Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/perf_event.h>
   7#include <linux/mutex.h>
   8#include <linux/list.h>
   9#include <linux/stringify.h>
  10#include <linux/highmem.h>
  11#include <linux/mm.h>
  12#include <linux/vmalloc.h>
  13#include <linux/memory.h>
  14#include <linux/stop_machine.h>
  15#include <linux/slab.h>
  16#include <linux/kdebug.h>
  17#include <linux/kprobes.h>
  18#include <linux/mmu_context.h>
  19#include <linux/bsearch.h>
  20#include <linux/sync_core.h>
  21#include <asm/text-patching.h>
  22#include <asm/alternative.h>
  23#include <asm/sections.h>
 
  24#include <asm/mce.h>
  25#include <asm/nmi.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/fixmap.h>
  31#include <asm/paravirt.h>
  32
  33int __read_mostly alternatives_patched;
  34
  35EXPORT_SYMBOL_GPL(alternatives_patched);
  36
  37#define MAX_PATCH_LEN (255-1)
  38
  39static int __initdata_or_module debug_alternative;
  40
  41static int __init debug_alt(char *str)
  42{
  43	debug_alternative = 1;
  44	return 1;
  45}
  46__setup("debug-alternative", debug_alt);
  47
  48static int noreplace_smp;
  49
  50static int __init setup_noreplace_smp(char *str)
  51{
  52	noreplace_smp = 1;
  53	return 1;
  54}
  55__setup("noreplace-smp", setup_noreplace_smp);
  56
  57#define DPRINTK(fmt, args...)						\
  58do {									\
  59	if (debug_alternative)						\
  60		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
  61} while (0)
  62
  63#define DUMP_BYTES(buf, len, fmt, args...)				\
  64do {									\
  65	if (unlikely(debug_alternative)) {				\
  66		int j;							\
  67									\
  68		if (!(len))						\
  69			break;						\
  70									\
  71		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
  72		for (j = 0; j < (len) - 1; j++)				\
  73			printk(KERN_CONT "%02hhx ", buf[j]);		\
  74		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  75	}								\
  76} while (0)
  77
  78static const unsigned char x86nops[] =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79{
  80	BYTES_NOP1,
  81	BYTES_NOP2,
  82	BYTES_NOP3,
  83	BYTES_NOP4,
  84	BYTES_NOP5,
  85	BYTES_NOP6,
  86	BYTES_NOP7,
  87	BYTES_NOP8,
 
 
  88};
 
  89
  90const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
 
 
 
 
 
 
 
 
 
 
 
 
 
  91{
  92	NULL,
  93	x86nops,
  94	x86nops + 1,
  95	x86nops + 1 + 2,
  96	x86nops + 1 + 2 + 3,
  97	x86nops + 1 + 2 + 3 + 4,
  98	x86nops + 1 + 2 + 3 + 4 + 5,
  99	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
 100	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 
 101};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 104static void __init_or_module add_nops(void *insns, unsigned int len)
 105{
 106	while (len > 0) {
 107		unsigned int noplen = len;
 108		if (noplen > ASM_NOP_MAX)
 109			noplen = ASM_NOP_MAX;
 110		memcpy(insns, x86_nops[noplen], noplen);
 111		insns += noplen;
 112		len -= noplen;
 113	}
 114}
 115
 116extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 117extern s32 __smp_locks[], __smp_locks_end[];
 118void text_poke_early(void *addr, const void *opcode, size_t len);
 119
 120/*
 121 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 122 */
 123static inline bool is_jmp(const u8 opcode)
 124{
 125	return opcode == 0xeb || opcode == 0xe9;
 126}
 127
 128static void __init_or_module
 129recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 130{
 131	u8 *next_rip, *tgt_rip;
 132	s32 n_dspl, o_dspl;
 133	int repl_len;
 134
 135	if (a->replacementlen != 5)
 136		return;
 137
 138	o_dspl = *(s32 *)(insn_buff + 1);
 139
 140	/* next_rip of the replacement JMP */
 141	next_rip = repl_insn + a->replacementlen;
 142	/* target rip of the replacement JMP */
 143	tgt_rip  = next_rip + o_dspl;
 144	n_dspl = tgt_rip - orig_insn;
 145
 146	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 147
 148	if (tgt_rip - orig_insn >= 0) {
 149		if (n_dspl - 2 <= 127)
 150			goto two_byte_jmp;
 151		else
 152			goto five_byte_jmp;
 153	/* negative offset */
 154	} else {
 155		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 156			goto two_byte_jmp;
 157		else
 158			goto five_byte_jmp;
 159	}
 160
 161two_byte_jmp:
 162	n_dspl -= 2;
 163
 164	insn_buff[0] = 0xeb;
 165	insn_buff[1] = (s8)n_dspl;
 166	add_nops(insn_buff + 2, 3);
 167
 168	repl_len = 2;
 169	goto done;
 170
 171five_byte_jmp:
 172	n_dspl -= 5;
 173
 174	insn_buff[0] = 0xe9;
 175	*(s32 *)&insn_buff[1] = n_dspl;
 176
 177	repl_len = 5;
 178
 179done:
 180
 181	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 182		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 183}
 184
 185/*
 186 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
 187 *
 188 * @instr: instruction byte stream
 189 * @instrlen: length of the above
 190 * @off: offset within @instr where the first NOP has been detected
 191 *
 192 * Return: number of NOPs found (and replaced).
 193 */
 194static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
 195{
 196	unsigned long flags;
 197	int i = off, nnops;
 198
 199	while (i < instrlen) {
 200		if (instr[i] != 0x90)
 201			break;
 202
 203		i++;
 204	}
 205
 206	nnops = i - off;
 207
 208	if (nnops <= 1)
 209		return nnops;
 210
 211	local_irq_save(flags);
 212	add_nops(instr + off, nnops);
 213	local_irq_restore(flags);
 214
 215	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
 216
 217	return nnops;
 218}
 219
 220/*
 221 * "noinline" to cause control flow change and thus invalidate I$ and
 222 * cause refetch after modification.
 223 */
 224static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 225{
 226	struct insn insn;
 227	int i = 0;
 228
 229	/*
 230	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
 231	 * ones.
 232	 */
 233	for (;;) {
 234		if (insn_decode_kernel(&insn, &instr[i]))
 235			return;
 236
 237		/*
 238		 * See if this and any potentially following NOPs can be
 239		 * optimized.
 240		 */
 241		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
 242			i += optimize_nops_range(instr, a->instrlen, i);
 243		else
 244			i += insn.length;
 245
 246		if (i >= a->instrlen)
 247			return;
 248	}
 249}
 250
 251/*
 252 * Replace instructions with better alternatives for this CPU type. This runs
 253 * before SMP is initialized to avoid SMP problems with self modifying code.
 254 * This implies that asymmetric systems where APs have less capabilities than
 255 * the boot processor are not handled. Tough. Make sure you disable such
 256 * features by hand.
 257 *
 258 * Marked "noinline" to cause control flow change and thus insn cache
 259 * to refetch changed I$ lines.
 260 */
 261void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 262						  struct alt_instr *end)
 263{
 264	struct alt_instr *a;
 265	u8 *instr, *replacement;
 266	u8 insn_buff[MAX_PATCH_LEN];
 267
 268	DPRINTK("alt table %px, -> %px", start, end);
 269	/*
 270	 * The scan order should be from start to end. A later scanned
 271	 * alternative code can overwrite previously scanned alternative code.
 272	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 273	 * patch code.
 274	 *
 275	 * So be careful if you want to change the scan order to any other
 276	 * order.
 277	 */
 278	for (a = start; a < end; a++) {
 279		int insn_buff_sz = 0;
 280		/* Mask away "NOT" flag bit for feature to test. */
 281		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
 282
 283		instr = (u8 *)&a->instr_offset + a->instr_offset;
 284		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 285		BUG_ON(a->instrlen > sizeof(insn_buff));
 286		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
 
 
 
