Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Basic general purpose allocator for managing special purpose
  4 * memory, for example, memory that is not managed by the regular
  5 * kmalloc/kfree interface.  Uses for this includes on-device special
  6 * memory, uncached memory etc.
  7 *
  8 * It is safe to use the allocator in NMI handlers and other special
  9 * unblockable contexts that could otherwise deadlock on locks.  This
 10 * is implemented by using atomic operations and retries on any
 11 * conflicts.  The disadvantage is that there may be livelocks in
 12 * extreme cases.  For better scalability, one allocator can be used
 13 * for each CPU.
 14 *
 15 * The lockless operation only works if there is enough memory
 16 * available.  If new memory is added to the pool a lock has to be
 17 * still taken.  So any user relying on locklessness has to ensure
 18 * that sufficient memory is preallocated.
 19 *
 20 * The basic atomic operation of this allocator is cmpxchg on long.
 21 * On architectures that don't have NMI-safe cmpxchg implementation,
 22 * the allocator can NOT be used in NMI handler.  So code uses the
 23 * allocator in NMI handler should depend on
 24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 25 *
 26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 
 
 
 27 */
 28
 29#include <linux/slab.h>
 30#include <linux/export.h>
 31#include <linux/bitmap.h>
 32#include <linux/rculist.h>
 33#include <linux/interrupt.h>
 34#include <linux/genalloc.h>
 35#include <linux/of_device.h>
 36#include <linux/vmalloc.h>
 37
 38static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
 39{
 40	return chunk->end_addr - chunk->start_addr + 1;
 41}
 42
 43static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 44{
 45	unsigned long val, nval;
 46
 47	nval = *addr;
 48	do {
 49		val = nval;
 50		if (val & mask_to_set)
 51			return -EBUSY;
 52		cpu_relax();
 53	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 54
 55	return 0;
 56}
 57
 58static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 59{
 60	unsigned long val, nval;
 61
 62	nval = *addr;
 63	do {
 64		val = nval;
 65		if ((val & mask_to_clear) != mask_to_clear)
 66			return -EBUSY;
 67		cpu_relax();
 68	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 69
 70	return 0;
 71}
 72
 73/*
 74 * bitmap_set_ll - set the specified number of bits at the specified position
 75 * @map: pointer to a bitmap
 76 * @start: a bit position in @map
 77 * @nr: number of bits to set
 78 *
 79 * Set @nr bits start from @start in @map lock-lessly. Several users
 80 * can set/clear the same bitmap simultaneously without lock. If two
 81 * users set the same bit, one user will return remain bits, otherwise
 82 * return 0.
 83 */
 84static unsigned long
 85bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
 86{
 87	unsigned long *p = map + BIT_WORD(start);
 88	const unsigned long size = start + nr;
 89	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 90	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 91
 92	while (nr >= bits_to_set) {
 93		if (set_bits_ll(p, mask_to_set))
 94			return nr;
 95		nr -= bits_to_set;
 96		bits_to_set = BITS_PER_LONG;
 97		mask_to_set = ~0UL;
 98		p++;
 99	}
100	if (nr) {
101		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102		if (set_bits_ll(p, mask_to_set))
103			return nr;
104	}
105
106	return 0;
107}
108
109/*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
120static unsigned long
121bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
122{
123	unsigned long *p = map + BIT_WORD(start);
124	const unsigned long size = start + nr;
125	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
128	while (nr >= bits_to_clear) {
129		if (clear_bits_ll(p, mask_to_clear))
130			return nr;
131		nr -= bits_to_clear;
132		bits_to_clear = BITS_PER_LONG;
133		mask_to_clear = ~0UL;
134		p++;
135	}
136	if (nr) {
137		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138		if (clear_bits_ll(p, mask_to_clear))
139			return nr;
140	}
141
142	return 0;
143}
144
145/**
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
152 */
153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154{
155	struct gen_pool *pool;
156
157	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158	if (pool != NULL) {
159		spin_lock_init(&pool->lock);
160		INIT_LIST_HEAD(&pool->chunks);
161		pool->min_alloc_order = min_alloc_order;
162		pool->algo = gen_pool_first_fit;
163		pool->data = NULL;
164		pool->name = NULL;
165	}
166	return pool;
167}
168EXPORT_SYMBOL(gen_pool_create);
169
170/**
171 * gen_pool_add_owner- add a new chunk of special memory to the pool
172 * @pool: pool to add new memory chunk to
173 * @virt: virtual starting address of memory chunk to add to pool
174 * @phys: physical starting address of memory chunk to add to pool
175 * @size: size in bytes of the memory chunk to add to pool
176 * @nid: node id of the node the chunk structure and bitmap should be
177 *       allocated on, or -1
178 * @owner: private data the publisher would like to recall at alloc time
179 *
180 * Add a new chunk of special memory to the specified pool.
181 *
182 * Returns 0 on success or a -ve errno on failure.
183 */
184int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185		 size_t size, int nid, void *owner)
186{
187	struct gen_pool_chunk *chunk;
188	unsigned long nbits = size >> pool->min_alloc_order;
189	unsigned long nbytes = sizeof(struct gen_pool_chunk) +
190				BITS_TO_LONGS(nbits) * sizeof(long);
191
192	chunk = vzalloc_node(nbytes, nid);
193	if (unlikely(chunk == NULL))
194		return -ENOMEM;
195
196	chunk->phys_addr = phys;
197	chunk->start_addr = virt;
198	chunk->end_addr = virt + size - 1;
199	chunk->owner = owner;
200	atomic_long_set(&chunk->avail, size);
201
202	spin_lock(&pool->lock);
203	list_add_rcu(&chunk->next_chunk, &pool->chunks);
204	spin_unlock(&pool->lock);
205
206	return 0;
207}
208EXPORT_SYMBOL(gen_pool_add_owner);
209
210/**
211 * gen_pool_virt_to_phys - return the physical address of memory
212 * @pool: pool to allocate from
213 * @addr: starting address of memory
214 *
215 * Returns the physical address on success, or -1 on error.
216 */
217phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
218{
219	struct gen_pool_chunk *chunk;
220	phys_addr_t paddr = -1;
221
222	rcu_read_lock();
223	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
224		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
225			paddr = chunk->phys_addr + (addr - chunk->start_addr);
226			break;
227		}
228	}
229	rcu_read_unlock();
230
231	return paddr;
232}
233EXPORT_SYMBOL(gen_pool_virt_to_phys);
234
235/**
236 * gen_pool_destroy - destroy a special memory pool
237 * @pool: pool to destroy
238 *
239 * Destroy the specified special memory pool. Verifies that there are no
240 * outstanding allocations.
241 */
242void gen_pool_destroy(struct gen_pool *pool)
243{
244	struct list_head *_chunk, *_next_chunk;
245	struct gen_pool_chunk *chunk;
246	int order = pool->min_alloc_order;
247	unsigned long bit, end_bit;
248
249	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
250		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
251		list_del(&chunk->next_chunk);
252
253		end_bit = chunk_size(chunk) >> order;
254		bit = find_next_bit(chunk->bits, end_bit, 0);
255		BUG_ON(bit < end_bit);
256
257		vfree(chunk);
258	}
259	kfree_const(pool->name);
260	kfree(pool);
261}
262EXPORT_SYMBOL(gen_pool_destroy);
263
264/**
265 * gen_pool_alloc_algo_owner - allocate special memory from the pool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266 * @pool: pool to allocate from
267 * @size: number of bytes to allocate from the pool
268 * @algo: algorithm passed from caller
269 * @data: data passed to algorithm
270 * @owner: optionally retrieve the chunk owner
271 *
272 * Allocate the requested number of bytes from the specified pool.
273 * Uses the pool allocation function (with first-fit algorithm by default).
274 * Can not be used in NMI handler on architectures without
275 * NMI-safe cmpxchg implementation.
276 */
277unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
278		genpool_algo_t algo, void *data, void **owner)
279{
280	struct gen_pool_chunk *chunk;
281	unsigned long addr = 0;
282	int order = pool->min_alloc_order;
283	unsigned long nbits, start_bit, end_bit, remain;
284
285#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
286	BUG_ON(in_nmi());
287#endif
288
289	if (owner)
290		*owner = NULL;
291
292	if (size == 0)
293		return 0;
294
295	nbits = (size + (1UL << order) - 1) >> order;
296	rcu_read_lock();
297	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
298		if (size > atomic_long_read(&chunk->avail))
299			continue;
300
301		start_bit = 0;
302		end_bit = chunk_size(chunk) >> order;
303retry:
304		start_bit = algo(chunk->bits, end_bit, start_bit,
305				 nbits, data, pool, chunk->start_addr);
306		if (start_bit >= end_bit)
307			continue;
308		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
309		if (remain) {
310			remain = bitmap_clear_ll(chunk->bits, start_bit,
311						 nbits - remain);
312			BUG_ON(remain);
313			goto retry;
314		}
315
316		addr = chunk->start_addr + ((unsigned long)start_bit << order);
317		size = nbits << order;
318		atomic_long_sub(size, &chunk->avail);
319		if (owner)
320			*owner = chunk->owner;
321		break;
322	}
323	rcu_read_unlock();
324	return addr;
325}
326EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
327
328/**
329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
330 * @pool: pool to allocate from
331 * @size: number of bytes to allocate from the pool
332 * @dma: dma-view physical address return value.  Use %NULL if unneeded.
333 *
334 * Allocate the requested number of bytes from the specified pool.
335 * Uses the pool allocation function (with first-fit algorithm by default).
336 * Can not be used in NMI handler on architectures without
337 * NMI-safe cmpxchg implementation.
338 *
339 * Return: virtual address of the allocated memory, or %NULL on failure
340 */
341void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
342{
343	return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
344}
345EXPORT_SYMBOL(gen_pool_dma_alloc);
346
347/**
348 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
349 * usage with the given pool algorithm
350 * @pool: pool to allocate from
351 * @size: number of bytes to allocate from the pool
352 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
353 * @algo: algorithm passed from caller
354 * @data: data passed to algorithm
355 *
356 * Allocate the requested number of bytes from the specified pool. Uses the
357 * given pool allocation function. Can not be used in NMI handler on
358 * architectures without NMI-safe cmpxchg implementation.
359 *
360 * Return: virtual address of the allocated memory, or %NULL on failure
361 */
362void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
363		dma_addr_t *dma, genpool_algo_t algo, void *data)
364{
365	unsigned long vaddr;
366
367	if (!pool)
368		return NULL;
369
370	vaddr = gen_pool_alloc_algo(pool, size, algo, data);
371	if (!vaddr)
372		return NULL;
373
374	if (dma)
375		*dma = gen_pool_virt_to_phys(pool, vaddr);
376
377	return (void *)vaddr;
378}
379EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
380
381/**
382 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
383 * usage with the given alignment
384 * @pool: pool to allocate from
385 * @size: number of bytes to allocate from the pool
386 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
387 * @align: alignment in bytes for starting address
388 *
389 * Allocate the requested number bytes from the specified pool, with the given
390 * alignment restriction. Can not be used in NMI handler on architectures
391 * without NMI-safe cmpxchg implementation.
392 *
393 * Return: virtual address of the allocated memory, or %NULL on failure
394 */
395void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
396		dma_addr_t *dma, int align)
397{
398	struct genpool_data_align data = { .align = align };
399
400	return gen_pool_dma_alloc_algo(pool, size, dma,
401			gen_pool_first_fit_align, &data);
402}
403EXPORT_SYMBOL(gen_pool_dma_alloc_align);
404
405/**
406 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
407 * DMA usage
408 * @pool: pool to allocate from
409 * @size: number of bytes to allocate from the pool
410 * @dma: dma-view physical address return value.  Use %NULL if unneeded.
411 *
412 * Allocate the requested number of zeroed bytes from the specified pool.
413 * Uses the pool allocation function (with first-fit algorithm by default).
414 * Can not be used in NMI handler on architectures without
415 * NMI-safe cmpxchg implementation.
416 *
417 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
418 */
419void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
420{
421	return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
422}
423EXPORT_SYMBOL(gen_pool_dma_zalloc);
424
425/**
426 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
427 * DMA usage with the given pool algorithm
428 * @pool: pool to allocate from
429 * @size: number of bytes to allocate from the pool
430 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
431 * @algo: algorithm passed from caller
432 * @data: data passed to algorithm
433 *
434 * Allocate the requested number of zeroed bytes from the specified pool. Uses
435 * the given pool allocation function. Can not be used in NMI handler on
436 * architectures without NMI-safe cmpxchg implementation.
437 *
438 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
439 */
440void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
441		dma_addr_t *dma, genpool_algo_t algo, void *data)
442{
443	void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
444
445	if (vaddr)
446		memset(vaddr, 0, size);
447
448	return vaddr;
449}
450EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
451
452/**
453 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
454 * DMA usage with the given alignment
455 * @pool: pool to allocate from
456 * @size: number of bytes to allocate from the pool
457 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
458 * @align: alignment in bytes for starting address
459 *
460 * Allocate the requested number of zeroed bytes from the specified pool,
461 * with the given alignment restriction. Can not be used in NMI handler on
462 * architectures without NMI-safe cmpxchg implementation.
463 *
464 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
465 */
466void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
467		dma_addr_t *dma, int align)
468{
469	struct genpool_data_align data = { .align = align };
470
471	return gen_pool_dma_zalloc_algo(pool, size, dma,
472			gen_pool_first_fit_align, &data);
473}
474EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
475
476/**
477 * gen_pool_free_owner - free allocated special memory back to the pool
478 * @pool: pool to free to
479 * @addr: starting address of memory to free back to pool
480 * @size: size in bytes of memory to free
481 * @owner: private data stashed at gen_pool_add() time
482 *
483 * Free previously allocated special memory back to the specified
484 * pool.  Can not be used in NMI handler on architectures without
485 * NMI-safe cmpxchg implementation.
486 */
487void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
488		void **owner)
489{
490	struct gen_pool_chunk *chunk;
491	int order = pool->min_alloc_order;
492	unsigned long start_bit, nbits, remain;
493
494#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
495	BUG_ON(in_nmi());
496#endif
497
498	if (owner)
499		*owner = NULL;
500
501	nbits = (size + (1UL << order) - 1) >> order;
502	rcu_read_lock();
503	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
504		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
505			BUG_ON(addr + size - 1 > chunk->end_addr);
506			start_bit = (addr - chunk->start_addr) >> order;
507			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
508			BUG_ON(remain);
509			size = nbits << order;
510			atomic_long_add(size, &chunk->avail);
511			if (owner)
512				*owner = chunk->owner;
513			rcu_read_unlock();
514			return;
515		}
516	}
517	rcu_read_unlock();
518	BUG();
519}
520EXPORT_SYMBOL(gen_pool_free_owner);
521
522/**
523 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
524 * @pool:	the generic memory pool
525 * @func:	func to call
526 * @data:	additional data used by @func
527 *
528 * Call @func for every chunk of generic memory pool.  The @func is
529 * called with rcu_read_lock held.
530 */
531void gen_pool_for_each_chunk(struct gen_pool *pool,
532	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
533	void *data)
534{
535	struct gen_pool_chunk *chunk;
536
537	rcu_read_lock();
538	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
539		func(pool, chunk, data);
540	rcu_read_unlock();
541}
542EXPORT_SYMBOL(gen_pool_for_each_chunk);
543
544/**
545 * gen_pool_has_addr - checks if an address falls within the range of a pool
546 * @pool:	the generic memory pool
547 * @start:	start address
548 * @size:	size of the region
549 *
550 * Check if the range of addresses falls within the specified pool. Returns
551 * true if the entire range is contained in the pool and false otherwise.
552 */
553bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
554			size_t size)
555{
556	bool found = false;
557	unsigned long end = start + size - 1;
558	struct gen_pool_chunk *chunk;
559
560	rcu_read_lock();
561	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
562		if (start >= chunk->start_addr && start <= chunk->end_addr) {
563			if (end <= chunk->end_addr) {
564				found = true;
565				break;
566			}
567		}
568	}
569	rcu_read_unlock();
570	return found;
571}
572EXPORT_SYMBOL(gen_pool_has_addr);
573
574/**
575 * gen_pool_avail - get available free space of the pool
576 * @pool: pool to get available free space
577 *
578 * Return available free space of the specified pool.
579 */
580size_t gen_pool_avail(struct gen_pool *pool)
581{
582	struct gen_pool_chunk *chunk;
583	size_t avail = 0;
584
585	rcu_read_lock();
586	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
587		avail += atomic_long_read(&chunk->avail);
588	rcu_read_unlock();
589	return avail;
590}
591EXPORT_SYMBOL_GPL(gen_pool_avail);
592
593/**
594 * gen_pool_size - get size in bytes of memory managed by the pool
595 * @pool: pool to get size
596 *
597 * Return size in bytes of memory managed by the pool.
598 */
599size_t gen_pool_size(struct gen_pool *pool)
600{
601	struct gen_pool_chunk *chunk;
602	size_t size = 0;
603
604	rcu_read_lock();
605	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
606		size += chunk_size(chunk);
607	rcu_read_unlock();
608	return size;
609}
610EXPORT_SYMBOL_GPL(gen_pool_size);
611
612/**
