Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic waiting primitives.
  4 *
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 */
  7#include "sched.h"
  8
  9void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
 10{
 11	spin_lock_init(&wq_head->lock);
 12	lockdep_set_class_and_name(&wq_head->lock, key, name);
 13	INIT_LIST_HEAD(&wq_head->head);
 14}
 15
 16EXPORT_SYMBOL(__init_waitqueue_head);
 17
 18void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 19{
 20	unsigned long flags;
 21
 22	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 23	spin_lock_irqsave(&wq_head->lock, flags);
 24	__add_wait_queue(wq_head, wq_entry);
 25	spin_unlock_irqrestore(&wq_head->lock, flags);
 26}
 27EXPORT_SYMBOL(add_wait_queue);
 28
 29void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 30{
 31	unsigned long flags;
 32
 33	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 34	spin_lock_irqsave(&wq_head->lock, flags);
 35	__add_wait_queue_entry_tail(wq_head, wq_entry);
 36	spin_unlock_irqrestore(&wq_head->lock, flags);
 37}
 38EXPORT_SYMBOL(add_wait_queue_exclusive);
 39
 40void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 41{
 42	unsigned long flags;
 43
 44	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
 45	spin_lock_irqsave(&wq_head->lock, flags);
 46	__add_wait_queue(wq_head, wq_entry);
 47	spin_unlock_irqrestore(&wq_head->lock, flags);
 48}
 49EXPORT_SYMBOL_GPL(add_wait_queue_priority);
 50
 51void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 52{
 53	unsigned long flags;
 54
 55	spin_lock_irqsave(&wq_head->lock, flags);
 56	__remove_wait_queue(wq_head, wq_entry);
 57	spin_unlock_irqrestore(&wq_head->lock, flags);
 58}
 59EXPORT_SYMBOL(remove_wait_queue);
 60
 61/*
 62 * Scan threshold to break wait queue walk.
 63 * This allows a waker to take a break from holding the
 64 * wait queue lock during the wait queue walk.
 65 */
 66#define WAITQUEUE_WALK_BREAK_CNT 64
 67
 68/*
 69 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 70 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 71 * number) then we wake that number of exclusive tasks, and potentially all
 72 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
 73 * the list and any non-exclusive tasks will be woken first. A priority task
 74 * may be at the head of the list, and can consume the event without any other
 75 * tasks being woken.
 76 *
 77 * There are circumstances in which we can try to wake a task which has already
 78 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 79 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 80 */
 81static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 82			int nr_exclusive, int wake_flags, void *key,
 83			wait_queue_entry_t *bookmark)
 84{
 85	wait_queue_entry_t *curr, *next;
 86	int cnt = 0;
 87
 88	lockdep_assert_held(&wq_head->lock);
 89
 90	if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
 91		curr = list_next_entry(bookmark, entry);
 92
 93		list_del(&bookmark->entry);
 94		bookmark->flags = 0;
 95	} else
 96		curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 97
 98	if (&curr->entry == &wq_head->head)
 99		return nr_exclusive;
100
101	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
102		unsigned flags = curr->flags;
103		int ret;
104
105		if (flags & WQ_FLAG_BOOKMARK)
106			continue;
107
108		ret = curr->func(curr, mode, wake_flags, key);
109		if (ret < 0)
110			break;
111		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
112			break;
113
114		if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
115				(&next->entry != &wq_head->head)) {
116			bookmark->flags = WQ_FLAG_BOOKMARK;
117			list_add_tail(&bookmark->entry, &next->entry);
118			break;
119		}
120	}
121
122	return nr_exclusive;
123}
124
125static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
126			int nr_exclusive, int wake_flags, void *key)
127{
128	unsigned long flags;
129	wait_queue_entry_t bookmark;
130
131	bookmark.flags = 0;
132	bookmark.private = NULL;
133	bookmark.func = NULL;
134	INIT_LIST_HEAD(&bookmark.entry);
135
136	do {
 
 
 