 287
 288		/*
 289		 * Patch if either:
 290		 * - feature is present
 291		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
 292		 *   patch if feature is *NOT* present.
 293		 */
 294		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
 295			goto next;
 296
 297		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
 298			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
 299			feature >> 5,
 300			feature & 0x1f,
 301			instr, instr, a->instrlen,
 302			replacement, a->replacementlen);
 303
 304		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
 305		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
 306
 307		memcpy(insn_buff, replacement, a->replacementlen);
 308		insn_buff_sz = a->replacementlen;
 309
 310		/*
 311		 * 0xe8 is a relative jump; fix the offset.
 312		 *
 313		 * Instruction length is checked before the opcode to avoid
 314		 * accessing uninitialized bytes for zero-length replacements.
 315		 */
 316		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 317			*(s32 *)(insn_buff + 1) += replacement - instr;
 318			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 319				*(s32 *)(insn_buff + 1),
 320				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 321		}
 322
 323		if (a->replacementlen && is_jmp(replacement[0]))
 324			recompute_jump(a, instr, replacement, insn_buff);
 325
 326		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
 327			insn_buff[insn_buff_sz] = 0x90;
 328
 329		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 330
 331		text_poke_early(instr, insn_buff, insn_buff_sz);
 332
 333next:
 334		optimize_nops(a, instr);
 335	}
 336}
 337
 338#ifdef CONFIG_SMP
 339static void alternatives_smp_lock(const s32 *start, const s32 *end,
 340				  u8 *text, u8 *text_end)
 341{
 342	const s32 *poff;
 343
 344	for (poff = start; poff < end; poff++) {
 345		u8 *ptr = (u8 *)poff + *poff;
 346
 347		if (!*poff || ptr < text || ptr >= text_end)
 348			continue;
 349		/* turn DS segment override prefix into lock prefix */
 350		if (*ptr == 0x3e)
 351			text_poke(ptr, ((unsigned char []){0xf0}), 1);
 352	}
 353}
 354
 355static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 356				    u8 *text, u8 *text_end)
 357{
 358	const s32 *poff;
 359
 360	for (poff = start; poff < end; poff++) {
 361		u8 *ptr = (u8 *)poff + *poff;
 362
 363		if (!*poff || ptr < text || ptr >= text_end)
 364			continue;
 365		/* turn lock prefix into DS segment override prefix */
 366		if (*ptr == 0xf0)
 367			text_poke(ptr, ((unsigned char []){0x3E}), 1);
 368	}
 369}
 370
 371struct smp_alt_module {
 372	/* what is this ??? */
 373	struct module	*mod;
 374	char		*name;
 375
 376	/* ptrs to lock prefixes */
 377	const s32	*locks;
 378	const s32	*locks_end;
 379
 380	/* .text segment, needed to avoid patching init code ;) */
 381	u8		*text;
 382	u8		*text_end;
 383
 384	struct list_head next;
 385};
 386static LIST_HEAD(smp_alt_modules);
 387static bool uniproc_patched = false;	/* protected by text_mutex */
 388
 389void __init_or_module alternatives_smp_module_add(struct module *mod,
 390						  char *name,
 391						  void *locks, void *locks_end,
 392						  void *text,  void *text_end)
 393{
 394	struct smp_alt_module *smp;
 395
 396	mutex_lock(&text_mutex);
 397	if (!uniproc_patched)
 398		goto unlock;
 399
 400	if (num_possible_cpus() == 1)
 401		/* Don't bother remembering, we'll never have to undo it. */
 402		goto smp_unlock;
 403
 404	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 405	if (NULL == smp)
 406		/* we'll run the (safe but slow) SMP code then ... */
 407		goto unlock;
 408
 409	smp->mod	= mod;
 410	smp->name	= name;
 411	smp->locks	= locks;
 412	smp->locks_end	= locks_end;
 413	smp->text	= text;
 414	smp->text_end	= text_end;
 415	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 416		smp->locks, smp->locks_end,
 417		smp->text, smp->text_end, smp->name);
 418
 419	list_add_tail(&smp->next, &smp_alt_modules);
 420smp_unlock:
 421	alternatives_smp_unlock(locks, locks_end, text, text_end);
 422unlock:
 423	mutex_unlock(&text_mutex);
 424}
 425
 426void __init_or_module alternatives_smp_module_del(struct module *mod)
 427{
 428	struct smp_alt_module *item;
 429
 430	mutex_lock(&text_mutex);
 431	list_for_each_entry(item, &smp_alt_modules, next) {
 432		if (mod != item->mod)
 433			continue;
 434		list_del(&item->next);
 435		kfree(item);
 436		break;
 437	}
 438	mutex_unlock(&text_mutex);
 439}
 440
 441void alternatives_enable_smp(void)
 442{
 443	struct smp_alt_module *mod;
 444
 445	/* Why bother if there are no other CPUs? */
 446	BUG_ON(num_possible_cpus() == 1);
 447
 448	mutex_lock(&text_mutex);
 449
 450	if (uniproc_patched) {
 451		pr_info("switching to SMP code\n");
 452		BUG_ON(num_online_cpus() != 1);
 453		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 454		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 455		list_for_each_entry(mod, &smp_alt_modules, next)
 456			alternatives_smp_lock(mod->locks, mod->locks_end,
 457					      mod->text, mod->text_end);
 458		uniproc_patched = false;
 459	}
 460	mutex_unlock(&text_mutex);
 461}
 462
 463/*
 464 * Return 1 if the address range is reserved for SMP-alternatives.
 465 * Must hold text_mutex.
 466 */
 467int alternatives_text_reserved(void *start, void *end)
 468{
 469	struct smp_alt_module *mod;
 470	const s32 *poff;
 471	u8 *text_start = start;
 472	u8 *text_end = end;
 473
 474	lockdep_assert_held(&text_mutex);
 475
 476	list_for_each_entry(mod, &smp_alt_modules, next) {
 477		if (mod->text > text_end || mod->text_end < text_start)
 478			continue;
 479		for (poff = mod->locks; poff < mod->locks_end; poff++) {
 480			const u8 *ptr = (const u8 *)poff + *poff;
 481
 482			if (text_start <= ptr && text_end > ptr)
 483				return 1;
 484		}
 485	}
 486
 487	return 0;
 488}
 489#endif /* CONFIG_SMP */
 490
 491#ifdef CONFIG_PARAVIRT
 492void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 493				     struct paravirt_patch_site *end)
 494{
 495	struct paravirt_patch_site *p;
 496	char insn_buff[MAX_PATCH_LEN];
 497
 498	for (p = start; p < end; p++) {
 499		unsigned int used;
 500
 501		BUG_ON(p->len > MAX_PATCH_LEN);
 502		/* prep the buffer with the original instructions */
 503		memcpy(insn_buff, p->instr, p->len);
 504		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
 