613 * gen_pool_set_algo - set the allocation algorithm
614 * @pool: pool to change allocation algorithm
615 * @algo: custom algorithm function
616 * @data: additional data used by @algo
617 *
618 * Call @algo for each memory allocation in the pool.
619 * If @algo is NULL use gen_pool_first_fit as default
620 * memory allocation function.
621 */
622void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
623{
624	rcu_read_lock();
625
626	pool->algo = algo;
627	if (!pool->algo)
628		pool->algo = gen_pool_first_fit;
629
630	pool->data = data;
631
632	rcu_read_unlock();
633}
634EXPORT_SYMBOL(gen_pool_set_algo);
635
636/**
637 * gen_pool_first_fit - find the first available region
638 * of memory matching the size requirement (no alignment constraint)
639 * @map: The address to base the search on
640 * @size: The bitmap size in bits
641 * @start: The bitnumber to start searching at
642 * @nr: The number of zeroed bits we're looking for
643 * @data: additional data - unused
644 * @pool: pool to find the fit region memory from
645 * @start_addr: not used in this function
646 */
647unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
648		unsigned long start, unsigned int nr, void *data,
649		struct gen_pool *pool, unsigned long start_addr)
650{
651	return bitmap_find_next_zero_area(map, size, start, nr, 0);
652}
653EXPORT_SYMBOL(gen_pool_first_fit);
654
655/**
656 * gen_pool_first_fit_align - find the first available region
657 * of memory matching the size requirement (alignment constraint)
658 * @map: The address to base the search on
659 * @size: The bitmap size in bits
660 * @start: The bitnumber to start searching at
661 * @nr: The number of zeroed bits we're looking for
662 * @data: data for alignment
663 * @pool: pool to get order from
664 * @start_addr: start addr of alloction chunk
665 */
666unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
667		unsigned long start, unsigned int nr, void *data,
668		struct gen_pool *pool, unsigned long start_addr)
669{
670	struct genpool_data_align *alignment;
671	unsigned long align_mask, align_off;
672	int order;
673
674	alignment = data;
675	order = pool->min_alloc_order;
676	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
677	align_off = (start_addr & (alignment->align - 1)) >> order;
678
679	return bitmap_find_next_zero_area_off(map, size, start, nr,
680					      align_mask, align_off);
681}
682EXPORT_SYMBOL(gen_pool_first_fit_align);
683
684/**
685 * gen_pool_fixed_alloc - reserve a specific region
686 * @map: The address to base the search on
687 * @size: The bitmap size in bits
688 * @start: The bitnumber to start searching at
689 * @nr: The number of zeroed bits we're looking for
690 * @data: data for alignment
691 * @pool: pool to get order from
692 * @start_addr: not used in this function
693 */
694unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
695		unsigned long start, unsigned int nr, void *data,
696		struct gen_pool *pool, unsigned long start_addr)
697{
698	struct genpool_data_fixed *fixed_data;
699	int order;
700	unsigned long offset_bit;
701	unsigned long start_bit;
702
703	fixed_data = data;
704	order = pool->min_alloc_order;
705	offset_bit = fixed_data->offset >> order;
706	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
707		return size;
708
709	start_bit = bitmap_find_next_zero_area(map, size,
710			start + offset_bit, nr, 0);
711	if (start_bit != offset_bit)
712		start_bit = size;
713	return start_bit;
714}
715EXPORT_SYMBOL(gen_pool_fixed_alloc);
716
717/**
718 * gen_pool_first_fit_order_align - find the first available region
719 * of memory matching the size requirement. The region will be aligned
720 * to the order of the size specified.
721 * @map: The address to base the search on
722 * @size: The bitmap size in bits
723 * @start: The bitnumber to start searching at
724 * @nr: The number of zeroed bits we're looking for
725 * @data: additional data - unused
726 * @pool: pool to find the fit region memory from
727 * @start_addr: not used in this function
728 */
729unsigned long gen_pool_first_fit_order_align(unsigned long *map,
730		unsigned long size, unsigned long start,
731		unsigned int nr, void *data, struct gen_pool *pool,
732		unsigned long start_addr)
733{
734	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
735
736	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
737}
738EXPORT_SYMBOL(gen_pool_first_fit_order_align);
739
740/**
741 * gen_pool_best_fit - find the best fitting region of memory
742 * matching the size requirement (no alignment constraint)
743 * @map: The address to base the search on
744 * @size: The bitmap size in bits
745 * @start: The bitnumber to start searching at
746 * @nr: The number of zeroed bits we're looking for
747 * @data: additional data - unused
748 * @pool: pool to find the fit region memory from
749 * @start_addr: not used in this function
750 *
751 * Iterate over the bitmap to find the smallest free region
752 * which we can allocate the memory.
753 */
754unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
755		unsigned long start, unsigned int nr, void *data,
756		struct gen_pool *pool, unsigned long start_addr)
757{
758	unsigned long start_bit = size;
759	unsigned long len = size + 1;
760	unsigned long index;
761
762	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
763
764	while (index < size) {
765		unsigned long next_bit = find_next_bit(map, size, index + nr);
766		if ((next_bit - index) < len) {
767			len = next_bit - index;
768			start_bit = index;
769			if (len == nr)
770				return start_bit;
771		}
772		index = bitmap_find_next_zero_area(map, size,
773						   next_bit + 1, nr, 0);
774	}
775
776	return start_bit;
777}
778EXPORT_SYMBOL(gen_pool_best_fit);
779
780static void devm_gen_pool_release(struct device *dev, void *res)
781{
782	gen_pool_destroy(*(struct gen_pool **)res);
783}
784
785static int devm_gen_pool_match(struct device *dev, void *res, void *data)
786{
787	struct gen_pool **p = res;
788
789	/* NULL data matches only a pool without an assigned name */
790	if (!data && !(*p)->name)
791		return 1;
792
793	if (!data || !(*p)->name)
794		return 0;
795
796	return !strcmp((*p)->name, data);
797}
798
799/**
800 * gen_pool_get - Obtain the gen_pool (if any) for a device
801 * @dev: device to retrieve the gen_pool from
802 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
803 *
804 * Returns the gen_pool for the device if one is present, or NULL.
805 */
806struct gen_pool *gen_pool_get(struct device *dev, const char *name)
807{
808	struct gen_pool **p;
809
810	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
811			(void *)name);
812	if (!p)
813		return NULL;
814	return *p;
815}
816EXPORT_SYMBOL_GPL(gen_pool_get);
817
818/**
819 * devm_gen_pool_create - managed gen_pool_create
820 * @dev: device that provides the gen_pool
821 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
822 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
823 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
824 *
825 * Create a new special memory pool that can be used to manage special purpose
826 * memory not managed by the regular kmalloc/kfree interface. The pool will be
827 * automatically destroyed by the device management code.
828 */
829struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
830				      int nid, const char *name)
831{
832	struct gen_pool **ptr, *pool;
833	const char *pool_name = NULL;
834
835	/* Check that genpool to be created is uniquely addressed on device */
836	if (gen_pool_get(dev, name))
837		return ERR_PTR(-EINVAL);
838
839	if (name) {
840		pool_name = kstrdup_const(name, GFP_KERNEL);
841		if (!pool_name)
842			return ERR_PTR(-ENOMEM);
843	}
844
845	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
846	if (!ptr)
847		goto free_pool_name;
848
849	pool = gen_pool_create(min_alloc_order, nid);
850	if (!pool)
851		goto free_devres;
852
853	*ptr = pool;
854	pool->name = pool_name;
855	devres_add(dev, ptr);
856
857	return pool;
858
859free_devres:
860	devres_free(ptr);
861free_pool_name:
862	kfree_const(pool_name);
863
864	return ERR_PTR(-ENOMEM);
865}
866EXPORT_SYMBOL(devm_gen_pool_create);
867
868#ifdef CONFIG_OF
869/**
870 * of_gen_pool_get - find a pool by phandle property
871 * @np: device node
872 * @propname: property name containing phandle(s)
873 * @index: index into the phandle array
874 *
875 * Returns the pool that contains the chunk starting at the physical
876 * address of the device tree node pointed at by the phandle property,
877 * or NULL if not found.
878 */
879struct gen_pool *of_gen_pool_get(struct device_node *np,
880	const char *propname, int index)
881{
882	struct platform_device *pdev;
883	struct device_node *np_pool, *parent;
884	const char *name = NULL;
885	struct gen_pool *pool = NULL;
886
887	np_pool = of_parse_phandle(np, propname, index);
888	if (!np_pool)
889		return NULL;
890
891	pdev = of_find_device_by_node(np_pool);
892	if (!pdev) {
893		/* Check if named gen_pool is created by parent node device */
894		parent = of_get_parent(np_pool);
895		pdev = of_find_device_by_node(parent);
896		of_node_put(parent);
897
898		of_property_read_string(np_pool, "label", &name);
899		if (!name)
900			name = np_pool->name;
901	}
902	if (pdev)
903		pool = gen_pool_get(&pdev->dev, name);
904	of_node_put(np_pool);
905
906	return pool;
907}
908EXPORT_SYMBOL_GPL(of_gen_pool_get);
909#endif /* CONFIG_OF */
v4.17
 
