Loading...
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12#ifndef _HYPERV_H
13#define _HYPERV_H
14
15#include <uapi/linux/hyperv.h>
16
17#include <linux/mm.h>
18#include <linux/types.h>
19#include <linux/scatterlist.h>
20#include <linux/list.h>
21#include <linux/timer.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/mod_devicetable.h>
25#include <linux/interrupt.h>
26#include <linux/reciprocal_div.h>
27#include <asm/hyperv-tlfs.h>
28
29#define MAX_PAGE_BUFFER_COUNT 32
30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
31
32#pragma pack(push, 1)
33
34/*
35 * Types for GPADL, decides is how GPADL header is created.
36 *
37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38 * same as HV_HYP_PAGE_SIZE.
39 *
40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43 * HV_HYP_PAGE will be different between different types of GPADL, for example
44 * if PAGE_SIZE is 64K:
45 *
46 * BUFFER:
47 *
48 * gva: |-- 64k --|-- 64k --| ... |
49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50 * index: 0 1 2 15 16 17 18 .. 31 32 ...
51 * | | ... | | | ... | ...
52 * v V V V V V
53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ...
55 *
56 * RING:
57 *
58 * | header | data | header | data |
59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... |
60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n
62 * | / / / | / /
63 * | / / / | / /
64 * | / / ... / ... | / ... /
65 * | / / / | / /
66 * | / / / | / /
67 * V V V V V V v
68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... |
69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30
70 */
71enum hv_gpadl_type {
72 HV_GPADL_BUFFER,
73 HV_GPADL_RING
74};
75
76/* Single-page buffer */
77struct hv_page_buffer {
78 u32 len;
79 u32 offset;
80 u64 pfn;
81};
82
83/* Multiple-page buffer */
84struct hv_multipage_buffer {
85 /* Length and Offset determines the # of pfns in the array */
86 u32 len;
87 u32 offset;
88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89};
90
91/*
92 * Multiple-page buffer array; the pfn array is variable size:
93 * The number of entries in the PFN array is determined by
94 * "len" and "offset".
95 */
96struct hv_mpb_array {
97 /* Length and Offset determines the # of pfns in the array */
98 u32 len;
99 u32 offset;
100 u64 pfn_array[];
101};
102
103/* 0x18 includes the proprietary packet header */
104#define MAX_PAGE_BUFFER_PACKET (0x18 + \
105 (sizeof(struct hv_page_buffer) * \
106 MAX_PAGE_BUFFER_COUNT))
107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
108 sizeof(struct hv_multipage_buffer))
109
110
111#pragma pack(pop)
112
113struct hv_ring_buffer {
114 /* Offset in bytes from the start of ring data below */
115 u32 write_index;
116
117 /* Offset in bytes from the start of ring data below */
118 u32 read_index;
119
120 u32 interrupt_mask;
121
122 /*
123 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 * driven flow management. The feature bit feat_pending_send_sz
125 * is set by the host on the host->guest ring buffer, and by the
126 * guest on the guest->host ring buffer.
127 *
128 * The meaning of the feature bit is a bit complex in that it has
129 * semantics that apply to both ring buffers. If the guest sets
130 * the feature bit in the guest->host ring buffer, the guest is
131 * telling the host that:
132 * 1) It will set the pending_send_sz field in the guest->host ring
133 * buffer when it is waiting for space to become available, and
134 * 2) It will read the pending_send_sz field in the host->guest
135 * ring buffer and interrupt the host when it frees enough space
136 *
137 * Similarly, if the host sets the feature bit in the host->guest
138 * ring buffer, the host is telling the guest that:
139 * 1) It will set the pending_send_sz field in the host->guest ring
140 * buffer when it is waiting for space to become available, and
141 * 2) It will read the pending_send_sz field in the guest->host
142 * ring buffer and interrupt the guest when it frees enough space
143 *
144 * If either the guest or host does not set the feature bit that it
145 * owns, that guest or host must do polling if it encounters a full
146 * ring buffer, and not signal the other end with an interrupt.
147 */
148 u32 pending_send_sz;
149 u32 reserved1[12];
150 union {
151 struct {
152 u32 feat_pending_send_sz:1;
153 };
154 u32 value;
155 } feature_bits;
156
157 /* Pad it to PAGE_SIZE so that data starts on page boundary */
158 u8 reserved2[PAGE_SIZE - 68];
159
160 /*
161 * Ring data starts here + RingDataStartOffset
162 * !!! DO NOT place any fields below this !!!
163 */
164 u8 buffer[];
165} __packed;
166
167/* Calculate the proper size of a ringbuffer, it must be page-aligned */
168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 (payload_sz))
170
171struct hv_ring_buffer_info {
172 struct hv_ring_buffer *ring_buffer;
173 u32 ring_size; /* Include the shared header */
174 struct reciprocal_value ring_size_div10_reciprocal;
175 spinlock_t ring_lock;
176
177 u32 ring_datasize; /* < ring_size */
178 u32 priv_read_index;
179 /*
180 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 * being freed while the ring buffer is being accessed.
182 */
183 struct mutex ring_buffer_mutex;
184
185 /* Buffer that holds a copy of an incoming host packet */
186 void *pkt_buffer;
187 u32 pkt_buffer_size;
188};
189
190
191static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
192{
193 u32 read_loc, write_loc, dsize, read;
194
195 dsize = rbi->ring_datasize;
196 read_loc = rbi->ring_buffer->read_index;
197 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
198
199 read = write_loc >= read_loc ? (write_loc - read_loc) :
200 (dsize - read_loc) + write_loc;
201
202 return read;
203}
204
205static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
206{
207 u32 read_loc, write_loc, dsize, write;
208
209 dsize = rbi->ring_datasize;
210 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
211 write_loc = rbi->ring_buffer->write_index;
212
213 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
214 read_loc - write_loc;
215 return write;
216}
217
218static inline u32 hv_get_avail_to_write_percent(
219 const struct hv_ring_buffer_info *rbi)
220{
221 u32 avail_write = hv_get_bytes_to_write(rbi);
222
223 return reciprocal_divide(
224 (avail_write << 3) + (avail_write << 1),
225 rbi->ring_size_div10_reciprocal);
226}
227
228/*
229 * VMBUS version is 32 bit entity broken up into
230 * two 16 bit quantities: major_number. minor_number.
231 *
232 * 0 . 13 (Windows Server 2008)
233 * 1 . 1 (Windows 7)
234 * 2 . 4 (Windows 8)
235 * 3 . 0 (Windows 8 R2)
236 * 4 . 0 (Windows 10)
237 * 4 . 1 (Windows 10 RS3)
238 * 5 . 0 (Newer Windows 10)
239 * 5 . 1 (Windows 10 RS4)
240 * 5 . 2 (Windows Server 2019, RS5)
241 * 5 . 3 (Windows Server 2022)
242 */
243
244#define VERSION_WS2008 ((0 << 16) | (13))
245#define VERSION_WIN7 ((1 << 16) | (1))
246#define VERSION_WIN8 ((2 << 16) | (4))
247#define VERSION_WIN8_1 ((3 << 16) | (0))
248#define VERSION_WIN10 ((4 << 16) | (0))
249#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
250#define VERSION_WIN10_V5 ((5 << 16) | (0))
251#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
252#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
253#define VERSION_WIN10_V5_3 ((5 << 16) | (3))
254
255/* Make maximum size of pipe payload of 16K */
256#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
257
258/* Define PipeMode values. */
259#define VMBUS_PIPE_TYPE_BYTE 0x00000000
260#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
261
262/* The size of the user defined data buffer for non-pipe offers. */
263#define MAX_USER_DEFINED_BYTES 120
264
265/* The size of the user defined data buffer for pipe offers. */
266#define MAX_PIPE_USER_DEFINED_BYTES 116
267
268/*
269 * At the center of the Channel Management library is the Channel Offer. This
270 * struct contains the fundamental information about an offer.
271 */
272struct vmbus_channel_offer {
273 guid_t if_type;
274 guid_t if_instance;
275
276 /*
277 * These two fields are not currently used.
278 */
279 u64 reserved1;
280 u64 reserved2;
281
282 u16 chn_flags;
283 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
284
285 union {
286 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
287 struct {
288 unsigned char user_def[MAX_USER_DEFINED_BYTES];
289 } std;
290
291 /*
292 * Pipes:
293 * The following structure is an integrated pipe protocol, which
294 * is implemented on top of standard user-defined data. Pipe
295 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
296 * use.
297 */
298 struct {
299 u32 pipe_mode;
300 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
301 } pipe;
302 } u;
303 /*
304 * The sub_channel_index is defined in Win8: a value of zero means a
305 * primary channel and a value of non-zero means a sub-channel.
306 *
307 * Before Win8, the field is reserved, meaning it's always zero.
308 */
309 u16 sub_channel_index;
310 u16 reserved3;
311} __packed;
312
313/* Server Flags */
314#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
315#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
316#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
317#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
318#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
319#define VMBUS_CHANNEL_PARENT_OFFER 0x200
320#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
321#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
322
323struct vmpacket_descriptor {
324 u16 type;
325 u16 offset8;
326 u16 len8;
327 u16 flags;
328 u64 trans_id;
329} __packed;
330
331struct vmpacket_header {
332 u32 prev_pkt_start_offset;
333 struct vmpacket_descriptor descriptor;
334} __packed;
335
336struct vmtransfer_page_range {
337 u32 byte_count;
338 u32 byte_offset;
339} __packed;
340
341struct vmtransfer_page_packet_header {
342 struct vmpacket_descriptor d;
343 u16 xfer_pageset_id;
344 u8 sender_owns_set;
345 u8 reserved;
346 u32 range_cnt;
347 struct vmtransfer_page_range ranges[1];
348} __packed;
349
350struct vmgpadl_packet_header {
351 struct vmpacket_descriptor d;
352 u32 gpadl;
353 u32 reserved;
354} __packed;
355
356struct vmadd_remove_transfer_page_set {
357 struct vmpacket_descriptor d;
358 u32 gpadl;
359 u16 xfer_pageset_id;
360 u16 reserved;
361} __packed;
362
363/*
364 * This structure defines a range in guest physical space that can be made to
365 * look virtually contiguous.
366 */
367struct gpa_range {
368 u32 byte_count;
369 u32 byte_offset;
370 u64 pfn_array[];
371};
372
373/*
374 * This is the format for an Establish Gpadl packet, which contains a handle by
375 * which this GPADL will be known and a set of GPA ranges associated with it.
376 * This can be converted to a MDL by the guest OS. If there are multiple GPA
377 * ranges, then the resulting MDL will be "chained," representing multiple VA
378 * ranges.
379 */
380struct vmestablish_gpadl {
381 struct vmpacket_descriptor d;
382 u32 gpadl;
383 u32 range_cnt;
384 struct gpa_range range[1];
385} __packed;
386
387/*
388 * This is the format for a Teardown Gpadl packet, which indicates that the
389 * GPADL handle in the Establish Gpadl packet will never be referenced again.
390 */
391struct vmteardown_gpadl {
392 struct vmpacket_descriptor d;
393 u32 gpadl;
394 u32 reserved; /* for alignment to a 8-byte boundary */
395} __packed;
396
397/*
398 * This is the format for a GPA-Direct packet, which contains a set of GPA
399 * ranges, in addition to commands and/or data.