 505
 506		BUG_ON(used > p->len);
 507
 508		/* Pad the rest with nops */
 509		add_nops(insn_buff + used, p->len - used);
 510		text_poke_early(p->instr, insn_buff, p->len);
 511	}
 512}
 513extern struct paravirt_patch_site __start_parainstructions[],
 514	__stop_parainstructions[];
 515#endif	/* CONFIG_PARAVIRT */
 516
 517/*
 518 * Self-test for the INT3 based CALL emulation code.
 519 *
 520 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
 521 * properly and that there is a stack gap between the INT3 frame and the
 522 * previous context. Without this gap doing a virtual PUSH on the interrupted
 523 * stack would corrupt the INT3 IRET frame.
 524 *
 525 * See entry_{32,64}.S for more details.
 526 */
 527
 528/*
 529 * We define the int3_magic() function in assembly to control the calling
 530 * convention such that we can 'call' it from assembly.
 531 */
 532
 533extern void int3_magic(unsigned int *ptr); /* defined in asm */
 534
 535asm (
 536"	.pushsection	.init.text, \"ax\", @progbits\n"
 537"	.type		int3_magic, @function\n"
 538"int3_magic:\n"
 539"	movl	$1, (%" _ASM_ARG1 ")\n"
 540"	ret\n"
 541"	.size		int3_magic, .-int3_magic\n"
 542"	.popsection\n"
 543);
 544
 545extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
 546
 547static int __init
 548int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 549{
 550	struct die_args *args = data;
 551	struct pt_regs *regs = args->regs;
 552
 553	if (!regs || user_mode(regs))
 554		return NOTIFY_DONE;
 555
 556	if (val != DIE_INT3)
 557		return NOTIFY_DONE;
 558
 559	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
 560		return NOTIFY_DONE;
 561
 562	int3_emulate_call(regs, (unsigned long)&int3_magic);
 563	return NOTIFY_STOP;
 564}
 565
 566static void __init int3_selftest(void)
 567{
 568	static __initdata struct notifier_block int3_exception_nb = {
 569		.notifier_call	= int3_exception_notify,
 570		.priority	= INT_MAX-1, /* last */
 571	};
 572	unsigned int val = 0;
 573
 574	BUG_ON(register_die_notifier(&int3_exception_nb));
 575
 576	/*
 577	 * Basically: int3_magic(&val); but really complicated :-)
 578	 *
 579	 * Stick the address of the INT3 instruction into int3_selftest_ip,
 580	 * then trigger the INT3, padded with NOPs to match a CALL instruction
 581	 * length.
 582	 */
 583	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
 584		      ".pushsection .init.data,\"aw\"\n\t"
 585		      ".align " __ASM_SEL(4, 8) "\n\t"
 586		      ".type int3_selftest_ip, @object\n\t"
 587		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
 588		      "int3_selftest_ip:\n\t"
 589		      __ASM_SEL(.long, .quad) " 1b\n\t"
 590		      ".popsection\n\t"
 591		      : ASM_CALL_CONSTRAINT
 592		      : __ASM_SEL_RAW(a, D) (&val)
 593		      : "memory");
 594
 595	BUG_ON(val != 1);
 596
 597	unregister_die_notifier(&int3_exception_nb);
 598}
 599
 600void __init alternative_instructions(void)
 601{
 602	int3_selftest();
 603
 604	/*
 605	 * The patching is not fully atomic, so try to avoid local
 606	 * interruptions that might execute the to be patched code.
 607	 * Other CPUs are not running.
 608	 */
 609	stop_nmi();
 610
 611	/*
 612	 * Don't stop machine check exceptions while patching.
 613	 * MCEs only happen when something got corrupted and in this
 614	 * case we must do something about the corruption.
 615	 * Ignoring it is worse than an unlikely patching race.
 616	 * Also machine checks tend to be broadcast and if one CPU
 617	 * goes into machine check the others follow quickly, so we don't
 618	 * expect a machine check to cause undue problems during to code
 619	 * patching.
 620	 */
 621
 622	/*
 623	 * Paravirt patching and alternative patching can be combined to
 624	 * replace a function call with a short direct code sequence (e.g.
 625	 * by setting a constant return value instead of doing that in an
 626	 * external function).
 627	 * In order to make this work the following sequence is required:
 628	 * 1. set (artificial) features depending on used paravirt
 629	 *    functions which can later influence alternative patching
 630	 * 2. apply paravirt patching (generally replacing an indirect
 631	 *    function call with a direct one)
 632	 * 3. apply alternative patching (e.g. replacing a direct function
 633	 *    call with a custom code sequence)
 634	 * Doing paravirt patching after alternative patching would clobber
 635	 * the optimization of the custom code with a function call again.
 636	 */
 637	paravirt_set_cap();
 638
 639	/*
 640	 * First patch paravirt functions, such that we overwrite the indirect
 641	 * call with the direct call.
 642	 */
 643	apply_paravirt(__parainstructions, __parainstructions_end);
 644
 645	/*
 646	 * Then patch alternatives, such that those paravirt calls that are in
 647	 * alternatives can be overwritten by their immediate fragments.
 648	 */
 649	apply_alternatives(__alt_instructions, __alt_instructions_end);
 650
 651#ifdef CONFIG_SMP
 652	/* Patch to UP if other cpus not imminent. */
 653	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 654		uniproc_patched = true;
 655		alternatives_smp_module_add(NULL, "core kernel",
 656					    __smp_locks, __smp_locks_end,
 657					    _text, _etext);
 658	}
 659
 660	if (!uniproc_patched || num_possible_cpus() == 1) {
 661		free_init_pages("SMP alternatives",
 662				(unsigned long)__smp_locks,
 663				(unsigned long)__smp_locks_end);
 664	}
 665#endif
 666
 
 
 667	restart_nmi();
 668	alternatives_patched = 1;
 669}
 670
 671/**
 672 * text_poke_early - Update instructions on a live kernel at boot time
 673 * @addr: address to modify
 674 * @opcode: source of the copy
 675 * @len: length to copy
 676 *
 677 * When you use this code to patch more than one byte of an instruction
 678 * you need to make sure that other CPUs cannot execute this code in parallel.
 679 * Also no thread must be currently preempted in the middle of these
 680 * instructions. And on the local CPU you need to be protected against NMI or
 681 * MCE handlers seeing an inconsistent instruction while you patch.
 682 */
 683void __init_or_module text_poke_early(void *addr, const void *opcode,
 684				      size_t len)
 685{
 686	unsigned long flags;
 687
 688	if (boot_cpu_has(X86_FEATURE_NX) &&
 689	    is_module_text_address((unsigned long)addr)) {
 690		/*
 691		 * Modules text is marked initially as non-executable, so the
 692		 * code cannot be running and speculative code-fetches are
 693		 * prevented. Just change the code.
 694		 */
 695		memcpy(addr, opcode, len);
 696	} else {
 697		local_irq_save(flags);
 698		memcpy(addr, opcode, len);
 699		local_irq_restore(flags);
 700		sync_core();
 701
 702		/*
 703		 * Could also do a CLFLUSH here to speed up CPU recovery; but
 704		 * that causes hangs on some VIA CPUs.
 705		 */
 706	}
 707}
 708
 709typedef struct {
 710	struct mm_struct *mm;
 711} temp_mm_state_t;
 712
 713/*
 714 * Using a temporary mm allows to set temporary mappings that are not accessible
 715 * by other CPUs. Such mappings are needed to perform sensitive memory writes
 716 * that override the kernel memory protections (e.g., W^X), without exposing the
 717 * temporary page-table mappings that are required for these write operations to
 718 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
 719 * mapping is torn down.
 720 *
 721 * Context: The temporary mm needs to be used exclusively by a single core. To
 722 *          harden security IRQs must be disabled while the temporary mm is
 723 *          loaded, thereby preventing interrupt handler bugs from overriding
 724 *          the kernel memory protection.
 725 */
 726static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
 727{
 728	temp_mm_state_t temp_state;
 729
 730	lockdep_assert_irqs_disabled();
 731
 732	/*
 733	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
 734	 * with a stale address space WITHOUT being in lazy mode after
 735	 * restoring the previous mm.
 736	 */
 737	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
 738		leave_mm(smp_processor_id());
 739
 740	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 741	switch_mm_irqs_off(NULL, mm, current);
 742
 743	/*
 744	 * If breakpoints are enabled, disable them while the temporary mm is
 745	 * used. Userspace might set up watchpoints on addresses that are used
 746	 * in the temporary mm, which would lead to wrong signals being sent or
 747	 * crashes.
 748	 *
 749	 * Note that breakpoints are not disabled selectively, which also causes
 750	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
 751	 * undesirable, but still seems reasonable as the code that runs in the
 752	 * temporary mm should be short.
 753	 */
 754	if (hw_breakpoint_active())
 755		hw_breakpoint_disable();
 756
 757	return temp_state;
 758}
 759
 760static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
 761{
 762	lockdep_assert_irqs_disabled();
 763	switch_mm_irqs_off(NULL, prev_state.mm, current);
 764
 765	/*
 766	 * Restore the breakpoints if they were disabled before the temporary mm
 767	 * was loaded.
 768	 */
 769	if (hw_breakpoint_active())
 770		hw_breakpoint_restore();
 771}
 772
 773__ro_after_init struct mm_struct *poking_mm;
 774__ro_after_init unsigned long poking_addr;
 775
 776static void *__text_poke(void *addr, const void *opcode, size_t len)
 777{
 778	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
 779	struct page *pages[2] = {NULL};
 780	temp_mm_state_t prev;
 781	unsigned long flags;
 782	pte_t pte, *ptep;
 783	spinlock_t *ptl;
 784	pgprot_t pgprot;
 785
 786	/*
 787	 * While boot memory allocator is running we cannot use struct pages as
 788	 * they are not yet initialized. There is no way to recover.
 789	 */
 790	BUG_ON(!after_bootmem);
 791
 792	if (!core_kernel_text((unsigned long)addr)) {
 793		pages[0] = vmalloc_to_page(addr);
 794		if (cross_page_boundary)
 795			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 796	} else {
 797		pages[0] = virt_to_page(addr);
 798		WARN_ON(!PageReserved(pages[0]));
 799		if (cross_page_boundary)
 800			pages[1] = virt_to_page(addr + PAGE_SIZE);
 801	}
 802	/*
 803	 * If something went wrong, crash and burn since recovery paths are not
 804	 * implemented.
 805	 */
 806	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
 807
 808	/*
 809	 * Map the page without the global bit, as TLB flushing is done with
 810	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
 811	 */
 812	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
 813
 814	/*
 815	 * The lock is not really needed, but this allows to avoid open-coding.
 816	 */
 817	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 818
 819	/*
 820	 * This must not fail; preallocated in poking_init().
 821	 */
 822	VM_BUG_ON(!ptep);
 823
 824	local_irq_save(flags);
 825
 826	pte = mk_pte(pages[0], pgprot);
 827	set_pte_at(poking_mm, poking_addr, ptep, pte);
 828
 829	if (cross_page_boundary) {
 830		pte = mk_pte(pages[1], pgprot);
 831		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
 832	}
 833
 834	/*
 835	 * Loading the temporary mm behaves as a compiler barrier, which
 836	 * guarantees that the PTE will be set at the time memcpy() is done.
 837	 */
 838	prev = use_temporary_mm(poking_mm);
 839
 840	kasan_disable_current();
 841	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
 842	kasan_enable_current();
 843
 844	/*
 845	 * Ensure that the PTE is only cleared after the instructions of memcpy
 846	 * were issued by using a compiler barrier.
 847	 */
 848	barrier();
 849
 850	pte_clear(poking_mm, poking_addr, ptep);
 851	if (cross_page_boundary)
 852		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
 853
 854	/*
 855	 * Loading the previous page-table hierarchy requires a serializing
 856	 * instruction that already allows the core to see the updated version.
 857	 * Xen-PV is assumed to serialize execution in a similar manner.
 858	 */
 859	unuse_temporary_mm(prev);
 860
 861	/*
 862	 * Flushing the TLB might involve IPIs, which would require enabled
 863	 * IRQs, but not if the mm is not used, as it is in this point.
 864	 */
 865	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
 866			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
 867			   PAGE_SHIFT, false);
 868
 869	/*
 870	 * If the text does not match what we just wrote then something is
 871	 * fundamentally screwy; there's nothing we can really do about that.
 872	 */
 873	BUG_ON(memcmp(addr, opcode, len));
 874
 875	local_irq_restore(flags);
 876	pte_unmap_unlock(ptep, ptl);
 
