc_perm *msq)
1938{
1939 call_void_hook(msg_queue_free_security, msq);
1940 kfree(msq->security);
1941 msq->security = NULL;
1942}
1943
1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945{
1946 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947}
1948
1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950{
1951 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952}
1953
1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955 struct msg_msg *msg, int msqflg)
1956{
1957 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958}
1959
1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961 struct task_struct *target, long type, int mode)
1962{
1963 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964}
1965
1966int security_shm_alloc(struct kern_ipc_perm *shp)
1967{
1968 int rc = lsm_ipc_alloc(shp);
1969
1970 if (unlikely(rc))
1971 return rc;
1972 rc = call_int_hook(shm_alloc_security, 0, shp);
1973 if (unlikely(rc))
1974 security_shm_free(shp);
1975 return rc;
1976}
1977
1978void security_shm_free(struct kern_ipc_perm *shp)
1979{
1980 call_void_hook(shm_free_security, shp);
1981 kfree(shp->security);
1982 shp->security = NULL;
1983}
1984
1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986{
1987 return call_int_hook(shm_associate, 0, shp, shmflg);
1988}
1989
1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991{
1992 return call_int_hook(shm_shmctl, 0, shp, cmd);
1993}
1994
1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996{
1997 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998}
1999
2000int security_sem_alloc(struct kern_ipc_perm *sma)
2001{
2002 int rc = lsm_ipc_alloc(sma);
2003
2004 if (unlikely(rc))
2005 return rc;
2006 rc = call_int_hook(sem_alloc_security, 0, sma);
2007 if (unlikely(rc))
2008 security_sem_free(sma);
2009 return rc;
2010}
2011
2012void security_sem_free(struct kern_ipc_perm *sma)
2013{
2014 call_void_hook(sem_free_security, sma);
2015 kfree(sma->security);
2016 sma->security = NULL;
2017}
2018
2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020{
2021 return call_int_hook(sem_associate, 0, sma, semflg);
2022}
2023
2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025{
2026 return call_int_hook(sem_semctl, 0, sma, cmd);
2027}
2028
2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030 unsigned nsops, int alter)
2031{
2032 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033}
2034
2035void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036{
2037 if (unlikely(inode && IS_PRIVATE(inode)))
2038 return;
2039 call_void_hook(d_instantiate, dentry, inode);
2040}
2041EXPORT_SYMBOL(security_d_instantiate);
2042
2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044 char **value)
2045{
2046 struct security_hook_list *hp;
2047
2048 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049 if (lsm != NULL && strcmp(lsm, hp->lsm))
2050 continue;
2051 return hp->hook.getprocattr(p, name, value);
2052 }
2053 return LSM_RET_DEFAULT(getprocattr);
2054}
2055
2056int security_setprocattr(const char *lsm, const char *name, void *value,
2057 size_t size)
2058{
2059 struct security_hook_list *hp;
2060
2061 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062 if (lsm != NULL && strcmp(lsm, hp->lsm))
2063 continue;
2064 return hp->hook.setprocattr(name, value, size);
2065 }
2066 return LSM_RET_DEFAULT(setprocattr);
2067}
2068
2069int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070{
2071 return call_int_hook(netlink_send, 0, sk, skb);
2072}
2073
2074int security_ismaclabel(const char *name)
2075{
2076 return call_int_hook(ismaclabel, 0, name);
2077}
2078EXPORT_SYMBOL(security_ismaclabel);
2079
2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081{
2082 struct security_hook_list *hp;
2083 int rc;
2084
2085 /*
2086 * Currently, only one LSM can implement secid_to_secctx (i.e this
2087 * LSM hook is not "stackable").
2088 */
2089 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092 return rc;
2093 }
2094
2095 return LSM_RET_DEFAULT(secid_to_secctx);
2096}
2097EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100{
2101 *secid = 0;
2102 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103}
2104EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106void security_release_secctx(char *secdata, u32 seclen)
2107{
2108 call_void_hook(release_secctx, secdata, seclen);
2109}
2110EXPORT_SYMBOL(security_release_secctx);
2111
2112void security_inode_invalidate_secctx(struct inode *inode)
2113{
2114 call_void_hook(inode_invalidate_secctx, inode);
2115}
2116EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119{
2120 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121}
2122EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125{
2126 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127}
2128EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131{
2132 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133}
2134EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136#ifdef CONFIG_WATCH_QUEUE
2137int security_post_notification(const struct cred *w_cred,
2138 const struct cred *cred,
2139 struct watch_notification *n)
2140{
2141 return call_int_hook(post_notification, 0, w_cred, cred, n);
2142}
2143#endif /* CONFIG_WATCH_QUEUE */
2144
2145#ifdef CONFIG_KEY_NOTIFICATIONS
2146int security_watch_key(struct key *key)
2147{
2148 return call_int_hook(watch_key, 0, key);
2149}
2150#endif
2151
2152#ifdef CONFIG_SECURITY_NETWORK
2153
2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155{
2156 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157}
2158EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160int security_unix_may_send(struct socket *sock, struct socket *other)
2161{
2162 return call_int_hook(unix_may_send, 0, sock, other);
2163}
2164EXPORT_SYMBOL(security_unix_may_send);
2165
2166int security_socket_create(int family, int type, int protocol, int kern)
2167{
2168 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169}
2170
2171int security_socket_post_create(struct socket *sock, int family,
2172 int type, int protocol, int kern)
2173{
2174 return call_int_hook(socket_post_create, 0, sock, family, type,
2175 protocol, kern);
2176}
2177
2178int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179{
2180 return call_int_hook(socket_socketpair, 0, socka, sockb);
2181}
2182EXPORT_SYMBOL(security_socket_socketpair);
2183
2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185{
2186 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187}
2188
2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190{
2191 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192}
2193
2194int security_socket_listen(struct socket *sock, int backlog)
2195{
2196 return call_int_hook(socket_listen, 0, sock, backlog);
2197}
2198
2199int security_socket_accept(struct socket *sock, struct socket *newsock)
2200{
2201 return call_int_hook(socket_accept, 0, sock, newsock);
2202}
2203
2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205{
2206 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207}
2208
2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210 int size, int flags)
2211{
2212 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213}
2214
2215int security_socket_getsockname(struct socket *sock)
2216{
2217 return call_int_hook(socket_getsockname, 0, sock);
2218}
2219
2220int security_socket_getpeername(struct socket *sock)
2221{
2222 return call_int_hook(socket_getpeername, 0, sock);
2223}
2224
2225int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226{
2227 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228}
2229
2230int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231{
2232 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233}
2234
2235int security_socket_shutdown(struct socket *sock, int how)
2236{
2237 return call_int_hook(socket_shutdown, 0, sock, how);
2238}
2239
2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241{
2242 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243}
2244EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247 int __user *optlen, unsigned len)
2248{
2249 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250 optval, optlen, len);
2251}
2252
2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254{
2255 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256 skb, secid);
2257}
2258EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261{
2262 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263}
2264
2265void security_sk_free(struct sock *sk)
2266{
2267 call_void_hook(sk_free_security, sk);
2268}
2269
2270void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271{
2272 call_void_hook(sk_clone_security, sk, newsk);
2273}
2274EXPORT_SYMBOL(security_sk_clone);
2275
2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277{
2278 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279}
2280EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282void security_req_classify_flow(const struct request_sock *req,
2283 struct flowi_common *flic)
2284{
2285 call_void_hook(req_classify_flow, req, flic);
2286}
2287EXPORT_SYMBOL(security_req_classify_flow);
2288
2289void security_sock_graft(struct sock *sk, struct socket *parent)
2290{
2291 call_void_hook(sock_graft, sk, parent);
2292}
2293EXPORT_SYMBOL(security_sock_graft);
2294
2295int security_inet_conn_request(const struct sock *sk,
2296 struct sk_buff *skb, struct request_sock *req)
2297{
2298 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299}
2300EXPORT_SYMBOL(security_inet_conn_request);
2301
2302void security_inet_csk_clone(struct sock *newsk,
2303 const struct request_sock *req)
2304{
2305 call_void_hook(inet_csk_clone, newsk, req);
2306}
2307
2308void security_inet_conn_established(struct sock *sk,
2309 struct sk_buff *skb)
2310{
2311 call_void_hook(inet_conn_established, sk, skb);