 
137		spin_lock_irqsave(&wq_head->lock, flags);
138		nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
139						wake_flags, key, &bookmark);
140		spin_unlock_irqrestore(&wq_head->lock, flags);
141	} while (bookmark.flags & WQ_FLAG_BOOKMARK);
142}
143
144/**
145 * __wake_up - wake up threads blocked on a waitqueue.
146 * @wq_head: the waitqueue
147 * @mode: which threads
148 * @nr_exclusive: how many wake-one or wake-many threads to wake up
149 * @key: is directly passed to the wakeup function
150 *
151 * If this function wakes up a task, it executes a full memory barrier before
152 * accessing the task state.
153 */
154void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
155			int nr_exclusive, void *key)
156{
157	__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
158}
159EXPORT_SYMBOL(__wake_up);
160
161/*
162 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
163 */
164void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
165{
166	__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
167}
168EXPORT_SYMBOL_GPL(__wake_up_locked);
169
170void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
171{
172	__wake_up_common(wq_head, mode, 1, 0, key, NULL);
173}
174EXPORT_SYMBOL_GPL(__wake_up_locked_key);
175
176void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
177		unsigned int mode, void *key, wait_queue_entry_t *bookmark)
178{
179	__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
180}
181EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
182
183/**
184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
185 * @wq_head: the waitqueue
186 * @mode: which threads
 
187 * @key: opaque value to be passed to wakeup targets
188 *
189 * The sync wakeup differs that the waker knows that it will schedule
190 * away soon, so while the target thread will be woken up, it will not
191 * be migrated to another CPU - ie. the two threads are 'synchronized'
192 * with each other. This can prevent needless bouncing between CPUs.
193 *
194 * On UP it can prevent extra preemption.
195 *
196 * If this function wakes up a task, it executes a full memory barrier before
197 * accessing the task state.
198 */
199void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
200			void *key)
201{
 