400 */
401struct vmdata_gpa_direct {
402 struct vmpacket_descriptor d;
403 u32 reserved;
404 u32 range_cnt;
405 struct gpa_range range[1];
406} __packed;
407
408/* This is the format for a Additional Data Packet. */
409struct vmadditional_data {
410 struct vmpacket_descriptor d;
411 u64 total_bytes;
412 u32 offset;
413 u32 byte_cnt;
414 unsigned char data[1];
415} __packed;
416
417union vmpacket_largest_possible_header {
418 struct vmpacket_descriptor simple_hdr;
419 struct vmtransfer_page_packet_header xfer_page_hdr;
420 struct vmgpadl_packet_header gpadl_hdr;
421 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
422 struct vmestablish_gpadl establish_gpadl_hdr;
423 struct vmteardown_gpadl teardown_gpadl_hdr;
424 struct vmdata_gpa_direct data_gpa_direct_hdr;
425};
426
427#define VMPACKET_DATA_START_ADDRESS(__packet) \
428 (void *)(((unsigned char *)__packet) + \
429 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
430
431#define VMPACKET_DATA_LENGTH(__packet) \
432 ((((struct vmpacket_descriptor)__packet)->len8 - \
433 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
434
435#define VMPACKET_TRANSFER_MODE(__packet) \
436 (((struct IMPACT)__packet)->type)
437
438enum vmbus_packet_type {
439 VM_PKT_INVALID = 0x0,
440 VM_PKT_SYNCH = 0x1,
441 VM_PKT_ADD_XFER_PAGESET = 0x2,
442 VM_PKT_RM_XFER_PAGESET = 0x3,
443 VM_PKT_ESTABLISH_GPADL = 0x4,
444 VM_PKT_TEARDOWN_GPADL = 0x5,
445 VM_PKT_DATA_INBAND = 0x6,
446 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
447 VM_PKT_DATA_USING_GPADL = 0x8,
448 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
449 VM_PKT_CANCEL_REQUEST = 0xa,
450 VM_PKT_COMP = 0xb,
451 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
452 VM_PKT_ADDITIONAL_DATA = 0xd
453};
454
455#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
456
457
458/* Version 1 messages */
459enum vmbus_channel_message_type {
460 CHANNELMSG_INVALID = 0,
461 CHANNELMSG_OFFERCHANNEL = 1,
462 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
463 CHANNELMSG_REQUESTOFFERS = 3,
464 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
465 CHANNELMSG_OPENCHANNEL = 5,
466 CHANNELMSG_OPENCHANNEL_RESULT = 6,
467 CHANNELMSG_CLOSECHANNEL = 7,
468 CHANNELMSG_GPADL_HEADER = 8,
469 CHANNELMSG_GPADL_BODY = 9,
470 CHANNELMSG_GPADL_CREATED = 10,
471 CHANNELMSG_GPADL_TEARDOWN = 11,
472 CHANNELMSG_GPADL_TORNDOWN = 12,
473 CHANNELMSG_RELID_RELEASED = 13,
474 CHANNELMSG_INITIATE_CONTACT = 14,
475 CHANNELMSG_VERSION_RESPONSE = 15,
476 CHANNELMSG_UNLOAD = 16,
477 CHANNELMSG_UNLOAD_RESPONSE = 17,
478 CHANNELMSG_18 = 18,
479 CHANNELMSG_19 = 19,
480 CHANNELMSG_20 = 20,
481 CHANNELMSG_TL_CONNECT_REQUEST = 21,
482 CHANNELMSG_MODIFYCHANNEL = 22,
483 CHANNELMSG_TL_CONNECT_RESULT = 23,
484 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24,
485 CHANNELMSG_COUNT
486};
487
488/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
489#define INVALID_RELID U32_MAX
490
491struct vmbus_channel_message_header {
492 enum vmbus_channel_message_type msgtype;
493 u32 padding;
494} __packed;
495
496/* Query VMBus Version parameters */
497struct vmbus_channel_query_vmbus_version {
498 struct vmbus_channel_message_header header;
499 u32 version;
500} __packed;
501
502/* VMBus Version Supported parameters */
503struct vmbus_channel_version_supported {
504 struct vmbus_channel_message_header header;
505 u8 version_supported;
506} __packed;
507
508/* Offer Channel parameters */
509struct vmbus_channel_offer_channel {
510 struct vmbus_channel_message_header header;
511 struct vmbus_channel_offer offer;
512 u32 child_relid;
513 u8 monitorid;
514 /*
515 * win7 and beyond splits this field into a bit field.
516 */
517 u8 monitor_allocated:1;
518 u8 reserved:7;
519 /*
520 * These are new fields added in win7 and later.
521 * Do not access these fields without checking the
522 * negotiated protocol.
523 *
524 * If "is_dedicated_interrupt" is set, we must not set the
525 * associated bit in the channel bitmap while sending the
526 * interrupt to the host.
527 *
528 * connection_id is to be used in signaling the host.
529 */
530 u16 is_dedicated_interrupt:1;
531 u16 reserved1:15;
532 u32 connection_id;
533} __packed;
534
535/* Rescind Offer parameters */
536struct vmbus_channel_rescind_offer {
537 struct vmbus_channel_message_header header;
538 u32 child_relid;
539} __packed;
540
541static inline u32
542hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
543{
544 return rbi->ring_buffer->pending_send_sz;
545}
546
547/*
548 * Request Offer -- no parameters, SynIC message contains the partition ID
549 * Set Snoop -- no parameters, SynIC message contains the partition ID
550 * Clear Snoop -- no parameters, SynIC message contains the partition ID
551 * All Offers Delivered -- no parameters, SynIC message contains the partition
552 * ID
553 * Flush Client -- no parameters, SynIC message contains the partition ID
554 */
555
556/* Open Channel parameters */
557struct vmbus_channel_open_channel {
558 struct vmbus_channel_message_header header;
559
560 /* Identifies the specific VMBus channel that is being opened. */
561 u32 child_relid;
562
563 /* ID making a particular open request at a channel offer unique. */
564 u32 openid;
565
566 /* GPADL for the channel's ring buffer. */
567 u32 ringbuffer_gpadlhandle;
568
569 /*
570 * Starting with win8, this field will be used to specify
571 * the target virtual processor on which to deliver the interrupt for
572 * the host to guest communication.
573 * Prior to win8, incoming channel interrupts would only
574 * be delivered on cpu 0. Setting this value to 0 would
575 * preserve the earlier behavior.
576 */
577 u32 target_vp;
578
579 /*
580 * The upstream ring buffer begins at offset zero in the memory
581 * described by RingBufferGpadlHandle. The downstream ring buffer
582 * follows it at this offset (in pages).
583 */
584 u32 downstream_ringbuffer_pageoffset;
585
586 /* User-specific data to be passed along to the server endpoint. */
587 unsigned char userdata[MAX_USER_DEFINED_BYTES];
588} __packed;
589
590/* Open Channel Result parameters */
591struct vmbus_channel_open_result {
592 struct vmbus_channel_message_header header;
593 u32 child_relid;
594 u32 openid;
595 u32 status;
596} __packed;
597
598/* Modify Channel Result parameters */
599struct vmbus_channel_modifychannel_response {
600 struct vmbus_channel_message_header header;
601 u32 child_relid;
602 u32 status;
603} __packed;
604
605/* Close channel parameters; */
606struct vmbus_channel_close_channel {
607 struct vmbus_channel_message_header header;
608 u32 child_relid;
609} __packed;
610
611/* Channel Message GPADL */
612#define GPADL_TYPE_RING_BUFFER 1
613#define GPADL_TYPE_SERVER_SAVE_AREA 2
614#define GPADL_TYPE_TRANSACTION 8
615
616/*
617 * The number of PFNs in a GPADL message is defined by the number of
618 * pages that would be spanned by ByteCount and ByteOffset. If the
619 * implied number of PFNs won't fit in this packet, there will be a
620 * follow-up packet that contains more.
621 */
622struct vmbus_channel_gpadl_header {
623 struct vmbus_channel_message_header header;
624 u32 child_relid;
625 u32 gpadl;
626 u16 range_buflen;
627 u16 rangecount;
628 struct gpa_range range[];
629} __packed;
630
631/* This is the followup packet that contains more PFNs. */
632struct vmbus_channel_gpadl_body {
633 struct vmbus_channel_message_header header;
634 u32 msgnumber;
635 u32 gpadl;
636 u64 pfn[];
637} __packed;
638
639struct vmbus_channel_gpadl_created {
640 struct vmbus_channel_message_header header;
641 u32 child_relid;
642 u32 gpadl;
643 u32 creation_status;
644} __packed;
645
646struct vmbus_channel_gpadl_teardown {
647 struct vmbus_channel_message_header header;
648 u32 child_relid;
649 u32 gpadl;
650} __packed;
651
652struct vmbus_channel_gpadl_torndown {
653 struct vmbus_channel_message_header header;
654 u32 gpadl;
655} __packed;
656
657struct vmbus_channel_relid_released {
658 struct vmbus_channel_message_header header;
659 u32 child_relid;
660} __packed;
661
662struct vmbus_channel_initiate_contact {
663 struct vmbus_channel_message_header header;
664 u32 vmbus_version_requested;
665 u32 target_vcpu; /* The VCPU the host should respond to */
666 union {
667 u64 interrupt_page;
668 struct {
669 u8 msg_sint;
670 u8 padding1[3];
671 u32 padding2;
672 };
673 };
674 u64 monitor_page1;
675 u64 monitor_page2;
676} __packed;
677
678/* Hyper-V socket: guest's connect()-ing to host */
679struct vmbus_channel_tl_connect_request {
680 struct vmbus_channel_message_header header;
681 guid_t guest_endpoint_id;
682 guid_t host_service_id;
683} __packed;
684
685/* Modify Channel parameters, cf. vmbus_send_modifychannel() */
686struct vmbus_channel_modifychannel {
687 struct vmbus_channel_message_header header;
688 u32 child_relid;
689 u32 target_vp;
690} __packed;
691
692struct vmbus_channel_version_response {
693 struct vmbus_channel_message_header header;
694 u8 version_supported;
695
696 u8 connection_state;
697 u16 padding;
698
699 /*
700 * On new hosts that support VMBus protocol 5.0, we must use
701 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
702 * and for subsequent messages, we must use the Message Connection ID
703 * field in the host-returned Version Response Message.
704 *
705 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
706 */
707 u32 msg_conn_id;
708} __packed;
709
710enum vmbus_channel_state {
711 CHANNEL_OFFER_STATE,
712 CHANNEL_OPENING_STATE,
713 CHANNEL_OPEN_STATE,
714 CHANNEL_OPENED_STATE,
715};
716
717/*
718 * Represents each channel msg on the vmbus connection This is a
719 * variable-size data structure depending on the msg type itself
720 */
721struct vmbus_channel_msginfo {
722 /* Bookkeeping stuff */
723 struct list_head msglistentry;
724
725 /* So far, this is only used to handle gpadl body message */
726 struct list_head submsglist;
727
728 /* Synchronize the request/response if needed */
729 struct completion waitevent;
730 struct vmbus_channel *waiting_channel;
731 union {
732 struct vmbus_channel_version_supported version_supported;
733 struct vmbus_channel_open_result open_result;
734 struct vmbus_channel_gpadl_torndown gpadl_torndown;
735 struct vmbus_channel_gpadl_created gpadl_created;
736 struct vmbus_channel_version_response version_response;
737 struct vmbus_channel_modifychannel_response modify_response;
738 } response;
739
740 u32 msgsize;
741 /*
742 * The channel message that goes out on the "wire".
743 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
744 */
745 unsigned char msg[];
746};
747
748struct vmbus_close_msg {
749 struct vmbus_channel_msginfo info;
750 struct vmbus_channel_close_channel msg;
751};
752
753/* Define connection identifier type. */
754union hv_connection_id {
755 u32 asu32;
756 struct {
757 u32 id:24;
758 u32 reserved:8;
759 } u;
760};
761
762enum vmbus_device_type {
763 HV_IDE = 0,
764 HV_SCSI,
765 HV_FC,
766 HV_NIC,
767 HV_ND,
768 HV_PCIE,
769 HV_FB,
770 HV_KBD,
771 HV_MOUSE,
772 HV_KVP,
773 HV_TS,
774 HV_HB,
775 HV_SHUTDOWN,
776 HV_FCOPY,
777 HV_BACKUP,
778 HV_DM,
779 HV_UNKNOWN,
780};
781
782/*
783 * Provides request ids for VMBus. Encapsulates guest memory
784 * addresses and stores the next available slot in req_arr
785 * to generate new ids in constant time.
