Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Generic Reed Solomon encoder / decoder library
 
 
 
  4 *
  5 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
  6 *
  7 * Reed Solomon code lifted from reed solomon library written by Phil Karn
  8 * Copyright 2002 Phil Karn, KA9Q
  9 *
 
 
 
 
 
 
 10 * Description:
 11 *
 12 * The generic Reed Solomon library provides runtime configurable
 13 * encoding / decoding of RS codes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14 *
 15 * Each user must call init_rs to get a pointer to a rs_control structure
 16 * for the given rs parameters. The control struct is unique per instance.
 17 * It points to a codec which can be shared by multiple control structures.
 18 * If a codec is newly allocated then the polynomial arrays for fast
 19 * encoding / decoding are built. This can take some time so make sure not
 20 * to call this function from a time critical path.  Usually a module /
 21 * driver should initialize the necessary rs_control structure on module /
 22 * driver init and release it on exit.
 23 *
 24 * The encoding puts the calculated syndrome into a given syndrome buffer.
 25 *
 26 * The decoding is a two step process. The first step calculates the
 27 * syndrome over the received (data + syndrome) and calls the second stage,
 28 * which does the decoding / error correction itself.  Many hw encoders
 29 * provide a syndrome calculation over the received data + syndrome and can
 30 * call the second stage directly.
 31 */
 
 32#include <linux/errno.h>
 33#include <linux/kernel.h>
 34#include <linux/init.h>
 35#include <linux/module.h>
 36#include <linux/rslib.h>
 37#include <linux/slab.h>
 38#include <linux/mutex.h>
 39
 40enum {
 41	RS_DECODE_LAMBDA,
 42	RS_DECODE_SYN,
 43	RS_DECODE_B,
 44	RS_DECODE_T,
 45	RS_DECODE_OMEGA,
 46	RS_DECODE_ROOT,
 47	RS_DECODE_REG,
 48	RS_DECODE_LOC,
 49	RS_DECODE_NUM_BUFFERS
 50};
 51
 52/* This list holds all currently allocated rs codec structures */
 53static LIST_HEAD(codec_list);
 54/* Protection for the list */
 55static DEFINE_MUTEX(rslistlock);
 56
 57/**
 58 * codec_init - Initialize a Reed-Solomon codec
 59 * @symsize:	symbol size, bits (1-8)
 60 * @gfpoly:	Field generator polynomial coefficients
 61 * @gffunc:	Field generator function
 62 * @fcr:	first root of RS code generator polynomial, index form
 63 * @prim:	primitive element to generate polynomial roots
 64 * @nroots:	RS code generator polynomial degree (number of roots)
 65 * @gfp:	GFP_ flags for allocations
 66 *
 67 * Allocate a codec structure and the polynom arrays for faster
 68 * en/decoding. Fill the arrays according to the given parameters.
 69 */
 70static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int),
 71				   int fcr, int prim, int nroots, gfp_t gfp)
 72{
 
 73	int i, j, sr, root, iprim;
 74	struct rs_codec *rs;
 75
 76	rs = kzalloc(sizeof(*rs), gfp);
 77	if (!rs)
 