2312}
2313EXPORT_SYMBOL(security_inet_conn_established);
2314
2315int security_secmark_relabel_packet(u32 secid)
2316{
2317 return call_int_hook(secmark_relabel_packet, 0, secid);
2318}
2319EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321void security_secmark_refcount_inc(void)
2322{
2323 call_void_hook(secmark_refcount_inc);
2324}
2325EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327void security_secmark_refcount_dec(void)
2328{
2329 call_void_hook(secmark_refcount_dec);
2330}
2331EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333int security_tun_dev_alloc_security(void **security)
2334{
2335 return call_int_hook(tun_dev_alloc_security, 0, security);
2336}
2337EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339void security_tun_dev_free_security(void *security)
2340{
2341 call_void_hook(tun_dev_free_security, security);
2342}
2343EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345int security_tun_dev_create(void)
2346{
2347 return call_int_hook(tun_dev_create, 0);
2348}
2349EXPORT_SYMBOL(security_tun_dev_create);
2350
2351int security_tun_dev_attach_queue(void *security)
2352{
2353 return call_int_hook(tun_dev_attach_queue, 0, security);
2354}
2355EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357int security_tun_dev_attach(struct sock *sk, void *security)
2358{
2359 return call_int_hook(tun_dev_attach, 0, sk, security);
2360}
2361EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363int security_tun_dev_open(void *security)
2364{
2365 return call_int_hook(tun_dev_open, 0, security);
2366}
2367EXPORT_SYMBOL(security_tun_dev_open);
2368
2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370{
2371 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372}
2373EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375int security_sctp_bind_connect(struct sock *sk, int optname,
2376 struct sockaddr *address, int addrlen)
2377{
2378 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379 address, addrlen);
2380}
2381EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384 struct sock *newsk)
2385{
2386 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387}
2388EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390#endif /* CONFIG_SECURITY_NETWORK */
2391
2392#ifdef CONFIG_SECURITY_INFINIBAND
2393
2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395{
2396 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397}
2398EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401{
2402 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403}
2404EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406int security_ib_alloc_security(void **sec)
2407{
2408 return call_int_hook(ib_alloc_security, 0, sec);
2409}
2410EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412void security_ib_free_security(void *sec)
2413{
2414 call_void_hook(ib_free_security, sec);
2415}
2416EXPORT_SYMBOL(security_ib_free_security);
2417#endif /* CONFIG_SECURITY_INFINIBAND */
2418
2419#ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422 struct xfrm_user_sec_ctx *sec_ctx,
2423 gfp_t gfp)
2424{
2425 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426}
2427EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430 struct xfrm_sec_ctx **new_ctxp)
2431{
2432 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433}
2434
2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436{
2437 call_void_hook(xfrm_policy_free_security, ctx);
2438}
2439EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442{
2443 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444}
2445
2446int security_xfrm_state_alloc(struct xfrm_state *x,
2447 struct xfrm_user_sec_ctx *sec_ctx)
2448{
2449 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450}
2451EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454 struct xfrm_sec_ctx *polsec, u32 secid)
2455{
2456 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457}
2458
2459int security_xfrm_state_delete(struct xfrm_state *x)
2460{
2461 return call_int_hook(xfrm_state_delete_security, 0, x);
2462}
2463EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465void security_xfrm_state_free(struct xfrm_state *x)
2466{
2467 call_void_hook(xfrm_state_free_security, x);
2468}
2469
2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471{
2472 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473}
2474
2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476 struct xfrm_policy *xp,
2477 const struct flowi_common *flic)
2478{
2479 struct security_hook_list *hp;
2480 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482 /*
2483 * Since this function is expected to return 0 or 1, the judgment
2484 * becomes difficult if multiple LSMs supply this call. Fortunately,
2485 * we can use the first LSM's judgment because currently only SELinux
2486 * supplies this call.
2487 *
2488 * For speed optimization, we explicitly break the loop rather than
2489 * using the macro
2490 */
2491 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492 list) {
2493 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494 break;
2495 }
2496 return rc;
2497}
2498
2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500{
2501 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502}
2503
2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505{
2506 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507 0);
2508
2509 BUG_ON(rc);
2510}
2511EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515#ifdef CONFIG_KEYS
2516
2517int security_key_alloc(struct key *key, const struct cred *cred,
2518 unsigned long flags)
2519{
2520 return call_int_hook(key_alloc, 0, key, cred, flags);
2521}
2522
2523void security_key_free(struct key *key)
2524{
2525 call_void_hook(key_free, key);
2526}
2527
2528int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529 enum key_need_perm need_perm)
2530{
2531 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532}
2533
2534int security_key_getsecurity(struct key *key, char **_buffer)
2535{
2536 *_buffer = NULL;
2537 return call_int_hook(key_getsecurity, 0, key, _buffer);
2538}
2539
2540#endif /* CONFIG_KEYS */
2541
2542#ifdef CONFIG_AUDIT
2543
2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545{
2546 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547}
2548
2549int security_audit_rule_known(struct audit_krule *krule)
2550{
2551 return call_int_hook(audit_rule_known, 0, krule);
2552}
2553
2554void security_audit_rule_free(void *lsmrule)
2555{
2556 call_void_hook(audit_rule_free, lsmrule);
2557}
2558
2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560{
2561 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562}
2563#endif /* CONFIG_AUDIT */
2564
2565#ifdef CONFIG_BPF_SYSCALL
2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567{
2568 return call_int_hook(bpf, 0, cmd, attr, size);
2569}
2570int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571{
2572 return call_int_hook(bpf_map, 0, map, fmode);
2573}
2574int security_bpf_prog(struct bpf_prog *prog)
2575{
2576 return call_int_hook(bpf_prog, 0, prog);
2577}
2578int security_bpf_map_alloc(struct bpf_map *map)
2579{
2580 return call_int_hook(bpf_map_alloc_security, 0, map);
2581}
2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583{
2584 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585}
2586void security_bpf_map_free(struct bpf_map *map)
2587{
2588 call_void_hook(bpf_map_free_security, map);
2589}
2590void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591{
2592 call_void_hook(bpf_prog_free_security, aux);
2593}
2594#endif /* CONFIG_BPF_SYSCALL */
2595
2596int security_locked_down(enum lockdown_reason what)
2597{
2598 return call_int_hook(locked_down, 0, what);
2599}
2600EXPORT_SYMBOL(security_locked_down);
2601
2602#ifdef CONFIG_PERF_EVENTS
2603int security_perf_event_open(struct perf_event_attr *attr, int type)
2604{
2605 return call_int_hook(perf_event_open, 0, attr, type);
2606}
2607
2608int security_perf_event_alloc(struct perf_event *event)
2609{
2610 return call_int_hook(perf_event_alloc, 0, event);
2611}
2612
2613void security_perf_event_free(struct perf_event *event)
2614{
2615 call_void_hook(perf_event_free, event);
2616}
2617
2618int security_perf_event_read(struct perf_event *event)
2619{
2620 return call_int_hook(perf_event_read, 0, event);
2621}
2622
2623int security_perf_event_write(struct perf_event *event)
2624{
2625 return call_int_hook(perf_event_write, 0, event);
2626}
2627#endif /* CONFIG_PERF_EVENTS */
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15#include <linux/bpf.h>
16#include <linux/capability.h>
17#include <linux/dcache.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/lsm_hooks.h>
22#include <linux/integrity.h>
23#include <linux/ima.h>
24#include <linux/evm.h>
25#include <linux/fsnotify.h>
26#include <linux/mman.h>
27#include <linux/mount.h>
28#include <linux/personality.h>
29#include <linux/backing-dev.h>
30#include <linux/string.h>
31#include <net/flow.h>
32
33#include <trace/events/initcall.h>
34
35#define MAX_LSM_EVM_XATTR 2
36
37/* Maximum number of letters for an LSM name string */
38#define SECURITY_NAME_MAX 10
39
40struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43char *lsm_names;
44/* Boot-time LSM user choice */
45static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 CONFIG_DEFAULT_SECURITY;
47
48static void __init do_security_initcalls(void)
49{
50 int ret;
51 initcall_t *call;
52 call = __security_initcall_start;
53 trace_initcall_level("security");
54 while (call < __security_initcall_end) {
55 trace_initcall_start((*call));
56 ret = (*call) ();
57 trace_initcall_finish((*call), ret);
58 call++;
59 }
60}
61
62/**
63 * security_init - initializes the security framework
64 *
65 * This should be called early in the kernel initialization sequence.