786 */
787struct vmbus_requestor {
788 u64 *req_arr;
789 unsigned long *req_bitmap; /* is a given slot available? */
790 u32 size;
791 u64 next_request_id;
792 spinlock_t req_lock; /* provides atomicity */
793};
794
795#define VMBUS_NO_RQSTOR U64_MAX
796#define VMBUS_RQST_ERROR (U64_MAX - 1)
797/* NetVSC-specific */
798#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
799/* StorVSC-specific */
800#define VMBUS_RQST_INIT (U64_MAX - 2)
801#define VMBUS_RQST_RESET (U64_MAX - 3)
802
803struct vmbus_device {
804 u16 dev_type;
805 guid_t guid;
806 bool perf_device;
807 bool allowed_in_isolated;
808};
809
810#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
811
812struct vmbus_channel {
813 struct list_head listentry;
814
815 struct hv_device *device_obj;
816
817 enum vmbus_channel_state state;
818
819 struct vmbus_channel_offer_channel offermsg;
820 /*
821 * These are based on the OfferMsg.MonitorId.
822 * Save it here for easy access.
823 */
824 u8 monitor_grp;
825 u8 monitor_bit;
826
827 bool rescind; /* got rescind msg */
828 bool rescind_ref; /* got rescind msg, got channel reference */
829 struct completion rescind_event;
830
831 u32 ringbuffer_gpadlhandle;
832
833 /* Allocated memory for ring buffer */
834 struct page *ringbuffer_page;
835 u32 ringbuffer_pagecount;
836 u32 ringbuffer_send_offset;
837 struct hv_ring_buffer_info outbound; /* send to parent */
838 struct hv_ring_buffer_info inbound; /* receive from parent */
839
840 struct vmbus_close_msg close_msg;
841
842 /* Statistics */
843 u64 interrupts; /* Host to Guest interrupts */
844 u64 sig_events; /* Guest to Host events */
845
846 /*
847 * Guest to host interrupts caused by the outbound ring buffer changing
848 * from empty to not empty.
849 */
850 u64 intr_out_empty;
851
852 /*
853 * Indicates that a full outbound ring buffer was encountered. The flag
854 * is set to true when a full outbound ring buffer is encountered and
855 * set to false when a write to the outbound ring buffer is completed.
856 */
857 bool out_full_flag;
858
859 /* Channel callback's invoked in softirq context */
860 struct tasklet_struct callback_event;
861 void (*onchannel_callback)(void *context);
862 void *channel_callback_context;
863
864 void (*change_target_cpu_callback)(struct vmbus_channel *channel,
865 u32 old, u32 new);
866
867 /*
868 * Synchronize channel scheduling and channel removal; see the inline
869 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
870 */
871 spinlock_t sched_lock;
872
873 /*
874 * A channel can be marked for one of three modes of reading:
875 * BATCHED - callback called from taslket and should read
876 * channel until empty. Interrupts from the host
877 * are masked while read is in process (default).
878 * DIRECT - callback called from tasklet (softirq).
879 * ISR - callback called in interrupt context and must
880 * invoke its own deferred processing.
881 * Host interrupts are disabled and must be re-enabled
882 * when ring is empty.
883 */
884 enum hv_callback_mode {
885 HV_CALL_BATCHED,
886 HV_CALL_DIRECT,
887 HV_CALL_ISR
888 } callback_mode;
889
890 bool is_dedicated_interrupt;
891 u64 sig_event;
892
893 /*
894 * Starting with win8, this field will be used to specify the
895 * target CPU on which to deliver the interrupt for the host
896 * to guest communication.
897 *
898 * Prior to win8, incoming channel interrupts would only be
899 * delivered on CPU 0. Setting this value to 0 would preserve
900 * the earlier behavior.
901 */
902 u32 target_cpu;
903 /*
904 * Support for sub-channels. For high performance devices,
905 * it will be useful to have multiple sub-channels to support
906 * a scalable communication infrastructure with the host.
907 * The support for sub-channels is implemented as an extension
908 * to the current infrastructure.
909 * The initial offer is considered the primary channel and this
910 * offer message will indicate if the host supports sub-channels.
911 * The guest is free to ask for sub-channels to be offered and can
912 * open these sub-channels as a normal "primary" channel. However,
913 * all sub-channels will have the same type and instance guids as the
914 * primary channel. Requests sent on a given channel will result in a
915 * response on the same channel.
916 */
917
918 /*
919 * Sub-channel creation callback. This callback will be called in
920 * process context when a sub-channel offer is received from the host.
921 * The guest can open the sub-channel in the context of this callback.
922 */
923 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
924
925 /*
926 * Channel rescind callback. Some channels (the hvsock ones), need to
927 * register a callback which is invoked in vmbus_onoffer_rescind().
928 */
929 void (*chn_rescind_callback)(struct vmbus_channel *channel);
930
931 /*
932 * All Sub-channels of a primary channel are linked here.
933 */
934 struct list_head sc_list;
935 /*
936 * The primary channel this sub-channel belongs to.
937 * This will be NULL for the primary channel.
938 */
939 struct vmbus_channel *primary_channel;
940 /*
941 * Support per-channel state for use by vmbus drivers.
942 */
943 void *per_channel_state;
944
945 /*
946 * Defer freeing channel until after all cpu's have
947 * gone through grace period.
948 */
949 struct rcu_head rcu;
950
951 /*
952 * For sysfs per-channel properties.
953 */
954 struct kobject kobj;
955
956 /*
957 * For performance critical channels (storage, networking
958 * etc,), Hyper-V has a mechanism to enhance the throughput
959 * at the expense of latency:
960 * When the host is to be signaled, we just set a bit in a shared page
961 * and this bit will be inspected by the hypervisor within a certain
962 * window and if the bit is set, the host will be signaled. The window
963 * of time is the monitor latency - currently around 100 usecs. This
964 * mechanism improves throughput by:
965 *
966 * A) Making the host more efficient - each time it wakes up,
967 * potentially it will process morev number of packets. The
968 * monitor latency allows a batch to build up.
969 * B) By deferring the hypercall to signal, we will also minimize
970 * the interrupts.
971 *
972 * Clearly, these optimizations improve throughput at the expense of
973 * latency. Furthermore, since the channel is shared for both
974 * control and data messages, control messages currently suffer
975 * unnecessary latency adversely impacting performance and boot
976 * time. To fix this issue, permit tagging the channel as being
977 * in "low latency" mode. In this mode, we will bypass the monitor
978 * mechanism.
979 */
980 bool low_latency;
981
982 bool probe_done;
983
984 /*
985 * Cache the device ID here for easy access; this is useful, in
986 * particular, in situations where the channel's device_obj has
987 * not been allocated/initialized yet.
988 */
989 u16 device_id;
990
991 /*
992 * We must offload the handling of the primary/sub channels
993 * from the single-threaded vmbus_connection.work_queue to
994 * two different workqueue, otherwise we can block
995 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
996 */
997 struct work_struct add_channel_work;
998
999 /*
1000 * Guest to host interrupts caused by the inbound ring buffer changing
1001 * from full to not full while a packet is waiting.
1002 */
1003 u64 intr_in_full;
1004
1005 /*
1006 * The total number of write operations that encountered a full
1007 * outbound ring buffer.
1008 */
1009 u64 out_full_total;
1010
1011 /*
1012 * The number of write operations that were the first to encounter a
1013 * full outbound ring buffer.
1014 */
1015 u64 out_full_first;
1016
1017 /* enabling/disabling fuzz testing on the channel (default is false)*/
1018 bool fuzz_testing_state;
1019
1020 /*
1021 * Interrupt delay will delay the guest from emptying the ring buffer
1022 * for a specific amount of time. The delay is in microseconds and will
1023 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1024 * The Message delay will delay guest reading on a per message basis
1025 * in microseconds between 1 to 1000 with the default being 0
1026 * (no delay).
1027 */
1028 u32 fuzz_testing_interrupt_delay;
1029 u32 fuzz_testing_message_delay;
1030
1031 /* callback to generate a request ID from a request address */
1032 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1033 /* callback to retrieve a request address from a request ID */
1034 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1035
1036 /* request/transaction ids for VMBus */
1037 struct vmbus_requestor requestor;
1038 u32 rqstor_size;
1039
1040 /* The max size of a packet on this channel */
1041 u32 max_pkt_size;
1042};
1043
1044u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1045u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1046
1047static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1048{
1049 return !!(c->offermsg.offer.chn_flags &
1050 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1051}
1052
1053static inline bool is_sub_channel(const struct vmbus_channel *c)
1054{
1055 return c->offermsg.offer.sub_channel_index != 0;
1056}
1057
1058static inline void set_channel_read_mode(struct vmbus_channel *c,
1059 enum hv_callback_mode mode)
1060{
1061 c->callback_mode = mode;
1062}
1063
1064static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1065{
1066 c->per_channel_state = s;
1067}
1068
1069static inline void *get_per_channel_state(struct vmbus_channel *c)
1070{
1071 return c->per_channel_state;
1072}
1073
1074static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1075 u32 size)
1076{
1077 unsigned long flags;
1078
1079 if (size) {
1080 spin_lock_irqsave(&c->outbound.ring_lock, flags);
1081 ++c->out_full_total;
1082
1083 if (!c->out_full_flag) {
1084 ++c->out_full_first;
1085 c->out_full_flag = true;
1086 }
1087 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1088 } else {
1089 c->out_full_flag = false;
1090 }
1091
1092 c->outbound.ring_buffer->pending_send_sz = size;
1093}
1094
1095static inline void set_low_latency_mode(struct vmbus_channel *c)
1096{
1097 c->low_latency = true;
1098}
1099
1100static inline void clear_low_latency_mode(struct vmbus_channel *c)
1101{
1102 c->low_latency = false;
1103}
1104
1105void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1106
1107int vmbus_request_offers(void);
1108
1109/*
1110 * APIs for managing sub-channels.
1111 */
1112
1113void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1114 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1115
1116void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1117 void (*chn_rescind_cb)(struct vmbus_channel *));
1118
1119/*
1120 * Check if sub-channels have already been offerred. This API will be useful
1121 * when the driver is unloaded after establishing sub-channels. In this case,
1122 * when the driver is re-loaded, the driver would have to check if the
1123 * subchannels have already been established before attempting to request
1124 * the creation of sub-channels.
1125 * This function returns TRUE to indicate that subchannels have already been
1126 * created.
1127 * This function should be invoked after setting the callback function for
1128 * sub-channel creation.