 877	return addr;
 878}
 879
 880/**
 881 * text_poke - Update instructions on a live kernel
 882 * @addr: address to modify
 883 * @opcode: source of the copy
 884 * @len: length to copy
 885 *
 886 * Only atomic text poke/set should be allowed when not doing early patching.
 887 * It means the size must be writable atomically and the address must be aligned
 888 * in a way that permits an atomic write. It also makes sure we fit on a single
 889 * page.
 890 *
 891 * Note that the caller must ensure that if the modified code is part of a
 892 * module, the module would not be removed during poking. This can be achieved
 893 * by registering a module notifier, and ordering module removal and patching
 894 * trough a mutex.
 895 */
 896void *text_poke(void *addr, const void *opcode, size_t len)
 897{
 898	lockdep_assert_held(&text_mutex);
 899
 900	return __text_poke(addr, opcode, len);
 901}
 902
 903/**
 904 * text_poke_kgdb - Update instructions on a live kernel by kgdb
 905 * @addr: address to modify
 906 * @opcode: source of the copy
 907 * @len: length to copy
 908 *
 909 * Only atomic text poke/set should be allowed when not doing early patching.
 910 * It means the size must be writable atomically and the address must be aligned
 911 * in a way that permits an atomic write. It also makes sure we fit on a single
 912 * page.
 913 *
 914 * Context: should only be used by kgdb, which ensures no other core is running,
 915 *	    despite the fact it does not hold the text_mutex.
 916 */
 917void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
 918{
 919	return __text_poke(addr, opcode, len);
 
 
 
 
 
 
 
 
 
 920}
 921
 922static void do_sync_core(void *info)
 923{
 924	sync_core();
 925}
 926
 927void text_poke_sync(void)
 928{
 929	on_each_cpu(do_sync_core, NULL, 1);
 930}
 931
 932struct text_poke_loc {
 933	s32 rel_addr; /* addr := _stext + rel_addr */
 934	s32 rel32;
 935	u8 opcode;
 936	const u8 text[POKE_MAX_OPCODE_SIZE];
 937	u8 old;
 938};
 939
 940struct bp_patching_desc {
 941	struct text_poke_loc *vec;
 942	int nr_entries;
 943	atomic_t refs;
 944};
 945
 946static struct bp_patching_desc *bp_desc;
 947
 948static __always_inline
 949struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
 950{
 951	struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
 952
 953	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
 954		return NULL;
 955
 956	return desc;
 957}
 958
 959static __always_inline void put_desc(struct bp_patching_desc *desc)
 960{
 961	smp_mb__before_atomic();
 962	arch_atomic_dec(&desc->refs);
 963}
 964
 965static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
 966{
 967	return _stext + tp->rel_addr;
 968}
 969
 970static __always_inline int patch_cmp(const void *key, const void *elt)
 971{
 972	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
 973
 974	if (key < text_poke_addr(tp))
 975		return -1;
 976	if (key > text_poke_addr(tp))
 977		return 1;
 978	return 0;
 979}
 980
 981noinstr int poke_int3_handler(struct pt_regs *regs)
 982{
 983	struct bp_patching_desc *desc;
 984	struct text_poke_loc *tp;
 985	int len, ret = 0;
 986	void *ip;
 987
 988	if (user_mode(regs))
 989		return 0;
 990
 991	/*
 992	 * Having observed our INT3 instruction, we now must observe
 993	 * bp_desc:
 
 
 
 
 994	 *
 995	 *	bp_desc = desc			INT3
 996	 *	WMB				RMB
 997	 *	write INT3			if (desc)
 998	 */
 999	smp_rmb();
1000
1001	desc = try_get_desc(&bp_desc);
1002	if (!desc)
1003		return 0;
1004
1005	/*
1006	 * Discount the INT3. See text_poke_bp_batch().
1007	 */
1008	ip = (void *) regs->ip - INT3_INSN_SIZE;
1009
1010	/*
1011	 * Skip the binary search if there is a single member in the vector.
1012	 */
1013	if (unlikely(desc->nr_entries > 1)) {
1014		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1015				      sizeof(struct text_poke_loc),
1016				      patch_cmp);
1017		if (!tp)
1018			goto out_put;
1019	} else {
1020		tp = desc->vec;
1021		if (text_poke_addr(tp) != ip)
1022			goto out_put;
1023	}
1024
1025	len = text_opcode_size(tp->opcode);
1026	ip += len;
1027
1028	switch (tp->opcode) {
1029	case INT3_INSN_OPCODE:
1030		/*
1031		 * Someone poked an explicit INT3, they'll want to handle it,
1032		 * do not consume.
1033		 */
1034		goto out_put;
1035
1036	case RET_INSN_OPCODE:
1037		int3_emulate_ret(regs);
1038		break;
1039
1040	case CALL_INSN_OPCODE:
1041		int3_emulate_call(regs, (long)ip + tp->rel32);
1042		break;
1043
1044	case JMP32_INSN_OPCODE:
1045	case JMP8_INSN_OPCODE:
1046		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1047		break;
1048
1049	default:
1050		BUG();
1051	}
1052
1053	ret = 1;
1054
1055out_put:
1056	put_desc(desc);
1057	return ret;
1058}
1059
1060#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1061static struct text_poke_loc tp_vec[TP_VEC_MAX];
1062static int tp_vec_nr;
1063
1064/**
1065 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1066 * @tp:			vector of instructions to patch
1067 * @nr_entries:		number of entries in the vector
 