66 */
67int __init security_init(void)
68{
69 int i;
70 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
71
72 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
73 i++)
74 INIT_HLIST_HEAD(&list[i]);
75 pr_info("Security Framework initialized\n");
76
77 /*
78 * Load minor LSMs, with the capability module always first.
79 */
80 capability_add_hooks();
81 yama_add_hooks();
82 loadpin_add_hooks();
83
84 /*
85 * Load all the remaining security modules.
86 */
87 do_security_initcalls();
88
89 return 0;
90}
91
92/* Save user chosen LSM */
93static int __init choose_lsm(char *str)
94{
95 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
96 return 1;
97}
98__setup("security=", choose_lsm);
99
100static bool match_last_lsm(const char *list, const char *lsm)
101{
102 const char *last;
103
104 if (WARN_ON(!list || !lsm))
105 return false;
106 last = strrchr(list, ',');
107 if (last)
108 /* Pass the comma, strcmp() will check for '\0' */
109 last++;
110 else
111 last = list;
112 return !strcmp(last, lsm);
113}
114
115static int lsm_append(char *new, char **result)
116{
117 char *cp;
118
119 if (*result == NULL) {
120 *result = kstrdup(new, GFP_KERNEL);
121 } else {
122 /* Check if it is the last registered name */
123 if (match_last_lsm(*result, new))
124 return 0;
125 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
126 if (cp == NULL)
127 return -ENOMEM;
128 kfree(*result);
129 *result = cp;
130 }
131 return 0;
132}
133
134/**
135 * security_module_enable - Load given security module on boot ?
136 * @module: the name of the module
137 *
138 * Each LSM must pass this method before registering its own operations
139 * to avoid security registration races. This method may also be used
140 * to check if your LSM is currently loaded during kernel initialization.
141 *
142 * Returns:
143 *
144 * true if:
145 *
146 * - The passed LSM is the one chosen by user at boot time,
147 * - or the passed LSM is configured as the default and the user did not
148 * choose an alternate LSM at boot time.
149 *
150 * Otherwise, return false.
151 */
152int __init security_module_enable(const char *module)
153{
154 return !strcmp(module, chosen_lsm);
155}
156
157/**
158 * security_add_hooks - Add a modules hooks to the hook lists.
159 * @hooks: the hooks to add
160 * @count: the number of hooks to add
161 * @lsm: the name of the security module
162 *
163 * Each LSM has to register its hooks with the infrastructure.
164 */
165void __init security_add_hooks(struct security_hook_list *hooks, int count,
166 char *lsm)
167{
168 int i;
169
170 for (i = 0; i < count; i++) {
171 hooks[i].lsm = lsm;
172 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
173 }
174 if (lsm_append(lsm, &lsm_names) < 0)
175 panic("%s - Cannot get early memory.\n", __func__);
176}
177
178int call_lsm_notifier(enum lsm_event event, void *data)
179{
180 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
181}
182EXPORT_SYMBOL(call_lsm_notifier);
183
184int register_lsm_notifier(struct notifier_block *nb)
185{
186 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
187}
188EXPORT_SYMBOL(register_lsm_notifier);
189
190int unregister_lsm_notifier(struct notifier_block *nb)
191{
192 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
193}
194EXPORT_SYMBOL(unregister_lsm_notifier);
195
196/*
197 * Hook list operation macros.
198 *
199 * call_void_hook:
200 * This is a hook that does not return a value.
201 *
202 * call_int_hook:
203 * This is a hook that returns a value.
204 */
205
206#define call_void_hook(FUNC, ...) \
207 do { \
208 struct security_hook_list *P; \
209 \
210 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
211 P->hook.FUNC(__VA_ARGS__); \
212 } while (0)
213
214#define call_int_hook(FUNC, IRC, ...) ({ \
215 int RC = IRC; \
216 do { \
217 struct security_hook_list *P; \
218 \
219 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
220 RC = P->hook.FUNC(__VA_ARGS__); \
221 if (RC != 0) \
222 break; \
223 } \
224 } while (0); \
225 RC; \
226})
227
228/* Security operations */
229
230int security_binder_set_context_mgr(struct task_struct *mgr)
231{
232 return call_int_hook(binder_set_context_mgr, 0, mgr);
233}
234
235int security_binder_transaction(struct task_struct *from,
236 struct task_struct *to)
237{
238 return call_int_hook(binder_transaction, 0, from, to);
239}
240
241int security_binder_transfer_binder(struct task_struct *from,
242 struct task_struct *to)
243{
244 return call_int_hook(binder_transfer_binder, 0, from, to);
245}
246
247int security_binder_transfer_file(struct task_struct *from,
248 struct task_struct *to, struct file *file)
249{
250 return call_int_hook(binder_transfer_file, 0, from, to, file);
251}
252
253int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
254{
255 return call_int_hook(ptrace_access_check, 0, child, mode);
256}
257
258int security_ptrace_traceme(struct task_struct *parent)
259{
260 return call_int_hook(ptrace_traceme, 0, parent);
261}
262
263int security_capget(struct task_struct *target,
264 kernel_cap_t *effective,
265 kernel_cap_t *inheritable,
266 kernel_cap_t *permitted)
267{
268 return call_int_hook(capget, 0, target,
269 effective, inheritable, permitted);
270}
271
272int security_capset(struct cred *new, const struct cred *old,
273 const kernel_cap_t *effective,
274 const kernel_cap_t *inheritable,
275 const kernel_cap_t *permitted)
276{
277 return call_int_hook(capset, 0, new, old,
278 effective, inheritable, permitted);
279}
280
281int security_capable(const struct cred *cred, struct user_namespace *ns,
282 int cap)
283{
284 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
285}
286
287int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
288 int cap)
289{
290 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
291}
292
293int security_quotactl(int cmds, int type, int id, struct super_block *sb)
294{
295 return call_int_hook(quotactl, 0, cmds, type, id, sb);
296}
297
298int security_quota_on(struct dentry *dentry)
299{
300 return call_int_hook(quota_on, 0, dentry);
301}
302
303int security_syslog(int type)
304{
305 return call_int_hook(syslog, 0, type);
306}
307
308int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
309{
310 return call_int_hook(settime, 0, ts, tz);
311}
312
313int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
314{
315 struct security_hook_list *hp;
316 int cap_sys_admin = 1;
317 int rc;
318
319 /*
320 * The module will respond with a positive value if
321 * it thinks the __vm_enough_memory() call should be
322 * made with the cap_sys_admin set. If all of the modules
323 * agree that it should be set it will. If any module
324 * thinks it should not be set it won't.