1129 */
1130bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1131
1132/* The format must be the same as struct vmdata_gpa_direct */
1133struct vmbus_channel_packet_page_buffer {
1134 u16 type;
1135 u16 dataoffset8;
1136 u16 length8;
1137 u16 flags;
1138 u64 transactionid;
1139 u32 reserved;
1140 u32 rangecount;
1141 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1142} __packed;
1143
1144/* The format must be the same as struct vmdata_gpa_direct */
1145struct vmbus_channel_packet_multipage_buffer {
1146 u16 type;
1147 u16 dataoffset8;
1148 u16 length8;
1149 u16 flags;
1150 u64 transactionid;
1151 u32 reserved;
1152 u32 rangecount; /* Always 1 in this case */
1153 struct hv_multipage_buffer range;
1154} __packed;
1155
1156/* The format must be the same as struct vmdata_gpa_direct */
1157struct vmbus_packet_mpb_array {
1158 u16 type;
1159 u16 dataoffset8;
1160 u16 length8;
1161 u16 flags;
1162 u64 transactionid;
1163 u32 reserved;
1164 u32 rangecount; /* Always 1 in this case */
1165 struct hv_mpb_array range;
1166} __packed;
1167
1168int vmbus_alloc_ring(struct vmbus_channel *channel,
1169 u32 send_size, u32 recv_size);
1170void vmbus_free_ring(struct vmbus_channel *channel);
1171
1172int vmbus_connect_ring(struct vmbus_channel *channel,
1173 void (*onchannel_callback)(void *context),
1174 void *context);
1175int vmbus_disconnect_ring(struct vmbus_channel *channel);
1176
1177extern int vmbus_open(struct vmbus_channel *channel,
1178 u32 send_ringbuffersize,
1179 u32 recv_ringbuffersize,
1180 void *userdata,
1181 u32 userdatalen,
1182 void (*onchannel_callback)(void *context),
1183 void *context);
1184
1185extern void vmbus_close(struct vmbus_channel *channel);
1186
1187extern int vmbus_sendpacket(struct vmbus_channel *channel,
1188 void *buffer,
1189 u32 bufferLen,
1190 u64 requestid,
1191 enum vmbus_packet_type type,
1192 u32 flags);
1193
1194extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1195 struct hv_page_buffer pagebuffers[],
1196 u32 pagecount,
1197 void *buffer,
1198 u32 bufferlen,
1199 u64 requestid);
1200
1201extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1202 struct vmbus_packet_mpb_array *mpb,
1203 u32 desc_size,
1204 void *buffer,
1205 u32 bufferlen,
1206 u64 requestid);
1207
1208extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1209 void *kbuffer,
1210 u32 size,
1211 u32 *gpadl_handle);
1212
1213extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1214 u32 gpadl_handle);
1215
1216void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1217
1218extern int vmbus_recvpacket(struct vmbus_channel *channel,
1219 void *buffer,
1220 u32 bufferlen,
1221 u32 *buffer_actual_len,
1222 u64 *requestid);
1223
1224extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1225 void *buffer,
1226 u32 bufferlen,
1227 u32 *buffer_actual_len,
1228 u64 *requestid);
1229
1230
1231extern void vmbus_ontimer(unsigned long data);
1232
1233/* Base driver object */
1234struct hv_driver {
1235 const char *name;
1236
1237 /*
1238 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1239 * channel flag, actually doesn't mean a synthetic device because the
1240 * offer's if_type/if_instance can change for every new hvsock
1241 * connection.
1242 *
1243 * However, to facilitate the notification of new-offer/rescind-offer
1244 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1245 * a special vmbus device, and hence we need the below flag to
1246 * indicate if the driver is the hvsock driver or not: we need to
1247 * specially treat the hvosck offer & driver in vmbus_match().
1248 */
1249 bool hvsock;
1250
1251 /* the device type supported by this driver */
1252 guid_t dev_type;
1253 const struct hv_vmbus_device_id *id_table;
1254
1255 struct device_driver driver;
1256
1257 /* dynamic device GUID's */
1258 struct {
1259 spinlock_t lock;
1260 struct list_head list;
1261 } dynids;
1262
1263 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1264 int (*remove)(struct hv_device *);
1265 void (*shutdown)(struct hv_device *);
1266
1267 int (*suspend)(struct hv_device *);
1268 int (*resume)(struct hv_device *);
1269
1270};
1271
1272/* Base device object */
1273struct hv_device {
1274 /* the device type id of this device */
1275 guid_t dev_type;
1276
1277 /* the device instance id of this device */
1278 guid_t dev_instance;
1279 u16 vendor_id;
1280 u16 device_id;
1281
1282 struct device device;
1283 char *driver_override; /* Driver name to force a match */
1284
1285 struct vmbus_channel *channel;
1286 struct kset *channels_kset;
1287
1288 /* place holder to keep track of the dir for hv device in debugfs */
1289 struct dentry *debug_dir;
1290
1291};
1292
1293
1294static inline struct hv_device *device_to_hv_device(struct device *d)
1295{
1296 return container_of(d, struct hv_device, device);
1297}
1298
1299static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1300{
1301 return container_of(d, struct hv_driver, driver);
1302}
1303
1304static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1305{
1306 dev_set_drvdata(&dev->device, data);
1307}
1308
1309static inline void *hv_get_drvdata(struct hv_device *dev)
1310{
1311 return dev_get_drvdata(&dev->device);
1312}
1313
1314struct hv_ring_buffer_debug_info {
1315 u32 current_interrupt_mask;
1316 u32 current_read_index;
1317 u32 current_write_index;
1318 u32 bytes_avail_toread;
1319 u32 bytes_avail_towrite;
1320};
1321
1322
1323int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1324 struct hv_ring_buffer_debug_info *debug_info);
1325
1326/* Vmbus interface */
1327#define vmbus_driver_register(driver) \
1328 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1329int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1330 struct module *owner,
1331 const char *mod_name);
1332void vmbus_driver_unregister(struct hv_driver *hv_driver);
1333
1334void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1335
1336int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1337 resource_size_t min, resource_size_t max,
1338 resource_size_t size, resource_size_t align,
1339 bool fb_overlap_ok);
1340void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1341
1342/*
1343 * GUID definitions of various offer types - services offered to the guest.
1344 */
1345
1346/*
1347 * Network GUID
1348 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1349 */
1350#define HV_NIC_GUID \
1351 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1352 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1353
1354/*
1355 * IDE GUID
1356 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1357 */
1358#define HV_IDE_GUID \
1359 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1360 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1361
1362/*
1363 * SCSI GUID
1364 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1365 */
1366#define HV_SCSI_GUID \
1367 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1368 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1369
1370/*
1371 * Shutdown GUID
1372 * {0e0b6031-5213-4934-818b-38d90ced39db}
1373 */
1374#define HV_SHUTDOWN_GUID \
1375 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1376 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1377
1378/*
1379 * Time Synch GUID
1380 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1381 */
1382#define HV_TS_GUID \
1383 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1384 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1385
1386/*
1387 * Heartbeat GUID
1388 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1389 */
1390#define HV_HEART_BEAT_GUID \
1391 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1392 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1393
1394/*
1395 * KVP GUID
1396 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1397 */
1398#define HV_KVP_GUID \
1399 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1400 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1401
1402/*
1403 * Dynamic memory GUID
1404 * {525074dc-8985-46e2-8057-a307dc18a502}
1405 */
1406#define HV_DM_GUID \
1407 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1408 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1409
1410/*
1411 * Mouse GUID
1412 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1413 */
1414#define HV_MOUSE_GUID \
1415 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1416 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1417
1418/*
1419 * Keyboard GUID
1420 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1421 */
1422#define HV_KBD_GUID \
1423 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1424 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1425
1426/*
1427 * VSS (Backup/Restore) GUID
1428 */
1429#define HV_VSS_GUID \
1430 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1431 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1432/*
1433 * Synthetic Video GUID
1434 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1435 */
1436#define HV_SYNTHVID_GUID \
1437 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1438 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1439
1440/*
1441 * Synthetic FC GUID
1442 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1443 */
1444#define HV_SYNTHFC_GUID \
1445 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1446 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1447
1448/*
1449 * Guest File Copy Service
1450 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1451 */
1452
1453#define HV_FCOPY_GUID \
1454 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1455 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1456
1457/*
1458 * NetworkDirect. This is the guest RDMA service.
1459 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1460 */
1461#define HV_ND_GUID \
1462 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1463 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1464
1465/*
1466 * PCI Express Pass Through
1467 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1468 */
1469
1470#define HV_PCIE_GUID \
1471 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1472 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1473
1474/*
1475 * Linux doesn't support the 3 devices: the first two are for
1476 * Automatic Virtual Machine Activation, and the third is for
1477 * Remote Desktop Virtualization.
1478 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1479 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1480 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1481 */
1482
1483#define HV_AVMA1_GUID \
1484 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1485 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1486
1487#define HV_AVMA2_GUID \
1488 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1489 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1490
1491#define HV_RDV_GUID \
1492 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1493 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1494
1495/*
1496 * Common header for Hyper-V ICs
1497 */
1498
1499#define ICMSGTYPE_NEGOTIATE 0
1500#define ICMSGTYPE_HEARTBEAT 1
1501#define ICMSGTYPE_KVPEXCHANGE 2
1502#define ICMSGTYPE_SHUTDOWN 3
1503#define ICMSGTYPE_TIMESYNC 4
1504#define ICMSGTYPE_VSS 5
1505#define ICMSGTYPE_FCOPY 7
1506
1507#define ICMSGHDRFLAG_TRANSACTION 1
1508#define ICMSGHDRFLAG_REQUEST 2
1509#define ICMSGHDRFLAG_RESPONSE 4
1510
1511
1512/*
1513 * While we want to handle util services as regular devices,
1514 * there is only one instance of each of these services; so
1515 * we statically allocate the service specific state.
1516 */
1517
1518struct hv_util_service {
1519 u8 *recv_buffer;
1520 void *channel;
1521 void (*util_cb)(void *);
1522 int (*util_init)(struct hv_util_service *);
1523 void (*util_deinit)(void);
1524 int (*util_pre_suspend)(void);
1525 int (*util_pre_resume)(void);
1526};
1527
1528struct vmbuspipe_hdr {
1529 u32 flags;
1530 u32 msgsize;
1531} __packed;
1532
1533struct ic_version {
1534 u16 major;
1535 u16 minor;
1536} __packed;
1537
1538struct icmsg_hdr {
1539 struct ic_version icverframe;
1540 u16 icmsgtype;
1541 struct ic_version icvermsg;
1542 u16 icmsgsize;
1543 u32 status;
1544 u8 ictransaction_id;
1545 u8 icflags;
1546 u8 reserved[2];
1547} __packed;
1548
1549#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1550#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1551#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1552 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1553 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1554
1555struct icmsg_negotiate {
1556 u16 icframe_vercnt;
1557 u16 icmsg_vercnt;
1558 u32 reserved;
1559 struct ic_version icversion_data[]; /* any size array */
1560} __packed;
1561
1562struct shutdown_msg_data {
1563 u32 reason_code;
1564 u32 timeout_seconds;
1565 u32 flags;
1566 u8 display_message[2048];
1567} __packed;
1568
1569struct heartbeat_msg_data {
1570 u64 seq_num;
1571 u32 reserved[8];
1572} __packed;
1573
1574/* Time Sync IC defs */
1575#define ICTIMESYNCFLAG_PROBE 0
1576#define ICTIMESYNCFLAG_SYNC 1
1577#define ICTIMESYNCFLAG_SAMPLE 2
1578
1579#ifdef __x86_64__
1580#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1581#else
1582#define WLTIMEDELTA 116444736000000000LL
1583#endif
1584
1585struct ictimesync_data {
1586 u64 parenttime;
1587 u64 childtime;
1588 u64 roundtriptime;
1589 u8 flags;
1590} __packed;
1591
1592struct ictimesync_ref_data {
1593 u64 parenttime;
1594 u64 vmreferencetime;
1595 u8 flags;
1596 char leapflags;
1597 char stratum;
1598 u8 reserved[3];
1599} __packed;
1600
1601struct hyperv_service_callback {
1602 u8 msg_type;
1603 char *log_msg;
1604 guid_t data;
1605 struct vmbus_channel *channel;
1606 void (*callback)(void *context);
1607};
1608
1609#define MAX_SRV_VER 0x7ffffff
1610extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1611 const int *fw_version, int fw_vercnt,
1612 const int *srv_version, int srv_vercnt,
1613 int *nego_fw_version, int *nego_srv_version);
1614
1615void hv_process_channel_removal(struct vmbus_channel *channel);
1616
1617void vmbus_setevent(struct vmbus_channel *channel);
1618/*
1619 * Negotiated version with the Host.
