Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
 
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/btrfs.h>
  54
  55static const struct super_operations btrfs_super_ops;
  56
  57/*
  58 * Types for mounting the default subvolume and a subvolume explicitly
  59 * requested by subvol=/path. That way the callchain is straightforward and we
  60 * don't have to play tricks with the mount options and recursive calls to
  61 * btrfs_mount.
  62 *
  63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  64 */
  65static struct file_system_type btrfs_fs_type;
  66static struct file_system_type btrfs_root_fs_type;
  67
  68static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  69
  70/*
  71 * Generally the error codes correspond to their respective errors, but there
  72 * are a few special cases.
  73 *
  74 * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
  75 *          instance will return EUCLEAN if any of the blocks are corrupted in
  76 *          a way that is problematic.  We want to reserve EUCLEAN for these
  77 *          sort of corruptions.
  78 *
  79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
  80 *        need to use EROFS for this case.  We will have no idea of the
  81 *        original failure, that will have been reported at the time we tripped
  82 *        over the error.  Each subsequent error that doesn't have any context
  83 *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
  84 */
  85const char * __attribute_const__ btrfs_decode_error(int errno)
  86{
  87	char *errstr = "unknown";
  88
  89	switch (errno) {
  90	case -ENOENT:		/* -2 */
  91		errstr = "No such entry";
  92		break;
  93	case -EIO:		/* -5 */
  94		errstr = "IO failure";
  95		break;
  96	case -ENOMEM:		/* -12*/
  97		errstr = "Out of memory";
  98		break;
  99	case -EEXIST:		/* -17 */
 100		errstr = "Object already exists";
 101		break;
 102	case -ENOSPC:		/* -28 */
 103		errstr = "No space left";
 104		break;
 105	case -EROFS:		/* -30 */
 106		errstr = "Readonly filesystem";
 107		break;
 108	case -EOPNOTSUPP:	/* -95 */
 109		errstr = "Operation not supported";
 110		break;
 111	case -EUCLEAN:		/* -117 */
 112		errstr = "Filesystem corrupted";
 113		break;
 114	case -EDQUOT:		/* -122 */
 115		errstr = "Quota exceeded";
 116		break;
 117	}
 118
 119	return errstr;
 120}
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/*
 123 * __btrfs_handle_fs_error decodes expected errors from the caller and
 124 * invokes the appropriate error response.
 125 */
 126__cold
 127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 128		       unsigned int line, int errno, const char *fmt, ...)
 129{
 130	struct super_block *sb = fs_info->sb;
 131#ifdef CONFIG_PRINTK
 132	const char *errstr;
 133#endif
 134
 135	/*
 136	 * Special case: if the error is EROFS, and we're already
 137	 * under SB_RDONLY, then it is safe here.
 138	 */
 139	if (errno == -EROFS && sb_rdonly(sb))
 140  		return;
 141
 142#ifdef CONFIG_PRINTK
 143	errstr = btrfs_decode_error(errno);
 144	if (fmt) {
 145		struct va_format vaf;
 146		va_list args;
 147
 148		va_start(args, fmt);
 149		vaf.fmt = fmt;
 150		vaf.va = &args;
 151
 152		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 153			sb->s_id, function, line, errno, errstr, &vaf);
 154		va_end(args);
 155	} else {
 156		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 157			sb->s_id, function, line, errno, errstr);
 158	}
 159#endif
 160
 161	/*
 162	 * Today we only save the error info to memory.  Long term we'll
 163	 * also send it down to the disk
 164	 */
 165	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 166
 167	/* Don't go through full error handling during mount */
 168	if (!(sb->s_flags & SB_BORN))
 169		return;
 170
 171	if (sb_rdonly(sb))
 172		return;
 173
 174	btrfs_discard_stop(fs_info);
 175
 176	/* btrfs handle error by forcing the filesystem readonly */
 177	btrfs_set_sb_rdonly(sb);
 178	btrfs_info(fs_info, "forced readonly");
 179	/*
 180	 * Note that a running device replace operation is not canceled here
 181	 * although there is no way to update the progress. It would add the
 182	 * risk of a deadlock, therefore the canceling is omitted. The only
 183	 * penalty is that some I/O remains active until the procedure
 184	 * completes. The next time when the filesystem is mounted writable
 185	 * again, the device replace operation continues.
 186	 */
 187}
 188
 189#ifdef CONFIG_PRINTK
 190static const char * const logtypes[] = {
 191	"emergency",
 192	"alert",
 193	"critical",
 194	"error",
 195	"warning",
 196	"notice",
 197	"info",
 198	"debug",
 199};
 200
 201
 202/*
 203 * Use one ratelimit state per log level so that a flood of less important
 204 * messages doesn't cause more important ones to be dropped.
 205 */
 206static struct ratelimit_state printk_limits[] = {
 207	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 208	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 209	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 210	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 211	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 212	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 213	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 214	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 215};
 216
 217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 218{
 
 219	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 220	struct va_format vaf;
 221	va_list args;
 222	int kern_level;
 223	const char *type = logtypes[4];
 224	struct ratelimit_state *ratelimit = &printk_limits[4];
 225
 226	va_start(args, fmt);
 227
 228	while ((kern_level = printk_get_level(fmt)) != 0) {
 229		size_t size = printk_skip_level(fmt) - fmt;
 230
 231		if (kern_level >= '0' && kern_level <= '7') {
 232			memcpy(lvl, fmt,  size);
 233			lvl[size] = '\0';
 234			type = logtypes[kern_level - '0'];
 235			ratelimit = &printk_limits[kern_level - '0'];
 236		}
 237		fmt += size;
 238	}
 239
 240	vaf.fmt = fmt;
 241	vaf.va = &args;
 242
 243	if (__ratelimit(ratelimit)) {
 244		if (fs_info)
 245			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 246				fs_info->sb->s_id, &vaf);
 247		else
 248			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
 249	}
 250
 251	va_end(args);
 252}
 253#endif
 254
 255#if BITS_PER_LONG == 32
 256void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
 257{
 258	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
 259		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
 260		btrfs_warn(fs_info,
 261"due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
 262			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
 263		btrfs_warn(fs_info,
 264			   "please consider upgrading to 64bit kernel/hardware");
 265	}
 266}
 267
 268void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
 269{
 270	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
 271		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
 272		btrfs_err(fs_info,
 273"due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
 274			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
 275		btrfs_err(fs_info,
 276			   "please consider upgrading to 64bit kernel/hardware");
 277	}
 278}
 279#endif
 280
 281/*
 282 * We only mark the transaction aborted and then set the file system read-only.
 283 * This will prevent new transactions from starting or trying to join this
 284 * one.
 285 *
 286 * This means that error recovery at the call site is limited to freeing
 287 * any local memory allocations and passing the error code up without
 288 * further cleanup. The transaction should complete as it normally would
 289 * in the call path but will return -EIO.
 290 *
 291 * We'll complete the cleanup in btrfs_end_transaction and
 292 * btrfs_commit_transaction.
 293 */
 294__cold
 295void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 296			       const char *function,
 297			       unsigned int line, int errno)
 298{
 299	struct btrfs_fs_info *fs_info = trans->fs_info;
 300
 301	WRITE_ONCE(trans->aborted, errno);
 302	WRITE_ONCE(trans->transaction->aborted, errno);
 
 
 
 
 
 
 
 
 
 
 
 303	/* Wake up anybody who may be waiting on this transaction */
 304	wake_up(&fs_info->transaction_wait);
 305	wake_up(&fs_info->transaction_blocked_wait);
 306	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 307}
 308/*
 309 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 310 * issues an alert, and either panics or BUGs, depending on mount options.
 311 */
 312__cold
 313void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 314		   unsigned int line, int errno, const char *fmt, ...)
 315{
 316	char *s_id = "<unknown>";
 317	const char *errstr;
 318	struct va_format vaf = { .fmt = fmt };
 319	va_list args;
 320
 321	if (fs_info)
 322		s_id = fs_info->sb->s_id;
 323
 324	va_start(args, fmt);
 325	vaf.va = &args;
 326
 327	errstr = btrfs_decode_error(errno);
 328	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 329		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 330			s_id, function, line, &vaf, errno, errstr);
 331
 332	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 333		   function, line, &vaf, errno, errstr);
 334	va_end(args);
 335	/* Caller calls BUG() */
 336}
 337
 338static void btrfs_put_super(struct super_block *sb)
 339{
 340	close_ctree(btrfs_sb(sb));
 341}
 342
 343enum {
 344	Opt_acl, Opt_noacl,
 345	Opt_clear_cache,
 346	Opt_commit_interval,
 347	Opt_compress,
 348	Opt_compress_force,
 349	Opt_compress_force_type,
 350	Opt_compress_type,
 351	Opt_degraded,
 352	Opt_device,
 353	Opt_fatal_errors,
 354	Opt_flushoncommit, Opt_noflushoncommit,
 355	Opt_max_inline,
 356	Opt_barrier, Opt_nobarrier,
 357	Opt_datacow, Opt_nodatacow,
 358	Opt_datasum, Opt_nodatasum,
 359	Opt_defrag, Opt_nodefrag,
 360	Opt_discard, Opt_nodiscard,
 361	Opt_discard_mode,
 362	Opt_norecovery,
 363	Opt_ratio,
 364	Opt_rescan_uuid_tree,
 365	Opt_skip_balance,
 366	Opt_space_cache, Opt_no_space_cache,
 367	Opt_space_cache_version,
 368	Opt_ssd, Opt_nossd,
 369	Opt_ssd_spread, Opt_nossd_spread,
 370	Opt_subvol,
 371	Opt_subvol_empty,
 372	Opt_subvolid,
 373	Opt_thread_pool,
 374	Opt_treelog, Opt_notreelog,
 375	Opt_user_subvol_rm_allowed,
 376
 377	/* Rescue options */
 378	Opt_rescue,
 379	Opt_usebackuproot,
 380	Opt_nologreplay,
 381	Opt_ignorebadroots,
 382	Opt_ignoredatacsums,
 383	Opt_rescue_all,
 384
 385	/* Deprecated options */
 386	Opt_recovery,
 387	Opt_inode_cache, Opt_noinode_cache,
 388
 389	/* Debugging options */
 390	Opt_check_integrity,
 391	Opt_check_integrity_including_extent_data,
 392	Opt_check_integrity_print_mask,
 393	Opt_enospc_debug, Opt_noenospc_debug,
 
 
 
 394#ifdef CONFIG_BTRFS_DEBUG
 395	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 396#endif
 397#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 398	Opt_ref_verify,
 399#endif
 400	Opt_err,
 401};
 402
 403static const match_table_t tokens = {
 404	{Opt_acl, "acl"},
 405	{Opt_noacl, "noacl"},
 406	{Opt_clear_cache, "clear_cache"},
 407	{Opt_commit_interval, "commit=%u"},
 
 
 
 
 
 
 
 
 
 408	{Opt_compress, "compress"},
 409	{Opt_compress_type, "compress=%s"},
 410	{Opt_compress_force, "compress-force"},
 411	{Opt_compress_force_type, "compress-force=%s"},
 412	{Opt_degraded, "degraded"},
 413	{Opt_device, "device=%s"},
 414	{Opt_fatal_errors, "fatal_errors=%s"},
 
 
 
 
 
 
 415	{Opt_flushoncommit, "flushoncommit"},
 416	{Opt_noflushoncommit, "noflushoncommit"},
 417	{Opt_inode_cache, "inode_cache"},
 418	{Opt_noinode_cache, "noinode_cache"},
 419	{Opt_max_inline, "max_inline=%s"},
 420	{Opt_barrier, "barrier"},
 421	{Opt_nobarrier, "nobarrier"},
 422	{Opt_datacow, "datacow"},
 423	{Opt_nodatacow, "nodatacow"},
 424	{Opt_datasum, "datasum"},
 425	{Opt_nodatasum, "nodatasum"},
 426	{Opt_defrag, "autodefrag"},
 427	{Opt_nodefrag, "noautodefrag"},
 428	{Opt_discard, "discard"},
 429	{Opt_discard_mode, "discard=%s"},
 430	{Opt_nodiscard, "nodiscard"},
 431	{Opt_norecovery, "norecovery"},
 432	{Opt_ratio, "metadata_ratio=%u"},
 433	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 434	{Opt_skip_balance, "skip_balance"},
 435	{Opt_space_cache, "space_cache"},
 436	{Opt_no_space_cache, "nospace_cache"},
 437	{Opt_space_cache_version, "space_cache=%s"},
 438	{Opt_ssd, "ssd"},
 439	{Opt_nossd, "nossd"},
 440	{Opt_ssd_spread, "ssd_spread"},
 441	{Opt_nossd_spread, "nossd_spread"},
 442	{Opt_subvol, "subvol=%s"},
 443	{Opt_subvol_empty, "subvol="},
 444	{Opt_subvolid, "subvolid=%s"},
 445	{Opt_thread_pool, "thread_pool=%u"},
 446	{Opt_treelog, "treelog"},
 447	{Opt_notreelog, "notreelog"},
 448	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 449
 450	/* Rescue options */
 451	{Opt_rescue, "rescue=%s"},
 452	/* Deprecated, with alias rescue=nologreplay */
 453	{Opt_nologreplay, "nologreplay"},
 454	/* Deprecated, with alias rescue=usebackuproot */
 
 
 
 455	{Opt_usebackuproot, "usebackuproot"},
 456
 457	/* Deprecated options */
 458	{Opt_recovery, "recovery"},
 459
 460	/* Debugging options */
 461	{Opt_check_integrity, "check_int"},
 462	{Opt_check_integrity_including_extent_data, "check_int_data"},
 463	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 464	{Opt_enospc_debug, "enospc_debug"},
 465	{Opt_noenospc_debug, "noenospc_debug"},
 
 466#ifdef CONFIG_BTRFS_DEBUG
 467	{Opt_fragment_data, "fragment=data"},
 468	{Opt_fragment_metadata, "fragment=metadata"},
 469	{Opt_fragment_all, "fragment=all"},
 470#endif
 471#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 472	{Opt_ref_verify, "ref_verify"},
 473#endif
 474	{Opt_err, NULL},
 475};
 476
 477static const match_table_t rescue_tokens = {
 478	{Opt_usebackuproot, "usebackuproot"},
 479	{Opt_nologreplay, "nologreplay"},
 480	{Opt_ignorebadroots, "ignorebadroots"},
 481	{Opt_ignorebadroots, "ibadroots"},
 482	{Opt_ignoredatacsums, "ignoredatacsums"},
 483	{Opt_ignoredatacsums, "idatacsums"},
 484	{Opt_rescue_all, "all"},
 485	{Opt_err, NULL},
 486};
 487
 488static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
 489			    const char *opt_name)
 490{
 491	if (fs_info->mount_opt & opt) {
 492		btrfs_err(fs_info, "%s must be used with ro mount option",
 493			  opt_name);
 494		return true;
 495	}
 496	return false;
 497}
 498
 499static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 500{
 501	char *opts;
 502	char *orig;
 503	char *p;
 504	substring_t args[MAX_OPT_ARGS];
 505	int ret = 0;
 506
 507	opts = kstrdup(options, GFP_KERNEL);
 508	if (!opts)
 509		return -ENOMEM;
 510	orig = opts;
 511
 512	while ((p = strsep(&opts, ":")) != NULL) {
 513		int token;
 514
 515		if (!*p)
 516			continue;
 517		token = match_token(p, rescue_tokens, args);
 518		switch (token){
 519		case Opt_usebackuproot:
 520			btrfs_info(info,
 521				   "trying to use backup root at mount time");
 522			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 523			break;
 524		case Opt_nologreplay:
 525			btrfs_set_and_info(info, NOLOGREPLAY,
 526					   "disabling log replay at mount time");
 527			break;
 528		case Opt_ignorebadroots:
 529			btrfs_set_and_info(info, IGNOREBADROOTS,
 530					   "ignoring bad roots");
 531			break;
 532		case Opt_ignoredatacsums:
 533			btrfs_set_and_info(info, IGNOREDATACSUMS,
 534					   "ignoring data csums");
 535			break;
 536		case Opt_rescue_all:
 537			btrfs_info(info, "enabling all of the rescue options");
 538			btrfs_set_and_info(info, IGNOREDATACSUMS,
 539					   "ignoring data csums");
 540			btrfs_set_and_info(info, IGNOREBADROOTS,
 541					   "ignoring bad roots");
 542			btrfs_set_and_info(info, NOLOGREPLAY,
 543					   "disabling log replay at mount time");
 544			break;
 545		case Opt_err:
 546			btrfs_info(info, "unrecognized rescue option '%s'", p);
 547			ret = -EINVAL;
 548			goto out;
 549		default:
 550			break;
 551		}
 552
 553	}
 554out:
 555	kfree(orig);
 556	return ret;
 557}
 558
 559/*
 560 * Regular mount options parser.  Everything that is needed only when
 561 * reading in a new superblock is parsed here.
 562 * XXX JDM: This needs to be cleaned up for remount.
 563 */
 564int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 565			unsigned long new_flags)
 566{
 567	substring_t args[MAX_OPT_ARGS];
 568	char *p, *num;
 
 569	int intarg;
 570	int ret = 0;
 571	char *compress_type;
 572	bool compress_force = false;
 573	enum btrfs_compression_type saved_compress_type;
 574	int saved_compress_level;
 575	bool saved_compress_force;
 576	int no_compress = 0;
 577
 
 578	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 579		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 580	else if (btrfs_free_space_cache_v1_active(info)) {
 581		if (btrfs_is_zoned(info)) {
 582			btrfs_info(info,
 583			"zoned: clearing existing space cache");
 584			btrfs_set_super_cache_generation(info->super_copy, 0);
 585		} else {
 586			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 587		}
 588	}
 589
 590	/*
 591	 * Even the options are empty, we still need to do extra check
 592	 * against new flags
 593	 */
 594	if (!options)
 595		goto check;
 596
 
 
 
 
 
 
 
 
 
 
 597	while ((p = strsep(&options, ",")) != NULL) {
 598		int token;
 599		if (!*p)
 600			continue;
 601
 602		token = match_token(p, tokens, args);
 603		switch (token) {
 604		case Opt_degraded:
 605			btrfs_info(info, "allowing degraded mounts");
 606			btrfs_set_opt(info->mount_opt, DEGRADED);
 607			break;
 608		case Opt_subvol:
 609		case Opt_subvol_empty:
 610		case Opt_subvolid:
 