325 */
326 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
327 rc = hp->hook.vm_enough_memory(mm, pages);
328 if (rc <= 0) {
329 cap_sys_admin = 0;
330 break;
331 }
332 }
333 return __vm_enough_memory(mm, pages, cap_sys_admin);
334}
335
336int security_bprm_set_creds(struct linux_binprm *bprm)
337{
338 return call_int_hook(bprm_set_creds, 0, bprm);
339}
340
341int security_bprm_check(struct linux_binprm *bprm)
342{
343 int ret;
344
345 ret = call_int_hook(bprm_check_security, 0, bprm);
346 if (ret)
347 return ret;
348 return ima_bprm_check(bprm);
349}
350
351void security_bprm_committing_creds(struct linux_binprm *bprm)
352{
353 call_void_hook(bprm_committing_creds, bprm);
354}
355
356void security_bprm_committed_creds(struct linux_binprm *bprm)
357{
358 call_void_hook(bprm_committed_creds, bprm);
359}
360
361int security_sb_alloc(struct super_block *sb)
362{
363 return call_int_hook(sb_alloc_security, 0, sb);
364}
365
366void security_sb_free(struct super_block *sb)
367{
368 call_void_hook(sb_free_security, sb);
369}
370
371int security_sb_copy_data(char *orig, char *copy)
372{
373 return call_int_hook(sb_copy_data, 0, orig, copy);
374}
375EXPORT_SYMBOL(security_sb_copy_data);
376
377int security_sb_remount(struct super_block *sb, void *data)
378{
379 return call_int_hook(sb_remount, 0, sb, data);
380}
381
382int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
383{
384 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
385}
386
387int security_sb_show_options(struct seq_file *m, struct super_block *sb)
388{
389 return call_int_hook(sb_show_options, 0, m, sb);
390}
391
392int security_sb_statfs(struct dentry *dentry)
393{
394 return call_int_hook(sb_statfs, 0, dentry);
395}
396
397int security_sb_mount(const char *dev_name, const struct path *path,
398 const char *type, unsigned long flags, void *data)
399{
400 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
401}
402
403int security_sb_umount(struct vfsmount *mnt, int flags)
404{
405 return call_int_hook(sb_umount, 0, mnt, flags);
406}
407
408int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
409{
410 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
411}
412
413int security_sb_set_mnt_opts(struct super_block *sb,
414 struct security_mnt_opts *opts,
415 unsigned long kern_flags,
416 unsigned long *set_kern_flags)
417{
418 return call_int_hook(sb_set_mnt_opts,
419 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
420 opts, kern_flags, set_kern_flags);
421}
422EXPORT_SYMBOL(security_sb_set_mnt_opts);
423
424int security_sb_clone_mnt_opts(const struct super_block *oldsb,
425 struct super_block *newsb,
426 unsigned long kern_flags,
427 unsigned long *set_kern_flags)
428{
429 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
430 kern_flags, set_kern_flags);
431}
432EXPORT_SYMBOL(security_sb_clone_mnt_opts);
433
434int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
435{
436 return call_int_hook(sb_parse_opts_str, 0, options, opts);
437}
438EXPORT_SYMBOL(security_sb_parse_opts_str);
439
440int security_inode_alloc(struct inode *inode)
441{
442 inode->i_security = NULL;
443 return call_int_hook(inode_alloc_security, 0, inode);
444}
445
446void security_inode_free(struct inode *inode)
447{
448 integrity_inode_free(inode);
449 call_void_hook(inode_free_security, inode);
450}
451
452int security_dentry_init_security(struct dentry *dentry, int mode,
453 const struct qstr *name, void **ctx,
454 u32 *ctxlen)
455{
456 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
457 name, ctx, ctxlen);
458}
459EXPORT_SYMBOL(security_dentry_init_security);
460
461int security_dentry_create_files_as(struct dentry *dentry, int mode,
462 struct qstr *name,
463 const struct cred *old, struct cred *new)
464{
465 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
466 name, old, new);
467}
468EXPORT_SYMBOL(security_dentry_create_files_as);
469
470int security_inode_init_security(struct inode *inode, struct inode *dir,
471 const struct qstr *qstr,
472 const initxattrs initxattrs, void *fs_data)
473{
474 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
475 struct xattr *lsm_xattr, *evm_xattr, *xattr;
476 int ret;
477
478 if (unlikely(IS_PRIVATE(inode)))
479 return 0;
480
481 if (!initxattrs)
482 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
483 dir, qstr, NULL, NULL, NULL);
484 memset(new_xattrs, 0, sizeof(new_xattrs));
485 lsm_xattr = new_xattrs;
486 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
487 &lsm_xattr->name,
488 &lsm_xattr->value,
489 &lsm_xattr->value_len);
490 if (ret)
491 goto out;
492
493 evm_xattr = lsm_xattr + 1;
494 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
495 if (ret)
496 goto out;
497 ret = initxattrs(inode, new_xattrs, fs_data);
498out:
499 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
500 kfree(xattr->value);
501 return (ret == -EOPNOTSUPP) ? 0 : ret;
502}
503EXPORT_SYMBOL(security_inode_init_security);
504
505int security_old_inode_init_security(struct inode *inode, struct inode *dir,
506 const struct qstr *qstr, const char **name,
507 void **value, size_t *len)
508{
509 if (unlikely(IS_PRIVATE(inode)))
510 return -EOPNOTSUPP;
511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
512 qstr, name, value, len);
513}
514EXPORT_SYMBOL(security_old_inode_init_security);
515
516#ifdef CONFIG_SECURITY_PATH
517int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
518 unsigned int dev)
519{
520 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
521 return 0;
522 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
523}
524EXPORT_SYMBOL(security_path_mknod);
525
526int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
527{
528 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
529 return 0;
530 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
531}
532EXPORT_SYMBOL(security_path_mkdir);
533
534int security_path_rmdir(const struct path *dir, struct dentry *dentry)
535{
536 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
537 return 0;
538 return call_int_hook(path_rmdir, 0, dir, dentry);
539}
540
541int security_path_unlink(const struct path *dir, struct dentry *dentry)
542{
543 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
544 return 0;
545 return call_int_hook(path_unlink, 0, dir, dentry);
546}
547EXPORT_SYMBOL(security_path_unlink);
548
549int security_path_symlink(const struct path *dir, struct dentry *dentry,
550 const char *old_name)
551{
552 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
553 return 0;
554 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
555}
556
557int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
558 struct dentry *new_dentry)
559{
560 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
561 return 0;
562 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
563}
564
565int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
566 const struct path *new_dir, struct dentry *new_dentry,
567 unsigned int flags)
568{
569 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
570 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
571 return 0;
572
573 if (flags & RENAME_EXCHANGE) {
574 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
575 old_dir, old_dentry);
576 if (err)
577 return err;
578 }
579
580 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
581 new_dentry);
582}
583EXPORT_SYMBOL(security_path_rename);
584
585int security_path_truncate(const struct path *path)
586{
587 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
588 return 0;
589 return call_int_hook(path_truncate, 0, path);
590}
591
592int security_path_chmod(const struct path *path, umode_t mode)
593{
594 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
595 return 0;
596 return call_int_hook(path_chmod, 0, path, mode);
597}
598
599int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
600{
601 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
602 return 0;
603 return call_int_hook(path_chown, 0, path, uid, gid);