  1/*
  2 * Basic general purpose allocator for managing special purpose
  3 * memory, for example, memory that is not managed by the regular
  4 * kmalloc/kfree interface.  Uses for this includes on-device special
  5 * memory, uncached memory etc.
  6 *
  7 * It is safe to use the allocator in NMI handlers and other special
  8 * unblockable contexts that could otherwise deadlock on locks.  This
  9 * is implemented by using atomic operations and retries on any
 10 * conflicts.  The disadvantage is that there may be livelocks in
 11 * extreme cases.  For better scalability, one allocator can be used
 12 * for each CPU.
 13 *
 14 * The lockless operation only works if there is enough memory
 15 * available.  If new memory is added to the pool a lock has to be
 16 * still taken.  So any user relying on locklessness has to ensure
 17 * that sufficient memory is preallocated.
 18 *
 19 * The basic atomic operation of this allocator is cmpxchg on long.
 20 * On architectures that don't have NMI-safe cmpxchg implementation,
 21 * the allocator can NOT be used in NMI handler.  So code uses the
 22 * allocator in NMI handler should depend on
 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 24 *
 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 26 *
 27 * This source code is licensed under the GNU General Public License,
 28 * Version 2.  See the file COPYING for more details.
 29 */
 30
 31#include <linux/slab.h>
 32#include <linux/export.h>
 33#include <linux/bitmap.h>
 34#include <linux/rculist.h>
 35#include <linux/interrupt.h>
 36#include <linux/genalloc.h>
 37#include <linux/of_device.h>
 