 
202	if (unlikely(!wq_head))
203		return;
204
205	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
206}
207EXPORT_SYMBOL_GPL(__wake_up_sync_key);
208
209/**
210 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
211 * @wq_head: the waitqueue
212 * @mode: which threads
213 * @key: opaque value to be passed to wakeup targets
214 *
215 * The sync wakeup differs in that the waker knows that it will schedule
216 * away soon, so while the target thread will be woken up, it will not
217 * be migrated to another CPU - ie. the two threads are 'synchronized'
218 * with each other. This can prevent needless bouncing between CPUs.
219 *
220 * On UP it can prevent extra preemption.
221 *
222 * If this function wakes up a task, it executes a full memory barrier before
223 * accessing the task state.
224 */
225void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
226			       unsigned int mode, void *key)
227{
228        __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL);
229}
230EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
231
232/*
233 * __wake_up_sync - see __wake_up_sync_key()
234 */
235void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
236{
237	__wake_up_sync_key(wq_head, mode, NULL);
238}
239EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
240
241/*
242 * Note: we use "set_current_state()" _after_ the wait-queue add,
243 * because we need a memory barrier there on SMP, so that any
244 * wake-function that tests for the wait-queue being active
245 * will be guaranteed to see waitqueue addition _or_ subsequent
246 * tests in this thread will see the wakeup having taken place.
247 *
248 * The spin_unlock() itself is semi-permeable and only protects
249 * one way (it only protects stuff inside the critical region and
250 * stops them from bleeding out - it would still allow subsequent
251 * loads to move into the critical region).
252 */
253void
254prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
255{
256	unsigned long flags;
257
258	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
259	spin_lock_irqsave(&wq_head->lock, flags);
260	if (list_empty(&wq_entry->entry))
261		__add_wait_queue(wq_head, wq_entry);
262	set_current_state(state);
263	spin_unlock_irqrestore(&wq_head->lock, flags);
264}
265EXPORT_SYMBOL(prepare_to_wait);
266
267/* Returns true if we are the first waiter in the queue, false otherwise. */
268bool
269prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
270{
271	unsigned long flags;
272	bool was_empty = false;
273
274	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
275	spin_lock_irqsave(&wq_head->lock, flags);
276	if (list_empty(&wq_entry->entry)) {
277		was_empty = list_empty(&wq_head->head);
278		__add_wait_queue_entry_tail(wq_head, wq_entry);
279	}
280	set_current_state(state);
281	spin_unlock_irqrestore(&wq_head->lock, flags);
282	return was_empty;
283}
284EXPORT_SYMBOL(prepare_to_wait_exclusive);
285
286void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
287{
288	wq_entry->flags = flags;
289	wq_entry->private = current;
290	wq_entry->func = autoremove_wake_function;
291	INIT_LIST_HEAD(&wq_entry->entry);
292}
293EXPORT_SYMBOL(init_wait_entry);
294
295long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
296{
297	unsigned long flags;
298	long ret = 0;
299
300	spin_lock_irqsave(&wq_head->lock, flags);
301	if (signal_pending_state(state, current)) {
302		/*
303		 * Exclusive waiter must not fail if it was selected by wakeup,
304		 * it should "consume" the condition we were waiting for.
305		 *
306		 * The caller will recheck the condition and return success if
307		 * we were already woken up, we can not miss the event because
308		 * wakeup locks/unlocks the same wq_head->lock.
309		 *
310		 * But we need to ensure that set-condition + wakeup after that
311		 * can't see us, it should wake up another exclusive waiter if
312		 * we fail.
313		 */
314		list_del_init(&wq_entry->entry);
315		ret = -ERESTARTSYS;
316	} else {
317		if (list_empty(&wq_entry->entry)) {
318			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
319				__add_wait_queue_entry_tail(wq_head, wq_entry);
320			else
321				__add_wait_queue(wq_head, wq_entry);
322		}
323		set_current_state(state);
324	}
325	spin_unlock_irqrestore(&wq_head->lock, flags);
326
327	return ret;
328}
329EXPORT_SYMBOL(prepare_to_wait_event);
330
331/*
332 * Note! These two wait functions are entered with the
333 * wait-queue lock held (and interrupts off in the _irq
334 * case), so there is no race with testing the wakeup
335 * condition in the caller before they add the wait
336 * entry to the wake queue.
337 */
338int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
339{
340	if (likely(list_empty(&wait->entry)))
341		__add_wait_queue_entry_tail(wq, wait);
342
343	set_current_state(TASK_INTERRUPTIBLE);
344	if (signal_pending(current))
345		return -ERESTARTSYS;
346
347	spin_unlock(&wq->lock);
348	schedule();
349	spin_lock(&wq->lock);
350
351	return 0;
352}
353EXPORT_SYMBOL(do_wait_intr);
354
355int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
356{
357	if (likely(list_empty(&wait->entry)))
358		__add_wait_queue_entry_tail(wq, wait);
359
360	set_current_state(TASK_INTERRUPTIBLE);
361	if (signal_pending(current))
362		return -ERESTARTSYS;
363
364	spin_unlock_irq(&wq->lock);
365	schedule();
366	spin_lock_irq(&wq->lock);
367
368	return 0;
369}
370EXPORT_SYMBOL(do_wait_intr_irq);
371
372/**
373 * finish_wait - clean up after waiting in a queue
374 * @wq_head: waitqueue waited on
375 * @wq_entry: wait descriptor
376 *
377 * Sets current thread back to running state and removes
378 * the wait descriptor from the given waitqueue if still
379 * queued.
380 */
381void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
382{
383	unsigned long flags;
384
385	__set_current_state(TASK_RUNNING);
386	/*
387	 * We can check for list emptiness outside the lock
388	 * IFF:
389	 *  - we use the "careful" check that verifies both
390	 *    the next and prev pointers, so that there cannot
391	 *    be any half-pending updates in progress on other
392	 *    CPU's that we haven't seen yet (and that might
393	 *    still change the stack area.
394	 * and
395	 *  - all other users take the lock (ie we can only
396	 *    have _one_ other CPU that looks at or modifies
397	 *    the list).
398	 */
399	if (!list_empty_careful(&wq_entry->entry)) {
400		spin_lock_irqsave(&wq_head->lock, flags);
401		list_del_init(&wq_entry->entry);
402		spin_unlock_irqrestore(&wq_head->lock, flags);
403	}
404}
405EXPORT_SYMBOL(finish_wait);
406
407int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
408{
409	int ret = default_wake_function(wq_entry, mode, sync, key);
410
411	if (ret)
412		list_del_init_careful(&wq_entry->entry);
413
414	return ret;
415}
416EXPORT_SYMBOL(autoremove_wake_function);
417
418static inline bool is_kthread_should_stop(void)
419{
420	return (current->flags & PF_KTHREAD) && kthread_should_stop();
421}
422
423/*
424 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
425 *
426 * add_wait_queue(&wq_head, &wait);
427 * for (;;) {
428 *     if (condition)
429 *         break;
430 *
431 *     // in wait_woken()			// in woken_wake_function()
 
