Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "misc.h"
  15#include "ctree.h"
  16#include "free-space-cache.h"
  17#include "transaction.h"
  18#include "disk-io.h"
  19#include "extent_io.h"
 
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
  25
  26#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  28#define FORCE_EXTENT_THRESHOLD	SZ_1M
  29
  30struct btrfs_trim_range {
  31	u64 start;
  32	u64 bytes;
  33	struct list_head list;
  34};
  35
  36static int link_free_space(struct btrfs_free_space_ctl *ctl,
  37			   struct btrfs_free_space *info);
  38static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  39			      struct btrfs_free_space *info);
  40static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  41			 struct btrfs_free_space *bitmap_info, u64 *offset,
  42			 u64 *bytes, bool for_alloc);
  43static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  44			struct btrfs_free_space *bitmap_info);
  45static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  46			      struct btrfs_free_space *info, u64 offset,
  47			      u64 bytes);
  48
  49static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  50					       struct btrfs_path *path,
  51					       u64 offset)
  52{
  53	struct btrfs_fs_info *fs_info = root->fs_info;
  54	struct btrfs_key key;
  55	struct btrfs_key location;
  56	struct btrfs_disk_key disk_key;
  57	struct btrfs_free_space_header *header;
  58	struct extent_buffer *leaf;
  59	struct inode *inode = NULL;
  60	unsigned nofs_flag;
  61	int ret;
  62
  63	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  64	key.offset = offset;
  65	key.type = 0;
  66
  67	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  68	if (ret < 0)
  69		return ERR_PTR(ret);
  70	if (ret > 0) {
  71		btrfs_release_path(path);
  72		return ERR_PTR(-ENOENT);
  73	}
  74
  75	leaf = path->nodes[0];
  76	header = btrfs_item_ptr(leaf, path->slots[0],
  77				struct btrfs_free_space_header);
  78	btrfs_free_space_key(leaf, header, &disk_key);
  79	btrfs_disk_key_to_cpu(&location, &disk_key);
  80	btrfs_release_path(path);
  81
  82	/*
  83	 * We are often under a trans handle at this point, so we need to make
  84	 * sure NOFS is set to keep us from deadlocking.
  85	 */
  86	nofs_flag = memalloc_nofs_save();
  87	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  88	btrfs_release_path(path);
  89	memalloc_nofs_restore(nofs_flag);
  90	if (IS_ERR(inode))
  91		return inode;
 
 
 
 
  92
  93	mapping_set_gfp_mask(inode->i_mapping,
  94			mapping_gfp_constraint(inode->i_mapping,
  95			~(__GFP_FS | __GFP_HIGHMEM)));
  96
  97	return inode;
  98}
  99
 100struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 101		struct btrfs_path *path)
 
 102{
 103	struct btrfs_fs_info *fs_info = block_group->fs_info;
 104	struct inode *inode = NULL;
 
 105	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 106
 107	spin_lock(&block_group->lock);
 108	if (block_group->inode)
 109		inode = igrab(block_group->inode);
 110	spin_unlock(&block_group->lock);
 111	if (inode)
 112		return inode;
 113
 114	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 115					  block_group->start);
 116	if (IS_ERR(inode))
 117		return inode;
 118
 119	spin_lock(&block_group->lock);
 120	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 121		btrfs_info(fs_info, "Old style space inode found, converting.");
 122		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 123			BTRFS_INODE_NODATACOW;
 124		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 125	}
 126
 127	if (!block_group->iref) {
 128		block_group->inode = igrab(inode);
 129		block_group->iref = 1;
 130	}
 131	spin_unlock(&block_group->lock);
 132
 133	return inode;
 134}
 135
 136static int __create_free_space_inode(struct btrfs_root *root,
 137				     struct btrfs_trans_handle *trans,
 138				     struct btrfs_path *path,
 139				     u64 ino, u64 offset)
 140{
 141	struct btrfs_key key;
 142	struct btrfs_disk_key disk_key;
 143	struct btrfs_free_space_header *header;
 144	struct btrfs_inode_item *inode_item;
 145	struct extent_buffer *leaf;
 146	/* We inline CRCs for the free disk space cache */
 147	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 148			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 149	int ret;
 150
 151	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 152	if (ret)
 153		return ret;
 154
 
 
 
 
 155	leaf = path->nodes[0];
 156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157				    struct btrfs_inode_item);
 158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160			     sizeof(*inode_item));
 161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162	btrfs_set_inode_size(leaf, inode_item, 0);
 163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164	btrfs_set_inode_uid(leaf, inode_item, 0);
 165	btrfs_set_inode_gid(leaf, inode_item, 0);
 166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167	btrfs_set_inode_flags(leaf, inode_item, flags);
 168	btrfs_set_inode_nlink(leaf, inode_item, 1);
 169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170	btrfs_set_inode_block_group(leaf, inode_item, offset);
 171	btrfs_mark_buffer_dirty(leaf);
 172	btrfs_release_path(path);
 173
 174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175	key.offset = offset;
 176	key.type = 0;
 177	ret = btrfs_insert_empty_item(trans, root, path, &key,
 178				      sizeof(struct btrfs_free_space_header));
 179	if (ret < 0) {
 180		btrfs_release_path(path);
 181		return ret;
 182	}
 183
 184	leaf = path->nodes[0];
 185	header = btrfs_item_ptr(leaf, path->slots[0],
 186				struct btrfs_free_space_header);
 187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188	btrfs_set_free_space_key(leaf, header, &disk_key);
 189	btrfs_mark_buffer_dirty(leaf);
 190	btrfs_release_path(path);
 191
 192	return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196			    struct btrfs_block_group *block_group,
 
 197			    struct btrfs_path *path)
 198{
 199	int ret;
 200	u64 ino;
 201
 202	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 203	if (ret < 0)
 204		return ret;
 205
 206	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207					 ino, block_group->start);
 208}
 209
 210/*
 211 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 212 * handles lookup, otherwise it takes ownership and iputs the inode.
 213 * Don't reuse an inode pointer after passing it into this function.
 214 */
 215int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 216				  struct inode *inode,
 217				  struct btrfs_block_group *block_group)
 218{
 219	struct btrfs_path *path;
 220	struct btrfs_key key;
 221	int ret = 0;
 222
 223	path = btrfs_alloc_path();
 224	if (!path)
 225		return -ENOMEM;
 226
 227	if (!inode)
 228		inode = lookup_free_space_inode(block_group, path);
 229	if (IS_ERR(inode)) {
 230		if (PTR_ERR(inode) != -ENOENT)
 231			ret = PTR_ERR(inode);
 232		goto out;
 233	}
 234	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 235	if (ret) {
 236		btrfs_add_delayed_iput(inode);
 237		goto out;
 238	}
 239	clear_nlink(inode);
 240	/* One for the block groups ref */
 241	spin_lock(&block_group->lock);
 242	if (block_group->iref) {
 243		block_group->iref = 0;
 244		block_group->inode = NULL;
 245		spin_unlock(&block_group->lock);
 246		iput(inode);
 247	} else {
 248		spin_unlock(&block_group->lock);
 249	}
 250	/* One for the lookup ref */
 251	btrfs_add_delayed_iput(inode);
 252
 253	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 254	key.type = 0;
 255	key.offset = block_group->start;
 256	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 257				-1, 1);
 258	if (ret) {
 259		if (ret > 0)
 260			ret = 0;
 261		goto out;
 262	}
 263	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 264out:
 265	btrfs_free_path(path);
 266	return ret;
 267}
 268
 269int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 270				       struct btrfs_block_rsv *rsv)
 271{
 272	u64 needed_bytes;
 273	int ret;
 274
 275	/* 1 for slack space, 1 for updating the inode */
 276	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 277		btrfs_calc_metadata_size(fs_info, 1);
 278
 279	spin_lock(&rsv->lock);
 280	if (rsv->reserved < needed_bytes)
 281		ret = -ENOSPC;
 282	else
 283		ret = 0;
 284	spin_unlock(&rsv->lock);
 285	return ret;
 286}
 287
 288int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 289				    struct btrfs_block_group *block_group,
 
 290				    struct inode *inode)
 291{
 292	struct btrfs_root *root = BTRFS_I(inode)->root;
 293	int ret = 0;
 
 294	bool locked = false;
 295
 296	if (block_group) {
 297		struct btrfs_path *path = btrfs_alloc_path();
 
 
 298
 299		if (!path) {
 300			ret = -ENOMEM;
 301			goto fail;
 302		}
 303		locked = true;
 304		mutex_lock(&trans->transaction->cache_write_mutex);
 305		if (!list_empty(&block_group->io_list)) {
 306			list_del_init(&block_group->io_list);
 307
 308			btrfs_wait_cache_io(trans, block_group, path);
 309			btrfs_put_block_group(block_group);
 310		}
 311
 312		/*
 313		 * now that we've truncated the cache away, its no longer
 314		 * setup or written
 315		 */
 316		spin_lock(&block_group->lock);
 317		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 318		spin_unlock(&block_group->lock);
 319		btrfs_free_path(path);
 320	}
 
 321
 322	btrfs_i_size_write(BTRFS_I(inode), 0);
 323	truncate_pagecache(inode, 0);
 324
 325	/*
 326	 * We skip the throttling logic for free space cache inodes, so we don't
 327	 * need to check for -EAGAIN.
 
 
 328	 */
 329	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
 330					 0, BTRFS_EXTENT_DATA_KEY, NULL);
 331	if (ret)
 332		goto fail;
 333
 334	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 335
 336fail:
 337	if (locked)
 338		mutex_unlock(&trans->transaction->cache_write_mutex);
 339	if (ret)
 340		btrfs_abort_transaction(trans, ret);
 341
 342	return ret;
 343}
 344
 345static void readahead_cache(struct inode *inode)
 346{
 347	struct file_ra_state *ra;
 348	unsigned long last_index;
 349
 350	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 351	if (!ra)
 352		return;
 353
 354	file_ra_state_init(ra, inode->i_mapping);
 355	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 356
 357	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 358
 359	kfree(ra);
 
 
 360}
 361
 362static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 363		       int write)
 364{
 365	int num_pages;
 
 366
 367	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 368
 369	/* Make sure we can fit our crcs and generation into the first page */
 370	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 
 
 
 371		return -ENOSPC;
 372
 373	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 374
 375	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 376	if (!io_ctl->pages)
 377		return -ENOMEM;
 378
 379	io_ctl->num_pages = num_pages;
 380	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 
 381	io_ctl->inode = inode;
 382
 383	return 0;
 384}
 385ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 386
 387static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 388{
 389	kfree(io_ctl->pages);
 390	io_ctl->pages = NULL;
 391}
 392
 393static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 394{
 395	if (io_ctl->cur) {
 396		io_ctl->cur = NULL;
 397		io_ctl->orig = NULL;
 398	}
 399}
 400
 401static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 402{
 403	ASSERT(io_ctl->index < io_ctl->num_pages);
 404	io_ctl->page = io_ctl->pages[io_ctl->index++];
 405	io_ctl->cur = page_address(io_ctl->page);
 406	io_ctl->orig = io_ctl->cur;
 407	io_ctl->size = PAGE_SIZE;
 408	if (clear)
 409		clear_page(io_ctl->cur);
 410}
 411
 412static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 413{
 414	int i;
 415
 416	io_ctl_unmap_page(io_ctl);
 417
 418	for (i = 0; i < io_ctl->num_pages; i++) {
 419		if (io_ctl->pages[i]) {
 420			ClearPageChecked(io_ctl->pages[i]);
 421			unlock_page(io_ctl->pages[i]);
 422			put_page(io_ctl->pages[i]);
 423		}
 424	}
 425}
 426
 427static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 428{
 429	struct page *page;
 430	struct inode *inode = io_ctl->inode;
 431	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 432	int i;
 433
 434	for (i = 0; i < io_ctl->num_pages; i++) {
 435		int ret;
 436
 437		page = find_or_create_page(inode->i_mapping, i, mask);
 438		if (!page) {
 439			io_ctl_drop_pages(io_ctl);
 440			return -ENOMEM;
 441		}
 442
 443		ret = set_page_extent_mapped(page);
 444		if (ret < 0) {
 445			unlock_page(page);
 446			put_page(page);
 447			io_ctl_drop_pages(io_ctl);
 448			return ret;
 449		}
 450
 451		io_ctl->pages[i] = page;
 452		if (uptodate && !PageUptodate(page)) {
 453			btrfs_readpage(NULL, page);
 454			lock_page(page);
 455			if (page->mapping != inode->i_mapping) {
 456				btrfs_err(BTRFS_I(inode)->root->fs_info,
 457					  "free space cache page truncated");
 458				io_ctl_drop_pages(io_ctl);
 459				return -EIO;
 460			}
 461			if (!PageUptodate(page)) {
 462				btrfs_err(BTRFS_I(inode)->root->fs_info,
 463					   "error reading free space cache");
 464				io_ctl_drop_pages(io_ctl);
 465				return -EIO;
 466			}
 467		}
 468	}
 469
 470	for (i = 0; i < io_ctl->num_pages; i++)
 471		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 472
 473	return 0;
 474}
 475
 476static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 477{
 
 
 478	io_ctl_map_page(io_ctl, 1);
 479
 480	/*
 481	 * Skip the csum areas.  If we don't check crcs then we just have a
 482	 * 64bit chunk at the front of the first page.
 483	 */
 484	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 485	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 486
 487	put_unaligned_le64(generation, io_ctl->cur);
 
 488	io_ctl->cur += sizeof(u64);
 489}
 490
 491static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 492{
 493	u64 cache_gen;
 494
 495	/*
 496	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 497	 * chunk at the front of the first page.
 498	 */
 499	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 500	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 501
 502	cache_gen = get_unaligned_le64(io_ctl->cur);
 503	if (cache_gen != generation) {
 504		btrfs_err_rl(io_ctl->fs_info,
 505			"space cache generation (%llu) does not match inode (%llu)",
 506				cache_gen, generation);
 507		io_ctl_unmap_page(io_ctl);
 508		return -EIO;
 509	}
 510	io_ctl->cur += sizeof(u64);
 511	return 0;
 512}
 513
 514static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 515{
 516	u32 *tmp;
 517	u32 crc = ~(u32)0;
 518	unsigned offset = 0;
 519
 
 
 
 
 
 520	if (index == 0)
 521		offset = sizeof(u32) * io_ctl->num_pages;
 522
 523	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 524	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 525	io_ctl_unmap_page(io_ctl);
 526	tmp = page_address(io_ctl->pages[0]);
 527	tmp += index;
 528	*tmp = crc;
 529}
 530
 531static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 532{
 533	u32 *tmp, val;
 534	u32 crc = ~(u32)0;
 535	unsigned offset = 0;
 536
 
 
 
 
 
 537	if (index == 0)
 538		offset = sizeof(u32) * io_ctl->num_pages;
 539
 540	tmp = page_address(io_ctl->pages[0]);
 541	tmp += index;
 542	val = *tmp;
 543
 544	io_ctl_map_page(io_ctl, 0);
 545	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 546	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 547	if (val != crc) {
 548		btrfs_err_rl(io_ctl->fs_info,
 549			"csum mismatch on free space cache");
 550		io_ctl_unmap_page(io_ctl);
 551		return -EIO;
 552	}
 553
 554	return 0;
 555}
 556
 557static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 558			    void *bitmap)
 559{
 560	struct btrfs_free_space_entry *entry;
 561
 562	if (!io_ctl->cur)
 563		return -ENOSPC;
 564
 565	entry = io_ctl->cur;
 566	put_unaligned_le64(offset, &entry->offset);
 567	put_unaligned_le64(bytes, &entry->bytes);
 568	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 569		BTRFS_FREE_SPACE_EXTENT;
 570	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 571	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 572
 573	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 574		return 0;
 575
 576	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577
 578	/* No more pages to map */
 579	if (io_ctl->index >= io_ctl->num_pages)
 580		return 0;
 581
 582	/* map the next page */
 583	io_ctl_map_page(io_ctl, 1);
 584	return 0;
 585}
 586
 587static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 588{
 589	if (!io_ctl->cur)
 590		return -ENOSPC;
 591
 592	/*
 593	 * If we aren't at the start of the current page, unmap this one and
 594	 * map the next one if there is any left.
 595	 */
 596	if (io_ctl->cur != io_ctl->orig) {
 597		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 598		if (io_ctl->index >= io_ctl->num_pages)
 599			return -ENOSPC;
 600		io_ctl_map_page(io_ctl, 0);
 601	}
 602
 603	copy_page(io_ctl->cur, bitmap);
 604	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 605	if (io_ctl->index < io_ctl->num_pages)
 606		io_ctl_map_page(io_ctl, 0);
 607	return 0;
 608}
 609
 610static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 611{
 612	/*
 613	 * If we're not on the boundary we know we've modified the page and we
 614	 * need to crc the page.
 615	 */
 616	if (io_ctl->cur != io_ctl->orig)
 617		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 618	else
 619		io_ctl_unmap_page(io_ctl);
 620
 621	while (io_ctl->index < io_ctl->num_pages) {
 622		io_ctl_map_page(io_ctl, 1);
 623		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 624	}
 625}
 626
 627static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 628			    struct btrfs_free_space *entry, u8 *type)
 629{
 630	struct btrfs_free_space_entry *e;
 631	int ret;
 632
 633	if (!io_ctl->cur) {
 634		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 635		if (ret)
 636			return ret;
 637	}
 638
 639	e = io_ctl->cur;
 640	entry->offset = get_unaligned_le64(&e->offset);
 641	entry->bytes = get_unaligned_le64(&e->bytes);
 642	*type = e->type;
 643	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 644	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 645
 646	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 647		return 0;
 648
 649	io_ctl_unmap_page(io_ctl);
 650
 651	return 0;
 652}
 653
 654static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 655			      struct btrfs_free_space *entry)
 656{
 657	int ret;
 658
 659	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 660	if (ret)
 661		return ret;
 662
 663	copy_page(entry->bitmap, io_ctl->cur);
 664	io_ctl_unmap_page(io_ctl);
 665
 666	return 0;
 667}
 668
 669static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 670{
 671	struct btrfs_block_group *block_group = ctl->private;
 672	u64 max_bytes;
 673	u64 bitmap_bytes;
 674	u64 extent_bytes;
 675	u64 size = block_group->length;
 676	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 677	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 678
 679	max_bitmaps = max_t(u64, max_bitmaps, 1);
 680
 681	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 682
 683	/*
 684	 * We are trying to keep the total amount of memory used per 1GiB of
 685	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 686	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 687	 * bitmaps, we may end up using more memory than this.
 688	 */
 689	if (size < SZ_1G)
 690		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 691	else
 692		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 693
 694	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 695
 696	/*
 697	 * we want the extent entry threshold to always be at most 1/2 the max
 698	 * bytes we can have, or whatever is less than that.
 699	 */
 700	extent_bytes = max_bytes - bitmap_bytes;
 701	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 702
 703	ctl->extents_thresh =
 704		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 708				   struct btrfs_free_space_ctl *ctl,
 709				   struct btrfs_path *path, u64 offset)
 710{
 711	struct btrfs_fs_info *fs_info = root->fs_info;
 712	struct btrfs_free_space_header *header;
 713	struct extent_buffer *leaf;
 714	struct btrfs_io_ctl io_ctl;
 715	struct btrfs_key key;
 716	struct btrfs_free_space *e, *n;
 717	LIST_HEAD(bitmaps);
 718	u64 num_entries;
 719	u64 num_bitmaps;
 720	u64 generation;
 721	u8 type;
 722	int ret = 0;
 723
 724	/* Nothing in the space cache, goodbye */
 725	if (!i_size_read(inode))
 726		return 0;
 727
 728	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 729	key.offset = offset;
 730	key.type = 0;
 731
 732	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 733	if (ret < 0)
 734		return 0;
 735	else if (ret > 0) {
 736		btrfs_release_path(path);
 737		return 0;
 738	}
 739
 740	ret = -1;
 741
 742	leaf = path->nodes[0];
 743	header = btrfs_item_ptr(leaf, path->slots[0],
 744				struct btrfs_free_space_header);
 745	num_entries = btrfs_free_space_entries(leaf, header);
 746	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 747	generation = btrfs_free_space_generation(leaf, header);
 748	btrfs_release_path(path);
 749
 750	if (!BTRFS_I(inode)->generation) {
 751		btrfs_info(fs_info,
 752			   "the free space cache file (%llu) is invalid, skip it",
 753			   offset);
 754		return 0;
 755	}
 756
 757	if (BTRFS_I(inode)->generation != generation) {
 758		btrfs_err(fs_info,
 759			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 760			  BTRFS_I(inode)->generation, generation);
 761		return 0;
 762	}
 763
 764	if (!num_entries)
 765		return 0;
 766
 767	ret = io_ctl_init(&io_ctl, inode, 0);
 768	if (ret)
 769		return ret;
 770
 771	readahead_cache(inode);
 
 
 772
 773	ret = io_ctl_prepare_pages(&io_ctl, true);
 774	if (ret)
 775		goto out;
 776
 777	ret = io_ctl_check_crc(&io_ctl, 0);
 778	if (ret)
 779		goto free_cache;
 780
 781	ret = io_ctl_check_generation(&io_ctl, generation);
 782	if (ret)
 783		goto free_cache;
 784
 785	while (num_entries) {
 786		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 787				      GFP_NOFS);
 788		if (!e) {
 789			ret = -ENOMEM;
 790			goto free_cache;
 791		}
 792
 793		ret = io_ctl_read_entry(&io_ctl, e, &type);
 794		if (ret) {
 795			kmem_cache_free(btrfs_free_space_cachep, e);
 796			goto free_cache;
 797		}
 798
 799		if (!e->bytes) {
 800			ret = -1;
 801			kmem_cache_free(btrfs_free_space_cachep, e);
 802			goto free_cache;
 803		}
 804
 805		if (type == BTRFS_FREE_SPACE_EXTENT) {
 806			spin_lock(&ctl->tree_lock);
 807			ret = link_free_space(ctl, e);
 808			spin_unlock(&ctl->tree_lock);
 809			if (ret) {
 810				btrfs_err(fs_info,
 811					"Duplicate entries in free space cache, dumping");
 812				kmem_cache_free(btrfs_free_space_cachep, e);
 813				goto free_cache;
 814			}
 815		} else {
 816			ASSERT(num_bitmaps);
 817			num_bitmaps--;
 818			e->bitmap = kmem_cache_zalloc(
 819					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 820			if (!e->bitmap) {
 821				ret = -ENOMEM;
 822				kmem_cache_free(
 823					btrfs_free_space_cachep, e);
 824				goto free_cache;
 825			}
 826			spin_lock(&ctl->tree_lock);
 827			ret = link_free_space(ctl, e);
 828			ctl->total_bitmaps++;
 829			recalculate_thresholds(ctl);
 830			spin_unlock(&ctl->tree_lock);
 831			if (ret) {
 832				btrfs_err(fs_info,
 833					"Duplicate entries in free space cache, dumping");
 834				kmem_cache_free(btrfs_free_space_cachep, e);
 835				goto free_cache;
 836			}
 837			list_add_tail(&e->list, &bitmaps);
 838		}
 839
 840		num_entries--;
 841	}
 842
 843	io_ctl_unmap_page(&io_ctl);
 844
 845	/*
 846	 * We add the bitmaps at the end of the entries in order that
 847	 * the bitmap entries are added to the cache.
 848	 */
 849	list_for_each_entry_safe(e, n, &bitmaps, list) {
 850		list_del_init(&e->list);
 851		ret = io_ctl_read_bitmap(&io_ctl, e);
 852		if (ret)
 853			goto free_cache;
 854	}
 855
 856	io_ctl_drop_pages(&io_ctl);
 
 857	ret = 1;
 858out:
 859	io_ctl_free(&io_ctl);
 860	return ret;
 861free_cache:
 862	io_ctl_drop_pages(&io_ctl);
 863	__btrfs_remove_free_space_cache(ctl);
 864	goto out;
 865}
 866
 867static int copy_free_space_cache(struct btrfs_block_group *block_group,
 868				 struct btrfs_free_space_ctl *ctl)
 869{
 870	struct btrfs_free_space *info;
 871	struct rb_node *n;
 872	int ret = 0;
 873
 874	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 875		info = rb_entry(n, struct btrfs_free_space, offset_index);
 876		if (!info->bitmap) {
 877			unlink_free_space(ctl, info);
 878			ret = btrfs_add_free_space(block_group, info->offset,
 879						   info->bytes);
 880			kmem_cache_free(btrfs_free_space_cachep, info);
 881		} else {
 882			u64 offset = info->offset;
 883			u64 bytes = ctl->unit;
 884
 885			while (search_bitmap(ctl, info, &offset, &bytes,
 886					     false) == 0) {
 887				ret = btrfs_add_free_space(block_group, offset,
 888							   bytes);
 889				if (ret)
 890					break;
 891				bitmap_clear_bits(ctl, info, offset, bytes);
 892				offset = info->offset;
 893				bytes = ctl->unit;
 894			}
 895			free_bitmap(ctl, info);
 896		}
 897		cond_resched();
 898	}
 899	return ret;
 900}
 901
 902int load_free_space_cache(struct btrfs_block_group *block_group)
 903{
 904	struct btrfs_fs_info *fs_info = block_group->fs_info;
 905	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 906	struct btrfs_free_space_ctl tmp_ctl = {};
 907	struct inode *inode;
 908	struct btrfs_path *path;
 909	int ret = 0;
 910	bool matched;
 911	u64 used = block_group->used;
 912
 913	/*
 914	 * Because we could potentially discard our loaded free space, we want
 915	 * to load everything into a temporary structure first, and then if it's
 916	 * valid copy it all into the actual free space ctl.
 917	 */
 918	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 919
 920	/*
 921	 * If this block group has been marked to be cleared for one reason or
 922	 * another then we can't trust the on disk cache, so just return.
 923	 */
 924	spin_lock(&block_group->lock);
 925	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 926		spin_unlock(&block_group->lock);
 927		return 0;
 928	}
 929	spin_unlock(&block_group->lock);
 930
 931	path = btrfs_alloc_path();
 932	if (!path)
 933		return 0;
 934	path->search_commit_root = 1;
 935	path->skip_locking = 1;
 936
 937	/*
 938	 * We must pass a path with search_commit_root set to btrfs_iget in
 939	 * order to avoid a deadlock when allocating extents for the tree root.
 940	 *
 941	 * When we are COWing an extent buffer from the tree root, when looking
 942	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 943	 * block group without its free space cache loaded. When we find one
 944	 * we must load its space cache which requires reading its free space
 945	 * cache's inode item from the root tree. If this inode item is located
 946	 * in the same leaf that we started COWing before, then we end up in
 947	 * deadlock on the extent buffer (trying to read lock it when we
 948	 * previously write locked it).
 949	 *
 950	 * It's safe to read the inode item using the commit root because
 951	 * block groups, once loaded, stay in memory forever (until they are
 952	 * removed) as well as their space caches once loaded. New block groups
 953	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 954	 * we will never try to read their inode item while the fs is mounted.
 955	 */
 956	inode = lookup_free_space_inode(block_group, path);
 957	if (IS_ERR(inode)) {
 958		btrfs_free_path(path);
 959		return 0;
 960	}
 961
 962	/* We may have converted the inode and made the cache invalid. */
 963	spin_lock(&block_group->lock);
 964	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 965		spin_unlock(&block_group->lock);
 966		btrfs_free_path(path);
 967		goto out;
 968	}
 969	spin_unlock(&block_group->lock);
 970
 971	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
 972				      path, block_group->start);
 973	btrfs_free_path(path);
 974	if (ret <= 0)
 975		goto out;
 976
 977	matched = (tmp_ctl.free_space == (block_group->length - used -
 978					  block_group->bytes_super));
 