 
1068 *
1069 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1070 * We completely avoid stop_machine() here, and achieve the
1071 * synchronization using int3 breakpoint.
1072 *
1073 * The way it is done:
1074 *	- For each entry in the vector:
1075 *		- add a int3 trap to the address that will be patched
1076 *	- sync cores
1077 *	- For each entry in the vector:
1078 *		- update all but the first byte of the patched range
1079 *	- sync cores
1080 *	- For each entry in the vector:
1081 *		- replace the first byte (int3) by the first byte of
1082 *		  replacing opcode
1083 *	- sync cores
 
 
1084 */
1085static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1086{
1087	struct bp_patching_desc desc = {
1088		.vec = tp,
1089		.nr_entries = nr_entries,
1090		.refs = ATOMIC_INIT(1),
1091	};
1092	unsigned char int3 = INT3_INSN_OPCODE;
1093	unsigned int i;
1094	int do_sync;
1095
1096	lockdep_assert_held(&text_mutex);
1097
1098	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1099
 
 
 
1100	/*
1101	 * Corresponding read barrier in int3 notifier for making sure the
1102	 * nr_entries and handler are correctly ordered wrt. patching.
1103	 */
1104	smp_wmb();
1105
1106	/*
1107	 * First step: add a int3 trap to the address that will be patched.
1108	 */
1109	for (i = 0; i < nr_entries; i++) {
1110		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1111		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1112	}
1113
1114	text_poke_sync();
1115
1116	/*
1117	 * Second step: update all but the first byte of the patched range.
1118	 */
1119	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1120		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1121		int len = text_opcode_size(tp[i].opcode);
1122
1123		if (len - INT3_INSN_SIZE > 0) {
1124			memcpy(old + INT3_INSN_SIZE,
1125			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1126			       len - INT3_INSN_SIZE);
1127			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1128				  (const char *)tp[i].text + INT3_INSN_SIZE,
1129				  len - INT3_INSN_SIZE);
1130			do_sync++;
1131		}
1132
1133		/*
1134		 * Emit a perf event to record the text poke, primarily to
1135		 * support Intel PT decoding which must walk the executable code
1136		 * to reconstruct the trace. The flow up to here is:
1137		 *   - write INT3 byte
1138		 *   - IPI-SYNC
1139		 *   - write instruction tail
1140		 * At this point the actual control flow will be through the
1141		 * INT3 and handler and not hit the old or new instruction.
1142		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1143		 * can still be decoded. Subsequently:
1144		 *   - emit RECORD_TEXT_POKE with the new instruction
1145		 *   - IPI-SYNC
1146		 *   - write first byte
1147		 *   - IPI-SYNC
1148		 * So before the text poke event timestamp, the decoder will see
1149		 * either the old instruction flow or FUP/TIP of INT3. After the
1150		 * text poke event timestamp, the decoder will see either the
1151		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1152		 * use the timestamp as the point at which to modify the
1153		 * executable code.
1154		 * The old instruction is recorded so that the event can be
1155		 * processed forwards or backwards.
1156		 */
1157		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1158				     tp[i].text, len);
1159	}
1160
1161	if (do_sync) {
 
 
 
 
1162		/*
1163		 * According to Intel, this core syncing is very likely
1164		 * not necessary and we'd be safe even without it. But
1165		 * better safe than sorry (plus there's not only Intel).
1166		 */
1167		text_poke_sync();
1168	}
1169
1170	/*
1171	 * Third step: replace the first byte (int3) by the first byte of
1172	 * replacing opcode.
1173	 */
1174	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1175		if (tp[i].text[0] == INT3_INSN_OPCODE)
1176			continue;
1177
1178		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1179		do_sync++;
1180	}
1181
1182	if (do_sync)
1183		text_poke_sync();
1184
 
1185	/*
1186	 * Remove and synchronize_rcu(), except we have a very primitive
1187	 * refcount based completion.
1188	 */
1189	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1190	if (!atomic_dec_and_test(&desc.refs))
1191		atomic_cond_read_acquire(&desc.refs, !VAL);
1192}
1193
1194static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1195			       const void *opcode, size_t len, const void *emulate)
1196{
1197	struct insn insn;
1198	int ret;
1199
1200	memcpy((void *)tp->text, opcode, len);
1201	if (!emulate)
1202		emulate = opcode;
1203
1204	ret = insn_decode_kernel(&insn, emulate);
1205
1206	BUG_ON(ret < 0);
1207	BUG_ON(len != insn.length);
1208
1209	tp->rel_addr = addr - (void *)_stext;
1210	tp->opcode = insn.opcode.bytes[0];
1211
1212	switch (tp->opcode) {
1213	case INT3_INSN_OPCODE:
1214	case RET_INSN_OPCODE:
1215		break;
1216
1217	case CALL_INSN_OPCODE:
1218	case JMP32_INSN_OPCODE:
1219	case JMP8_INSN_OPCODE:
1220		tp->rel32 = insn.immediate.value;
1221		break;
1222
1223	default: /* assume NOP */
1224		switch (len) {
1225		case 2: /* NOP2 -- emulate as JMP8+0 */
1226			BUG_ON(memcmp(emulate, x86_nops[len], len));
1227			tp->opcode = JMP8_INSN_OPCODE;
1228			tp->rel32 = 0;
1229			break;
1230
1231		case 5: /* NOP5 -- emulate as JMP32+0 */
1232			BUG_ON(memcmp(emulate, x86_nops[len], len));
1233			tp->opcode = JMP32_INSN_OPCODE;
1234			tp->rel32 = 0;
1235			break;
1236
1237		default: /* unknown instruction */
1238			BUG();
1239		}
1240		break;
1241	}
1242}
1243
1244/*
1245 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1246 * early if needed.
1247 */
1248static bool tp_order_fail(void *addr)
1249{
1250	struct text_poke_loc *tp;
1251
1252	if (!tp_vec_nr)
1253		return false;
1254
1255	if (!addr) /* force */
1256		return true;
1257
1258	tp = &tp_vec[tp_vec_nr - 1];
1259	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1260		return true;
1261
1262	return false;
1263}
1264
1265static void text_poke_flush(void *addr)
1266{
1267	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1268		text_poke_bp_batch(tp_vec, tp_vec_nr);
1269		tp_vec_nr = 0;
1270	}
1271}
1272
1273void text_poke_finish(void)
1274{
1275	text_poke_flush(NULL);
1276}
1277
1278void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1279{
1280	struct text_poke_loc *tp;
1281
1282	if (unlikely(system_state == SYSTEM_BOOTING)) {
1283		text_poke_early(addr, opcode, len);
1284		return;
1285	}
1286
1287	text_poke_flush(addr);
1288
1289	tp = &tp_vec[tp_vec_nr++];
1290	text_poke_loc_init(tp, addr, opcode, len, emulate);
1291}
1292
1293/**
1294 * text_poke_bp() -- update instructions on live kernel on SMP
1295 * @addr:	address to patch
1296 * @opcode:	opcode of new instruction
1297 * @len:	length to copy
1298 * @emulate:	instruction to be emulated
1299 *
1300 * Update a single instruction with the vector in the stack, avoiding
1301 * dynamically allocated memory. This function should be used when it is
1302 * not possible to allocate memory.
1303 */
1304void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1305{
1306	struct text_poke_loc tp;
1307
1308	if (unlikely(system_state == SYSTEM_BOOTING)) {
1309		text_poke_early(addr, opcode, len);
1310		return;
1311	}
1312
1313	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1314	text_poke_bp_batch(&tp, 1);
1315}
v4.17
 
  1#define pr_fmt(fmt) "SMP alternatives: " fmt
  2
  3#include <linux/module.h>
  4#include <linux/sched.h>
 
  5#include <linux/mutex.h>
  6#include <linux/list.h>
  7#include <linux/stringify.h>
 
  8#include <linux/mm.h>
  9#include <linux/vmalloc.h>
 10#include <linux/memory.h>
 11#include <linux/stop_machine.h>
 12#include <linux/slab.h>
 13#include <linux/kdebug.h>
 
 
 
 
 14#include <asm/text-patching.h>
 15#include <asm/alternative.h>
 16#include <asm/sections.h>
 17#include <asm/pgtable.h>
 18#include <asm/mce.h>
 19#include <asm/nmi.h>
 20#include <asm/cacheflush.h>
 21#include <asm/tlbflush.h>
 