604}
605
606int security_path_chroot(const struct path *path)
607{
608 return call_int_hook(path_chroot, 0, path);
609}
610#endif
611
612int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
613{
614 if (unlikely(IS_PRIVATE(dir)))
615 return 0;
616 return call_int_hook(inode_create, 0, dir, dentry, mode);
617}
618EXPORT_SYMBOL_GPL(security_inode_create);
619
620int security_inode_link(struct dentry *old_dentry, struct inode *dir,
621 struct dentry *new_dentry)
622{
623 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
624 return 0;
625 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
626}
627
628int security_inode_unlink(struct inode *dir, struct dentry *dentry)
629{
630 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
631 return 0;
632 return call_int_hook(inode_unlink, 0, dir, dentry);
633}
634
635int security_inode_symlink(struct inode *dir, struct dentry *dentry,
636 const char *old_name)
637{
638 if (unlikely(IS_PRIVATE(dir)))
639 return 0;
640 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
641}
642
643int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
644{
645 if (unlikely(IS_PRIVATE(dir)))
646 return 0;
647 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
648}
649EXPORT_SYMBOL_GPL(security_inode_mkdir);
650
651int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
652{
653 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
654 return 0;
655 return call_int_hook(inode_rmdir, 0, dir, dentry);
656}
657
658int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
659{
660 if (unlikely(IS_PRIVATE(dir)))
661 return 0;
662 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
663}
664
665int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
666 struct inode *new_dir, struct dentry *new_dentry,
667 unsigned int flags)
668{
669 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
670 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
671 return 0;
672
673 if (flags & RENAME_EXCHANGE) {
674 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
675 old_dir, old_dentry);
676 if (err)
677 return err;
678 }
679
680 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
681 new_dir, new_dentry);
682}
683
684int security_inode_readlink(struct dentry *dentry)
685{
686 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
687 return 0;
688 return call_int_hook(inode_readlink, 0, dentry);
689}
690
691int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
692 bool rcu)
693{
694 if (unlikely(IS_PRIVATE(inode)))
695 return 0;
696 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
697}
698
699int security_inode_permission(struct inode *inode, int mask)
700{
701 if (unlikely(IS_PRIVATE(inode)))
702 return 0;
703 return call_int_hook(inode_permission, 0, inode, mask);
704}
705
706int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
707{
708 int ret;
709
710 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
711 return 0;
712 ret = call_int_hook(inode_setattr, 0, dentry, attr);
713 if (ret)
714 return ret;
715 return evm_inode_setattr(dentry, attr);
716}
717EXPORT_SYMBOL_GPL(security_inode_setattr);
718
719int security_inode_getattr(const struct path *path)
720{
721 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
722 return 0;
723 return call_int_hook(inode_getattr, 0, path);
724}
725
726int security_inode_setxattr(struct dentry *dentry, const char *name,
727 const void *value, size_t size, int flags)
728{
729 int ret;
730
731 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
732 return 0;
733 /*
734 * SELinux and Smack integrate the cap call,
735 * so assume that all LSMs supplying this call do so.
736 */
737 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
738 flags);
739
740 if (ret == 1)
741 ret = cap_inode_setxattr(dentry, name, value, size, flags);
742 if (ret)
743 return ret;
744 ret = ima_inode_setxattr(dentry, name, value, size);
745 if (ret)
746 return ret;
747 return evm_inode_setxattr(dentry, name, value, size);
748}
749
750void security_inode_post_setxattr(struct dentry *dentry, const char *name,
751 const void *value, size_t size, int flags)
752{
753 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
754 return;
755 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
756 evm_inode_post_setxattr(dentry, name, value, size);
757}
758
759int security_inode_getxattr(struct dentry *dentry, const char *name)
760{
761 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
762 return 0;
763 return call_int_hook(inode_getxattr, 0, dentry, name);
764}
765
766int security_inode_listxattr(struct dentry *dentry)
767{
768 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
769 return 0;
770 return call_int_hook(inode_listxattr, 0, dentry);
771}
772
773int security_inode_removexattr(struct dentry *dentry, const char *name)
774{
775 int ret;
776
777 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
778 return 0;
779 /*
780 * SELinux and Smack integrate the cap call,
781 * so assume that all LSMs supplying this call do so.
782 */
783 ret = call_int_hook(inode_removexattr, 1, dentry, name);
784 if (ret == 1)
785 ret = cap_inode_removexattr(dentry, name);
786 if (ret)
787 return ret;
788 ret = ima_inode_removexattr(dentry, name);
789 if (ret)
790 return ret;
791 return evm_inode_removexattr(dentry, name);
792}
793
794int security_inode_need_killpriv(struct dentry *dentry)
795{
796 return call_int_hook(inode_need_killpriv, 0, dentry);
797}
798
799int security_inode_killpriv(struct dentry *dentry)
800{
801 return call_int_hook(inode_killpriv, 0, dentry);
802}
803
804int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
805{
806 struct security_hook_list *hp;
807 int rc;
808
809 if (unlikely(IS_PRIVATE(inode)))
810 return -EOPNOTSUPP;
811 /*
812 * Only one module will provide an attribute with a given name.
813 */
814 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
815 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
816 if (rc != -EOPNOTSUPP)
817 return rc;
818 }
819 return -EOPNOTSUPP;
820}
821
822int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
823{
824 struct security_hook_list *hp;
825 int rc;
826
827 if (unlikely(IS_PRIVATE(inode)))
828 return -EOPNOTSUPP;
829 /*
830 * Only one module will provide an attribute with a given name.
831 */
832 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
833 rc = hp->hook.inode_setsecurity(inode, name, value, size,
834 flags);
835 if (rc != -EOPNOTSUPP)
836 return rc;
837 }
838 return -EOPNOTSUPP;
839}
840
841int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
842{
843 if (unlikely(IS_PRIVATE(inode)))
844 return 0;
845 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
846}
847EXPORT_SYMBOL(security_inode_listsecurity);
848
849void security_inode_getsecid(struct inode *inode, u32 *secid)
850{
851 call_void_hook(inode_getsecid, inode, secid);
852}
853
854int security_inode_copy_up(struct dentry *src, struct cred **new)
855{
856 return call_int_hook(inode_copy_up, 0, src, new);
857}
858EXPORT_SYMBOL(security_inode_copy_up);
859
860int security_inode_copy_up_xattr(const char *name)
861{
862 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
863}
864EXPORT_SYMBOL(security_inode_copy_up_xattr);
865
866int security_file_permission(struct file *file, int mask)
867{
868 int ret;
869
870 ret = call_int_hook(file_permission, 0, file, mask);
871 if (ret)
872 return ret;
873
874 return fsnotify_perm(file, mask);
875}
876
877int security_file_alloc(struct file *file)
878{
879 return call_int_hook(file_alloc_security, 0, file);
880}
881
882void security_file_free(struct file *file)
883{
884 call_void_hook(file_free_security, file);
885}
886
887int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
888{
889 return call_int_hook(file_ioctl, 0, file, cmd, arg);
890}
891
892static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
893{
894 /*
895 * Does we have PROT_READ and does the application expect
896 * it to imply PROT_EXEC? If not, nothing to talk about...