 
 979
 980	if (matched) {
 981		ret = copy_free_space_cache(block_group, &tmp_ctl);
 982		/*
 983		 * ret == 1 means we successfully loaded the free space cache,
 984		 * so we need to re-set it here.
 985		 */
 986		if (ret == 0)
 987			ret = 1;
 988	} else {
 989		__btrfs_remove_free_space_cache(&tmp_ctl);
 990		btrfs_warn(fs_info,
 991			   "block group %llu has wrong amount of free space",
 992			   block_group->start);
 993		ret = -1;
 994	}
 995out:
 996	if (ret < 0) {
 997		/* This cache is bogus, make sure it gets cleared */
 998		spin_lock(&block_group->lock);
 999		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1000		spin_unlock(&block_group->lock);
1001		ret = 0;
1002
1003		btrfs_warn(fs_info,
1004			   "failed to load free space cache for block group %llu, rebuilding it now",
1005			   block_group->start);
1006	}
1007
1008	spin_lock(&ctl->tree_lock);
1009	btrfs_discard_update_discardable(block_group);
1010	spin_unlock(&ctl->tree_lock);
1011	iput(inode);
1012	return ret;
1013}
1014
1015static noinline_for_stack
1016int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1017			      struct btrfs_free_space_ctl *ctl,
1018			      struct btrfs_block_group *block_group,
1019			      int *entries, int *bitmaps,
1020			      struct list_head *bitmap_list)
1021{
1022	int ret;
1023	struct btrfs_free_cluster *cluster = NULL;
1024	struct btrfs_free_cluster *cluster_locked = NULL;
1025	struct rb_node *node = rb_first(&ctl->free_space_offset);
1026	struct btrfs_trim_range *trim_entry;
1027
1028	/* Get the cluster for this block_group if it exists */
1029	if (block_group && !list_empty(&block_group->cluster_list)) {
1030		cluster = list_entry(block_group->cluster_list.next,
1031				     struct btrfs_free_cluster,
1032				     block_group_list);
1033	}
1034
1035	if (!node && cluster) {
1036		cluster_locked = cluster;
1037		spin_lock(&cluster_locked->lock);
1038		node = rb_first(&cluster->root);
1039		cluster = NULL;
1040	}
1041
1042	/* Write out the extent entries */
1043	while (node) {
1044		struct btrfs_free_space *e;
1045
1046		e = rb_entry(node, struct btrfs_free_space, offset_index);
1047		*entries += 1;
1048
1049		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1050				       e->bitmap);
1051		if (ret)
1052			goto fail;
1053
1054		if (e->bitmap) {
1055			list_add_tail(&e->list, bitmap_list);
1056			*bitmaps += 1;
1057		}
1058		node = rb_next(node);
1059		if (!node && cluster) {
1060			node = rb_first(&cluster->root);
1061			cluster_locked = cluster;
1062			spin_lock(&cluster_locked->lock);
1063			cluster = NULL;
1064		}
1065	}
1066	if (cluster_locked) {
1067		spin_unlock(&cluster_locked->lock);
1068		cluster_locked = NULL;
1069	}
1070
1071	/*
1072	 * Make sure we don't miss any range that was removed from our rbtree
1073	 * because trimming is running. Otherwise after a umount+mount (or crash
1074	 * after committing the transaction) we would leak free space and get
1075	 * an inconsistent free space cache report from fsck.
1076	 */
1077	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1078		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1079				       trim_entry->bytes, NULL);
1080		if (ret)
1081			goto fail;
1082		*entries += 1;
1083	}
1084
1085	return 0;
1086fail:
1087	if (cluster_locked)
1088		spin_unlock(&cluster_locked->lock);
1089	return -ENOSPC;
1090}
1091
1092static noinline_for_stack int
1093update_cache_item(struct btrfs_trans_handle *trans,
1094		  struct btrfs_root *root,
1095		  struct inode *inode,
1096		  struct btrfs_path *path, u64 offset,
1097		  int entries, int bitmaps)
1098{
1099	struct btrfs_key key;
1100	struct btrfs_free_space_header *header;
1101	struct extent_buffer *leaf;
1102	int ret;
1103
1104	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1105	key.offset = offset;
1106	key.type = 0;
1107
1108	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1109	if (ret < 0) {
1110		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111				 EXTENT_DELALLOC, 0, 0, NULL);
 
1112		goto fail;
1113	}
1114	leaf = path->nodes[0];
1115	if (ret > 0) {
1116		struct btrfs_key found_key;
1117		ASSERT(path->slots[0]);
1118		path->slots[0]--;
1119		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1120		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1121		    found_key.offset != offset) {
1122			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1123					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1124					 0, NULL);
 
1125			btrfs_release_path(path);
1126			goto fail;
1127		}
1128	}
1129
1130	BTRFS_I(inode)->generation = trans->transid;
1131	header = btrfs_item_ptr(leaf, path->slots[0],
1132				struct btrfs_free_space_header);
1133	btrfs_set_free_space_entries(leaf, header, entries);
1134	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1135	btrfs_set_free_space_generation(leaf, header, trans->transid);
1136	btrfs_mark_buffer_dirty(leaf);
1137	btrfs_release_path(path);
1138
1139	return 0;
1140
1141fail:
1142	return -1;
1143}
1144
1145static noinline_for_stack int write_pinned_extent_entries(
1146			    struct btrfs_trans_handle *trans,
1147			    struct btrfs_block_group *block_group,
1148			    struct btrfs_io_ctl *io_ctl,
1149			    int *entries)
1150{
1151	u64 start, extent_start, extent_end, len;
1152	struct extent_io_tree *unpin = NULL;
1153	int ret;
1154
1155	if (!block_group)
1156		return 0;
1157
1158	/*
1159	 * We want to add any pinned extents to our free space cache
1160	 * so we don't leak the space
1161	 *
1162	 * We shouldn't have switched the pinned extents yet so this is the
1163	 * right one
1164	 */
1165	unpin = &trans->transaction->pinned_extents;
1166
1167	start = block_group->start;
1168
1169	while (start < block_group->start + block_group->length) {
1170		ret = find_first_extent_bit(unpin, start,
1171					    &extent_start, &extent_end,
1172					    EXTENT_DIRTY, NULL);
1173		if (ret)
1174			return 0;
1175
1176		/* This pinned extent is out of our range */
1177		if (extent_start >= block_group->start + block_group->length)
 
1178			return 0;
1179
1180		extent_start = max(extent_start, start);
1181		extent_end = min(block_group->start + block_group->length,
1182				 extent_end + 1);
1183		len = extent_end - extent_start;
1184
1185		*entries += 1;
1186		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1187		if (ret)
1188			return -ENOSPC;
1189
1190		start = extent_end;
1191	}
1192
1193	return 0;
1194}
1195
1196static noinline_for_stack int
1197write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1198{
1199	struct btrfs_free_space *entry, *next;
1200	int ret;
1201
1202	/* Write out the bitmaps */
1203	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1204		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1205		if (ret)
1206			return -ENOSPC;
1207		list_del_init(&entry->list);
1208	}
1209
1210	return 0;
1211}
1212
1213static int flush_dirty_cache(struct inode *inode)
1214{
1215	int ret;
1216
1217	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1218	if (ret)
1219		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1220				 EXTENT_DELALLOC, 0, 0, NULL);
 
1221
1222	return ret;
1223}
1224
1225static void noinline_for_stack
1226cleanup_bitmap_list(struct list_head *bitmap_list)
1227{
1228	struct btrfs_free_space *entry, *next;
1229
1230	list_for_each_entry_safe(entry, next, bitmap_list, list)
1231		list_del_init(&entry->list);
1232}
1233
1234static void noinline_for_stack
1235cleanup_write_cache_enospc(struct inode *inode,
1236			   struct btrfs_io_ctl *io_ctl,
1237			   struct extent_state **cached_state)
 
1238{
1239	io_ctl_drop_pages(io_ctl);
1240	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1241			     i_size_read(inode) - 1, cached_state);
 
1242}
1243
1244static int __btrfs_wait_cache_io(struct btrfs_root *root,
1245				 struct btrfs_trans_handle *trans,
1246				 struct btrfs_block_group *block_group,
1247				 struct btrfs_io_ctl *io_ctl,
1248				 struct btrfs_path *path, u64 offset)
1249{
1250	int ret;
1251	struct inode *inode = io_ctl->inode;
 
1252
1253	if (!inode)
1254		return 0;
1255
 
 
1256	/* Flush the dirty pages in the cache file. */
1257	ret = flush_dirty_cache(inode);
1258	if (ret)
1259		goto out;
1260
1261	/* Update the cache item to tell everyone this cache file is valid. */
1262	ret = update_cache_item(trans, root, inode, path, offset,
1263				io_ctl->entries, io_ctl->bitmaps);
1264out:
 
1265	if (ret) {
1266		invalidate_inode_pages2(inode->i_mapping);
1267		BTRFS_I(inode)->generation = 0;
1268		if (block_group)
1269			btrfs_debug(root->fs_info,
1270	  "failed to write free space cache for block group %llu error %d",
1271				  block_group->start, ret);
 
 
 
1272	}
1273	btrfs_update_inode(trans, root, BTRFS_I(inode));
1274
1275	if (block_group) {
1276		/* the dirty list is protected by the dirty_bgs_lock */
1277		spin_lock(&trans->transaction->dirty_bgs_lock);
1278
1279		/* the disk_cache_state is protected by the block group lock */
1280		spin_lock(&block_group->lock);
1281
1282		/*
1283		 * only mark this as written if we didn't get put back on
1284		 * the dirty list while waiting for IO.   Otherwise our
1285		 * cache state won't be right, and we won't get written again
1286		 */
1287		if (!ret && list_empty(&block_group->dirty_list))
1288			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1289		else if (ret)
1290			block_group->disk_cache_state = BTRFS_DC_ERROR;
1291
1292		spin_unlock(&block_group->lock);
1293		spin_unlock(&trans->transaction->dirty_bgs_lock);
1294		io_ctl->inode = NULL;
1295		iput(inode);
1296	}
1297
1298	return ret;
1299
1300}
1301
 
 
 
 
 
 
 
 
1302int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1303			struct btrfs_block_group *block_group,
1304			struct btrfs_path *path)
1305{
1306	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1307				     block_group, &block_group->io_ctl,
1308				     path, block_group->start);
1309}
1310
1311/**
1312 * Write out cached info to an inode
1313 *
1314 * @root:        root the inode belongs to
1315 * @inode:       freespace inode we are writing out
1316 * @ctl:         free space cache we are going to write out
1317 * @block_group: block_group for this cache if it belongs to a block_group
1318 * @io_ctl:      holds context for the io
1319 * @trans:       the trans handle
1320 *
1321 * This function writes out a free space cache struct to disk for quick recovery
1322 * on mount.  This will return 0 if it was successful in writing the cache out,
1323 * or an errno if it was not.
1324 */
1325static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1326				   struct btrfs_free_space_ctl *ctl,
1327				   struct btrfs_block_group *block_group,
1328				   struct btrfs_io_ctl *io_ctl,
1329				   struct btrfs_trans_handle *trans)
 
1330{
 
1331	struct extent_state *cached_state = NULL;
1332	LIST_HEAD(bitmap_list);
1333	int entries = 0;
1334	int bitmaps = 0;
1335	int ret;
1336	int must_iput = 0;
1337
1338	if (!i_size_read(inode))
1339		return -EIO;
1340
1341	WARN_ON(io_ctl->pages);
1342	ret = io_ctl_init(io_ctl, inode, 1);
1343	if (ret)
1344		return ret;
1345
1346	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1347		down_write(&block_group->data_rwsem);
1348		spin_lock(&block_group->lock);
1349		if (block_group->delalloc_bytes) {
1350			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1351			spin_unlock(&block_group->lock);
1352			up_write(&block_group->data_rwsem);
1353			BTRFS_I(inode)->generation = 0;
1354			ret = 0;
1355			must_iput = 1;
1356			goto out;
1357		}
1358		spin_unlock(&block_group->lock);
1359	}
1360
1361	/* Lock all pages first so we can lock the extent safely. */
1362	ret = io_ctl_prepare_pages(io_ctl, false);
1363	if (ret)
1364		goto out_unlock;
1365
1366	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1367			 &cached_state);
1368
1369	io_ctl_set_generation(io_ctl, trans->transid);
1370
1371	mutex_lock(&ctl->cache_writeout_mutex);
1372	/* Write out the extent entries in the free space cache */
1373	spin_lock(&ctl->tree_lock);
1374	ret = write_cache_extent_entries(io_ctl, ctl,
1375					 block_group, &entries, &bitmaps,
1376					 &bitmap_list);
1377	if (ret)
1378		goto out_nospc_locked;
1379
1380	/*
1381	 * Some spaces that are freed in the current transaction are pinned,
1382	 * they will be added into free space cache after the transaction is
1383	 * committed, we shouldn't lose them.
1384	 *
1385	 * If this changes while we are working we'll get added back to
1386	 * the dirty list and redo it.  No locking needed
1387	 */
1388	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
 
1389	if (ret)
1390		goto out_nospc_locked;
1391
1392	/*
1393	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1394	 * locked while doing it because a concurrent trim can be manipulating
1395	 * or freeing the bitmap.
1396	 */
1397	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1398	spin_unlock(&ctl->tree_lock);
1399	mutex_unlock(&ctl->cache_writeout_mutex);
1400	if (ret)
1401		goto out_nospc;
1402
1403	/* Zero out the rest of the pages just to make sure */
1404	io_ctl_zero_remaining_pages(io_ctl);
1405
1406	/* Everything is written out, now we dirty the pages in the file. */
1407	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1408				io_ctl->num_pages, 0, i_size_read(inode),
1409				&cached_state, false);
1410	if (ret)
1411		goto out_nospc;
1412
1413	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1414		up_write(&block_group->data_rwsem);
1415	/*
1416	 * Release the pages and unlock the extent, we will flush
1417	 * them out later
1418	 */
1419	io_ctl_drop_pages(io_ctl);
1420	io_ctl_free(io_ctl);
1421
1422	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1423			     i_size_read(inode) - 1, &cached_state);
1424
1425	/*
1426	 * at this point the pages are under IO and we're happy,
1427	 * The caller is responsible for waiting on them and updating
1428	 * the cache and the inode
1429	 */
1430	io_ctl->entries = entries;
1431	io_ctl->bitmaps = bitmaps;
1432
1433	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1434	if (ret)
1435		goto out;
1436
1437	return 0;
1438
1439out_nospc_locked:
1440	cleanup_bitmap_list(&bitmap_list);
1441	spin_unlock(&ctl->tree_lock);
1442	mutex_unlock(&ctl->cache_writeout_mutex);
1443
1444out_nospc:
1445	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1446
1447out_unlock:
1448	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1449		up_write(&block_group->data_rwsem);
1450
1451out:
1452	io_ctl->inode = NULL;
1453	io_ctl_free(io_ctl);
1454	if (ret) {
1455		invalidate_inode_pages2(inode->i_mapping);
1456		BTRFS_I(inode)->generation = 0;
1457	}
1458	btrfs_update_inode(trans, root, BTRFS_I(inode));
1459	if (must_iput)
1460		iput(inode);
1461	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1462}
1463
1464int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1465			  struct btrfs_block_group *block_group,
 
1466			  struct btrfs_path *path)
1467{
1468	struct btrfs_fs_info *fs_info = trans->fs_info;
1469	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1470	struct inode *inode;
1471	int ret = 0;
1472
1473	spin_lock(&block_group->lock);
1474	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1475		spin_unlock(&block_group->lock);
1476		return 0;
1477	}
1478	spin_unlock(&block_group->lock);
1479
1480	inode = lookup_free_space_inode(block_group, path);
1481	if (IS_ERR(inode))
1482		return 0;
1483
1484	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1485				block_group, &block_group->io_ctl, trans);
 
1486	if (ret) {
1487		btrfs_debug(fs_info,
1488	  "failed to write free space cache for block group %llu error %d",
1489			  block_group->start, ret);
 
 
1490		spin_lock(&block_group->lock);
1491		block_group->disk_cache_state = BTRFS_DC_ERROR;
1492		spin_unlock(&block_group->lock);
1493
1494		block_group->io_ctl.inode = NULL;
1495		iput(inode);
1496	}
1497
1498	/*
1499	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1500	 * to wait for IO and put the inode
1501	 */
1502
1503	return ret;
1504}
1505
1506static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1507					  u64 offset)
1508{
1509	ASSERT(offset >= bitmap_start);
1510	offset -= bitmap_start;
1511	return (unsigned long)(div_u64(offset, unit));
1512}
1513
1514static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1515{
1516	return (unsigned long)(div_u64(bytes, unit));
1517}
1518
1519static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1520				   u64 offset)
1521{
1522	u64 bitmap_start;
1523	u64 bytes_per_bitmap;
1524
1525	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1526	bitmap_start = offset - ctl->start;
1527	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1528	bitmap_start *= bytes_per_bitmap;
1529	bitmap_start += ctl->start;
1530
1531	return bitmap_start;
1532}
1533
1534static int tree_insert_offset(struct rb_root *root, u64 offset,
1535			      struct rb_node *node, int bitmap)
1536{
1537	struct rb_node **p = &root->rb_node;
1538	struct rb_node *parent = NULL;
1539	struct btrfs_free_space *info;
1540
1541	while (*p) {
1542		parent = *p;
1543		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1544
1545		if (offset < info->offset) {
1546			p = &(*p)->rb_left;
1547		} else if (offset > info->offset) {
1548			p = &(*p)->rb_right;
1549		} else {
1550			/*
1551			 * we could have a bitmap entry and an extent entry
1552			 * share the same offset.  If this is the case, we want
1553			 * the extent entry to always be found first if we do a
1554			 * linear search through the tree, since we want to have
1555			 * the quickest allocation time, and allocating from an
1556			 * extent is faster than allocating from a bitmap.  So
1557			 * if we're inserting a bitmap and we find an entry at
1558			 * this offset, we want to go right, or after this entry
1559			 * logically.  If we are inserting an extent and we've
1560			 * found a bitmap, we want to go left, or before
1561			 * logically.
1562			 */
1563			if (bitmap) {
1564				if (info->bitmap) {
1565					WARN_ON_ONCE(1);
1566					return -EEXIST;
1567				}
1568				p = &(*p)->rb_right;
1569			} else {
1570				if (!info->bitmap) {
1571					WARN_ON_ONCE(1);
1572					return -EEXIST;
1573				}
1574				p = &(*p)->rb_left;
1575			}
1576		}
1577	}
1578
1579	rb_link_node(node, parent, p);
1580	rb_insert_color(node, root);
1581
1582	return 0;
1583}
1584
1585/*
1586 * searches the tree for the given offset.
1587 *
1588 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1589 * want a section that has at least bytes size and comes at or after the given
1590 * offset.
1591 */
1592static struct btrfs_free_space *
1593tree_search_offset(struct btrfs_free_space_ctl *ctl,
1594		   u64 offset, int bitmap_only, int fuzzy)
1595{
1596	struct rb_node *n = ctl->free_space_offset.rb_node;
1597	struct btrfs_free_space *entry, *prev = NULL;
1598
1599	/* find entry that is closest to the 'offset' */
1600	while (1) {
1601		if (!n) {
1602			entry = NULL;
1603			break;
1604		}
1605
1606		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607		prev = entry;
1608
1609		if (offset < entry->offset)
1610			n = n->rb_left;
1611		else if (offset > entry->offset)
1612			n = n->rb_right;
1613		else
1614			break;
1615	}
1616
1617	if (bitmap_only) {
1618		if (!entry)
1619			return NULL;
1620		if (entry->bitmap)
1621			return entry;
1622
1623		/*
1624		 * bitmap entry and extent entry may share same offset,
1625		 * in that case, bitmap entry comes after extent entry.
1626		 */
1627		n = rb_next(n);
1628		if (!n)
1629			return NULL;
1630		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1631		if (entry->offset != offset)
1632			return NULL;
1633
1634		WARN_ON(!entry->bitmap);
1635		return entry;
1636	} else if (entry) {
1637		if (entry->bitmap) {
1638			/*
1639			 * if previous extent entry covers the offset,
1640			 * we should return it instead of the bitmap entry
1641			 */
1642			n = rb_prev(&entry->offset_index);
1643			if (n) {
1644				prev = rb_entry(n, struct btrfs_free_space,
1645						offset_index);
1646				if (!prev->bitmap &&
1647				    prev->offset + prev->bytes > offset)
1648					entry = prev;
1649			}
1650		}
1651		return entry;
1652	}
1653
1654	if (!prev)
1655		return NULL;
1656
1657	/* find last entry before the 'offset' */
1658	entry = prev;
1659	if (entry->offset > offset) {
1660		n = rb_prev(&entry->offset_index);
1661		if (n) {
1662			entry = rb_entry(n, struct btrfs_free_space,
1663					offset_index);
1664			ASSERT(entry->offset <= offset);
1665		} else {
1666			if (fuzzy)
1667				return entry;
1668			else
1669				return NULL;
1670		}
1671	}
1672
1673	if (entry->bitmap) {
1674		n = rb_prev(&entry->offset_index);
1675		if (n) {
1676			prev = rb_entry(n, struct btrfs_free_space,
1677					offset_index);
1678			if (!prev->bitmap &&
1679			    prev->offset + prev->bytes > offset)
1680				return prev;
1681		}
1682		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1683			return entry;
1684	} else if (entry->offset + entry->bytes > offset)
1685		return entry;
1686
1687	if (!fuzzy)
1688		return NULL;
1689
1690	while (1) {
1691		if (entry->bitmap) {
1692			if (entry->offset + BITS_PER_BITMAP *
1693			    ctl->unit > offset)
1694				break;
1695		} else {
1696			if (entry->offset + entry->bytes > offset)
1697				break;
1698		}
1699
1700		n = rb_next(&entry->offset_index);
1701		if (!n)
1702			return NULL;
1703		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1704	}
1705	return entry;
1706}
1707
1708static inline void
1709__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1710		    struct btrfs_free_space *info)
1711{
1712	rb_erase(&info->offset_index, &ctl->free_space_offset);
1713	ctl->free_extents--;
1714
1715	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1716		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1717		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1718	}
1719}
1720
1721static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1722			      struct btrfs_free_space *info)
1723{
1724	__unlink_free_space(ctl, info);
1725	ctl->free_space -= info->bytes;
1726}
1727
1728static int link_free_space(struct btrfs_free_space_ctl *ctl,
1729			   struct btrfs_free_space *info)
1730{
1731	int ret = 0;
1732
1733	ASSERT(info->bytes || info->bitmap);
1734	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1735				 &info->offset_index, (info->bitmap != NULL));
1736	if (ret)
1737		return ret;
1738
1739	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1740		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1741		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1742	}
1743
1744	ctl->free_space += info->bytes;
1745	ctl->free_extents++;
1746	return ret;
1747}
1748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1750				       struct btrfs_free_space *info,
1751				       u64 offset, u64 bytes)
1752{
1753	unsigned long start, count, end;
1754	int extent_delta = -1;
1755
1756	start = offset_to_bit(info->offset, ctl->unit, offset);
1757	count = bytes_to_bits(bytes, ctl->unit);
1758	end = start + count;
1759	ASSERT(end <= BITS_PER_BITMAP);
1760
1761	bitmap_clear(info->bitmap, start, count);
1762
1763	info->bytes -= bytes;
1764	if (info->max_extent_size > ctl->unit)
1765		info->max_extent_size = 0;
1766
1767	if (start && test_bit(start - 1, info->bitmap))
1768		extent_delta++;
1769
1770	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1771		extent_delta++;
1772
1773	info->bitmap_extents += extent_delta;
1774	if (!btrfs_free_space_trimmed(info)) {
1775		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1776		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1777	}
1778}
1779
1780static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1781			      struct btrfs_free_space *info, u64 offset,
1782			      u64 bytes)
1783{
1784	__bitmap_clear_bits(ctl, info, offset, bytes);
1785	ctl->free_space -= bytes;
1786}
1787
1788static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1789			    struct btrfs_free_space *info, u64 offset,
1790			    u64 bytes)
1791{
1792	unsigned long start, count, end;
1793	int extent_delta = 1;
1794
1795	start = offset_to_bit(info->offset, ctl->unit, offset);
1796	count = bytes_to_bits(bytes, ctl->unit);
1797	end = start + count;
1798	ASSERT(end <= BITS_PER_BITMAP);
1799
1800	bitmap_set(info->bitmap, start, count);
1801
1802	info->bytes += bytes;
1803	ctl->free_space += bytes;
1804
1805	if (start && test_bit(start - 1, info->bitmap))
1806		extent_delta--;
1807
1808	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1809		extent_delta--;
1810
1811	info->bitmap_extents += extent_delta;
1812	if (!btrfs_free_space_trimmed(info)) {
1813		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1814		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1815	}
1816}
1817
1818/*
1819 * If we can not find suitable extent, we will use bytes to record
1820 * the size of the max extent.
1821 */
1822static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1823			 struct btrfs_free_space *bitmap_info, u64 *offset,
1824			 u64 *bytes, bool for_alloc)
1825{
1826	unsigned long found_bits = 0;
1827	unsigned long max_bits = 0;
1828	unsigned long bits, i;
1829	unsigned long next_zero;
1830	unsigned long extent_bits;
1831
1832	/*
1833	 * Skip searching the bitmap if we don't have a contiguous section that
1834	 * is large enough for this allocation.
1835	 */
1836	if (for_alloc &&
1837	    bitmap_info->max_extent_size &&
1838	    bitmap_info->max_extent_size < *bytes) {
1839		*bytes = bitmap_info->max_extent_size;
1840		return -1;
1841	}
1842
1843	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1844			  max_t(u64, *offset, bitmap_info->offset));
1845	bits = bytes_to_bits(*bytes, ctl->unit);
1846
1847	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1848		if (for_alloc && bits == 1) {
1849			found_bits = 1;
1850			break;
1851		}
1852		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1853					       BITS_PER_BITMAP, i);
1854		extent_bits = next_zero - i;
1855		if (extent_bits >= bits) {
1856			found_bits = extent_bits;
1857			break;
1858		} else if (extent_bits > max_bits) {
1859			max_bits = extent_bits;
1860		}
1861		i = next_zero;
1862	}
1863
1864	if (found_bits) {
1865		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1866		*bytes = (u64)(found_bits) * ctl->unit;
1867		return 0;
1868	}
1869
1870	*bytes = (u64)(max_bits) * ctl->unit;
1871	bitmap_info->max_extent_size = *bytes;
1872	return -1;
1873}
1874
1875static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1876{
1877	if (entry->bitmap)
1878		return entry->max_extent_size;
1879	return entry->bytes;
1880}
1881
1882/* Cache the size of the max extent in bytes */
1883static struct btrfs_free_space *
1884find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1885		unsigned long align, u64 *max_extent_size)
1886{
1887	struct btrfs_free_space *entry;
1888	struct rb_node *node;
1889	u64 tmp;
1890	u64 align_off;
1891	int ret;
1892
1893	if (!ctl->free_space_offset.rb_node)
1894		goto out;
1895
1896	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1897	if (!entry)
1898		goto out;
1899
1900	for (node = &entry->offset_index; node; node = rb_next(node)) {
1901		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1902		if (entry->bytes < *bytes) {
1903			*max_extent_size = max(get_max_extent_size(entry),
1904					       *max_extent_size);
1905			continue;
1906		}
1907
1908		/* make sure the space returned is big enough
1909		 * to match our requested alignment
1910		 */
1911		if (*bytes >= align) {
1912			tmp = entry->offset - ctl->start + align - 1;
1913			tmp = div64_u64(tmp, align);
1914			tmp = tmp * align + ctl->start;
1915			align_off = tmp - entry->offset;
1916		} else {
1917			align_off = 0;
1918			tmp = entry->offset;
1919		}
1920
1921		if (entry->bytes < *bytes + align_off) {
1922			*max_extent_size = max(get_max_extent_size(entry),
1923					       *max_extent_size);
1924			continue;
1925		}
1926
1927		if (entry->bitmap) {
1928			u64 size = *bytes;
1929
1930			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1931			if (!ret) {
1932				*offset = tmp;
1933				*bytes = size;
1934				return entry;
1935			} else {
1936				*max_extent_size =
1937					max(get_max_extent_size(entry),
1938					    *max_extent_size);
1939			}
1940			continue;
1941		}
1942
1943		*offset = tmp;
1944		*bytes = entry->bytes - align_off;
1945		return entry;
1946	}
1947out:
1948	return NULL;
1949}
1950
1951static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1952			   struct btrfs_free_space *info, u64 offset)
1953{
1954	info->offset = offset_to_bitmap(ctl, offset);
1955	info->bytes = 0;
1956	info->bitmap_extents = 0;
1957	INIT_LIST_HEAD(&info->list);
1958	link_free_space(ctl, info);
1959	ctl->total_bitmaps++;
1960	recalculate_thresholds(ctl);
 