 38
 39static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
 40{
 41	return chunk->end_addr - chunk->start_addr + 1;
 42}
 43
 44static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 45{
 46	unsigned long val, nval;
 47
 48	nval = *addr;
 49	do {
 50		val = nval;
 51		if (val & mask_to_set)
 52			return -EBUSY;
 53		cpu_relax();
 54	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 55
 56	return 0;
 57}
 58
 59static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 60{
 61	unsigned long val, nval;
 62
 63	nval = *addr;
 64	do {
 65		val = nval;
 66		if ((val & mask_to_clear) != mask_to_clear)
 67			return -EBUSY;
 68		cpu_relax();
 69	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 70
 71	return 0;
 72}
 73
 74/*
 75 * bitmap_set_ll - set the specified number of bits at the specified position
 76 * @map: pointer to a bitmap
 77 * @start: a bit position in @map
 78 * @nr: number of bits to set
 79 *
 80 * Set @nr bits start from @start in @map lock-lessly. Several users
 81 * can set/clear the same bitmap simultaneously without lock. If two
 82 * users set the same bit, one user will return remain bits, otherwise
 83 * return 0.
 84 */
 85static int bitmap_set_ll(unsigned long *map, int start, int nr)
 
 86{
 87	unsigned long *p = map + BIT_WORD(start);
 88	const int size = start + nr;
 89	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 90	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 91
 92	while (nr - bits_to_set >= 0) {
 93		if (set_bits_ll(p, mask_to_set))
 94			return nr;
 95		nr -= bits_to_set;
 96		bits_to_set = BITS_PER_LONG;
 97		mask_to_set = ~0UL;
 98		p++;
 99	}
100	if (nr) {
101		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102		if (set_bits_ll(p, mask_to_set))
103			return nr;
104	}
105
106	return 0;
107}
108
109/*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
120static int bitmap_clear_ll(unsigned long *map, int start, int nr)
 