897 */
898 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
899 return prot;
900 if (!(current->personality & READ_IMPLIES_EXEC))
901 return prot;
902 /*
903 * if that's an anonymous mapping, let it.
904 */
905 if (!file)
906 return prot | PROT_EXEC;
907 /*
908 * ditto if it's not on noexec mount, except that on !MMU we need
909 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
910 */
911 if (!path_noexec(&file->f_path)) {
912#ifndef CONFIG_MMU
913 if (file->f_op->mmap_capabilities) {
914 unsigned caps = file->f_op->mmap_capabilities(file);
915 if (!(caps & NOMMU_MAP_EXEC))
916 return prot;
917 }
918#endif
919 return prot | PROT_EXEC;
920 }
921 /* anything on noexec mount won't get PROT_EXEC */
922 return prot;
923}
924
925int security_mmap_file(struct file *file, unsigned long prot,
926 unsigned long flags)
927{
928 int ret;
929 ret = call_int_hook(mmap_file, 0, file, prot,
930 mmap_prot(file, prot), flags);
931 if (ret)
932 return ret;
933 return ima_file_mmap(file, prot);
934}
935
936int security_mmap_addr(unsigned long addr)
937{
938 return call_int_hook(mmap_addr, 0, addr);
939}
940
941int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
942 unsigned long prot)
943{
944 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
945}
946
947int security_file_lock(struct file *file, unsigned int cmd)
948{
949 return call_int_hook(file_lock, 0, file, cmd);
950}
951
952int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
953{
954 return call_int_hook(file_fcntl, 0, file, cmd, arg);
955}
956
957void security_file_set_fowner(struct file *file)
958{
959 call_void_hook(file_set_fowner, file);
960}
961
962int security_file_send_sigiotask(struct task_struct *tsk,
963 struct fown_struct *fown, int sig)
964{
965 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
966}
967
968int security_file_receive(struct file *file)
969{
970 return call_int_hook(file_receive, 0, file);
971}
972
973int security_file_open(struct file *file, const struct cred *cred)
974{
975 int ret;
976
977 ret = call_int_hook(file_open, 0, file, cred);
978 if (ret)
979 return ret;
980
981 return fsnotify_perm(file, MAY_OPEN);
982}
983
984int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
985{
986 return call_int_hook(task_alloc, 0, task, clone_flags);
987}
988
989void security_task_free(struct task_struct *task)
990{
991 call_void_hook(task_free, task);
992}
993
994int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
995{
996 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
997}
998
999void security_cred_free(struct cred *cred)
1000{
1001 call_void_hook(cred_free, cred);
1002}
1003
1004int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005{
1006 return call_int_hook(cred_prepare, 0, new, old, gfp);
1007}
1008
1009void security_transfer_creds(struct cred *new, const struct cred *old)
1010{
1011 call_void_hook(cred_transfer, new, old);
1012}
1013
1014void security_cred_getsecid(const struct cred *c, u32 *secid)
1015{
1016 *secid = 0;
1017 call_void_hook(cred_getsecid, c, secid);
1018}
1019EXPORT_SYMBOL(security_cred_getsecid);
1020
1021int security_kernel_act_as(struct cred *new, u32 secid)
1022{
1023 return call_int_hook(kernel_act_as, 0, new, secid);
1024}
1025
1026int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1027{
1028 return call_int_hook(kernel_create_files_as, 0, new, inode);
1029}
1030
1031int security_kernel_module_request(char *kmod_name)
1032{
1033 return call_int_hook(kernel_module_request, 0, kmod_name);
1034}
1035
1036int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1037{
1038 int ret;
1039
1040 ret = call_int_hook(kernel_read_file, 0, file, id);
1041 if (ret)
1042 return ret;
1043 return ima_read_file(file, id);
1044}
1045EXPORT_SYMBOL_GPL(security_kernel_read_file);
1046
1047int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1048 enum kernel_read_file_id id)
1049{
1050 int ret;
1051
1052 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1053 if (ret)
1054 return ret;
1055 return ima_post_read_file(file, buf, size, id);
1056}
1057EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1058
1059int security_task_fix_setuid(struct cred *new, const struct cred *old,
1060 int flags)
1061{
1062 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1063}
1064
1065int security_task_setpgid(struct task_struct *p, pid_t pgid)
1066{
1067 return call_int_hook(task_setpgid, 0, p, pgid);
1068}
1069
1070int security_task_getpgid(struct task_struct *p)
1071{
1072 return call_int_hook(task_getpgid, 0, p);
1073}
1074
1075int security_task_getsid(struct task_struct *p)
1076{
1077 return call_int_hook(task_getsid, 0, p);
1078}
1079
1080void security_task_getsecid(struct task_struct *p, u32 *secid)
1081{
1082 *secid = 0;
1083 call_void_hook(task_getsecid, p, secid);
1084}
1085EXPORT_SYMBOL(security_task_getsecid);
1086
1087int security_task_setnice(struct task_struct *p, int nice)
1088{
1089 return call_int_hook(task_setnice, 0, p, nice);
1090}
1091
1092int security_task_setioprio(struct task_struct *p, int ioprio)
1093{
1094 return call_int_hook(task_setioprio, 0, p, ioprio);
1095}
1096
1097int security_task_getioprio(struct task_struct *p)
1098{
1099 return call_int_hook(task_getioprio, 0, p);
1100}
1101
1102int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1103 unsigned int flags)
1104{
1105 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1106}
1107
1108int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1109 struct rlimit *new_rlim)
1110{
1111 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1112}
1113
1114int security_task_setscheduler(struct task_struct *p)
1115{
1116 return call_int_hook(task_setscheduler, 0, p);
1117}
1118
1119int security_task_getscheduler(struct task_struct *p)
1120{
1121 return call_int_hook(task_getscheduler, 0, p);
1122}
1123
1124int security_task_movememory(struct task_struct *p)
1125{
1126 return call_int_hook(task_movememory, 0, p);
1127}
1128
1129int security_task_kill(struct task_struct *p, struct siginfo *info,
1130 int sig, const struct cred *cred)
1131{
1132 return call_int_hook(task_kill, 0, p, info, sig, cred);
1133}
1134
1135int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1136 unsigned long arg4, unsigned long arg5)
1137{
1138 int thisrc;
1139 int rc = -ENOSYS;
1140 struct security_hook_list *hp;
1141
1142 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1143 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1144 if (thisrc != -ENOSYS) {
1145 rc = thisrc;
1146 if (thisrc != 0)
1147 break;
1148 }
1149 }
1150 return rc;
1151}
1152
1153void security_task_to_inode(struct task_struct *p, struct inode *inode)
1154{
1155 call_void_hook(task_to_inode, p, inode);
1156}
1157
1158int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1159{
1160 return call_int_hook(ipc_permission, 0, ipcp, flag);
1161}
1162
1163void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1164{
1165 *secid = 0;
1166 call_void_hook(ipc_getsecid, ipcp, secid);
1167}
1168
1169int security_msg_msg_alloc(struct msg_msg *msg)
1170{
1171 return call_int_hook(msg_msg_alloc_security, 0, msg);
1172}
1173
1174void security_msg_msg_free(struct msg_msg *msg)
1175{
1176 call_void_hook(msg_msg_free_security, msg);
1177}
1178
1179int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1180{
1181 return call_int_hook(msg_queue_alloc_security, 0, msq);
1182}
1183
1184void security_msg_queue_free(struct kern_ipc_perm *msq)
1185{
1186 call_void_hook(msg_queue_free_security, msq);
1187}
1188
1189int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1190{
1191 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1192}
1193
1194int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1195{
1196 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1197}
1198
1199int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1200 struct msg_msg *msg, int msqflg)
1201{
1202 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1203}
1204
1205int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1206 struct task_struct *target, long type, int mode)