1961}
1962
1963static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1964			struct btrfs_free_space *bitmap_info)
1965{
1966	/*
1967	 * Normally when this is called, the bitmap is completely empty. However,
1968	 * if we are blowing up the free space cache for one reason or another
1969	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1970	 * we may leave stats on the table.
1971	 */
1972	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1973		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1974			bitmap_info->bitmap_extents;
1975		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1976
1977	}
1978	unlink_free_space(ctl, bitmap_info);
1979	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1980	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1981	ctl->total_bitmaps--;
1982	recalculate_thresholds(ctl);
1983}
1984
1985static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1986			      struct btrfs_free_space *bitmap_info,
1987			      u64 *offset, u64 *bytes)
1988{
1989	u64 end;
1990	u64 search_start, search_bytes;
1991	int ret;
1992
1993again:
1994	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1995
1996	/*
1997	 * We need to search for bits in this bitmap.  We could only cover some
1998	 * of the extent in this bitmap thanks to how we add space, so we need
1999	 * to search for as much as it as we can and clear that amount, and then
2000	 * go searching for the next bit.
2001	 */
2002	search_start = *offset;
2003	search_bytes = ctl->unit;
2004	search_bytes = min(search_bytes, end - search_start + 1);
2005	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2006			    false);
2007	if (ret < 0 || search_start != *offset)
2008		return -EINVAL;
2009
2010	/* We may have found more bits than what we need */
2011	search_bytes = min(search_bytes, *bytes);
2012
2013	/* Cannot clear past the end of the bitmap */
2014	search_bytes = min(search_bytes, end - search_start + 1);
2015
2016	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2017	*offset += search_bytes;
2018	*bytes -= search_bytes;
2019
2020	if (*bytes) {
2021		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2022		if (!bitmap_info->bytes)
2023			free_bitmap(ctl, bitmap_info);
2024
2025		/*
2026		 * no entry after this bitmap, but we still have bytes to
2027		 * remove, so something has gone wrong.
2028		 */
2029		if (!next)
2030			return -EINVAL;
2031
2032		bitmap_info = rb_entry(next, struct btrfs_free_space,
2033				       offset_index);
2034
2035		/*
2036		 * if the next entry isn't a bitmap we need to return to let the
2037		 * extent stuff do its work.
2038		 */
2039		if (!bitmap_info->bitmap)
2040			return -EAGAIN;
2041
2042		/*
2043		 * Ok the next item is a bitmap, but it may not actually hold
2044		 * the information for the rest of this free space stuff, so
2045		 * look for it, and if we don't find it return so we can try
2046		 * everything over again.
2047		 */
2048		search_start = *offset;
2049		search_bytes = ctl->unit;
2050		ret = search_bitmap(ctl, bitmap_info, &search_start,
2051				    &search_bytes, false);
2052		if (ret < 0 || search_start != *offset)
2053			return -EAGAIN;
2054
2055		goto again;
2056	} else if (!bitmap_info->bytes)
2057		free_bitmap(ctl, bitmap_info);
2058
2059	return 0;
2060}
2061
2062static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2063			       struct btrfs_free_space *info, u64 offset,
2064			       u64 bytes, enum btrfs_trim_state trim_state)
2065{
2066	u64 bytes_to_set = 0;
2067	u64 end;
2068
2069	/*
2070	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2071	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2072	 */
2073	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2074		if (btrfs_free_space_trimmed(info)) {
2075			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2076				info->bitmap_extents;
2077			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2078		}
2079		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2080	}
2081
2082	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2083
2084	bytes_to_set = min(end - offset, bytes);
2085
2086	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2087
2088	/*
2089	 * We set some bytes, we have no idea what the max extent size is
2090	 * anymore.
2091	 */
2092	info->max_extent_size = 0;
2093
2094	return bytes_to_set;
2095
2096}
2097
2098static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2099		      struct btrfs_free_space *info)
2100{
2101	struct btrfs_block_group *block_group = ctl->private;
2102	struct btrfs_fs_info *fs_info = block_group->fs_info;
2103	bool forced = false;
2104
2105#ifdef CONFIG_BTRFS_DEBUG
2106	if (btrfs_should_fragment_free_space(block_group))
2107		forced = true;
2108#endif
2109
2110	/* This is a way to reclaim large regions from the bitmaps. */
2111	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2112		return false;
2113
2114	/*
2115	 * If we are below the extents threshold then we can add this as an
2116	 * extent, and don't have to deal with the bitmap
2117	 */
2118	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2119		/*
2120		 * If this block group has some small extents we don't want to
2121		 * use up all of our free slots in the cache with them, we want
2122		 * to reserve them to larger extents, however if we have plenty
2123		 * of cache left then go ahead an dadd them, no sense in adding
2124		 * the overhead of a bitmap if we don't have to.
2125		 */
2126		if (info->bytes <= fs_info->sectorsize * 8) {
2127			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2128				return false;
2129		} else {
2130			return false;
2131		}
2132	}
2133
2134	/*
2135	 * The original block groups from mkfs can be really small, like 8
2136	 * megabytes, so don't bother with a bitmap for those entries.  However
2137	 * some block groups can be smaller than what a bitmap would cover but
2138	 * are still large enough that they could overflow the 32k memory limit,
2139	 * so allow those block groups to still be allowed to have a bitmap
2140	 * entry.
2141	 */
2142	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2143		return false;
2144
2145	return true;
2146}
2147
2148static const struct btrfs_free_space_op free_space_op = {
 
2149	.use_bitmap		= use_bitmap,
2150};
2151
2152static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2153			      struct btrfs_free_space *info)
2154{
2155	struct btrfs_free_space *bitmap_info;
2156	struct btrfs_block_group *block_group = NULL;
2157	int added = 0;
2158	u64 bytes, offset, bytes_added;
2159	enum btrfs_trim_state trim_state;
2160	int ret;
2161
2162	bytes = info->bytes;
2163	offset = info->offset;
2164	trim_state = info->trim_state;
2165
2166	if (!ctl->op->use_bitmap(ctl, info))
2167		return 0;
2168
2169	if (ctl->op == &free_space_op)
2170		block_group = ctl->private;
2171again:
2172	/*
2173	 * Since we link bitmaps right into the cluster we need to see if we
2174	 * have a cluster here, and if so and it has our bitmap we need to add
2175	 * the free space to that bitmap.
2176	 */
2177	if (block_group && !list_empty(&block_group->cluster_list)) {
2178		struct btrfs_free_cluster *cluster;
2179		struct rb_node *node;
2180		struct btrfs_free_space *entry;
2181
2182		cluster = list_entry(block_group->cluster_list.next,
2183				     struct btrfs_free_cluster,
2184				     block_group_list);
2185		spin_lock(&cluster->lock);
2186		node = rb_first(&cluster->root);
2187		if (!node) {
2188			spin_unlock(&cluster->lock);
2189			goto no_cluster_bitmap;
2190		}
2191
2192		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2193		if (!entry->bitmap) {
2194			spin_unlock(&cluster->lock);
2195			goto no_cluster_bitmap;
2196		}
2197
2198		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2199			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2200							  bytes, trim_state);
2201			bytes -= bytes_added;
2202			offset += bytes_added;
2203		}
2204		spin_unlock(&cluster->lock);
2205		if (!bytes) {
2206			ret = 1;
2207			goto out;
2208		}
2209	}
2210
2211no_cluster_bitmap:
2212	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2213					 1, 0);
2214	if (!bitmap_info) {
2215		ASSERT(added == 0);
2216		goto new_bitmap;
2217	}
2218
2219	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2220					  trim_state);
2221	bytes -= bytes_added;
2222	offset += bytes_added;
2223	added = 0;
2224
2225	if (!bytes) {
2226		ret = 1;
2227		goto out;
2228	} else
2229		goto again;
2230
2231new_bitmap:
2232	if (info && info->bitmap) {
2233		add_new_bitmap(ctl, info, offset);
2234		added = 1;
2235		info = NULL;
2236		goto again;
2237	} else {
2238		spin_unlock(&ctl->tree_lock);
2239
2240		/* no pre-allocated info, allocate a new one */
2241		if (!info) {
2242			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2243						 GFP_NOFS);
2244			if (!info) {
2245				spin_lock(&ctl->tree_lock);
2246				ret = -ENOMEM;
2247				goto out;
2248			}
2249		}
2250
2251		/* allocate the bitmap */
2252		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2253						 GFP_NOFS);
2254		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2255		spin_lock(&ctl->tree_lock);
2256		if (!info->bitmap) {
2257			ret = -ENOMEM;
2258			goto out;
2259		}
2260		goto again;
2261	}
2262
2263out:
2264	if (info) {
2265		if (info->bitmap)
2266			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2267					info->bitmap);
2268		kmem_cache_free(btrfs_free_space_cachep, info);
2269	}
2270
2271	return ret;
2272}
2273
2274/*
2275 * Free space merging rules:
2276 *  1) Merge trimmed areas together
2277 *  2) Let untrimmed areas coalesce with trimmed areas
2278 *  3) Always pull neighboring regions from bitmaps
2279 *
2280 * The above rules are for when we merge free space based on btrfs_trim_state.
2281 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2282 * same reason: to promote larger extent regions which makes life easier for
2283 * find_free_extent().  Rule 2 enables coalescing based on the common path
2284 * being returning free space from btrfs_finish_extent_commit().  So when free
2285 * space is trimmed, it will prevent aggregating trimmed new region and
2286 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2287 * and provide find_free_extent() with the largest extents possible hoping for
2288 * the reuse path.
2289 */
2290static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2291			  struct btrfs_free_space *info, bool update_stat)
2292{
2293	struct btrfs_free_space *left_info = NULL;
2294	struct btrfs_free_space *right_info;
2295	bool merged = false;
2296	u64 offset = info->offset;
2297	u64 bytes = info->bytes;
2298	const bool is_trimmed = btrfs_free_space_trimmed(info);
2299
2300	/*
2301	 * first we want to see if there is free space adjacent to the range we
2302	 * are adding, if there is remove that struct and add a new one to
2303	 * cover the entire range
2304	 */
2305	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2306	if (right_info && rb_prev(&right_info->offset_index))
2307		left_info = rb_entry(rb_prev(&right_info->offset_index),
2308				     struct btrfs_free_space, offset_index);
2309	else if (!right_info)
2310		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2311
2312	/* See try_merge_free_space() comment. */
2313	if (right_info && !right_info->bitmap &&
2314	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2315		if (update_stat)
2316			unlink_free_space(ctl, right_info);
2317		else
2318			__unlink_free_space(ctl, right_info);
2319		info->bytes += right_info->bytes;
2320		kmem_cache_free(btrfs_free_space_cachep, right_info);
2321		merged = true;
2322	}
2323
2324	/* See try_merge_free_space() comment. */
2325	if (left_info && !left_info->bitmap &&
2326	    left_info->offset + left_info->bytes == offset &&
2327	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2328		if (update_stat)
2329			unlink_free_space(ctl, left_info);
2330		else
2331			__unlink_free_space(ctl, left_info);
2332		info->offset = left_info->offset;
2333		info->bytes += left_info->bytes;
2334		kmem_cache_free(btrfs_free_space_cachep, left_info);
2335		merged = true;
2336	}
2337
2338	return merged;
2339}
2340
2341static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2342				     struct btrfs_free_space *info,
2343				     bool update_stat)
2344{
2345	struct btrfs_free_space *bitmap;
2346	unsigned long i;
2347	unsigned long j;
2348	const u64 end = info->offset + info->bytes;
2349	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2350	u64 bytes;
2351
2352	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2353	if (!bitmap)
2354		return false;
2355
2356	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2357	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2358	if (j == i)
2359		return false;
2360	bytes = (j - i) * ctl->unit;
2361	info->bytes += bytes;
2362
2363	/* See try_merge_free_space() comment. */
2364	if (!btrfs_free_space_trimmed(bitmap))
2365		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2366
2367	if (update_stat)
2368		bitmap_clear_bits(ctl, bitmap, end, bytes);
2369	else
2370		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2371
2372	if (!bitmap->bytes)
2373		free_bitmap(ctl, bitmap);
2374
2375	return true;
2376}
2377
2378static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2379				       struct btrfs_free_space *info,
2380				       bool update_stat)
2381{
2382	struct btrfs_free_space *bitmap;
2383	u64 bitmap_offset;
2384	unsigned long i;
2385	unsigned long j;
2386	unsigned long prev_j;
2387	u64 bytes;
2388
2389	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2390	/* If we're on a boundary, try the previous logical bitmap. */
2391	if (bitmap_offset == info->offset) {
2392		if (info->offset == 0)
2393			return false;
2394		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2395	}
2396
2397	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2398	if (!bitmap)
2399		return false;
2400
2401	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2402	j = 0;
2403	prev_j = (unsigned long)-1;
2404	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2405		if (j > i)
2406			break;
2407		prev_j = j;
2408	}
2409	if (prev_j == i)
2410		return false;
2411
2412	if (prev_j == (unsigned long)-1)
2413		bytes = (i + 1) * ctl->unit;
2414	else
2415		bytes = (i - prev_j) * ctl->unit;
2416
2417	info->offset -= bytes;
2418	info->bytes += bytes;
2419
2420	/* See try_merge_free_space() comment. */
2421	if (!btrfs_free_space_trimmed(bitmap))
2422		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2423
2424	if (update_stat)
2425		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2426	else
2427		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2428
2429	if (!bitmap->bytes)
2430		free_bitmap(ctl, bitmap);
2431
2432	return true;
2433}
2434
2435/*
2436 * We prefer always to allocate from extent entries, both for clustered and
2437 * non-clustered allocation requests. So when attempting to add a new extent
2438 * entry, try to see if there's adjacent free space in bitmap entries, and if
2439 * there is, migrate that space from the bitmaps to the extent.
2440 * Like this we get better chances of satisfying space allocation requests
2441 * because we attempt to satisfy them based on a single cache entry, and never
2442 * on 2 or more entries - even if the entries represent a contiguous free space
2443 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2444 * ends).
2445 */
2446static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2447			      struct btrfs_free_space *info,
2448			      bool update_stat)
2449{
2450	/*
2451	 * Only work with disconnected entries, as we can change their offset,
2452	 * and must be extent entries.
2453	 */
2454	ASSERT(!info->bitmap);
2455	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2456
2457	if (ctl->total_bitmaps > 0) {
2458		bool stole_end;
2459		bool stole_front = false;
2460
2461		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2462		if (ctl->total_bitmaps > 0)
2463			stole_front = steal_from_bitmap_to_front(ctl, info,
2464								 update_stat);
2465
2466		if (stole_end || stole_front)
2467			try_merge_free_space(ctl, info, update_stat);
2468	}
2469}
2470
2471int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2472			   struct btrfs_free_space_ctl *ctl,
2473			   u64 offset, u64 bytes,
2474			   enum btrfs_trim_state trim_state)
2475{
2476	struct btrfs_block_group *block_group = ctl->private;
2477	struct btrfs_free_space *info;
2478	int ret = 0;
2479	u64 filter_bytes = bytes;
2480
2481	ASSERT(!btrfs_is_zoned(fs_info));
2482
2483	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2484	if (!info)
2485		return -ENOMEM;
2486
2487	info->offset = offset;
2488	info->bytes = bytes;
2489	info->trim_state = trim_state;
2490	RB_CLEAR_NODE(&info->offset_index);
2491
2492	spin_lock(&ctl->tree_lock);
2493
2494	if (try_merge_free_space(ctl, info, true))
2495		goto link;
2496
2497	/*
2498	 * There was no extent directly to the left or right of this new
2499	 * extent then we know we're going to have to allocate a new extent, so
2500	 * before we do that see if we need to drop this into a bitmap
2501	 */
2502	ret = insert_into_bitmap(ctl, info);
2503	if (ret < 0) {
2504		goto out;
2505	} else if (ret) {
2506		ret = 0;
2507		goto out;
2508	}
2509link:
2510	/*
2511	 * Only steal free space from adjacent bitmaps if we're sure we're not
2512	 * going to add the new free space to existing bitmap entries - because
2513	 * that would mean unnecessary work that would be reverted. Therefore
2514	 * attempt to steal space from bitmaps if we're adding an extent entry.
2515	 */
2516	steal_from_bitmap(ctl, info, true);
2517
2518	filter_bytes = max(filter_bytes, info->bytes);
2519
2520	ret = link_free_space(ctl, info);
2521	if (ret)
2522		kmem_cache_free(btrfs_free_space_cachep, info);
2523out:
2524	btrfs_discard_update_discardable(block_group);
2525	spin_unlock(&ctl->tree_lock);
2526
2527	if (ret) {
2528		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2529		ASSERT(ret != -EEXIST);
2530	}
2531
2532	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2533		btrfs_discard_check_filter(block_group, filter_bytes);
2534		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2535	}
2536
2537	return ret;
2538}
2539
2540static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2541					u64 bytenr, u64 size, bool used)
2542{
2543	struct btrfs_fs_info *fs_info = block_group->fs_info;
2544	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545	u64 offset = bytenr - block_group->start;
2546	u64 to_free, to_unusable;
2547
2548	spin_lock(&ctl->tree_lock);
2549	if (!used)
2550		to_free = size;
2551	else if (offset >= block_group->alloc_offset)
2552		to_free = size;
2553	else if (offset + size <= block_group->alloc_offset)
2554		to_free = 0;
2555	else
2556		to_free = offset + size - block_group->alloc_offset;
2557	to_unusable = size - to_free;
2558
2559	ctl->free_space += to_free;
2560	/*
2561	 * If the block group is read-only, we should account freed space into
2562	 * bytes_readonly.
2563	 */
2564	if (!block_group->ro)
2565		block_group->zone_unusable += to_unusable;
2566	spin_unlock(&ctl->tree_lock);
2567	if (!used) {
2568		spin_lock(&block_group->lock);
2569		block_group->alloc_offset -= size;
2570		spin_unlock(&block_group->lock);
2571	}
2572
2573	/* All the region is now unusable. Mark it as unused and reclaim */
2574	if (block_group->zone_unusable == block_group->length) {
2575		btrfs_mark_bg_unused(block_group);
2576	} else if (block_group->zone_unusable >=
2577		   div_factor_fine(block_group->length,
2578				   fs_info->bg_reclaim_threshold)) {
2579		btrfs_mark_bg_to_reclaim(block_group);
2580	}
2581
2582	return 0;
2583}
2584
2585int btrfs_add_free_space(struct btrfs_block_group *block_group,
2586			 u64 bytenr, u64 size)
2587{
2588	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2589
2590	if (btrfs_is_zoned(block_group->fs_info))
2591		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2592						    true);
2593
2594	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2595		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2596
2597	return __btrfs_add_free_space(block_group->fs_info,
2598				      block_group->free_space_ctl,
2599				      bytenr, size, trim_state);
2600}
2601
2602int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2603				u64 bytenr, u64 size)
2604{
2605	if (btrfs_is_zoned(block_group->fs_info))
2606		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2607						    false);
2608
2609	return btrfs_add_free_space(block_group, bytenr, size);
2610}
2611
2612/*
2613 * This is a subtle distinction because when adding free space back in general,
2614 * we want it to be added as untrimmed for async. But in the case where we add
2615 * it on loading of a block group, we want to consider it trimmed.
2616 */
2617int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2618				       u64 bytenr, u64 size)
2619{
2620	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2621
2622	if (btrfs_is_zoned(block_group->fs_info))
2623		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2624						    true);
2625
2626	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2627	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2628		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2629
2630	return __btrfs_add_free_space(block_group->fs_info,
2631				      block_group->free_space_ctl,
2632				      bytenr, size, trim_state);
2633}
2634
2635int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2636			    u64 offset, u64 bytes)
2637{
2638	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2639	struct btrfs_free_space *info;
2640	int ret;
2641	bool re_search = false;
2642
2643	if (btrfs_is_zoned(block_group->fs_info)) {
2644		/*
2645		 * This can happen with conventional zones when replaying log.
2646		 * Since the allocation info of tree-log nodes are not recorded
2647		 * to the extent-tree, calculate_alloc_pointer() failed to
2648		 * advance the allocation pointer after last allocated tree log
2649		 * node blocks.
2650		 *
2651		 * This function is called from
2652		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2653		 * Advance the pointer not to overwrite the tree-log nodes.
2654		 */
2655		if (block_group->start + block_group->alloc_offset <
2656		    offset + bytes) {
2657			block_group->alloc_offset =
2658				offset + bytes - block_group->start;
2659		}
2660		return 0;
2661	}
2662
2663	spin_lock(&ctl->tree_lock);
2664
2665again:
2666	ret = 0;
2667	if (!bytes)
2668		goto out_lock;
2669
2670	info = tree_search_offset(ctl, offset, 0, 0);
2671	if (!info) {
2672		/*
2673		 * oops didn't find an extent that matched the space we wanted
2674		 * to remove, look for a bitmap instead
2675		 */
2676		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2677					  1, 0);
2678		if (!info) {
2679			/*
2680			 * If we found a partial bit of our free space in a
2681			 * bitmap but then couldn't find the other part this may
2682			 * be a problem, so WARN about it.
2683			 */
2684			WARN_ON(re_search);
2685			goto out_lock;
2686		}
2687	}
2688
2689	re_search = false;
2690	if (!info->bitmap) {
2691		unlink_free_space(ctl, info);
2692		if (offset == info->offset) {
2693			u64 to_free = min(bytes, info->bytes);
2694
2695			info->bytes -= to_free;
2696			info->offset += to_free;
2697			if (info->bytes) {
2698				ret = link_free_space(ctl, info);
2699				WARN_ON(ret);
2700			} else {
2701				kmem_cache_free(btrfs_free_space_cachep, info);
2702			}
2703
2704			offset += to_free;
2705			bytes -= to_free;
2706			goto again;
2707		} else {
2708			u64 old_end = info->bytes + info->offset;
2709
2710			info->bytes = offset - info->offset;
2711			ret = link_free_space(ctl, info);
2712			WARN_ON(ret);
2713			if (ret)
2714				goto out_lock;
2715
2716			/* Not enough bytes in this entry to satisfy us */
2717			if (old_end < offset + bytes) {
2718				bytes -= old_end - offset;
2719				offset = old_end;
2720				goto again;
2721			} else if (old_end == offset + bytes) {
2722				/* all done */
2723				goto out_lock;
2724			}
2725			spin_unlock(&ctl->tree_lock);
2726
2727			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2728						     offset + bytes,
2729						     old_end - (offset + bytes),
2730						     info->trim_state);
2731			WARN_ON(ret);
2732			goto out;
2733		}
2734	}
2735
2736	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2737	if (ret == -EAGAIN) {
2738		re_search = true;
2739		goto again;
2740	}
2741out_lock:
2742	btrfs_discard_update_discardable(block_group);
2743	spin_unlock(&ctl->tree_lock);
2744out:
2745	return ret;
2746}
2747
2748void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2749			   u64 bytes)
2750{
2751	struct btrfs_fs_info *fs_info = block_group->fs_info;
2752	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2753	struct btrfs_free_space *info;
2754	struct rb_node *n;
2755	int count = 0;
2756
2757	/*
2758	 * Zoned btrfs does not use free space tree and cluster. Just print
2759	 * out the free space after the allocation offset.
2760	 */
2761	if (btrfs_is_zoned(fs_info)) {
2762		btrfs_info(fs_info, "free space %llu",
2763			   block_group->length - block_group->alloc_offset);
2764		return;
2765	}
2766
2767	spin_lock(&ctl->tree_lock);
2768	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2769		info = rb_entry(n, struct btrfs_free_space, offset_index);
2770		if (info->bytes >= bytes && !block_group->ro)
2771			count++;
2772		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2773			   info->offset, info->bytes,
2774		       (info->bitmap) ? "yes" : "no");
2775	}
2776	spin_unlock(&ctl->tree_lock);
2777	btrfs_info(fs_info, "block group has cluster?: %s",
2778	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2779	btrfs_info(fs_info,
2780		   "%d blocks of free space at or bigger than bytes is", count);
2781}
2782
2783void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2784			       struct btrfs_free_space_ctl *ctl)
2785{
2786	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2787
2788	spin_lock_init(&ctl->tree_lock);
2789	ctl->unit = fs_info->sectorsize;
2790	ctl->start = block_group->start;
2791	ctl->private = block_group;
2792	ctl->op = &free_space_op;
2793	INIT_LIST_HEAD(&ctl->trimming_ranges);
2794	mutex_init(&ctl->cache_writeout_mutex);
2795
2796	/*
2797	 * we only want to have 32k of ram per block group for keeping
2798	 * track of free space, and if we pass 1/2 of that we want to
2799	 * start converting things over to using bitmaps
2800	 */
2801	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2802}
2803
2804/*
2805 * for a given cluster, put all of its extents back into the free
2806 * space cache.  If the block group passed doesn't match the block group
2807 * pointed to by the cluster, someone else raced in and freed the
2808 * cluster already.  In that case, we just return without changing anything
2809 */
2810static void __btrfs_return_cluster_to_free_space(
2811			     struct btrfs_block_group *block_group,
 
2812			     struct btrfs_free_cluster *cluster)
2813{
2814	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2815	struct btrfs_free_space *entry;
2816	struct rb_node *node;
2817
2818	spin_lock(&cluster->lock);
2819	if (cluster->block_group != block_group) {
2820		spin_unlock(&cluster->lock);
2821		return;
2822	}
2823
2824	cluster->block_group = NULL;
2825	cluster->window_start = 0;
2826	list_del_init(&cluster->block_group_list);
2827
2828	node = rb_first(&cluster->root);
2829	while (node) {
2830		bool bitmap;
2831
2832		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2833		node = rb_next(&entry->offset_index);
2834		rb_erase(&entry->offset_index, &cluster->root);
2835		RB_CLEAR_NODE(&entry->offset_index);
2836
2837		bitmap = (entry->bitmap != NULL);
2838		if (!bitmap) {
2839			/* Merging treats extents as if they were new */
2840			if (!btrfs_free_space_trimmed(entry)) {
2841				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2842				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2843					entry->bytes;
2844			}
2845
2846			try_merge_free_space(ctl, entry, false);
2847			steal_from_bitmap(ctl, entry, false);
2848
2849			/* As we insert directly, update these statistics */
2850			if (!btrfs_free_space_trimmed(entry)) {
2851				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2852				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2853					entry->bytes;
2854			}
2855		}
2856		tree_insert_offset(&ctl->free_space_offset,
2857				   entry->offset, &entry->offset_index, bitmap);
2858	}
2859	cluster->root = RB_ROOT;
 
 
2860	spin_unlock(&cluster->lock);
2861	btrfs_put_block_group(block_group);
 
2862}
2863
2864static void __btrfs_remove_free_space_cache_locked(
2865				struct btrfs_free_space_ctl *ctl)
2866{
2867	struct btrfs_free_space *info;
2868	struct rb_node *node;
2869
2870	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2871		info = rb_entry(node, struct btrfs_free_space, offset_index);
2872		if (!info->bitmap) {
2873			unlink_free_space(ctl, info);
2874			kmem_cache_free(btrfs_free_space_cachep, info);
2875		} else {
2876			free_bitmap(ctl, info);
2877		}
2878
2879		cond_resched_lock(&ctl->tree_lock);
2880	}
2881}
2882
2883void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2884{
2885	spin_lock(&ctl->tree_lock);
2886	__btrfs_remove_free_space_cache_locked(ctl);
2887	if (ctl->private)
2888		btrfs_discard_update_discardable(ctl->private);
2889	spin_unlock(&ctl->tree_lock);
2890}
2891
2892void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2893{
2894	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2895	struct btrfs_free_cluster *cluster;
2896	struct list_head *head;
2897
2898	spin_lock(&ctl->tree_lock);
2899	while ((head = block_group->cluster_list.next) !=
2900	       &block_group->cluster_list) {
2901		cluster = list_entry(head, struct btrfs_free_cluster,
2902				     block_group_list);
2903
2904		WARN_ON(cluster->block_group != block_group);
2905		__btrfs_return_cluster_to_free_space(block_group, cluster);
2906
2907		cond_resched_lock(&ctl->tree_lock);
2908	}
2909	__btrfs_remove_free_space_cache_locked(ctl);
2910	btrfs_discard_update_discardable(block_group);
2911	spin_unlock(&ctl->tree_lock);
2912
2913}
2914
2915/**
2916 * btrfs_is_free_space_trimmed - see if everything is trimmed
2917 * @block_group: block_group of interest
2918 *
2919 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2920 */
2921bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2922{
2923	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924	struct btrfs_free_space *info;
2925	struct rb_node *node;
2926	bool ret = true;
2927
2928	spin_lock(&ctl->tree_lock);
2929	node = rb_first(&ctl->free_space_offset);
2930
2931	while (node) {
2932		info = rb_entry(node, struct btrfs_free_space, offset_index);
2933
2934		if (!btrfs_free_space_trimmed(info)) {
2935			ret = false;
2936			break;
2937		}
2938
2939		node = rb_next(node);
2940	}
2941
2942	spin_unlock(&ctl->tree_lock);
2943	return ret;
2944}
2945
2946u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2947			       u64 offset, u64 bytes, u64 empty_size,
2948			       u64 *max_extent_size)
2949{
2950	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2951	struct btrfs_discard_ctl *discard_ctl =
2952					&block_group->fs_info->discard_ctl;
2953	struct btrfs_free_space *entry = NULL;
2954	u64 bytes_search = bytes + empty_size;
2955	u64 ret = 0;
2956	u64 align_gap = 0;
2957	u64 align_gap_len = 0;
2958	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2959
2960	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2961
2962	spin_lock(&ctl->tree_lock);
2963	entry = find_free_space(ctl, &offset, &bytes_search,
2964				block_group->full_stripe_len, max_extent_size);
2965	if (!entry)
2966		goto out;
2967
2968	ret = offset;
2969	if (entry->bitmap) {
2970		bitmap_clear_bits(ctl, entry, offset, bytes);
2971
2972		if (!btrfs_free_space_trimmed(entry))
2973			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2974
2975		if (!entry->bytes)
2976			free_bitmap(ctl, entry);
2977	} else {
2978		unlink_free_space(ctl, entry);
2979		align_gap_len = offset - entry->offset;
2980		align_gap = entry->offset;
2981		align_gap_trim_state = entry->trim_state;
2982
2983		if (!btrfs_free_space_trimmed(entry))
2984			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2985
2986		entry->offset = offset + bytes;
2987		WARN_ON(entry->bytes < bytes + align_gap_len);
2988
2989		entry->bytes -= bytes + align_gap_len;
2990		if (!entry->bytes)
2991			kmem_cache_free(btrfs_free_space_cachep, entry);
2992		else
2993			link_free_space(ctl, entry);
2994	}
2995out:
2996	btrfs_discard_update_discardable(block_group);
2997	spin_unlock(&ctl->tree_lock);
2998
2999	if (align_gap_len)
3000		__btrfs_add_free_space(block_group->fs_info, ctl,
3001				       align_gap, align_gap_len,
3002				       align_gap_trim_state);
3003	return ret;
3004}
3005
3006/*
3007 * given a cluster, put all of its extents back into the free space
3008 * cache.  If a block group is passed, this function will only free
3009 * a cluster that belongs to the passed block group.
3010 *
3011 * Otherwise, it'll get a reference on the block group pointed to by the
3012 * cluster and remove the cluster from it.
3013 */
3014void btrfs_return_cluster_to_free_space(
3015			       struct btrfs_block_group *block_group,
3016			       struct btrfs_free_cluster *cluster)
3017{
3018	struct btrfs_free_space_ctl *ctl;
 