 
 
 
 
 
 
 
 
432 *
433 *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
434 *     smp_mb(); // A				try_to_wake_up():
435 *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
436 *         schedule()				   if (p->state & mode)
437 *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
438 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
439 *     smp_mb(); // B				condition = true;
440 * }						smp_mb(); // C
441 * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
442 */
443long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
444{
 
445	/*
446	 * The below executes an smp_mb(), which matches with the full barrier
447	 * executed by the try_to_wake_up() in woken_wake_function() such that
448	 * either we see the store to wq_entry->flags in woken_wake_function()
449	 * or woken_wake_function() sees our store to current->state.
450	 */
451	set_current_state(mode); /* A */
452	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
453		timeout = schedule_timeout(timeout);
454	__set_current_state(TASK_RUNNING);
455
456	/*
457	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
458	 * in woken_wake_function() such that either we see the wait condition
459	 * being true or the store to wq_entry->flags in woken_wake_function()
460	 * follows ours in the coherence order.
461	 */
462	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
463
464	return timeout;
465}
466EXPORT_SYMBOL(wait_woken);
467
468int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
469{
470	/* Pairs with the smp_store_mb() in wait_woken(). */
471	smp_mb(); /* C */
 
 
 
 
 
 
472	wq_entry->flags |= WQ_FLAG_WOKEN;
473
474	return default_wake_function(wq_entry, mode, sync, key);
475}
476EXPORT_SYMBOL(woken_wake_function);
v4.17
 
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include "sched.h"
  7
  8void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
  9{
 10	spin_lock_init(&wq_head->lock);
 11	lockdep_set_class_and_name(&wq_head->lock, key, name);
 12	INIT_LIST_HEAD(&wq_head->head);
 13}
 14
 15EXPORT_SYMBOL(__init_waitqueue_head);
 16
 17void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 18{
 19	unsigned long flags;
 20
 21	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 22	spin_lock_irqsave(&wq_head->lock, flags);
 23	__add_wait_queue(wq_head, wq_entry);
 24	spin_unlock_irqrestore(&wq_head->lock, flags);
 25}
 26EXPORT_SYMBOL(add_wait_queue);
 27
 28void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 29{
 30	unsigned long flags;
 31
 32	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 33	spin_lock_irqsave(&wq_head->lock, flags);
 34	__add_wait_queue_entry_tail(wq_head, wq_entry);
 35	spin_unlock_irqrestore(&wq_head->lock, flags);
 36}
 37EXPORT_SYMBOL(add_wait_queue_exclusive);
 38
 
 
 
 
 
 
 
 
 
 
 