 22#include <asm/io.h>
 23#include <asm/fixmap.h>
 
 24
 25int __read_mostly alternatives_patched;
 26
 27EXPORT_SYMBOL_GPL(alternatives_patched);
 28
 29#define MAX_PATCH_LEN (255-1)
 30
 31static int __initdata_or_module debug_alternative;
 32
 33static int __init debug_alt(char *str)
 34{
 35	debug_alternative = 1;
 36	return 1;
 37}
 38__setup("debug-alternative", debug_alt);
 39
 40static int noreplace_smp;
 41
 42static int __init setup_noreplace_smp(char *str)
 43{
 44	noreplace_smp = 1;
 45	return 1;
 46}
 47__setup("noreplace-smp", setup_noreplace_smp);
 48
 49#define DPRINTK(fmt, args...)						\
 50do {									\
 51	if (debug_alternative)						\
 52		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
 53} while (0)
 54
 55#define DUMP_BYTES(buf, len, fmt, args...)				\
 56do {									\
 57	if (unlikely(debug_alternative)) {				\
 58		int j;							\
 59									\
 60		if (!(len))						\
 61			break;						\
 62									\
 63		printk(KERN_DEBUG fmt, ##args);				\
 64		for (j = 0; j < (len) - 1; j++)				\
 65			printk(KERN_CONT "%02hhx ", buf[j]);		\
 66		printk(KERN_CONT "%02hhx\n", buf[j]);			\
 67	}								\
 68} while (0)
 69
 70/*
 71 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
 72 * that correspond to that nop. Getting from one nop to the next, we
 73 * add to the array the offset that is equal to the sum of all sizes of
 74 * nops preceding the one we are after.
 75 *
 76 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
 77 * nice symmetry of sizes of the previous nops.
 78 */
 79#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
 80static const unsigned char intelnops[] =
 81{
 82	GENERIC_NOP1,
 83	GENERIC_NOP2,
 84	GENERIC_NOP3,
 85	GENERIC_NOP4,
 86	GENERIC_NOP5,
 87	GENERIC_NOP6,
 88	GENERIC_NOP7,
 89	GENERIC_NOP8,
 90	GENERIC_NOP5_ATOMIC
 91};
 92static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 93{
 94	NULL,
 95	intelnops,
 96	intelnops + 1,
 97	intelnops + 1 + 2,
 98	intelnops + 1 + 2 + 3,
 99	intelnops + 1 + 2 + 3 + 4,
100	intelnops + 1 + 2 + 3 + 4 + 5,
101	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
102	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
103	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
104};
105#endif
106
107#ifdef K8_NOP1
108static const unsigned char k8nops[] =
109{
110	K8_NOP1,
111	K8_NOP2,
112	K8_NOP3,
113	K8_NOP4,
114	K8_NOP5,
115	K8_NOP6,
116	K8_NOP7,
117	K8_NOP8,
118	K8_NOP5_ATOMIC
119};
120static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
121{
122	NULL,
123	k8nops,
124	k8nops + 1,
125	k8nops + 1 + 2,
126	k8nops + 1 + 2 + 3,
127	k8nops + 1 + 2 + 3 + 4,
128	k8nops + 1 + 2 + 3 + 4 + 5,
129	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
130	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
131	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
132};
133#endif
134
135#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
136static const unsigned char k7nops[] =
137{
138	K7_NOP1,
139	K7_NOP2,
140	K7_NOP3,
141	K7_NOP4,
142	K7_NOP5,
143	K7_NOP6,
144	K7_NOP7,
145	K7_NOP8,
146	K7_NOP5_ATOMIC
147};
148static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
149{
150	NULL,
151	k7nops,
152	k7nops + 1,
153	k7nops + 1 + 2,
154	k7nops + 1 + 2 + 3,
155	k7nops + 1 + 2 + 3 + 4,
156	k7nops + 1 + 2 + 3 + 4 + 5,
157	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
158	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
159	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
160};
161#endif
162
163#ifdef P6_NOP1
164static const unsigned char p6nops[] =
165{
166	P6_NOP1,
167	P6_NOP2,
168	P6_NOP3,
169	P6_NOP4,
170	P6_NOP5,
171	P6_NOP6,
172	P6_NOP7,
173	P6_NOP8,
174	P6_NOP5_ATOMIC
175};
176static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
177{
178	NULL,
179	p6nops,
180	p6nops + 1,
181	p6nops + 1 + 2,
182	p6nops + 1 + 2 + 3,
183	p6nops + 1 + 2 + 3 + 4,
184	p6nops + 1 + 2 + 3 + 4 + 5,
185	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
186	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
187	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
188};
189#endif
190
191/* Initialize these to a safe default */
192#ifdef CONFIG_X86_64
193const unsigned char * const *ideal_nops = p6_nops;
194#else
195const unsigned char * const *ideal_nops = intel_nops;
196#endif
197
198void __init arch_init_ideal_nops(void)
199{
200	switch (boot_cpu_data.x86_vendor) {
201	case X86_VENDOR_INTEL:
202		/*
203		 * Due to a decoder implementation quirk, some
204		 * specific Intel CPUs actually perform better with
205		 * the "k8_nops" than with the SDM-recommended NOPs.
206		 */
207		if (boot_cpu_data.x86 == 6 &&
208		    boot_cpu_data.x86_model >= 0x0f &&
209		    boot_cpu_data.x86_model != 0x1c &&
210		    boot_cpu_data.x86_model != 0x26 &&
211		    boot_cpu_data.x86_model != 0x27 &&
212		    boot_cpu_data.x86_model < 0x30) {
213			ideal_nops = k8_nops;
214		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
215			   ideal_nops = p6_nops;
216		} else {
217#ifdef CONFIG_X86_64
218			ideal_nops = k8_nops;
219#else
220			ideal_nops = intel_nops;
221#endif
222		}
223		break;
224
225	case X86_VENDOR_AMD:
226		if (boot_cpu_data.x86 > 0xf) {
227			ideal_nops = p6_nops;
228			return;
229		}
230
231		/* fall through */
232
233	default:
234#ifdef CONFIG_X86_64
235		ideal_nops = k8_nops;
236#else
237		if (boot_cpu_has(X86_FEATURE_K8))
238			ideal_nops = k8_nops;
239		else if (boot_cpu_has(X86_FEATURE_K7))
240			ideal_nops = k7_nops;
241		else
242			ideal_nops = intel_nops;
243#endif
244	}
245}
246
247/* Use this to add nops to a buffer, then text_poke the whole buffer. */
248static void __init_or_module add_nops(void *insns, unsigned int len)
249{
250	while (len > 0) {
251		unsigned int noplen = len;
252		if (noplen > ASM_NOP_MAX)
253			noplen = ASM_NOP_MAX;
254		memcpy(insns, ideal_nops[noplen], noplen);
255		insns += noplen;
256		len -= noplen;
257	}
258}
259
260extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
261extern s32 __smp_locks[], __smp_locks_end[];
262void *text_poke_early(void *addr, const void *opcode, size_t len);
263
264/*
265 * Are we looking at a near JMP with a 1 or 4-byte displacement.
266 */
267static inline bool is_jmp(const u8 opcode)
268{
269	return opcode == 0xeb || opcode == 0xe9;
270}
271
272static void __init_or_module
273recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
274{
275	u8 *next_rip, *tgt_rip;
276	s32 n_dspl, o_dspl;
277	int repl_len;
278
279	if (a->replacementlen != 5)
280		return;
281
282	o_dspl = *(s32 *)(insnbuf + 1);
283
284	/* next_rip of the replacement JMP */
285	next_rip = repl_insn + a->replacementlen;
286	/* target rip of the replacement JMP */
287	tgt_rip  = next_rip + o_dspl;
288	n_dspl = tgt_rip - orig_insn;
289
290	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
291
292	if (tgt_rip - orig_insn >= 0) {
293		if (n_dspl - 2 <= 127)
294			goto two_byte_jmp;
295		else
296			goto five_byte_jmp;
297	/* negative offset */
298	} else {
299		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
300			goto two_byte_jmp;
301		else
302			goto five_byte_jmp;
303	}
304
305two_byte_jmp:
306	n_dspl -= 2;
307
308	insnbuf[0] = 0xeb;
309	insnbuf[1] = (s8)n_dspl;
310	add_nops(insnbuf + 2, 3);
311
312	repl_len = 2;
313	goto done;
314
315five_byte_jmp:
316	n_dspl -= 5;
317
318	insnbuf[0] = 0xe9;
319	*(s32 *)&insnbuf[1] = n_dspl;
320
321	repl_len = 5;
322
323done:
324
325	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
326		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
327}
328
329/*
330 * "noinline" to cause control flow change and thus invalidate I$ and
331 * cause refetch after modification.
 
 
 
 
 
332 */
333static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
334{
335	unsigned long flags;
336	int i;
337
338	for (i = 0; i < a->padlen; i++) {
339		if (instr[i] != 0x90)
340			return;
 
 
341	}
342
 
 
 
 
 
343	local_irq_save(flags);
344	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
345	local_irq_restore(flags);
346
347	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
348		   instr, a->instrlen - a->padlen, a->padlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349}
350
351/*
352 * Replace instructions with better alternatives for this CPU type. This runs
353 * before SMP is initialized to avoid SMP problems with self modifying code.
354 * This implies that asymmetric systems where APs have less capabilities than
355 * the boot processor are not handled. Tough. Make sure you disable such
356 * features by hand.
357 *
358 * Marked "noinline" to cause control flow change and thus insn cache
359 * to refetch changed I$ lines.
360 */
361void __init_or_module noinline apply_alternatives(struct alt_instr *start,
362						  struct alt_instr *end)
363{
364	struct alt_instr *a;
365	u8 *instr, *replacement;
366	u8 insnbuf[MAX_PATCH_LEN];
367
368	DPRINTK("alt table %px, -> %px", start, end);
369	/*
370	 * The scan order should be from start to end. A later scanned
371	 * alternative code can overwrite previously scanned alternative code.
372	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
373	 * patch code.
374	 *
375	 * So be careful if you want to change the scan order to any other
376	 * order.
377	 */
378	for (a = start; a < end; a++) {
379		int insnbuf_sz = 0;
 
 
380
381		instr = (u8 *)&a->instr_offset + a->instr_offset;
382		replacement = (u8 *)&a->repl_offset + a->repl_offset;
383		BUG_ON(a->instrlen > sizeof(insnbuf));
384		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
385		if (!boot_cpu_has(a->cpuid)) {
386			if (a->padlen > 1)
387				optimize_nops(a, instr);
388
389			continue;
390		}
 
 
 
 
 
 
391
392		DPRINTK("feat: %d*32+%d, old: (%px len: %d), repl: (%px, len: %d), pad: %d",
393			a->cpuid >> 5,
394			a->cpuid & 0x1f,
395			instr, a->instrlen,
396			replacement, a->replacementlen, a->padlen);
 
397
398		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
399		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
400
401		memcpy(insnbuf, replacement, a->replacementlen);
402		insnbuf_sz = a->replacementlen;
403
404		/*
405		 * 0xe8 is a relative jump; fix the offset.
406		 *
407		 * Instruction length is checked before the opcode to avoid
408		 * accessing uninitialized bytes for zero-length replacements.
409		 */
410		if (a->replacementlen == 5 && *insnbuf == 0xe8) {
411			*(s32 *)(insnbuf + 1) += replacement - instr;
412			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
413				*(s32 *)(insnbuf + 1),
414				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
415		}
416
417		if (a->replacementlen && is_jmp(replacement[0]))
418			recompute_jump(a, instr, replacement, insnbuf);
419
420		if (a->instrlen > a->replacementlen) {
421			add_nops(insnbuf + a->replacementlen,
422				 a->instrlen - a->replacementlen);
423			insnbuf_sz += a->instrlen - a->replacementlen;
424		}
425		DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
426
427		text_poke_early(instr, insnbuf, insnbuf_sz);
 
428	}
429}
430
431#ifdef CONFIG_SMP
432static void alternatives_smp_lock(const s32 *start, const s32 *end,
433				  u8 *text, u8 *text_end)
434{
435	const s32 *poff;
436
437	for (poff = start; poff < end; poff++) {
438		u8 *ptr = (u8 *)poff + *poff;
439
440		if (!*poff || ptr < text || ptr >= text_end)
441			continue;
442		/* turn DS segment override prefix into lock prefix */
443		if (*ptr == 0x3e)
444			text_poke(ptr, ((unsigned char []){0xf0}), 1);
445	}
446}
447
448static void alternatives_smp_unlock(const s32 *start, const s32 *end,
449				    u8 *text, u8 *text_end)
450{
451	const s32 *poff;
452
453	for (poff = start; poff < end; poff++) {
454		u8 *ptr = (u8 *)poff + *poff;
455
456		if (!*poff || ptr < text || ptr >= text_end)
457			continue;
458		/* turn lock prefix into DS segment override prefix */
459		if (*ptr == 0xf0)
460			text_poke(ptr, ((unsigned char []){0x3E}), 1);
461	}
462}
463
464struct smp_alt_module {
465	/* what is this ??? */
466	struct module	*mod;
467	char		*name;
468
469	/* ptrs to lock prefixes */
470	const s32	*locks;
471	const s32	*locks_end;
472
473	/* .text segment, needed to avoid patching init code ;) */
474	u8		*text;
475	u8		*text_end;
476
477	struct list_head next;
478};
479static LIST_HEAD(smp_alt_modules);
480static bool uniproc_patched = false;	/* protected by text_mutex */
481
482void __init_or_module alternatives_smp_module_add(struct module *mod,
483						  char *name,
484						  void *locks, void *locks_end,
485						  void *text,  void *text_end)
486{
487	struct smp_alt_module *smp;
488
489	mutex_lock(&text_mutex);
490	if (!uniproc_patched)
491		goto unlock;
492
493	if (num_possible_cpus() == 1)
494		/* Don't bother remembering, we'll never have to undo it. */
495		goto smp_unlock;
496
497	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
498	if (NULL == smp)
499		/* we'll run the (safe but slow) SMP code then ... */
500		goto unlock;
501
502	smp->mod	= mod;
503	smp->name	= name;
504	smp->locks	= locks;
505	smp->locks_end	= locks_end;
506	smp->text	= text;
507	smp->text_end	= text_end;
508	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
509		smp->locks, smp->locks_end,
510		smp->text, smp->text_end, smp->name);
511
512	list_add_tail(&smp->next, &smp_alt_modules);
513smp_unlock:
514	alternatives_smp_unlock(locks, locks_end, text, text_end);
515unlock:
516	mutex_unlock(&text_mutex);
517}
518
519void __init_or_module alternatives_smp_module_del(struct module *mod)
520{
521	struct smp_alt_module *item;
522
523	mutex_lock(&text_mutex);
524	list_for_each_entry(item, &smp_alt_modules, next) {
525		if (mod != item->mod)
526			continue;
527		list_del(&item->next);
528		kfree(item);
529		break;
530	}
531	mutex_unlock(&text_mutex);
532}
533
534void alternatives_enable_smp(void)
535{
536	struct smp_alt_module *mod;
537
538	/* Why bother if there are no other CPUs? */
539	BUG_ON(num_possible_cpus() == 1);
540
541	mutex_lock(&text_mutex);
542
543	if (uniproc_patched) {
544		pr_info("switching to SMP code\n");
545		BUG_ON(num_online_cpus() != 1);
546		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
547		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
548		list_for_each_entry(mod, &smp_alt_modules, next)
549			alternatives_smp_lock(mod->locks, mod->locks_end,
550					      mod->text, mod->text_end);
551		uniproc_patched = false;
552	}
553	mutex_unlock(&text_mutex);
554}
555
556/*
557 * Return 1 if the address range is reserved for SMP-alternatives.
558 * Must hold text_mutex.
559 */
560int alternatives_text_reserved(void *start, void *end)
561{
562	struct smp_alt_module *mod;
563	const s32 *poff;
564	u8 *text_start = start;
565	u8 *text_end = end;
566
567	lockdep_assert_held(&text_mutex);
568
569	list_for_each_entry(mod, &smp_alt_modules, next) {
570		if (mod->text > text_end || mod->text_end < text_start)
571			continue;
572		for (poff = mod->locks; poff < mod->locks_end; poff++) {
573			const u8 *ptr = (const u8 *)poff + *poff;
574
575			if (text_start <= ptr && text_end > ptr)
576				return 1;
577		}
578	}
579
580	return 0;
581}
582#endif /* CONFIG_SMP */
583
584#ifdef CONFIG_PARAVIRT
585void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
586				     struct paravirt_patch_site *end)
587{
588	struct paravirt_patch_site *p;
589	char insnbuf[MAX_PATCH_LEN];
590
591	for (p = start; p < end; p++) {
592		unsigned int used;
593
594		BUG_ON(p->len > MAX_PATCH_LEN);
595		/* prep the buffer with the original instructions */
596		memcpy(insnbuf, p->instr, p->len);
597		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
598					 (unsigned long)p->instr, p->len);
599
600		BUG_ON(used > p->len);
601
602		/* Pad the rest with nops */
603		add_nops(insnbuf + used, p->len - used);
604		text_poke_early(p->instr, insnbuf, p->len);
605	}
606}
607extern struct paravirt_patch_site __start_parainstructions[],
608	__stop_parainstructions[];
609#endif	/* CONFIG_PARAVIRT */
610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611void __init alternative_instructions(void)
612{
613	/* The patching is not fully atomic, so try to avoid local interruptions
614	   that might execute the to be patched code.
615	   Other CPUs are not running. */
 
 
 
 
616	stop_nmi();
617
618	/*
619	 * Don't stop machine check exceptions while patching.
620	 * MCEs only happen when something got corrupted and in this
621	 * case we must do something about the corruption.
622	 * Ignoring it is worse than a unlikely patching race.
623	 * Also machine checks tend to be broadcast and if one CPU
624	 * goes into machine check the others follow quickly, so we don't
625	 * expect a machine check to cause undue problems during to code
626	 * patching.
627	 */
628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629	apply_alternatives(__alt_instructions, __alt_instructions_end);
630
631#ifdef CONFIG_SMP
632	/* Patch to UP if other cpus not imminent. */
633	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
634		uniproc_patched = true;
635		alternatives_smp_module_add(NULL, "core kernel",
636					    __smp_locks, __smp_locks_end,
637					    _text, _etext);
638	}
639
640	if (!uniproc_patched || num_possible_cpus() == 1)
641		free_init_pages("SMP alternatives",
642				(unsigned long)__smp_locks,
643				(unsigned long)__smp_locks_end);
 
644#endif
645
646	apply_paravirt(__parainstructions, __parainstructions_end);
647
648	restart_nmi();
649	alternatives_patched = 1;
650}
651
652/**
653 * text_poke_early - Update instructions on a live kernel at boot time
654 * @addr: address to modify
655 * @opcode: source of the copy
656 * @len: length to copy
657 *
658 * When you use this code to patch more than one byte of an instruction
659 * you need to make sure that other CPUs cannot execute this code in parallel.
660 * Also no thread must be currently preempted in the middle of these
661 * instructions. And on the local CPU you need to be protected again NMI or MCE
662 * handlers seeing an inconsistent instruction while you patch.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663 */
664void *__init_or_module text_poke_early(void *addr, const void *opcode,
665					      size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666{
 
 
 
667	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668	local_irq_save(flags);
669	memcpy(addr, opcode, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670	local_irq_restore(flags);
671	/* Could also do a CLFLUSH here to speed up CPU recovery; but
672	   that causes hangs on some VIA CPUs. */
673	return addr;
674}
675
676/**
677 * text_poke - Update instructions on a live kernel
678 * @addr: address to modify
679 * @opcode: source of the copy
680 * @len: length to copy
681 *
682 * Only atomic text poke/set should be allowed when not doing early patching.
683 * It means the size must be writable atomically and the address must be aligned
684 * in a way that permits an atomic write. It also makes sure we fit on a single
685 * page.
686 *
687 * Note: Must be called under text_mutex.
 
 
 
688 */
689void *text_poke(void *addr, const void *opcode, size_t len)
690{
691	unsigned long flags;
692	char *vaddr;
693	struct page *pages[2];
694	int i;
695
696	if (!core_kernel_text((unsigned long)addr)) {
697		pages[0] = vmalloc_to_page(addr);
698		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
699	} else {
700		pages[0] = virt_to_page(addr);
701		WARN_ON(!PageReserved(pages[0]));
702		pages[1] = virt_to_page(addr + PAGE_SIZE);
703	}
704	BUG_ON(!pages[0]);
705	local_irq_save(flags);
706	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
707	if (pages[1])
708		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
709	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
710	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
711	clear_fixmap(FIX_TEXT_POKE0);
712	if (pages[1])
713		clear_fixmap(FIX_TEXT_POKE1);
714	local_flush_tlb();
715	sync_core();
716	/* Could also do a CLFLUSH here to speed up CPU recovery; but
717	   that causes hangs on some VIA CPUs. */
718	for (i = 0; i < len; i++)
719		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
720	local_irq_restore(flags);
721	return addr;
722}
723
724static void do_sync_core(void *info)
725{
726	sync_core();
727}
728
729static bool bp_patching_in_progress;
730static void *bp_int3_handler, *bp_int3_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731
732int poke_int3_handler(struct pt_regs *regs)
733{
 
 
 
 
 
 
 
 
734	/*
735	 * Having observed our INT3 instruction, we now must observe
736	 * bp_patching_in_progress.
737	 *
738	 * 	in_progress = TRUE		INT3
739	 * 	WMB				RMB
740	 * 	write INT3			if (in_progress)
741	 *
742	 * Idem for bp_int3_handler.
 
 
743	 */
744	smp_rmb();
745
746	if (likely(!bp_patching_in_progress))
 
747		return 0;
748
749	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
750		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751
752	/* set up the specified breakpoint handler */
753	regs->ip = (unsigned long) bp_int3_handler;
 
754
755	return 1;
756
 
 
 
757}
758
 
 
 
 
759/**
760 * text_poke_bp() -- update instructions on live kernel on SMP
761 * @addr:	address to patch
762 * @opcode:	opcode of new instruction
763 * @len:	length to copy
764 * @handler:	address to jump to when the temporary breakpoint is hit
765 *
766 * Modify multi-byte instruction by using int3 breakpoint on SMP.
767 * We completely avoid stop_machine() here, and achieve the
768 * synchronization using int3 breakpoint.
769 *
770 * The way it is done:
771 *	- add a int3 trap to the address that will be patched
 
772 *	- sync cores
773 *	- update all but the first byte of the patched range
 
774 *	- sync cores
775 *	- replace the first byte (int3) by the first byte of
776 *	  replacing opcode
 
777 *	- sync cores
778 *
779 * Note: must be called under text_mutex.
780 */
781void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
782{
783	unsigned char int3 = 0xcc;
 
 
 
 
 
 
 
 
 
 
 
784
785	bp_int3_handler = handler;
786	bp_int3_addr = (u8 *)addr + sizeof(int3);
787	bp_patching_in_progress = true;
788	/*
789	 * Corresponding read barrier in int3 notifier for making sure the
790	 * in_progress and handler are correctly ordered wrt. patching.
791	 */
792	smp_wmb();
793
794	text_poke(addr, &int3, sizeof(int3));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795
796	on_each_cpu(do_sync_core, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
798	if (len - sizeof(int3) > 0) {
799		/* patch all but the first byte */
800		text_poke((char *)addr + sizeof(int3),
801			  (const char *) opcode + sizeof(int3),
802			  len - sizeof(int3));
803		/*
804		 * According to Intel, this core syncing is very likely
805		 * not necessary and we'd be safe even without it. But
806		 * better safe than sorry (plus there's not only Intel).
807		 */
808		on_each_cpu(do_sync_core, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
809	}
810
811	/* patch the first byte */
812	text_poke(addr, opcode, sizeof(int3));
813
814	on_each_cpu(do_sync_core, NULL, 1);
815	/*
816	 * sync_core() implies an smp_mb() and orders this store against
817	 * the writing of the new instruction.
818	 */
819	bp_patching_in_progress = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820
821	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822}
823