3019
3020	/* first, get a safe pointer to the block group */
3021	spin_lock(&cluster->lock);
3022	if (!block_group) {
3023		block_group = cluster->block_group;
3024		if (!block_group) {
3025			spin_unlock(&cluster->lock);
3026			return;
3027		}
3028	} else if (cluster->block_group != block_group) {
3029		/* someone else has already freed it don't redo their work */
3030		spin_unlock(&cluster->lock);
3031		return;
3032	}
3033	btrfs_get_block_group(block_group);
3034	spin_unlock(&cluster->lock);
3035
3036	ctl = block_group->free_space_ctl;
3037
3038	/* now return any extents the cluster had on it */
3039	spin_lock(&ctl->tree_lock);
3040	__btrfs_return_cluster_to_free_space(block_group, cluster);
3041	spin_unlock(&ctl->tree_lock);
3042
3043	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3044
3045	/* finally drop our ref */
3046	btrfs_put_block_group(block_group);
 
3047}
3048
3049static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3050				   struct btrfs_free_cluster *cluster,
3051				   struct btrfs_free_space *entry,
3052				   u64 bytes, u64 min_start,
3053				   u64 *max_extent_size)
3054{
3055	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3056	int err;
3057	u64 search_start = cluster->window_start;
3058	u64 search_bytes = bytes;
3059	u64 ret = 0;
3060
3061	search_start = min_start;
3062	search_bytes = bytes;
3063
3064	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3065	if (err) {
3066		*max_extent_size = max(get_max_extent_size(entry),
3067				       *max_extent_size);
3068		return 0;
3069	}
3070
3071	ret = search_start;
3072	__bitmap_clear_bits(ctl, entry, ret, bytes);
3073
3074	return ret;
3075}
3076
3077/*
3078 * given a cluster, try to allocate 'bytes' from it, returns 0
3079 * if it couldn't find anything suitably large, or a logical disk offset
3080 * if things worked out
3081 */
3082u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3083			     struct btrfs_free_cluster *cluster, u64 bytes,
3084			     u64 min_start, u64 *max_extent_size)
3085{
3086	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087	struct btrfs_discard_ctl *discard_ctl =
3088					&block_group->fs_info->discard_ctl;
3089	struct btrfs_free_space *entry = NULL;
3090	struct rb_node *node;
3091	u64 ret = 0;
3092
3093	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3094
3095	spin_lock(&cluster->lock);
3096	if (bytes > cluster->max_size)
3097		goto out;
3098
3099	if (cluster->block_group != block_group)
3100		goto out;
3101
3102	node = rb_first(&cluster->root);
3103	if (!node)
3104		goto out;
3105
3106	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3107	while (1) {
3108		if (entry->bytes < bytes)
3109			*max_extent_size = max(get_max_extent_size(entry),
3110					       *max_extent_size);
3111
3112		if (entry->bytes < bytes ||
3113		    (!entry->bitmap && entry->offset < min_start)) {
3114			node = rb_next(&entry->offset_index);
3115			if (!node)
3116				break;
3117			entry = rb_entry(node, struct btrfs_free_space,
3118					 offset_index);
3119			continue;
3120		}
3121
3122		if (entry->bitmap) {
3123			ret = btrfs_alloc_from_bitmap(block_group,
3124						      cluster, entry, bytes,
3125						      cluster->window_start,
3126						      max_extent_size);
3127			if (ret == 0) {
3128				node = rb_next(&entry->offset_index);
3129				if (!node)
3130					break;
3131				entry = rb_entry(node, struct btrfs_free_space,
3132						 offset_index);
3133				continue;
3134			}
3135			cluster->window_start += bytes;
3136		} else {
3137			ret = entry->offset;
3138
3139			entry->offset += bytes;
3140			entry->bytes -= bytes;
3141		}
3142
 
 
3143		break;
3144	}
3145out:
3146	spin_unlock(&cluster->lock);
3147
3148	if (!ret)
3149		return 0;
3150
3151	spin_lock(&ctl->tree_lock);
3152
3153	if (!btrfs_free_space_trimmed(entry))
3154		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3155
3156	ctl->free_space -= bytes;
3157	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3158		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3159
3160	spin_lock(&cluster->lock);
3161	if (entry->bytes == 0) {
3162		rb_erase(&entry->offset_index, &cluster->root);
3163		ctl->free_extents--;
3164		if (entry->bitmap) {
3165			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3166					entry->bitmap);
3167			ctl->total_bitmaps--;
3168			recalculate_thresholds(ctl);
3169		} else if (!btrfs_free_space_trimmed(entry)) {
3170			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3171		}
3172		kmem_cache_free(btrfs_free_space_cachep, entry);
3173	}
3174
3175	spin_unlock(&cluster->lock);
3176	spin_unlock(&ctl->tree_lock);
3177
3178	return ret;
3179}
3180
3181static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3182				struct btrfs_free_space *entry,
3183				struct btrfs_free_cluster *cluster,
3184				u64 offset, u64 bytes,
3185				u64 cont1_bytes, u64 min_bytes)
3186{
3187	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3188	unsigned long next_zero;
3189	unsigned long i;
3190	unsigned long want_bits;
3191	unsigned long min_bits;
3192	unsigned long found_bits;
3193	unsigned long max_bits = 0;
3194	unsigned long start = 0;
3195	unsigned long total_found = 0;
3196	int ret;
3197
3198	i = offset_to_bit(entry->offset, ctl->unit,
3199			  max_t(u64, offset, entry->offset));
3200	want_bits = bytes_to_bits(bytes, ctl->unit);
3201	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3202
3203	/*
3204	 * Don't bother looking for a cluster in this bitmap if it's heavily
3205	 * fragmented.
3206	 */
3207	if (entry->max_extent_size &&
3208	    entry->max_extent_size < cont1_bytes)
3209		return -ENOSPC;
3210again:
3211	found_bits = 0;
3212	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3213		next_zero = find_next_zero_bit(entry->bitmap,
3214					       BITS_PER_BITMAP, i);
3215		if (next_zero - i >= min_bits) {
3216			found_bits = next_zero - i;
3217			if (found_bits > max_bits)
3218				max_bits = found_bits;
3219			break;
3220		}
3221		if (next_zero - i > max_bits)
3222			max_bits = next_zero - i;
3223		i = next_zero;
3224	}
3225
3226	if (!found_bits) {
3227		entry->max_extent_size = (u64)max_bits * ctl->unit;
3228		return -ENOSPC;
3229	}
3230
3231	if (!total_found) {
3232		start = i;
3233		cluster->max_size = 0;
3234	}
3235
3236	total_found += found_bits;
3237
3238	if (cluster->max_size < found_bits * ctl->unit)
3239		cluster->max_size = found_bits * ctl->unit;
3240
3241	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3242		i = next_zero + 1;
3243		goto again;
3244	}
3245
3246	cluster->window_start = start * ctl->unit + entry->offset;
3247	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3248	ret = tree_insert_offset(&cluster->root, entry->offset,
3249				 &entry->offset_index, 1);
3250	ASSERT(!ret); /* -EEXIST; Logic error */
3251
3252	trace_btrfs_setup_cluster(block_group, cluster,
3253				  total_found * ctl->unit, 1);
3254	return 0;
3255}
3256
3257/*
3258 * This searches the block group for just extents to fill the cluster with.
3259 * Try to find a cluster with at least bytes total bytes, at least one
3260 * extent of cont1_bytes, and other clusters of at least min_bytes.
3261 */
3262static noinline int
3263setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3264			struct btrfs_free_cluster *cluster,
3265			struct list_head *bitmaps, u64 offset, u64 bytes,
3266			u64 cont1_bytes, u64 min_bytes)
3267{
3268	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3269	struct btrfs_free_space *first = NULL;
3270	struct btrfs_free_space *entry = NULL;
3271	struct btrfs_free_space *last;
3272	struct rb_node *node;
3273	u64 window_free;
3274	u64 max_extent;
3275	u64 total_size = 0;
3276
3277	entry = tree_search_offset(ctl, offset, 0, 1);
3278	if (!entry)
3279		return -ENOSPC;
3280
3281	/*
3282	 * We don't want bitmaps, so just move along until we find a normal
3283	 * extent entry.
3284	 */
3285	while (entry->bitmap || entry->bytes < min_bytes) {
3286		if (entry->bitmap && list_empty(&entry->list))
3287			list_add_tail(&entry->list, bitmaps);
3288		node = rb_next(&entry->offset_index);
3289		if (!node)
3290			return -ENOSPC;
3291		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3292	}
3293
3294	window_free = entry->bytes;
3295	max_extent = entry->bytes;
3296	first = entry;
3297	last = entry;
3298
3299	for (node = rb_next(&entry->offset_index); node;
3300	     node = rb_next(&entry->offset_index)) {
3301		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3302
3303		if (entry->bitmap) {
3304			if (list_empty(&entry->list))
3305				list_add_tail(&entry->list, bitmaps);
3306			continue;
3307		}
3308
3309		if (entry->bytes < min_bytes)
3310			continue;
3311
3312		last = entry;
3313		window_free += entry->bytes;
3314		if (entry->bytes > max_extent)
3315			max_extent = entry->bytes;
3316	}
3317
3318	if (window_free < bytes || max_extent < cont1_bytes)
3319		return -ENOSPC;
3320
3321	cluster->window_start = first->offset;
3322
3323	node = &first->offset_index;
3324
3325	/*
3326	 * now we've found our entries, pull them out of the free space
3327	 * cache and put them into the cluster rbtree
3328	 */
3329	do {
3330		int ret;
3331
3332		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3333		node = rb_next(&entry->offset_index);
3334		if (entry->bitmap || entry->bytes < min_bytes)
3335			continue;
3336
3337		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3338		ret = tree_insert_offset(&cluster->root, entry->offset,
3339					 &entry->offset_index, 0);
3340		total_size += entry->bytes;
3341		ASSERT(!ret); /* -EEXIST; Logic error */
3342	} while (node && entry != last);
3343
3344	cluster->max_size = max_extent;
3345	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3346	return 0;
3347}
3348
3349/*
3350 * This specifically looks for bitmaps that may work in the cluster, we assume
3351 * that we have already failed to find extents that will work.
3352 */
3353static noinline int
3354setup_cluster_bitmap(struct btrfs_block_group *block_group,
3355		     struct btrfs_free_cluster *cluster,
3356		     struct list_head *bitmaps, u64 offset, u64 bytes,
3357		     u64 cont1_bytes, u64 min_bytes)
3358{
3359	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3360	struct btrfs_free_space *entry = NULL;
3361	int ret = -ENOSPC;
3362	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3363
3364	if (ctl->total_bitmaps == 0)
3365		return -ENOSPC;
3366
3367	/*
3368	 * The bitmap that covers offset won't be in the list unless offset
3369	 * is just its start offset.
3370	 */
3371	if (!list_empty(bitmaps))
3372		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3373
3374	if (!entry || entry->offset != bitmap_offset) {
3375		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3376		if (entry && list_empty(&entry->list))
3377			list_add(&entry->list, bitmaps);
3378	}
3379
3380	list_for_each_entry(entry, bitmaps, list) {
3381		if (entry->bytes < bytes)
3382			continue;
3383		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3384					   bytes, cont1_bytes, min_bytes);
3385		if (!ret)
3386			return 0;
3387	}
3388
3389	/*
3390	 * The bitmaps list has all the bitmaps that record free space
3391	 * starting after offset, so no more search is required.
3392	 */
3393	return -ENOSPC;
3394}
3395
3396/*
3397 * here we try to find a cluster of blocks in a block group.  The goal
3398 * is to find at least bytes+empty_size.
3399 * We might not find them all in one contiguous area.
3400 *
3401 * returns zero and sets up cluster if things worked out, otherwise
3402 * it returns -enospc
3403 */
3404int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
 
3405			     struct btrfs_free_cluster *cluster,
3406			     u64 offset, u64 bytes, u64 empty_size)
3407{
3408	struct btrfs_fs_info *fs_info = block_group->fs_info;
3409	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3410	struct btrfs_free_space *entry, *tmp;
3411	LIST_HEAD(bitmaps);
3412	u64 min_bytes;
3413	u64 cont1_bytes;
3414	int ret;
3415
3416	/*
3417	 * Choose the minimum extent size we'll require for this
3418	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3419	 * For metadata, allow allocates with smaller extents.  For
3420	 * data, keep it dense.
3421	 */
3422	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3423		cont1_bytes = min_bytes = bytes + empty_size;
3424	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3425		cont1_bytes = bytes;
3426		min_bytes = fs_info->sectorsize;
3427	} else {
3428		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3429		min_bytes = fs_info->sectorsize;
3430	}
3431
3432	spin_lock(&ctl->tree_lock);
3433
3434	/*
3435	 * If we know we don't have enough space to make a cluster don't even
3436	 * bother doing all the work to try and find one.
3437	 */
3438	if (ctl->free_space < bytes) {
3439		spin_unlock(&ctl->tree_lock);
3440		return -ENOSPC;
3441	}
3442
3443	spin_lock(&cluster->lock);
3444
3445	/* someone already found a cluster, hooray */
3446	if (cluster->block_group) {
3447		ret = 0;
3448		goto out;
3449	}
3450
3451	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3452				 min_bytes);
3453
3454	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3455				      bytes + empty_size,
3456				      cont1_bytes, min_bytes);
3457	if (ret)
3458		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3459					   offset, bytes + empty_size,
3460					   cont1_bytes, min_bytes);
3461
3462	/* Clear our temporary list */
3463	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3464		list_del_init(&entry->list);
3465
3466	if (!ret) {
3467		btrfs_get_block_group(block_group);
3468		list_add_tail(&cluster->block_group_list,
3469			      &block_group->cluster_list);
3470		cluster->block_group = block_group;
3471	} else {
3472		trace_btrfs_failed_cluster_setup(block_group);
3473	}
3474out:
3475	spin_unlock(&cluster->lock);
3476	spin_unlock(&ctl->tree_lock);
3477
3478	return ret;
3479}
3480
3481/*
3482 * simple code to zero out a cluster
3483 */
3484void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3485{
3486	spin_lock_init(&cluster->lock);
3487	spin_lock_init(&cluster->refill_lock);
3488	cluster->root = RB_ROOT;
3489	cluster->max_size = 0;
3490	cluster->fragmented = false;
3491	INIT_LIST_HEAD(&cluster->block_group_list);
3492	cluster->block_group = NULL;
3493}
3494
3495static int do_trimming(struct btrfs_block_group *block_group,
3496		       u64 *total_trimmed, u64 start, u64 bytes,
3497		       u64 reserved_start, u64 reserved_bytes,
3498		       enum btrfs_trim_state reserved_trim_state,
3499		       struct btrfs_trim_range *trim_entry)
3500{
3501	struct btrfs_space_info *space_info = block_group->space_info;
3502	struct btrfs_fs_info *fs_info = block_group->fs_info;
3503	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3504	int ret;
3505	int update = 0;
3506	const u64 end = start + bytes;
3507	const u64 reserved_end = reserved_start + reserved_bytes;
3508	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3509	u64 trimmed = 0;
3510
3511	spin_lock(&space_info->lock);
3512	spin_lock(&block_group->lock);
3513	if (!block_group->ro) {
3514		block_group->reserved += reserved_bytes;
3515		space_info->bytes_reserved += reserved_bytes;
3516		update = 1;
3517	}
3518	spin_unlock(&block_group->lock);
3519	spin_unlock(&space_info->lock);
3520
3521	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3522	if (!ret) {
3523		*total_trimmed += trimmed;
3524		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3525	}
3526
3527	mutex_lock(&ctl->cache_writeout_mutex);
3528	if (reserved_start < start)
3529		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3530				       start - reserved_start,
3531				       reserved_trim_state);
3532	if (start + bytes < reserved_start + reserved_bytes)
3533		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3534				       reserved_trim_state);
3535	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3536	list_del(&trim_entry->list);
3537	mutex_unlock(&ctl->cache_writeout_mutex);
3538
3539	if (update) {
3540		spin_lock(&space_info->lock);
3541		spin_lock(&block_group->lock);
3542		if (block_group->ro)
3543			space_info->bytes_readonly += reserved_bytes;
3544		block_group->reserved -= reserved_bytes;
3545		space_info->bytes_reserved -= reserved_bytes;
3546		spin_unlock(&block_group->lock);
3547		spin_unlock(&space_info->lock);
 
3548	}
3549
3550	return ret;
3551}
3552
3553/*
3554 * If @async is set, then we will trim 1 region and return.
3555 */
3556static int trim_no_bitmap(struct btrfs_block_group *block_group,
3557			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3558			  bool async)
3559{
3560	struct btrfs_discard_ctl *discard_ctl =
3561					&block_group->fs_info->discard_ctl;
3562	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563	struct btrfs_free_space *entry;
3564	struct rb_node *node;
3565	int ret = 0;
3566	u64 extent_start;
3567	u64 extent_bytes;
3568	enum btrfs_trim_state extent_trim_state;
3569	u64 bytes;
3570	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3571
3572	while (start < end) {
3573		struct btrfs_trim_range trim_entry;
3574
3575		mutex_lock(&ctl->cache_writeout_mutex);
3576		spin_lock(&ctl->tree_lock);
3577
3578		if (ctl->free_space < minlen)
3579			goto out_unlock;
 
 
 
3580
3581		entry = tree_search_offset(ctl, start, 0, 1);
3582		if (!entry)
3583			goto out_unlock;
 
 
 
3584
3585		/* Skip bitmaps and if async, already trimmed entries */
3586		while (entry->bitmap ||
3587		       (async && btrfs_free_space_trimmed(entry))) {
3588			node = rb_next(&entry->offset_index);
3589			if (!node)
3590				goto out_unlock;
 
 
 
3591			entry = rb_entry(node, struct btrfs_free_space,
3592					 offset_index);
3593		}
3594
3595		if (entry->offset >= end)
3596			goto out_unlock;
 
 
 
3597
3598		extent_start = entry->offset;
3599		extent_bytes = entry->bytes;
3600		extent_trim_state = entry->trim_state;
3601		if (async) {
3602			start = entry->offset;
3603			bytes = entry->bytes;
3604			if (bytes < minlen) {
3605				spin_unlock(&ctl->tree_lock);
3606				mutex_unlock(&ctl->cache_writeout_mutex);
3607				goto next;
3608			}
3609			unlink_free_space(ctl, entry);
3610			/*
3611			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3612			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3613			 * X when we come back around.  So trim it now.
3614			 */
3615			if (max_discard_size &&
3616			    bytes >= (max_discard_size +
3617				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3618				bytes = max_discard_size;
3619				extent_bytes = max_discard_size;
3620				entry->offset += max_discard_size;
3621				entry->bytes -= max_discard_size;
3622				link_free_space(ctl, entry);
3623			} else {
3624				kmem_cache_free(btrfs_free_space_cachep, entry);
3625			}
3626		} else {
3627			start = max(start, extent_start);
3628			bytes = min(extent_start + extent_bytes, end) - start;
3629			if (bytes < minlen) {
3630				spin_unlock(&ctl->tree_lock);
3631				mutex_unlock(&ctl->cache_writeout_mutex);
3632				goto next;
3633			}
3634
3635			unlink_free_space(ctl, entry);
3636			kmem_cache_free(btrfs_free_space_cachep, entry);
3637		}
3638
 
 
 
3639		spin_unlock(&ctl->tree_lock);
3640		trim_entry.start = extent_start;
3641		trim_entry.bytes = extent_bytes;
3642		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3643		mutex_unlock(&ctl->cache_writeout_mutex);
3644
3645		ret = do_trimming(block_group, total_trimmed, start, bytes,
3646				  extent_start, extent_bytes, extent_trim_state,
3647				  &trim_entry);
3648		if (ret) {
3649			block_group->discard_cursor = start + bytes;
3650			break;
3651		}
3652next:
3653		start += bytes;
3654		block_group->discard_cursor = start;
3655		if (async && *total_trimmed)
3656			break;
3657
3658		if (fatal_signal_pending(current)) {
3659			ret = -ERESTARTSYS;
3660			break;
3661		}
3662
3663		cond_resched();
3664	}
3665
3666	return ret;
3667
3668out_unlock:
3669	block_group->discard_cursor = btrfs_block_group_end(block_group);
3670	spin_unlock(&ctl->tree_lock);
3671	mutex_unlock(&ctl->cache_writeout_mutex);
3672
3673	return ret;
3674}
3675
3676/*
3677 * If we break out of trimming a bitmap prematurely, we should reset the
3678 * trimming bit.  In a rather contrieved case, it's possible to race here so
3679 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3680 *
3681 * start = start of bitmap
3682 * end = near end of bitmap
3683 *
3684 * Thread 1:			Thread 2:
3685 * trim_bitmaps(start)
3686 *				trim_bitmaps(end)
3687 *				end_trimming_bitmap()
3688 * reset_trimming_bitmap()
3689 */
3690static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3691{
3692	struct btrfs_free_space *entry;
3693
3694	spin_lock(&ctl->tree_lock);
3695	entry = tree_search_offset(ctl, offset, 1, 0);
3696	if (entry) {
3697		if (btrfs_free_space_trimmed(entry)) {
3698			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3699				entry->bitmap_extents;
3700			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3701		}
3702		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3703	}
3704
3705	spin_unlock(&ctl->tree_lock);
3706}
3707
3708static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3709				struct btrfs_free_space *entry)
3710{
3711	if (btrfs_free_space_trimming_bitmap(entry)) {
3712		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3713		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3714			entry->bitmap_extents;
3715		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3716	}
3717}
3718
3719/*
3720 * If @async is set, then we will trim 1 region and return.
3721 */
3722static int trim_bitmaps(struct btrfs_block_group *block_group,
3723			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3724			u64 maxlen, bool async)
3725{
3726	struct btrfs_discard_ctl *discard_ctl =
3727					&block_group->fs_info->discard_ctl;
3728	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3729	struct btrfs_free_space *entry;
3730	int ret = 0;
3731	int ret2;
3732	u64 bytes;
3733	u64 offset = offset_to_bitmap(ctl, start);
3734	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3735
3736	while (offset < end) {
3737		bool next_bitmap = false;
3738		struct btrfs_trim_range trim_entry;
3739
3740		mutex_lock(&ctl->cache_writeout_mutex);
3741		spin_lock(&ctl->tree_lock);
3742
3743		if (ctl->free_space < minlen) {
3744			block_group->discard_cursor =
3745				btrfs_block_group_end(block_group);
3746			spin_unlock(&ctl->tree_lock);
3747			mutex_unlock(&ctl->cache_writeout_mutex);
3748			break;
3749		}
3750
3751		entry = tree_search_offset(ctl, offset, 1, 0);
3752		/*
3753		 * Bitmaps are marked trimmed lossily now to prevent constant
3754		 * discarding of the same bitmap (the reason why we are bound
3755		 * by the filters).  So, retrim the block group bitmaps when we
3756		 * are preparing to punt to the unused_bgs list.  This uses
3757		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3758		 * which is the only discard index which sets minlen to 0.
3759		 */
3760		if (!entry || (async && minlen && start == offset &&
3761			       btrfs_free_space_trimmed(entry))) {
3762			spin_unlock(&ctl->tree_lock);
3763			mutex_unlock(&ctl->cache_writeout_mutex);
3764			next_bitmap = true;
3765			goto next;
3766		}
3767
3768		/*
3769		 * Async discard bitmap trimming begins at by setting the start
3770		 * to be key.objectid and the offset_to_bitmap() aligns to the
3771		 * start of the bitmap.  This lets us know we are fully
3772		 * scanning the bitmap rather than only some portion of it.
3773		 */
3774		if (start == offset)
3775			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3776
3777		bytes = minlen;
3778		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3779		if (ret2 || start >= end) {
3780			/*
3781			 * We lossily consider a bitmap trimmed if we only skip
3782			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3783			 */
3784			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3785				end_trimming_bitmap(ctl, entry);
3786			else
3787				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3788			spin_unlock(&ctl->tree_lock);
3789			mutex_unlock(&ctl->cache_writeout_mutex);
3790			next_bitmap = true;
3791			goto next;
3792		}
3793
3794		/*
3795		 * We already trimmed a region, but are using the locking above
3796		 * to reset the trim_state.
3797		 */
3798		if (async && *total_trimmed) {
3799			spin_unlock(&ctl->tree_lock);
3800			mutex_unlock(&ctl->cache_writeout_mutex);
3801			goto out;
3802		}
3803
3804		bytes = min(bytes, end - start);
3805		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3806			spin_unlock(&ctl->tree_lock);
3807			mutex_unlock(&ctl->cache_writeout_mutex);
3808			goto next;
3809		}
3810
3811		/*
3812		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3813		 * If X < @minlen, we won't trim X when we come back around.
3814		 * So trim it now.  We differ here from trimming extents as we
3815		 * don't keep individual state per bit.
3816		 */
3817		if (async &&
3818		    max_discard_size &&
3819		    bytes > (max_discard_size + minlen))
3820			bytes = max_discard_size;
3821
3822		bitmap_clear_bits(ctl, entry, start, bytes);
3823		if (entry->bytes == 0)
3824			free_bitmap(ctl, entry);
3825
3826		spin_unlock(&ctl->tree_lock);
3827		trim_entry.start = start;
3828		trim_entry.bytes = bytes;
3829		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3830		mutex_unlock(&ctl->cache_writeout_mutex);
3831
3832		ret = do_trimming(block_group, total_trimmed, start, bytes,
3833				  start, bytes, 0, &trim_entry);
3834		if (ret) {
3835			reset_trimming_bitmap(ctl, offset);
3836			block_group->discard_cursor =
3837				btrfs_block_group_end(block_group);
3838			break;
3839		}
3840next:
3841		if (next_bitmap) {
3842			offset += BITS_PER_BITMAP * ctl->unit;
3843			start = offset;
3844		} else {
3845			start += bytes;
 
 
3846		}
3847		block_group->discard_cursor = start;
3848
3849		if (fatal_signal_pending(current)) {
3850			if (start != offset)
3851				reset_trimming_bitmap(ctl, offset);
3852			ret = -ERESTARTSYS;
3853			break;
3854		}
3855
3856		cond_resched();
3857	}
3858
3859	if (offset >= end)
3860		block_group->discard_cursor = end;
3861
3862out:
3863	return ret;
3864}
3865
3866int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3867			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3868{
3869	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3870	int ret;
3871	u64 rem = 0;
3872
3873	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3874
3875	*trimmed = 0;
 
 
 
 
 
3876
3877	spin_lock(&block_group->lock);
3878	if (block_group->removed) {
3879		spin_unlock(&block_group->lock);
3880		return 0;
3881	}
3882	btrfs_freeze_block_group(block_group);
3883	spin_unlock(&block_group->lock);
3884
3885	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3886	if (ret)
3887		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3888
3889	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3890	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3891	/* If we ended in the middle of a bitmap, reset the trimming flag */
3892	if (rem)
3893		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3894out:
3895	btrfs_unfreeze_block_group(block_group);
3896	return ret;
3897}
3898
3899int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3900				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3901				   bool async)
3902{
3903	int ret;
3904
3905	*trimmed = 0;
3906
3907	spin_lock(&block_group->lock);
3908	if (block_group->removed) {
3909		spin_unlock(&block_group->lock);
3910		return 0;
3911	}
3912	btrfs_freeze_block_group(block_group);
3913	spin_unlock(&block_group->lock);
3914
3915	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3916	btrfs_unfreeze_block_group(block_group);
 
3917
 
 
 
3918	return ret;
3919}
3920
3921int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3922				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3923				   u64 maxlen, bool async)
 
 
 
 
 
3924{
3925	int ret;
 
 
3926
3927	*trimmed = 0;
3928
3929	spin_lock(&block_group->lock);
3930	if (block_group->removed) {
3931		spin_unlock(&block_group->lock);
3932		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3933	}
3934	btrfs_freeze_block_group(block_group);
3935	spin_unlock(&block_group->lock);
3936
3937	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3938			   async);
3939
3940	btrfs_unfreeze_block_group(block_group);
 