 39void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 40{
 41	unsigned long flags;
 42
 43	spin_lock_irqsave(&wq_head->lock, flags);
 44	__remove_wait_queue(wq_head, wq_entry);
 45	spin_unlock_irqrestore(&wq_head->lock, flags);
 46}
 47EXPORT_SYMBOL(remove_wait_queue);
 48
 49/*
 50 * Scan threshold to break wait queue walk.
 51 * This allows a waker to take a break from holding the
 52 * wait queue lock during the wait queue walk.
 53 */
 54#define WAITQUEUE_WALK_BREAK_CNT 64
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 
 
 
 
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key,
 67			wait_queue_entry_t *bookmark)
 68{
 69	wait_queue_entry_t *curr, *next;
 70	int cnt = 0;
 71
 
 
 72	if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
 73		curr = list_next_entry(bookmark, entry);
 74
 75		list_del(&bookmark->entry);
 76		bookmark->flags = 0;
 77	} else
 78		curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 79
 80	if (&curr->entry == &wq_head->head)
 81		return nr_exclusive;
 82
 83	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
 84		unsigned flags = curr->flags;
 85		int ret;
 86
 87		if (flags & WQ_FLAG_BOOKMARK)
 88			continue;
 89
 90		ret = curr->func(curr, mode, wake_flags, key);
 91		if (ret < 0)
 92			break;
 93		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 94			break;
 95
 96		if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
 97				(&next->entry != &wq_head->head)) {
 98			bookmark->flags = WQ_FLAG_BOOKMARK;
 99			list_add_tail(&bookmark->entry, &next->entry);
100			break;
101		}
102	}
103
104	return nr_exclusive;
105}
106
107static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
108			int nr_exclusive, int wake_flags, void *key)
109{
110	unsigned long flags;
111	wait_queue_entry_t bookmark;
112
113	bookmark.flags = 0;
114	bookmark.private = NULL;
115	bookmark.func = NULL;
116	INIT_LIST_HEAD(&bookmark.entry);
117
118	spin_lock_irqsave(&wq_head->lock, flags);
119	nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key, &bookmark);
120	spin_unlock_irqrestore(&wq_head->lock, flags);
121
122	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
123		spin_lock_irqsave(&wq_head->lock, flags);
124		nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
125						wake_flags, key, &bookmark);
126		spin_unlock_irqrestore(&wq_head->lock, flags);
127	}
128}
129
130/**
131 * __wake_up - wake up threads blocked on a waitqueue.
132 * @wq_head: the waitqueue
133 * @mode: which threads
134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
135 * @key: is directly passed to the wakeup function
136 *
137 * It may be assumed that this function implies a write memory barrier before
138 * changing the task state if and only if any tasks are woken up.
139 */
140void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
141			int nr_exclusive, void *key)
142{
143	__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
144}
145EXPORT_SYMBOL(__wake_up);
146
147/*
148 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
149 */
150void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
151{
152	__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
153}
154EXPORT_SYMBOL_GPL(__wake_up_locked);
155
156void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
157{
158	__wake_up_common(wq_head, mode, 1, 0, key, NULL);
159}
160EXPORT_SYMBOL_GPL(__wake_up_locked_key);
161
162void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
163		unsigned int mode, void *key, wait_queue_entry_t *bookmark)
164{
165	__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
166}
167EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
168
169/**
170 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
171 * @wq_head: the waitqueue
172 * @mode: which threads
173 * @nr_exclusive: how many wake-one or wake-many threads to wake up
174 * @key: opaque value to be passed to wakeup targets
175 *
176 * The sync wakeup differs that the waker knows that it will schedule
177 * away soon, so while the target thread will be woken up, it will not
178 * be migrated to another CPU - ie. the two threads are 'synchronized'
179 * with each other. This can prevent needless bouncing between CPUs.
180 *
181 * On UP it can prevent extra preemption.
182 *
183 * It may be assumed that this function implies a write memory barrier before
184 * changing the task state if and only if any tasks are woken up.
185 */
186void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
187			int nr_exclusive, void *key)
188{
189	int wake_flags = 1; /* XXX WF_SYNC */
190
191	if (unlikely(!wq_head))
192		return;
193
194	if (unlikely(nr_exclusive != 1))
195		wake_flags = 0;
 