 78		return NULL;
 79
 80	INIT_LIST_HEAD(&rs->list);
 81
 82	rs->mm = symsize;
 83	rs->nn = (1 << symsize) - 1;
 84	rs->fcr = fcr;
 85	rs->prim = prim;
 86	rs->nroots = nroots;
 87	rs->gfpoly = gfpoly;
 88	rs->gffunc = gffunc;
 89
 90	/* Allocate the arrays */
 91	rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
 92	if (rs->alpha_to == NULL)
 93		goto err;
 94
 95	rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
 96	if (rs->index_of == NULL)
 97		goto err;
 98
 99	rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp);
100	if(rs->genpoly == NULL)
101		goto err;
102
103	/* Generate Galois field lookup tables */
104	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
105	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
106	if (gfpoly) {
107		sr = 1;
108		for (i = 0; i < rs->nn; i++) {
109			rs->index_of[sr] = i;
110			rs->alpha_to[i] = sr;
111			sr <<= 1;
112			if (sr & (1 << symsize))
113				sr ^= gfpoly;
114			sr &= rs->nn;
115		}
116	} else {
117		sr = gffunc(0);
118		for (i = 0; i < rs->nn; i++) {
119			rs->index_of[sr] = i;
120			rs->alpha_to[i] = sr;
121			sr = gffunc(sr);
122		}
123	}
124	/* If it's not primitive, exit */
125	if(sr != rs->alpha_to[0])
126		goto err;
127
128	/* Find prim-th root of 1, used in decoding */
129	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
130	/* prim-th root of 1, index form */
131	rs->iprim = iprim / prim;
132
133	/* Form RS code generator polynomial from its roots */
134	rs->genpoly[0] = 1;
135	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
136		rs->genpoly[i + 1] = 1;
137		/* Multiply rs->genpoly[] by  @**(root + x) */
138		for (j = i; j > 0; j--) {
139			if (rs->genpoly[j] != 0) {
140				rs->genpoly[j] = rs->genpoly[j -1] ^
141					rs->alpha_to[rs_modnn(rs,
142					rs->index_of[rs->genpoly[j]] + root)];
143			} else
144				rs->genpoly[j] = rs->genpoly[j - 1];
145		}
146		/* rs->genpoly[0] can never be zero */
147		rs->genpoly[0] =
148			rs->alpha_to[rs_modnn(rs,
149				rs->index_of[rs->genpoly[0]] + root)];
150	}
151	/* convert rs->genpoly[] to index form for quicker encoding */
152	for (i = 0; i <= nroots; i++)
153		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
154
155	rs->users = 1;
156	list_add(&rs->list, &codec_list);
157	return rs;
158
159err:
 
160	kfree(rs->genpoly);
 
161	kfree(rs->index_of);
 
162	kfree(rs->alpha_to);
 
163	kfree(rs);
164	return NULL;
165}
166
167
168/**
169 *  free_rs - Free the rs control structure
170 *  @rs:	The control structure which is not longer used by the
171 *		caller
172 *
173 * Free the control structure. If @rs is the last user of the associated
174 * codec, free the codec as well.
175 */
176void free_rs(struct rs_control *rs)
177{
178	struct rs_codec *cd;
179
180	if (!rs)
181		return;
182
183	cd = rs->codec;
184	mutex_lock(&rslistlock);
185	cd->users--;
186	if(!cd->users) {
187		list_del(&cd->list);
188		kfree(cd->alpha_to);
189		kfree(cd->index_of);
190		kfree(cd->genpoly);
191		kfree(cd);
192	}
193	mutex_unlock(&rslistlock);
194	kfree(rs);
195}
196EXPORT_SYMBOL_GPL(free_rs);
197
198/**
199 * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one
200 *  @symsize:	the symbol size (number of bits)
201 *  @gfpoly:	the extended Galois field generator polynomial coefficients,
202 *		with the 0th coefficient in the low order bit. The polynomial
203 *		must be primitive;
204 *  @gffunc:	pointer to function to generate the next field element,
205 *		or the multiplicative identity element if given 0.  Used
206 *		instead of gfpoly if gfpoly is 0
207 *  @fcr:	the first consecutive root of the rs code generator polynomial
208 *		in index form
209 *  @prim:	primitive element to generate polynomial roots
210 *  @nroots:	RS code generator polynomial degree (number of roots)
211 *  @gfp:	GFP_ flags for allocations
212 */
213static struct rs_control *init_rs_internal(int symsize, int gfpoly,
214					   int (*gffunc)(int), int fcr,
215					   int prim, int nroots, gfp_t gfp)
216{
217	struct list_head *tmp;
218	struct rs_control *rs;
219	unsigned int bsize;
220
221	/* Sanity checks */
222	if (symsize < 1)
223		return NULL;
224	if (fcr < 0 || fcr >= (1<<symsize))
225		return NULL;
226	if (prim <= 0 || prim >= (1<<symsize))
227		return NULL;
228	if (nroots < 0 || nroots >= (1<<symsize))
229		return NULL;
230
231	/*
232	 * The decoder needs buffers in each control struct instance to
233	 * avoid variable size or large fixed size allocations on
234	 * stack. Size the buffers to arrays of [nroots + 1].
235	 */
236	bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1);
237	rs = kzalloc(sizeof(*rs) + bsize, gfp);
238	if (!rs)
239		return NULL;
240
241	mutex_lock(&rslistlock);
242
243	/* Walk through the list and look for a matching entry */
244	list_for_each(tmp, &codec_list) {
245		struct rs_codec *cd = list_entry(tmp, struct rs_codec, list);
246
247		if (symsize != cd->mm)
248			continue;
249		if (gfpoly != cd->gfpoly)
250			continue;
251		if (gffunc != cd->gffunc)
252			continue;
253		if (fcr != cd->fcr)
254			continue;
255		if (prim != cd->prim)
256			continue;
257		if (nroots != cd->nroots)
258			continue;
259		/* We have a matching one already */
260		cd->users++;
261		rs->codec = cd;
262		goto out;
263	}
264
265	/* Create a new one */
266	rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
267	if (!rs->codec) {
268		kfree(rs);
269		rs = NULL;
270	}
271out:
272	mutex_unlock(&rslistlock);
273	return rs;
274}
275
276/**
277 * init_rs_gfp - Create a RS control struct and initialize it
278 *  @symsize:	the symbol size (number of bits)
279 *  @gfpoly:	the extended Galois field generator polynomial coefficients,
280 *		with the 0th coefficient in the low order bit. The polynomial
281 *		must be primitive;
282 *  @fcr:	the first consecutive root of the rs code generator polynomial
283 *		in index form
284 *  @prim:	primitive element to generate polynomial roots
285 *  @nroots:	RS code generator polynomial degree (number of roots)
286 *  @gfp:	Memory allocation flags.
287 */
288struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
289			       int nroots, gfp_t gfp)
290{
291	return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
292}
293EXPORT_SYMBOL_GPL(init_rs_gfp);
294
295/**
296 * init_rs_non_canonical - Allocate rs control struct for fields with
297 *                         non-canonical representation
 
298 *  @symsize:	the symbol size (number of bits)
299 *  @gffunc:	pointer to function to generate the next field element,
300 *		or the multiplicative identity element if given 0.  Used
301 *		instead of gfpoly if gfpoly is 0
302 *  @fcr:	the first consecutive root of the rs code generator polynomial
303 *		in index form
304 *  @prim:	primitive element to generate polynomial roots
305 *  @nroots:	RS code generator polynomial degree (number of roots)
306 */
307struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
308					 int fcr, int prim, int nroots)
309{
310	return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
311				GFP_KERNEL);
312}
313EXPORT_SYMBOL_GPL(init_rs_non_canonical);
314
315#ifdef CONFIG_REED_SOLOMON_ENC8
316/**
317 *  encode_rs8 - Calculate the parity for data values (8bit data width)
318 *  @rsc:	the rs control structure
319 *  @data:	data field of a given type
320 *  @len:	data length
321 *  @par:	parity data, must be initialized by caller (usually all 0)
322 *  @invmsk:	invert data mask (will be xored on data)
323 *
324 *  The parity uses a uint16_t data type to enable
325 *  symbol size > 8. The calling code must take care of encoding of the
326 *  syndrome result for storage itself.
327 */
328int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par,
329	       uint16_t invmsk)
330{
331#include "encode_rs.c"
332}
333EXPORT_SYMBOL_GPL(encode_rs8);
334#endif
335
336#ifdef CONFIG_REED_SOLOMON_DEC8
337/**
338 *  decode_rs8 - Decode codeword (8bit data width)
339 *  @rsc:	the rs control structure
340 *  @data:	data field of a given type
341 *  @par:	received parity data field
342 *  @len:	data length
343 *  @s: 	syndrome data field, must be in index form
344 *		(if NULL, syndrome is calculated)
345 *  @no_eras:	number of erasures
346 *  @eras_pos:	position of erasures, can be NULL
347 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
348 *  @corr:	buffer to store correction bitmask on eras_pos
349 *
350 *  The syndrome and parity uses a uint16_t data type to enable
351 *  symbol size > 8. The calling code must take care of decoding of the
352 *  syndrome result and the received parity before calling this code.
353 *
354 *  Note: The rs_control struct @rsc contains buffers which are used for
355 *  decoding, so the caller has to ensure that decoder invocations are
356 *  serialized.
357 *
358 *  Returns the number of corrected symbols or -EBADMSG for uncorrectable
359 *  errors. The count includes errors in the parity.
360 */
361int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len,
362	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
363	       uint16_t *corr)
364{
365#include "decode_rs.c"
366}
367EXPORT_SYMBOL_GPL(decode_rs8);
368#endif
369
370#ifdef CONFIG_REED_SOLOMON_ENC16
371/**
372 *  encode_rs16 - Calculate the parity for data values (16bit data width)
373 *  @rsc:	the rs control structure
374 *  @data:	data field of a given type
375 *  @len:	data length
376 *  @par:	parity data, must be initialized by caller (usually all 0)
377 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
378 *
379 *  Each field in the data array contains up to symbol size bits of valid data.
380 */
381int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par,
382	uint16_t invmsk)
383{
384#include "encode_rs.c"
385}
386EXPORT_SYMBOL_GPL(encode_rs16);
387#endif
388
389#ifdef CONFIG_REED_SOLOMON_DEC16
390/**
391 *  decode_rs16 - Decode codeword (16bit data width)
392 *  @rsc:	the rs control structure
393 *  @data:	data field of a given type
394 *  @par:	received parity data field
395 *  @len:	data length
396 *  @s: 	syndrome data field, must be in index form
397 *		(if NULL, syndrome is calculated)
398 *  @no_eras:	number of erasures
399 *  @eras_pos:	position of erasures, can be NULL
400 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
401 *  @corr:	buffer to store correction bitmask on eras_pos
402 *
403 *  Each field in the data array contains up to symbol size bits of valid data.
404 *
405 *  Note: The rc_control struct @rsc contains buffers which are used for
406 *  decoding, so the caller has to ensure that decoder invocations are
407 *  serialized.
408 *
409 *  Returns the number of corrected symbols or -EBADMSG for uncorrectable
410 *  errors. The count includes errors in the parity.
411 */
412int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len,
413		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
414		uint16_t *corr)
415{
416#include "decode_rs.c"
417}
418EXPORT_SYMBOL_GPL(decode_rs16);
419#endif
 
 
 
 
420
421MODULE_LICENSE("GPL");
422MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
423MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
424
v4.10.11
 
  1/*
  2 * lib/reed_solomon/reed_solomon.c
  3 *
  4 * Overview:
  5 *   Generic Reed Solomon encoder / decoder library
  6 *
  7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
  8 *
  9 * Reed Solomon code lifted from reed solomon library written by Phil Karn
 10 * Copyright 2002 Phil Karn, KA9Q
 11 *
 12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 *
 18 * Description:
 19 *
 20 * The generic Reed Solomon library provides runtime configurable
 21 * encoding / decoding of RS codes.
 22 * Each user must call init_rs to get a pointer to a rs_control
 23 * structure for the given rs parameters. This structure is either
 24 * generated or a already available matching control structure is used.
 25 * If a structure is generated then the polynomial arrays for
 26 * fast encoding / decoding are built. This can take some time so
 27 * make sure not to call this function from a time critical path.
 28 * Usually a module / driver should initialize the necessary
 29 * rs_control structure on module / driver init and release it
 30 * on exit.
 31 * The encoding puts the calculated syndrome into a given syndrome
 32 * buffer.
 33 * The decoding is a two step process. The first step calculates
 34 * the syndrome over the received (data + syndrome) and calls the
 35 * second stage, which does the decoding / error correction itself.
 36 * Many hw encoders provide a syndrome calculation over the received
 37 * data + syndrome and can call the second stage directly.
 38 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39 */
 40
 41#include <linux/errno.h>
 42#include <linux/kernel.h>
 43#include <linux/init.h>
 44#include <linux/module.h>
 45#include <linux/rslib.h>
 46#include <linux/slab.h>
 47#include <linux/mutex.h>
 48
 49/* This list holds all currently allocated rs control structures */
 50static LIST_HEAD (rslist);
 
 
 
 
 
 
 
 
 
 
 
 
 51/* Protection for the list */
 52static DEFINE_MUTEX(rslistlock);
 53
 54/**
 55 * rs_init - Initialize a Reed-Solomon codec
 56 * @symsize:	symbol size, bits (1-8)
 57 * @gfpoly:	Field generator polynomial coefficients
 58 * @gffunc:	Field generator function
 59 * @fcr:	first root of RS code generator polynomial, index form
 60 * @prim:	primitive element to generate polynomial roots
 61 * @nroots:	RS code generator polynomial degree (number of roots)
 
 62 *
 63 * Allocate a control structure and the polynom arrays for faster
 64 * en/decoding. Fill the arrays according to the given parameters.
 65 */
 66static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
 67                                  int fcr, int prim, int nroots)
 68{
 69	struct rs_control *rs;
 70	int i, j, sr, root, iprim;
 
 71
 72	/* Allocate the control structure */
 73	rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
 74	if (rs == NULL)
 75		return NULL;
 76
 77	INIT_LIST_HEAD(&rs->list);
 78
 79	rs->mm = symsize;
 80	rs->nn = (1 << symsize) - 1;
 81	rs->fcr = fcr;
 82	rs->prim = prim;
 83	rs->nroots = nroots;
 84	rs->gfpoly = gfpoly;
 85	rs->gffunc = gffunc;
 86
 87	/* Allocate the arrays */
 88	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
 89	if (rs->alpha_to == NULL)
 90		goto errrs;
 91
 92	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
 93	if (rs->index_of == NULL)
 94		goto erralp;
 95
 96	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
 97	if(rs->genpoly == NULL)
 98		goto erridx;
 99
100	/* Generate Galois field lookup tables */
101	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
102	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
103	if (gfpoly) {
104		sr = 1;
105		for (i = 0; i < rs->nn; i++) {
106			rs->index_of[sr] = i;
107			rs->alpha_to[i] = sr;
108			sr <<= 1;
109			if (sr & (1 << symsize))
110				sr ^= gfpoly;
111			sr &= rs->nn;
112		}
113	} else {
114		sr = gffunc(0);
115		for (i = 0; i < rs->nn; i++) {
116			rs->index_of[sr] = i;
117			rs->alpha_to[i] = sr;
118			sr = gffunc(sr);
119		}
120	}
121	/* If it's not primitive, exit */
122	if(sr != rs->alpha_to[0])
123		goto errpol;
124
125	/* Find prim-th root of 1, used in decoding */
126	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
127	/* prim-th root of 1, index form */
128	rs->iprim = iprim / prim;
129
130	/* Form RS code generator polynomial from its roots */
131	rs->genpoly[0] = 1;
132	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
133		rs->genpoly[i + 1] = 1;
134		/* Multiply rs->genpoly[] by  @**(root + x) */
135		for (j = i; j > 0; j--) {
136			if (rs->genpoly[j] != 0) {
137				rs->genpoly[j] = rs->genpoly[j -1] ^
138					rs->alpha_to[rs_modnn(rs,
139					rs->index_of[rs->genpoly[j]] + root)];
140			} else
141				rs->genpoly[j] = rs->genpoly[j - 1];
142		}
143		/* rs->genpoly[0] can never be zero */
144		rs->genpoly[0] =
145			rs->alpha_to[rs_modnn(rs,
146				rs->index_of[rs->genpoly[0]] + root)];
147	}
148	/* convert rs->genpoly[] to index form for quicker encoding */
149	for (i = 0; i <= nroots; i++)
150		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
 
 
 
151	return rs;
152
153	/* Error exit */
154errpol:
155	kfree(rs->genpoly);
156erridx:
157	kfree(rs->index_of);
158erralp:
159	kfree(rs->alpha_to);
160errrs:
161	kfree(rs);
162	return NULL;
163}
164
165
166/**
167 *  free_rs - Free the rs control structure, if it is no longer used
168 *  @rs:	the control structure which is not longer used by the
169 *		caller
 
 
 
170 */
171void free_rs(struct rs_control *rs)
172{
 
 
 
 
 
 
173	mutex_lock(&rslistlock);
174	rs->users--;
175	if(!rs->users) {
176		list_del(&rs->list);
177		kfree(rs->alpha_to);
178		kfree(rs->index_of);
179		kfree(rs->genpoly);
180		kfree(rs);
181	}
182	mutex_unlock(&rslistlock);
 
183}
 
184
185/**
186 * init_rs_internal - Find a matching or allocate a new rs control structure
187 *  @symsize:	the symbol size (number of bits)
188 *  @gfpoly:	the extended Galois field generator polynomial coefficients,
189 *		with the 0th coefficient in the low order bit. The polynomial
190 *		must be primitive;
191 *  @gffunc:	pointer to function to generate the next field element,
192 *		or the multiplicative identity element if given 0.  Used
193 *		instead of gfpoly if gfpoly is 0
194 *  @fcr:  	the first consecutive root of the rs code generator polynomial
195 *		in index form
196 *  @prim:	primitive element to generate polynomial roots
197 *  @nroots:	RS code generator polynomial degree (number of roots)
 
198 */
199static struct rs_control *init_rs_internal(int symsize, int gfpoly,
200                                           int (*gffunc)(int), int fcr,
201                                           int prim, int nroots)
202{
203	struct list_head	*tmp;
204	struct rs_control	*rs;
 
205
206	/* Sanity checks */
207	if (symsize < 1)
208		return NULL;
209	if (fcr < 0 || fcr >= (1<<symsize))
210    		return NULL;
211	if (prim <= 0 || prim >= (1<<symsize))
212    		return NULL;
213	if (nroots < 0 || nroots >= (1<<symsize))
214		return NULL;
215
 
 
 
 
 
 
 
 
 
 
216	mutex_lock(&rslistlock);
217
218	/* Walk through the list and look for a matching entry */
219	list_for_each(tmp, &rslist) {
220		rs = list_entry(tmp, struct rs_control, list);
221		if (symsize != rs->mm)
 
222			continue;
223		if (gfpoly != rs->gfpoly)
224			continue;
225		if (gffunc != rs->gffunc)
226			continue;
227		if (fcr != rs->fcr)
228			continue;
229		if (prim != rs->prim)
230			continue;
231		if (nroots != rs->nroots)
232			continue;
233		/* We have a matching one already */
234		rs->users++;
 
235		goto out;
236	}
237
238	/* Create a new one */
239	rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
240	if (rs) {
241		rs->users = 1;
242		list_add(&rs->list, &rslist);
243	}
244out:
245	mutex_unlock(&rslistlock);
246	return rs;
247}
248
249/**
250 * init_rs - Find a matching or allocate a new rs control structure
251 *  @symsize:	the symbol size (number of bits)
252 *  @gfpoly:	the extended Galois field generator polynomial coefficients,
253 *		with the 0th coefficient in the low order bit. The polynomial
254 *		must be primitive;
255 *  @fcr:  	the first consecutive root of the rs code generator polynomial
256 *		in index form
257 *  @prim:	primitive element to generate polynomial roots
258 *  @nroots:	RS code generator polynomial degree (number of roots)
 
259 */
260struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
261                           int nroots)
262{
263	return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
264}
 
265
266/**
267 * init_rs_non_canonical - Find a matching or allocate a new rs control
268 *                         structure, for fields with non-canonical
269 *                         representation
270 *  @symsize:	the symbol size (number of bits)
271 *  @gffunc:	pointer to function to generate the next field element,
272 *		or the multiplicative identity element if given 0.  Used
273 *		instead of gfpoly if gfpoly is 0
274 *  @fcr:  	the first consecutive root of the rs code generator polynomial
275 *		in index form
276 *  @prim:	primitive element to generate polynomial roots
277 *  @nroots:	RS code generator polynomial degree (number of roots)
278 */
279struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
280                                         int fcr, int prim, int nroots)
281{
282	return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
 
283}
 
284
285#ifdef CONFIG_REED_SOLOMON_ENC8
286/**
287 *  encode_rs8 - Calculate the parity for data values (8bit data width)
288 *  @rs:	the rs control structure
289 *  @data:	data field of a given type
290 *  @len:	data length
291 *  @par:	parity data, must be initialized by caller (usually all 0)
292 *  @invmsk:	invert data mask (will be xored on data)
293 *
294 *  The parity uses a uint16_t data type to enable
295 *  symbol size > 8. The calling code must take care of encoding of the
296 *  syndrome result for storage itself.
297 */
298int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
299	       uint16_t invmsk)
300{
301#include "encode_rs.c"
302}
303EXPORT_SYMBOL_GPL(encode_rs8);
304#endif
305
306#ifdef CONFIG_REED_SOLOMON_DEC8
307/**
308 *  decode_rs8 - Decode codeword (8bit data width)
309 *  @rs:	the rs control structure
310 *  @data:	data field of a given type
311 *  @par:	received parity data field
312 *  @len:	data length
313 *  @s:		syndrome data field (if NULL, syndrome is calculated)
 
314 *  @no_eras:	number of erasures
315 *  @eras_pos:	position of erasures, can be NULL
316 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
317 *  @corr:	buffer to store correction bitmask on eras_pos
318 *
319 *  The syndrome and parity uses a uint16_t data type to enable
320 *  symbol size > 8. The calling code must take care of decoding of the
321 *  syndrome result and the received parity before calling this code.
322 *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
 
 
 
 
 
 
323 */
324int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
325	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
326	       uint16_t *corr)
327{
328#include "decode_rs.c"
329}
330EXPORT_SYMBOL_GPL(decode_rs8);
331#endif
332
333#ifdef CONFIG_REED_SOLOMON_ENC16
334/**
335 *  encode_rs16 - Calculate the parity for data values (16bit data width)
336 *  @rs:	the rs control structure
337 *  @data:	data field of a given type
338 *  @len:	data length
339 *  @par:	parity data, must be initialized by caller (usually all 0)
340 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
341 *
342 *  Each field in the data array contains up to symbol size bits of valid data.
343 */
344int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
345	uint16_t invmsk)
346{
347#include "encode_rs.c"
348}
349EXPORT_SYMBOL_GPL(encode_rs16);
350#endif
351
352#ifdef CONFIG_REED_SOLOMON_DEC16
353/**
354 *  decode_rs16 - Decode codeword (16bit data width)
355 *  @rs:	the rs control structure
356 *  @data:	data field of a given type
357 *  @par:	received parity data field
358 *  @len:	data length
359 *  @s:		syndrome data field (if NULL, syndrome is calculated)
 
360 *  @no_eras:	number of erasures
361 *  @eras_pos:	position of erasures, can be NULL
362 *  @invmsk:	invert data mask (will be xored on data, not on parity!)
363 *  @corr:	buffer to store correction bitmask on eras_pos
364 *
365 *  Each field in the data array contains up to symbol size bits of valid data.
366 *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
 
 
 
 
 
 
367 */
368int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
369		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
370		uint16_t *corr)
371{
372#include "decode_rs.c"
373}
374EXPORT_SYMBOL_GPL(decode_rs16);
375#endif
376
377EXPORT_SYMBOL_GPL(init_rs);
378EXPORT_SYMBOL_GPL(init_rs_non_canonical);
379EXPORT_SYMBOL_GPL(free_rs);
380
381MODULE_LICENSE("GPL");
382MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
383MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
384