 
 
3941
3942	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3943}
3944
3945bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
3946{
3947	return btrfs_super_cache_generation(fs_info->super_copy);
 
3948}
3949
3950static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3951				       struct btrfs_trans_handle *trans)
3952{
3953	struct btrfs_block_group *block_group;
3954	struct rb_node *node;
 
3955	int ret = 0;
 
3956
3957	btrfs_info(fs_info, "cleaning free space cache v1");
 
3958
3959	node = rb_first(&fs_info->block_group_cache_tree);
3960	while (node) {
3961		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3962		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3963		if (ret)
3964			goto out;
3965		node = rb_next(node);
3966	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967out:
 
3968	return ret;
3969}
3970
3971int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
 
 
 
3972{
3973	struct btrfs_trans_handle *trans;
 
3974	int ret;
 
 
3975
3976	/*
3977	 * update_super_roots will appropriately set or unset
3978	 * super_copy->cache_generation based on SPACE_CACHE and
3979	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3980	 * transaction commit whether we are enabling space cache v1 and don't
3981	 * have any other work to do, or are disabling it and removing free
3982	 * space inodes.
3983	 */
3984	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3985	if (IS_ERR(trans))
3986		return PTR_ERR(trans);
3987
3988	if (!active) {
3989		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3990		ret = cleanup_free_space_cache_v1(fs_info, trans);
3991		if (ret) {
3992			btrfs_abort_transaction(trans, ret);
3993			btrfs_end_transaction(trans);
3994			goto out;
3995		}
 
 
 
 
3996	}
3997
3998	ret = btrfs_commit_transaction(trans);
3999out:
4000	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 
 
 
 
 
 
4001
4002	return ret;
4003}
4004
4005#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4006/*
4007 * Use this if you need to make a bitmap or extent entry specifically, it
4008 * doesn't do any of the merging that add_free_space does, this acts a lot like
4009 * how the free space cache loading stuff works, so you can get really weird
4010 * configurations.
4011 */
4012int test_add_free_space_entry(struct btrfs_block_group *cache,
4013			      u64 offset, u64 bytes, bool bitmap)
4014{
4015	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4016	struct btrfs_free_space *info = NULL, *bitmap_info;
4017	void *map = NULL;
4018	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4019	u64 bytes_added;
4020	int ret;
4021
4022again:
4023	if (!info) {
4024		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4025		if (!info)
4026			return -ENOMEM;
4027	}
4028
4029	if (!bitmap) {
4030		spin_lock(&ctl->tree_lock);
4031		info->offset = offset;
4032		info->bytes = bytes;
4033		info->max_extent_size = 0;
4034		ret = link_free_space(ctl, info);
4035		spin_unlock(&ctl->tree_lock);
4036		if (ret)
4037			kmem_cache_free(btrfs_free_space_cachep, info);
4038		return ret;
4039	}
4040
4041	if (!map) {
4042		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4043		if (!map) {
4044			kmem_cache_free(btrfs_free_space_cachep, info);
4045			return -ENOMEM;
4046		}
4047	}
4048
4049	spin_lock(&ctl->tree_lock);
4050	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4051					 1, 0);
4052	if (!bitmap_info) {
4053		info->bitmap = map;
4054		map = NULL;
4055		add_new_bitmap(ctl, info, offset);
4056		bitmap_info = info;
4057		info = NULL;
4058	}
4059
4060	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4061					  trim_state);
4062
4063	bytes -= bytes_added;
4064	offset += bytes_added;
4065	spin_unlock(&ctl->tree_lock);
4066
4067	if (bytes)
4068		goto again;
4069
4070	if (info)
4071		kmem_cache_free(btrfs_free_space_cachep, info);
4072	if (map)
4073		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4074	return 0;
4075}
4076
4077/*
4078 * Checks to see if the given range is in the free space cache.  This is really
4079 * just used to check the absence of space, so if there is free space in the
4080 * range at all we will return 1.
4081 */
4082int test_check_exists(struct btrfs_block_group *cache,
4083		      u64 offset, u64 bytes)
4084{
4085	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4086	struct btrfs_free_space *info;
4087	int ret = 0;
4088
4089	spin_lock(&ctl->tree_lock);
4090	info = tree_search_offset(ctl, offset, 0, 0);
4091	if (!info) {
4092		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4093					  1, 0);
4094		if (!info)
4095			goto out;
4096	}
4097
4098have_info:
4099	if (info->bitmap) {
4100		u64 bit_off, bit_bytes;
4101		struct rb_node *n;
4102		struct btrfs_free_space *tmp;
4103
4104		bit_off = offset;
4105		bit_bytes = ctl->unit;
4106		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4107		if (!ret) {
4108			if (bit_off == offset) {
4109				ret = 1;
4110				goto out;
4111			} else if (bit_off > offset &&
4112				   offset + bytes > bit_off) {
4113				ret = 1;
4114				goto out;
4115			}
4116		}
4117
4118		n = rb_prev(&info->offset_index);
4119		while (n) {
4120			tmp = rb_entry(n, struct btrfs_free_space,
4121				       offset_index);
4122			if (tmp->offset + tmp->bytes < offset)
4123				break;
4124			if (offset + bytes < tmp->offset) {
4125				n = rb_prev(&tmp->offset_index);
4126				continue;
4127			}
4128			info = tmp;
4129			goto have_info;
4130		}
4131
4132		n = rb_next(&info->offset_index);
4133		while (n) {
4134			tmp = rb_entry(n, struct btrfs_free_space,
4135				       offset_index);
4136			if (offset + bytes < tmp->offset)
4137				break;
4138			if (tmp->offset + tmp->bytes < offset) {
4139				n = rb_next(&tmp->offset_index);
4140				continue;
4141			}
4142			info = tmp;
4143			goto have_info;
4144		}
4145
4146		ret = 0;
4147		goto out;
4148	}
4149
4150	if (info->offset == offset) {
4151		ret = 1;
4152		goto out;
4153	}
4154
4155	if (offset > info->offset && offset < info->offset + info->bytes)
4156		ret = 1;
4157out:
4158	spin_unlock(&ctl->tree_lock);
4159	return ret;
4160}
4161#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v4.10.11
 
   1/*
   2 * Copyright (C) 2008 Red Hat.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/pagemap.h>
  20#include <linux/sched.h>
 
  21#include <linux/slab.h>
  22#include <linux/math64.h>
  23#include <linux/ratelimit.h>
 
 
 
  24#include "ctree.h"
  25#include "free-space-cache.h"
  26#include "transaction.h"
  27#include "disk-io.h"
  28#include "extent_io.h"
  29#include "inode-map.h"
  30#include "volumes.h"
 
 
 
 
  31
  32#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  33#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
  34
  35struct btrfs_trim_range {
  36	u64 start;
  37	u64 bytes;
  38	struct list_head list;
  39};
  40
  41static int link_free_space(struct btrfs_free_space_ctl *ctl,
  42			   struct btrfs_free_space *info);
  43static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  44			      struct btrfs_free_space *info);
  45static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  46			     struct btrfs_trans_handle *trans,
  47			     struct btrfs_io_ctl *io_ctl,
  48			     struct btrfs_path *path);
 
 
 
 
  49
  50static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  51					       struct btrfs_path *path,
  52					       u64 offset)
  53{
  54	struct btrfs_fs_info *fs_info = root->fs_info;
  55	struct btrfs_key key;
  56	struct btrfs_key location;
  57	struct btrfs_disk_key disk_key;
  58	struct btrfs_free_space_header *header;
  59	struct extent_buffer *leaf;
  60	struct inode *inode = NULL;
 
  61	int ret;
  62
  63	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  64	key.offset = offset;
  65	key.type = 0;
  66
  67	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  68	if (ret < 0)
  69		return ERR_PTR(ret);
  70	if (ret > 0) {
  71		btrfs_release_path(path);
  72		return ERR_PTR(-ENOENT);
  73	}
  74
  75	leaf = path->nodes[0];
  76	header = btrfs_item_ptr(leaf, path->slots[0],
  77				struct btrfs_free_space_header);
  78	btrfs_free_space_key(leaf, header, &disk_key);
  79	btrfs_disk_key_to_cpu(&location, &disk_key);
  80	btrfs_release_path(path);
  81
  82	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
 
 
 
 
 
 
 
  83	if (IS_ERR(inode))
  84		return inode;
  85	if (is_bad_inode(inode)) {
  86		iput(inode);
  87		return ERR_PTR(-ENOENT);
  88	}
  89
  90	mapping_set_gfp_mask(inode->i_mapping,
  91			mapping_gfp_constraint(inode->i_mapping,
  92			~(__GFP_FS | __GFP_HIGHMEM)));
  93
  94	return inode;
  95}
  96
  97struct inode *lookup_free_space_inode(struct btrfs_root *root,
  98				      struct btrfs_block_group_cache
  99				      *block_group, struct btrfs_path *path)
 100{
 
 101	struct inode *inode = NULL;
 102	struct btrfs_fs_info *fs_info = root->fs_info;
 103	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 104
 105	spin_lock(&block_group->lock);
 106	if (block_group->inode)
 107		inode = igrab(block_group->inode);
 108	spin_unlock(&block_group->lock);
 109	if (inode)
 110		return inode;
 111
 112	inode = __lookup_free_space_inode(root, path,
 113					  block_group->key.objectid);
 114	if (IS_ERR(inode))
 115		return inode;
 116
 117	spin_lock(&block_group->lock);
 118	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 119		btrfs_info(fs_info, "Old style space inode found, converting.");
 120		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 121			BTRFS_INODE_NODATACOW;
 122		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 123	}
 124
 125	if (!block_group->iref) {
 126		block_group->inode = igrab(inode);
 127		block_group->iref = 1;
 128	}
 129	spin_unlock(&block_group->lock);
 130
 131	return inode;
 132}
 133
 134static int __create_free_space_inode(struct btrfs_root *root,
 135				     struct btrfs_trans_handle *trans,
 136				     struct btrfs_path *path,
 137				     u64 ino, u64 offset)
 138{
 139	struct btrfs_key key;
 140	struct btrfs_disk_key disk_key;
 141	struct btrfs_free_space_header *header;
 142	struct btrfs_inode_item *inode_item;
 143	struct extent_buffer *leaf;
 144	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 145	int ret;
 146
 147	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 148	if (ret)
 149		return ret;
 150
 151	/* We inline crc's for the free disk space cache */
 152	if (ino != BTRFS_FREE_INO_OBJECTID)
 153		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 154
 155	leaf = path->nodes[0];
 156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157				    struct btrfs_inode_item);
 158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160			     sizeof(*inode_item));
 161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162	btrfs_set_inode_size(leaf, inode_item, 0);
 163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164	btrfs_set_inode_uid(leaf, inode_item, 0);
 165	btrfs_set_inode_gid(leaf, inode_item, 0);
 166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167	btrfs_set_inode_flags(leaf, inode_item, flags);
 168	btrfs_set_inode_nlink(leaf, inode_item, 1);
 169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170	btrfs_set_inode_block_group(leaf, inode_item, offset);
 171	btrfs_mark_buffer_dirty(leaf);
 172	btrfs_release_path(path);
 173
 174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175	key.offset = offset;
 176	key.type = 0;
 177	ret = btrfs_insert_empty_item(trans, root, path, &key,
 178				      sizeof(struct btrfs_free_space_header));
 179	if (ret < 0) {
 180		btrfs_release_path(path);
 181		return ret;
 182	}
 183
 184	leaf = path->nodes[0];
 185	header = btrfs_item_ptr(leaf, path->slots[0],
 186				struct btrfs_free_space_header);
 187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188	btrfs_set_free_space_key(leaf, header, &disk_key);
 189	btrfs_mark_buffer_dirty(leaf);
 190	btrfs_release_path(path);
 191
 192	return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_root *root,
 196			    struct btrfs_trans_handle *trans,
 197			    struct btrfs_block_group_cache *block_group,
 198			    struct btrfs_path *path)
 199{
 200	int ret;
 201	u64 ino;
 202
 203	ret = btrfs_find_free_objectid(root, &ino);
 204	if (ret < 0)
 205		return ret;
 206
 207	return __create_free_space_inode(root, trans, path, ino,
 208					 block_group->key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209}
 210
 211int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 212				       struct btrfs_block_rsv *rsv)
 213{
 214	u64 needed_bytes;
 215	int ret;
 216
 217	/* 1 for slack space, 1 for updating the inode */
 218	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
 219		btrfs_calc_trans_metadata_size(fs_info, 1);
 220
 221	spin_lock(&rsv->lock);
 222	if (rsv->reserved < needed_bytes)
 223		ret = -ENOSPC;
 224	else
 225		ret = 0;
 226	spin_unlock(&rsv->lock);
 227	return ret;
 228}
 229
 230int btrfs_truncate_free_space_cache(struct btrfs_root *root,
 231				    struct btrfs_trans_handle *trans,
 232				    struct btrfs_block_group_cache *block_group,
 233				    struct inode *inode)
 234{
 
 235	int ret = 0;
 236	struct btrfs_path *path = btrfs_alloc_path();
 237	bool locked = false;
 238
 239	if (!path) {
 240		ret = -ENOMEM;
 241		goto fail;
 242	}
 243
 244	if (block_group) {
 
 
 
 245		locked = true;
 246		mutex_lock(&trans->transaction->cache_write_mutex);
 247		if (!list_empty(&block_group->io_list)) {
 248			list_del_init(&block_group->io_list);
 249
 250			btrfs_wait_cache_io(trans, block_group, path);
 251			btrfs_put_block_group(block_group);
 252		}
 253
 254		/*
 255		 * now that we've truncated the cache away, its no longer
 256		 * setup or written
 257		 */
 258		spin_lock(&block_group->lock);
 259		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 260		spin_unlock(&block_group->lock);
 
 261	}
 262	btrfs_free_path(path);
 263
 264	btrfs_i_size_write(inode, 0);
 265	truncate_pagecache(inode, 0);
 266
 267	/*
 268	 * We don't need an orphan item because truncating the free space cache
 269	 * will never be split across transactions.
 270	 * We don't need to check for -EAGAIN because we're a free space
 271	 * cache inode
 272	 */
 273	ret = btrfs_truncate_inode_items(trans, root, inode,
 274					 0, BTRFS_EXTENT_DATA_KEY);
 275	if (ret)
 276		goto fail;
 277
 278	ret = btrfs_update_inode(trans, root, inode);
 279
 280fail:
 281	if (locked)
 282		mutex_unlock(&trans->transaction->cache_write_mutex);
 283	if (ret)
 284		btrfs_abort_transaction(trans, ret);
 285
 286	return ret;
 287}
 288
 289static int readahead_cache(struct inode *inode)
 290{
 291	struct file_ra_state *ra;
 292	unsigned long last_index;
 293
 294	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 295	if (!ra)
 296		return -ENOMEM;
 297
 298	file_ra_state_init(ra, inode->i_mapping);
 299	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 300
 301	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 302
 303	kfree(ra);
 304
 305	return 0;
 306}
 307
 308static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 309		       int write)
 310{
 311	int num_pages;
 312	int check_crcs = 0;
 313
 314	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 315
 316	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
 317		check_crcs = 1;
 318
 319	/* Make sure we can fit our crcs into the first page */
 320	if (write && check_crcs &&
 321	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
 322		return -ENOSPC;
 323
 324	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 325
 326	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 327	if (!io_ctl->pages)
 328		return -ENOMEM;
 329
 330	io_ctl->num_pages = num_pages;
 331	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 332	io_ctl->check_crcs = check_crcs;
 333	io_ctl->inode = inode;
 334
 335	return 0;
 336}
 
 337
 338static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 339{
 340	kfree(io_ctl->pages);
 341	io_ctl->pages = NULL;
 342}
 343
 344static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 345{
 346	if (io_ctl->cur) {
 347		io_ctl->cur = NULL;
 348		io_ctl->orig = NULL;
 349	}
 350}
 351
 352static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 353{
 354	ASSERT(io_ctl->index < io_ctl->num_pages);
 355	io_ctl->page = io_ctl->pages[io_ctl->index++];
 356	io_ctl->cur = page_address(io_ctl->page);
 357	io_ctl->orig = io_ctl->cur;
 358	io_ctl->size = PAGE_SIZE;
 359	if (clear)
 360		memset(io_ctl->cur, 0, PAGE_SIZE);
 361}
 362
 363static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 364{
 365	int i;
 366
 367	io_ctl_unmap_page(io_ctl);
 368
 369	for (i = 0; i < io_ctl->num_pages; i++) {
 370		if (io_ctl->pages[i]) {
 371			ClearPageChecked(io_ctl->pages[i]);
 372			unlock_page(io_ctl->pages[i]);
 373			put_page(io_ctl->pages[i]);
 374		}
 375	}
 376}
 377
 378static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 379				int uptodate)
 380{
 381	struct page *page;
 
 382	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 383	int i;
 384
 385	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 386		page = find_or_create_page(inode->i_mapping, i, mask);
 387		if (!page) {
 388			io_ctl_drop_pages(io_ctl);
 389			return -ENOMEM;
 390		}
 
 
 
 
 
 
 
 
 
 391		io_ctl->pages[i] = page;
 392		if (uptodate && !PageUptodate(page)) {
 393			btrfs_readpage(NULL, page);
 394			lock_page(page);
 
 
 
 
 
 
 395			if (!PageUptodate(page)) {
 396				btrfs_err(BTRFS_I(inode)->root->fs_info,
 397					   "error reading free space cache");
 398				io_ctl_drop_pages(io_ctl);
 399				return -EIO;
 400			}
 401		}
 402	}
 403
 404	for (i = 0; i < io_ctl->num_pages; i++) {
 405		clear_page_dirty_for_io(io_ctl->pages[i]);
 406		set_page_extent_mapped(io_ctl->pages[i]);
 407	}
 408
 409	return 0;
 410}
 411
 412static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 413{
 414	__le64 *val;
 415
 416	io_ctl_map_page(io_ctl, 1);
 417
 418	/*
 419	 * Skip the csum areas.  If we don't check crcs then we just have a
 420	 * 64bit chunk at the front of the first page.
 421	 */
 422	if (io_ctl->check_crcs) {
 423		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 424		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 425	} else {
 426		io_ctl->cur += sizeof(u64);
 427		io_ctl->size -= sizeof(u64) * 2;
 428	}
 429
 430	val = io_ctl->cur;
 431	*val = cpu_to_le64(generation);
 432	io_ctl->cur += sizeof(u64);
 433}
 434
 435static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 436{
 437	__le64 *gen;
 438
 439	/*
 440	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 441	 * chunk at the front of the first page.
 442	 */
 443	if (io_ctl->check_crcs) {
 444		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 445		io_ctl->size -= sizeof(u64) +
 446			(sizeof(u32) * io_ctl->num_pages);
 447	} else {
 448		io_ctl->cur += sizeof(u64);
 449		io_ctl->size -= sizeof(u64) * 2;
 450	}
 451
 452	gen = io_ctl->cur;
 453	if (le64_to_cpu(*gen) != generation) {
 454		btrfs_err_rl(io_ctl->fs_info,
 455			"space cache generation (%llu) does not match inode (%llu)",
 456				*gen, generation);
 457		io_ctl_unmap_page(io_ctl);
 458		return -EIO;
 459	}
 460	io_ctl->cur += sizeof(u64);
 461	return 0;
 462}
 463
 464static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 465{
 466	u32 *tmp;
 467	u32 crc = ~(u32)0;
 468	unsigned offset = 0;
 469
 470	if (!io_ctl->check_crcs) {
 471		io_ctl_unmap_page(io_ctl);
 472		return;
 473	}
 474
 475	if (index == 0)
 476		offset = sizeof(u32) * io_ctl->num_pages;
 477
 478	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 479			      PAGE_SIZE - offset);
 480	btrfs_csum_final(crc, (u8 *)&crc);
 481	io_ctl_unmap_page(io_ctl);
 482	tmp = page_address(io_ctl->pages[0]);
 483	tmp += index;
 484	*tmp = crc;
 485}
 486
 487static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 488{
 489	u32 *tmp, val;
 490	u32 crc = ~(u32)0;
 491	unsigned offset = 0;
 492
 493	if (!io_ctl->check_crcs) {
 494		io_ctl_map_page(io_ctl, 0);
 495		return 0;
 496	}
 497
 498	if (index == 0)
 499		offset = sizeof(u32) * io_ctl->num_pages;
 500
 501	tmp = page_address(io_ctl->pages[0]);
 502	tmp += index;
 503	val = *tmp;
 504
 505	io_ctl_map_page(io_ctl, 0);
 506	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 507			      PAGE_SIZE - offset);
 508	btrfs_csum_final(crc, (u8 *)&crc);
 509	if (val != crc) {
 510		btrfs_err_rl(io_ctl->fs_info,
 511			"csum mismatch on free space cache");
 512		io_ctl_unmap_page(io_ctl);
 513		return -EIO;
 514	}
 515
 516	return 0;
 517}
 518
 519static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 520			    void *bitmap)
 521{
 522	struct btrfs_free_space_entry *entry;
 523
 524	if (!io_ctl->cur)
 525		return -ENOSPC;
 526
 527	entry = io_ctl->cur;
 528	entry->offset = cpu_to_le64(offset);
 529	entry->bytes = cpu_to_le64(bytes);
 530	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 531		BTRFS_FREE_SPACE_EXTENT;
 532	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 533	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 534
 535	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 536		return 0;
 537
 538	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 539
 540	/* No more pages to map */
 541	if (io_ctl->index >= io_ctl->num_pages)
 542		return 0;
 543
 544	/* map the next page */
 545	io_ctl_map_page(io_ctl, 1);
 546	return 0;
 547}
 548
 549static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 550{
 551	if (!io_ctl->cur)
 552		return -ENOSPC;
 553
 554	/*
 555	 * If we aren't at the start of the current page, unmap this one and
 556	 * map the next one if there is any left.
 557	 */
 558	if (io_ctl->cur != io_ctl->orig) {
 559		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 560		if (io_ctl->index >= io_ctl->num_pages)
 561			return -ENOSPC;
 562		io_ctl_map_page(io_ctl, 0);
 563	}
 564
 565	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
 566	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567	if (io_ctl->index < io_ctl->num_pages)
 568		io_ctl_map_page(io_ctl, 0);
 569	return 0;
 570}
 571
 572static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 573{
 574	/*
 575	 * If we're not on the boundary we know we've modified the page and we
 576	 * need to crc the page.
 577	 */
 578	if (io_ctl->cur != io_ctl->orig)
 579		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 580	else
 581		io_ctl_unmap_page(io_ctl);
 582
 583	while (io_ctl->index < io_ctl->num_pages) {
 584		io_ctl_map_page(io_ctl, 1);
 585		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 586	}
 587}
 588
 589static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 590			    struct btrfs_free_space *entry, u8 *type)
 591{
 592	struct btrfs_free_space_entry *e;
 593	int ret;
 594
 595	if (!io_ctl->cur) {
 596		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 597		if (ret)
 598			return ret;
 599	}
 600
 601	e = io_ctl->cur;
 602	entry->offset = le64_to_cpu(e->offset);
 603	entry->bytes = le64_to_cpu(e->bytes);
 604	*type = e->type;
 605	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 606	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 607
 608	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 609		return 0;
 610
 611	io_ctl_unmap_page(io_ctl);
 612
 613	return 0;
 614}
 615
 616static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 617			      struct btrfs_free_space *entry)
 618{
 619	int ret;
 620
 621	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 622	if (ret)
 623		return ret;
 624
 625	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
 626	io_ctl_unmap_page(io_ctl);
 627
 628	return 0;
 629}
 630
 631/*
 632 * Since we attach pinned extents after the fact we can have contiguous sections
 633 * of free space that are split up in entries.  This poses a problem with the
 634 * tree logging stuff since it could have allocated across what appears to be 2
 635 * entries since we would have merged the entries when adding the pinned extents
 636 * back to the free space cache.  So run through the space cache that we just
 637 * loaded and merge contiguous entries.  This will make the log replay stuff not
 638 * blow up and it will make for nicer allocator behavior.
 639 */
 640static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 641{
 642	struct btrfs_free_space *e, *prev = NULL;
 643	struct rb_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645again:
 646	spin_lock(&ctl->tree_lock);
 647	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 648		e = rb_entry(n, struct btrfs_free_space, offset_index);
 649		if (!prev)
 650			goto next;
 651		if (e->bitmap || prev->bitmap)
 652			goto next;
 653		if (prev->offset + prev->bytes == e->offset) {
 654			unlink_free_space(ctl, prev);
 655			unlink_free_space(ctl, e);
 656			prev->bytes += e->bytes;
 657			kmem_cache_free(btrfs_free_space_cachep, e);
 658			link_free_space(ctl, prev);
 659			prev = NULL;
 660			spin_unlock(&ctl->tree_lock);
 661			goto again;
 662		}
 663next:
 664		prev = e;
 665	}
 666	spin_unlock(&ctl->tree_lock);
 667}
 668
 669static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 670				   struct btrfs_free_space_ctl *ctl,
 671				   struct btrfs_path *path, u64 offset)
 672{
 673	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 674	struct btrfs_free_space_header *header;
 675	struct extent_buffer *leaf;
 676	struct btrfs_io_ctl io_ctl;
 677	struct btrfs_key key;
 678	struct btrfs_free_space *e, *n;
 679	LIST_HEAD(bitmaps);
 680	u64 num_entries;
 681	u64 num_bitmaps;
 682	u64 generation;
 683	u8 type;
 684	int ret = 0;
 685
 686	/* Nothing in the space cache, goodbye */
 687	if (!i_size_read(inode))
 688		return 0;
 689
 690	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 691	key.offset = offset;
 692	key.type = 0;
 693
 694	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 695	if (ret < 0)
 696		return 0;
 697	else if (ret > 0) {
 698		btrfs_release_path(path);
 699		return 0;
 700	}
 701
 702	ret = -1;
 703
 704	leaf = path->nodes[0];
 705	header = btrfs_item_ptr(leaf, path->slots[0],
 706				struct btrfs_free_space_header);
 707	num_entries = btrfs_free_space_entries(leaf, header);
 708	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 709	generation = btrfs_free_space_generation(leaf, header);
 710	btrfs_release_path(path);
 711
 712	if (!BTRFS_I(inode)->generation) {
 713		btrfs_info(fs_info,
 714			   "The free space cache file (%llu) is invalid. skip it\n",
 715			   offset);
 716		return 0;
 717	}
 718
 719	if (BTRFS_I(inode)->generation != generation) {
 720		btrfs_err(fs_info,
 721			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 722			  BTRFS_I(inode)->generation, generation);
 723		return 0;
 724	}
 725
 726	if (!num_entries)
 727		return 0;
 728
 729	ret = io_ctl_init(&io_ctl, inode, 0);
 730	if (ret)
 731		return ret;
 732
 733	ret = readahead_cache(inode);
 734	if (ret)
 735		goto out;
 736
 737	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 738	if (ret)
 739		goto out;
 740
 741	ret = io_ctl_check_crc(&io_ctl, 0);
 742	if (ret)
 743		goto free_cache;
 744
 745	ret = io_ctl_check_generation(&io_ctl, generation);
 746	if (ret)
 747		goto free_cache;
 748
 749	while (num_entries) {
 750		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 751				      GFP_NOFS);
 752		if (!e)
 
 753			goto free_cache;
 
 754
 755		ret = io_ctl_read_entry(&io_ctl, e, &type);
 756		if (ret) {
 757			kmem_cache_free(btrfs_free_space_cachep, e);
 758			goto free_cache;
 759		}
 760
 761		if (!e->bytes) {
 
 762			kmem_cache_free(btrfs_free_space_cachep, e);
 763			goto free_cache;
 764		}
 765
 766		if (type == BTRFS_FREE_SPACE_EXTENT) {
 767			spin_lock(&ctl->tree_lock);
 768			ret = link_free_space(ctl, e);
 769			spin_unlock(&ctl->tree_lock);
 770			if (ret) {
 771				btrfs_err(fs_info,
 772					"Duplicate entries in free space cache, dumping");
 773				kmem_cache_free(btrfs_free_space_cachep, e);
 774				goto free_cache;
 775			}
 776		} else {
 777			ASSERT(num_bitmaps);
 778			num_bitmaps--;
 779			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 
 780			if (!e->bitmap) {
 