121{
122	unsigned long *p = map + BIT_WORD(start);
123	const int size = start + nr;
124	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126
127	while (nr - bits_to_clear >= 0) {
128		if (clear_bits_ll(p, mask_to_clear))
129			return nr;
130		nr -= bits_to_clear;
131		bits_to_clear = BITS_PER_LONG;
132		mask_to_clear = ~0UL;
133		p++;
134	}
135	if (nr) {
136		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137		if (clear_bits_ll(p, mask_to_clear))
138			return nr;
139	}
140
141	return 0;
142}
143
144/**
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
148 *
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
151 */
152struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153{
154	struct gen_pool *pool;
155
156	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157	if (pool != NULL) {
158		spin_lock_init(&pool->lock);
159		INIT_LIST_HEAD(&pool->chunks);
160		pool->min_alloc_order = min_alloc_order;
161		pool->algo = gen_pool_first_fit;
162		pool->data = NULL;
163		pool->name = NULL;
164	}
165	return pool;
166}
167EXPORT_SYMBOL(gen_pool_create);
168
169/**
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 *       allocated on, or -1
 
177 *
178 * Add a new chunk of special memory to the specified pool.
179 *
180 * Returns 0 on success or a -ve errno on failure.
181 */
182int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183		 size_t size, int nid)
184{
185	struct gen_pool_chunk *chunk;
186	int nbits = size >> pool->min_alloc_order;
187	int nbytes = sizeof(struct gen_pool_chunk) +
188				BITS_TO_LONGS(nbits) * sizeof(long);
189
190	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191	if (unlikely(chunk == NULL))
192		return -ENOMEM;
193
194	chunk->phys_addr = phys;
195	chunk->start_addr = virt;
196	chunk->end_addr = virt + size - 1;
 
197	atomic_long_set(&chunk->avail, size);
198
199	spin_lock(&pool->lock);
200	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201	spin_unlock(&pool->lock);
202
203	return 0;
204}
205EXPORT_SYMBOL(gen_pool_add_virt);
206
207/**
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
211 *
212 * Returns the physical address on success, or -1 on error.
213 */
214phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215{
216	struct gen_pool_chunk *chunk;
217	phys_addr_t paddr = -1;
218
219	rcu_read_lock();
220	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223			break;
224		}
225	}
226	rcu_read_unlock();
227
228	return paddr;
229}
230EXPORT_SYMBOL(gen_pool_virt_to_phys);
231
232/**
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
235 *
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
238 */
239void gen_pool_destroy(struct gen_pool *pool)
240{
241	struct list_head *_chunk, *_next_chunk;
242	struct gen_pool_chunk *chunk;
243	int order = pool->min_alloc_order;
244	int bit, end_bit;
245
246	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248		list_del(&chunk->next_chunk);
249
250		end_bit = chunk_size(chunk) >> order;
251		bit = find_next_bit(chunk->bits, end_bit, 0);
252		BUG_ON(bit < end_bit);
253
254		kfree(chunk);
255	}
256	kfree_const(pool->name);
257	kfree(pool);
258}
259EXPORT_SYMBOL(gen_pool_destroy);
260
261/**
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
265 *
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
270 */
271unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272{
273	return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
274}
275EXPORT_SYMBOL(gen_pool_alloc);
276
277/**
278 * gen_pool_alloc_algo - allocate special memory from the pool
279 * @pool: pool to allocate from
280 * @size: number of bytes to allocate from the pool
281 * @algo: algorithm passed from caller
282 * @data: data passed to algorithm
 
283 *
284 * Allocate the requested number of bytes from the specified pool.
285 * Uses the pool allocation function (with first-fit algorithm by default).
286 * Can not be used in NMI handler on architectures without
287 * NMI-safe cmpxchg implementation.
288 */
289unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
290		genpool_algo_t algo, void *data)
291{
292	struct gen_pool_chunk *chunk;
293	unsigned long addr = 0;
294	int order = pool->min_alloc_order;
295	int nbits, start_bit, end_bit, remain;
296
297#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
298	BUG_ON(in_nmi());
299#endif
300
 
 
 
301	if (size == 0)
302		return 0;
303
304	nbits = (size + (1UL << order) - 1) >> order;
305	rcu_read_lock();
306	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
307		if (size > atomic_long_read(&chunk->avail))
308			continue;
309
310		start_bit = 0;
311		end_bit = chunk_size(chunk) >> order;
312retry:
313		start_bit = algo(chunk->bits, end_bit, start_bit,
314				 nbits, data, pool);
315		if (start_bit >= end_bit)
316			continue;
317		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
318		if (remain) {
319			remain = bitmap_clear_ll(chunk->bits, start_bit,
320						 nbits - remain);
321			BUG_ON(remain);
322			goto retry;
323		}
324
325		addr = chunk->start_addr + ((unsigned long)start_bit << order);
326		size = nbits << order;
327		atomic_long_sub(size, &chunk->avail);
 
 
328		break;
329	}
330	rcu_read_unlock();
331	return addr;
332}
333EXPORT_SYMBOL(gen_pool_alloc_algo);
334
335/**
336 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
337 * @pool: pool to allocate from
338 * @size: number of bytes to allocate from the pool
339 * @dma: dma-view physical address return value.  Use NULL if unneeded.
340 *
341 * Allocate the requested number of bytes from the specified pool.
342 * Uses the pool allocation function (with first-fit algorithm by default).
343 * Can not be used in NMI handler on architectures without
344 * NMI-safe cmpxchg implementation.
 
 
345 */
346void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
347{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348	unsigned long vaddr;
349
350	if (!pool)
351		return NULL;
352
353	vaddr = gen_pool_alloc(pool, size);
354	if (!vaddr)
355		return NULL;
356
357	if (dma)
358		*dma = gen_pool_virt_to_phys(pool, vaddr);
359
360	return (void *)vaddr;
361}
362EXPORT_SYMBOL(gen_pool_dma_alloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
364/**
365 * gen_pool_free - free allocated special memory back to the pool
366 * @pool: pool to free to
367 * @addr: starting address of memory to free back to pool
368 * @size: size in bytes of memory to free
 
369 *
370 * Free previously allocated special memory back to the specified
371 * pool.  Can not be used in NMI handler on architectures without
372 * NMI-safe cmpxchg implementation.
373 */
374void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
 
375{
376	struct gen_pool_chunk *chunk;
377	int order = pool->min_alloc_order;
378	int start_bit, nbits, remain;
379
380#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
381	BUG_ON(in_nmi());
382#endif
383
 
 
 
384	nbits = (size + (1UL << order) - 1) >> order;
385	rcu_read_lock();
386	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
387		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
388			BUG_ON(addr + size - 1 > chunk->end_addr);
389			start_bit = (addr - chunk->start_addr) >> order;
390			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
391			BUG_ON(remain);
392			size = nbits << order;
393			atomic_long_add(size, &chunk->avail);
 
 
394			rcu_read_unlock();
395			return;
396		}
397	}
398	rcu_read_unlock();
399	BUG();
400}
401EXPORT_SYMBOL(gen_pool_free);
402
403/**
404 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
405 * @pool:	the generic memory pool
406 * @func:	func to call
407 * @data:	additional data used by @func
408 *
409 * Call @func for every chunk of generic memory pool.  The @func is
410 * called with rcu_read_lock held.
411 */
412void gen_pool_for_each_chunk(struct gen_pool *pool,
413	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
414	void *data)
415{
416	struct gen_pool_chunk *chunk;
417
418	rcu_read_lock();
419	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
420		func(pool, chunk, data);
421	rcu_read_unlock();
422}
423EXPORT_SYMBOL(gen_pool_for_each_chunk);
424
425/**
426 * addr_in_gen_pool - checks if an address falls within the range of a pool
427 * @pool:	the generic memory pool
428 * @start:	start address
429 * @size:	size of the region
430 *
431 * Check if the range of addresses falls within the specified pool. Returns
432 * true if the entire range is contained in the pool and false otherwise.
433 */
434bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
435			size_t size)
436{
437	bool found = false;
438	unsigned long end = start + size - 1;
439	struct gen_pool_chunk *chunk;
440
441	rcu_read_lock();
442	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
443		if (start >= chunk->start_addr && start <= chunk->end_addr) {
444			if (end <= chunk->end_addr) {
445				found = true;
446				break;
447			}
448		}
449	}
450	rcu_read_unlock();
451	return found;
452}
 
453
454/**
455 * gen_pool_avail - get available free space of the pool
456 * @pool: pool to get available free space
457 *
458 * Return available free space of the specified pool.
459 */
460size_t gen_pool_avail(struct gen_pool *pool)
461{
462	struct gen_pool_chunk *chunk;
463	size_t avail = 0;
464
465	rcu_read_lock();
466	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
467		avail += atomic_long_read(&chunk->avail);
468	rcu_read_unlock();
469	return avail;
470}
471EXPORT_SYMBOL_GPL(gen_pool_avail);
472
473/**
474 * gen_pool_size - get size in bytes of memory managed by the pool
475 * @pool: pool to get size
476 *
477 * Return size in bytes of memory managed by the pool.
478 */
479size_t gen_pool_size(struct gen_pool *pool)
480{
481	struct gen_pool_chunk *chunk;
482	size_t size = 0;
483
484	rcu_read_lock();
485	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
486		size += chunk_size(chunk);
487	rcu_read_unlock();
488	return size;
489}
490EXPORT_SYMBOL_GPL(gen_pool_size);
491
492/**
493 * gen_pool_set_algo - set the allocation algorithm
494 * @pool: pool to change allocation algorithm
495 * @algo: custom algorithm function
496 * @data: additional data used by @algo
497 *
498 * Call @algo for each memory allocation in the pool.
499 * If @algo is NULL use gen_pool_first_fit as default
500 * memory allocation function.
501 */
502void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
503{
504	rcu_read_lock();
505
506	pool->algo = algo;
507	if (!pool->algo)
508		pool->algo = gen_pool_first_fit;
509
510	pool->data = data;
511
512	rcu_read_unlock();
513}
514EXPORT_SYMBOL(gen_pool_set_algo);
515
516/**
517 * gen_pool_first_fit - find the first available region
518 * of memory matching the size requirement (no alignment constraint)
519 * @map: The address to base the search on
520 * @size: The bitmap size in bits
521 * @start: The bitnumber to start searching at
522 * @nr: The number of zeroed bits we're looking for
523 * @data: additional data - unused
524 * @pool: pool to find the fit region memory from
 
525 */
526unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
527		unsigned long start, unsigned int nr, void *data,
528		struct gen_pool *pool)
529{
530	return bitmap_find_next_zero_area(map, size, start, nr, 0);
531}
532EXPORT_SYMBOL(gen_pool_first_fit);
533
534/**
535 * gen_pool_first_fit_align - find the first available region
536 * of memory matching the size requirement (alignment constraint)
537 * @map: The address to base the search on
538 * @size: The bitmap size in bits
539 * @start: The bitnumber to start searching at
540 * @nr: The number of zeroed bits we're looking for
541 * @data: data for alignment
542 * @pool: pool to get order from
 
543 */
544unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
545		unsigned long start, unsigned int nr, void *data,
546		struct gen_pool *pool)
547{
548	struct genpool_data_align *alignment;
549	unsigned long align_mask;
550	int order;
551
552	alignment = data;
553	order = pool->min_alloc_order;
554	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
555	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
 
 
 
556}
557EXPORT_SYMBOL(gen_pool_first_fit_align);
558
559/**
560 * gen_pool_fixed_alloc - reserve a specific region
561 * @map: The address to base the search on
562 * @size: The bitmap size in bits
563 * @start: The bitnumber to start searching at
564 * @nr: The number of zeroed bits we're looking for
565 * @data: data for alignment
566 * @pool: pool to get order from
 