196
197	__wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198}
199EXPORT_SYMBOL_GPL(__wake_up_sync_key);
200
201/*
202 * __wake_up_sync - see __wake_up_sync_key()
203 */
204void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive)
205{
206	__wake_up_sync_key(wq_head, mode, nr_exclusive, NULL);
207}
208EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
209
210/*
211 * Note: we use "set_current_state()" _after_ the wait-queue add,
212 * because we need a memory barrier there on SMP, so that any
213 * wake-function that tests for the wait-queue being active
214 * will be guaranteed to see waitqueue addition _or_ subsequent
215 * tests in this thread will see the wakeup having taken place.
216 *
217 * The spin_unlock() itself is semi-permeable and only protects
218 * one way (it only protects stuff inside the critical region and
219 * stops them from bleeding out - it would still allow subsequent
220 * loads to move into the critical region).
221 */
222void
223prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
224{
225	unsigned long flags;
226
227	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
228	spin_lock_irqsave(&wq_head->lock, flags);
229	if (list_empty(&wq_entry->entry))
230		__add_wait_queue(wq_head, wq_entry);
231	set_current_state(state);
232	spin_unlock_irqrestore(&wq_head->lock, flags);
233}
234EXPORT_SYMBOL(prepare_to_wait);
235
236void
 
237prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
238{
239	unsigned long flags;
 
240
241	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
242	spin_lock_irqsave(&wq_head->lock, flags);
243	if (list_empty(&wq_entry->entry))
 
244		__add_wait_queue_entry_tail(wq_head, wq_entry);
 
245	set_current_state(state);
246	spin_unlock_irqrestore(&wq_head->lock, flags);
 