 781				kmem_cache_free(
 782					btrfs_free_space_cachep, e);
 783				goto free_cache;
 784			}
 785			spin_lock(&ctl->tree_lock);
 786			ret = link_free_space(ctl, e);
 787			ctl->total_bitmaps++;
 788			ctl->op->recalc_thresholds(ctl);
 789			spin_unlock(&ctl->tree_lock);
 790			if (ret) {
 791				btrfs_err(fs_info,
 792					"Duplicate entries in free space cache, dumping");
 793				kmem_cache_free(btrfs_free_space_cachep, e);
 794				goto free_cache;
 795			}
 796			list_add_tail(&e->list, &bitmaps);
 797		}
 798
 799		num_entries--;
 800	}
 801
 802	io_ctl_unmap_page(&io_ctl);
 803
 804	/*
 805	 * We add the bitmaps at the end of the entries in order that
 806	 * the bitmap entries are added to the cache.
 807	 */
 808	list_for_each_entry_safe(e, n, &bitmaps, list) {
 809		list_del_init(&e->list);
 810		ret = io_ctl_read_bitmap(&io_ctl, e);
 811		if (ret)
 812			goto free_cache;
 813	}
 814
 815	io_ctl_drop_pages(&io_ctl);
 816	merge_space_tree(ctl);
 817	ret = 1;
 818out:
 819	io_ctl_free(&io_ctl);
 820	return ret;
 821free_cache:
 822	io_ctl_drop_pages(&io_ctl);
 823	__btrfs_remove_free_space_cache(ctl);
 824	goto out;
 825}
 826
 827int load_free_space_cache(struct btrfs_fs_info *fs_info,
 828			  struct btrfs_block_group_cache *block_group)
 829{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 831	struct btrfs_root *root = fs_info->tree_root;
 832	struct inode *inode;
 833	struct btrfs_path *path;
 834	int ret = 0;
 835	bool matched;
 836	u64 used = btrfs_block_group_used(&block_group->item);
 
 
 
 
 
 
 
 837
 838	/*
 839	 * If this block group has been marked to be cleared for one reason or
 840	 * another then we can't trust the on disk cache, so just return.
 841	 */
 842	spin_lock(&block_group->lock);
 843	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 844		spin_unlock(&block_group->lock);
 845		return 0;
 846	}
 847	spin_unlock(&block_group->lock);
 848
 849	path = btrfs_alloc_path();
 850	if (!path)
 851		return 0;
 852	path->search_commit_root = 1;
 853	path->skip_locking = 1;
 854
 855	inode = lookup_free_space_inode(root, block_group, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	if (IS_ERR(inode)) {
 857		btrfs_free_path(path);
 858		return 0;
 859	}
 860
 861	/* We may have converted the inode and made the cache invalid. */
 862	spin_lock(&block_group->lock);
 863	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 864		spin_unlock(&block_group->lock);
 865		btrfs_free_path(path);
 866		goto out;
 867	}
 868	spin_unlock(&block_group->lock);
 869
 870	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 871				      path, block_group->key.objectid);
 872	btrfs_free_path(path);
 873	if (ret <= 0)
 874		goto out;
 875
 876	spin_lock(&ctl->tree_lock);
 877	matched = (ctl->free_space == (block_group->key.offset - used -
 878				       block_group->bytes_super));
 879	spin_unlock(&ctl->tree_lock);
 880
 881	if (!matched) {
 882		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 883		btrfs_warn(fs_info,
 884			   "block group %llu has wrong amount of free space",
 885			   block_group->key.objectid);
 886		ret = -1;
 887	}
 888out:
 889	if (ret < 0) {
 890		/* This cache is bogus, make sure it gets cleared */
 891		spin_lock(&block_group->lock);
 892		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 893		spin_unlock(&block_group->lock);
 894		ret = 0;
 895
 896		btrfs_warn(fs_info,
 897			   "failed to load free space cache for block group %llu, rebuilding it now",
 898			   block_group->key.objectid);
 899	}
 900
 
 
 
 901	iput(inode);
 902	return ret;
 903}
 904
 905static noinline_for_stack
 906int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 907			      struct btrfs_free_space_ctl *ctl,
 908			      struct btrfs_block_group_cache *block_group,
 909			      int *entries, int *bitmaps,
 910			      struct list_head *bitmap_list)
 911{
 912	int ret;
 913	struct btrfs_free_cluster *cluster = NULL;
 914	struct btrfs_free_cluster *cluster_locked = NULL;
 915	struct rb_node *node = rb_first(&ctl->free_space_offset);
 916	struct btrfs_trim_range *trim_entry;
 917
 918	/* Get the cluster for this block_group if it exists */
 919	if (block_group && !list_empty(&block_group->cluster_list)) {
 920		cluster = list_entry(block_group->cluster_list.next,
 921				     struct btrfs_free_cluster,
 922				     block_group_list);
 923	}
 924
 925	if (!node && cluster) {
 926		cluster_locked = cluster;
 927		spin_lock(&cluster_locked->lock);
 928		node = rb_first(&cluster->root);
 929		cluster = NULL;
 930	}
 931
 932	/* Write out the extent entries */
 933	while (node) {
 934		struct btrfs_free_space *e;
 935
 936		e = rb_entry(node, struct btrfs_free_space, offset_index);
 937		*entries += 1;
 938
 939		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 940				       e->bitmap);
 941		if (ret)
 942			goto fail;
 943
 944		if (e->bitmap) {
 945			list_add_tail(&e->list, bitmap_list);
 946			*bitmaps += 1;
 947		}
 948		node = rb_next(node);
 949		if (!node && cluster) {
 950			node = rb_first(&cluster->root);
 951			cluster_locked = cluster;
 952			spin_lock(&cluster_locked->lock);
 953			cluster = NULL;
 954		}
 955	}
 956	if (cluster_locked) {
 957		spin_unlock(&cluster_locked->lock);
 958		cluster_locked = NULL;
 959	}
 960
 961	/*
 962	 * Make sure we don't miss any range that was removed from our rbtree
 963	 * because trimming is running. Otherwise after a umount+mount (or crash
 964	 * after committing the transaction) we would leak free space and get
 965	 * an inconsistent free space cache report from fsck.
 966	 */
 967	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 968		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 969				       trim_entry->bytes, NULL);
 970		if (ret)
 971			goto fail;
 972		*entries += 1;
 973	}
 974
 975	return 0;
 976fail:
 977	if (cluster_locked)
 978		spin_unlock(&cluster_locked->lock);
 979	return -ENOSPC;
 980}
 981
 982static noinline_for_stack int
 983update_cache_item(struct btrfs_trans_handle *trans,
 984		  struct btrfs_root *root,
 985		  struct inode *inode,
 986		  struct btrfs_path *path, u64 offset,
 987		  int entries, int bitmaps)
 988{
 989	struct btrfs_key key;
 990	struct btrfs_free_space_header *header;
 991	struct extent_buffer *leaf;
 992	int ret;
 993
 994	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 995	key.offset = offset;
 996	key.type = 0;
 997
 998	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 999	if (ret < 0) {
1000		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1001				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1002				 GFP_NOFS);
1003		goto fail;
1004	}
1005	leaf = path->nodes[0];
1006	if (ret > 0) {
1007		struct btrfs_key found_key;
1008		ASSERT(path->slots[0]);
1009		path->slots[0]--;
1010		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1011		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1012		    found_key.offset != offset) {
1013			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1014					 inode->i_size - 1,
1015					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1016					 NULL, GFP_NOFS);
1017			btrfs_release_path(path);
1018			goto fail;
1019		}
1020	}
1021
1022	BTRFS_I(inode)->generation = trans->transid;
1023	header = btrfs_item_ptr(leaf, path->slots[0],
1024				struct btrfs_free_space_header);
1025	btrfs_set_free_space_entries(leaf, header, entries);
1026	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1027	btrfs_set_free_space_generation(leaf, header, trans->transid);
1028	btrfs_mark_buffer_dirty(leaf);
1029	btrfs_release_path(path);
1030
1031	return 0;
1032
1033fail:
1034	return -1;
1035}
1036
1037static noinline_for_stack int
1038write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1039			    struct btrfs_block_group_cache *block_group,
1040			    struct btrfs_io_ctl *io_ctl,
1041			    int *entries)
1042{
1043	u64 start, extent_start, extent_end, len;
1044	struct extent_io_tree *unpin = NULL;
1045	int ret;
1046
1047	if (!block_group)
1048		return 0;
1049
1050	/*
1051	 * We want to add any pinned extents to our free space cache
1052	 * so we don't leak the space
1053	 *
1054	 * We shouldn't have switched the pinned extents yet so this is the
1055	 * right one
1056	 */
1057	unpin = fs_info->pinned_extents;
1058
1059	start = block_group->key.objectid;
1060
1061	while (start < block_group->key.objectid + block_group->key.offset) {
1062		ret = find_first_extent_bit(unpin, start,
1063					    &extent_start, &extent_end,
1064					    EXTENT_DIRTY, NULL);
1065		if (ret)
1066			return 0;
1067
1068		/* This pinned extent is out of our range */
1069		if (extent_start >= block_group->key.objectid +
1070		    block_group->key.offset)
1071			return 0;
1072
1073		extent_start = max(extent_start, start);
1074		extent_end = min(block_group->key.objectid +
1075				 block_group->key.offset, extent_end + 1);
1076		len = extent_end - extent_start;
1077
1078		*entries += 1;
1079		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1080		if (ret)
1081			return -ENOSPC;
1082
1083		start = extent_end;
1084	}
1085
1086	return 0;
1087}
1088
1089static noinline_for_stack int
1090write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1091{
1092	struct btrfs_free_space *entry, *next;
1093	int ret;
1094
1095	/* Write out the bitmaps */
1096	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1097		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098		if (ret)
1099			return -ENOSPC;
1100		list_del_init(&entry->list);
1101	}
1102
1103	return 0;
1104}
1105
1106static int flush_dirty_cache(struct inode *inode)
1107{
1108	int ret;
1109
1110	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111	if (ret)
1112		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1113				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1114				 GFP_NOFS);
1115
1116	return ret;
1117}
1118
1119static void noinline_for_stack
1120cleanup_bitmap_list(struct list_head *bitmap_list)
1121{
1122	struct btrfs_free_space *entry, *next;
1123
1124	list_for_each_entry_safe(entry, next, bitmap_list, list)
1125		list_del_init(&entry->list);
1126}
1127
1128static void noinline_for_stack
1129cleanup_write_cache_enospc(struct inode *inode,
1130			   struct btrfs_io_ctl *io_ctl,
1131			   struct extent_state **cached_state,
1132			   struct list_head *bitmap_list)
1133{
1134	io_ctl_drop_pages(io_ctl);
1135	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1136			     i_size_read(inode) - 1, cached_state,
1137			     GFP_NOFS);
1138}
1139
1140static int __btrfs_wait_cache_io(struct btrfs_root *root,
1141				 struct btrfs_trans_handle *trans,
1142				 struct btrfs_block_group_cache *block_group,
1143				 struct btrfs_io_ctl *io_ctl,
1144				 struct btrfs_path *path, u64 offset)
1145{
1146	int ret;
1147	struct inode *inode = io_ctl->inode;
1148	struct btrfs_fs_info *fs_info;
1149
1150	if (!inode)
1151		return 0;
1152
1153	fs_info = btrfs_sb(inode->i_sb);
1154
1155	/* Flush the dirty pages in the cache file. */
1156	ret = flush_dirty_cache(inode);
1157	if (ret)
1158		goto out;
1159
1160	/* Update the cache item to tell everyone this cache file is valid. */
1161	ret = update_cache_item(trans, root, inode, path, offset,
1162				io_ctl->entries, io_ctl->bitmaps);
1163out:
1164	io_ctl_free(io_ctl);
1165	if (ret) {
1166		invalidate_inode_pages2(inode->i_mapping);
1167		BTRFS_I(inode)->generation = 0;
1168		if (block_group) {
1169#ifdef DEBUG
1170			btrfs_err(fs_info,
1171				  "failed to write free space cache for block group %llu",
1172				  block_group->key.objectid);
1173#endif
1174		}
1175	}
1176	btrfs_update_inode(trans, root, inode);
1177
1178	if (block_group) {
1179		/* the dirty list is protected by the dirty_bgs_lock */
1180		spin_lock(&trans->transaction->dirty_bgs_lock);
1181
1182		/* the disk_cache_state is protected by the block group lock */
1183		spin_lock(&block_group->lock);
1184
1185		/*
1186		 * only mark this as written if we didn't get put back on
1187		 * the dirty list while waiting for IO.   Otherwise our
1188		 * cache state won't be right, and we won't get written again
1189		 */
1190		if (!ret && list_empty(&block_group->dirty_list))
1191			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1192		else if (ret)
1193			block_group->disk_cache_state = BTRFS_DC_ERROR;
1194
1195		spin_unlock(&block_group->lock);
1196		spin_unlock(&trans->transaction->dirty_bgs_lock);
1197		io_ctl->inode = NULL;
1198		iput(inode);
1199	}
1200
1201	return ret;
1202
1203}
1204
1205static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1206				    struct btrfs_trans_handle *trans,
1207				    struct btrfs_io_ctl *io_ctl,
1208				    struct btrfs_path *path)
1209{
1210	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1211}
1212
1213int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1214			struct btrfs_block_group_cache *block_group,
1215			struct btrfs_path *path)
1216{
1217	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1218				     block_group, &block_group->io_ctl,
1219				     path, block_group->key.objectid);
1220}
1221
1222/**
1223 * __btrfs_write_out_cache - write out cached info to an inode
1224 * @root - the root the inode belongs to
1225 * @ctl - the free space cache we are going to write out
1226 * @block_group - the block_group for this cache if it belongs to a block_group
1227 * @trans - the trans handle
1228 * @path - the path to use
1229 * @offset - the offset for the key we'll insert
 
1230 *
1231 * This function writes out a free space cache struct to disk for quick recovery
1232 * on mount.  This will return 0 if it was successful in writing the cache out,
1233 * or an errno if it was not.
1234 */
1235static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1236				   struct btrfs_free_space_ctl *ctl,
1237				   struct btrfs_block_group_cache *block_group,
1238				   struct btrfs_io_ctl *io_ctl,
1239				   struct btrfs_trans_handle *trans,
1240				   struct btrfs_path *path, u64 offset)
1241{
1242	struct btrfs_fs_info *fs_info = root->fs_info;
1243	struct extent_state *cached_state = NULL;
1244	LIST_HEAD(bitmap_list);
1245	int entries = 0;
1246	int bitmaps = 0;
1247	int ret;
1248	int must_iput = 0;
1249
1250	if (!i_size_read(inode))
1251		return -EIO;
1252
1253	WARN_ON(io_ctl->pages);
1254	ret = io_ctl_init(io_ctl, inode, 1);
1255	if (ret)
1256		return ret;
1257
1258	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1259		down_write(&block_group->data_rwsem);
1260		spin_lock(&block_group->lock);
1261		if (block_group->delalloc_bytes) {
1262			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1263			spin_unlock(&block_group->lock);
1264			up_write(&block_group->data_rwsem);
1265			BTRFS_I(inode)->generation = 0;
1266			ret = 0;
1267			must_iput = 1;
1268			goto out;
1269		}
1270		spin_unlock(&block_group->lock);
1271	}
1272
1273	/* Lock all pages first so we can lock the extent safely. */
1274	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1275	if (ret)
1276		goto out;
1277
1278	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1279			 &cached_state);
1280
1281	io_ctl_set_generation(io_ctl, trans->transid);
1282
1283	mutex_lock(&ctl->cache_writeout_mutex);
1284	/* Write out the extent entries in the free space cache */
1285	spin_lock(&ctl->tree_lock);
1286	ret = write_cache_extent_entries(io_ctl, ctl,
1287					 block_group, &entries, &bitmaps,
1288					 &bitmap_list);
1289	if (ret)
1290		goto out_nospc_locked;
1291
1292	/*
1293	 * Some spaces that are freed in the current transaction are pinned,
1294	 * they will be added into free space cache after the transaction is
1295	 * committed, we shouldn't lose them.
1296	 *
1297	 * If this changes while we are working we'll get added back to
1298	 * the dirty list and redo it.  No locking needed
1299	 */
1300	ret = write_pinned_extent_entries(fs_info, block_group,
1301					  io_ctl, &entries);
1302	if (ret)
1303		goto out_nospc_locked;
1304
1305	/*
1306	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1307	 * locked while doing it because a concurrent trim can be manipulating
1308	 * or freeing the bitmap.
1309	 */
1310	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1311	spin_unlock(&ctl->tree_lock);
1312	mutex_unlock(&ctl->cache_writeout_mutex);
1313	if (ret)
1314		goto out_nospc;
1315
1316	/* Zero out the rest of the pages just to make sure */
1317	io_ctl_zero_remaining_pages(io_ctl);
1318
1319	/* Everything is written out, now we dirty the pages in the file. */
1320	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1321				i_size_read(inode), &cached_state);
 
1322	if (ret)
1323		goto out_nospc;
1324
1325	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1326		up_write(&block_group->data_rwsem);
1327	/*
1328	 * Release the pages and unlock the extent, we will flush
1329	 * them out later
1330	 */
1331	io_ctl_drop_pages(io_ctl);
 
1332
1333	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1334			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1335
1336	/*
1337	 * at this point the pages are under IO and we're happy,
1338	 * The caller is responsible for waiting on them and updating the
1339	 * the cache and the inode
1340	 */
1341	io_ctl->entries = entries;
1342	io_ctl->bitmaps = bitmaps;
1343
1344	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1345	if (ret)
1346		goto out;
1347
1348	return 0;
1349
 
 
 
 
 
 
 
 
 
 
 
 
1350out:
1351	io_ctl->inode = NULL;
1352	io_ctl_free(io_ctl);
1353	if (ret) {
1354		invalidate_inode_pages2(inode->i_mapping);
1355		BTRFS_I(inode)->generation = 0;
1356	}
1357	btrfs_update_inode(trans, root, inode);
1358	if (must_iput)
1359		iput(inode);
1360	return ret;
1361
1362out_nospc_locked:
1363	cleanup_bitmap_list(&bitmap_list);
1364	spin_unlock(&ctl->tree_lock);
1365	mutex_unlock(&ctl->cache_writeout_mutex);
1366
1367out_nospc:
1368	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1369
1370	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1371		up_write(&block_group->data_rwsem);
1372
1373	goto out;
1374}
1375
1376int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1377			  struct btrfs_trans_handle *trans,
1378			  struct btrfs_block_group_cache *block_group,
1379			  struct btrfs_path *path)
1380{
1381	struct btrfs_root *root = fs_info->tree_root;
1382	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1383	struct inode *inode;
1384	int ret = 0;
1385
1386	spin_lock(&block_group->lock);
1387	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1388		spin_unlock(&block_group->lock);
1389		return 0;
1390	}
1391	spin_unlock(&block_group->lock);
1392
1393	inode = lookup_free_space_inode(root, block_group, path);
1394	if (IS_ERR(inode))
1395		return 0;
1396
1397	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1398				      &block_group->io_ctl, trans,
1399				      path, block_group->key.objectid);
1400	if (ret) {
1401#ifdef DEBUG
1402		btrfs_err(fs_info,
1403			  "failed to write free space cache for block group %llu",
1404			  block_group->key.objectid);
1405#endif
1406		spin_lock(&block_group->lock);
1407		block_group->disk_cache_state = BTRFS_DC_ERROR;
1408		spin_unlock(&block_group->lock);
1409
1410		block_group->io_ctl.inode = NULL;
1411		iput(inode);
1412	}
1413
1414	/*
1415	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1416	 * to wait for IO and put the inode
1417	 */
1418
1419	return ret;
1420}
1421
1422static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1423					  u64 offset)
1424{
1425	ASSERT(offset >= bitmap_start);
1426	offset -= bitmap_start;
1427	return (unsigned long)(div_u64(offset, unit));
1428}
1429
1430static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1431{
1432	return (unsigned long)(div_u64(bytes, unit));
1433}
1434
1435static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1436				   u64 offset)
1437{
1438	u64 bitmap_start;
1439	u64 bytes_per_bitmap;
1440
1441	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1442	bitmap_start = offset - ctl->start;
1443	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1444	bitmap_start *= bytes_per_bitmap;
1445	bitmap_start += ctl->start;
1446
1447	return bitmap_start;
1448}
1449
1450static int tree_insert_offset(struct rb_root *root, u64 offset,
1451			      struct rb_node *node, int bitmap)
1452{
1453	struct rb_node **p = &root->rb_node;
1454	struct rb_node *parent = NULL;
1455	struct btrfs_free_space *info;
1456
1457	while (*p) {
1458		parent = *p;
1459		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1460
1461		if (offset < info->offset) {
1462			p = &(*p)->rb_left;
1463		} else if (offset > info->offset) {
1464			p = &(*p)->rb_right;
1465		} else {
1466			/*
1467			 * we could have a bitmap entry and an extent entry
1468			 * share the same offset.  If this is the case, we want
1469			 * the extent entry to always be found first if we do a
1470			 * linear search through the tree, since we want to have
1471			 * the quickest allocation time, and allocating from an
1472			 * extent is faster than allocating from a bitmap.  So
1473			 * if we're inserting a bitmap and we find an entry at
1474			 * this offset, we want to go right, or after this entry
1475			 * logically.  If we are inserting an extent and we've
1476			 * found a bitmap, we want to go left, or before
1477			 * logically.
1478			 */
1479			if (bitmap) {
1480				if (info->bitmap) {
1481					WARN_ON_ONCE(1);
1482					return -EEXIST;
1483				}
1484				p = &(*p)->rb_right;
1485			} else {
1486				if (!info->bitmap) {
1487					WARN_ON_ONCE(1);
1488					return -EEXIST;
1489				}
1490				p = &(*p)->rb_left;
1491			}
1492		}
1493	}
1494
1495	rb_link_node(node, parent, p);
1496	rb_insert_color(node, root);
1497
1498	return 0;
1499}
1500
1501/*
1502 * searches the tree for the given offset.
1503 *
1504 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1505 * want a section that has at least bytes size and comes at or after the given
1506 * offset.
1507 */
1508static struct btrfs_free_space *
1509tree_search_offset(struct btrfs_free_space_ctl *ctl,
1510		   u64 offset, int bitmap_only, int fuzzy)
1511{
1512	struct rb_node *n = ctl->free_space_offset.rb_node;
1513	struct btrfs_free_space *entry, *prev = NULL;
1514
1515	/* find entry that is closest to the 'offset' */
1516	while (1) {
1517		if (!n) {
1518			entry = NULL;
1519			break;
1520		}
1521
1522		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1523		prev = entry;
1524
1525		if (offset < entry->offset)
1526			n = n->rb_left;
1527		else if (offset > entry->offset)
1528			n = n->rb_right;
1529		else
1530			break;
1531	}
1532
1533	if (bitmap_only) {
1534		if (!entry)
1535			return NULL;
1536		if (entry->bitmap)
1537			return entry;
1538
1539		/*
1540		 * bitmap entry and extent entry may share same offset,
1541		 * in that case, bitmap entry comes after extent entry.
1542		 */
1543		n = rb_next(n);
1544		if (!n)
1545			return NULL;
1546		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1547		if (entry->offset != offset)
1548			return NULL;
1549
1550		WARN_ON(!entry->bitmap);
1551		return entry;
1552	} else if (entry) {
1553		if (entry->bitmap) {
1554			/*
1555			 * if previous extent entry covers the offset,
1556			 * we should return it instead of the bitmap entry
1557			 */
1558			n = rb_prev(&entry->offset_index);
1559			if (n) {
1560				prev = rb_entry(n, struct btrfs_free_space,
1561						offset_index);
1562				if (!prev->bitmap &&
1563				    prev->offset + prev->bytes > offset)
1564					entry = prev;
1565			}
1566		}
1567		return entry;
1568	}
1569
1570	if (!prev)
1571		return NULL;
1572
1573	/* find last entry before the 'offset' */
1574	entry = prev;
1575	if (entry->offset > offset) {
1576		n = rb_prev(&entry->offset_index);
1577		if (n) {
1578			entry = rb_entry(n, struct btrfs_free_space,
1579					offset_index);
1580			ASSERT(entry->offset <= offset);
1581		} else {
1582			if (fuzzy)
1583				return entry;
1584			else
1585				return NULL;
1586		}
1587	}
1588
1589	if (entry->bitmap) {
1590		n = rb_prev(&entry->offset_index);
1591		if (n) {
1592			prev = rb_entry(n, struct btrfs_free_space,
1593					offset_index);
1594			if (!prev->bitmap &&
1595			    prev->offset + prev->bytes > offset)
1596				return prev;
1597		}
1598		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1599			return entry;
1600	} else if (entry->offset + entry->bytes > offset)
1601		return entry;
1602
1603	if (!fuzzy)
1604		return NULL;
1605
1606	while (1) {
1607		if (entry->bitmap) {
1608			if (entry->offset + BITS_PER_BITMAP *
1609			    ctl->unit > offset)
1610				break;
1611		} else {
1612			if (entry->offset + entry->bytes > offset)
1613				break;
1614		}
1615
1616		n = rb_next(&entry->offset_index);
1617		if (!n)
1618			return NULL;
1619		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1620	}
1621	return entry;
1622}
1623
1624static inline void
1625__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626		    struct btrfs_free_space *info)
1627{
1628	rb_erase(&info->offset_index, &ctl->free_space_offset);
1629	ctl->free_extents--;
 
 
 
 
 
1630}
1631
1632static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1633			      struct btrfs_free_space *info)
1634{
1635	__unlink_free_space(ctl, info);
1636	ctl->free_space -= info->bytes;
1637}
1638
1639static int link_free_space(struct btrfs_free_space_ctl *ctl,
1640			   struct btrfs_free_space *info)
1641{
1642	int ret = 0;
1643
1644	ASSERT(info->bytes || info->bitmap);
1645	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1646				 &info->offset_index, (info->bitmap != NULL));
1647	if (ret)
1648		return ret;
1649
 
 
 
 
 
1650	ctl->free_space += info->bytes;
1651	ctl->free_extents++;
1652	return ret;
1653}
1654
1655static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1656{
1657	struct btrfs_block_group_cache *block_group = ctl->private;
1658	u64 max_bytes;
1659	u64 bitmap_bytes;
1660	u64 extent_bytes;
1661	u64 size = block_group->key.offset;
1662	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1663	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1664
1665	max_bitmaps = max_t(u64, max_bitmaps, 1);
1666
1667	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1668
1669	/*
1670	 * The goal is to keep the total amount of memory used per 1gb of space
1671	 * at or below 32k, so we need to adjust how much memory we allow to be
1672	 * used by extent based free space tracking
1673	 */
1674	if (size < SZ_1G)
1675		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1676	else
1677		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1678
1679	/*
1680	 * we want to account for 1 more bitmap than what we have so we can make
1681	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1682	 * we add more bitmaps.
1683	 */
1684	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1685
1686	if (bitmap_bytes >= max_bytes) {
1687		ctl->extents_thresh = 0;
1688		return;
1689	}
1690
1691	/*
1692	 * we want the extent entry threshold to always be at most 1/2 the max
1693	 * bytes we can have, or whatever is less than that.
1694	 */
1695	extent_bytes = max_bytes - bitmap_bytes;
1696	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1697
1698	ctl->extents_thresh =
1699		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1700}
1701
1702static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1703				       struct btrfs_free_space *info,
1704				       u64 offset, u64 bytes)
1705{
1706	unsigned long start, count;
 
1707
1708	start = offset_to_bit(info->offset, ctl->unit, offset);
1709	count = bytes_to_bits(bytes, ctl->unit);
1710	ASSERT(start + count <= BITS_PER_BITMAP);
 
1711
1712	bitmap_clear(info->bitmap, start, count);
1713
1714	info->bytes -= bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715}
1716
1717static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1718			      struct btrfs_free_space *info, u64 offset,
1719			      u64 bytes)
1720{
1721	__bitmap_clear_bits(ctl, info, offset, bytes);
1722	ctl->free_space -= bytes;
1723}
1724
1725static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1726			    struct btrfs_free_space *info, u64 offset,
1727			    u64 bytes)
1728{
1729	unsigned long start, count;
 
1730
1731	start = offset_to_bit(info->offset, ctl->unit, offset);
1732	count = bytes_to_bits(bytes, ctl->unit);
1733	ASSERT(start + count <= BITS_PER_BITMAP);
 
1734
1735	bitmap_set(info->bitmap, start, count);
1736
1737	info->bytes += bytes;
1738	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
1739}
1740
1741/*
1742 * If we can not find suitable extent, we will use bytes to record
1743 * the size of the max extent.
1744 */
1745static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1746			 struct btrfs_free_space *bitmap_info, u64 *offset,
1747			 u64 *bytes, bool for_alloc)
1748{
1749	unsigned long found_bits = 0;
1750	unsigned long max_bits = 0;
1751	unsigned long bits, i;
1752	unsigned long next_zero;
1753	unsigned long extent_bits;
1754
1755	/*
1756	 * Skip searching the bitmap if we don't have a contiguous section that
1757	 * is large enough for this allocation.
1758	 */
1759	if (for_alloc &&
1760	    bitmap_info->max_extent_size &&
1761	    bitmap_info->max_extent_size < *bytes) {
1762		*bytes = bitmap_info->max_extent_size;
1763		return -1;
1764	}
1765
1766	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1767			  max_t(u64, *offset, bitmap_info->offset));
1768	bits = bytes_to_bits(*bytes, ctl->unit);
1769
1770	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1771		if (for_alloc && bits == 1) {
1772			found_bits = 1;
1773			break;
1774		}
1775		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1776					       BITS_PER_BITMAP, i);
1777		extent_bits = next_zero - i;
1778		if (extent_bits >= bits) {
1779			found_bits = extent_bits;
1780			break;
1781		} else if (extent_bits > max_bits) {
1782			max_bits = extent_bits;
1783		}
1784		i = next_zero;
1785	}
1786
1787	if (found_bits) {
1788		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1789		*bytes = (u64)(found_bits) * ctl->unit;
1790		return 0;
1791	}
1792
1793	*bytes = (u64)(max_bits) * ctl->unit;
1794	bitmap_info->max_extent_size = *bytes;
1795	return -1;
1796}
1797
 