1620 */
1621
1622extern __u32 vmbus_proto_version;
1623
1624int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1625 const guid_t *shv_host_servie_id);
1626int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1627void vmbus_set_event(struct vmbus_channel *channel);
1628
1629/* Get the start of the ring buffer. */
1630static inline void *
1631hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1632{
1633 return ring_info->ring_buffer->buffer;
1634}
1635
1636/*
1637 * Mask off host interrupt callback notifications
1638 */
1639static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1640{
1641 rbi->ring_buffer->interrupt_mask = 1;
1642
1643 /* make sure mask update is not reordered */
1644 virt_mb();
1645}
1646
1647/*
1648 * Re-enable host callback and return number of outstanding bytes
1649 */
1650static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1651{
1652
1653 rbi->ring_buffer->interrupt_mask = 0;
1654
1655 /* make sure mask update is not reordered */
1656 virt_mb();
1657
1658 /*
1659 * Now check to see if the ring buffer is still empty.
1660 * If it is not, we raced and we need to process new
1661 * incoming messages.
1662 */
1663 return hv_get_bytes_to_read(rbi);
1664}
1665
1666/*
1667 * An API to support in-place processing of incoming VMBUS packets.
1668 */
1669
1670/* Get data payload associated with descriptor */
1671static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1672{
1673 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1674}
1675
1676/* Get data size associated with descriptor */
1677static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1678{
1679 return (desc->len8 << 3) - (desc->offset8 << 3);
1680}
1681
1682
1683struct vmpacket_descriptor *
1684hv_pkt_iter_first_raw(struct vmbus_channel *channel);
1685
1686struct vmpacket_descriptor *
1687hv_pkt_iter_first(struct vmbus_channel *channel);
1688
1689struct vmpacket_descriptor *
1690__hv_pkt_iter_next(struct vmbus_channel *channel,
1691 const struct vmpacket_descriptor *pkt,
1692 bool copy);
1693
1694void hv_pkt_iter_close(struct vmbus_channel *channel);
1695
1696static inline struct vmpacket_descriptor *
1697hv_pkt_iter_next_pkt(struct vmbus_channel *channel,
1698 const struct vmpacket_descriptor *pkt,
1699 bool copy)
1700{
1701 struct vmpacket_descriptor *nxt;
1702
1703 nxt = __hv_pkt_iter_next(channel, pkt, copy);
1704 if (!nxt)
1705 hv_pkt_iter_close(channel);
1706
1707 return nxt;
1708}
1709
1710/*
1711 * Get next packet descriptor without copying it out of the ring buffer
1712 * If at end of list, return NULL and update host.
1713 */
1714static inline struct vmpacket_descriptor *
1715hv_pkt_iter_next_raw(struct vmbus_channel *channel,
1716 const struct vmpacket_descriptor *pkt)
1717{
1718 return hv_pkt_iter_next_pkt(channel, pkt, false);
1719}
1720
1721/*
1722 * Get next packet descriptor from iterator
1723 * If at end of list, return NULL and update host.
1724 */
1725static inline struct vmpacket_descriptor *
1726hv_pkt_iter_next(struct vmbus_channel *channel,
1727 const struct vmpacket_descriptor *pkt)
1728{
1729 return hv_pkt_iter_next_pkt(channel, pkt, true);
1730}
1731
1732#define foreach_vmbus_pkt(pkt, channel) \
1733 for (pkt = hv_pkt_iter_first(channel); pkt; \
1734 pkt = hv_pkt_iter_next(channel, pkt))
1735
1736/*
1737 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1738 * sends requests to read and write blocks. Each block must be 128 bytes or
1739 * smaller. Optionally, the VF driver can register a callback function which
1740 * will be invoked when the host says that one or more of the first 64 block
1741 * IDs is "invalid" which means that the VF driver should reread them.
1742 */
1743#define HV_CONFIG_BLOCK_SIZE_MAX 128
1744
1745int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1746 unsigned int block_id, unsigned int *bytes_returned);
1747int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1748 unsigned int block_id);
1749int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1750 void (*block_invalidate)(void *context,
1751 u64 block_mask));
1752
1753struct hyperv_pci_block_ops {
1754 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1755 unsigned int block_id, unsigned int *bytes_returned);
1756 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1757 unsigned int block_id);
1758 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1759 void (*block_invalidate)(void *context,
1760 u64 block_mask));
1761};
1762
1763extern struct hyperv_pci_block_ops hvpci_block_ops;
1764
1765static inline unsigned long virt_to_hvpfn(void *addr)
1766{
1767 phys_addr_t paddr;
1768
1769 if (is_vmalloc_addr(addr))
1770 paddr = page_to_phys(vmalloc_to_page(addr)) +
1771 offset_in_page(addr);
1772 else
1773 paddr = __pa(addr);
1774
1775 return paddr >> HV_HYP_PAGE_SHIFT;
1776}
1777
1778#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1779#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1780#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1781#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT)
1782#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1783
1784#endif /* _HYPERV_H */
1/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25#ifndef _HYPERV_H
26#define _HYPERV_H
27
28#include <uapi/linux/hyperv.h>
29
30#include <linux/types.h>
31#include <linux/scatterlist.h>
32#include <linux/list.h>
33#include <linux/timer.h>
34#include <linux/completion.h>
35#include <linux/device.h>
36#include <linux/mod_devicetable.h>
37#include <linux/interrupt.h>
38
39#define MAX_PAGE_BUFFER_COUNT 32
40#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
41
42#pragma pack(push, 1)
43
44/* Single-page buffer */
45struct hv_page_buffer {
46 u32 len;
47 u32 offset;
48 u64 pfn;
49};
50
51/* Multiple-page buffer */
52struct hv_multipage_buffer {
53 /* Length and Offset determines the # of pfns in the array */
54 u32 len;
55 u32 offset;
56 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
57};
58
59/*
60 * Multiple-page buffer array; the pfn array is variable size:
61 * The number of entries in the PFN array is determined by
62 * "len" and "offset".
63 */
64struct hv_mpb_array {
65 /* Length and Offset determines the # of pfns in the array */
66 u32 len;
67 u32 offset;
68 u64 pfn_array[];
69};
70
71/* 0x18 includes the proprietary packet header */
72#define MAX_PAGE_BUFFER_PACKET (0x18 + \
73 (sizeof(struct hv_page_buffer) * \
74 MAX_PAGE_BUFFER_COUNT))
75#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
76 sizeof(struct hv_multipage_buffer))
77
78
79#pragma pack(pop)
80
81struct hv_ring_buffer {
82 /* Offset in bytes from the start of ring data below */
83 u32 write_index;
84
85 /* Offset in bytes from the start of ring data below */
86 u32 read_index;
87
88 u32 interrupt_mask;
89
90 /*
91 * Win8 uses some of the reserved bits to implement
92 * interrupt driven flow management. On the send side
93 * we can request that the receiver interrupt the sender
94 * when the ring transitions from being full to being able
95 * to handle a message of size "pending_send_sz".
96 *
97 * Add necessary state for this enhancement.
98 */
99 u32 pending_send_sz;
100
101 u32 reserved1[12];
102
103 union {
104 struct {
105 u32 feat_pending_send_sz:1;
106 };
107 u32 value;
108 } feature_bits;
109
110 /* Pad it to PAGE_SIZE so that data starts on page boundary */
111 u8 reserved2[4028];
112
113 /*
114 * Ring data starts here + RingDataStartOffset
115 * !!! DO NOT place any fields below this !!!
116 */
117 u8 buffer[0];
118} __packed;
119
120struct hv_ring_buffer_info {
121 struct hv_ring_buffer *ring_buffer;
122 u32 ring_size; /* Include the shared header */
123 spinlock_t ring_lock;
124
125 u32 ring_datasize; /* < ring_size */
126 u32 priv_read_index;
127};
128
129
130static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
131{
132 u32 read_loc, write_loc, dsize, read;
133
134 dsize = rbi->ring_datasize;
135 read_loc = rbi->ring_buffer->read_index;
136 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
137
138 read = write_loc >= read_loc ? (write_loc - read_loc) :
139 (dsize - read_loc) + write_loc;
140
141 return read;
142}
143
144static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
145{
146 u32 read_loc, write_loc, dsize, write;
147
148 dsize = rbi->ring_datasize;
149 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
150 write_loc = rbi->ring_buffer->write_index;
151
152 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
153 read_loc - write_loc;
154 return write;
155}
156
157/*
158 * VMBUS version is 32 bit entity broken up into
159 * two 16 bit quantities: major_number. minor_number.
160 *
161 * 0 . 13 (Windows Server 2008)
162 * 1 . 1 (Windows 7)
163 * 2 . 4 (Windows 8)
164 * 3 . 0 (Windows 8 R2)
165 * 4 . 0 (Windows 10)
166 */
167
168#define VERSION_WS2008 ((0 << 16) | (13))
169#define VERSION_WIN7 ((1 << 16) | (1))
170#define VERSION_WIN8 ((2 << 16) | (4))
171#define VERSION_WIN8_1 ((3 << 16) | (0))
172#define VERSION_WIN10 ((4 << 16) | (0))
173
174#define VERSION_INVAL -1
175
176#define VERSION_CURRENT VERSION_WIN10
177
178/* Make maximum size of pipe payload of 16K */
179#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
180
181/* Define PipeMode values. */
182#define VMBUS_PIPE_TYPE_BYTE 0x00000000
183#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
184
185/* The size of the user defined data buffer for non-pipe offers. */
186#define MAX_USER_DEFINED_BYTES 120
187
188/* The size of the user defined data buffer for pipe offers. */
189#define MAX_PIPE_USER_DEFINED_BYTES 116
190
191/*
192 * At the center of the Channel Management library is the Channel Offer. This
193 * struct contains the fundamental information about an offer.
194 */
195struct vmbus_channel_offer {
196 uuid_le if_type;
197 uuid_le if_instance;
198
199 /*
200 * These two fields are not currently used.
201 */
202 u64 reserved1;
203 u64 reserved2;
204
205 u16 chn_flags;
206 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
207
208 union {
209 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
210 struct {
211 unsigned char user_def[MAX_USER_DEFINED_BYTES];
212 } std;
213
214 /*
215 * Pipes:
216 * The following sructure is an integrated pipe protocol, which
217 * is implemented on top of standard user-defined data. Pipe
218 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
219 * use.
220 */
221 struct {
222 u32 pipe_mode;
223 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
224 } pipe;
225 } u;
226 /*
227 * The sub_channel_index is defined in win8.
228 */
229 u16 sub_channel_index;
230 u16 reserved3;
231} __packed;
232
233/* Server Flags */
234#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
235#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
236#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
237#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
238#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
239#define VMBUS_CHANNEL_PARENT_OFFER 0x200
240#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
241#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
242
243struct vmpacket_descriptor {
244 u16 type;
245 u16 offset8;
246 u16 len8;
247 u16 flags;
248 u64 trans_id;
249} __packed;
250
251struct vmpacket_header {
252 u32 prev_pkt_start_offset;
253 struct vmpacket_descriptor descriptor;
254} __packed;
255
256struct vmtransfer_page_range {
257 u32 byte_count;
258 u32 byte_offset;
259} __packed;
260
261struct vmtransfer_page_packet_header {
262 struct vmpacket_descriptor d;
263 u16 xfer_pageset_id;
264 u8 sender_owns_set;
265 u8 reserved;
266 u32 range_cnt;
267 struct vmtransfer_page_range ranges[1];
268} __packed;
269
270struct vmgpadl_packet_header {
271 struct vmpacket_descriptor d;
272 u32 gpadl;
273 u32 reserved;
274} __packed;
275
276struct vmadd_remove_transfer_page_set {
277 struct vmpacket_descriptor d;
278 u32 gpadl;
279 u16 xfer_pageset_id;
280 u16 reserved;
281} __packed;
282
283/*
284 * This structure defines a range in guest physical space that can be made to
285 * look virtually contiguous.
286 */
287struct gpa_range {
288 u32 byte_count;
289 u32 byte_offset;
290 u64 pfn_array[0];
291};
292
293/*
294 * This is the format for an Establish Gpadl packet, which contains a handle by
295 * which this GPADL will be known and a set of GPA ranges associated with it.
296 * This can be converted to a MDL by the guest OS. If there are multiple GPA
297 * ranges, then the resulting MDL will be "chained," representing multiple VA
298 * ranges.
299 */
300struct vmestablish_gpadl {
301 struct vmpacket_descriptor d;
302 u32 gpadl;
303 u32 range_cnt;
304 struct gpa_range range[1];
305} __packed;
306
307/*
308 * This is the format for a Teardown Gpadl packet, which indicates that the
309 * GPADL handle in the Establish Gpadl packet will never be referenced again.
310 */
311struct vmteardown_gpadl {
312 struct vmpacket_descriptor d;
313 u32 gpadl;
314 u32 reserved; /* for alignment to a 8-byte boundary */
315} __packed;
316
317/*
318 * This is the format for a GPA-Direct packet, which contains a set of GPA
319 * ranges, in addition to commands and/or data.
320 */
321struct vmdata_gpa_direct {
322 struct vmpacket_descriptor d;
323 u32 reserved;
324 u32 range_cnt;
325 struct gpa_range range[1];
326} __packed;
327
328/* This is the format for a Additional Data Packet. */
329struct vmadditional_data {
330 struct vmpacket_descriptor d;
331 u64 total_bytes;
332 u32 offset;
333 u32 byte_cnt;
334 unsigned char data[1];
335} __packed;
336
337union vmpacket_largest_possible_header {
338 struct vmpacket_descriptor simple_hdr;
339 struct vmtransfer_page_packet_header xfer_page_hdr;
340 struct vmgpadl_packet_header gpadl_hdr;
341 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
342 struct vmestablish_gpadl establish_gpadl_hdr;
343 struct vmteardown_gpadl teardown_gpadl_hdr;
344 struct vmdata_gpa_direct data_gpa_direct_hdr;
345};
346
347#define VMPACKET_DATA_START_ADDRESS(__packet) \
348 (void *)(((unsigned char *)__packet) + \
349 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
350
351#define VMPACKET_DATA_LENGTH(__packet) \
352 ((((struct vmpacket_descriptor)__packet)->len8 - \
353 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
354
355#define VMPACKET_TRANSFER_MODE(__packet) \
356 (((struct IMPACT)__packet)->type)
357
358enum vmbus_packet_type {
359 VM_PKT_INVALID = 0x0,
360 VM_PKT_SYNCH = 0x1,
361 VM_PKT_ADD_XFER_PAGESET = 0x2,
362 VM_PKT_RM_XFER_PAGESET = 0x3,
363 VM_PKT_ESTABLISH_GPADL = 0x4,
364 VM_PKT_TEARDOWN_GPADL = 0x5,
365 VM_PKT_DATA_INBAND = 0x6,
366 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
367 VM_PKT_DATA_USING_GPADL = 0x8,
368 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
369 VM_PKT_CANCEL_REQUEST = 0xa,
370 VM_PKT_COMP = 0xb,
371 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
372 VM_PKT_ADDITIONAL_DATA = 0xd
373};
374
375#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
376
377
378/* Version 1 messages */
379enum vmbus_channel_message_type {
380 CHANNELMSG_INVALID = 0,
381 CHANNELMSG_OFFERCHANNEL = 1,
382 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
383 CHANNELMSG_REQUESTOFFERS = 3,
384 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
385 CHANNELMSG_OPENCHANNEL = 5,
386 CHANNELMSG_OPENCHANNEL_RESULT = 6,
387 CHANNELMSG_CLOSECHANNEL = 7,
388 CHANNELMSG_GPADL_HEADER = 8,
389 CHANNELMSG_GPADL_BODY = 9,
390 CHANNELMSG_GPADL_CREATED = 10,
391 CHANNELMSG_GPADL_TEARDOWN = 11,
392 CHANNELMSG_GPADL_TORNDOWN = 12,
393 CHANNELMSG_RELID_RELEASED = 13,
394 CHANNELMSG_INITIATE_CONTACT = 14,
395 CHANNELMSG_VERSION_RESPONSE = 15,
396 CHANNELMSG_UNLOAD = 16,
397 CHANNELMSG_UNLOAD_RESPONSE = 17,
398 CHANNELMSG_18 = 18,
399 CHANNELMSG_19 = 19,
400 CHANNELMSG_20 = 20,
401 CHANNELMSG_TL_CONNECT_REQUEST = 21,
402 CHANNELMSG_COUNT
403};
404
405struct vmbus_channel_message_header {
406 enum vmbus_channel_message_type msgtype;
407 u32 padding;
408} __packed;
409
410/* Query VMBus Version parameters */
411struct vmbus_channel_query_vmbus_version {
412 struct vmbus_channel_message_header header;
413 u32 version;
414} __packed;
415
416/* VMBus Version Supported parameters */
417struct vmbus_channel_version_supported {
418 struct vmbus_channel_message_header header;
419 u8 version_supported;
420} __packed;
421
422/* Offer Channel parameters */
423struct vmbus_channel_offer_channel {
424 struct vmbus_channel_message_header header;
425 struct vmbus_channel_offer offer;
426 u32 child_relid;
427 u8 monitorid;
428 /*
429 * win7 and beyond splits this field into a bit field.
430 */
431 u8 monitor_allocated:1;
432 u8 reserved:7;
433 /*
434 * These are new fields added in win7 and later.
435 * Do not access these fields without checking the
436 * negotiated protocol.
437 *
438 * If "is_dedicated_interrupt" is set, we must not set the
439 * associated bit in the channel bitmap while sending the
440 * interrupt to the host.
441 *
442 * connection_id is to be used in signaling the host.
443 */
444 u16 is_dedicated_interrupt:1;
445 u16 reserved1:15;
446 u32 connection_id;
447} __packed;
448
449/* Rescind Offer parameters */
450struct vmbus_channel_rescind_offer {
451 struct vmbus_channel_message_header header;
452 u32 child_relid;
453} __packed;
454
455static inline u32
456hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
457{
458 return rbi->ring_buffer->pending_send_sz;
459}
460
461/*
462 * Request Offer -- no parameters, SynIC message contains the partition ID
463 * Set Snoop -- no parameters, SynIC message contains the partition ID
464 * Clear Snoop -- no parameters, SynIC message contains the partition ID
465 * All Offers Delivered -- no parameters, SynIC message contains the partition
466 * ID
467 * Flush Client -- no parameters, SynIC message contains the partition ID
468 */
469
470/* Open Channel parameters */
471struct vmbus_channel_open_channel {
472 struct vmbus_channel_message_header header;
473
474 /* Identifies the specific VMBus channel that is being opened. */
475 u32 child_relid;
476
477 /* ID making a particular open request at a channel offer unique. */
478 u32 openid;
479
480 /* GPADL for the channel's ring buffer. */
481 u32 ringbuffer_gpadlhandle;
482
483 /*
484 * Starting with win8, this field will be used to specify
485 * the target virtual processor on which to deliver the interrupt for
486 * the host to guest communication.
487 * Prior to win8, incoming channel interrupts would only
488 * be delivered on cpu 0. Setting this value to 0 would
489 * preserve the earlier behavior.
490 */
491 u32 target_vp;
492
493 /*
494 * The upstream ring buffer begins at offset zero in the memory
495 * described by RingBufferGpadlHandle. The downstream ring buffer
496 * follows it at this offset (in pages).
497 */
498 u32 downstream_ringbuffer_pageoffset;
499
500 /* User-specific data to be passed along to the server endpoint. */
501 unsigned char userdata[MAX_USER_DEFINED_BYTES];
502} __packed;
503
504/* Open Channel Result parameters */
505struct vmbus_channel_open_result {
506 struct vmbus_channel_message_header header;
507 u32 child_relid;
508 u32 openid;
509 u32 status;
510} __packed;
511
512/* Close channel parameters; */
513struct vmbus_channel_close_channel {
514 struct vmbus_channel_message_header header;
515 u32 child_relid;
516} __packed;
517
518/* Channel Message GPADL */
519#define GPADL_TYPE_RING_BUFFER 1
520#define GPADL_TYPE_SERVER_SAVE_AREA 2
521#define GPADL_TYPE_TRANSACTION 8
522
523/*
524 * The number of PFNs in a GPADL message is defined by the number of
525 * pages that would be spanned by ByteCount and ByteOffset. If the
526 * implied number of PFNs won't fit in this packet, there will be a
527 * follow-up packet that contains more.
528 */
529struct vmbus_channel_gpadl_header {
530 struct vmbus_channel_message_header header;
531 u32 child_relid;
532 u32 gpadl;
533 u16 range_buflen;
534 u16 rangecount;
535 struct gpa_range range[0];
536} __packed;
537
538/* This is the followup packet that contains more PFNs. */
539struct vmbus_channel_gpadl_body {
540 struct vmbus_channel_message_header header;
541 u32 msgnumber;
542 u32 gpadl;
543 u64 pfn[0];
544} __packed;
545
546struct vmbus_channel_gpadl_created {
547 struct vmbus_channel_message_header header;
548 u32 child_relid;
549 u32 gpadl;
550 u32 creation_status;
551} __packed;
552
553struct vmbus_channel_gpadl_teardown {
554 struct vmbus_channel_message_header header;
555 u32 child_relid;
556 u32 gpadl;
557} __packed;
558
559struct vmbus_channel_gpadl_torndown {
560 struct vmbus_channel_message_header header;
561 u32 gpadl;
562} __packed;
563
564struct vmbus_channel_relid_released {
565 struct vmbus_channel_message_header header;
566 u32 child_relid;
567} __packed;
568
569struct vmbus_channel_initiate_contact {
570 struct vmbus_channel_message_header header;
571 u32 vmbus_version_requested;
572 u32 target_vcpu; /* The VCPU the host should respond to */
573 u64 interrupt_page;
574 u64 monitor_page1;
575 u64 monitor_page2;
576} __packed;
577
578/* Hyper-V socket: guest's connect()-ing to host */
579struct vmbus_channel_tl_connect_request {
580 struct vmbus_channel_message_header header;
581 uuid_le guest_endpoint_id;
582 uuid_le host_service_id;
583} __packed;
584
585struct vmbus_channel_version_response {
586 struct vmbus_channel_message_header header;
587 u8 version_supported;
588} __packed;
589
590enum vmbus_channel_state {
591 CHANNEL_OFFER_STATE,
592 CHANNEL_OPENING_STATE,
593 CHANNEL_OPEN_STATE,
594 CHANNEL_OPENED_STATE,
595};
596
597/*
598 * Represents each channel msg on the vmbus connection This is a
599 * variable-size data structure depending on the msg type itself
600 */
601struct vmbus_channel_msginfo {
602 /* Bookkeeping stuff */
603 struct list_head msglistentry;
604
605 /* So far, this is only used to handle gpadl body message */
606 struct list_head submsglist;
607
608 /* Synchronize the request/response if needed */
609 struct completion waitevent;
610 struct vmbus_channel *waiting_channel;
611 union {
612 struct vmbus_channel_version_supported version_supported;
613 struct vmbus_channel_open_result open_result;
614 struct vmbus_channel_gpadl_torndown gpadl_torndown;
615 struct vmbus_channel_gpadl_created gpadl_created;
616 struct vmbus_channel_version_response version_response;
617 } response;
618
619 u32 msgsize;
620 /*
621 * The channel message that goes out on the "wire".