 611		case Opt_device:
 612			/*
 613			 * These are parsed by btrfs_parse_subvol_options or
 614			 * btrfs_parse_device_options and can be ignored here.
 615			 */
 616			break;
 617		case Opt_nodatasum:
 618			btrfs_set_and_info(info, NODATASUM,
 619					   "setting nodatasum");
 620			break;
 621		case Opt_datasum:
 622			if (btrfs_test_opt(info, NODATASUM)) {
 623				if (btrfs_test_opt(info, NODATACOW))
 624					btrfs_info(info,
 625						   "setting datasum, datacow enabled");
 626				else
 627					btrfs_info(info, "setting datasum");
 628			}
 629			btrfs_clear_opt(info->mount_opt, NODATACOW);
 630			btrfs_clear_opt(info->mount_opt, NODATASUM);
 631			break;
 632		case Opt_nodatacow:
 633			if (!btrfs_test_opt(info, NODATACOW)) {
 634				if (!btrfs_test_opt(info, COMPRESS) ||
 635				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 636					btrfs_info(info,
 637						   "setting nodatacow, compression disabled");
 638				} else {
 639					btrfs_info(info, "setting nodatacow");
 640				}
 641			}
 642			btrfs_clear_opt(info->mount_opt, COMPRESS);
 643			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 644			btrfs_set_opt(info->mount_opt, NODATACOW);
 645			btrfs_set_opt(info->mount_opt, NODATASUM);
 646			break;
 647		case Opt_datacow:
 648			btrfs_clear_and_info(info, NODATACOW,
 649					     "setting datacow");
 650			break;
 651		case Opt_compress_force:
 652		case Opt_compress_force_type:
 653			compress_force = true;
 654			fallthrough;
 655		case Opt_compress:
 656		case Opt_compress_type:
 657			saved_compress_type = btrfs_test_opt(info,
 658							     COMPRESS) ?
 659				info->compress_type : BTRFS_COMPRESS_NONE;
 660			saved_compress_force =
 661				btrfs_test_opt(info, FORCE_COMPRESS);
 662			saved_compress_level = info->compress_level;
 663			if (token == Opt_compress ||
 664			    token == Opt_compress_force ||
 665			    strncmp(args[0].from, "zlib", 4) == 0) {
 666				compress_type = "zlib";
 667
 668				info->compress_type = BTRFS_COMPRESS_ZLIB;
 669				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 670				/*
 671				 * args[0] contains uninitialized data since
 672				 * for these tokens we don't expect any
 673				 * parameter.
 674				 */
 675				if (token != Opt_compress &&
 676				    token != Opt_compress_force)
 677					info->compress_level =
 678					  btrfs_compress_str2level(
 679							BTRFS_COMPRESS_ZLIB,
 680							args[0].from + 4);
 681				btrfs_set_opt(info->mount_opt, COMPRESS);
 682				btrfs_clear_opt(info->mount_opt, NODATACOW);
 683				btrfs_clear_opt(info->mount_opt, NODATASUM);
 684				no_compress = 0;
 685			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 686				compress_type = "lzo";
 687				info->compress_type = BTRFS_COMPRESS_LZO;
 688				info->compress_level = 0;
 689				btrfs_set_opt(info->mount_opt, COMPRESS);
 690				btrfs_clear_opt(info->mount_opt, NODATACOW);
 691				btrfs_clear_opt(info->mount_opt, NODATASUM);
 692				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 693				no_compress = 0;
 694			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 695				compress_type = "zstd";
 696				info->compress_type = BTRFS_COMPRESS_ZSTD;
 697				info->compress_level =
 698					btrfs_compress_str2level(
 699							 BTRFS_COMPRESS_ZSTD,
 700							 args[0].from + 4);
 701				btrfs_set_opt(info->mount_opt, COMPRESS);
 702				btrfs_clear_opt(info->mount_opt, NODATACOW);
 703				btrfs_clear_opt(info->mount_opt, NODATASUM);
 704				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 705				no_compress = 0;
 706			} else if (strncmp(args[0].from, "no", 2) == 0) {
 707				compress_type = "no";
 708				info->compress_level = 0;
 709				info->compress_type = 0;
 710				btrfs_clear_opt(info->mount_opt, COMPRESS);
 711				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 712				compress_force = false;
 713				no_compress++;
 714			} else {
 715				ret = -EINVAL;
 716				goto out;
 717			}
 718
 719			if (compress_force) {
 720				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 721			} else {
 722				/*
 723				 * If we remount from compress-force=xxx to
 724				 * compress=xxx, we need clear FORCE_COMPRESS
 725				 * flag, otherwise, there is no way for users
 726				 * to disable forcible compression separately.
 727				 */
 728				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 729			}
 730			if (no_compress == 1) {
 731				btrfs_info(info, "use no compression");
 732			} else if ((info->compress_type != saved_compress_type) ||
 733				   (compress_force != saved_compress_force) ||
 734				   (info->compress_level != saved_compress_level)) {
 735				btrfs_info(info, "%s %s compression, level %d",
 736					   (compress_force) ? "force" : "use",
 737					   compress_type, info->compress_level);
 738			}
 739			compress_force = false;
 740			break;
 741		case Opt_ssd:
 742			btrfs_set_and_info(info, SSD,
 743					   "enabling ssd optimizations");
 744			btrfs_clear_opt(info->mount_opt, NOSSD);
 745			break;
 746		case Opt_ssd_spread:
 747			btrfs_set_and_info(info, SSD,
 748					   "enabling ssd optimizations");
 749			btrfs_set_and_info(info, SSD_SPREAD,
 750					   "using spread ssd allocation scheme");
 751			btrfs_clear_opt(info->mount_opt, NOSSD);
 752			break;
 753		case Opt_nossd:
 754			btrfs_set_opt(info->mount_opt, NOSSD);
 755			btrfs_clear_and_info(info, SSD,
 756					     "not using ssd optimizations");
 757			fallthrough;
 758		case Opt_nossd_spread:
 759			btrfs_clear_and_info(info, SSD_SPREAD,
 760					     "not using spread ssd allocation scheme");
 761			break;
 762		case Opt_barrier:
 763			btrfs_clear_and_info(info, NOBARRIER,
 764					     "turning on barriers");
 765			break;
 766		case Opt_nobarrier:
 767			btrfs_set_and_info(info, NOBARRIER,
 768					   "turning off barriers");
 769			break;
 770		case Opt_thread_pool:
 771			ret = match_int(&args[0], &intarg);
 772			if (ret) {
 773				goto out;
 774			} else if (intarg == 0) {
 
 
 775				ret = -EINVAL;
 776				goto out;
 777			}
 778			info->thread_pool_size = intarg;
 779			break;
 780		case Opt_max_inline:
 781			num = match_strdup(&args[0]);
 782			if (num) {
 783				info->max_inline = memparse(num, NULL);
 784				kfree(num);
 785
 786				if (info->max_inline) {
 787					info->max_inline = min_t(u64,
 788						info->max_inline,
 789						info->sectorsize);
 790				}
 791				btrfs_info(info, "max_inline at %llu",
 792					   info->max_inline);
 793			} else {
 794				ret = -ENOMEM;
 795				goto out;
 796			}
 797			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798		case Opt_acl:
 799#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 800			info->sb->s_flags |= SB_POSIXACL;
 801			break;
 802#else
 803			btrfs_err(info, "support for ACL not compiled in!");
 804			ret = -EINVAL;
 805			goto out;
 806#endif
 807		case Opt_noacl:
 808			info->sb->s_flags &= ~SB_POSIXACL;
 809			break;
 810		case Opt_notreelog:
 811			btrfs_set_and_info(info, NOTREELOG,
 812					   "disabling tree log");
 813			break;
 814		case Opt_treelog:
 815			btrfs_clear_and_info(info, NOTREELOG,
 816					     "enabling tree log");
 817			break;
 818		case Opt_norecovery:
 819		case Opt_nologreplay:
 820			btrfs_warn(info,
 821		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 822			btrfs_set_and_info(info, NOLOGREPLAY,
 823					   "disabling log replay at mount time");
 824			break;
 825		case Opt_flushoncommit:
 826			btrfs_set_and_info(info, FLUSHONCOMMIT,
 827					   "turning on flush-on-commit");
 828			break;
 829		case Opt_noflushoncommit:
 830			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 831					     "turning off flush-on-commit");
 832			break;
 833		case Opt_ratio:
 834			ret = match_int(&args[0], &intarg);
 835			if (ret)
 836				goto out;
 837			info->metadata_ratio = intarg;
 838			btrfs_info(info, "metadata ratio %u",
 839				   info->metadata_ratio);
 840			break;
 841		case Opt_discard:
 842		case Opt_discard_mode:
 843			if (token == Opt_discard ||
 844			    strcmp(args[0].from, "sync") == 0) {
 845				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 846				btrfs_set_and_info(info, DISCARD_SYNC,
 847						   "turning on sync discard");
 848			} else if (strcmp(args[0].from, "async") == 0) {
 849				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 850				btrfs_set_and_info(info, DISCARD_ASYNC,
 851						   "turning on async discard");
 852			} else {
 853				ret = -EINVAL;
 854				goto out;
 855			}
 856			break;
 
 
 
 
 857		case Opt_nodiscard:
 858			btrfs_clear_and_info(info, DISCARD_SYNC,
 859					     "turning off discard");
 860			btrfs_clear_and_info(info, DISCARD_ASYNC,
 861					     "turning off async discard");
 862			break;
 863		case Opt_space_cache:
 864		case Opt_space_cache_version:
 865			if (token == Opt_space_cache ||
 866			    strcmp(args[0].from, "v1") == 0) {
 867				btrfs_clear_opt(info->mount_opt,
 868						FREE_SPACE_TREE);
 869				btrfs_set_and_info(info, SPACE_CACHE,
 870					   "enabling disk space caching");
 871			} else if (strcmp(args[0].from, "v2") == 0) {
 872				btrfs_clear_opt(info->mount_opt,
 873						SPACE_CACHE);
 874				btrfs_set_and_info(info, FREE_SPACE_TREE,
 875						   "enabling free space tree");
 876			} else {
 877				ret = -EINVAL;
 878				goto out;
 879			}
 880			break;
 881		case Opt_rescan_uuid_tree:
 882			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 883			break;
 884		case Opt_no_space_cache:
 885			if (btrfs_test_opt(info, SPACE_CACHE)) {
 886				btrfs_clear_and_info(info, SPACE_CACHE,
 887					     "disabling disk space caching");
 888			}
 889			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 890				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 891					     "disabling free space tree");
 892			}
 893			break;
 894		case Opt_inode_cache:
 
 
 
 895		case Opt_noinode_cache:
 896			btrfs_warn(info,
 897	"the 'inode_cache' option is deprecated and has no effect since 5.11");
 898			break;
 899		case Opt_clear_cache:
 900			btrfs_set_and_info(info, CLEAR_CACHE,
 901					   "force clearing of disk cache");
 902			break;
 903		case Opt_user_subvol_rm_allowed:
 904			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 905			break;
 906		case Opt_enospc_debug:
 907			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 908			break;
 909		case Opt_noenospc_debug:
 910			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 911			break;
 912		case Opt_defrag:
 913			btrfs_set_and_info(info, AUTO_DEFRAG,
 914					   "enabling auto defrag");
 915			break;
 916		case Opt_nodefrag:
 917			btrfs_clear_and_info(info, AUTO_DEFRAG,
 918					     "disabling auto defrag");
 919			break;
 920		case Opt_recovery:
 921		case Opt_usebackuproot:
 922			btrfs_warn(info,
 923			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 924				   token == Opt_recovery ? "recovery" :
 925				   "usebackuproot");
 926			btrfs_info(info,
 927				   "trying to use backup root at mount time");
 928			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 929			break;
 930		case Opt_skip_balance:
 931			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 932			break;
 933#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 934		case Opt_check_integrity_including_extent_data:
 935			btrfs_info(info,
 936				   "enabling check integrity including extent data");
 937			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
 
 938			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 939			break;
 940		case Opt_check_integrity:
 941			btrfs_info(info, "enabling check integrity");
 942			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 943			break;
 944		case Opt_check_integrity_print_mask:
 945			ret = match_int(&args[0], &intarg);
 946			if (ret)
 947				goto out;
 948			info->check_integrity_print_mask = intarg;
 949			btrfs_info(info, "check_integrity_print_mask 0x%x",
 950				   info->check_integrity_print_mask);
 
 
 
 
 
 
 951			break;
 952#else
 953		case Opt_check_integrity_including_extent_data:
 954		case Opt_check_integrity:
 955		case Opt_check_integrity_print_mask:
 956			btrfs_err(info,
 957				  "support for check_integrity* not compiled in!");
 958			ret = -EINVAL;
 959			goto out;
 960#endif
 961		case Opt_fatal_errors:
 962			if (strcmp(args[0].from, "panic") == 0)
 963				btrfs_set_opt(info->mount_opt,
 964					      PANIC_ON_FATAL_ERROR);
 965			else if (strcmp(args[0].from, "bug") == 0)
 966				btrfs_clear_opt(info->mount_opt,
 967					      PANIC_ON_FATAL_ERROR);
 968			else {
 969				ret = -EINVAL;
 970				goto out;
 971			}
 972			break;
 973		case Opt_commit_interval:
 974			intarg = 0;
 975			ret = match_int(&args[0], &intarg);
 976			if (ret)
 
 
 977				goto out;
 978			if (intarg == 0) {
 
 
 
 
 
 
 
 
 979				btrfs_info(info,
 980					   "using default commit interval %us",
 981					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 982				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 983			} else if (intarg > 300) {
 984				btrfs_warn(info, "excessive commit interval %d",
 985					   intarg);
 986			}
 987			info->commit_interval = intarg;
 988			break;
 989		case Opt_rescue:
 990			ret = parse_rescue_options(info, args[0].from);
 991			if (ret < 0)
 992				goto out;
 993			break;
 994#ifdef CONFIG_BTRFS_DEBUG
 995		case Opt_fragment_all:
 996			btrfs_info(info, "fragmenting all space");
 997			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 998			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 999			break;
1000		case Opt_fragment_metadata:
1001			btrfs_info(info, "fragmenting metadata");
1002			btrfs_set_opt(info->mount_opt,
1003				      FRAGMENT_METADATA);
1004			break;
1005		case Opt_fragment_data:
1006			btrfs_info(info, "fragmenting data");
1007			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1008			break;
1009#endif
1010#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1011		case Opt_ref_verify:
1012			btrfs_info(info, "doing ref verification");
1013			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1014			break;
1015#endif
1016		case Opt_err:
1017			btrfs_err(info, "unrecognized mount option '%s'", p);
1018			ret = -EINVAL;
1019			goto out;
1020		default:
1021			break;
1022		}
1023	}
1024check:
1025	/* We're read-only, don't have to check. */
1026	if (new_flags & SB_RDONLY)
1027		goto out;
1028
1029	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1030	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1031	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1032		ret = -EINVAL;
 
1033out:
1034	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1035	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1036	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1037		btrfs_err(info, "cannot disable free space tree");
1038		ret = -EINVAL;
1039
1040	}
1041	if (!ret)
1042		ret = btrfs_check_mountopts_zoned(info);
1043	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1044		btrfs_info(info, "disk space caching is enabled");
1045	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1046		btrfs_info(info, "using free space tree");
 
1047	return ret;
1048}
1049
1050/*
1051 * Parse mount options that are required early in the mount process.
1052 *
1053 * All other options will be parsed on much later in the mount process and
1054 * only when we need to allocate a new super block.
1055 */
1056static int btrfs_parse_device_options(const char *options, fmode_t flags,
1057				      void *holder)
 
1058{
1059	substring_t args[MAX_OPT_ARGS];
1060	char *device_name, *opts, *orig, *p;
1061	struct btrfs_device *device = NULL;
1062	int error = 0;
1063
1064	lockdep_assert_held(&uuid_mutex);
1065
1066	if (!options)
1067		return 0;
1068
1069	/*
1070	 * strsep changes the string, duplicate it because btrfs_parse_options
1071	 * gets called later
1072	 */
1073	opts = kstrdup(options, GFP_KERNEL);
1074	if (!opts)
1075		return -ENOMEM;
1076	orig = opts;
1077
1078	while ((p = strsep(&opts, ",")) != NULL) {
1079		int token;
1080
1081		if (!*p)
1082			continue;
1083
1084		token = match_token(p, tokens, args);
1085		if (token == Opt_device) {
1086			device_name = match_strdup(&args[0]);
1087			if (!device_name) {
1088				error = -ENOMEM;
1089				goto out;
1090			}
1091			device = btrfs_scan_one_device(device_name, flags,
1092					holder);
1093			kfree(device_name);
1094			if (IS_ERR(device)) {
1095				error = PTR_ERR(device);
1096				goto out;
1097			}
1098		}
1099	}
1100
1101out:
1102	kfree(orig);
1103	return error;
1104}
1105
1106/*
1107 * Parse mount options that are related to subvolume id
1108 *
1109 * The value is later passed to mount_subvol()
1110 */
1111static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1112		u64 *subvol_objectid)
1113{
1114	substring_t args[MAX_OPT_ARGS];
1115	char *opts, *orig, *p;
1116	int error = 0;
1117	u64 subvolid;
1118
1119	if (!options)
1120		return 0;
1121
1122	/*
1123	 * strsep changes the string, duplicate it because
1124	 * btrfs_parse_device_options gets called later
1125	 */
1126	opts = kstrdup(options, GFP_KERNEL);
1127	if (!opts)
1128		return -ENOMEM;
1129	orig = opts;
1130
1131	while ((p = strsep(&opts, ",")) != NULL) {
1132		int token;
1133		if (!*p)
1134			continue;
1135
1136		token = match_token(p, tokens, args);
1137		switch (token) {
1138		case Opt_subvol:
1139			kfree(*subvol_name);
1140			*subvol_name = match_strdup(&args[0]);
1141			if (!*subvol_name) {
1142				error = -ENOMEM;
1143				goto out;
1144			}
1145			break;
1146		case Opt_subvolid:
1147			error = match_u64(&args[0], &subvolid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148			if (error)
1149				goto out;
1150
1151			/* we want the original fs_tree */
1152			if (subvolid == 0)
1153				subvolid = BTRFS_FS_TREE_OBJECTID;
1154
1155			*subvol_objectid = subvolid;
1156			break;
1157		default:
1158			break;
1159		}
1160	}
1161
1162out:
1163	kfree(orig);
1164	return error;
1165}
1166
1167char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1168					  u64 subvol_objectid)
1169{
1170	struct btrfs_root *root = fs_info->tree_root;
1171	struct btrfs_root *fs_root = NULL;
1172	struct btrfs_root_ref *root_ref;
1173	struct btrfs_inode_ref *inode_ref;
1174	struct btrfs_key key;
1175	struct btrfs_path *path = NULL;
1176	char *name = NULL, *ptr;
1177	u64 dirid;
1178	int len;
1179	int ret;
1180
1181	path = btrfs_alloc_path();
1182	if (!path) {
1183		ret = -ENOMEM;
1184		goto err;
1185	}
 
1186
1187	name = kmalloc(PATH_MAX, GFP_KERNEL);
1188	if (!name) {
1189		ret = -ENOMEM;
1190		goto err;
1191	}
1192	ptr = name + PATH_MAX - 1;
1193	ptr[0] = '\0';
1194
1195	/*
1196	 * Walk up the subvolume trees in the tree of tree roots by root
1197	 * backrefs until we hit the top-level subvolume.
1198	 */
1199	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1200		key.objectid = subvol_objectid;
1201		key.type = BTRFS_ROOT_BACKREF_KEY;
1202		key.offset = (u64)-1;
1203
1204		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205		if (ret < 0) {
1206			goto err;
1207		} else if (ret > 0) {
1208			ret = btrfs_previous_item(root, path, subvol_objectid,
1209						  BTRFS_ROOT_BACKREF_KEY);
1210			if (ret < 0) {
1211				goto err;
1212			} else if (ret > 0) {
1213				ret = -ENOENT;
1214				goto err;
1215			}
1216		}
1217
1218		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1219		subvol_objectid = key.offset;
1220
1221		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1222					  struct btrfs_root_ref);
1223		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1224		ptr -= len + 1;
1225		if (ptr < name) {
1226			ret = -ENAMETOOLONG;
1227			goto err;
1228		}
1229		read_extent_buffer(path->nodes[0], ptr + 1,
1230				   (unsigned long)(root_ref + 1), len);
1231		ptr[0] = '/';
1232		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1233		btrfs_release_path(path);
1234
1235		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 
 
 
1236		if (IS_ERR(fs_root)) {
1237			ret = PTR_ERR(fs_root);
1238			fs_root = NULL;
1239			goto err;
1240		}
1241
1242		/*
1243		 * Walk up the filesystem tree by inode refs until we hit the
1244		 * root directory.
1245		 */
1246		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1247			key.objectid = dirid;
1248			key.type = BTRFS_INODE_REF_KEY;
1249			key.offset = (u64)-1;
1250
1251			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1252			if (ret < 0) {
1253				goto err;
1254			} else if (ret > 0) {
1255				ret = btrfs_previous_item(fs_root, path, dirid,
1256							  BTRFS_INODE_REF_KEY);
1257				if (ret < 0) {
1258					goto err;
1259				} else if (ret > 0) {
1260					ret = -ENOENT;
1261					goto err;
1262				}
1263			}
1264
1265			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1266			dirid = key.offset;
1267
1268			inode_ref = btrfs_item_ptr(path->nodes[0],
1269						   path->slots[0],
1270						   struct btrfs_inode_ref);
1271			len = btrfs_inode_ref_name_len(path->nodes[0],
1272						       inode_ref);
1273			ptr -= len + 1;
1274			if (ptr < name) {
1275				ret = -ENAMETOOLONG;
1276				goto err;
1277			}
1278			read_extent_buffer(path->nodes[0], ptr + 1,
1279					   (unsigned long)(inode_ref + 1), len);
1280			ptr[0] = '/';
1281			btrfs_release_path(path);
1282		}
1283		btrfs_put_root(fs_root);
1284		fs_root = NULL;
1285	}
1286
1287	btrfs_free_path(path);
1288	if (ptr == name + PATH_MAX - 1) {
1289		name[0] = '/';
1290		name[1] = '\0';
1291	} else {
1292		memmove(name, ptr, name + PATH_MAX - ptr);
1293	}
1294	return name;
1295
1296err:
1297	btrfs_put_root(fs_root);
1298	btrfs_free_path(path);
1299	kfree(name);
1300	return ERR_PTR(ret);
1301}
1302
1303static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1304{
1305	struct btrfs_root *root = fs_info->tree_root;
1306	struct btrfs_dir_item *di;
1307	struct btrfs_path *path;
1308	struct btrfs_key location;
1309	u64 dir_id;
1310
1311	path = btrfs_alloc_path();
1312	if (!path)
1313		return -ENOMEM;
 