247}
248EXPORT_SYMBOL(prepare_to_wait_exclusive);
249
250void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
251{
252	wq_entry->flags = flags;
253	wq_entry->private = current;
254	wq_entry->func = autoremove_wake_function;
255	INIT_LIST_HEAD(&wq_entry->entry);
256}
257EXPORT_SYMBOL(init_wait_entry);
258
259long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
260{
261	unsigned long flags;
262	long ret = 0;
263
264	spin_lock_irqsave(&wq_head->lock, flags);
265	if (unlikely(signal_pending_state(state, current))) {
266		/*
267		 * Exclusive waiter must not fail if it was selected by wakeup,
268		 * it should "consume" the condition we were waiting for.
269		 *
270		 * The caller will recheck the condition and return success if
271		 * we were already woken up, we can not miss the event because
272		 * wakeup locks/unlocks the same wq_head->lock.
273		 *
274		 * But we need to ensure that set-condition + wakeup after that
275		 * can't see us, it should wake up another exclusive waiter if
276		 * we fail.
277		 */
278		list_del_init(&wq_entry->entry);
279		ret = -ERESTARTSYS;
280	} else {
281		if (list_empty(&wq_entry->entry)) {
282			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
283				__add_wait_queue_entry_tail(wq_head, wq_entry);
284			else
285				__add_wait_queue(wq_head, wq_entry);
286		}
287		set_current_state(state);
288	}
289	spin_unlock_irqrestore(&wq_head->lock, flags);
290
291	return ret;
292}
293EXPORT_SYMBOL(prepare_to_wait_event);
294
295/*
296 * Note! These two wait functions are entered with the
297 * wait-queue lock held (and interrupts off in the _irq
298 * case), so there is no race with testing the wakeup
299 * condition in the caller before they add the wait
300 * entry to the wake queue.
301 */
302int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
303{
304	if (likely(list_empty(&wait->entry)))
305		__add_wait_queue_entry_tail(wq, wait);
306
307	set_current_state(TASK_INTERRUPTIBLE);
308	if (signal_pending(current))
309		return -ERESTARTSYS;
310
311	spin_unlock(&wq->lock);
312	schedule();
313	spin_lock(&wq->lock);
314
315	return 0;
316}
317EXPORT_SYMBOL(do_wait_intr);
318
319int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
320{
321	if (likely(list_empty(&wait->entry)))
322		__add_wait_queue_entry_tail(wq, wait);
323
324	set_current_state(TASK_INTERRUPTIBLE);
325	if (signal_pending(current))
326		return -ERESTARTSYS;
327
328	spin_unlock_irq(&wq->lock);
329	schedule();
330	spin_lock_irq(&wq->lock);
331
332	return 0;
333}
334EXPORT_SYMBOL(do_wait_intr_irq);
335
336/**
337 * finish_wait - clean up after waiting in a queue
338 * @wq_head: waitqueue waited on
339 * @wq_entry: wait descriptor
340 *
341 * Sets current thread back to running state and removes
342 * the wait descriptor from the given waitqueue if still
343 * queued.
344 */
345void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
346{
347	unsigned long flags;
348
349	__set_current_state(TASK_RUNNING);
350	/*
351	 * We can check for list emptiness outside the lock
352	 * IFF:
353	 *  - we use the "careful" check that verifies both
354	 *    the next and prev pointers, so that there cannot
355	 *    be any half-pending updates in progress on other
356	 *    CPU's that we haven't seen yet (and that might
357	 *    still change the stack area.
358	 * and
359	 *  - all other users take the lock (ie we can only
360	 *    have _one_ other CPU that looks at or modifies
361	 *    the list).
362	 */
363	if (!list_empty_careful(&wq_entry->entry)) {
364		spin_lock_irqsave(&wq_head->lock, flags);
365		list_del_init(&wq_entry->entry);
366		spin_unlock_irqrestore(&wq_head->lock, flags);
367	}
368}
369EXPORT_SYMBOL(finish_wait);
370
371int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
372{
373	int ret = default_wake_function(wq_entry, mode, sync, key);
374
375	if (ret)
376		list_del_init(&wq_entry->entry);
377
378	return ret;
379}
380EXPORT_SYMBOL(autoremove_wake_function);
381
382static inline bool is_kthread_should_stop(void)
383{
384	return (current->flags & PF_KTHREAD) && kthread_should_stop();
385}
386
387/*
388 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
389 *
390 * add_wait_queue(&wq_head, &wait);
391 * for (;;) {
392 *     if (condition)
393 *         break;
394 *
395 *     p->state = mode;				condition = true;
396 *     smp_mb(); // A				smp_wmb(); // C
397 *     if (!wq_entry->flags & WQ_FLAG_WOKEN)	wq_entry->flags |= WQ_FLAG_WOKEN;
398 *         schedule()				try_to_wake_up();
399 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
400 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;		condition = true;
401 *     smp_mb() // B				smp_wmb(); // C
402 *						wq_entry->flags |= WQ_FLAG_WOKEN;
403 * }
404 * remove_wait_queue(&wq_head, &wait);
405 *
 
 
 
 
 
 
 
 
 
406 */
407long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
408{
409	set_current_state(mode); /* A */
410	/*
411	 * The above implies an smp_mb(), which matches with the smp_wmb() from
412	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
413	 * also observe all state before the wakeup.
 
414	 */
 
415	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
416		timeout = schedule_timeout(timeout);
417	__set_current_state(TASK_RUNNING);
418
419	/*
420	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
421	 * woken_wake_function() such that we must either observe the wait
422	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
423	 * an event.
424	 */
425	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
426
427	return timeout;
428}
429EXPORT_SYMBOL(wait_woken);
430
431int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
432{
433	/*
434	 * Although this function is called under waitqueue lock, LOCK
435	 * doesn't imply write barrier and the users expects write
436	 * barrier semantics on wakeup functions.  The following
437	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
438	 * and is paired with smp_store_mb() in wait_woken().
439	 */
440	smp_wmb(); /* C */
441	wq_entry->flags |= WQ_FLAG_WOKEN;
442
443	return default_wake_function(wq_entry, mode, sync, key);
444}
445EXPORT_SYMBOL(woken_wake_function);