622 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
623 */
624 unsigned char msg[0];
625};
626
627struct vmbus_close_msg {
628 struct vmbus_channel_msginfo info;
629 struct vmbus_channel_close_channel msg;
630};
631
632/* Define connection identifier type. */
633union hv_connection_id {
634 u32 asu32;
635 struct {
636 u32 id:24;
637 u32 reserved:8;
638 } u;
639};
640
641enum hv_numa_policy {
642 HV_BALANCED = 0,
643 HV_LOCALIZED,
644};
645
646enum vmbus_device_type {
647 HV_IDE = 0,
648 HV_SCSI,
649 HV_FC,
650 HV_NIC,
651 HV_ND,
652 HV_PCIE,
653 HV_FB,
654 HV_KBD,
655 HV_MOUSE,
656 HV_KVP,
657 HV_TS,
658 HV_HB,
659 HV_SHUTDOWN,
660 HV_FCOPY,
661 HV_BACKUP,
662 HV_DM,
663 HV_UNKNOWN,
664};
665
666struct vmbus_device {
667 u16 dev_type;
668 uuid_le guid;
669 bool perf_device;
670};
671
672struct vmbus_channel {
673 struct list_head listentry;
674
675 struct hv_device *device_obj;
676
677 enum vmbus_channel_state state;
678
679 struct vmbus_channel_offer_channel offermsg;
680 /*
681 * These are based on the OfferMsg.MonitorId.
682 * Save it here for easy access.
683 */
684 u8 monitor_grp;
685 u8 monitor_bit;
686
687 bool rescind; /* got rescind msg */
688 struct completion rescind_event;
689
690 u32 ringbuffer_gpadlhandle;
691
692 /* Allocated memory for ring buffer */
693 void *ringbuffer_pages;
694 u32 ringbuffer_pagecount;
695 struct hv_ring_buffer_info outbound; /* send to parent */
696 struct hv_ring_buffer_info inbound; /* receive from parent */
697
698 struct vmbus_close_msg close_msg;
699
700 /* Statistics */
701 u64 interrupts; /* Host to Guest interrupts */
702 u64 sig_events; /* Guest to Host events */
703
704 /* Channel callback's invoked in softirq context */
705 struct tasklet_struct callback_event;
706 void (*onchannel_callback)(void *context);
707 void *channel_callback_context;
708
709 /*
710 * A channel can be marked for one of three modes of reading:
711 * BATCHED - callback called from taslket and should read
712 * channel until empty. Interrupts from the host
713 * are masked while read is in process (default).
714 * DIRECT - callback called from tasklet (softirq).
715 * ISR - callback called in interrupt context and must
716 * invoke its own deferred processing.
717 * Host interrupts are disabled and must be re-enabled
718 * when ring is empty.
719 */
720 enum hv_callback_mode {
721 HV_CALL_BATCHED,
722 HV_CALL_DIRECT,
723 HV_CALL_ISR
724 } callback_mode;
725
726 bool is_dedicated_interrupt;
727 u64 sig_event;
728
729 /*
730 * Starting with win8, this field will be used to specify
731 * the target virtual processor on which to deliver the interrupt for
732 * the host to guest communication.
733 * Prior to win8, incoming channel interrupts would only
734 * be delivered on cpu 0. Setting this value to 0 would
735 * preserve the earlier behavior.
736 */
737 u32 target_vp;
738 /* The corresponding CPUID in the guest */
739 u32 target_cpu;
740 /*
741 * State to manage the CPU affiliation of channels.
742 */
743 struct cpumask alloced_cpus_in_node;
744 int numa_node;
745 /*
746 * Support for sub-channels. For high performance devices,
747 * it will be useful to have multiple sub-channels to support
748 * a scalable communication infrastructure with the host.
749 * The support for sub-channels is implemented as an extention
750 * to the current infrastructure.
751 * The initial offer is considered the primary channel and this
752 * offer message will indicate if the host supports sub-channels.
753 * The guest is free to ask for sub-channels to be offerred and can
754 * open these sub-channels as a normal "primary" channel. However,
755 * all sub-channels will have the same type and instance guids as the
756 * primary channel. Requests sent on a given channel will result in a
757 * response on the same channel.
758 */
759
760 /*
761 * Sub-channel creation callback. This callback will be called in
762 * process context when a sub-channel offer is received from the host.
763 * The guest can open the sub-channel in the context of this callback.
764 */
765 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
766
767 /*
768 * Channel rescind callback. Some channels (the hvsock ones), need to
769 * register a callback which is invoked in vmbus_onoffer_rescind().
770 */
771 void (*chn_rescind_callback)(struct vmbus_channel *channel);
772
773 /*
774 * The spinlock to protect the structure. It is being used to protect
775 * test-and-set access to various attributes of the structure as well
776 * as all sc_list operations.
777 */
778 spinlock_t lock;
779 /*
780 * All Sub-channels of a primary channel are linked here.
781 */
782 struct list_head sc_list;
783 /*
784 * Current number of sub-channels.
785 */
786 int num_sc;
787 /*
788 * Number of a sub-channel (position within sc_list) which is supposed
789 * to be used as the next outgoing channel.
790 */
791 int next_oc;
792 /*
793 * The primary channel this sub-channel belongs to.
794 * This will be NULL for the primary channel.
795 */
796 struct vmbus_channel *primary_channel;
797 /*
798 * Support per-channel state for use by vmbus drivers.
799 */
800 void *per_channel_state;
801 /*
802 * To support per-cpu lookup mapping of relid to channel,
803 * link up channels based on their CPU affinity.
804 */
805 struct list_head percpu_list;
806
807 /*
808 * Defer freeing channel until after all cpu's have
809 * gone through grace period.
810 */
811 struct rcu_head rcu;
812
813 /*
814 * For sysfs per-channel properties.
815 */
816 struct kobject kobj;
817
818 /*
819 * For performance critical channels (storage, networking
820 * etc,), Hyper-V has a mechanism to enhance the throughput
821 * at the expense of latency:
822 * When the host is to be signaled, we just set a bit in a shared page
823 * and this bit will be inspected by the hypervisor within a certain
824 * window and if the bit is set, the host will be signaled. The window
825 * of time is the monitor latency - currently around 100 usecs. This
826 * mechanism improves throughput by:
827 *
828 * A) Making the host more efficient - each time it wakes up,
829 * potentially it will process morev number of packets. The
830 * monitor latency allows a batch to build up.
831 * B) By deferring the hypercall to signal, we will also minimize
832 * the interrupts.
833 *
834 * Clearly, these optimizations improve throughput at the expense of
835 * latency. Furthermore, since the channel is shared for both
836 * control and data messages, control messages currently suffer
837 * unnecessary latency adversley impacting performance and boot
838 * time. To fix this issue, permit tagging the channel as being
839 * in "low latency" mode. In this mode, we will bypass the monitor
840 * mechanism.
841 */
842 bool low_latency;
843
844 /*
845 * NUMA distribution policy:
846 * We support two policies:
847 * 1) Balanced: Here all performance critical channels are
848 * distributed evenly amongst all the NUMA nodes.
849 * This policy will be the default policy.
850 * 2) Localized: All channels of a given instance of a
851 * performance critical service will be assigned CPUs
852 * within a selected NUMA node.
853 */
854 enum hv_numa_policy affinity_policy;
855
856 bool probe_done;
857
858};
859
860static inline bool is_hvsock_channel(const struct vmbus_channel *c)
861{
862 return !!(c->offermsg.offer.chn_flags &
863 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
864}
865
866static inline void set_channel_affinity_state(struct vmbus_channel *c,
867 enum hv_numa_policy policy)
868{
869 c->affinity_policy = policy;
870}
871
872static inline void set_channel_read_mode(struct vmbus_channel *c,
873 enum hv_callback_mode mode)
874{
875 c->callback_mode = mode;
876}
877
878static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
879{
880 c->per_channel_state = s;
881}
882
883static inline void *get_per_channel_state(struct vmbus_channel *c)
884{
885 return c->per_channel_state;
886}
887
888static inline void set_channel_pending_send_size(struct vmbus_channel *c,
889 u32 size)
890{
891 c->outbound.ring_buffer->pending_send_sz = size;
892}
893
894static inline void set_low_latency_mode(struct vmbus_channel *c)
895{
896 c->low_latency = true;
897}
898
899static inline void clear_low_latency_mode(struct vmbus_channel *c)
900{
901 c->low_latency = false;
902}
903
904void vmbus_onmessage(void *context);
905
906int vmbus_request_offers(void);
907
908/*
909 * APIs for managing sub-channels.
910 */
911
912void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
913 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
914
915void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
916 void (*chn_rescind_cb)(struct vmbus_channel *));
917
918/*
919 * Retrieve the (sub) channel on which to send an outgoing request.
920 * When a primary channel has multiple sub-channels, we choose a
921 * channel whose VCPU binding is closest to the VCPU on which
922 * this call is being made.
923 */
924struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
925
926/*
927 * Check if sub-channels have already been offerred. This API will be useful
928 * when the driver is unloaded after establishing sub-channels. In this case,
929 * when the driver is re-loaded, the driver would have to check if the
930 * subchannels have already been established before attempting to request
931 * the creation of sub-channels.
932 * This function returns TRUE to indicate that subchannels have already been
933 * created.
934 * This function should be invoked after setting the callback function for
935 * sub-channel creation.
936 */
937bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
938
939/* The format must be the same as struct vmdata_gpa_direct */
940struct vmbus_channel_packet_page_buffer {
941 u16 type;
942 u16 dataoffset8;
943 u16 length8;
944 u16 flags;
945 u64 transactionid;
946 u32 reserved;
947 u32 rangecount;
948 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
949} __packed;
950
951/* The format must be the same as struct vmdata_gpa_direct */
952struct vmbus_channel_packet_multipage_buffer {
953 u16 type;
954 u16 dataoffset8;
955 u16 length8;
956 u16 flags;
957 u64 transactionid;
958 u32 reserved;
959 u32 rangecount; /* Always 1 in this case */
960 struct hv_multipage_buffer range;
961} __packed;
962
963/* The format must be the same as struct vmdata_gpa_direct */
964struct vmbus_packet_mpb_array {
965 u16 type;
966 u16 dataoffset8;
967 u16 length8;
968 u16 flags;
969 u64 transactionid;
970 u32 reserved;
971 u32 rangecount; /* Always 1 in this case */
972 struct hv_mpb_array range;
973} __packed;
974
975
976extern int vmbus_open(struct vmbus_channel *channel,
977 u32 send_ringbuffersize,
978 u32 recv_ringbuffersize,
979 void *userdata,
980 u32 userdatalen,
981 void (*onchannel_callback)(void *context),
982 void *context);
983
984extern void vmbus_close(struct vmbus_channel *channel);
985
986extern int vmbus_sendpacket(struct vmbus_channel *channel,
987 void *buffer,
988 u32 bufferLen,
989 u64 requestid,
990 enum vmbus_packet_type type,
991 u32 flags);
992
993extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
994 struct hv_page_buffer pagebuffers[],
995 u32 pagecount,
996 void *buffer,
997 u32 bufferlen,
998 u64 requestid);
999
1000extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1001 struct vmbus_packet_mpb_array *mpb,
1002 u32 desc_size,
1003 void *buffer,
1004 u32 bufferlen,
1005 u64 requestid);
1006
1007extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1008 void *kbuffer,
1009 u32 size,
1010 u32 *gpadl_handle);
1011
1012extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1013 u32 gpadl_handle);
1014
1015extern int vmbus_recvpacket(struct vmbus_channel *channel,
1016 void *buffer,
1017 u32 bufferlen,
1018 u32 *buffer_actual_len,
1019 u64 *requestid);
1020
1021extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1022 void *buffer,
1023 u32 bufferlen,
1024 u32 *buffer_actual_len,
1025 u64 *requestid);
1026
1027
1028extern void vmbus_ontimer(unsigned long data);
1029
1030/* Base driver object */
1031struct hv_driver {
1032 const char *name;
1033
1034 /*
1035 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1036 * channel flag, actually doesn't mean a synthetic device because the
1037 * offer's if_type/if_instance can change for every new hvsock
1038 * connection.
1039 *
1040 * However, to facilitate the notification of new-offer/rescind-offer
1041 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1042 * a special vmbus device, and hence we need the below flag to
1043 * indicate if the driver is the hvsock driver or not: we need to
1044 * specially treat the hvosck offer & driver in vmbus_match().
1045 */
1046 bool hvsock;
1047
1048 /* the device type supported by this driver */
1049 uuid_le dev_type;
1050 const struct hv_vmbus_device_id *id_table;
1051
1052 struct device_driver driver;
1053
1054 /* dynamic device GUID's */
1055 struct {
1056 spinlock_t lock;
1057 struct list_head list;
1058 } dynids;
1059
1060 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1061 int (*remove)(struct hv_device *);
1062 void (*shutdown)(struct hv_device *);
1063
1064};
1065
1066/* Base device object */
1067struct hv_device {
1068 /* the device type id of this device */
1069 uuid_le dev_type;
1070
1071 /* the device instance id of this device */
1072 uuid_le dev_instance;
1073 u16 vendor_id;
1074 u16 device_id;
1075
1076 struct device device;
1077
1078 struct vmbus_channel *channel;
1079 struct kset *channels_kset;
1080};
1081
1082
1083static inline struct hv_device *device_to_hv_device(struct device *d)
1084{
1085 return container_of(d, struct hv_device, device);
1086}
1087
1088static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1089{
1090 return container_of(d, struct hv_driver, driver);
1091}
1092
1093static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1094{
1095 dev_set_drvdata(&dev->device, data);
1096}
1097
1098static inline void *hv_get_drvdata(struct hv_device *dev)
1099{
1100 return dev_get_drvdata(&dev->device);
1101}
1102
1103struct hv_ring_buffer_debug_info {
1104 u32 current_interrupt_mask;
1105 u32 current_read_index;
1106 u32 current_write_index;
1107 u32 bytes_avail_toread;
1108 u32 bytes_avail_towrite;
1109};
1110
1111void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1112 struct hv_ring_buffer_debug_info *debug_info);
1113
1114/* Vmbus interface */
1115#define vmbus_driver_register(driver) \
1116 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1117int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1118 struct module *owner,
1119 const char *mod_name);
1120void vmbus_driver_unregister(struct hv_driver *hv_driver);
1121
1122void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1123
1124int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1125 resource_size_t min, resource_size_t max,
1126 resource_size_t size, resource_size_t align,
1127 bool fb_overlap_ok);
1128void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1129
1130/*
1131 * GUID definitions of various offer types - services offered to the guest.
1132 */
1133
1134/*
1135 * Network GUID
1136 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1137 */
1138#define HV_NIC_GUID \
1139 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1140 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1141
1142/*
1143 * IDE GUID
1144 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1145 */
1146#define HV_IDE_GUID \
1147 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1148 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1149
1150/*
1151 * SCSI GUID
1152 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1153 */
1154#define HV_SCSI_GUID \
1155 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1156 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1157
1158/*
1159 * Shutdown GUID
1160 * {0e0b6031-5213-4934-818b-38d90ced39db}
1161 */
1162#define HV_SHUTDOWN_GUID \
1163 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1164 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1165
1166/*
1167 * Time Synch GUID
1168 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1169 */
1170#define HV_TS_GUID \
1171 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1172 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1173
1174/*
1175 * Heartbeat GUID
1176 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1177 */
1178#define HV_HEART_BEAT_GUID \
1179 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1180 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1181
1182/*
1183 * KVP GUID
1184 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1185 */
1186#define HV_KVP_GUID \
1187 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1188 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1189
1190/*
1191 * Dynamic memory GUID
1192 * {525074dc-8985-46e2-8057-a307dc18a502}
1193 */
1194#define HV_DM_GUID \
1195 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1196 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1197
1198/*
1199 * Mouse GUID
1200 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1201 */
1202#define HV_MOUSE_GUID \
1203 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1204 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1205
1206/*
1207 * Keyboard GUID
1208 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1209 */
1210#define HV_KBD_GUID \
1211 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1212 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1213
1214/*
1215 * VSS (Backup/Restore) GUID
1216 */
1217#define HV_VSS_GUID \
1218 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1219 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1220/*
1221 * Synthetic Video GUID
1222 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1223 */
1224#define HV_SYNTHVID_GUID \
1225 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1226 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1227
1228/*
1229 * Synthetic FC GUID
1230 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1231 */
1232#define HV_SYNTHFC_GUID \
1233 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1234 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1235
1236/*
1237 * Guest File Copy Service
1238 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1239 */
1240
1241#define HV_FCOPY_GUID \
1242 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1243 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1244
1245/*
1246 * NetworkDirect. This is the guest RDMA service.
1247 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1248 */
1249#define HV_ND_GUID \
1250 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1251 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1252
1253/*
1254 * PCI Express Pass Through
1255 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1256 */
1257
1258#define HV_PCIE_GUID \
1259 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1260 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1261
1262/*
1263 * Linux doesn't support the 3 devices: the first two are for
1264 * Automatic Virtual Machine Activation, and the third is for
1265 * Remote Desktop Virtualization.
1266 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1267 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1268 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1269 */
1270
1271#define HV_AVMA1_GUID \
1272 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1273 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1274
1275#define HV_AVMA2_GUID \
1276 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1277 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1278
1279#define HV_RDV_GUID \
1280 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1281 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1282
1283/*
1284 * Common header for Hyper-V ICs
1285 */
1286
1287#define ICMSGTYPE_NEGOTIATE 0
1288#define ICMSGTYPE_HEARTBEAT 1
1289#define ICMSGTYPE_KVPEXCHANGE 2
1290#define ICMSGTYPE_SHUTDOWN 3
1291#define ICMSGTYPE_TIMESYNC 4
1292#define ICMSGTYPE_VSS 5
1293
1294#define ICMSGHDRFLAG_TRANSACTION 1
1295#define ICMSGHDRFLAG_REQUEST 2
1296#define ICMSGHDRFLAG_RESPONSE 4
1297
1298
1299/*
1300 * While we want to handle util services as regular devices,
1301 * there is only one instance of each of these services; so
1302 * we statically allocate the service specific state.
1303 */
1304
1305struct hv_util_service {
1306 u8 *recv_buffer;
1307 void *channel;
1308 void (*util_cb)(void *);
1309 int (*util_init)(struct hv_util_service *);
1310 void (*util_deinit)(void);
1311};
1312
1313struct vmbuspipe_hdr {
1314 u32 flags;
1315 u32 msgsize;
1316} __packed;
1317
1318struct ic_version {
1319 u16 major;
1320 u16 minor;
1321} __packed;
1322
1323struct icmsg_hdr {
1324 struct ic_version icverframe;
1325 u16 icmsgtype;
1326 struct ic_version icvermsg;
1327 u16 icmsgsize;
1328 u32 status;
1329 u8 ictransaction_id;
1330 u8 icflags;
1331 u8 reserved[2];
1332} __packed;
1333
1334struct icmsg_negotiate {
1335 u16 icframe_vercnt;
1336 u16 icmsg_vercnt;
1337 u32 reserved;
1338 struct ic_version icversion_data[1]; /* any size array */
1339} __packed;
1340
1341struct shutdown_msg_data {
1342 u32 reason_code;
1343 u32 timeout_seconds;
1344 u32 flags;
1345 u8 display_message[2048];
1346} __packed;
1347
1348struct heartbeat_msg_data {
1349 u64 seq_num;
1350 u32 reserved[8];
1351} __packed;
1352
1353/* Time Sync IC defs */
1354#define ICTIMESYNCFLAG_PROBE 0
1355#define ICTIMESYNCFLAG_SYNC 1
1356#define ICTIMESYNCFLAG_SAMPLE 2
1357
1358#ifdef __x86_64__
1359#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1360#else
1361#define WLTIMEDELTA 116444736000000000LL
1362#endif
1363
1364struct ictimesync_data {
1365 u64 parenttime;
1366 u64 childtime;
1367 u64 roundtriptime;
1368 u8 flags;
1369} __packed;
1370
1371struct ictimesync_ref_data {
1372 u64 parenttime;
1373 u64 vmreferencetime;
1374 u8 flags;
1375 char leapflags;
1376 char stratum;
1377 u8 reserved[3];
1378} __packed;
1379
1380struct hyperv_service_callback {
1381 u8 msg_type;
1382 char *log_msg;
1383 uuid_le data;
1384 struct vmbus_channel *channel;
1385 void (*callback)(void *context);
1386};
1387
1388#define MAX_SRV_VER 0x7ffffff
1389extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1390 const int *fw_version, int fw_vercnt,
1391 const int *srv_version, int srv_vercnt,
1392 int *nego_fw_version, int *nego_srv_version);
1393
1394void hv_process_channel_removal(u32 relid);
1395
1396void vmbus_setevent(struct vmbus_channel *channel);
1397/*
1398 * Negotiated version with the Host.
1399 */
1400
1401extern __u32 vmbus_proto_version;
1402
1403int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1404 const uuid_le *shv_host_servie_id);
1405void vmbus_set_event(struct vmbus_channel *channel);
1406
1407/* Get the start of the ring buffer. */
1408static inline void *
1409hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1410{
1411 return ring_info->ring_buffer->buffer;
1412}
1413
1414/*
1415 * Mask off host interrupt callback notifications
1416 */
1417static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1418{
1419 rbi->ring_buffer->interrupt_mask = 1;
1420
1421 /* make sure mask update is not reordered */
1422 virt_mb();
1423}
1424
1425/*
1426 * Re-enable host callback and return number of outstanding bytes
1427 */
1428static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1429{
1430
1431 rbi->ring_buffer->interrupt_mask = 0;
1432
1433 /* make sure mask update is not reordered */
1434 virt_mb();
1435
1436 /*
1437 * Now check to see if the ring buffer is still empty.
1438 * If it is not, we raced and we need to process new
1439 * incoming messages.
1440 */
1441 return hv_get_bytes_to_read(rbi);
1442}
1443
1444/*
1445 * An API to support in-place processing of incoming VMBUS packets.
1446 */
1447
1448/* Get data payload associated with descriptor */
1449static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1450{
1451 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1452}
1453
1454/* Get data size associated with descriptor */
1455static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1456{
1457 return (desc->len8 << 3) - (desc->offset8 << 3);
1458}
1459
1460
1461struct vmpacket_descriptor *
1462hv_pkt_iter_first(struct vmbus_channel *channel);
1463
1464struct vmpacket_descriptor *
1465__hv_pkt_iter_next(struct vmbus_channel *channel,
1466 const struct vmpacket_descriptor *pkt);
1467
1468void hv_pkt_iter_close(struct vmbus_channel *channel);
1469
1470/*
1471 * Get next packet descriptor from iterator
1472 * If at end of list, return NULL and update host.
1473 */
1474static inline struct vmpacket_descriptor *
1475hv_pkt_iter_next(struct vmbus_channel *channel,
1476 const struct vmpacket_descriptor *pkt)
1477{
1478 struct vmpacket_descriptor *nxt;
1479
1480 nxt = __hv_pkt_iter_next(channel, pkt);
1481 if (!nxt)
1482 hv_pkt_iter_close(channel);
1483
1484 return nxt;
1485}
1486
1487#define foreach_vmbus_pkt(pkt, channel) \
1488 for (pkt = hv_pkt_iter_first(channel); pkt; \
1489 pkt = hv_pkt_iter_next(channel, pkt))
1490
1491#endif /* _HYPERV_H */