1207{
1208 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1209}
1210
1211int security_shm_alloc(struct kern_ipc_perm *shp)
1212{
1213 return call_int_hook(shm_alloc_security, 0, shp);
1214}
1215
1216void security_shm_free(struct kern_ipc_perm *shp)
1217{
1218 call_void_hook(shm_free_security, shp);
1219}
1220
1221int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1222{
1223 return call_int_hook(shm_associate, 0, shp, shmflg);
1224}
1225
1226int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1227{
1228 return call_int_hook(shm_shmctl, 0, shp, cmd);
1229}
1230
1231int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1232{
1233 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1234}
1235
1236int security_sem_alloc(struct kern_ipc_perm *sma)
1237{
1238 return call_int_hook(sem_alloc_security, 0, sma);
1239}
1240
1241void security_sem_free(struct kern_ipc_perm *sma)
1242{
1243 call_void_hook(sem_free_security, sma);
1244}
1245
1246int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1247{
1248 return call_int_hook(sem_associate, 0, sma, semflg);
1249}
1250
1251int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1252{
1253 return call_int_hook(sem_semctl, 0, sma, cmd);
1254}
1255
1256int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1257 unsigned nsops, int alter)
1258{
1259 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1260}
1261
1262void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1263{
1264 if (unlikely(inode && IS_PRIVATE(inode)))
1265 return;
1266 call_void_hook(d_instantiate, dentry, inode);
1267}
1268EXPORT_SYMBOL(security_d_instantiate);
1269
1270int security_getprocattr(struct task_struct *p, char *name, char **value)
1271{
1272 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1273}
1274
1275int security_setprocattr(const char *name, void *value, size_t size)
1276{
1277 return call_int_hook(setprocattr, -EINVAL, name, value, size);
1278}
1279
1280int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1281{
1282 return call_int_hook(netlink_send, 0, sk, skb);
1283}
1284
1285int security_ismaclabel(const char *name)
1286{
1287 return call_int_hook(ismaclabel, 0, name);
1288}
1289EXPORT_SYMBOL(security_ismaclabel);
1290
1291int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1292{
1293 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1294 seclen);
1295}
1296EXPORT_SYMBOL(security_secid_to_secctx);
1297
1298int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1299{
1300 *secid = 0;
1301 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1302}
1303EXPORT_SYMBOL(security_secctx_to_secid);
1304
1305void security_release_secctx(char *secdata, u32 seclen)
1306{
1307 call_void_hook(release_secctx, secdata, seclen);
1308}
1309EXPORT_SYMBOL(security_release_secctx);
1310
1311void security_inode_invalidate_secctx(struct inode *inode)
1312{
1313 call_void_hook(inode_invalidate_secctx, inode);
1314}
1315EXPORT_SYMBOL(security_inode_invalidate_secctx);
1316
1317int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1318{
1319 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1320}
1321EXPORT_SYMBOL(security_inode_notifysecctx);
1322
1323int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1324{
1325 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1326}
1327EXPORT_SYMBOL(security_inode_setsecctx);
1328
1329int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1330{
1331 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1332}
1333EXPORT_SYMBOL(security_inode_getsecctx);
1334
1335#ifdef CONFIG_SECURITY_NETWORK
1336
1337int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1338{
1339 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1340}
1341EXPORT_SYMBOL(security_unix_stream_connect);
1342
1343int security_unix_may_send(struct socket *sock, struct socket *other)
1344{
1345 return call_int_hook(unix_may_send, 0, sock, other);
1346}
1347EXPORT_SYMBOL(security_unix_may_send);
1348
1349int security_socket_create(int family, int type, int protocol, int kern)
1350{
1351 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1352}
1353
1354int security_socket_post_create(struct socket *sock, int family,
1355 int type, int protocol, int kern)
1356{
1357 return call_int_hook(socket_post_create, 0, sock, family, type,
1358 protocol, kern);
1359}
1360
1361int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1362{
1363 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1364}
1365
1366int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1367{
1368 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1369}
1370
1371int security_socket_listen(struct socket *sock, int backlog)
1372{
1373 return call_int_hook(socket_listen, 0, sock, backlog);
1374}
1375
1376int security_socket_accept(struct socket *sock, struct socket *newsock)
1377{
1378 return call_int_hook(socket_accept, 0, sock, newsock);
1379}
1380
1381int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1382{
1383 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1384}
1385
1386int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1387 int size, int flags)
1388{
1389 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1390}
1391
1392int security_socket_getsockname(struct socket *sock)
1393{
1394 return call_int_hook(socket_getsockname, 0, sock);
1395}
1396
1397int security_socket_getpeername(struct socket *sock)
1398{
1399 return call_int_hook(socket_getpeername, 0, sock);
1400}
1401
1402int security_socket_getsockopt(struct socket *sock, int level, int optname)
1403{
1404 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1405}
1406
1407int security_socket_setsockopt(struct socket *sock, int level, int optname)
1408{
1409 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1410}
1411
1412int security_socket_shutdown(struct socket *sock, int how)
1413{
1414 return call_int_hook(socket_shutdown, 0, sock, how);
1415}
1416
1417int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1418{
1419 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1420}
1421EXPORT_SYMBOL(security_sock_rcv_skb);
1422
1423int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1424 int __user *optlen, unsigned len)
1425{
1426 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1427 optval, optlen, len);
1428}
1429
1430int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1431{
1432 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1433 skb, secid);
1434}
1435EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1436
1437int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1438{
1439 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1440}
1441
1442void security_sk_free(struct sock *sk)
1443{
1444 call_void_hook(sk_free_security, sk);
1445}
1446
1447void security_sk_clone(const struct sock *sk, struct sock *newsk)
1448{
1449 call_void_hook(sk_clone_security, sk, newsk);
1450}
1451EXPORT_SYMBOL(security_sk_clone);
1452
1453void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1454{
1455 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1456}
1457EXPORT_SYMBOL(security_sk_classify_flow);
1458
1459void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1460{
1461 call_void_hook(req_classify_flow, req, fl);
1462}
1463EXPORT_SYMBOL(security_req_classify_flow);
1464
1465void security_sock_graft(struct sock *sk, struct socket *parent)
1466{
1467 call_void_hook(sock_graft, sk, parent);
1468}
1469EXPORT_SYMBOL(security_sock_graft);
1470
1471int security_inet_conn_request(struct sock *sk,
1472 struct sk_buff *skb, struct request_sock *req)
1473{
1474 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1475}
1476EXPORT_SYMBOL(security_inet_conn_request);
1477
1478void security_inet_csk_clone(struct sock *newsk,
1479 const struct request_sock *req)
1480{
1481 call_void_hook(inet_csk_clone, newsk, req);
1482}
1483
1484void security_inet_conn_established(struct sock *sk,
1485 struct sk_buff *skb)
1486{
1487 call_void_hook(inet_conn_established, sk, skb);
1488}
1489EXPORT_SYMBOL(security_inet_conn_established);
1490
1491int security_secmark_relabel_packet(u32 secid)
1492{
1493 return call_int_hook(secmark_relabel_packet, 0, secid);
1494}
1495EXPORT_SYMBOL(security_secmark_relabel_packet);
1496
1497void security_secmark_refcount_inc(void)
1498{
1499 call_void_hook(secmark_refcount_inc);
1500}
1501EXPORT_SYMBOL(security_secmark_refcount_inc);
1502
1503void security_secmark_refcount_dec(void)
1504{
1505 call_void_hook(secmark_refcount_dec);
1506}
1507EXPORT_SYMBOL(security_secmark_refcount_dec);
1508
1509int security_tun_dev_alloc_security(void **security)
1510{
1511 return call_int_hook(tun_dev_alloc_security, 0, security);
1512}
1513EXPORT_SYMBOL(security_tun_dev_alloc_security);
1514
1515void security_tun_dev_free_security(void *security)
1516{
1517 call_void_hook(tun_dev_free_security, security);
1518}
1519EXPORT_SYMBOL(security_tun_dev_free_security);
1520
1521int security_tun_dev_create(void)
1522{
1523 return call_int_hook(tun_dev_create, 0);
1524}
1525EXPORT_SYMBOL(security_tun_dev_create);
1526
1527int security_tun_dev_attach_queue(void *security)
1528{
1529 return call_int_hook(tun_dev_attach_queue, 0, security);
1530}
1531EXPORT_SYMBOL(security_tun_dev_attach_queue);
1532
1533int security_tun_dev_attach(struct sock *sk, void *security)
1534{
1535 return call_int_hook(tun_dev_attach, 0, sk, security);
1536}
1537EXPORT_SYMBOL(security_tun_dev_attach);
1538
1539int security_tun_dev_open(void *security)
1540{
1541 return call_int_hook(tun_dev_open, 0, security);
1542}
1543EXPORT_SYMBOL(security_tun_dev_open);
1544
1545int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1546{
1547 return call_int_hook(sctp_assoc_request, 0, ep, skb);
1548}
1549EXPORT_SYMBOL(security_sctp_assoc_request);
1550
1551int security_sctp_bind_connect(struct sock *sk, int optname,
1552 struct sockaddr *address, int addrlen)
1553{
1554 return call_int_hook(sctp_bind_connect, 0, sk, optname,
1555 address, addrlen);
1556}
1557EXPORT_SYMBOL(security_sctp_bind_connect);
1558
1559void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1560 struct sock *newsk)
1561{
1562 call_void_hook(sctp_sk_clone, ep, sk, newsk);
1563}
1564EXPORT_SYMBOL(security_sctp_sk_clone);
1565
1566#endif /* CONFIG_SECURITY_NETWORK */
1567
1568#ifdef CONFIG_SECURITY_INFINIBAND
1569
1570int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1571{
1572 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1573}
1574EXPORT_SYMBOL(security_ib_pkey_access);
1575
1576int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1577{
1578 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1579}
1580EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1581
1582int security_ib_alloc_security(void **sec)
1583{
1584 return call_int_hook(ib_alloc_security, 0, sec);
1585}
1586EXPORT_SYMBOL(security_ib_alloc_security);
1587
1588void security_ib_free_security(void *sec)
1589{
1590 call_void_hook(ib_free_security, sec);
1591}
1592EXPORT_SYMBOL(security_ib_free_security);
1593#endif /* CONFIG_SECURITY_INFINIBAND */
1594
1595#ifdef CONFIG_SECURITY_NETWORK_XFRM
1596
1597int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1598 struct xfrm_user_sec_ctx *sec_ctx,
1599 gfp_t gfp)
1600{
1601 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1602}
1603EXPORT_SYMBOL(security_xfrm_policy_alloc);
1604
1605int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1606 struct xfrm_sec_ctx **new_ctxp)
1607{
1608 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1609}
1610
1611void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1612{
1613 call_void_hook(xfrm_policy_free_security, ctx);
1614}
1615EXPORT_SYMBOL(security_xfrm_policy_free);
1616
1617int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1618{
1619 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1620}
1621
1622int security_xfrm_state_alloc(struct xfrm_state *x,
1623 struct xfrm_user_sec_ctx *sec_ctx)
1624{
1625 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1626}
1627EXPORT_SYMBOL(security_xfrm_state_alloc);
1628
1629int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1630 struct xfrm_sec_ctx *polsec, u32 secid)
1631{
1632 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1633}
1634
1635int security_xfrm_state_delete(struct xfrm_state *x)
1636{
1637 return call_int_hook(xfrm_state_delete_security, 0, x);
1638}
1639EXPORT_SYMBOL(security_xfrm_state_delete);
1640
1641void security_xfrm_state_free(struct xfrm_state *x)
1642{
1643 call_void_hook(xfrm_state_free_security, x);
1644}
1645
1646int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1647{
1648 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1649}
1650
1651int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1652 struct xfrm_policy *xp,
1653 const struct flowi *fl)
1654{
1655 struct security_hook_list *hp;
1656 int rc = 1;
1657
1658 /*
1659 * Since this function is expected to return 0 or 1, the judgment
1660 * becomes difficult if multiple LSMs supply this call. Fortunately,
1661 * we can use the first LSM's judgment because currently only SELinux
1662 * supplies this call.
1663 *
1664 * For speed optimization, we explicitly break the loop rather than
1665 * using the macro
1666 */
1667 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1668 list) {
1669 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1670 break;
1671 }
1672 return rc;
1673}
1674
1675int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1676{
1677 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1678}
1679
1680void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1681{
1682 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1683 0);
1684
1685 BUG_ON(rc);
1686}
1687EXPORT_SYMBOL(security_skb_classify_flow);
1688
1689#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1690
1691#ifdef CONFIG_KEYS
1692
1693int security_key_alloc(struct key *key, const struct cred *cred,
1694 unsigned long flags)
1695{
1696 return call_int_hook(key_alloc, 0, key, cred, flags);
1697}
1698
1699void security_key_free(struct key *key)
1700{
1701 call_void_hook(key_free, key);
1702}
1703
1704int security_key_permission(key_ref_t key_ref,
1705 const struct cred *cred, unsigned perm)
1706{
1707 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1708}
1709
1710int security_key_getsecurity(struct key *key, char **_buffer)
1711{
1712 *_buffer = NULL;
1713 return call_int_hook(key_getsecurity, 0, key, _buffer);
1714}
1715
1716#endif /* CONFIG_KEYS */
1717
1718#ifdef CONFIG_AUDIT
1719
1720int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1721{
1722 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1723}
1724
1725int security_audit_rule_known(struct audit_krule *krule)
1726{
1727 return call_int_hook(audit_rule_known, 0, krule);
1728}
1729
1730void security_audit_rule_free(void *lsmrule)
1731{
1732 call_void_hook(audit_rule_free, lsmrule);
1733}
1734
1735int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1736 struct audit_context *actx)
1737{
1738 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1739 actx);
1740}
1741#endif /* CONFIG_AUDIT */
1742
1743#ifdef CONFIG_BPF_SYSCALL
1744int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1745{
1746 return call_int_hook(bpf, 0, cmd, attr, size);
1747}
1748int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1749{
1750 return call_int_hook(bpf_map, 0, map, fmode);
1751}
1752int security_bpf_prog(struct bpf_prog *prog)
1753{
1754 return call_int_hook(bpf_prog, 0, prog);
1755}
1756int security_bpf_map_alloc(struct bpf_map *map)
1757{
1758 return call_int_hook(bpf_map_alloc_security, 0, map);
1759}
1760int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1761{
1762 return call_int_hook(bpf_prog_alloc_security, 0, aux);
1763}
1764void security_bpf_map_free(struct bpf_map *map)
1765{
1766 call_void_hook(bpf_map_free_security, map);
1767}
1768void security_bpf_prog_free(struct bpf_prog_aux *aux)
1769{
1770 call_void_hook(bpf_prog_free_security, aux);
1771}
1772#endif /* CONFIG_BPF_SYSCALL */