567 */
568unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
569		unsigned long start, unsigned int nr, void *data,
570		struct gen_pool *pool)
571{
572	struct genpool_data_fixed *fixed_data;
573	int order;
574	unsigned long offset_bit;
575	unsigned long start_bit;
576
577	fixed_data = data;
578	order = pool->min_alloc_order;
579	offset_bit = fixed_data->offset >> order;
580	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
581		return size;
582
583	start_bit = bitmap_find_next_zero_area(map, size,
584			start + offset_bit, nr, 0);
585	if (start_bit != offset_bit)
586		start_bit = size;
587	return start_bit;
588}
589EXPORT_SYMBOL(gen_pool_fixed_alloc);
590
591/**
592 * gen_pool_first_fit_order_align - find the first available region
593 * of memory matching the size requirement. The region will be aligned
594 * to the order of the size specified.
595 * @map: The address to base the search on
596 * @size: The bitmap size in bits
597 * @start: The bitnumber to start searching at
598 * @nr: The number of zeroed bits we're looking for
599 * @data: additional data - unused
600 * @pool: pool to find the fit region memory from
 
601 */
602unsigned long gen_pool_first_fit_order_align(unsigned long *map,
603		unsigned long size, unsigned long start,
604		unsigned int nr, void *data, struct gen_pool *pool)
 
605{
606	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
607
608	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
609}
610EXPORT_SYMBOL(gen_pool_first_fit_order_align);
611
612/**
613 * gen_pool_best_fit - find the best fitting region of memory
614 * macthing the size requirement (no alignment constraint)
615 * @map: The address to base the search on
616 * @size: The bitmap size in bits
617 * @start: The bitnumber to start searching at
618 * @nr: The number of zeroed bits we're looking for
619 * @data: additional data - unused
620 * @pool: pool to find the fit region memory from
 
621 *
622 * Iterate over the bitmap to find the smallest free region
623 * which we can allocate the memory.
624 */
625unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
626		unsigned long start, unsigned int nr, void *data,
627		struct gen_pool *pool)
628{
629	unsigned long start_bit = size;
630	unsigned long len = size + 1;
631	unsigned long index;
632
633	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
634
635	while (index < size) {
636		int next_bit = find_next_bit(map, size, index + nr);
637		if ((next_bit - index) < len) {
638			len = next_bit - index;
639			start_bit = index;
640			if (len == nr)
641				return start_bit;
642		}
643		index = bitmap_find_next_zero_area(map, size,
644						   next_bit + 1, nr, 0);
645	}
646
647	return start_bit;
648}
649EXPORT_SYMBOL(gen_pool_best_fit);
650
651static void devm_gen_pool_release(struct device *dev, void *res)
652{
653	gen_pool_destroy(*(struct gen_pool **)res);
654}
655
656static int devm_gen_pool_match(struct device *dev, void *res, void *data)
657{
658	struct gen_pool **p = res;
659
660	/* NULL data matches only a pool without an assigned name */
661	if (!data && !(*p)->name)
662		return 1;
663
664	if (!data || !(*p)->name)
665		return 0;
666
667	return !strcmp((*p)->name, data);
668}
669
670/**
671 * gen_pool_get - Obtain the gen_pool (if any) for a device
672 * @dev: device to retrieve the gen_pool from
673 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
674 *
675 * Returns the gen_pool for the device if one is present, or NULL.
676 */
677struct gen_pool *gen_pool_get(struct device *dev, const char *name)
678{
679	struct gen_pool **p;
680
681	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
682			(void *)name);
683	if (!p)
684		return NULL;
685	return *p;
686}
687EXPORT_SYMBOL_GPL(gen_pool_get);
688
689/**
690 * devm_gen_pool_create - managed gen_pool_create
691 * @dev: device that provides the gen_pool
692 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
693 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
694 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
695 *
696 * Create a new special memory pool that can be used to manage special purpose
697 * memory not managed by the regular kmalloc/kfree interface. The pool will be
698 * automatically destroyed by the device management code.
699 */
700struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
701				      int nid, const char *name)
702{
703	struct gen_pool **ptr, *pool;
704	const char *pool_name = NULL;
705
706	/* Check that genpool to be created is uniquely addressed on device */
707	if (gen_pool_get(dev, name))
708		return ERR_PTR(-EINVAL);
709
710	if (name) {
711		pool_name = kstrdup_const(name, GFP_KERNEL);
712		if (!pool_name)
713			return ERR_PTR(-ENOMEM);
714	}
715
716	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
717	if (!ptr)
718		goto free_pool_name;
719
720	pool = gen_pool_create(min_alloc_order, nid);
721	if (!pool)
722		goto free_devres;
723
724	*ptr = pool;
725	pool->name = pool_name;
726	devres_add(dev, ptr);
727
728	return pool;
729
730free_devres:
731	devres_free(ptr);
732free_pool_name:
733	kfree_const(pool_name);
734
735	return ERR_PTR(-ENOMEM);
736}
737EXPORT_SYMBOL(devm_gen_pool_create);
738
739#ifdef CONFIG_OF
740/**
741 * of_gen_pool_get - find a pool by phandle property
742 * @np: device node
743 * @propname: property name containing phandle(s)
744 * @index: index into the phandle array
745 *
746 * Returns the pool that contains the chunk starting at the physical
747 * address of the device tree node pointed at by the phandle property,
748 * or NULL if not found.
749 */
750struct gen_pool *of_gen_pool_get(struct device_node *np,
751	const char *propname, int index)
752{
753	struct platform_device *pdev;
754	struct device_node *np_pool, *parent;
755	const char *name = NULL;
756	struct gen_pool *pool = NULL;
757
758	np_pool = of_parse_phandle(np, propname, index);
759	if (!np_pool)
760		return NULL;
761
762	pdev = of_find_device_by_node(np_pool);
763	if (!pdev) {
764		/* Check if named gen_pool is created by parent node device */
765		parent = of_get_parent(np_pool);
766		pdev = of_find_device_by_node(parent);
767		of_node_put(parent);
768
769		of_property_read_string(np_pool, "label", &name);
770		if (!name)
771			name = np_pool->name;
772	}
773	if (pdev)
774		pool = gen_pool_get(&pdev->dev, name);
775	of_node_put(np_pool);
776
777	return pool;
778}
779EXPORT_SYMBOL_GPL(of_gen_pool_get);
780#endif /* CONFIG_OF */