 
 
 
 
 
 
1798/* Cache the size of the max extent in bytes */
1799static struct btrfs_free_space *
1800find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1801		unsigned long align, u64 *max_extent_size)
1802{
1803	struct btrfs_free_space *entry;
1804	struct rb_node *node;
1805	u64 tmp;
1806	u64 align_off;
1807	int ret;
1808
1809	if (!ctl->free_space_offset.rb_node)
1810		goto out;
1811
1812	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1813	if (!entry)
1814		goto out;
1815
1816	for (node = &entry->offset_index; node; node = rb_next(node)) {
1817		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1818		if (entry->bytes < *bytes) {
1819			if (entry->bytes > *max_extent_size)
1820				*max_extent_size = entry->bytes;
1821			continue;
1822		}
1823
1824		/* make sure the space returned is big enough
1825		 * to match our requested alignment
1826		 */
1827		if (*bytes >= align) {
1828			tmp = entry->offset - ctl->start + align - 1;
1829			tmp = div64_u64(tmp, align);
1830			tmp = tmp * align + ctl->start;
1831			align_off = tmp - entry->offset;
1832		} else {
1833			align_off = 0;
1834			tmp = entry->offset;
1835		}
1836
1837		if (entry->bytes < *bytes + align_off) {
1838			if (entry->bytes > *max_extent_size)
1839				*max_extent_size = entry->bytes;
1840			continue;
1841		}
1842
1843		if (entry->bitmap) {
1844			u64 size = *bytes;
1845
1846			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1847			if (!ret) {
1848				*offset = tmp;
1849				*bytes = size;
1850				return entry;
1851			} else if (size > *max_extent_size) {
1852				*max_extent_size = size;
 
 
1853			}
1854			continue;
1855		}
1856
1857		*offset = tmp;
1858		*bytes = entry->bytes - align_off;
1859		return entry;
1860	}
1861out:
1862	return NULL;
1863}
1864
1865static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1866			   struct btrfs_free_space *info, u64 offset)
1867{
1868	info->offset = offset_to_bitmap(ctl, offset);
1869	info->bytes = 0;
 
1870	INIT_LIST_HEAD(&info->list);
1871	link_free_space(ctl, info);
1872	ctl->total_bitmaps++;
1873
1874	ctl->op->recalc_thresholds(ctl);
1875}
1876
1877static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1878			struct btrfs_free_space *bitmap_info)
1879{
 
 
 
 
 
 
 
 
 
 
 
 
1880	unlink_free_space(ctl, bitmap_info);
1881	kfree(bitmap_info->bitmap);
1882	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1883	ctl->total_bitmaps--;
1884	ctl->op->recalc_thresholds(ctl);
1885}
1886
1887static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1888			      struct btrfs_free_space *bitmap_info,
1889			      u64 *offset, u64 *bytes)
1890{
1891	u64 end;
1892	u64 search_start, search_bytes;
1893	int ret;
1894
1895again:
1896	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1897
1898	/*
1899	 * We need to search for bits in this bitmap.  We could only cover some
1900	 * of the extent in this bitmap thanks to how we add space, so we need
1901	 * to search for as much as it as we can and clear that amount, and then
1902	 * go searching for the next bit.
1903	 */
1904	search_start = *offset;
1905	search_bytes = ctl->unit;
1906	search_bytes = min(search_bytes, end - search_start + 1);
1907	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1908			    false);
1909	if (ret < 0 || search_start != *offset)
1910		return -EINVAL;
1911
1912	/* We may have found more bits than what we need */
1913	search_bytes = min(search_bytes, *bytes);
1914
1915	/* Cannot clear past the end of the bitmap */
1916	search_bytes = min(search_bytes, end - search_start + 1);
1917
1918	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1919	*offset += search_bytes;
1920	*bytes -= search_bytes;
1921
1922	if (*bytes) {
1923		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1924		if (!bitmap_info->bytes)
1925			free_bitmap(ctl, bitmap_info);
1926
1927		/*
1928		 * no entry after this bitmap, but we still have bytes to
1929		 * remove, so something has gone wrong.
1930		 */
1931		if (!next)
1932			return -EINVAL;
1933
1934		bitmap_info = rb_entry(next, struct btrfs_free_space,
1935				       offset_index);
1936
1937		/*
1938		 * if the next entry isn't a bitmap we need to return to let the
1939		 * extent stuff do its work.
1940		 */
1941		if (!bitmap_info->bitmap)
1942			return -EAGAIN;
1943
1944		/*
1945		 * Ok the next item is a bitmap, but it may not actually hold
1946		 * the information for the rest of this free space stuff, so
1947		 * look for it, and if we don't find it return so we can try
1948		 * everything over again.
1949		 */
1950		search_start = *offset;
1951		search_bytes = ctl->unit;
1952		ret = search_bitmap(ctl, bitmap_info, &search_start,
1953				    &search_bytes, false);
1954		if (ret < 0 || search_start != *offset)
1955			return -EAGAIN;
1956
1957		goto again;
1958	} else if (!bitmap_info->bytes)
1959		free_bitmap(ctl, bitmap_info);
1960
1961	return 0;
1962}
1963
1964static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1965			       struct btrfs_free_space *info, u64 offset,
1966			       u64 bytes)
1967{
1968	u64 bytes_to_set = 0;
1969	u64 end;
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
1971	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1972
1973	bytes_to_set = min(end - offset, bytes);
1974
1975	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1976
1977	/*
1978	 * We set some bytes, we have no idea what the max extent size is
1979	 * anymore.
1980	 */
1981	info->max_extent_size = 0;
1982
1983	return bytes_to_set;
1984
1985}
1986
1987static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1988		      struct btrfs_free_space *info)
1989{
1990	struct btrfs_block_group_cache *block_group = ctl->private;
1991	struct btrfs_fs_info *fs_info = block_group->fs_info;
1992	bool forced = false;
1993
1994#ifdef CONFIG_BTRFS_DEBUG
1995	if (btrfs_should_fragment_free_space(block_group))
1996		forced = true;
1997#endif
1998
 
 
 
 
1999	/*
2000	 * If we are below the extents threshold then we can add this as an
2001	 * extent, and don't have to deal with the bitmap
2002	 */
2003	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2004		/*
2005		 * If this block group has some small extents we don't want to
2006		 * use up all of our free slots in the cache with them, we want
2007		 * to reserve them to larger extents, however if we have plenty
2008		 * of cache left then go ahead an dadd them, no sense in adding
2009		 * the overhead of a bitmap if we don't have to.
2010		 */
2011		if (info->bytes <= fs_info->sectorsize * 4) {
2012			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2013				return false;
2014		} else {
2015			return false;
2016		}
2017	}
2018
2019	/*
2020	 * The original block groups from mkfs can be really small, like 8
2021	 * megabytes, so don't bother with a bitmap for those entries.  However
2022	 * some block groups can be smaller than what a bitmap would cover but
2023	 * are still large enough that they could overflow the 32k memory limit,
2024	 * so allow those block groups to still be allowed to have a bitmap
2025	 * entry.
2026	 */
2027	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2028		return false;
2029
2030	return true;
2031}
2032
2033static const struct btrfs_free_space_op free_space_op = {
2034	.recalc_thresholds	= recalculate_thresholds,
2035	.use_bitmap		= use_bitmap,
2036};
2037
2038static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2039			      struct btrfs_free_space *info)
2040{
2041	struct btrfs_free_space *bitmap_info;
2042	struct btrfs_block_group_cache *block_group = NULL;
2043	int added = 0;
2044	u64 bytes, offset, bytes_added;
 
2045	int ret;
2046
2047	bytes = info->bytes;
2048	offset = info->offset;
 
2049
2050	if (!ctl->op->use_bitmap(ctl, info))
2051		return 0;
2052
2053	if (ctl->op == &free_space_op)
2054		block_group = ctl->private;
2055again:
2056	/*
2057	 * Since we link bitmaps right into the cluster we need to see if we
2058	 * have a cluster here, and if so and it has our bitmap we need to add
2059	 * the free space to that bitmap.
2060	 */
2061	if (block_group && !list_empty(&block_group->cluster_list)) {
2062		struct btrfs_free_cluster *cluster;
2063		struct rb_node *node;
2064		struct btrfs_free_space *entry;
2065
2066		cluster = list_entry(block_group->cluster_list.next,
2067				     struct btrfs_free_cluster,
2068				     block_group_list);
2069		spin_lock(&cluster->lock);
2070		node = rb_first(&cluster->root);
2071		if (!node) {
2072			spin_unlock(&cluster->lock);
2073			goto no_cluster_bitmap;
2074		}
2075
2076		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2077		if (!entry->bitmap) {
2078			spin_unlock(&cluster->lock);
2079			goto no_cluster_bitmap;
2080		}
2081
2082		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2083			bytes_added = add_bytes_to_bitmap(ctl, entry,
2084							  offset, bytes);
2085			bytes -= bytes_added;
2086			offset += bytes_added;
2087		}
2088		spin_unlock(&cluster->lock);
2089		if (!bytes) {
2090			ret = 1;
2091			goto out;
2092		}
2093	}
2094
2095no_cluster_bitmap:
2096	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2097					 1, 0);
2098	if (!bitmap_info) {
2099		ASSERT(added == 0);
2100		goto new_bitmap;
2101	}
2102
2103	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2104	bytes -= bytes_added;
2105	offset += bytes_added;
2106	added = 0;
2107
2108	if (!bytes) {
2109		ret = 1;
2110		goto out;
2111	} else
2112		goto again;
2113
2114new_bitmap:
2115	if (info && info->bitmap) {
2116		add_new_bitmap(ctl, info, offset);
2117		added = 1;
2118		info = NULL;
2119		goto again;
2120	} else {
2121		spin_unlock(&ctl->tree_lock);
2122
2123		/* no pre-allocated info, allocate a new one */
2124		if (!info) {
2125			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2126						 GFP_NOFS);
2127			if (!info) {
2128				spin_lock(&ctl->tree_lock);
2129				ret = -ENOMEM;
2130				goto out;
2131			}
2132		}
2133
2134		/* allocate the bitmap */
2135		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 
 
2136		spin_lock(&ctl->tree_lock);
2137		if (!info->bitmap) {
2138			ret = -ENOMEM;
2139			goto out;
2140		}
2141		goto again;
2142	}
2143
2144out:
2145	if (info) {
2146		if (info->bitmap)
2147			kfree(info->bitmap);
 
2148		kmem_cache_free(btrfs_free_space_cachep, info);
2149	}
2150
2151	return ret;
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2155			  struct btrfs_free_space *info, bool update_stat)
2156{
2157	struct btrfs_free_space *left_info;
2158	struct btrfs_free_space *right_info;
2159	bool merged = false;
2160	u64 offset = info->offset;
2161	u64 bytes = info->bytes;
 
2162
2163	/*
2164	 * first we want to see if there is free space adjacent to the range we
2165	 * are adding, if there is remove that struct and add a new one to
2166	 * cover the entire range
2167	 */
2168	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2169	if (right_info && rb_prev(&right_info->offset_index))
2170		left_info = rb_entry(rb_prev(&right_info->offset_index),
2171				     struct btrfs_free_space, offset_index);
2172	else
2173		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2174
2175	if (right_info && !right_info->bitmap) {
 
 
2176		if (update_stat)
2177			unlink_free_space(ctl, right_info);
2178		else
2179			__unlink_free_space(ctl, right_info);
2180		info->bytes += right_info->bytes;
2181		kmem_cache_free(btrfs_free_space_cachep, right_info);
2182		merged = true;
2183	}
2184
 
2185	if (left_info && !left_info->bitmap &&
2186	    left_info->offset + left_info->bytes == offset) {
 
2187		if (update_stat)
2188			unlink_free_space(ctl, left_info);
2189		else
2190			__unlink_free_space(ctl, left_info);
2191		info->offset = left_info->offset;
2192		info->bytes += left_info->bytes;
2193		kmem_cache_free(btrfs_free_space_cachep, left_info);
2194		merged = true;
2195	}
2196
2197	return merged;
2198}
2199
2200static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2201				     struct btrfs_free_space *info,
2202				     bool update_stat)
2203{
2204	struct btrfs_free_space *bitmap;
2205	unsigned long i;
2206	unsigned long j;
2207	const u64 end = info->offset + info->bytes;
2208	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2209	u64 bytes;
2210
2211	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2212	if (!bitmap)
2213		return false;
2214
2215	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2216	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2217	if (j == i)
2218		return false;
2219	bytes = (j - i) * ctl->unit;
2220	info->bytes += bytes;
2221
 
 
 
 
2222	if (update_stat)
2223		bitmap_clear_bits(ctl, bitmap, end, bytes);
2224	else
2225		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2226
2227	if (!bitmap->bytes)
2228		free_bitmap(ctl, bitmap);
2229
2230	return true;
2231}
2232
2233static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2234				       struct btrfs_free_space *info,
2235				       bool update_stat)
2236{
2237	struct btrfs_free_space *bitmap;
2238	u64 bitmap_offset;
2239	unsigned long i;
2240	unsigned long j;
2241	unsigned long prev_j;
2242	u64 bytes;
2243
2244	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2245	/* If we're on a boundary, try the previous logical bitmap. */
2246	if (bitmap_offset == info->offset) {
2247		if (info->offset == 0)
2248			return false;
2249		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2250	}
2251
2252	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2253	if (!bitmap)
2254		return false;
2255
2256	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2257	j = 0;
2258	prev_j = (unsigned long)-1;
2259	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2260		if (j > i)
2261			break;
2262		prev_j = j;
2263	}
2264	if (prev_j == i)
2265		return false;
2266
2267	if (prev_j == (unsigned long)-1)
2268		bytes = (i + 1) * ctl->unit;
2269	else
2270		bytes = (i - prev_j) * ctl->unit;
2271
2272	info->offset -= bytes;
2273	info->bytes += bytes;
2274
 
 
 
 
2275	if (update_stat)
2276		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2277	else
2278		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2279
2280	if (!bitmap->bytes)
2281		free_bitmap(ctl, bitmap);
2282
2283	return true;
2284}
2285
2286/*
2287 * We prefer always to allocate from extent entries, both for clustered and
2288 * non-clustered allocation requests. So when attempting to add a new extent
2289 * entry, try to see if there's adjacent free space in bitmap entries, and if
2290 * there is, migrate that space from the bitmaps to the extent.
2291 * Like this we get better chances of satisfying space allocation requests
2292 * because we attempt to satisfy them based on a single cache entry, and never
2293 * on 2 or more entries - even if the entries represent a contiguous free space
2294 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2295 * ends).
2296 */
2297static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2298			      struct btrfs_free_space *info,
2299			      bool update_stat)
2300{
2301	/*
2302	 * Only work with disconnected entries, as we can change their offset,
2303	 * and must be extent entries.
2304	 */
2305	ASSERT(!info->bitmap);
2306	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2307
2308	if (ctl->total_bitmaps > 0) {
2309		bool stole_end;
2310		bool stole_front = false;
2311
2312		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2313		if (ctl->total_bitmaps > 0)
2314			stole_front = steal_from_bitmap_to_front(ctl, info,
2315								 update_stat);
2316
2317		if (stole_end || stole_front)
2318			try_merge_free_space(ctl, info, update_stat);
2319	}
2320}
2321
2322int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2323			   struct btrfs_free_space_ctl *ctl,
2324			   u64 offset, u64 bytes)
 
2325{
 
2326	struct btrfs_free_space *info;
2327	int ret = 0;
 
 
 
2328
2329	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2330	if (!info)
2331		return -ENOMEM;
2332
2333	info->offset = offset;
2334	info->bytes = bytes;
 
2335	RB_CLEAR_NODE(&info->offset_index);
2336
2337	spin_lock(&ctl->tree_lock);
2338
2339	if (try_merge_free_space(ctl, info, true))
2340		goto link;
2341
2342	/*
2343	 * There was no extent directly to the left or right of this new
2344	 * extent then we know we're going to have to allocate a new extent, so
2345	 * before we do that see if we need to drop this into a bitmap
2346	 */
2347	ret = insert_into_bitmap(ctl, info);
2348	if (ret < 0) {
2349		goto out;
2350	} else if (ret) {
2351		ret = 0;
2352		goto out;
2353	}
2354link:
2355	/*
2356	 * Only steal free space from adjacent bitmaps if we're sure we're not
2357	 * going to add the new free space to existing bitmap entries - because
2358	 * that would mean unnecessary work that would be reverted. Therefore
2359	 * attempt to steal space from bitmaps if we're adding an extent entry.
2360	 */
2361	steal_from_bitmap(ctl, info, true);
2362
 
 
2363	ret = link_free_space(ctl, info);
2364	if (ret)
2365		kmem_cache_free(btrfs_free_space_cachep, info);
2366out:
 
2367	spin_unlock(&ctl->tree_lock);
2368
2369	if (ret) {
2370		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2371		ASSERT(ret != -EEXIST);
2372	}
2373
 
 
 
 
 
2374	return ret;
2375}
2376
2377int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378			    u64 offset, u64 bytes)
2379{
2380	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2381	struct btrfs_free_space *info;
2382	int ret;
2383	bool re_search = false;
2384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385	spin_lock(&ctl->tree_lock);
2386
2387again:
2388	ret = 0;
2389	if (!bytes)
2390		goto out_lock;
2391
2392	info = tree_search_offset(ctl, offset, 0, 0);
2393	if (!info) {
2394		/*
2395		 * oops didn't find an extent that matched the space we wanted
2396		 * to remove, look for a bitmap instead
2397		 */
2398		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2399					  1, 0);
2400		if (!info) {
2401			/*
2402			 * If we found a partial bit of our free space in a
2403			 * bitmap but then couldn't find the other part this may
2404			 * be a problem, so WARN about it.
2405			 */
2406			WARN_ON(re_search);
2407			goto out_lock;
2408		}
2409	}
2410
2411	re_search = false;
2412	if (!info->bitmap) {
2413		unlink_free_space(ctl, info);
2414		if (offset == info->offset) {
2415			u64 to_free = min(bytes, info->bytes);
2416
2417			info->bytes -= to_free;
2418			info->offset += to_free;
2419			if (info->bytes) {
2420				ret = link_free_space(ctl, info);
2421				WARN_ON(ret);
2422			} else {
2423				kmem_cache_free(btrfs_free_space_cachep, info);
2424			}
2425
2426			offset += to_free;
2427			bytes -= to_free;
2428			goto again;
2429		} else {
2430			u64 old_end = info->bytes + info->offset;
2431
2432			info->bytes = offset - info->offset;
2433			ret = link_free_space(ctl, info);
2434			WARN_ON(ret);
2435			if (ret)
2436				goto out_lock;
2437
2438			/* Not enough bytes in this entry to satisfy us */
2439			if (old_end < offset + bytes) {
2440				bytes -= old_end - offset;
2441				offset = old_end;
2442				goto again;
2443			} else if (old_end == offset + bytes) {
2444				/* all done */
2445				goto out_lock;
2446			}
2447			spin_unlock(&ctl->tree_lock);
2448
2449			ret = btrfs_add_free_space(block_group, offset + bytes,
2450						   old_end - (offset + bytes));
 
 
2451			WARN_ON(ret);
2452			goto out;
2453		}
2454	}
2455
2456	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2457	if (ret == -EAGAIN) {
2458		re_search = true;
2459		goto again;
2460	}
2461out_lock:
 
2462	spin_unlock(&ctl->tree_lock);
2463out:
2464	return ret;
2465}
2466
2467void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2468			   u64 bytes)
2469{
2470	struct btrfs_fs_info *fs_info = block_group->fs_info;
2471	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2472	struct btrfs_free_space *info;
2473	struct rb_node *n;
2474	int count = 0;
2475
 
 
 
 
 
 
 
 
 
 
 
2476	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2477		info = rb_entry(n, struct btrfs_free_space, offset_index);
2478		if (info->bytes >= bytes && !block_group->ro)
2479			count++;
2480		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2481			   info->offset, info->bytes,
2482		       (info->bitmap) ? "yes" : "no");
2483	}
 
2484	btrfs_info(fs_info, "block group has cluster?: %s",
2485	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2486	btrfs_info(fs_info,
2487		   "%d blocks of free space at or bigger than bytes is", count);
2488}
2489
2490void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
2491{
2492	struct btrfs_fs_info *fs_info = block_group->fs_info;
2493	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2494
2495	spin_lock_init(&ctl->tree_lock);
2496	ctl->unit = fs_info->sectorsize;
2497	ctl->start = block_group->key.objectid;
2498	ctl->private = block_group;
2499	ctl->op = &free_space_op;
2500	INIT_LIST_HEAD(&ctl->trimming_ranges);
2501	mutex_init(&ctl->cache_writeout_mutex);
2502
2503	/*
2504	 * we only want to have 32k of ram per block group for keeping
2505	 * track of free space, and if we pass 1/2 of that we want to
2506	 * start converting things over to using bitmaps
2507	 */
2508	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2509}
2510
2511/*
2512 * for a given cluster, put all of its extents back into the free
2513 * space cache.  If the block group passed doesn't match the block group
2514 * pointed to by the cluster, someone else raced in and freed the
2515 * cluster already.  In that case, we just return without changing anything
2516 */
2517static int
2518__btrfs_return_cluster_to_free_space(
2519			     struct btrfs_block_group_cache *block_group,
2520			     struct btrfs_free_cluster *cluster)
2521{
2522	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2523	struct btrfs_free_space *entry;
2524	struct rb_node *node;
2525
2526	spin_lock(&cluster->lock);
2527	if (cluster->block_group != block_group)
2528		goto out;
 
 
2529
2530	cluster->block_group = NULL;
2531	cluster->window_start = 0;
2532	list_del_init(&cluster->block_group_list);
2533
2534	node = rb_first(&cluster->root);
2535	while (node) {
2536		bool bitmap;
2537
2538		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2539		node = rb_next(&entry->offset_index);
2540		rb_erase(&entry->offset_index, &cluster->root);
2541		RB_CLEAR_NODE(&entry->offset_index);
2542
2543		bitmap = (entry->bitmap != NULL);
2544		if (!bitmap) {
 
 
 
 
 
 
 
2545			try_merge_free_space(ctl, entry, false);
2546			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2547		}
2548		tree_insert_offset(&ctl->free_space_offset,
2549				   entry->offset, &entry->offset_index, bitmap);
2550	}
2551	cluster->root = RB_ROOT;
2552
2553out:
2554	spin_unlock(&cluster->lock);
2555	btrfs_put_block_group(block_group);
2556	return 0;
2557}
2558
2559static void __btrfs_remove_free_space_cache_locked(
2560				struct btrfs_free_space_ctl *ctl)
2561{
2562	struct btrfs_free_space *info;
2563	struct rb_node *node;
2564
2565	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2566		info = rb_entry(node, struct btrfs_free_space, offset_index);
2567		if (!info->bitmap) {
2568			unlink_free_space(ctl, info);
2569			kmem_cache_free(btrfs_free_space_cachep, info);
2570		} else {
2571			free_bitmap(ctl, info);
2572		}
2573
2574		cond_resched_lock(&ctl->tree_lock);
2575	}
2576}
2577
2578void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2579{
2580	spin_lock(&ctl->tree_lock);
2581	__btrfs_remove_free_space_cache_locked(ctl);
 
 
2582	spin_unlock(&ctl->tree_lock);
2583}
2584
2585void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2586{
2587	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2588	struct btrfs_free_cluster *cluster;
2589	struct list_head *head;
2590
2591	spin_lock(&ctl->tree_lock);
2592	while ((head = block_group->cluster_list.next) !=
2593	       &block_group->cluster_list) {
2594		cluster = list_entry(head, struct btrfs_free_cluster,
2595				     block_group_list);
2596
2597		WARN_ON(cluster->block_group != block_group);
2598		__btrfs_return_cluster_to_free_space(block_group, cluster);
2599
2600		cond_resched_lock(&ctl->tree_lock);
2601	}
2602	__btrfs_remove_free_space_cache_locked(ctl);
 
2603	spin_unlock(&ctl->tree_lock);
2604
2605}
2606
2607u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608			       u64 offset, u64 bytes, u64 empty_size,
2609			       u64 *max_extent_size)
2610{
2611	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2612	struct btrfs_free_space *entry = NULL;
2613	u64 bytes_search = bytes + empty_size;
2614	u64 ret = 0;
2615	u64 align_gap = 0;
2616	u64 align_gap_len = 0;
 
 
 
2617
2618	spin_lock(&ctl->tree_lock);
2619	entry = find_free_space(ctl, &offset, &bytes_search,
2620				block_group->full_stripe_len, max_extent_size);
2621	if (!entry)
2622		goto out;
2623
2624	ret = offset;
2625	if (entry->bitmap) {
2626		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2627		if (!entry->bytes)
2628			free_bitmap(ctl, entry);
2629	} else {
2630		unlink_free_space(ctl, entry);
2631		align_gap_len = offset - entry->offset;
2632		align_gap = entry->offset;
 
 
 
 
2633
2634		entry->offset = offset + bytes;
2635		WARN_ON(entry->bytes < bytes + align_gap_len);
2636
2637		entry->bytes -= bytes + align_gap_len;
2638		if (!entry->bytes)
2639			kmem_cache_free(btrfs_free_space_cachep, entry);
2640		else
2641			link_free_space(ctl, entry);
2642	}
2643out:
 
2644	spin_unlock(&ctl->tree_lock);
2645
2646	if (align_gap_len)
2647		__btrfs_add_free_space(block_group->fs_info, ctl,
2648				       align_gap, align_gap_len);
 
2649	return ret;
2650}
2651
2652/*
2653 * given a cluster, put all of its extents back into the free space
2654 * cache.  If a block group is passed, this function will only free
2655 * a cluster that belongs to the passed block group.
2656 *
2657 * Otherwise, it'll get a reference on the block group pointed to by the
2658 * cluster and remove the cluster from it.
2659 */
2660int btrfs_return_cluster_to_free_space(
2661			       struct btrfs_block_group_cache *block_group,
2662			       struct btrfs_free_cluster *cluster)
2663{
2664	struct btrfs_free_space_ctl *ctl;
2665	int ret;
2666
2667	/* first, get a safe pointer to the block group */
2668	spin_lock(&cluster->lock);
2669	if (!block_group) {
2670		block_group = cluster->block_group;
2671		if (!block_group) {
2672			spin_unlock(&cluster->lock);
2673			return 0;
2674		}
2675	} else if (cluster->block_group != block_group) {
2676		/* someone else has already freed it don't redo their work */
2677		spin_unlock(&cluster->lock);
2678		return 0;
2679	}
2680	atomic_inc(&block_group->count);
2681	spin_unlock(&cluster->lock);
2682
2683	ctl = block_group->free_space_ctl;
2684
2685	/* now return any extents the cluster had on it */
2686	spin_lock(&ctl->tree_lock);
2687	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2688	spin_unlock(&ctl->tree_lock);
2689
 
 
2690	/* finally drop our ref */
2691	btrfs_put_block_group(block_group);
2692	return ret;
2693}
2694
2695static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2696				   struct btrfs_free_cluster *cluster,
2697				   struct btrfs_free_space *entry,
2698				   u64 bytes, u64 min_start,
2699				   u64 *max_extent_size)
2700{
2701	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2702	int err;
2703	u64 search_start = cluster->window_start;
2704	u64 search_bytes = bytes;
2705	u64 ret = 0;
2706
2707	search_start = min_start;
2708	search_bytes = bytes;
2709
2710	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2711	if (err) {
2712		if (search_bytes > *max_extent_size)
2713			*max_extent_size = search_bytes;
2714		return 0;
2715	}
2716
2717	ret = search_start;
2718	__bitmap_clear_bits(ctl, entry, ret, bytes);
2719
2720	return ret;
2721}
2722
2723/*
2724 * given a cluster, try to allocate 'bytes' from it, returns 0
2725 * if it couldn't find anything suitably large, or a logical disk offset
2726 * if things worked out
2727 */
2728u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2729			     struct btrfs_free_cluster *cluster, u64 bytes,
2730			     u64 min_start, u64 *max_extent_size)
2731{
2732	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2733	struct btrfs_free_space *entry = NULL;
2734	struct rb_node *node;
2735	u64 ret = 0;
2736
 
 
2737	spin_lock(&cluster->lock);
2738	if (bytes > cluster->max_size)
2739		goto out;
2740
2741	if (cluster->block_group != block_group)
2742		goto out;
2743
2744	node = rb_first(&cluster->root);
2745	if (!node)
2746		goto out;
2747
2748	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2749	while (1) {
2750		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2751			*max_extent_size = entry->bytes;
 