1314
1315	/*
1316	 * Find the "default" dir item which points to the root item that we
1317	 * will mount by default if we haven't been given a specific subvolume
1318	 * to mount.
1319	 */
1320	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1321	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1322	if (IS_ERR(di)) {
1323		btrfs_free_path(path);
1324		return PTR_ERR(di);
1325	}
1326	if (!di) {
1327		/*
1328		 * Ok the default dir item isn't there.  This is weird since
1329		 * it's always been there, but don't freak out, just try and
1330		 * mount the top-level subvolume.
1331		 */
1332		btrfs_free_path(path);
1333		*objectid = BTRFS_FS_TREE_OBJECTID;
1334		return 0;
1335	}
1336
1337	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1338	btrfs_free_path(path);
1339	*objectid = location.objectid;
1340	return 0;
1341}
1342
1343static int btrfs_fill_super(struct super_block *sb,
1344			    struct btrfs_fs_devices *fs_devices,
1345			    void *data)
1346{
1347	struct inode *inode;
1348	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1349	int err;
1350
1351	sb->s_maxbytes = MAX_LFS_FILESIZE;
1352	sb->s_magic = BTRFS_SUPER_MAGIC;
1353	sb->s_op = &btrfs_super_ops;
1354	sb->s_d_op = &btrfs_dentry_operations;
1355	sb->s_export_op = &btrfs_export_ops;
1356	sb->s_xattr = btrfs_xattr_handlers;
1357	sb->s_time_gran = 1;
1358#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1359	sb->s_flags |= SB_POSIXACL;
1360#endif
1361	sb->s_flags |= SB_I_VERSION;
1362	sb->s_iflags |= SB_I_CGROUPWB;
1363
1364	err = super_setup_bdi(sb);
1365	if (err) {
1366		btrfs_err(fs_info, "super_setup_bdi failed");
1367		return err;
1368	}
1369
1370	err = open_ctree(sb, fs_devices, (char *)data);
1371	if (err) {
1372		btrfs_err(fs_info, "open_ctree failed");
1373		return err;
1374	}
1375
1376	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
1377	if (IS_ERR(inode)) {
1378		err = PTR_ERR(inode);
1379		goto fail_close;
1380	}
1381
1382	sb->s_root = d_make_root(inode);
1383	if (!sb->s_root) {
1384		err = -ENOMEM;
1385		goto fail_close;
1386	}
1387
 
1388	cleancache_init_fs(sb);
1389	sb->s_flags |= SB_ACTIVE;
1390	return 0;
1391
1392fail_close:
1393	close_ctree(fs_info);
1394	return err;
1395}
1396
1397int btrfs_sync_fs(struct super_block *sb, int wait)
1398{
1399	struct btrfs_trans_handle *trans;
1400	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1401	struct btrfs_root *root = fs_info->tree_root;
1402
1403	trace_btrfs_sync_fs(fs_info, wait);
1404
1405	if (!wait) {
1406		filemap_flush(fs_info->btree_inode->i_mapping);
1407		return 0;
1408	}
1409
1410	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1411
1412	trans = btrfs_attach_transaction_barrier(root);
1413	if (IS_ERR(trans)) {
1414		/* no transaction, don't bother */
1415		if (PTR_ERR(trans) == -ENOENT) {
1416			/*
1417			 * Exit unless we have some pending changes
1418			 * that need to go through commit
1419			 */
1420			if (fs_info->pending_changes == 0)
1421				return 0;
1422			/*
1423			 * A non-blocking test if the fs is frozen. We must not
1424			 * start a new transaction here otherwise a deadlock
1425			 * happens. The pending operations are delayed to the
1426			 * next commit after thawing.
1427			 */
1428			if (sb_start_write_trylock(sb))
1429				sb_end_write(sb);
1430			else
1431				return 0;
1432			trans = btrfs_start_transaction(root, 0);
1433		}
1434		if (IS_ERR(trans))
1435			return PTR_ERR(trans);
1436	}
1437	return btrfs_commit_transaction(trans);
1438}
1439
1440static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1441{
1442	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1443	*printed = true;
1444}
1445
1446static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1447{
1448	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1449	const char *compress_type;
1450	const char *subvol_name;
1451	bool printed = false;
1452
1453	if (btrfs_test_opt(info, DEGRADED))
1454		seq_puts(seq, ",degraded");
1455	if (btrfs_test_opt(info, NODATASUM))
1456		seq_puts(seq, ",nodatasum");
1457	if (btrfs_test_opt(info, NODATACOW))
1458		seq_puts(seq, ",nodatacow");
1459	if (btrfs_test_opt(info, NOBARRIER))
1460		seq_puts(seq, ",nobarrier");
1461	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1462		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
1463	if (info->thread_pool_size !=  min_t(unsigned long,
1464					     num_online_cpus() + 2, 8))
1465		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1466	if (btrfs_test_opt(info, COMPRESS)) {
1467		compress_type = btrfs_compress_type2str(info->compress_type);
 
 
 
1468		if (btrfs_test_opt(info, FORCE_COMPRESS))
1469			seq_printf(seq, ",compress-force=%s", compress_type);
1470		else
1471			seq_printf(seq, ",compress=%s", compress_type);
1472		if (info->compress_level)
1473			seq_printf(seq, ":%d", info->compress_level);
1474	}
1475	if (btrfs_test_opt(info, NOSSD))
1476		seq_puts(seq, ",nossd");
1477	if (btrfs_test_opt(info, SSD_SPREAD))
1478		seq_puts(seq, ",ssd_spread");
1479	else if (btrfs_test_opt(info, SSD))
1480		seq_puts(seq, ",ssd");
1481	if (btrfs_test_opt(info, NOTREELOG))
1482		seq_puts(seq, ",notreelog");
1483	if (btrfs_test_opt(info, NOLOGREPLAY))
1484		print_rescue_option(seq, "nologreplay", &printed);
1485	if (btrfs_test_opt(info, USEBACKUPROOT))
1486		print_rescue_option(seq, "usebackuproot", &printed);
1487	if (btrfs_test_opt(info, IGNOREBADROOTS))
1488		print_rescue_option(seq, "ignorebadroots", &printed);
1489	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1490		print_rescue_option(seq, "ignoredatacsums", &printed);
1491	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1492		seq_puts(seq, ",flushoncommit");
1493	if (btrfs_test_opt(info, DISCARD_SYNC))
1494		seq_puts(seq, ",discard");
1495	if (btrfs_test_opt(info, DISCARD_ASYNC))
1496		seq_puts(seq, ",discard=async");
1497	if (!(info->sb->s_flags & SB_POSIXACL))
1498		seq_puts(seq, ",noacl");
1499	if (btrfs_free_space_cache_v1_active(info))
1500		seq_puts(seq, ",space_cache");
1501	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1502		seq_puts(seq, ",space_cache=v2");
1503	else
1504		seq_puts(seq, ",nospace_cache");
1505	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1506		seq_puts(seq, ",rescan_uuid_tree");
1507	if (btrfs_test_opt(info, CLEAR_CACHE))
1508		seq_puts(seq, ",clear_cache");
1509	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1510		seq_puts(seq, ",user_subvol_rm_allowed");
1511	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1512		seq_puts(seq, ",enospc_debug");
1513	if (btrfs_test_opt(info, AUTO_DEFRAG))
1514		seq_puts(seq, ",autodefrag");
 
 
1515	if (btrfs_test_opt(info, SKIP_BALANCE))
1516		seq_puts(seq, ",skip_balance");
1517#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1518	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1519		seq_puts(seq, ",check_int_data");
1520	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1521		seq_puts(seq, ",check_int");
1522	if (info->check_integrity_print_mask)
1523		seq_printf(seq, ",check_int_print_mask=%d",
1524				info->check_integrity_print_mask);
1525#endif
1526	if (info->metadata_ratio)
1527		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
 
1528	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1529		seq_puts(seq, ",fatal_errors=panic");
1530	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1531		seq_printf(seq, ",commit=%u", info->commit_interval);
1532#ifdef CONFIG_BTRFS_DEBUG
1533	if (btrfs_test_opt(info, FRAGMENT_DATA))
1534		seq_puts(seq, ",fragment=data");
1535	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1536		seq_puts(seq, ",fragment=metadata");
1537#endif
1538	if (btrfs_test_opt(info, REF_VERIFY))
1539		seq_puts(seq, ",ref_verify");
1540	seq_printf(seq, ",subvolid=%llu",
1541		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1542	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1543			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1544	if (!IS_ERR(subvol_name)) {
1545		seq_puts(seq, ",subvol=");
1546		seq_escape(seq, subvol_name, " \t\n\\");
1547		kfree(subvol_name);
1548	}
1549	return 0;
1550}
1551
1552static int btrfs_test_super(struct super_block *s, void *data)
1553{
1554	struct btrfs_fs_info *p = data;
1555	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1556
1557	return fs_info->fs_devices == p->fs_devices;
1558}
1559
1560static int btrfs_set_super(struct super_block *s, void *data)
1561{
1562	int err = set_anon_super(s, data);
1563	if (!err)
1564		s->s_fs_info = data;
1565	return err;
1566}
1567
1568/*
1569 * subvolumes are identified by ino 256
1570 */
1571static inline int is_subvolume_inode(struct inode *inode)
1572{
1573	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1574		return 1;
1575	return 0;
1576}
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1579				   struct vfsmount *mnt)
 
1580{
1581	struct dentry *root;
 
 
1582	int ret;
1583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	if (!subvol_name) {
1585		if (!subvol_objectid) {
1586			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1587							  &subvol_objectid);
1588			if (ret) {
1589				root = ERR_PTR(ret);
1590				goto out;
1591			}
1592		}
1593		subvol_name = btrfs_get_subvol_name_from_objectid(
1594					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1595		if (IS_ERR(subvol_name)) {
1596			root = ERR_CAST(subvol_name);
1597			subvol_name = NULL;
1598			goto out;
1599		}
1600
1601	}
1602
1603	root = mount_subtree(mnt, subvol_name);
1604	/* mount_subtree() drops our reference on the vfsmount. */
1605	mnt = NULL;
1606
1607	if (!IS_ERR(root)) {
1608		struct super_block *s = root->d_sb;
1609		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1610		struct inode *root_inode = d_inode(root);
1611		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1612
1613		ret = 0;
1614		if (!is_subvolume_inode(root_inode)) {
1615			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1616			       subvol_name);
1617			ret = -EINVAL;
1618		}
1619		if (subvol_objectid && root_objectid != subvol_objectid) {
1620			/*
1621			 * This will also catch a race condition where a
1622			 * subvolume which was passed by ID is renamed and
1623			 * another subvolume is renamed over the old location.
1624			 */
1625			btrfs_err(fs_info,
1626				  "subvol '%s' does not match subvolid %llu",
1627				  subvol_name, subvol_objectid);
1628			ret = -EINVAL;
1629		}
1630		if (ret) {
1631			dput(root);
1632			root = ERR_PTR(ret);
1633			deactivate_locked_super(s);
1634		}
1635	}
1636
1637out:
1638	mntput(mnt);
 
1639	kfree(subvol_name);
1640	return root;
1641}
1642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643/*
1644 * Find a superblock for the given device / mount point.
1645 *
1646 * Note: This is based on mount_bdev from fs/super.c with a few additions
1647 *       for multiple device setup.  Make sure to keep it in sync.
1648 */
1649static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1650		int flags, const char *device_name, void *data)
1651{
1652	struct block_device *bdev = NULL;
1653	struct super_block *s;
1654	struct btrfs_device *device = NULL;
1655	struct btrfs_fs_devices *fs_devices = NULL;
1656	struct btrfs_fs_info *fs_info = NULL;
1657	void *new_sec_opts = NULL;
1658	fmode_t mode = FMODE_READ;
 
 
1659	int error = 0;
1660
1661	if (!(flags & SB_RDONLY))
1662		mode |= FMODE_WRITE;
1663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664	if (data) {
1665		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1666		if (error)
1667			return ERR_PTR(error);
1668	}
1669
 
 
 
 
1670	/*
1671	 * Setup a dummy root and fs_info for test/set super.  This is because
1672	 * we don't actually fill this stuff out until open_ctree, but we need
1673	 * then open_ctree will properly initialize the file system specific
1674	 * settings later.  btrfs_init_fs_info initializes the static elements
1675	 * of the fs_info (locks and such) to make cleanup easier if we find a
1676	 * superblock with our given fs_devices later on at sget() time.
1677	 */
1678	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1679	if (!fs_info) {
1680		error = -ENOMEM;
1681		goto error_sec_opts;
1682	}
1683	btrfs_init_fs_info(fs_info);
1684
1685	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1686	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
 
 
 
1687	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1688		error = -ENOMEM;
1689		goto error_fs_info;
1690	}
1691
1692	mutex_lock(&uuid_mutex);
1693	error = btrfs_parse_device_options(data, mode, fs_type);
1694	if (error) {
1695		mutex_unlock(&uuid_mutex);
1696		goto error_fs_info;
1697	}
1698
1699	device = btrfs_scan_one_device(device_name, mode, fs_type);
1700	if (IS_ERR(device)) {
1701		mutex_unlock(&uuid_mutex);
1702		error = PTR_ERR(device);
1703		goto error_fs_info;
1704	}
1705
1706	fs_devices = device->fs_devices;
1707	fs_info->fs_devices = fs_devices;
1708
1709	error = btrfs_open_devices(fs_devices, mode, fs_type);
1710	mutex_unlock(&uuid_mutex);
1711	if (error)
1712		goto error_fs_info;
1713
1714	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1715		error = -EACCES;
1716		goto error_close_devices;
1717	}
1718
1719	bdev = fs_devices->latest_bdev;
1720	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1721		 fs_info);
1722	if (IS_ERR(s)) {
1723		error = PTR_ERR(s);
1724		goto error_close_devices;
1725	}
1726
1727	if (s->s_root) {
1728		btrfs_close_devices(fs_devices);
1729		btrfs_free_fs_info(fs_info);
1730		if ((flags ^ s->s_flags) & SB_RDONLY)
1731			error = -EBUSY;
1732	} else {
1733		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1734		btrfs_sb(s)->bdev_holder = fs_type;
1735		if (!strstr(crc32c_impl(), "generic"))
1736			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1737		error = btrfs_fill_super(s, fs_devices, data);
1738	}
1739	if (!error)
1740		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1741	security_free_mnt_opts(&new_sec_opts);
1742	if (error) {
1743		deactivate_locked_super(s);
1744		return ERR_PTR(error);
 
 
 
 
 
 
 
1745	}
1746
1747	return dget(s->s_root);
1748
1749error_close_devices:
1750	btrfs_close_devices(fs_devices);
1751error_fs_info:
1752	btrfs_free_fs_info(fs_info);
1753error_sec_opts:
1754	security_free_mnt_opts(&new_sec_opts);
1755	return ERR_PTR(error);
1756}
1757
1758/*
1759 * Mount function which is called by VFS layer.
1760 *
1761 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1762 * which needs vfsmount* of device's root (/).  This means device's root has to
1763 * be mounted internally in any case.
1764 *
1765 * Operation flow:
1766 *   1. Parse subvol id related options for later use in mount_subvol().
1767 *
1768 *   2. Mount device's root (/) by calling vfs_kern_mount().
1769 *
1770 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1771 *      first place. In order to avoid calling btrfs_mount() again, we use
1772 *      different file_system_type which is not registered to VFS by
1773 *      register_filesystem() (btrfs_root_fs_type). As a result,
1774 *      btrfs_mount_root() is called. The return value will be used by
1775 *      mount_subtree() in mount_subvol().
1776 *
1777 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1778 *      "btrfs subvolume set-default", mount_subvol() is called always.
1779 */
1780static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1781		const char *device_name, void *data)
1782{
1783	struct vfsmount *mnt_root;
1784	struct dentry *root;
1785	char *subvol_name = NULL;
1786	u64 subvol_objectid = 0;
1787	int error = 0;
1788
1789	error = btrfs_parse_subvol_options(data, &subvol_name,
1790					&subvol_objectid);
1791	if (error) {
1792		kfree(subvol_name);
1793		return ERR_PTR(error);
1794	}
1795
1796	/* mount device's root (/) */
1797	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1798	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1799		if (flags & SB_RDONLY) {
1800			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1801				flags & ~SB_RDONLY, device_name, data);
1802		} else {
1803			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1804				flags | SB_RDONLY, device_name, data);
1805			if (IS_ERR(mnt_root)) {
1806				root = ERR_CAST(mnt_root);
1807				kfree(subvol_name);
1808				goto out;
1809			}
1810
1811			down_write(&mnt_root->mnt_sb->s_umount);
1812			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1813			up_write(&mnt_root->mnt_sb->s_umount);
1814			if (error < 0) {
1815				root = ERR_PTR(error);
1816				mntput(mnt_root);
1817				kfree(subvol_name);
1818				goto out;
1819			}
1820		}
1821	}
1822	if (IS_ERR(mnt_root)) {
1823		root = ERR_CAST(mnt_root);
1824		kfree(subvol_name);
1825		goto out;
1826	}
1827
1828	/* mount_subvol() will free subvol_name and mnt_root */
1829	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1830
1831out:
1832	return root;
1833}
1834
1835static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1836				     u32 new_pool_size, u32 old_pool_size)
1837{
1838	if (new_pool_size == old_pool_size)
1839		return;
1840
1841	fs_info->thread_pool_size = new_pool_size;
1842
1843	btrfs_info(fs_info, "resize thread pool %d -> %d",
1844	       old_pool_size, new_pool_size);
1845
1846	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1847	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
 
1848	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1849	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1850	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1851	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1852				new_pool_size);
1853	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1854	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1855	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1856	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1857	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1858				new_pool_size);
1859}
1860
 
 
 
 
 
1861static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1862				       unsigned long old_opts, int flags)
1863{
1864	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1865	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1866	     (flags & SB_RDONLY))) {
1867		/* wait for any defraggers to finish */
1868		wait_event(fs_info->transaction_wait,
1869			   (atomic_read(&fs_info->defrag_running) == 0));
1870		if (flags & SB_RDONLY)
1871			sync_filesystem(fs_info->sb);
1872	}
1873}
1874
1875static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1876					 unsigned long old_opts)
1877{
1878	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1879
1880	/*
1881	 * We need to cleanup all defragable inodes if the autodefragment is
1882	 * close or the filesystem is read only.
1883	 */
1884	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1885	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
 
1886		btrfs_cleanup_defrag_inodes(fs_info);
1887	}
1888
1889	/* If we toggled discard async */
1890	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1891	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1892		btrfs_discard_resume(fs_info);
1893	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1894		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1895		btrfs_discard_cleanup(fs_info);
1896
1897	/* If we toggled space cache */
1898	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1899		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1900}
1901
1902static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1903{
1904	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1905	unsigned old_flags = sb->s_flags;
1906	unsigned long old_opts = fs_info->mount_opt;
1907	unsigned long old_compress_type = fs_info->compress_type;
1908	u64 old_max_inline = fs_info->max_inline;
1909	u32 old_thread_pool_size = fs_info->thread_pool_size;
1910	u32 old_metadata_ratio = fs_info->metadata_ratio;
 
1911	int ret;
1912
1913	sync_filesystem(sb);
1914	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1915
1916	if (data) {
1917		void *new_sec_opts = NULL;
1918
1919		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1920		if (!ret)
1921			ret = security_sb_remount(sb, new_sec_opts);
1922		security_free_mnt_opts(&new_sec_opts);
1923		if (ret)
1924			goto restore;
 
 
 
 
 
 
1925	}
1926
1927	ret = btrfs_parse_options(fs_info, data, *flags);
1928	if (ret)
 
1929		goto restore;
 
1930
1931	btrfs_remount_begin(fs_info, old_opts, *flags);
1932	btrfs_resize_thread_pool(fs_info,
1933		fs_info->thread_pool_size, old_thread_pool_size);
1934
1935	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1936	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1937	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1938		btrfs_warn(fs_info,
1939		"remount supports changing free space tree only from ro to rw");
1940		/* Make sure free space cache options match the state on disk */
1941		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1942			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1943			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1944		}
1945		if (btrfs_free_space_cache_v1_active(fs_info)) {
1946			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1947			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1948		}
1949	}
1950
1951	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1952		goto out;
1953
1954	if (*flags & SB_RDONLY) {
1955		/*
1956		 * this also happens on 'umount -rf' or on shutdown, when
1957		 * the filesystem is busy.
1958		 */
1959		cancel_work_sync(&fs_info->async_reclaim_work);
1960		cancel_work_sync(&fs_info->async_data_reclaim_work);
1961
1962		btrfs_discard_cleanup(fs_info);
1963
1964		/* wait for the uuid_scan task to finish */
1965		down(&fs_info->uuid_tree_rescan_sem);
1966		/* avoid complains from lockdep et al. */
1967		up(&fs_info->uuid_tree_rescan_sem);
1968
1969		btrfs_set_sb_rdonly(sb);
1970
1971		/*
1972		 * Setting SB_RDONLY will put the cleaner thread to
1973		 * sleep at the next loop if it's already active.
1974		 * If it's already asleep, we'll leave unused block
1975		 * groups on disk until we're mounted read-write again
1976		 * unless we clean them up here.
1977		 */
1978		btrfs_delete_unused_bgs(fs_info);
1979
1980		/*
1981		 * The cleaner task could be already running before we set the
1982		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1983		 * We must make sure that after we finish the remount, i.e. after
1984		 * we call btrfs_commit_super(), the cleaner can no longer start
1985		 * a transaction - either because it was dropping a dead root,
1986		 * running delayed iputs or deleting an unused block group (the
1987		 * cleaner picked a block group from the list of unused block
1988		 * groups before we were able to in the previous call to
1989		 * btrfs_delete_unused_bgs()).
1990		 */
1991		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1992			    TASK_UNINTERRUPTIBLE);
1993
1994		/*
1995		 * We've set the superblock to RO mode, so we might have made
1996		 * the cleaner task sleep without running all pending delayed
1997		 * iputs. Go through all the delayed iputs here, so that if an
1998		 * unmount happens without remounting RW we don't end up at
1999		 * finishing close_ctree() with a non-empty list of delayed
2000		 * iputs.
2001		 */
2002		btrfs_run_delayed_iputs(fs_info);
2003
2004		btrfs_dev_replace_suspend_for_unmount(fs_info);
2005		btrfs_scrub_cancel(fs_info);
2006		btrfs_pause_balance(fs_info);
2007
2008		/*
2009		 * Pause the qgroup rescan worker if it is running. We don't want
2010		 * it to be still running after we are in RO mode, as after that,
2011		 * by the time we unmount, it might have left a transaction open,
2012		 * so we would leak the transaction and/or crash.
2013		 */
2014		btrfs_qgroup_wait_for_completion(fs_info, false);
2015
2016		ret = btrfs_commit_super(fs_info);
2017		if (ret)
2018			goto restore;
2019	} else {
2020		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2021			btrfs_err(fs_info,
2022				"Remounting read-write after error is not allowed");
2023			ret = -EINVAL;
2024			goto restore;
2025		}
2026		if (fs_info->fs_devices->rw_devices == 0) {
2027			ret = -EACCES;
2028			goto restore;
2029		}
2030
2031		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
 
 
2032			btrfs_warn(fs_info,
2033		"too many missing devices, writable remount is not allowed");
2034			ret = -EACCES;
2035			goto restore;
2036		}
2037
2038		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2039			btrfs_warn(fs_info,
2040		"mount required to replay tree-log, cannot remount read-write");
2041			ret = -EINVAL;
2042			goto restore;
2043		}
2044		if (fs_info->sectorsize < PAGE_SIZE) {
2045			btrfs_warn(fs_info,
2046	"read-write mount is not yet allowed for sectorsize %u page size %lu",
2047				   fs_info->sectorsize, PAGE_SIZE);
2048			ret = -EINVAL;
2049			goto restore;
2050		}
2051
2052		/*
2053		 * NOTE: when remounting with a change that does writes, don't
2054		 * put it anywhere above this point, as we are not sure to be
2055		 * safe to write until we pass the above checks.
2056		 */
2057		ret = btrfs_start_pre_rw_mount(fs_info);
2058		if (ret)
2059			goto restore;
2060
2061		btrfs_clear_sb_rdonly(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062
2063		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2064	}
2065out:
2066	/*
2067	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2068	 * since the absence of the flag means it can be toggled off by remount.
2069	 */
2070	*flags |= SB_I_VERSION;
2071
2072	wake_up_process(fs_info->transaction_kthread);
2073	btrfs_remount_cleanup(fs_info, old_opts);
2074	btrfs_clear_oneshot_options(fs_info);
2075	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2076
2077	return 0;
2078
2079restore:
2080	/* We've hit an error - don't reset SB_RDONLY */
2081	if (sb_rdonly(sb))
2082		old_flags |= SB_RDONLY;
2083	if (!(old_flags & SB_RDONLY))
2084		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2085	sb->s_flags = old_flags;
2086	fs_info->mount_opt = old_opts;
2087	fs_info->compress_type = old_compress_type;
2088	fs_info->max_inline = old_max_inline;
 
 
 
2089	btrfs_resize_thread_pool(fs_info,
2090		old_thread_pool_size, fs_info->thread_pool_size);
2091	fs_info->metadata_ratio = old_metadata_ratio;
2092	btrfs_remount_cleanup(fs_info, old_opts);
2093	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2094
2095	return ret;
2096}
2097
2098/* Used to sort the devices by max_avail(descending sort) */
2099static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2100				       const void *dev_info2)
2101{
2102	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2103	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2104		return -1;
2105	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2106		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2107		return 1;
2108	else
2109	return 0;
2110}
2111
2112/*
2113 * sort the devices by max_avail, in which max free extent size of each device
2114 * is stored.(Descending Sort)
2115 */
2116static inline void btrfs_descending_sort_devices(
2117					struct btrfs_device_info *devices,
2118					size_t nr_devices)
2119{
2120	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2121	     btrfs_cmp_device_free_bytes, NULL);
2122}
2123
2124/*
2125 * The helper to calc the free space on the devices that can be used to store
2126 * file data.
2127 */
2128static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2129					      u64 *free_bytes)
2130{
 
2131	struct btrfs_device_info *devices_info;
2132	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2133	struct btrfs_device *device;
 
2134	u64 type;
2135	u64 avail_space;
 
2136	u64 min_stripe_size;
2137	int num_stripes = 1;
2138	int i = 0, nr_devices;
2139	const struct btrfs_raid_attr *rattr;
2140
2141	/*
2142	 * We aren't under the device list lock, so this is racy-ish, but good
2143	 * enough for our purposes.
2144	 */
2145	nr_devices = fs_info->fs_devices->open_devices;
2146	if (!nr_devices) {
2147		smp_mb();
2148		nr_devices = fs_info->fs_devices->open_devices;
2149		ASSERT(nr_devices);
2150		if (!nr_devices) {
2151			*free_bytes = 0;
2152			return 0;
2153		}
2154	}
2155
2156	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2157			       GFP_KERNEL);
2158	if (!devices_info)
2159		return -ENOMEM;
2160
2161	/* calc min stripe number for data space allocation */
2162	type = btrfs_data_alloc_profile(fs_info);
2163	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2164
2165	if (type & BTRFS_BLOCK_GROUP_RAID0)
2166		num_stripes = nr_devices;
2167	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 
2168		num_stripes = 2;
2169	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2170		num_stripes = 3;
2171	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2172		num_stripes = 4;
2173	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2174		num_stripes = 4;
 
2175
2176	/* Adjust for more than 1 stripe per device */
2177	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
2178
 
 
2179	rcu_read_lock();
2180	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2181		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2182						&device->dev_state) ||
2183		    !device->bdev ||
2184		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2185			continue;
2186
2187		if (i >= nr_devices)
2188			break;
2189
2190		avail_space = device->total_bytes - device->bytes_used;
2191
2192		/* align with stripe_len */
2193		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
2194
2195		/*
2196		 * In order to avoid overwriting the superblock on the drive,
2197		 * btrfs starts at an offset of at least 1MB when doing chunk
2198		 * allocation.
2199		 *
2200		 * This ensures we have at least min_stripe_size free space
2201		 * after excluding 1MB.
2202		 */
2203		if (avail_space <= SZ_1M + min_stripe_size)
2204			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205
2206		avail_space -= SZ_1M;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207
2208		devices_info[i].dev = device;
2209		devices_info[i].max_avail = avail_space;
2210
2211		i++;
2212	}
2213	rcu_read_unlock();
 
 
2214
2215	nr_devices = i;
2216
2217	btrfs_descending_sort_devices(devices_info, nr_devices);
2218
2219	i = nr_devices - 1;
2220	avail_space = 0;
2221	while (nr_devices >= rattr->devs_min) {
2222		num_stripes = min(num_stripes, nr_devices);
 
2223
2224		if (devices_info[i].max_avail >= min_stripe_size) {
2225			int j;
2226			u64 alloc_size;
2227
2228			avail_space += devices_info[i].max_avail * num_stripes;
2229			alloc_size = devices_info[i].max_avail;
2230			for (j = i + 1 - num_stripes; j <= i; j++)
2231				devices_info[j].max_avail -= alloc_size;
2232		}
2233		i--;
2234		nr_devices--;
2235	}
2236
2237	kfree(devices_info);
2238	*free_bytes = avail_space;
2239	return 0;
2240}
2241
2242/*
2243 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2244 *
2245 * If there's a redundant raid level at DATA block groups, use the respective
2246 * multiplier to scale the sizes.
2247 *
2248 * Unused device space usage is based on simulating the chunk allocator
2249 * algorithm that respects the device sizes and order of allocations.  This is
2250 * a close approximation of the actual use but there are other factors that may
2251 * change the result (like a new metadata chunk).
 
2252 *
2253 * If metadata is exhausted, f_bavail will be 0.
2254 */
2255static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2256{
2257	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2258	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
2259	struct btrfs_space_info *found;
2260	u64 total_used = 0;
2261	u64 total_free_data = 0;
2262	u64 total_free_meta = 0;
2263	u32 bits = fs_info->sectorsize_bits;
2264	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2265	unsigned factor = 1;
2266	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2267	int ret;
2268	u64 thresh = 0;
2269	int mixed = 0;
2270
2271	list_for_each_entry(found, &fs_info->space_info, list) {
 
2272		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2273			int i;
2274
2275			total_free_data += found->disk_total - found->disk_used;
2276			total_free_data -=
2277				btrfs_account_ro_block_groups_free_space(found);
2278
2279			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2280				if (!list_empty(&found->block_groups[i]))
2281					factor = btrfs_bg_type_to_factor(
2282						btrfs_raid_array[i].bg_flag);
 
 
 
 
 
2283			}
2284		}
2285
2286		/*
2287		 * Metadata in mixed block goup profiles are accounted in data
2288		 */
2289		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2290			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2291				mixed = 1;
2292			else
2293				total_free_meta += found->disk_total -
2294					found->disk_used;
2295		}
2296
2297		total_used += found->disk_used;
2298	}
2299
 
 
2300	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2301	buf->f_blocks >>= bits;
2302	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2303
2304	/* Account global block reserve as used, it's in logical size already */
2305	spin_lock(&block_rsv->lock);
2306	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2307	if (buf->f_bfree >= block_rsv->size >> bits)
2308		buf->f_bfree -= block_rsv->size >> bits;
2309	else
2310		buf->f_bfree = 0;
2311	spin_unlock(&block_rsv->lock);
2312
2313	buf->f_bavail = div_u64(total_free_data, factor);
2314	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2315	if (ret)
2316		return ret;
2317	buf->f_bavail += div_u64(total_free_data, factor);
2318	buf->f_bavail = buf->f_bavail >> bits;
2319
2320	/*
2321	 * We calculate the remaining metadata space minus global reserve. If
2322	 * this is (supposedly) smaller than zero, there's no space. But this
2323	 * does not hold in practice, the exhausted state happens where's still
2324	 * some positive delta. So we apply some guesswork and compare the
2325	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2326	 *
2327	 * We probably cannot calculate the exact threshold value because this
2328	 * depends on the internal reservations requested by various
2329	 * operations, so some operations that consume a few metadata will
2330	 * succeed even if the Avail is zero. But this is better than the other
2331	 * way around.
2332	 */
2333	thresh = SZ_4M;
2334
2335	/*
2336	 * We only want to claim there's no available space if we can no longer
2337	 * allocate chunks for our metadata profile and our global reserve will
2338	 * not fit in the free metadata space.  If we aren't ->full then we
2339	 * still can allocate chunks and thus are fine using the currently
2340	 * calculated f_bavail.
2341	 */
2342	if (!mixed && block_rsv->space_info->full &&
2343	    total_free_meta - thresh < block_rsv->size)
2344		buf->f_bavail = 0;
2345
2346	buf->f_type = BTRFS_SUPER_MAGIC;
2347	buf->f_bsize = dentry->d_sb->s_blocksize;
2348	buf->f_namelen = BTRFS_NAME_LEN;
2349
2350	/* We treat it as constant endianness (it doesn't matter _which_)
2351	   because we want the fsid to come out the same whether mounted
2352	   on a big-endian or little-endian host */
2353	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2354	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2355	/* Mask in the root object ID too, to disambiguate subvols */
2356	buf->f_fsid.val[0] ^=
2357		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2358	buf->f_fsid.val[1] ^=
2359		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2360
2361	return 0;
2362}
2363
2364static void btrfs_kill_super(struct super_block *sb)
2365{
2366	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2367	kill_anon_super(sb);
2368	btrfs_free_fs_info(fs_info);
2369}
2370
2371static struct file_system_type btrfs_fs_type = {
2372	.owner		= THIS_MODULE,
2373	.name		= "btrfs",
2374	.mount		= btrfs_mount,
2375	.kill_sb	= btrfs_kill_super,
2376	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2377};
2378
2379static struct file_system_type btrfs_root_fs_type = {
2380	.owner		= THIS_MODULE,
2381	.name		= "btrfs",
2382	.mount		= btrfs_mount_root,
2383	.kill_sb	= btrfs_kill_super,
2384	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2385};
2386
2387MODULE_ALIAS_FS("btrfs");
2388
2389static int btrfs_control_open(struct inode *inode, struct file *file)
2390{
2391	/*
2392	 * The control file's private_data is used to hold the
2393	 * transaction when it is started and is used to keep
2394	 * track of whether a transaction is already in progress.
2395	 */
2396	file->private_data = NULL;
2397	return 0;
2398}
2399
2400/*
2401 * Used by /dev/btrfs-control for devices ioctls.
2402 */
2403static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2404				unsigned long arg)
2405{
2406	struct btrfs_ioctl_vol_args *vol;
2407	struct btrfs_device *device = NULL;
2408	int ret = -ENOTTY;
2409
2410	if (!capable(CAP_SYS_ADMIN))
2411		return -EPERM;
2412
2413	vol = memdup_user((void __user *)arg, sizeof(*vol));
2414	if (IS_ERR(vol))
2415		return PTR_ERR(vol);
2416	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2417
2418	switch (cmd) {
2419	case BTRFS_IOC_SCAN_DEV:
2420		mutex_lock(&uuid_mutex);
2421		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2422					       &btrfs_root_fs_type);
2423		ret = PTR_ERR_OR_ZERO(device);
2424		mutex_unlock(&uuid_mutex);
2425		break;
2426	case BTRFS_IOC_FORGET_DEV:
2427		ret = btrfs_forget_devices(vol->name);
2428		break;
2429	case BTRFS_IOC_DEVICES_READY:
2430		mutex_lock(&uuid_mutex);
2431		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2432					       &btrfs_root_fs_type);
2433		if (IS_ERR(device)) {
2434			mutex_unlock(&uuid_mutex);
2435			ret = PTR_ERR(device);
2436			break;
2437		}
2438		ret = !(device->fs_devices->num_devices ==
2439			device->fs_devices->total_devices);
2440		mutex_unlock(&uuid_mutex);
2441		break;
2442	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2443		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2444		break;
2445	}
2446
2447	kfree(vol);
2448	return ret;
2449}
2450
2451static int btrfs_freeze(struct super_block *sb)
2452{
2453	struct btrfs_trans_handle *trans;
2454	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2455	struct btrfs_root *root = fs_info->tree_root;
2456
2457	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2458	/*
2459	 * We don't need a barrier here, we'll wait for any transaction that
2460	 * could be in progress on other threads (and do delayed iputs that
2461	 * we want to avoid on a frozen filesystem), or do the commit
2462	 * ourselves.
2463	 */
2464	trans = btrfs_attach_transaction_barrier(root);
2465	if (IS_ERR(trans)) {
2466		/* no transaction, don't bother */
2467		if (PTR_ERR(trans) == -ENOENT)
2468			return 0;
2469		return PTR_ERR(trans);
2470	}
2471	return btrfs_commit_transaction(trans);
2472}
2473
2474static int btrfs_unfreeze(struct super_block *sb)
2475{
2476	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2477
2478	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2479	return 0;
2480}
2481
2482static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2483{
2484	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
 
2485	struct btrfs_device *dev, *first_dev = NULL;
 
 
2486
2487	/*
2488	 * Lightweight locking of the devices. We should not need
2489	 * device_list_mutex here as we only read the device data and the list
2490	 * is protected by RCU.  Even if a device is deleted during the list
2491	 * traversals, we'll get valid data, the freeing callback will wait at
2492	 * least until the rcu_read_unlock.
2493	 */
2494	rcu_read_lock();
2495	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2496		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2497			continue;
2498		if (!dev->name)
2499			continue;
2500		if (!first_dev || dev->devid < first_dev->devid)
2501			first_dev = dev;
2502	}
2503
2504	if (first_dev)
2505		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2506	else
 
2507		WARN_ON(1);
2508	rcu_read_unlock();
 
2509	return 0;
2510}
2511
2512static const struct super_operations btrfs_super_ops = {
2513	.drop_inode	= btrfs_drop_inode,
2514	.evict_inode	= btrfs_evict_inode,
2515	.put_super	= btrfs_put_super,
2516	.sync_fs	= btrfs_sync_fs,
2517	.show_options	= btrfs_show_options,
2518	.show_devname	= btrfs_show_devname,
 
2519	.alloc_inode	= btrfs_alloc_inode,
2520	.destroy_inode	= btrfs_destroy_inode,
2521	.free_inode	= btrfs_free_inode,
2522	.statfs		= btrfs_statfs,
2523	.remount_fs	= btrfs_remount,
2524	.freeze_fs	= btrfs_freeze,
2525	.unfreeze_fs	= btrfs_unfreeze,
2526};
2527
2528static const struct file_operations btrfs_ctl_fops = {
2529	.open = btrfs_control_open,
2530	.unlocked_ioctl	 = btrfs_control_ioctl,
2531	.compat_ioctl = compat_ptr_ioctl,
2532	.owner	 = THIS_MODULE,
2533	.llseek = noop_llseek,
2534};
2535
2536static struct miscdevice btrfs_misc = {
2537	.minor		= BTRFS_MINOR,
2538	.name		= "btrfs-control",
2539	.fops		= &btrfs_ctl_fops
2540};
2541
2542MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2543MODULE_ALIAS("devname:btrfs-control");
2544
2545static int __init btrfs_interface_init(void)
2546{
2547	return misc_register(&btrfs_misc);
2548}
2549
2550static __cold void btrfs_interface_exit(void)
2551{
2552	misc_deregister(&btrfs_misc);
2553}
2554
2555static void __init btrfs_print_mod_info(void)
2556{
2557	static const char options[] = ""
2558#ifdef CONFIG_BTRFS_DEBUG
2559			", debug=on"
2560#endif
2561#ifdef CONFIG_BTRFS_ASSERT
2562			", assert=on"
2563#endif
2564#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2565			", integrity-checker=on"
2566#endif
2567#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2568			", ref-verify=on"
2569#endif
2570#ifdef CONFIG_BLK_DEV_ZONED
2571			", zoned=yes"
2572#else
2573			", zoned=no"
2574#endif
2575			;
2576	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2577}
2578
2579static int __init init_btrfs_fs(void)
2580{
2581	int err;
2582
 
 
 
 
2583	btrfs_props_init();
2584
2585	err = btrfs_init_sysfs();
2586	if (err)
2587		return err;
2588
2589	btrfs_init_compress();
2590
2591	err = btrfs_init_cachep();
2592	if (err)
2593		goto free_compress;
2594
2595	err = extent_io_init();
2596	if (err)
2597		goto free_cachep;
2598
2599	err = extent_state_cache_init();
2600	if (err)
2601		goto free_extent_io;
2602
2603	err = extent_map_init();
2604	if (err)
2605		goto free_extent_state_cache;
2606
2607	err = ordered_data_init();
2608	if (err)
2609		goto free_extent_map;
2610
2611	err = btrfs_delayed_inode_init();
2612	if (err)
2613		goto free_ordered_data;
2614
2615	err = btrfs_auto_defrag_init();
2616	if (err)
2617		goto free_delayed_inode;
2618
2619	err = btrfs_delayed_ref_init();
2620	if (err)
2621		goto free_auto_defrag;
2622
2623	err = btrfs_prelim_ref_init();
2624	if (err)
2625		goto free_delayed_ref;
2626
2627	err = btrfs_end_io_wq_init();
2628	if (err)
2629		goto free_prelim_ref;
2630
2631	err = btrfs_interface_init();
2632	if (err)
2633		goto free_end_io_wq;
2634
 
 
2635	btrfs_print_mod_info();
2636
2637	err = btrfs_run_sanity_tests();
2638	if (err)
2639		goto unregister_ioctl;
2640
2641	err = register_filesystem(&btrfs_fs_type);
2642	if (err)
2643		goto unregister_ioctl;
2644
2645	return 0;
2646
2647unregister_ioctl:
2648	btrfs_interface_exit();
2649free_end_io_wq:
2650	btrfs_end_io_wq_exit();
2651free_prelim_ref:
2652	btrfs_prelim_ref_exit();
2653free_delayed_ref:
2654	btrfs_delayed_ref_exit();
2655free_auto_defrag:
2656	btrfs_auto_defrag_exit();
2657free_delayed_inode:
2658	btrfs_delayed_inode_exit();
2659free_ordered_data:
2660	ordered_data_exit();
2661free_extent_map:
2662	extent_map_exit();
2663free_extent_state_cache:
2664	extent_state_cache_exit();
2665free_extent_io:
2666	extent_io_exit();
2667free_cachep:
2668	btrfs_destroy_cachep();
2669free_compress:
2670	btrfs_exit_compress();
2671	btrfs_exit_sysfs();
2672
 
2673	return err;
2674}
2675
2676static void __exit exit_btrfs_fs(void)
2677{
2678	btrfs_destroy_cachep();
2679	btrfs_delayed_ref_exit();
2680	btrfs_auto_defrag_exit();
2681	btrfs_delayed_inode_exit();
2682	btrfs_prelim_ref_exit();
2683	ordered_data_exit();
2684	extent_map_exit();
2685	extent_state_cache_exit();
2686	extent_io_exit();
2687	btrfs_interface_exit();
2688	btrfs_end_io_wq_exit();
2689	unregister_filesystem(&btrfs_fs_type);
2690	btrfs_exit_sysfs();
2691	btrfs_cleanup_fs_uuids();
2692	btrfs_exit_compress();
 
2693}
2694
2695late_initcall(init_btrfs_fs);
2696module_exit(exit_btrfs_fs)
2697
2698MODULE_LICENSE("GPL");
2699MODULE_SOFTDEP("pre: crc32c");
2700MODULE_SOFTDEP("pre: xxhash64");
2701MODULE_SOFTDEP("pre: sha256");
2702MODULE_SOFTDEP("pre: blake2b-256");
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
 
  44#include <linux/btrfs.h>
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "hash.h"
  52#include "props.h"
  53#include "xattr.h"
  54#include "volumes.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58#include "dev-replace.h"
  59#include "free-space-cache.h"
  60#include "backref.h"
 
 
 
  61#include "tests/btrfs-tests.h"
  62
 
  63#include "qgroup.h"
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
  68static struct file_system_type btrfs_fs_type;
 
  69
  70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  71
  72const char *btrfs_decode_error(int errno)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73{
  74	char *errstr = "unknown";
  75
  76	switch (errno) {
  77	case -EIO:
 
 
 
  78		errstr = "IO failure";
  79		break;
  80	case -ENOMEM:
  81		errstr = "Out of memory";
  82		break;
  83	case -EROFS:
 
 
 
 
 
 
  84		errstr = "Readonly filesystem";
  85		break;
  86	case -EEXIST:
  87		errstr = "Object already exists";
  88		break;
  89	case -ENOSPC:
  90		errstr = "No space left";
  91		break;
  92	case -ENOENT:
  93		errstr = "No such entry";
  94		break;
  95	}
  96
  97	return errstr;
  98}
  99
 100/* btrfs handle error by forcing the filesystem readonly */
 101static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 102{
 103	struct super_block *sb = fs_info->sb;
 104
 105	if (sb->s_flags & MS_RDONLY)
 106		return;
 107
 108	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 109		sb->s_flags |= MS_RDONLY;
 110		btrfs_info(fs_info, "forced readonly");
 111		/*
 112		 * Note that a running device replace operation is not
 113		 * canceled here although there is no way to update
 114		 * the progress. It would add the risk of a deadlock,
 115		 * therefore the canceling is omitted. The only penalty
 116		 * is that some I/O remains active until the procedure
 117		 * completes. The next time when the filesystem is
 118		 * mounted writeable again, the device replace
 119		 * operation continues.
 120		 */
 121	}
 122}
 123
 124/*
 125 * __btrfs_handle_fs_error decodes expected errors from the caller and
 126 * invokes the approciate error response.
 127 */
 128__cold
 129void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 130		       unsigned int line, int errno, const char *fmt, ...)
 131{
 132	struct super_block *sb = fs_info->sb;
 133#ifdef CONFIG_PRINTK
 134	const char *errstr;
 135#endif
 136
 137	/*
 138	 * Special case: if the error is EROFS, and we're already
 139	 * under MS_RDONLY, then it is safe here.
 140	 */
 141	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 142  		return;
 143
 144#ifdef CONFIG_PRINTK
 145	errstr = btrfs_decode_error(errno);
 146	if (fmt) {
 147		struct va_format vaf;
 148		va_list args;
 149
 150		va_start(args, fmt);
 151		vaf.fmt = fmt;
 152		vaf.va = &args;
 153
 154		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 155			sb->s_id, function, line, errno, errstr, &vaf);
 156		va_end(args);
 157	} else {
 158		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 159			sb->s_id, function, line, errno, errstr);
 160	}
 161#endif
 162
 163	/*
 164	 * Today we only save the error info to memory.  Long term we'll
 165	 * also send it down to the disk
 166	 */
 167	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 168
 169	/* Don't go through full error handling during mount */
 170	if (sb->s_flags & MS_BORN)
 171		btrfs_handle_error(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172}
 173
 174#ifdef CONFIG_PRINTK
 175static const char * const logtypes[] = {
 176	"emergency",
 177	"alert",
 178	"critical",
 179	"error",
 180	"warning",
 181	"notice",
 182	"info",
 183	"debug",
 184};
 185
 186
 187/*
 188 * Use one ratelimit state per log level so that a flood of less important
 189 * messages doesn't cause more important ones to be dropped.
 190 */
 191static struct ratelimit_state printk_limits[] = {
 192	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 193	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 194	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 195	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 196	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 197	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 198	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 199	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 200};
 201
 202void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 203{
 204	struct super_block *sb = fs_info->sb;
 205	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 206	struct va_format vaf;
 207	va_list args;
 208	int kern_level;
 209	const char *type = logtypes[4];
 210	struct ratelimit_state *ratelimit = &printk_limits[4];
 211
 212	va_start(args, fmt);
 213
 214	while ((kern_level = printk_get_level(fmt)) != 0) {
 215		size_t size = printk_skip_level(fmt) - fmt;
 216
 217		if (kern_level >= '0' && kern_level <= '7') {
 218			memcpy(lvl, fmt,  size);
 219			lvl[size] = '\0';
 220			type = logtypes[kern_level - '0'];
 221			ratelimit = &printk_limits[kern_level - '0'];
 222		}
 223		fmt += size;
 224	}
 225
 226	vaf.fmt = fmt;
 227	vaf.va = &args;
 228
 229	if (__ratelimit(ratelimit))
 230		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
 
 
 
 
 
 231
 232	va_end(args);
 233}
 234#endif
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/*
 237 * We only mark the transaction aborted and then set the file system read-only.
 238 * This will prevent new transactions from starting or trying to join this
 239 * one.
 240 *
 241 * This means that error recovery at the call site is limited to freeing
 242 * any local memory allocations and passing the error code up without
 243 * further cleanup. The transaction should complete as it normally would
 244 * in the call path but will return -EIO.
 245 *
 246 * We'll complete the cleanup in btrfs_end_transaction and
 247 * btrfs_commit_transaction.
 248 */
 249__cold
 250void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 251			       const char *function,
 252			       unsigned int line, int errno)
 253{
 254	struct btrfs_fs_info *fs_info = trans->fs_info;
 255
 256	trans->aborted = errno;
 257	/* Nothing used. The other threads that have joined this
 258	 * transaction may be able to continue. */
 259	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 260		const char *errstr;
 261
 262		errstr = btrfs_decode_error(errno);
 263		btrfs_warn(fs_info,
 264		           "%s:%d: Aborting unused transaction(%s).",
 265		           function, line, errstr);
 266		return;
 267	}
 268	ACCESS_ONCE(trans->transaction->aborted) = errno;
 269	/* Wake up anybody who may be waiting on this transaction */
 270	wake_up(&fs_info->transaction_wait);
 271	wake_up(&fs_info->transaction_blocked_wait);
 272	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 273}
 274/*
 275 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 276 * issues an alert, and either panics or BUGs, depending on mount options.
 277 */
 278__cold
 279void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 280		   unsigned int line, int errno, const char *fmt, ...)
 281{
 282	char *s_id = "<unknown>";
 283	const char *errstr;
 284	struct va_format vaf = { .fmt = fmt };
 285	va_list args;
 286
 287	if (fs_info)
 288		s_id = fs_info->sb->s_id;
 289
 290	va_start(args, fmt);
 291	vaf.va = &args;
 292
 293	errstr = btrfs_decode_error(errno);
 294	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
 295		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 296			s_id, function, line, &vaf, errno, errstr);
 297
 298	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 299		   function, line, &vaf, errno, errstr);
 300	va_end(args);
 301	/* Caller calls BUG() */
 302}
 303
 304static void btrfs_put_super(struct super_block *sb)
 305{
 306	close_ctree(btrfs_sb(sb));
 307}
 308
 309enum {
 310	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 311	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 312	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 313	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 314	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 315	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
 316	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
 317	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
 318	Opt_skip_balance, Opt_check_integrity,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319	Opt_check_integrity_including_extent_data,
 320	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
 321	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
 322	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
 323	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
 324	Opt_nologreplay, Opt_norecovery,
 325#ifdef CONFIG_BTRFS_DEBUG
 326	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 327#endif
 
 
 
 328	Opt_err,
 329};
 330
 331static const match_table_t tokens = {
 332	{Opt_degraded, "degraded"},
 333	{Opt_subvol, "subvol=%s"},
 334	{Opt_subvolid, "subvolid=%s"},
 335	{Opt_device, "device=%s"},
 336	{Opt_nodatasum, "nodatasum"},
 337	{Opt_datasum, "datasum"},
 338	{Opt_nodatacow, "nodatacow"},
 339	{Opt_datacow, "datacow"},
 340	{Opt_nobarrier, "nobarrier"},
 341	{Opt_barrier, "barrier"},
 342	{Opt_max_inline, "max_inline=%s"},
 343	{Opt_alloc_start, "alloc_start=%s"},
 344	{Opt_thread_pool, "thread_pool=%d"},
 345	{Opt_compress, "compress"},
 346	{Opt_compress_type, "compress=%s"},
 347	{Opt_compress_force, "compress-force"},
 348	{Opt_compress_force_type, "compress-force=%s"},
 349	{Opt_ssd, "ssd"},
 350	{Opt_ssd_spread, "ssd_spread"},
 351	{Opt_nossd, "nossd"},
 352	{Opt_acl, "acl"},
 353	{Opt_noacl, "noacl"},
 354	{Opt_notreelog, "notreelog"},
 355	{Opt_treelog, "treelog"},
 356	{Opt_nologreplay, "nologreplay"},
 357	{Opt_norecovery, "norecovery"},
 358	{Opt_flushoncommit, "flushoncommit"},
 359	{Opt_noflushoncommit, "noflushoncommit"},
 360	{Opt_ratio, "metadata_ratio=%d"},
 
 
 
 
 
 
 
 
 
 
 361	{Opt_discard, "discard"},
 
 362	{Opt_nodiscard, "nodiscard"},
 
 
 
 
 363	{Opt_space_cache, "space_cache"},
 
 364	{Opt_space_cache_version, "space_cache=%s"},
 365	{Opt_clear_cache, "clear_cache"},
 
 
 
 
 
 
 
 
 
 366	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 367	{Opt_enospc_debug, "enospc_debug"},
 368	{Opt_noenospc_debug, "noenospc_debug"},
 369	{Opt_subvolrootid, "subvolrootid=%d"},
 370	{Opt_defrag, "autodefrag"},
 371	{Opt_nodefrag, "noautodefrag"},
 372	{Opt_inode_cache, "inode_cache"},
 373	{Opt_noinode_cache, "noinode_cache"},
 374	{Opt_no_space_cache, "nospace_cache"},
 375	{Opt_recovery, "recovery"}, /* deprecated */
 376	{Opt_usebackuproot, "usebackuproot"},
 377	{Opt_skip_balance, "skip_balance"},
 
 
 
 
 378	{Opt_check_integrity, "check_int"},
 379	{Opt_check_integrity_including_extent_data, "check_int_data"},
 380	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 381	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 382	{Opt_fatal_errors, "fatal_errors=%s"},
 383	{Opt_commit_interval, "commit=%d"},
 384#ifdef CONFIG_BTRFS_DEBUG
 385	{Opt_fragment_data, "fragment=data"},
 386	{Opt_fragment_metadata, "fragment=metadata"},
 387	{Opt_fragment_all, "fragment=all"},
 388#endif
 
 
 
 389	{Opt_err, NULL},
 390};
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392/*
 393 * Regular mount options parser.  Everything that is needed only when
 394 * reading in a new superblock is parsed here.
 395 * XXX JDM: This needs to be cleaned up for remount.
 396 */
 397int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 398			unsigned long new_flags)
 399{
 400	substring_t args[MAX_OPT_ARGS];
 401	char *p, *num, *orig = NULL;
 402	u64 cache_gen;
 403	int intarg;
 404	int ret = 0;
 405	char *compress_type;
 406	bool compress_force = false;
 407	enum btrfs_compression_type saved_compress_type;
 
 408	bool saved_compress_force;
 409	int no_compress = 0;
 410
 411	cache_gen = btrfs_super_cache_generation(info->super_copy);
 412	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 413		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 414	else if (cache_gen)
 415		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 416
 417	/*
 418	 * Even the options are empty, we still need to do extra check
 419	 * against new flags
 420	 */
 421	if (!options)
 422		goto check;
 423
 424	/*
 425	 * strsep changes the string, duplicate it because parse_options
 426	 * gets called twice
 427	 */
 428	options = kstrdup(options, GFP_NOFS);
 429	if (!options)
 430		return -ENOMEM;
 431
 432	orig = options;
 433
 434	while ((p = strsep(&options, ",")) != NULL) {
 435		int token;
 436		if (!*p)
 437			continue;
 438
 439		token = match_token(p, tokens, args);
 440		switch (token) {
 441		case Opt_degraded:
 442			btrfs_info(info, "allowing degraded mounts");
 443			btrfs_set_opt(info->mount_opt, DEGRADED);
 444			break;
 445		case Opt_subvol:
 
 446		case Opt_subvolid:
 447		case Opt_subvolrootid:
 448		case Opt_device:
 449			/*
 450			 * These are parsed by btrfs_parse_early_options
 451			 * and can be happily ignored here.
 452			 */
 453			break;
 454		case Opt_nodatasum:
 455			btrfs_set_and_info(info, NODATASUM,
 456					   "setting nodatasum");
 457			break;
 458		case Opt_datasum:
 459			if (btrfs_test_opt(info, NODATASUM)) {
 460				if (btrfs_test_opt(info, NODATACOW))
 461					btrfs_info(info,
 462						   "setting datasum, datacow enabled");
 463				else
 464					btrfs_info(info, "setting datasum");
 465			}
 466			btrfs_clear_opt(info->mount_opt, NODATACOW);
 467			btrfs_clear_opt(info->mount_opt, NODATASUM);
 468			break;
 469		case Opt_nodatacow:
 470			if (!btrfs_test_opt(info, NODATACOW)) {
 471				if (!btrfs_test_opt(info, COMPRESS) ||
 472				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 473					btrfs_info(info,
 474						   "setting nodatacow, compression disabled");
 475				} else {
 476					btrfs_info(info, "setting nodatacow");
 477				}
 478			}
 479			btrfs_clear_opt(info->mount_opt, COMPRESS);
 480			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 481			btrfs_set_opt(info->mount_opt, NODATACOW);
 482			btrfs_set_opt(info->mount_opt, NODATASUM);
 483			break;
 484		case Opt_datacow:
 485			btrfs_clear_and_info(info, NODATACOW,
 486					     "setting datacow");
 487			break;
 488		case Opt_compress_force:
 489		case Opt_compress_force_type:
 490			compress_force = true;
 491			/* Fallthrough */
 492		case Opt_compress:
 493		case Opt_compress_type:
 494			saved_compress_type = btrfs_test_opt(info,
 495							     COMPRESS) ?
 496				info->compress_type : BTRFS_COMPRESS_NONE;
 497			saved_compress_force =
 498				btrfs_test_opt(info, FORCE_COMPRESS);
 
 499			if (token == Opt_compress ||
 500			    token == Opt_compress_force ||
 501			    strcmp(args[0].from, "zlib") == 0) {
 502				compress_type = "zlib";
 
 503				info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
 
 
 
 
 
 
 504				btrfs_set_opt(info->mount_opt, COMPRESS);
 505				btrfs_clear_opt(info->mount_opt, NODATACOW);
 506				btrfs_clear_opt(info->mount_opt, NODATASUM);
 507				no_compress = 0;
 508			} else if (strcmp(args[0].from, "lzo") == 0) {
 509				compress_type = "lzo";
 510				info->compress_type = BTRFS_COMPRESS_LZO;
 
 511				btrfs_set_opt(info->mount_opt, COMPRESS);
 512				btrfs_clear_opt(info->mount_opt, NODATACOW);
 513				btrfs_clear_opt(info->mount_opt, NODATASUM);
 514				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 515				no_compress = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 516			} else if (strncmp(args[0].from, "no", 2) == 0) {
 517				compress_type = "no";
 
 
 518				btrfs_clear_opt(info->mount_opt, COMPRESS);
 519				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 520				compress_force = false;
 521				no_compress++;
 522			} else {
 523				ret = -EINVAL;
 524				goto out;
 525			}
 526
 527			if (compress_force) {
 528				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 529			} else {
 530				/*
 531				 * If we remount from compress-force=xxx to
 532				 * compress=xxx, we need clear FORCE_COMPRESS
 533				 * flag, otherwise, there is no way for users
 534				 * to disable forcible compression separately.
 535				 */
 536				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 537			}
 538			if ((btrfs_test_opt(info, COMPRESS) &&
 539			     (info->compress_type != saved_compress_type ||
 540			      compress_force != saved_compress_force)) ||
 541			    (!btrfs_test_opt(info, COMPRESS) &&
 542			     no_compress == 1)) {
 543				btrfs_info(info, "%s %s compression",
 544					   (compress_force) ? "force" : "use",
 545					   compress_type);
 546			}
 547			compress_force = false;
 548			break;
 549		case Opt_ssd:
 550			btrfs_set_and_info(info, SSD,
 551					   "use ssd allocation scheme");
 
 552			break;
 553		case Opt_ssd_spread:
 
 
 554			btrfs_set_and_info(info, SSD_SPREAD,
 555					   "use spread ssd allocation scheme");
 556			btrfs_set_opt(info->mount_opt, SSD);
 557			break;
 558		case Opt_nossd:
 559			btrfs_set_and_info(info, NOSSD,
 560					     "not using ssd allocation scheme");
 561			btrfs_clear_opt(info->mount_opt, SSD);
 
 
 
 
 562			break;
 563		case Opt_barrier:
 564			btrfs_clear_and_info(info, NOBARRIER,
 565					     "turning on barriers");
 566			break;
 567		case Opt_nobarrier:
 568			btrfs_set_and_info(info, NOBARRIER,
 569					   "turning off barriers");
 570			break;
 571		case Opt_thread_pool:
 572			ret = match_int(&args[0], &intarg);
 573			if (ret) {
 574				goto out;
 575			} else if (intarg > 0) {
 576				info->thread_pool_size = intarg;
 577			} else {
 578				ret = -EINVAL;
 579				goto out;
 580			}
 
 581			break;
 582		case Opt_max_inline:
 583			num = match_strdup(&args[0]);
 584			if (num) {
 585				info->max_inline = memparse(num, NULL);
 586				kfree(num);
 587
 588				if (info->max_inline) {
 589					info->max_inline = min_t(u64,
 590						info->max_inline,
 591						info->sectorsize);
 592				}
 593				btrfs_info(info, "max_inline at %llu",
 594					   info->max_inline);
 595			} else {
 596				ret = -ENOMEM;
 597				goto out;
 598			}
 599			break;
 600		case Opt_alloc_start:
 601			num = match_strdup(&args[0]);
 602			if (num) {
 603				mutex_lock(&info->chunk_mutex);
 604				info->alloc_start = memparse(num, NULL);
 605				mutex_unlock(&info->chunk_mutex);
 606				kfree(num);
 607				btrfs_info(info, "allocations start at %llu",
 608					   info->alloc_start);
 609			} else {
 610				ret = -ENOMEM;
 611				goto out;
 612			}
 613			break;
 614		case Opt_acl:
 615#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 616			info->sb->s_flags |= MS_POSIXACL;
 617			break;
 618#else
 619			btrfs_err(info, "support for ACL not compiled in!");
 620			ret = -EINVAL;
 621			goto out;
 622#endif
 623		case Opt_noacl:
 624			info->sb->s_flags &= ~MS_POSIXACL;
 625			break;
 626		case Opt_notreelog:
 627			btrfs_set_and_info(info, NOTREELOG,
 628					   "disabling tree log");
 629			break;
 630		case Opt_treelog:
 631			btrfs_clear_and_info(info, NOTREELOG,
 632					     "enabling tree log");
 633			break;
 634		case Opt_norecovery:
 635		case Opt_nologreplay:
 
 
 636			btrfs_set_and_info(info, NOLOGREPLAY,
 637					   "disabling log replay at mount time");
 638			break;
 639		case Opt_flushoncommit:
 640			btrfs_set_and_info(info, FLUSHONCOMMIT,
 641					   "turning on flush-on-commit");
 642			break;
 643		case Opt_noflushoncommit:
 644			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 645					     "turning off flush-on-commit");
 646			break;
 647		case Opt_ratio:
 648			ret = match_int(&args[0], &intarg);
 649			if (ret) {
 650				goto out;
 651			} else if (intarg >= 0) {
 652				info->metadata_ratio = intarg;
 653				btrfs_info(info, "metadata ratio %d",
 654					   info->metadata_ratio);
 
 
 
 
 
 
 
 
 
 
 
 655			} else {
 656				ret = -EINVAL;
 657				goto out;
 658			}
 659			break;
 660		case Opt_discard:
 661			btrfs_set_and_info(info, DISCARD,
 662					   "turning on discard");
 663			break;
 664		case Opt_nodiscard:
 665			btrfs_clear_and_info(info, DISCARD,
 666					     "turning off discard");
 
 
 667			break;
 668		case Opt_space_cache:
 669		case Opt_space_cache_version:
 670			if (token == Opt_space_cache ||
 671			    strcmp(args[0].from, "v1") == 0) {
 672				btrfs_clear_opt(info->mount_opt,
 673						FREE_SPACE_TREE);
 674				btrfs_set_and_info(info, SPACE_CACHE,
 675					   "enabling disk space caching");
 676			} else if (strcmp(args[0].from, "v2") == 0) {
 677				btrfs_clear_opt(info->mount_opt,
 678						SPACE_CACHE);
 679				btrfs_set_and_info(info, FREE_SPACE_TREE,
 680						   "enabling free space tree");
 681			} else {
 682				ret = -EINVAL;
 683				goto out;
 684			}
 685			break;
 686		case Opt_rescan_uuid_tree:
 687			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 688			break;
 689		case Opt_no_space_cache:
 690			if (btrfs_test_opt(info, SPACE_CACHE)) {
 691				btrfs_clear_and_info(info, SPACE_CACHE,
 692					     "disabling disk space caching");
 693			}
 694			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 695				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 696					     "disabling free space tree");
 697			}
 698			break;
 699		case Opt_inode_cache:
 700			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 701					   "enabling inode map caching");
 702			break;
 703		case Opt_noinode_cache:
 704			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 705					     "disabling inode map caching");
 706			break;
 707		case Opt_clear_cache:
 708			btrfs_set_and_info(info, CLEAR_CACHE,
 709					   "force clearing of disk cache");
 710			break;
 711		case Opt_user_subvol_rm_allowed:
 712			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 713			break;
 714		case Opt_enospc_debug:
 715			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 716			break;
 717		case Opt_noenospc_debug:
 718			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 719			break;
 720		case Opt_defrag:
 721			btrfs_set_and_info(info, AUTO_DEFRAG,
 722					   "enabling auto defrag");
 723			break;
 724		case Opt_nodefrag:
 725			btrfs_clear_and_info(info, AUTO_DEFRAG,
 726					     "disabling auto defrag");
 727			break;
 728		case Opt_recovery:
 
 729			btrfs_warn(info,
 730				   "'recovery' is deprecated, use 'usebackuproot' instead");
 731		case Opt_usebackuproot:
 
 732			btrfs_info(info,
 733				   "trying to use backup root at mount time");
 734			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 735			break;
 736		case Opt_skip_balance:
 737			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 738			break;
 739#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 740		case Opt_check_integrity_including_extent_data:
 741			btrfs_info(info,
 742				   "enabling check integrity including extent data");
 743			btrfs_set_opt(info->mount_opt,
 744				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 745			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 746			break;
 747		case Opt_check_integrity:
 748			btrfs_info(info, "enabling check integrity");
 749			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 750			break;
 751		case Opt_check_integrity_print_mask:
 752			ret = match_int(&args[0], &intarg);
 753			if (ret) {
 754				goto out;
 755			} else if (intarg >= 0) {
 756				info->check_integrity_print_mask = intarg;
 757				btrfs_info(info,
 758					   "check_integrity_print_mask 0x%x",
 759					   info->check_integrity_print_mask);
 760			} else {
 761				ret = -EINVAL;
 762				goto out;
 763			}
 764			break;
 765#else
 766		case Opt_check_integrity_including_extent_data:
 767		case Opt_check_integrity:
 768		case Opt_check_integrity_print_mask:
 769			btrfs_err(info,
 770				  "support for check_integrity* not compiled in!");
 771			ret = -EINVAL;
 772			goto out;
 773#endif
 774		case Opt_fatal_errors:
 775			if (strcmp(args[0].from, "panic") == 0)
 776				btrfs_set_opt(info->mount_opt,
 777					      PANIC_ON_FATAL_ERROR);
 778			else if (strcmp(args[0].from, "bug") == 0)
 779				btrfs_clear_opt(info->mount_opt,
 780					      PANIC_ON_FATAL_ERROR);
 781			else {
 782				ret = -EINVAL;
 783				goto out;
 784			}
 785			break;
 786		case Opt_commit_interval:
 787			intarg = 0;
 788			ret = match_int(&args[0], &intarg);
 789			if (ret < 0) {
 790				btrfs_err(info, "invalid commit interval");
 791				ret = -EINVAL;
 792				goto out;
 793			}
 794			if (intarg > 0) {
 795				if (intarg > 300) {
 796					btrfs_warn(info,
 797						"excessive commit interval %d",
 798						intarg);
 799				}
 800				info->commit_interval = intarg;
 801			} else {
 802				btrfs_info(info,
 803					   "using default commit interval %ds",
 804					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 805				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 806			}
 
 
 
 
 
 
 
 
 
 807			break;
 808#ifdef CONFIG_BTRFS_DEBUG
 809		case Opt_fragment_all:
 810			btrfs_info(info, "fragmenting all space");
 811			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 812			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 813			break;
 814		case Opt_fragment_metadata:
 815			btrfs_info(info, "fragmenting metadata");
 816			btrfs_set_opt(info->mount_opt,
 817				      FRAGMENT_METADATA);
 818			break;
 819		case Opt_fragment_data:
 820			btrfs_info(info, "fragmenting data");
 821			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 822			break;
 823#endif
 
 
 
 
 
 
 824		case Opt_err:
 825			btrfs_info(info, "unrecognized mount option '%s'", p);
 826			ret = -EINVAL;
 827			goto out;
 828		default:
 829			break;
 830		}
 831	}
 832check:
 833	/*
 834	 * Extra check for current option against current flag
 835	 */
 836	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
 837		btrfs_err(info,
 838			  "nologreplay must be used with ro mount option");
 
 839		ret = -EINVAL;
 840	}
 841out:
 842	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 843	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 844	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 845		btrfs_err(info, "cannot disable free space tree");
 846		ret = -EINVAL;
 847
 848	}
 
 
 849	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 850		btrfs_info(info, "disk space caching is enabled");
 851	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 852		btrfs_info(info, "using free space tree");
 853	kfree(orig);
 854	return ret;
 855}
 856
 857/*
 858 * Parse mount options that are required early in the mount process.
 859 *
 860 * All other options will be parsed on much later in the mount process and
 861 * only when we need to allocate a new super block.
 862 */
 863static int btrfs_parse_early_options(const char *options, fmode_t flags,
 864		void *holder, char **subvol_name, u64 *subvol_objectid,
 865		struct btrfs_fs_devices **fs_devices)
 866{
 867	substring_t args[MAX_OPT_ARGS];
 868	char *device_name, *opts, *orig, *p;
 869	char *num = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	int error = 0;
 
 871
 872	if (!options)
 873		return 0;
 874
 875	/*
 876	 * strsep changes the string, duplicate it because parse_options
 877	 * gets called twice
 878	 */
 879	opts = kstrdup(options, GFP_KERNEL);
 880	if (!opts)
 881		return -ENOMEM;
 882	orig = opts;
 883
 884	while ((p = strsep(&opts, ",")) != NULL) {
 885		int token;
 886		if (!*p)
 887			continue;
 888
 889		token = match_token(p, tokens, args);
 890		switch (token) {
 891		case Opt_subvol:
 892			kfree(*subvol_name);
 893			*subvol_name = match_strdup(&args[0]);
 894			if (!*subvol_name) {
 895				error = -ENOMEM;
 896				goto out;
 897			}
 898			break;
 899		case Opt_subvolid:
 900			num = match_strdup(&args[0]);
 901			if (num) {
 902				*subvol_objectid = memparse(num, NULL);
 903				kfree(num);
 904				/* we want the original fs_tree */
 905				if (!*subvol_objectid)
 906					*subvol_objectid =
 907						BTRFS_FS_TREE_OBJECTID;
 908			} else {
 909				error = -EINVAL;
 910				goto out;
 911			}
 912			break;
 913		case Opt_subvolrootid:
 914			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
 915			break;
 916		case Opt_device:
 917			device_name = match_strdup(&args[0]);
 918			if (!device_name) {
 919				error = -ENOMEM;
 920				goto out;
 921			}
 922			error = btrfs_scan_one_device(device_name,
 923					flags, holder, fs_devices);
 924			kfree(device_name);
 925			if (error)
 926				goto out;
 
 
 
 
 
 
 927			break;
 928		default:
 929			break;
 930		}
 931	}
 932
 933out:
 934	kfree(orig);
 935	return error;
 936}
 937
 938static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 939					   u64 subvol_objectid)
 940{
 941	struct btrfs_root *root = fs_info->tree_root;
 942	struct btrfs_root *fs_root;
 943	struct btrfs_root_ref *root_ref;
 944	struct btrfs_inode_ref *inode_ref;
 945	struct btrfs_key key;
 946	struct btrfs_path *path = NULL;
 947	char *name = NULL, *ptr;
 948	u64 dirid;
 949	int len;
 950	int ret;
 951
 952	path = btrfs_alloc_path();
 953	if (!path) {
 954		ret = -ENOMEM;
 955		goto err;
 956	}
 957	path->leave_spinning = 1;
 958
 959	name = kmalloc(PATH_MAX, GFP_NOFS);
 960	if (!name) {
 961		ret = -ENOMEM;
 962		goto err;
 963	}
 964	ptr = name + PATH_MAX - 1;
 965	ptr[0] = '\0';
 966
 967	/*
 968	 * Walk up the subvolume trees in the tree of tree roots by root
 969	 * backrefs until we hit the top-level subvolume.
 970	 */
 971	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 972		key.objectid = subvol_objectid;
 973		key.type = BTRFS_ROOT_BACKREF_KEY;
 974		key.offset = (u64)-1;
 975
 976		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 977		if (ret < 0) {
 978			goto err;
 979		} else if (ret > 0) {
 980			ret = btrfs_previous_item(root, path, subvol_objectid,
 981						  BTRFS_ROOT_BACKREF_KEY);
 982			if (ret < 0) {
 983				goto err;
 984			} else if (ret > 0) {
 985				ret = -ENOENT;
 986				goto err;
 987			}
 988		}
 989
 990		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 991		subvol_objectid = key.offset;
 992
 993		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 994					  struct btrfs_root_ref);
 995		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 996		ptr -= len + 1;
 997		if (ptr < name) {
 998			ret = -ENAMETOOLONG;
 999			goto err;
1000		}
1001		read_extent_buffer(path->nodes[0], ptr + 1,
1002				   (unsigned long)(root_ref + 1), len);
1003		ptr[0] = '/';
1004		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1005		btrfs_release_path(path);
1006
1007		key.objectid = subvol_objectid;
1008		key.type = BTRFS_ROOT_ITEM_KEY;
1009		key.offset = (u64)-1;
1010		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1011		if (IS_ERR(fs_root)) {
1012			ret = PTR_ERR(fs_root);
 
1013			goto err;
1014		}
1015
1016		/*
1017		 * Walk up the filesystem tree by inode refs until we hit the
1018		 * root directory.
1019		 */
1020		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1021			key.objectid = dirid;
1022			key.type = BTRFS_INODE_REF_KEY;
1023			key.offset = (u64)-1;
1024
1025			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1026			if (ret < 0) {
1027				goto err;
1028			} else if (ret > 0) {
1029				ret = btrfs_previous_item(fs_root, path, dirid,
1030							  BTRFS_INODE_REF_KEY);
1031				if (ret < 0) {
1032					goto err;
1033				} else if (ret > 0) {
1034					ret = -ENOENT;
1035					goto err;
1036				}
1037			}
1038
1039			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1040			dirid = key.offset;
1041
1042			inode_ref = btrfs_item_ptr(path->nodes[0],
1043						   path->slots[0],
1044						   struct btrfs_inode_ref);
1045			len = btrfs_inode_ref_name_len(path->nodes[0],
1046						       inode_ref);
1047			ptr -= len + 1;
1048			if (ptr < name) {
1049				ret = -ENAMETOOLONG;
1050				goto err;
1051			}
1052			read_extent_buffer(path->nodes[0], ptr + 1,
1053					   (unsigned long)(inode_ref + 1), len);
1054			ptr[0] = '/';
1055			btrfs_release_path(path);
1056		}
 
 
1057	}
1058
1059	btrfs_free_path(path);
1060	if (ptr == name + PATH_MAX - 1) {
1061		name[0] = '/';
1062		name[1] = '\0';
1063	} else {
1064		memmove(name, ptr, name + PATH_MAX - ptr);
1065	}
1066	return name;
1067
1068err:
 
1069	btrfs_free_path(path);
1070	kfree(name);
1071	return ERR_PTR(ret);
1072}
1073
1074static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1075{
1076	struct btrfs_root *root = fs_info->tree_root;
1077	struct btrfs_dir_item *di;
1078	struct btrfs_path *path;
1079	struct btrfs_key location;
1080	u64 dir_id;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return -ENOMEM;
1085	path->leave_spinning = 1;
1086
1087	/*
1088	 * Find the "default" dir item which points to the root item that we
1089	 * will mount by default if we haven't been given a specific subvolume
1090	 * to mount.
1091	 */
1092	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1093	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1094	if (IS_ERR(di)) {
1095		btrfs_free_path(path);
1096		return PTR_ERR(di);
1097	}
1098	if (!di) {
1099		/*
1100		 * Ok the default dir item isn't there.  This is weird since
1101		 * it's always been there, but don't freak out, just try and
1102		 * mount the top-level subvolume.
1103		 */
1104		btrfs_free_path(path);
1105		*objectid = BTRFS_FS_TREE_OBJECTID;
1106		return 0;
1107	}
1108
1109	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1110	btrfs_free_path(path);
1111	*objectid = location.objectid;
1112	return 0;
1113}
1114
1115static int btrfs_fill_super(struct super_block *sb,
1116			    struct btrfs_fs_devices *fs_devices,
1117			    void *data, int silent)
1118{
1119	struct inode *inode;
1120	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1121	struct btrfs_key key;
1122	int err;
1123
1124	sb->s_maxbytes = MAX_LFS_FILESIZE;
1125	sb->s_magic = BTRFS_SUPER_MAGIC;
1126	sb->s_op = &btrfs_super_ops;
1127	sb->s_d_op = &btrfs_dentry_operations;
1128	sb->s_export_op = &btrfs_export_ops;
1129	sb->s_xattr = btrfs_xattr_handlers;
1130	sb->s_time_gran = 1;
1131#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1132	sb->s_flags |= MS_POSIXACL;
1133#endif
1134	sb->s_flags |= MS_I_VERSION;
1135	sb->s_iflags |= SB_I_CGROUPWB;
 
 
 
 
 
 
 
1136	err = open_ctree(sb, fs_devices, (char *)data);
1137	if (err) {
1138		btrfs_err(fs_info, "open_ctree failed");
1139		return err;
1140	}
1141
1142	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1143	key.type = BTRFS_INODE_ITEM_KEY;
1144	key.offset = 0;
1145	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1146	if (IS_ERR(inode)) {
1147		err = PTR_ERR(inode);
1148		goto fail_close;
1149	}
1150
1151	sb->s_root = d_make_root(inode);
1152	if (!sb->s_root) {
1153		err = -ENOMEM;
1154		goto fail_close;
1155	}
1156
1157	save_mount_options(sb, data);
1158	cleancache_init_fs(sb);
1159	sb->s_flags |= MS_ACTIVE;
1160	return 0;
1161
1162fail_close:
1163	close_ctree(fs_info);
1164	return err;
1165}
1166
1167int btrfs_sync_fs(struct super_block *sb, int wait)
1168{
1169	struct btrfs_trans_handle *trans;
1170	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1171	struct btrfs_root *root = fs_info->tree_root;
1172
1173	trace_btrfs_sync_fs(fs_info, wait);
1174
1175	if (!wait) {
1176		filemap_flush(fs_info->btree_inode->i_mapping);
1177		return 0;
1178	}
1179
1180	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1181
1182	trans = btrfs_attach_transaction_barrier(root);
1183	if (IS_ERR(trans)) {
1184		/* no transaction, don't bother */
1185		if (PTR_ERR(trans) == -ENOENT) {
1186			/*
1187			 * Exit unless we have some pending changes
1188			 * that need to go through commit
1189			 */
1190			if (fs_info->pending_changes == 0)
1191				return 0;
1192			/*
1193			 * A non-blocking test if the fs is frozen. We must not
1194			 * start a new transaction here otherwise a deadlock
1195			 * happens. The pending operations are delayed to the
1196			 * next commit after thawing.
1197			 */
1198			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1199				__sb_end_write(sb, SB_FREEZE_WRITE);
1200			else
1201				return 0;
1202			trans = btrfs_start_transaction(root, 0);
1203		}
1204		if (IS_ERR(trans))
1205			return PTR_ERR(trans);
1206	}
1207	return btrfs_commit_transaction(trans);
1208}
1209
 
 
 
 
 
 
1210static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1211{
1212	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1213	char *compress_type;
 
 
1214
1215	if (btrfs_test_opt(info, DEGRADED))
1216		seq_puts(seq, ",degraded");
1217	if (btrfs_test_opt(info, NODATASUM))
1218		seq_puts(seq, ",nodatasum");
1219	if (btrfs_test_opt(info, NODATACOW))
1220		seq_puts(seq, ",nodatacow");
1221	if (btrfs_test_opt(info, NOBARRIER))
1222		seq_puts(seq, ",nobarrier");
1223	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1224		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1225	if (info->alloc_start != 0)
1226		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1227	if (info->thread_pool_size !=  min_t(unsigned long,
1228					     num_online_cpus() + 2, 8))
1229		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1230	if (btrfs_test_opt(info, COMPRESS)) {
1231		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1232			compress_type = "zlib";
1233		else
1234			compress_type = "lzo";
1235		if (btrfs_test_opt(info, FORCE_COMPRESS))
1236			seq_printf(seq, ",compress-force=%s", compress_type);
1237		else
1238			seq_printf(seq, ",compress=%s", compress_type);
 
 
1239	}
1240	if (btrfs_test_opt(info, NOSSD))
1241		seq_puts(seq, ",nossd");
1242	if (btrfs_test_opt(info, SSD_SPREAD))
1243		seq_puts(seq, ",ssd_spread");
1244	else if (btrfs_test_opt(info, SSD))
1245		seq_puts(seq, ",ssd");
1246	if (btrfs_test_opt(info, NOTREELOG))
1247		seq_puts(seq, ",notreelog");
1248	if (btrfs_test_opt(info, NOLOGREPLAY))
1249		seq_puts(seq, ",nologreplay");
 
 
 
 
 
 
1250	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1251		seq_puts(seq, ",flushoncommit");
1252	if (btrfs_test_opt(info, DISCARD))
1253		seq_puts(seq, ",discard");
1254	if (!(info->sb->s_flags & MS_POSIXACL))
 
 
1255		seq_puts(seq, ",noacl");
1256	if (btrfs_test_opt(info, SPACE_CACHE))
1257		seq_puts(seq, ",space_cache");
1258	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1259		seq_puts(seq, ",space_cache=v2");
1260	else
1261		seq_puts(seq, ",nospace_cache");
1262	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1263		seq_puts(seq, ",rescan_uuid_tree");
1264	if (btrfs_test_opt(info, CLEAR_CACHE))
1265		seq_puts(seq, ",clear_cache");
1266	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1267		seq_puts(seq, ",user_subvol_rm_allowed");
1268	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1269		seq_puts(seq, ",enospc_debug");
1270	if (btrfs_test_opt(info, AUTO_DEFRAG))
1271		seq_puts(seq, ",autodefrag");
1272	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1273		seq_puts(seq, ",inode_cache");
1274	if (btrfs_test_opt(info, SKIP_BALANCE))
1275		seq_puts(seq, ",skip_balance");
1276#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1277	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1278		seq_puts(seq, ",check_int_data");
1279	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1280		seq_puts(seq, ",check_int");
1281	if (info->check_integrity_print_mask)
1282		seq_printf(seq, ",check_int_print_mask=%d",
1283				info->check_integrity_print_mask);
1284#endif
1285	if (info->metadata_ratio)
1286		seq_printf(seq, ",metadata_ratio=%d",
1287				info->metadata_ratio);
1288	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1289		seq_puts(seq, ",fatal_errors=panic");
1290	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1291		seq_printf(seq, ",commit=%d", info->commit_interval);
1292#ifdef CONFIG_BTRFS_DEBUG
1293	if (btrfs_test_opt(info, FRAGMENT_DATA))
1294		seq_puts(seq, ",fragment=data");
1295	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1296		seq_puts(seq, ",fragment=metadata");
1297#endif
 
 
1298	seq_printf(seq, ",subvolid=%llu",
1299		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1300	seq_puts(seq, ",subvol=");
1301	seq_dentry(seq, dentry, " \t\n\\");
 
 
 
 
 
1302	return 0;
1303}
1304
1305static int btrfs_test_super(struct super_block *s, void *data)
1306{
1307	struct btrfs_fs_info *p = data;
1308	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1309
1310	return fs_info->fs_devices == p->fs_devices;
1311}
1312
1313static int btrfs_set_super(struct super_block *s, void *data)
1314{
1315	int err = set_anon_super(s, data);
1316	if (!err)
1317		s->s_fs_info = data;
1318	return err;
1319}
1320
1321/*
1322 * subvolumes are identified by ino 256
1323 */
1324static inline int is_subvolume_inode(struct inode *inode)
1325{
1326	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1327		return 1;
1328	return 0;
1329}
1330
1331/*
1332 * This will add subvolid=0 to the argument string while removing any subvol=
1333 * and subvolid= arguments to make sure we get the top-level root for path
1334 * walking to the subvol we want.
1335 */
1336static char *setup_root_args(char *args)
1337{
1338	char *buf, *dst, *sep;
1339
1340	if (!args)
1341		return kstrdup("subvolid=0", GFP_NOFS);
1342
1343	/* The worst case is that we add ",subvolid=0" to the end. */
1344	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1345	if (!buf)
1346		return NULL;
1347
1348	while (1) {
1349		sep = strchrnul(args, ',');
1350		if (!strstarts(args, "subvol=") &&
1351		    !strstarts(args, "subvolid=")) {
1352			memcpy(dst, args, sep - args);
1353			dst += sep - args;
1354			*dst++ = ',';
1355		}
1356		if (*sep)
1357			args = sep + 1;
1358		else
1359			break;
1360	}
1361	strcpy(dst, "subvolid=0");
1362
1363	return buf;
1364}
1365
1366static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1367				   int flags, const char *device_name,
1368				   char *data)
1369{
1370	struct dentry *root;
1371	struct vfsmount *mnt = NULL;
1372	char *newargs;
1373	int ret;
1374
1375	newargs = setup_root_args(data);
1376	if (!newargs) {
1377		root = ERR_PTR(-ENOMEM);
1378		goto out;
1379	}
1380
1381	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1382	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1383		if (flags & MS_RDONLY) {
1384			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1385					     device_name, newargs);
1386		} else {
1387			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1388					     device_name, newargs);
1389			if (IS_ERR(mnt)) {
1390				root = ERR_CAST(mnt);
1391				mnt = NULL;
1392				goto out;
1393			}
1394
1395			down_write(&mnt->mnt_sb->s_umount);
1396			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1397			up_write(&mnt->mnt_sb->s_umount);
1398			if (ret < 0) {
1399				root = ERR_PTR(ret);
1400				goto out;
1401			}
1402		}
1403	}
1404	if (IS_ERR(mnt)) {
1405		root = ERR_CAST(mnt);
1406		mnt = NULL;
1407		goto out;
1408	}
1409
1410	if (!subvol_name) {
1411		if (!subvol_objectid) {
1412			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1413							  &subvol_objectid);
1414			if (ret) {
1415				root = ERR_PTR(ret);
1416				goto out;
1417			}
1418		}
1419		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1420							    subvol_objectid);
1421		if (IS_ERR(subvol_name)) {
1422			root = ERR_CAST(subvol_name);
1423			subvol_name = NULL;
1424			goto out;
1425		}
1426
1427	}
1428
1429	root = mount_subtree(mnt, subvol_name);
1430	/* mount_subtree() drops our reference on the vfsmount. */
1431	mnt = NULL;
1432
1433	if (!IS_ERR(root)) {
1434		struct super_block *s = root->d_sb;
1435		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1436		struct inode *root_inode = d_inode(root);
1437		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1438
1439		ret = 0;
1440		if (!is_subvolume_inode(root_inode)) {
1441			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1442			       subvol_name);
1443			ret = -EINVAL;
1444		}
1445		if (subvol_objectid && root_objectid != subvol_objectid) {
1446			/*
1447			 * This will also catch a race condition where a
1448			 * subvolume which was passed by ID is renamed and
1449			 * another subvolume is renamed over the old location.
1450			 */
1451			btrfs_err(fs_info,
1452				  "subvol '%s' does not match subvolid %llu",
1453				  subvol_name, subvol_objectid);
1454			ret = -EINVAL;
1455		}
1456		if (ret) {
1457			dput(root);
1458			root = ERR_PTR(ret);
1459			deactivate_locked_super(s);
1460		}
1461	}
1462
1463out:
1464	mntput(mnt);
1465	kfree(newargs);
1466	kfree(subvol_name);
1467	return root;
1468}
1469
1470static int parse_security_options(char *orig_opts,
1471				  struct security_mnt_opts *sec_opts)
1472{
1473	char *secdata = NULL;
1474	int ret = 0;
1475
1476	secdata = alloc_secdata();
1477	if (!secdata)
1478		return -ENOMEM;
1479	ret = security_sb_copy_data(orig_opts, secdata);
1480	if (ret) {
1481		free_secdata(secdata);
1482		return ret;
1483	}
1484	ret = security_sb_parse_opts_str(secdata, sec_opts);
1485	free_secdata(secdata);
1486	return ret;
1487}
1488
1489static int setup_security_options(struct btrfs_fs_info *fs_info,
1490				  struct super_block *sb,
1491				  struct security_mnt_opts *sec_opts)
1492{
1493	int ret = 0;
1494
1495	/*
1496	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1497	 * is valid.
1498	 */
1499	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1500	if (ret)
1501		return ret;
1502
1503#ifdef CONFIG_SECURITY
1504	if (!fs_info->security_opts.num_mnt_opts) {
1505		/* first time security setup, copy sec_opts to fs_info */
1506		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1507	} else {
1508		/*
1509		 * Since SELinux (the only one supporting security_mnt_opts)
1510		 * does NOT support changing context during remount/mount of
1511		 * the same sb, this must be the same or part of the same
1512		 * security options, just free it.
1513		 */
1514		security_free_mnt_opts(sec_opts);
1515	}
1516#endif
1517	return ret;
1518}
1519
1520/*
1521 * Find a superblock for the given device / mount point.
1522 *
1523 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1524 *	  for multiple device setup.  Make sure to keep it in sync.
1525 */
1526static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1527		const char *device_name, void *data)
1528{
1529	struct block_device *bdev = NULL;
1530	struct super_block *s;
 
1531	struct btrfs_fs_devices *fs_devices = NULL;
1532	struct btrfs_fs_info *fs_info = NULL;
1533	struct security_mnt_opts new_sec_opts;
1534	fmode_t mode = FMODE_READ;
1535	char *subvol_name = NULL;
1536	u64 subvol_objectid = 0;
1537	int error = 0;
1538
1539	if (!(flags & MS_RDONLY))
1540		mode |= FMODE_WRITE;
1541
1542	error = btrfs_parse_early_options(data, mode, fs_type,
1543					  &subvol_name, &subvol_objectid,
1544					  &fs_devices);
1545	if (error) {
1546		kfree(subvol_name);
1547		return ERR_PTR(error);
1548	}
1549
1550	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1551		/* mount_subvol() will free subvol_name. */
1552		return mount_subvol(subvol_name, subvol_objectid, flags,
1553				    device_name, data);
1554	}
1555
1556	security_init_mnt_opts(&new_sec_opts);
1557	if (data) {
1558		error = parse_security_options(data, &new_sec_opts);
1559		if (error)
1560			return ERR_PTR(error);
1561	}
1562
1563	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1564	if (error)
1565		goto error_sec_opts;
1566
1567	/*
1568	 * Setup a dummy root and fs_info for test/set super.  This is because
1569	 * we don't actually fill this stuff out until open_ctree, but we need
1570	 * it for searching for existing supers, so this lets us do that and
1571	 * then open_ctree will properly initialize everything later.
 
 
1572	 */
1573	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1574	if (!fs_info) {
1575		error = -ENOMEM;
1576		goto error_sec_opts;
1577	}
 
1578
1579	fs_info->fs_devices = fs_devices;
1580
1581	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1582	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1583	security_init_mnt_opts(&fs_info->security_opts);
1584	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1585		error = -ENOMEM;
1586		goto error_fs_info;
1587	}
1588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589	error = btrfs_open_devices(fs_devices, mode, fs_type);
 
1590	if (error)
1591		goto error_fs_info;
1592
1593	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1594		error = -EACCES;
1595		goto error_close_devices;
1596	}
1597
1598	bdev = fs_devices->latest_bdev;
1599	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1600		 fs_info);
1601	if (IS_ERR(s)) {
1602		error = PTR_ERR(s);
1603		goto error_close_devices;
1604	}
1605
1606	if (s->s_root) {
1607		btrfs_close_devices(fs_devices);
1608		free_fs_info(fs_info);
1609		if ((flags ^ s->s_flags) & MS_RDONLY)
1610			error = -EBUSY;
1611	} else {
1612		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1613		btrfs_sb(s)->bdev_holder = fs_type;
1614		error = btrfs_fill_super(s, fs_devices, data,
1615					 flags & MS_SILENT ? 1 : 0);
 
1616	}
 
 
 
1617	if (error) {
1618		deactivate_locked_super(s);
1619		goto error_sec_opts;
1620	}
1621
1622	fs_info = btrfs_sb(s);
1623	error = setup_security_options(fs_info, s, &new_sec_opts);
1624	if (error) {
1625		deactivate_locked_super(s);
1626		goto error_sec_opts;
1627	}
1628
1629	return dget(s->s_root);
1630
1631error_close_devices:
1632	btrfs_close_devices(fs_devices);
1633error_fs_info:
1634	free_fs_info(fs_info);
1635error_sec_opts:
1636	security_free_mnt_opts(&new_sec_opts);
1637	return ERR_PTR(error);
1638}
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1641				     int new_pool_size, int old_pool_size)
1642{
1643	if (new_pool_size == old_pool_size)
1644		return;
1645
1646	fs_info->thread_pool_size = new_pool_size;
1647
1648	btrfs_info(fs_info, "resize thread pool %d -> %d",
1649	       old_pool_size, new_pool_size);
1650
1651	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1652	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1653	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1654	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1655	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1656	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1657	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1658				new_pool_size);
1659	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1660	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1661	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1662	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1663	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1664				new_pool_size);
1665}
1666
1667static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1668{
1669	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1670}
1671
1672static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1673				       unsigned long old_opts, int flags)
1674{
1675	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1676	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1677	     (flags & MS_RDONLY))) {
1678		/* wait for any defraggers to finish */
1679		wait_event(fs_info->transaction_wait,
1680			   (atomic_read(&fs_info->defrag_running) == 0));
1681		if (flags & MS_RDONLY)
1682			sync_filesystem(fs_info->sb);
1683	}
1684}
1685
1686static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1687					 unsigned long old_opts)
1688{
 
 
1689	/*
1690	 * We need to cleanup all defragable inodes if the autodefragment is
1691	 * close or the filesystem is read only.
1692	 */
1693	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1694	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1695	     (fs_info->sb->s_flags & MS_RDONLY))) {
1696		btrfs_cleanup_defrag_inodes(fs_info);
1697	}
1698
1699	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
1700}
1701
1702static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1703{
1704	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1705	struct btrfs_root *root = fs_info->tree_root;
1706	unsigned old_flags = sb->s_flags;
1707	unsigned long old_opts = fs_info->mount_opt;
1708	unsigned long old_compress_type = fs_info->compress_type;
1709	u64 old_max_inline = fs_info->max_inline;
1710	u64 old_alloc_start = fs_info->alloc_start;
1711	int old_thread_pool_size = fs_info->thread_pool_size;
1712	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1713	int ret;
1714
1715	sync_filesystem(sb);
1716	btrfs_remount_prepare(fs_info);
1717
1718	if (data) {
1719		struct security_mnt_opts new_sec_opts;
1720
1721		security_init_mnt_opts(&new_sec_opts);
1722		ret = parse_security_options(data, &new_sec_opts);
 
 
1723		if (ret)
1724			goto restore;
1725		ret = setup_security_options(fs_info, sb,
1726					     &new_sec_opts);
1727		if (ret) {
1728			security_free_mnt_opts(&new_sec_opts);
1729			goto restore;
1730		}
1731	}
1732
1733	ret = btrfs_parse_options(fs_info, data, *flags);
1734	if (ret) {
1735		ret = -EINVAL;
1736		goto restore;
1737	}
1738
1739	btrfs_remount_begin(fs_info, old_opts, *flags);
1740	btrfs_resize_thread_pool(fs_info,
1741		fs_info->thread_pool_size, old_thread_pool_size);
1742
1743	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744		goto out;
1745
1746	if (*flags & MS_RDONLY) {
1747		/*
1748		 * this also happens on 'umount -rf' or on shutdown, when
1749		 * the filesystem is busy.
1750		 */
1751		cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
1752
1753		/* wait for the uuid_scan task to finish */
1754		down(&fs_info->uuid_tree_rescan_sem);
1755		/* avoid complains from lockdep et al. */
1756		up(&fs_info->uuid_tree_rescan_sem);
1757
1758		sb->s_flags |= MS_RDONLY;
1759
1760		/*
1761		 * Setting MS_RDONLY will put the cleaner thread to
1762		 * sleep at the next loop if it's already active.
1763		 * If it's already asleep, we'll leave unused block
1764		 * groups on disk until we're mounted read-write again
1765		 * unless we clean them up here.
1766		 */
1767		btrfs_delete_unused_bgs(fs_info);
1768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769		btrfs_dev_replace_suspend_for_unmount(fs_info);
1770		btrfs_scrub_cancel(fs_info);
1771		btrfs_pause_balance(fs_info);
1772
 
 
 
 
 
 
 
 
1773		ret = btrfs_commit_super(fs_info);
1774		if (ret)
1775			goto restore;
1776	} else {
1777		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1778			btrfs_err(fs_info,
1779				"Remounting read-write after error is not allowed");
1780			ret = -EINVAL;
1781			goto restore;
1782		}
1783		if (fs_info->fs_devices->rw_devices == 0) {
1784			ret = -EACCES;
1785			goto restore;
1786		}
1787
1788		if (fs_info->fs_devices->missing_devices >
1789		     fs_info->num_tolerated_disk_barrier_failures &&
1790		    !(*flags & MS_RDONLY)) {
1791			btrfs_warn(fs_info,
1792				"too many missing devices, writeable remount is not allowed");
1793			ret = -EACCES;
1794			goto restore;
1795		}
1796
1797		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
 
 
1798			ret = -EINVAL;
1799			goto restore;
1800		}
1801
1802		ret = btrfs_cleanup_fs_roots(fs_info);
1803		if (ret)
 
 
1804			goto restore;
 
1805
1806		/* recover relocation */
1807		mutex_lock(&fs_info->cleaner_mutex);
1808		ret = btrfs_recover_relocation(root);
1809		mutex_unlock(&fs_info->cleaner_mutex);
 
 
1810		if (ret)
1811			goto restore;
1812
1813		ret = btrfs_resume_balance_async(fs_info);
1814		if (ret)
1815			goto restore;
1816
1817		ret = btrfs_resume_dev_replace_async(fs_info);
1818		if (ret) {
1819			btrfs_warn(fs_info, "failed to resume dev_replace");
1820			goto restore;
1821		}
1822
1823		if (!fs_info->uuid_root) {
1824			btrfs_info(fs_info, "creating UUID tree");
1825			ret = btrfs_create_uuid_tree(fs_info);
1826			if (ret) {
1827				btrfs_warn(fs_info,
1828					   "failed to create the UUID tree %d",
1829					   ret);
1830				goto restore;
1831			}
1832		}
1833		sb->s_flags &= ~MS_RDONLY;
1834
1835		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1836	}
1837out:
 
 
 
 
 
 
1838	wake_up_process(fs_info->transaction_kthread);
1839	btrfs_remount_cleanup(fs_info, old_opts);
 
 
 
1840	return 0;
1841
1842restore:
1843	/* We've hit an error - don't reset MS_RDONLY */
1844	if (sb->s_flags & MS_RDONLY)
1845		old_flags |= MS_RDONLY;
 
 
1846	sb->s_flags = old_flags;
1847	fs_info->mount_opt = old_opts;
1848	fs_info->compress_type = old_compress_type;
1849	fs_info->max_inline = old_max_inline;
1850	mutex_lock(&fs_info->chunk_mutex);
1851	fs_info->alloc_start = old_alloc_start;
1852	mutex_unlock(&fs_info->chunk_mutex);
1853	btrfs_resize_thread_pool(fs_info,
1854		old_thread_pool_size, fs_info->thread_pool_size);
1855	fs_info->metadata_ratio = old_metadata_ratio;
1856	btrfs_remount_cleanup(fs_info, old_opts);
 
 
1857	return ret;
1858}
1859
1860/* Used to sort the devices by max_avail(descending sort) */
1861static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1862				       const void *dev_info2)
1863{
1864	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1865	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1866		return -1;
1867	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1868		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1869		return 1;
1870	else
1871	return 0;
1872}
1873
1874/*
1875 * sort the devices by max_avail, in which max free extent size of each device
1876 * is stored.(Descending Sort)
1877 */
1878static inline void btrfs_descending_sort_devices(
1879					struct btrfs_device_info *devices,
1880					size_t nr_devices)
1881{
1882	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1883	     btrfs_cmp_device_free_bytes, NULL);
1884}
1885
1886/*
1887 * The helper to calc the free space on the devices that can be used to store
1888 * file data.
1889 */
1890static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1891				       u64 *free_bytes)
1892{
1893	struct btrfs_root *root = fs_info->tree_root;
1894	struct btrfs_device_info *devices_info;
1895	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1896	struct btrfs_device *device;
1897	u64 skip_space;
1898	u64 type;
1899	u64 avail_space;
1900	u64 used_space;
1901	u64 min_stripe_size;
1902	int min_stripes = 1, num_stripes = 1;
1903	int i = 0, nr_devices;
1904	int ret;
1905
1906	/*
1907	 * We aren't under the device list lock, so this is racy-ish, but good
1908	 * enough for our purposes.
1909	 */
1910	nr_devices = fs_info->fs_devices->open_devices;
1911	if (!nr_devices) {
1912		smp_mb();
1913		nr_devices = fs_info->fs_devices->open_devices;
1914		ASSERT(nr_devices);
1915		if (!nr_devices) {
1916			*free_bytes = 0;
1917			return 0;
1918		}
1919	}
1920
1921	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1922			       GFP_NOFS);
1923	if (!devices_info)
1924		return -ENOMEM;
1925
1926	/* calc min stripe number for data space allocation */
1927	type = btrfs_get_alloc_profile(root, 1);
1928	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1929		min_stripes = 2;
 
1930		num_stripes = nr_devices;
1931	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1932		min_stripes = 2;
1933		num_stripes = 2;
1934	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1935		min_stripes = 4;
 
 
 
1936		num_stripes = 4;
1937	}
1938
1939	if (type & BTRFS_BLOCK_GROUP_DUP)
1940		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1941	else
1942		min_stripe_size = BTRFS_STRIPE_LEN;
1943
1944	if (fs_info->alloc_start)
1945		mutex_lock(&fs_devices->device_list_mutex);
1946	rcu_read_lock();
1947	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1948		if (!device->in_fs_metadata || !device->bdev ||
1949		    device->is_tgtdev_for_dev_replace)
 
 
1950			continue;
1951
1952		if (i >= nr_devices)
1953			break;
1954
1955		avail_space = device->total_bytes - device->bytes_used;
1956
1957		/* align with stripe_len */
1958		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1959		avail_space *= BTRFS_STRIPE_LEN;
1960
1961		/*
1962		 * In order to avoid overwriting the superblock on the drive,
1963		 * btrfs starts at an offset of at least 1MB when doing chunk
1964		 * allocation.
 
 
 
1965		 */
1966		skip_space = SZ_1M;
1967
1968		/* user can set the offset in fs_info->alloc_start. */
1969		if (fs_info->alloc_start &&
1970		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1971		    device->total_bytes) {
1972			rcu_read_unlock();
1973			skip_space = max(fs_info->alloc_start, skip_space);
1974
1975			/*
1976			 * btrfs can not use the free space in
1977			 * [0, skip_space - 1], we must subtract it from the
1978			 * total. In order to implement it, we account the used
1979			 * space in this range first.
1980			 */
1981			ret = btrfs_account_dev_extents_size(device, 0,
1982							     skip_space - 1,
1983							     &used_space);
1984			if (ret) {
1985				kfree(devices_info);
1986				mutex_unlock(&fs_devices->device_list_mutex);
1987				return ret;
1988			}
1989
1990			rcu_read_lock();
1991
1992			/* calc the free space in [0, skip_space - 1] */
1993			skip_space -= used_space;
1994		}
1995
1996		/*
1997		 * we can use the free space in [0, skip_space - 1], subtract
1998		 * it from the total.
1999		 */
2000		if (avail_space && avail_space >= skip_space)
2001			avail_space -= skip_space;
2002		else
2003			avail_space = 0;
2004
2005		if (avail_space < min_stripe_size)
2006			continue;
2007
2008		devices_info[i].dev = device;
2009		devices_info[i].max_avail = avail_space;
2010
2011		i++;
2012	}
2013	rcu_read_unlock();
2014	if (fs_info->alloc_start)
2015		mutex_unlock(&fs_devices->device_list_mutex);
2016
2017	nr_devices = i;
2018
2019	btrfs_descending_sort_devices(devices_info, nr_devices);
2020
2021	i = nr_devices - 1;
2022	avail_space = 0;
2023	while (nr_devices >= min_stripes) {
2024		if (num_stripes > nr_devices)
2025			num_stripes = nr_devices;
2026
2027		if (devices_info[i].max_avail >= min_stripe_size) {
2028			int j;
2029			u64 alloc_size;
2030
2031			avail_space += devices_info[i].max_avail * num_stripes;
2032			alloc_size = devices_info[i].max_avail;
2033			for (j = i + 1 - num_stripes; j <= i; j++)
2034				devices_info[j].max_avail -= alloc_size;
2035		}
2036		i--;
2037		nr_devices--;
2038	}
2039
2040	kfree(devices_info);
2041	*free_bytes = avail_space;
2042	return 0;
2043}
2044
2045/*
2046 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2047 *
2048 * If there's a redundant raid level at DATA block groups, use the respective
2049 * multiplier to scale the sizes.
2050 *
2051 * Unused device space usage is based on simulating the chunk allocator
2052 * algorithm that respects the device sizes, order of allocations and the
2053 * 'alloc_start' value, this is a close approximation of the actual use but
2054 * there are other factors that may change the result (like a new metadata
2055 * chunk).
2056 *
2057 * If metadata is exhausted, f_bavail will be 0.
2058 */
2059static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2060{
2061	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2062	struct btrfs_super_block *disk_super = fs_info->super_copy;
2063	struct list_head *head = &fs_info->space_info;
2064	struct btrfs_space_info *found;
2065	u64 total_used = 0;
2066	u64 total_free_data = 0;
2067	u64 total_free_meta = 0;
2068	int bits = dentry->d_sb->s_blocksize_bits;
2069	__be32 *fsid = (__be32 *)fs_info->fsid;
2070	unsigned factor = 1;
2071	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2072	int ret;
2073	u64 thresh = 0;
2074	int mixed = 0;
2075
2076	rcu_read_lock();
2077	list_for_each_entry_rcu(found, head, list) {
2078		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2079			int i;
2080
2081			total_free_data += found->disk_total - found->disk_used;
2082			total_free_data -=
2083				btrfs_account_ro_block_groups_free_space(found);
2084
2085			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2086				if (!list_empty(&found->block_groups[i])) {
2087					switch (i) {
2088					case BTRFS_RAID_DUP:
2089					case BTRFS_RAID_RAID1:
2090					case BTRFS_RAID_RAID10:
2091						factor = 2;
2092					}
2093				}
2094			}
2095		}
2096
2097		/*
2098		 * Metadata in mixed block goup profiles are accounted in data
2099		 */
2100		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2101			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2102				mixed = 1;
2103			else
2104				total_free_meta += found->disk_total -
2105					found->disk_used;
2106		}
2107
2108		total_used += found->disk_used;
2109	}
2110
2111	rcu_read_unlock();
2112
2113	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2114	buf->f_blocks >>= bits;
2115	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2116
2117	/* Account global block reserve as used, it's in logical size already */
2118	spin_lock(&block_rsv->lock);
2119	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2120	if (buf->f_bfree >= block_rsv->size >> bits)
2121		buf->f_bfree -= block_rsv->size >> bits;
2122	else
2123		buf->f_bfree = 0;
2124	spin_unlock(&block_rsv->lock);
2125
2126	buf->f_bavail = div_u64(total_free_data, factor);
2127	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2128	if (ret)
2129		return ret;
2130	buf->f_bavail += div_u64(total_free_data, factor);
2131	buf->f_bavail = buf->f_bavail >> bits;
2132
2133	/*
2134	 * We calculate the remaining metadata space minus global reserve. If
2135	 * this is (supposedly) smaller than zero, there's no space. But this
2136	 * does not hold in practice, the exhausted state happens where's still
2137	 * some positive delta. So we apply some guesswork and compare the
2138	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2139	 *
2140	 * We probably cannot calculate the exact threshold value because this
2141	 * depends on the internal reservations requested by various
2142	 * operations, so some operations that consume a few metadata will
2143	 * succeed even if the Avail is zero. But this is better than the other
2144	 * way around.
2145	 */
2146	thresh = 4 * 1024 * 1024;
2147
2148	if (!mixed && total_free_meta - thresh < block_rsv->size)
 
 
 
 
 
 
 
 
2149		buf->f_bavail = 0;
2150
2151	buf->f_type = BTRFS_SUPER_MAGIC;
2152	buf->f_bsize = dentry->d_sb->s_blocksize;
2153	buf->f_namelen = BTRFS_NAME_LEN;
2154
2155	/* We treat it as constant endianness (it doesn't matter _which_)
2156	   because we want the fsid to come out the same whether mounted
2157	   on a big-endian or little-endian host */
2158	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2159	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2160	/* Mask in the root object ID too, to disambiguate subvols */
2161	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2162	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
 
 
2163
2164	return 0;
2165}
2166
2167static void btrfs_kill_super(struct super_block *sb)
2168{
2169	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2170	kill_anon_super(sb);
2171	free_fs_info(fs_info);
2172}
2173
2174static struct file_system_type btrfs_fs_type = {
2175	.owner		= THIS_MODULE,
2176	.name		= "btrfs",
2177	.mount		= btrfs_mount,
2178	.kill_sb	= btrfs_kill_super,
2179	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2180};
 
 
 
 
 
 
 
 
 
2181MODULE_ALIAS_FS("btrfs");
2182
2183static int btrfs_control_open(struct inode *inode, struct file *file)
2184{
2185	/*
2186	 * The control file's private_data is used to hold the
2187	 * transaction when it is started and is used to keep
2188	 * track of whether a transaction is already in progress.
2189	 */
2190	file->private_data = NULL;
2191	return 0;
2192}
2193
2194/*
2195 * used by btrfsctl to scan devices when no FS is mounted
2196 */
2197static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2198				unsigned long arg)
2199{
2200	struct btrfs_ioctl_vol_args *vol;
2201	struct btrfs_fs_devices *fs_devices;
2202	int ret = -ENOTTY;
2203
2204	if (!capable(CAP_SYS_ADMIN))
2205		return -EPERM;
2206
2207	vol = memdup_user((void __user *)arg, sizeof(*vol));
2208	if (IS_ERR(vol))
2209		return PTR_ERR(vol);
 
2210
2211	switch (cmd) {
2212	case BTRFS_IOC_SCAN_DEV:
2213		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2214					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
2215		break;
2216	case BTRFS_IOC_DEVICES_READY:
2217		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2218					    &btrfs_fs_type, &fs_devices);
2219		if (ret)
 
 
 
2220			break;
2221		ret = !(fs_devices->num_devices == fs_devices->total_devices);
 
 
 
2222		break;
2223	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2224		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2225		break;
2226	}
2227
2228	kfree(vol);
2229	return ret;
2230}
2231
2232static int btrfs_freeze(struct super_block *sb)
2233{
2234	struct btrfs_trans_handle *trans;
2235	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2236	struct btrfs_root *root = fs_info->tree_root;
2237
2238	fs_info->fs_frozen = 1;
2239	/*
2240	 * We don't need a barrier here, we'll wait for any transaction that
2241	 * could be in progress on other threads (and do delayed iputs that
2242	 * we want to avoid on a frozen filesystem), or do the commit
2243	 * ourselves.
2244	 */
2245	trans = btrfs_attach_transaction_barrier(root);
2246	if (IS_ERR(trans)) {
2247		/* no transaction, don't bother */
2248		if (PTR_ERR(trans) == -ENOENT)
2249			return 0;
2250		return PTR_ERR(trans);
2251	}
2252	return btrfs_commit_transaction(trans);
2253}
2254
2255static int btrfs_unfreeze(struct super_block *sb)
2256{
2257	btrfs_sb(sb)->fs_frozen = 0;
 
 
2258	return 0;
2259}
2260
2261static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2262{
2263	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2264	struct btrfs_fs_devices *cur_devices;
2265	struct btrfs_device *dev, *first_dev = NULL;
2266	struct list_head *head;
2267	struct rcu_string *name;
2268
2269	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2270	cur_devices = fs_info->fs_devices;
2271	while (cur_devices) {
2272		head = &cur_devices->devices;
2273		list_for_each_entry(dev, head, dev_list) {
2274			if (dev->missing)
2275				continue;
2276			if (!dev->name)
2277				continue;
2278			if (!first_dev || dev->devid < first_dev->devid)
2279				first_dev = dev;
2280		}
2281		cur_devices = cur_devices->seed;
2282	}
2283
2284	if (first_dev) {
2285		rcu_read_lock();
2286		name = rcu_dereference(first_dev->name);
2287		seq_escape(m, name->str, " \t\n\\");
2288		rcu_read_unlock();
2289	} else {
2290		WARN_ON(1);
2291	}
2292	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2293	return 0;
2294}
2295
2296static const struct super_operations btrfs_super_ops = {
2297	.drop_inode	= btrfs_drop_inode,
2298	.evict_inode	= btrfs_evict_inode,
2299	.put_super	= btrfs_put_super,
2300	.sync_fs	= btrfs_sync_fs,
2301	.show_options	= btrfs_show_options,
2302	.show_devname	= btrfs_show_devname,
2303	.write_inode	= btrfs_write_inode,
2304	.alloc_inode	= btrfs_alloc_inode,
2305	.destroy_inode	= btrfs_destroy_inode,
 
2306	.statfs		= btrfs_statfs,
2307	.remount_fs	= btrfs_remount,
2308	.freeze_fs	= btrfs_freeze,
2309	.unfreeze_fs	= btrfs_unfreeze,
2310};
2311
2312static const struct file_operations btrfs_ctl_fops = {
2313	.open = btrfs_control_open,
2314	.unlocked_ioctl	 = btrfs_control_ioctl,
2315	.compat_ioctl = btrfs_control_ioctl,
2316	.owner	 = THIS_MODULE,
2317	.llseek = noop_llseek,
2318};
2319
2320static struct miscdevice btrfs_misc = {
2321	.minor		= BTRFS_MINOR,
2322	.name		= "btrfs-control",
2323	.fops		= &btrfs_ctl_fops
2324};
2325
2326MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2327MODULE_ALIAS("devname:btrfs-control");
2328
2329static int btrfs_interface_init(void)
2330{
2331	return misc_register(&btrfs_misc);
2332}
2333
2334static void btrfs_interface_exit(void)
2335{
2336	misc_deregister(&btrfs_misc);
2337}
2338
2339static void btrfs_print_mod_info(void)
2340{
2341	pr_info("Btrfs loaded, crc32c=%s"
2342#ifdef CONFIG_BTRFS_DEBUG
2343			", debug=on"
2344#endif
2345#ifdef CONFIG_BTRFS_ASSERT
2346			", assert=on"
2347#endif
2348#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2349			", integrity-checker=on"
2350#endif
2351			"\n",
2352			btrfs_crc32c_impl());
 
 
 
 
 
 
 
 
2353}
2354
2355static int __init init_btrfs_fs(void)
2356{
2357	int err;
2358
2359	err = btrfs_hash_init();
2360	if (err)
2361		return err;
2362
2363	btrfs_props_init();
2364
2365	err = btrfs_init_sysfs();
2366	if (err)
2367		goto free_hash;
2368
2369	btrfs_init_compress();
2370
2371	err = btrfs_init_cachep();
2372	if (err)
2373		goto free_compress;
2374
2375	err = extent_io_init();
2376	if (err)
2377		goto free_cachep;
2378
 
 
 
 
2379	err = extent_map_init();
2380	if (err)
2381		goto free_extent_io;
2382
2383	err = ordered_data_init();
2384	if (err)
2385		goto free_extent_map;
2386
2387	err = btrfs_delayed_inode_init();
2388	if (err)
2389		goto free_ordered_data;
2390
2391	err = btrfs_auto_defrag_init();
2392	if (err)
2393		goto free_delayed_inode;
2394
2395	err = btrfs_delayed_ref_init();
2396	if (err)
2397		goto free_auto_defrag;
2398
2399	err = btrfs_prelim_ref_init();
2400	if (err)
2401		goto free_delayed_ref;
2402
2403	err = btrfs_end_io_wq_init();
2404	if (err)
2405		goto free_prelim_ref;
2406
2407	err = btrfs_interface_init();
2408	if (err)
2409		goto free_end_io_wq;
2410
2411	btrfs_init_lockdep();
2412
2413	btrfs_print_mod_info();
2414
2415	err = btrfs_run_sanity_tests();
2416	if (err)
2417		goto unregister_ioctl;
2418
2419	err = register_filesystem(&btrfs_fs_type);
2420	if (err)
2421		goto unregister_ioctl;
2422
2423	return 0;
2424
2425unregister_ioctl:
2426	btrfs_interface_exit();
2427free_end_io_wq:
2428	btrfs_end_io_wq_exit();
2429free_prelim_ref:
2430	btrfs_prelim_ref_exit();
2431free_delayed_ref:
2432	btrfs_delayed_ref_exit();
2433free_auto_defrag:
2434	btrfs_auto_defrag_exit();
2435free_delayed_inode:
2436	btrfs_delayed_inode_exit();
2437free_ordered_data:
2438	ordered_data_exit();
2439free_extent_map:
2440	extent_map_exit();
 
 
2441free_extent_io:
2442	extent_io_exit();
2443free_cachep:
2444	btrfs_destroy_cachep();
2445free_compress:
2446	btrfs_exit_compress();
2447	btrfs_exit_sysfs();
2448free_hash:
2449	btrfs_hash_exit();
2450	return err;
2451}
2452
2453static void __exit exit_btrfs_fs(void)
2454{
2455	btrfs_destroy_cachep();
2456	btrfs_delayed_ref_exit();
2457	btrfs_auto_defrag_exit();
2458	btrfs_delayed_inode_exit();
2459	btrfs_prelim_ref_exit();
2460	ordered_data_exit();
2461	extent_map_exit();
 
2462	extent_io_exit();
2463	btrfs_interface_exit();
2464	btrfs_end_io_wq_exit();
2465	unregister_filesystem(&btrfs_fs_type);
2466	btrfs_exit_sysfs();
2467	btrfs_cleanup_fs_uuids();
2468	btrfs_exit_compress();
2469	btrfs_hash_exit();
2470}
2471
2472late_initcall(init_btrfs_fs);
2473module_exit(exit_btrfs_fs)
2474
2475MODULE_LICENSE("GPL");