2752
2753		if (entry->bytes < bytes ||
2754		    (!entry->bitmap && entry->offset < min_start)) {
2755			node = rb_next(&entry->offset_index);
2756			if (!node)
2757				break;
2758			entry = rb_entry(node, struct btrfs_free_space,
2759					 offset_index);
2760			continue;
2761		}
2762
2763		if (entry->bitmap) {
2764			ret = btrfs_alloc_from_bitmap(block_group,
2765						      cluster, entry, bytes,
2766						      cluster->window_start,
2767						      max_extent_size);
2768			if (ret == 0) {
2769				node = rb_next(&entry->offset_index);
2770				if (!node)
2771					break;
2772				entry = rb_entry(node, struct btrfs_free_space,
2773						 offset_index);
2774				continue;
2775			}
2776			cluster->window_start += bytes;
2777		} else {
2778			ret = entry->offset;
2779
2780			entry->offset += bytes;
2781			entry->bytes -= bytes;
2782		}
2783
2784		if (entry->bytes == 0)
2785			rb_erase(&entry->offset_index, &cluster->root);
2786		break;
2787	}
2788out:
2789	spin_unlock(&cluster->lock);
2790
2791	if (!ret)
2792		return 0;
2793
2794	spin_lock(&ctl->tree_lock);
2795
 
 
 
2796	ctl->free_space -= bytes;
 
 
 
 
2797	if (entry->bytes == 0) {
 
2798		ctl->free_extents--;
2799		if (entry->bitmap) {
2800			kfree(entry->bitmap);
 
2801			ctl->total_bitmaps--;
2802			ctl->op->recalc_thresholds(ctl);
 
 
2803		}
2804		kmem_cache_free(btrfs_free_space_cachep, entry);
2805	}
2806
 
2807	spin_unlock(&ctl->tree_lock);
2808
2809	return ret;
2810}
2811
2812static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2813				struct btrfs_free_space *entry,
2814				struct btrfs_free_cluster *cluster,
2815				u64 offset, u64 bytes,
2816				u64 cont1_bytes, u64 min_bytes)
2817{
2818	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2819	unsigned long next_zero;
2820	unsigned long i;
2821	unsigned long want_bits;
2822	unsigned long min_bits;
2823	unsigned long found_bits;
2824	unsigned long max_bits = 0;
2825	unsigned long start = 0;
2826	unsigned long total_found = 0;
2827	int ret;
2828
2829	i = offset_to_bit(entry->offset, ctl->unit,
2830			  max_t(u64, offset, entry->offset));
2831	want_bits = bytes_to_bits(bytes, ctl->unit);
2832	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2833
2834	/*
2835	 * Don't bother looking for a cluster in this bitmap if it's heavily
2836	 * fragmented.
2837	 */
2838	if (entry->max_extent_size &&
2839	    entry->max_extent_size < cont1_bytes)
2840		return -ENOSPC;
2841again:
2842	found_bits = 0;
2843	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2844		next_zero = find_next_zero_bit(entry->bitmap,
2845					       BITS_PER_BITMAP, i);
2846		if (next_zero - i >= min_bits) {
2847			found_bits = next_zero - i;
2848			if (found_bits > max_bits)
2849				max_bits = found_bits;
2850			break;
2851		}
2852		if (next_zero - i > max_bits)
2853			max_bits = next_zero - i;
2854		i = next_zero;
2855	}
2856
2857	if (!found_bits) {
2858		entry->max_extent_size = (u64)max_bits * ctl->unit;
2859		return -ENOSPC;
2860	}
2861
2862	if (!total_found) {
2863		start = i;
2864		cluster->max_size = 0;
2865	}
2866
2867	total_found += found_bits;
2868
2869	if (cluster->max_size < found_bits * ctl->unit)
2870		cluster->max_size = found_bits * ctl->unit;
2871
2872	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2873		i = next_zero + 1;
2874		goto again;
2875	}
2876
2877	cluster->window_start = start * ctl->unit + entry->offset;
2878	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2879	ret = tree_insert_offset(&cluster->root, entry->offset,
2880				 &entry->offset_index, 1);
2881	ASSERT(!ret); /* -EEXIST; Logic error */
2882
2883	trace_btrfs_setup_cluster(block_group, cluster,
2884				  total_found * ctl->unit, 1);
2885	return 0;
2886}
2887
2888/*
2889 * This searches the block group for just extents to fill the cluster with.
2890 * Try to find a cluster with at least bytes total bytes, at least one
2891 * extent of cont1_bytes, and other clusters of at least min_bytes.
2892 */
2893static noinline int
2894setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2895			struct btrfs_free_cluster *cluster,
2896			struct list_head *bitmaps, u64 offset, u64 bytes,
2897			u64 cont1_bytes, u64 min_bytes)
2898{
2899	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900	struct btrfs_free_space *first = NULL;
2901	struct btrfs_free_space *entry = NULL;
2902	struct btrfs_free_space *last;
2903	struct rb_node *node;
2904	u64 window_free;
2905	u64 max_extent;
2906	u64 total_size = 0;
2907
2908	entry = tree_search_offset(ctl, offset, 0, 1);
2909	if (!entry)
2910		return -ENOSPC;
2911
2912	/*
2913	 * We don't want bitmaps, so just move along until we find a normal
2914	 * extent entry.
2915	 */
2916	while (entry->bitmap || entry->bytes < min_bytes) {
2917		if (entry->bitmap && list_empty(&entry->list))
2918			list_add_tail(&entry->list, bitmaps);
2919		node = rb_next(&entry->offset_index);
2920		if (!node)
2921			return -ENOSPC;
2922		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2923	}
2924
2925	window_free = entry->bytes;
2926	max_extent = entry->bytes;
2927	first = entry;
2928	last = entry;
2929
2930	for (node = rb_next(&entry->offset_index); node;
2931	     node = rb_next(&entry->offset_index)) {
2932		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2933
2934		if (entry->bitmap) {
2935			if (list_empty(&entry->list))
2936				list_add_tail(&entry->list, bitmaps);
2937			continue;
2938		}
2939
2940		if (entry->bytes < min_bytes)
2941			continue;
2942
2943		last = entry;
2944		window_free += entry->bytes;
2945		if (entry->bytes > max_extent)
2946			max_extent = entry->bytes;
2947	}
2948
2949	if (window_free < bytes || max_extent < cont1_bytes)
2950		return -ENOSPC;
2951
2952	cluster->window_start = first->offset;
2953
2954	node = &first->offset_index;
2955
2956	/*
2957	 * now we've found our entries, pull them out of the free space
2958	 * cache and put them into the cluster rbtree
2959	 */
2960	do {
2961		int ret;
2962
2963		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2964		node = rb_next(&entry->offset_index);
2965		if (entry->bitmap || entry->bytes < min_bytes)
2966			continue;
2967
2968		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2969		ret = tree_insert_offset(&cluster->root, entry->offset,
2970					 &entry->offset_index, 0);
2971		total_size += entry->bytes;
2972		ASSERT(!ret); /* -EEXIST; Logic error */
2973	} while (node && entry != last);
2974
2975	cluster->max_size = max_extent;
2976	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2977	return 0;
2978}
2979
2980/*
2981 * This specifically looks for bitmaps that may work in the cluster, we assume
2982 * that we have already failed to find extents that will work.
2983 */
2984static noinline int
2985setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2986		     struct btrfs_free_cluster *cluster,
2987		     struct list_head *bitmaps, u64 offset, u64 bytes,
2988		     u64 cont1_bytes, u64 min_bytes)
2989{
2990	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2991	struct btrfs_free_space *entry = NULL;
2992	int ret = -ENOSPC;
2993	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2994
2995	if (ctl->total_bitmaps == 0)
2996		return -ENOSPC;
2997
2998	/*
2999	 * The bitmap that covers offset won't be in the list unless offset
3000	 * is just its start offset.
3001	 */
3002	if (!list_empty(bitmaps))
3003		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3004
3005	if (!entry || entry->offset != bitmap_offset) {
3006		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3007		if (entry && list_empty(&entry->list))
3008			list_add(&entry->list, bitmaps);
3009	}
3010
3011	list_for_each_entry(entry, bitmaps, list) {
3012		if (entry->bytes < bytes)
3013			continue;
3014		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3015					   bytes, cont1_bytes, min_bytes);
3016		if (!ret)
3017			return 0;
3018	}
3019
3020	/*
3021	 * The bitmaps list has all the bitmaps that record free space
3022	 * starting after offset, so no more search is required.
3023	 */
3024	return -ENOSPC;
3025}
3026
3027/*
3028 * here we try to find a cluster of blocks in a block group.  The goal
3029 * is to find at least bytes+empty_size.
3030 * We might not find them all in one contiguous area.
3031 *
3032 * returns zero and sets up cluster if things worked out, otherwise
3033 * it returns -enospc
3034 */
3035int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3036			     struct btrfs_block_group_cache *block_group,
3037			     struct btrfs_free_cluster *cluster,
3038			     u64 offset, u64 bytes, u64 empty_size)
3039{
 
3040	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3041	struct btrfs_free_space *entry, *tmp;
3042	LIST_HEAD(bitmaps);
3043	u64 min_bytes;
3044	u64 cont1_bytes;
3045	int ret;
3046
3047	/*
3048	 * Choose the minimum extent size we'll require for this
3049	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3050	 * For metadata, allow allocates with smaller extents.  For
3051	 * data, keep it dense.
3052	 */
3053	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3054		cont1_bytes = min_bytes = bytes + empty_size;
3055	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3056		cont1_bytes = bytes;
3057		min_bytes = fs_info->sectorsize;
3058	} else {
3059		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3060		min_bytes = fs_info->sectorsize;
3061	}
3062
3063	spin_lock(&ctl->tree_lock);
3064
3065	/*
3066	 * If we know we don't have enough space to make a cluster don't even
3067	 * bother doing all the work to try and find one.
3068	 */
3069	if (ctl->free_space < bytes) {
3070		spin_unlock(&ctl->tree_lock);
3071		return -ENOSPC;
3072	}
3073
3074	spin_lock(&cluster->lock);
3075
3076	/* someone already found a cluster, hooray */
3077	if (cluster->block_group) {
3078		ret = 0;
3079		goto out;
3080	}
3081
3082	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3083				 min_bytes);
3084
3085	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3086				      bytes + empty_size,
3087				      cont1_bytes, min_bytes);
3088	if (ret)
3089		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3090					   offset, bytes + empty_size,
3091					   cont1_bytes, min_bytes);
3092
3093	/* Clear our temporary list */
3094	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3095		list_del_init(&entry->list);
3096
3097	if (!ret) {
3098		atomic_inc(&block_group->count);
3099		list_add_tail(&cluster->block_group_list,
3100			      &block_group->cluster_list);
3101		cluster->block_group = block_group;
3102	} else {
3103		trace_btrfs_failed_cluster_setup(block_group);
3104	}
3105out:
3106	spin_unlock(&cluster->lock);
3107	spin_unlock(&ctl->tree_lock);
3108
3109	return ret;
3110}
3111
3112/*
3113 * simple code to zero out a cluster
3114 */
3115void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3116{
3117	spin_lock_init(&cluster->lock);
3118	spin_lock_init(&cluster->refill_lock);
3119	cluster->root = RB_ROOT;
3120	cluster->max_size = 0;
3121	cluster->fragmented = false;
3122	INIT_LIST_HEAD(&cluster->block_group_list);
3123	cluster->block_group = NULL;
3124}
3125
3126static int do_trimming(struct btrfs_block_group_cache *block_group,
3127		       u64 *total_trimmed, u64 start, u64 bytes,
3128		       u64 reserved_start, u64 reserved_bytes,
 
3129		       struct btrfs_trim_range *trim_entry)
3130{
3131	struct btrfs_space_info *space_info = block_group->space_info;
3132	struct btrfs_fs_info *fs_info = block_group->fs_info;
3133	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3134	int ret;
3135	int update = 0;
 
 
 
3136	u64 trimmed = 0;
3137
3138	spin_lock(&space_info->lock);
3139	spin_lock(&block_group->lock);
3140	if (!block_group->ro) {
3141		block_group->reserved += reserved_bytes;
3142		space_info->bytes_reserved += reserved_bytes;
3143		update = 1;
3144	}
3145	spin_unlock(&block_group->lock);
3146	spin_unlock(&space_info->lock);
3147
3148	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3149	if (!ret)
3150		*total_trimmed += trimmed;
 
 
3151
3152	mutex_lock(&ctl->cache_writeout_mutex);
3153	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3154	list_del(&trim_entry->list);
3155	mutex_unlock(&ctl->cache_writeout_mutex);
3156
3157	if (update) {
3158		spin_lock(&space_info->lock);
3159		spin_lock(&block_group->lock);
3160		if (block_group->ro)
3161			space_info->bytes_readonly += reserved_bytes;
3162		block_group->reserved -= reserved_bytes;
3163		space_info->bytes_reserved -= reserved_bytes;
 
3164		spin_unlock(&space_info->lock);
3165		spin_unlock(&block_group->lock);
3166	}
3167
3168	return ret;
3169}
3170
3171static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3172			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3173{
 
 
3174	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3175	struct btrfs_free_space *entry;
3176	struct rb_node *node;
3177	int ret = 0;
3178	u64 extent_start;
3179	u64 extent_bytes;
 
3180	u64 bytes;
 
3181
3182	while (start < end) {
3183		struct btrfs_trim_range trim_entry;
3184
3185		mutex_lock(&ctl->cache_writeout_mutex);
3186		spin_lock(&ctl->tree_lock);
3187
3188		if (ctl->free_space < minlen) {
3189			spin_unlock(&ctl->tree_lock);
3190			mutex_unlock(&ctl->cache_writeout_mutex);
3191			break;
3192		}
3193
3194		entry = tree_search_offset(ctl, start, 0, 1);
3195		if (!entry) {
3196			spin_unlock(&ctl->tree_lock);
3197			mutex_unlock(&ctl->cache_writeout_mutex);
3198			break;
3199		}
3200
3201		/* skip bitmaps */
3202		while (entry->bitmap) {
 
3203			node = rb_next(&entry->offset_index);
3204			if (!node) {
3205				spin_unlock(&ctl->tree_lock);
3206				mutex_unlock(&ctl->cache_writeout_mutex);
3207				goto out;
3208			}
3209			entry = rb_entry(node, struct btrfs_free_space,
3210					 offset_index);
3211		}
3212
3213		if (entry->offset >= end) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		extent_start = entry->offset;
3220		extent_bytes = entry->bytes;
3221		start = max(start, extent_start);
3222		bytes = min(extent_start + extent_bytes, end) - start;
3223		if (bytes < minlen) {
3224			spin_unlock(&ctl->tree_lock);
3225			mutex_unlock(&ctl->cache_writeout_mutex);
3226			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227		}
3228
3229		unlink_free_space(ctl, entry);
3230		kmem_cache_free(btrfs_free_space_cachep, entry);
3231
3232		spin_unlock(&ctl->tree_lock);
3233		trim_entry.start = extent_start;
3234		trim_entry.bytes = extent_bytes;
3235		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3236		mutex_unlock(&ctl->cache_writeout_mutex);
3237
3238		ret = do_trimming(block_group, total_trimmed, start, bytes,
3239				  extent_start, extent_bytes, &trim_entry);
3240		if (ret)
 
 
3241			break;
 
3242next:
3243		start += bytes;
 
 
 
3244
3245		if (fatal_signal_pending(current)) {
3246			ret = -ERESTARTSYS;
3247			break;
3248		}
3249
3250		cond_resched();
3251	}
3252out:
 
 
 
 
 
 
 
3253	return ret;
3254}
3255
3256static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3257			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258{
 
 
3259	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3260	struct btrfs_free_space *entry;
3261	int ret = 0;
3262	int ret2;
3263	u64 bytes;
3264	u64 offset = offset_to_bitmap(ctl, start);
 
3265
3266	while (offset < end) {
3267		bool next_bitmap = false;
3268		struct btrfs_trim_range trim_entry;
3269
3270		mutex_lock(&ctl->cache_writeout_mutex);
3271		spin_lock(&ctl->tree_lock);
3272
3273		if (ctl->free_space < minlen) {
 
 
3274			spin_unlock(&ctl->tree_lock);
3275			mutex_unlock(&ctl->cache_writeout_mutex);
3276			break;
3277		}
3278
3279		entry = tree_search_offset(ctl, offset, 1, 0);
3280		if (!entry) {
 
 
 
 
 
 
 
 
 
3281			spin_unlock(&ctl->tree_lock);
3282			mutex_unlock(&ctl->cache_writeout_mutex);
3283			next_bitmap = true;
3284			goto next;
3285		}
3286
 
 
 
 
 
 
 
 
 
3287		bytes = minlen;
3288		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3289		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3290			spin_unlock(&ctl->tree_lock);
3291			mutex_unlock(&ctl->cache_writeout_mutex);
3292			next_bitmap = true;
3293			goto next;
3294		}
3295
 
 
 
 
 
 
 
 
 
 
3296		bytes = min(bytes, end - start);
3297		if (bytes < minlen) {
3298			spin_unlock(&ctl->tree_lock);
3299			mutex_unlock(&ctl->cache_writeout_mutex);
3300			goto next;
3301		}
3302
 
 
 
 
 
 
 
 
 
 
 
3303		bitmap_clear_bits(ctl, entry, start, bytes);
3304		if (entry->bytes == 0)
3305			free_bitmap(ctl, entry);
3306
3307		spin_unlock(&ctl->tree_lock);
3308		trim_entry.start = start;
3309		trim_entry.bytes = bytes;
3310		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3311		mutex_unlock(&ctl->cache_writeout_mutex);
3312
3313		ret = do_trimming(block_group, total_trimmed, start, bytes,
3314				  start, bytes, &trim_entry);
3315		if (ret)
 
 
 
3316			break;
 
3317next:
3318		if (next_bitmap) {
3319			offset += BITS_PER_BITMAP * ctl->unit;
 
3320		} else {
3321			start += bytes;
3322			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3323				offset += BITS_PER_BITMAP * ctl->unit;
3324		}
 
3325
3326		if (fatal_signal_pending(current)) {
 
 
3327			ret = -ERESTARTSYS;
3328			break;
3329		}
3330
3331		cond_resched();
3332	}
3333
 
 
 
 
3334	return ret;
3335}
3336
3337void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
 
3338{
3339	atomic_inc(&cache->trimming);
3340}
 
 
 
3341
3342void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3343{
3344	struct btrfs_fs_info *fs_info = block_group->fs_info;
3345	struct extent_map_tree *em_tree;
3346	struct extent_map *em;
3347	bool cleanup;
3348
3349	spin_lock(&block_group->lock);
3350	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3351		   block_group->removed);
 
 
 
3352	spin_unlock(&block_group->lock);
3353
3354	if (cleanup) {
3355		mutex_lock(&fs_info->chunk_mutex);
3356		em_tree = &fs_info->mapping_tree.map_tree;
3357		write_lock(&em_tree->lock);
3358		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3359					   1);
3360		BUG_ON(!em); /* logic error, can't happen */
3361		/*
3362		 * remove_extent_mapping() will delete us from the pinned_chunks
3363		 * list, which is protected by the chunk mutex.
3364		 */
3365		remove_extent_mapping(em_tree, em);
3366		write_unlock(&em_tree->lock);
3367		mutex_unlock(&fs_info->chunk_mutex);
3368
3369		/* once for us and once for the tree */
3370		free_extent_map(em);
3371		free_extent_map(em);
3372
3373		/*
3374		 * We've left one free space entry and other tasks trimming
3375		 * this block group have left 1 entry each one. Free them.
3376		 */
3377		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3378	}
 
 
3379}
3380
3381int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3382			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 
3383{
3384	int ret;
3385
3386	*trimmed = 0;
3387
3388	spin_lock(&block_group->lock);
3389	if (block_group->removed) {
3390		spin_unlock(&block_group->lock);
3391		return 0;
3392	}
3393	btrfs_get_block_group_trimming(block_group);
3394	spin_unlock(&block_group->lock);
3395
3396	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3397	if (ret)
3398		goto out;
3399
3400	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3401out:
3402	btrfs_put_block_group_trimming(block_group);
3403	return ret;
3404}
3405
3406/*
3407 * Find the left-most item in the cache tree, and then return the
3408 * smallest inode number in the item.
3409 *
3410 * Note: the returned inode number may not be the smallest one in
3411 * the tree, if the left-most item is a bitmap.
3412 */
3413u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3414{
3415	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3416	struct btrfs_free_space *entry = NULL;
3417	u64 ino = 0;
3418
3419	spin_lock(&ctl->tree_lock);
3420
3421	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3422		goto out;
3423
3424	entry = rb_entry(rb_first(&ctl->free_space_offset),
3425			 struct btrfs_free_space, offset_index);
3426
3427	if (!entry->bitmap) {
3428		ino = entry->offset;
3429
3430		unlink_free_space(ctl, entry);
3431		entry->offset++;
3432		entry->bytes--;
3433		if (!entry->bytes)
3434			kmem_cache_free(btrfs_free_space_cachep, entry);
3435		else
3436			link_free_space(ctl, entry);
3437	} else {
3438		u64 offset = 0;
3439		u64 count = 1;
3440		int ret;
3441
3442		ret = search_bitmap(ctl, entry, &offset, &count, true);
3443		/* Logic error; Should be empty if it can't find anything */
3444		ASSERT(!ret);
3445
3446		ino = offset;
3447		bitmap_clear_bits(ctl, entry, offset, 1);
3448		if (entry->bytes == 0)
3449			free_bitmap(ctl, entry);
3450	}
3451out:
3452	spin_unlock(&ctl->tree_lock);
3453
3454	return ino;
3455}
3456
3457struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3458				    struct btrfs_path *path)
3459{
3460	struct inode *inode = NULL;
3461
3462	spin_lock(&root->ino_cache_lock);
3463	if (root->ino_cache_inode)
3464		inode = igrab(root->ino_cache_inode);
3465	spin_unlock(&root->ino_cache_lock);
3466	if (inode)
3467		return inode;
3468
3469	inode = __lookup_free_space_inode(root, path, 0);
3470	if (IS_ERR(inode))
3471		return inode;
3472
3473	spin_lock(&root->ino_cache_lock);
3474	if (!btrfs_fs_closing(root->fs_info))
3475		root->ino_cache_inode = igrab(inode);
3476	spin_unlock(&root->ino_cache_lock);
3477
3478	return inode;
3479}
3480
3481int create_free_ino_inode(struct btrfs_root *root,
3482			  struct btrfs_trans_handle *trans,
3483			  struct btrfs_path *path)
3484{
3485	return __create_free_space_inode(root, trans, path,
3486					 BTRFS_FREE_INO_OBJECTID, 0);
3487}
3488
3489int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
3490{
3491	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3492	struct btrfs_path *path;
3493	struct inode *inode;
3494	int ret = 0;
3495	u64 root_gen = btrfs_root_generation(&root->root_item);
3496
3497	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3498		return 0;
3499
3500	/*
3501	 * If we're unmounting then just return, since this does a search on the
3502	 * normal root and not the commit root and we could deadlock.
3503	 */
3504	if (btrfs_fs_closing(fs_info))
3505		return 0;
3506
3507	path = btrfs_alloc_path();
3508	if (!path)
3509		return 0;
3510
3511	inode = lookup_free_ino_inode(root, path);
3512	if (IS_ERR(inode))
3513		goto out;
3514
3515	if (root_gen != BTRFS_I(inode)->generation)
3516		goto out_put;
3517
3518	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3519
3520	if (ret < 0)
3521		btrfs_err(fs_info,
3522			"failed to load free ino cache for root %llu",
3523			root->root_key.objectid);
3524out_put:
3525	iput(inode);
3526out:
3527	btrfs_free_path(path);
3528	return ret;
3529}
3530
3531int btrfs_write_out_ino_cache(struct btrfs_root *root,
3532			      struct btrfs_trans_handle *trans,
3533			      struct btrfs_path *path,
3534			      struct inode *inode)
3535{
3536	struct btrfs_fs_info *fs_info = root->fs_info;
3537	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3538	int ret;
3539	struct btrfs_io_ctl io_ctl;
3540	bool release_metadata = true;
3541
3542	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3543		return 0;
 
 
 
 
 
 
 
 
 
3544
3545	memset(&io_ctl, 0, sizeof(io_ctl));
3546	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3547				      trans, path, 0);
3548	if (!ret) {
3549		/*
3550		 * At this point writepages() didn't error out, so our metadata
3551		 * reservation is released when the writeback finishes, at
3552		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3553		 * with or without an error.
3554		 */
3555		release_metadata = false;
3556		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3557	}
3558
3559	if (ret) {
3560		if (release_metadata)
3561			btrfs_delalloc_release_metadata(inode, inode->i_size);
3562#ifdef DEBUG
3563		btrfs_err(fs_info,
3564			  "failed to write free ino cache for root %llu",
3565			  root->root_key.objectid);
3566#endif
3567	}
3568
3569	return ret;
3570}
3571
3572#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3573/*
3574 * Use this if you need to make a bitmap or extent entry specifically, it
3575 * doesn't do any of the merging that add_free_space does, this acts a lot like
3576 * how the free space cache loading stuff works, so you can get really weird
3577 * configurations.
3578 */
3579int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3580			      u64 offset, u64 bytes, bool bitmap)
3581{
3582	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3583	struct btrfs_free_space *info = NULL, *bitmap_info;
3584	void *map = NULL;
 
3585	u64 bytes_added;
3586	int ret;
3587
3588again:
3589	if (!info) {
3590		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3591		if (!info)
3592			return -ENOMEM;
3593	}
3594
3595	if (!bitmap) {
3596		spin_lock(&ctl->tree_lock);
3597		info->offset = offset;
3598		info->bytes = bytes;
3599		info->max_extent_size = 0;
3600		ret = link_free_space(ctl, info);
3601		spin_unlock(&ctl->tree_lock);
3602		if (ret)
3603			kmem_cache_free(btrfs_free_space_cachep, info);
3604		return ret;
3605	}
3606
3607	if (!map) {
3608		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3609		if (!map) {
3610			kmem_cache_free(btrfs_free_space_cachep, info);
3611			return -ENOMEM;
3612		}
3613	}
3614
3615	spin_lock(&ctl->tree_lock);
3616	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3617					 1, 0);
3618	if (!bitmap_info) {
3619		info->bitmap = map;
3620		map = NULL;
3621		add_new_bitmap(ctl, info, offset);
3622		bitmap_info = info;
3623		info = NULL;
3624	}
3625
3626	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3627
3628	bytes -= bytes_added;
3629	offset += bytes_added;
3630	spin_unlock(&ctl->tree_lock);
3631
3632	if (bytes)
3633		goto again;
3634
3635	if (info)
3636		kmem_cache_free(btrfs_free_space_cachep, info);
3637	if (map)
3638		kfree(map);
3639	return 0;
3640}
3641
3642/*
3643 * Checks to see if the given range is in the free space cache.  This is really
3644 * just used to check the absence of space, so if there is free space in the
3645 * range at all we will return 1.
3646 */
3647int test_check_exists(struct btrfs_block_group_cache *cache,
3648		      u64 offset, u64 bytes)
3649{
3650	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3651	struct btrfs_free_space *info;
3652	int ret = 0;
3653
3654	spin_lock(&ctl->tree_lock);
3655	info = tree_search_offset(ctl, offset, 0, 0);
3656	if (!info) {
3657		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3658					  1, 0);
3659		if (!info)
3660			goto out;
3661	}
3662
3663have_info:
3664	if (info->bitmap) {
3665		u64 bit_off, bit_bytes;
3666		struct rb_node *n;
3667		struct btrfs_free_space *tmp;
3668
3669		bit_off = offset;
3670		bit_bytes = ctl->unit;
3671		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3672		if (!ret) {
3673			if (bit_off == offset) {
3674				ret = 1;
3675				goto out;
3676			} else if (bit_off > offset &&
3677				   offset + bytes > bit_off) {
3678				ret = 1;
3679				goto out;
3680			}
3681		}
3682
3683		n = rb_prev(&info->offset_index);
3684		while (n) {
3685			tmp = rb_entry(n, struct btrfs_free_space,
3686				       offset_index);
3687			if (tmp->offset + tmp->bytes < offset)
3688				break;
3689			if (offset + bytes < tmp->offset) {
3690				n = rb_prev(&tmp->offset_index);
3691				continue;
3692			}
3693			info = tmp;
3694			goto have_info;
3695		}
3696
3697		n = rb_next(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (offset + bytes < tmp->offset)
3702				break;
3703			if (tmp->offset + tmp->bytes < offset) {
3704				n = rb_next(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		ret = 0;
3712		goto out;
3713	}
3714
3715	if (info->offset == offset) {
3716		ret = 1;
3717		goto out;
3718	}
3719
3720	if (offset > info->offset && offset < info->offset + info->bytes)
3721		ret = 1;
3722out:
3723	spin_unlock(&ctl->tree_lock);
3724	return ret;
3725}
3726#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */