Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
204 *
205 * return device used by hardware layer to print debugging information
206 *
207 **/
208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209{
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
212}
213
214/**
215 * e1000_init_module - Driver Registration Routine
216 *
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
219 **/
220static int __init e1000_init_module(void)
221{
222 int ret;
223 pr_info("%s\n", e1000_driver_string);
224
225 pr_info("%s\n", e1000_copyright);
226
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
229 if (copybreak == 0)
230 pr_info("copybreak disabled\n");
231 else
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
234 }
235 return ret;
236}
237
238module_init(e1000_init_module);
239
240/**
241 * e1000_exit_module - Driver Exit Cleanup Routine
242 *
243 * e1000_exit_module is called just before the driver is removed
244 * from memory.
245 **/
246static void __exit e1000_exit_module(void)
247{
248 pci_unregister_driver(&e1000_driver);
249}
250
251module_exit(e1000_exit_module);
252
253static int e1000_request_irq(struct e1000_adapter *adapter)
254{
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261 netdev);
262 if (err) {
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 }
265
266 return err;
267}
268
269static void e1000_free_irq(struct e1000_adapter *adapter)
270{
271 struct net_device *netdev = adapter->netdev;
272
273 free_irq(adapter->pdev->irq, netdev);
274}
275
276/**
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
279 **/
280static void e1000_irq_disable(struct e1000_adapter *adapter)
281{
282 struct e1000_hw *hw = &adapter->hw;
283
284 ew32(IMC, ~0);
285 E1000_WRITE_FLUSH();
286 synchronize_irq(adapter->pdev->irq);
287}
288
289/**
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
292 **/
293static void e1000_irq_enable(struct e1000_adapter *adapter)
294{
295 struct e1000_hw *hw = &adapter->hw;
296
297 ew32(IMS, IMS_ENABLE_MASK);
298 E1000_WRITE_FLUSH();
299}
300
301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302{
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
307
308 if (!e1000_vlan_used(adapter))
309 return;
310
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
316 } else {
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 }
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 (vid != old_vid) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 old_vid);
324 } else {
325 adapter->mng_vlan_id = vid;
326 }
327}
328
329static void e1000_init_manageability(struct e1000_adapter *adapter)
330{
331 struct e1000_hw *hw = &adapter->hw;
332
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
335
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
338
339 ew32(MANC, manc);
340 }
341}
342
343static void e1000_release_manageability(struct e1000_adapter *adapter)
344{
345 struct e1000_hw *hw = &adapter->hw;
346
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
349
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
352
353 ew32(MANC, manc);
354 }
355}
356
357/**
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
360 **/
361static void e1000_configure(struct e1000_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 int i;
365
366 e1000_set_rx_mode(netdev);
367
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
370
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
377 */
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
382 }
383}
384
385int e1000_up(struct e1000_adapter *adapter)
386{
387 struct e1000_hw *hw = &adapter->hw;
388
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
391
392 clear_bit(__E1000_DOWN, &adapter->flags);
393
394 napi_enable(&adapter->napi);
395
396 e1000_irq_enable(adapter);
397
398 netif_wake_queue(adapter->netdev);
399
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
402 return 0;
403}
404
405/**
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
408 *
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
412 **/
413void e1000_power_up_phy(struct e1000_adapter *adapter)
414{
415 struct e1000_hw *hw = &adapter->hw;
416 u16 mii_reg = 0;
417
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
422 */
423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426 }
427}
428
429static void e1000_power_down_phy(struct e1000_adapter *adapter)
430{
431 struct e1000_hw *hw = &adapter->hw;
432
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
435 * (a) WoL is enabled
436 * (b) AMT is active
437 * (c) SoL/IDER session is active
438 */
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
441 u16 mii_reg = 0;
442
443 switch (hw->mac_type) {
444 case e1000_82540:
445 case e1000_82545:
446 case e1000_82545_rev_3:
447 case e1000_82546:
448 case e1000_ce4100:
449 case e1000_82546_rev_3:
450 case e1000_82541:
451 case e1000_82541_rev_2:
452 case e1000_82547:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 goto out;
456 break;
457 default:
458 goto out;
459 }
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463 msleep(1);
464 }
465out:
466 return;
467}
468
469static void e1000_down_and_stop(struct e1000_adapter *adapter)
470{
471 set_bit(__E1000_DOWN, &adapter->flags);
472
473 cancel_delayed_work_sync(&adapter->watchdog_task);
474
475 /*
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
479 */
480
481 cancel_delayed_work_sync(&adapter->phy_info_task);
482 cancel_delayed_work_sync(&adapter->fifo_stall_task);
483
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(&adapter->reset_task);
487}
488
489void e1000_down(struct e1000_adapter *adapter)
490{
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495 /* disable receives in the hardware */
496 rctl = er32(RCTL);
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
499
500 netif_tx_disable(netdev);
501
502 /* disable transmits in the hardware */
503 tctl = er32(TCTL);
504 tctl &= ~E1000_TCTL_EN;
505 ew32(TCTL, tctl);
506 /* flush both disables and wait for them to finish */
507 E1000_WRITE_FLUSH();
508 msleep(10);
509
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 */
517 netif_carrier_off(netdev);
518
519 napi_disable(&adapter->napi);
520
521 e1000_irq_disable(adapter);
522
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
526 */
527 e1000_down_and_stop(adapter);
528
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
531
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
535}
536
537void e1000_reinit_locked(struct e1000_adapter *adapter)
538{
539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540 msleep(1);
541
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 e1000_down(adapter);
545 e1000_up(adapter);
546 }
547
548 clear_bit(__E1000_RESETTING, &adapter->flags);
549}
550
551void e1000_reset(struct e1000_adapter *adapter)
552{
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
556 u16 hwm;
557
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
560 */
561
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
565 case e1000_82543:
566 case e1000_82544:
567 case e1000_82540:
568 case e1000_82541:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
571 pba = E1000_PBA_48K;
572 break;
573 case e1000_82545:
574 case e1000_82545_rev_3:
575 case e1000_82546:
576 case e1000_ce4100:
577 case e1000_82546_rev_3:
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82547:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
583 pba = E1000_PBA_30K;
584 break;
585 case e1000_undefined:
586 case e1000_num_macs:
587 break;
588 }
589
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
593
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(&adapter->tx_fifo_stall, 0);
600 }
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
603 ew32(PBA, pba);
604
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
610 * expressed in KB.
611 */
612 pba = er32(PBA);
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 pba &= 0xffff;
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
619 */
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
622 ETH_FCS_LEN) * 2;
623 min_tx_space = ALIGN(min_tx_space, 1024);
624 min_tx_space >>= 10;
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
628 min_rx_space >>= 10;
629
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
633 */
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
637
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
642 break;
643 default:
644 break;
645 }
646
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
649 */
650 if (pba < min_rx_space)
651 pba = min_rx_space;
652 }
653 }
654
655 ew32(PBA, pba);
656
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
665 */
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
668
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 hw->fc_send_xon = 1;
673 hw->fc = hw->original_fc;
674
675 /* Allow time for pending master requests to run */
676 e1000_reset_hw(hw);
677 if (hw->mac_type >= e1000_82544)
678 ew32(WUC, 0);
679
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
686 hw->autoneg == 1 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
692 */
693 ctrl &= ~E1000_CTRL_SWDPIN3;
694 ew32(CTRL, ctrl);
695 }
696
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, &adapter->phy_info);
702
703 e1000_release_manageability(adapter);
704}
705
706/* Dump the eeprom for users having checksum issues */
707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708{
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
712 u8 *data;
713 int i;
714 u16 csum_old, csum_new = 0;
715
716 eeprom.len = ops->get_eeprom_len(netdev);
717 eeprom.offset = 0;
718
719 data = kmalloc(eeprom.len, GFP_KERNEL);
720 if (!data)
721 return;
722
723 ops->get_eeprom(netdev, &eeprom, data);
724
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
730
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
734
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
750
751 kfree(data);
752}
753
754/**
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
757 *
758 * Return true if an adapter needs ioport resources
759 **/
760static int e1000_is_need_ioport(struct pci_dev *pdev)
761{
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 return true;
785 default:
786 return false;
787 }
788}
789
790static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
792{
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
795 */
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
798 else
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801 return features;
802}
803
804static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
806{
807 struct e1000_adapter *adapter = netdev_priv(netdev);
808 netdev_features_t changed = features ^ netdev->features;
809
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
812
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 return 0;
815
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819 if (netif_running(netdev))
820 e1000_reinit_locked(adapter);
821 else
822 e1000_reset(adapter);
823
824 return 1;
825}
826
827static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_do_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839#ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
841#endif
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
844};
845
846/**
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
850 *
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
856 */
857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 struct e1000_hw *hw)
859{
860 struct pci_dev *pdev = adapter->pdev;
861
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
868
869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
878 return -EIO;
879 }
880
881 switch (hw->mac_type) {
882 default:
883 break;
884 case e1000_82541:
885 case e1000_82547:
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
889 break;
890 }
891
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
894
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
898
899 /* Copper options */
900
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
905 }
906
907 return 0;
908}
909
910/**
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
914 *
915 * Returns 0 on success, negative on failure
916 *
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
920 **/
921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922{
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
925 struct e1000_hw *hw;
926
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
930 u16 eeprom_data = 0;
931 u16 tmp = 0;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
944 }
945 if (err)
946 return err;
947
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 if (err)
950 goto err_pci_reg;
951
952 pci_set_master(pdev);
953 err = pci_save_state(pdev);
954 if (err)
955 goto err_alloc_etherdev;
956
957 err = -ENOMEM;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 if (!netdev)
960 goto err_alloc_etherdev;
961
962 SET_NETDEV_DEV(netdev, &pdev->dev);
963
964 pci_set_drvdata(pdev, netdev);
965 adapter = netdev_priv(netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
971
972 hw = &adapter->hw;
973 hw->back = adapter;
974
975 err = -EIO;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 if (!hw->hw_addr)
978 goto err_ioremap;
979
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
983 continue;
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
986 break;
987 }
988 }
989 }
990
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
993 if (err)
994 goto err_sw_init;
995
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 */
1000 pci_using_dac = 0;
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003 pci_using_dac = 1;
1004 } else {
1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006 if (err) {
1007 pr_err("No usable DMA config, aborting\n");
1008 goto err_dma;
1009 }
1010 }
1011
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1016
1017 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1018
1019 adapter->bd_number = cards_found;
1020
1021 /* setup the private structure */
1022
1023 err = e1000_sw_init(adapter);
1024 if (err)
1025 goto err_sw_init;
1026
1027 err = -EIO;
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1032
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1035 }
1036
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1039 NETIF_F_HW_CSUM |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1043 }
1044
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1048
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1053 NETIF_F_RXALL |
1054 NETIF_F_RXFCS);
1055
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 }
1060
1061 netdev->vlan_features |= (NETIF_F_TSO |
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_SG);
1064
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1079 goto err_eeprom;
1080 }
1081
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1084 */
1085
1086 e1000_reset_hw(hw);
1087
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1097 * `ip set address`
1098 */
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1100 } else {
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1104 }
1105 /* don't block initialization here due to bad MAC address */
1106 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1107
1108 if (!is_valid_ether_addr(netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118 e1000_check_options(adapter);
1119
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1123 */
1124
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1128 case e1000_82543:
1129 break;
1130 case e1000_82544:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 break;
1135 case e1000_82546:
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140 break;
1141 }
1142 fallthrough;
1143 default:
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146 break;
1147 }
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1154 */
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1158 break;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1163 */
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1166 break;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1171 else
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1176 break;
1177 }
1178
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1186 hw->phy_addr = i;
1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189 if (tmp != 0 && tmp != 0xFF)
1190 break;
1191 }
1192
1193 if (i >= 32)
1194 goto err_eeprom;
1195 }
1196
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1199
1200 strcpy(netdev->name, "eth%d");
1201 err = register_netdev(netdev);
1202 if (err)
1203 goto err_register;
1204
1205 e1000_vlan_filter_on_off(adapter, false);
1206
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 netdev->dev_addr);
1216
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(netdev);
1219
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222 cards_found++;
1223 return 0;
1224
1225err_register:
1226err_eeprom:
1227 e1000_phy_hw_reset(hw);
1228
1229 if (hw->flash_address)
1230 iounmap(hw->flash_address);
1231 kfree(adapter->tx_ring);
1232 kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236 iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(hw->hw_addr);
1238err_ioremap:
1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 free_netdev(netdev);
1241err_alloc_etherdev:
1242 pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244 if (!adapter || disable_dev)
1245 pci_disable_device(pdev);
1246 return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1263 bool disable_dev;
1264
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1267
1268 unregister_netdev(netdev);
1269
1270 e1000_phy_hw_reset(hw);
1271
1272 kfree(adapter->tx_ring);
1273 kfree(adapter->rx_ring);
1274
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1281
1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 free_netdev(netdev);
1284
1285 if (disable_dev)
1286 pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1302
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1305 return -ENOMEM;
1306 }
1307
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1310
1311 spin_lock_init(&adapter->stats_lock);
1312
1313 set_bit(__E1000_DOWN, &adapter->flags);
1314
1315 return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1330 return -ENOMEM;
1331
1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(adapter->tx_ring);
1336 return -ENOMEM;
1337 }
1338
1339 return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356 struct e1000_adapter *adapter = netdev_priv(netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1358 int err;
1359
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1362 return -EBUSY;
1363
1364 netif_carrier_off(netdev);
1365
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1368 if (err)
1369 goto err_setup_tx;
1370
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1373 if (err)
1374 goto err_setup_rx;
1375
1376 e1000_power_up_phy(adapter);
1377
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1382 }
1383
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1388 */
1389 e1000_configure(adapter);
1390
1391 err = e1000_request_irq(adapter);
1392 if (err)
1393 goto err_req_irq;
1394
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398 napi_enable(&adapter->napi);
1399
1400 e1000_irq_enable(adapter);
1401
1402 netif_start_queue(netdev);
1403
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1406
1407 return E1000_SUCCESS;
1408
1409err_req_irq:
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413 e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415 e1000_reset(adapter);
1416
1417 return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433 struct e1000_adapter *adapter = netdev_priv(netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1436
1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 usleep_range(10000, 20000);
1439
1440 WARN_ON(count < 0);
1441
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(__E1000_DOWN, &adapter->flags);
1444 clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1449
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1455 */
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1486 }
1487
1488 return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500{
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517setup_tx_desc_die:
1518 vfree(txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 txdr->dma);
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690{
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709setup_rx_desc_die:
1710 vfree(rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 rxdr->dma);
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926{
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info)
1957{
1958 if (buffer_info->dma) {
1959 if (buffer_info->mapped_as_page)
1960 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1961 buffer_info->length, DMA_TO_DEVICE);
1962 else
1963 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length,
1965 DMA_TO_DEVICE);
1966 buffer_info->dma = 0;
1967 }
1968 if (buffer_info->skb) {
1969 dev_kfree_skb_any(buffer_info->skb);
1970 buffer_info->skb = NULL;
1971 }
1972 buffer_info->time_stamp = 0;
1973 /* buffer_info must be completely set up in the transmit path */
1974}
1975
1976/**
1977 * e1000_clean_tx_ring - Free Tx Buffers
1978 * @adapter: board private structure
1979 * @tx_ring: ring to be cleaned
1980 **/
1981static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1982 struct e1000_tx_ring *tx_ring)
1983{
1984 struct e1000_hw *hw = &adapter->hw;
1985 struct e1000_tx_buffer *buffer_info;
1986 unsigned long size;
1987 unsigned int i;
1988
1989 /* Free all the Tx ring sk_buffs */
1990
1991 for (i = 0; i < tx_ring->count; i++) {
1992 buffer_info = &tx_ring->buffer_info[i];
1993 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1994 }
1995
1996 netdev_reset_queue(adapter->netdev);
1997 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1998 memset(tx_ring->buffer_info, 0, size);
1999
2000 /* Zero out the descriptor ring */
2001
2002 memset(tx_ring->desc, 0, tx_ring->size);
2003
2004 tx_ring->next_to_use = 0;
2005 tx_ring->next_to_clean = 0;
2006 tx_ring->last_tx_tso = false;
2007
2008 writel(0, hw->hw_addr + tx_ring->tdh);
2009 writel(0, hw->hw_addr + tx_ring->tdt);
2010}
2011
2012/**
2013 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2014 * @adapter: board private structure
2015 **/
2016static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2017{
2018 int i;
2019
2020 for (i = 0; i < adapter->num_tx_queues; i++)
2021 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2022}
2023
2024/**
2025 * e1000_free_rx_resources - Free Rx Resources
2026 * @adapter: board private structure
2027 * @rx_ring: ring to clean the resources from
2028 *
2029 * Free all receive software resources
2030 **/
2031static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2032 struct e1000_rx_ring *rx_ring)
2033{
2034 struct pci_dev *pdev = adapter->pdev;
2035
2036 e1000_clean_rx_ring(adapter, rx_ring);
2037
2038 vfree(rx_ring->buffer_info);
2039 rx_ring->buffer_info = NULL;
2040
2041 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2042 rx_ring->dma);
2043
2044 rx_ring->desc = NULL;
2045}
2046
2047/**
2048 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2049 * @adapter: board private structure
2050 *
2051 * Free all receive software resources
2052 **/
2053void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2054{
2055 int i;
2056
2057 for (i = 0; i < adapter->num_rx_queues; i++)
2058 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2059}
2060
2061#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2062static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2063{
2064 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2065 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2066}
2067
2068static void *e1000_alloc_frag(const struct e1000_adapter *a)
2069{
2070 unsigned int len = e1000_frag_len(a);
2071 u8 *data = netdev_alloc_frag(len);
2072
2073 if (likely(data))
2074 data += E1000_HEADROOM;
2075 return data;
2076}
2077
2078/**
2079 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2080 * @adapter: board private structure
2081 * @rx_ring: ring to free buffers from
2082 **/
2083static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2084 struct e1000_rx_ring *rx_ring)
2085{
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_rx_buffer *buffer_info;
2088 struct pci_dev *pdev = adapter->pdev;
2089 unsigned long size;
2090 unsigned int i;
2091
2092 /* Free all the Rx netfrags */
2093 for (i = 0; i < rx_ring->count; i++) {
2094 buffer_info = &rx_ring->buffer_info[i];
2095 if (adapter->clean_rx == e1000_clean_rx_irq) {
2096 if (buffer_info->dma)
2097 dma_unmap_single(&pdev->dev, buffer_info->dma,
2098 adapter->rx_buffer_len,
2099 DMA_FROM_DEVICE);
2100 if (buffer_info->rxbuf.data) {
2101 skb_free_frag(buffer_info->rxbuf.data);
2102 buffer_info->rxbuf.data = NULL;
2103 }
2104 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2105 if (buffer_info->dma)
2106 dma_unmap_page(&pdev->dev, buffer_info->dma,
2107 adapter->rx_buffer_len,
2108 DMA_FROM_DEVICE);
2109 if (buffer_info->rxbuf.page) {
2110 put_page(buffer_info->rxbuf.page);
2111 buffer_info->rxbuf.page = NULL;
2112 }
2113 }
2114
2115 buffer_info->dma = 0;
2116 }
2117
2118 /* there also may be some cached data from a chained receive */
2119 napi_free_frags(&adapter->napi);
2120 rx_ring->rx_skb_top = NULL;
2121
2122 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2123 memset(rx_ring->buffer_info, 0, size);
2124
2125 /* Zero out the descriptor ring */
2126 memset(rx_ring->desc, 0, rx_ring->size);
2127
2128 rx_ring->next_to_clean = 0;
2129 rx_ring->next_to_use = 0;
2130
2131 writel(0, hw->hw_addr + rx_ring->rdh);
2132 writel(0, hw->hw_addr + rx_ring->rdt);
2133}
2134
2135/**
2136 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2137 * @adapter: board private structure
2138 **/
2139static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2140{
2141 int i;
2142
2143 for (i = 0; i < adapter->num_rx_queues; i++)
2144 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2145}
2146
2147/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2148 * and memory write and invalidate disabled for certain operations
2149 */
2150static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2151{
2152 struct e1000_hw *hw = &adapter->hw;
2153 struct net_device *netdev = adapter->netdev;
2154 u32 rctl;
2155
2156 e1000_pci_clear_mwi(hw);
2157
2158 rctl = er32(RCTL);
2159 rctl |= E1000_RCTL_RST;
2160 ew32(RCTL, rctl);
2161 E1000_WRITE_FLUSH();
2162 mdelay(5);
2163
2164 if (netif_running(netdev))
2165 e1000_clean_all_rx_rings(adapter);
2166}
2167
2168static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2169{
2170 struct e1000_hw *hw = &adapter->hw;
2171 struct net_device *netdev = adapter->netdev;
2172 u32 rctl;
2173
2174 rctl = er32(RCTL);
2175 rctl &= ~E1000_RCTL_RST;
2176 ew32(RCTL, rctl);
2177 E1000_WRITE_FLUSH();
2178 mdelay(5);
2179
2180 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2181 e1000_pci_set_mwi(hw);
2182
2183 if (netif_running(netdev)) {
2184 /* No need to loop, because 82542 supports only 1 queue */
2185 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2186 e1000_configure_rx(adapter);
2187 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2188 }
2189}
2190
2191/**
2192 * e1000_set_mac - Change the Ethernet Address of the NIC
2193 * @netdev: network interface device structure
2194 * @p: pointer to an address structure
2195 *
2196 * Returns 0 on success, negative on failure
2197 **/
2198static int e1000_set_mac(struct net_device *netdev, void *p)
2199{
2200 struct e1000_adapter *adapter = netdev_priv(netdev);
2201 struct e1000_hw *hw = &adapter->hw;
2202 struct sockaddr *addr = p;
2203
2204 if (!is_valid_ether_addr(addr->sa_data))
2205 return -EADDRNOTAVAIL;
2206
2207 /* 82542 2.0 needs to be in reset to write receive address registers */
2208
2209 if (hw->mac_type == e1000_82542_rev2_0)
2210 e1000_enter_82542_rst(adapter);
2211
2212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2213 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2214
2215 e1000_rar_set(hw, hw->mac_addr, 0);
2216
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_leave_82542_rst(adapter);
2219
2220 return 0;
2221}
2222
2223/**
2224 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2225 * @netdev: network interface device structure
2226 *
2227 * The set_rx_mode entry point is called whenever the unicast or multicast
2228 * address lists or the network interface flags are updated. This routine is
2229 * responsible for configuring the hardware for proper unicast, multicast,
2230 * promiscuous mode, and all-multi behavior.
2231 **/
2232static void e1000_set_rx_mode(struct net_device *netdev)
2233{
2234 struct e1000_adapter *adapter = netdev_priv(netdev);
2235 struct e1000_hw *hw = &adapter->hw;
2236 struct netdev_hw_addr *ha;
2237 bool use_uc = false;
2238 u32 rctl;
2239 u32 hash_value;
2240 int i, rar_entries = E1000_RAR_ENTRIES;
2241 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2242 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2243
2244 if (!mcarray)
2245 return;
2246
2247 /* Check for Promiscuous and All Multicast modes */
2248
2249 rctl = er32(RCTL);
2250
2251 if (netdev->flags & IFF_PROMISC) {
2252 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2253 rctl &= ~E1000_RCTL_VFE;
2254 } else {
2255 if (netdev->flags & IFF_ALLMULTI)
2256 rctl |= E1000_RCTL_MPE;
2257 else
2258 rctl &= ~E1000_RCTL_MPE;
2259 /* Enable VLAN filter if there is a VLAN */
2260 if (e1000_vlan_used(adapter))
2261 rctl |= E1000_RCTL_VFE;
2262 }
2263
2264 if (netdev_uc_count(netdev) > rar_entries - 1) {
2265 rctl |= E1000_RCTL_UPE;
2266 } else if (!(netdev->flags & IFF_PROMISC)) {
2267 rctl &= ~E1000_RCTL_UPE;
2268 use_uc = true;
2269 }
2270
2271 ew32(RCTL, rctl);
2272
2273 /* 82542 2.0 needs to be in reset to write receive address registers */
2274
2275 if (hw->mac_type == e1000_82542_rev2_0)
2276 e1000_enter_82542_rst(adapter);
2277
2278 /* load the first 14 addresses into the exact filters 1-14. Unicast
2279 * addresses take precedence to avoid disabling unicast filtering
2280 * when possible.
2281 *
2282 * RAR 0 is used for the station MAC address
2283 * if there are not 14 addresses, go ahead and clear the filters
2284 */
2285 i = 1;
2286 if (use_uc)
2287 netdev_for_each_uc_addr(ha, netdev) {
2288 if (i == rar_entries)
2289 break;
2290 e1000_rar_set(hw, ha->addr, i++);
2291 }
2292
2293 netdev_for_each_mc_addr(ha, netdev) {
2294 if (i == rar_entries) {
2295 /* load any remaining addresses into the hash table */
2296 u32 hash_reg, hash_bit, mta;
2297 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2298 hash_reg = (hash_value >> 5) & 0x7F;
2299 hash_bit = hash_value & 0x1F;
2300 mta = (1 << hash_bit);
2301 mcarray[hash_reg] |= mta;
2302 } else {
2303 e1000_rar_set(hw, ha->addr, i++);
2304 }
2305 }
2306
2307 for (; i < rar_entries; i++) {
2308 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2309 E1000_WRITE_FLUSH();
2310 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2311 E1000_WRITE_FLUSH();
2312 }
2313
2314 /* write the hash table completely, write from bottom to avoid
2315 * both stupid write combining chipsets, and flushing each write
2316 */
2317 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2318 /* If we are on an 82544 has an errata where writing odd
2319 * offsets overwrites the previous even offset, but writing
2320 * backwards over the range solves the issue by always
2321 * writing the odd offset first
2322 */
2323 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2324 }
2325 E1000_WRITE_FLUSH();
2326
2327 if (hw->mac_type == e1000_82542_rev2_0)
2328 e1000_leave_82542_rst(adapter);
2329
2330 kfree(mcarray);
2331}
2332
2333/**
2334 * e1000_update_phy_info_task - get phy info
2335 * @work: work struct contained inside adapter struct
2336 *
2337 * Need to wait a few seconds after link up to get diagnostic information from
2338 * the phy
2339 */
2340static void e1000_update_phy_info_task(struct work_struct *work)
2341{
2342 struct e1000_adapter *adapter = container_of(work,
2343 struct e1000_adapter,
2344 phy_info_task.work);
2345
2346 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2347}
2348
2349/**
2350 * e1000_82547_tx_fifo_stall_task - task to complete work
2351 * @work: work struct contained inside adapter struct
2352 **/
2353static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2354{
2355 struct e1000_adapter *adapter = container_of(work,
2356 struct e1000_adapter,
2357 fifo_stall_task.work);
2358 struct e1000_hw *hw = &adapter->hw;
2359 struct net_device *netdev = adapter->netdev;
2360 u32 tctl;
2361
2362 if (atomic_read(&adapter->tx_fifo_stall)) {
2363 if ((er32(TDT) == er32(TDH)) &&
2364 (er32(TDFT) == er32(TDFH)) &&
2365 (er32(TDFTS) == er32(TDFHS))) {
2366 tctl = er32(TCTL);
2367 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2368 ew32(TDFT, adapter->tx_head_addr);
2369 ew32(TDFH, adapter->tx_head_addr);
2370 ew32(TDFTS, adapter->tx_head_addr);
2371 ew32(TDFHS, adapter->tx_head_addr);
2372 ew32(TCTL, tctl);
2373 E1000_WRITE_FLUSH();
2374
2375 adapter->tx_fifo_head = 0;
2376 atomic_set(&adapter->tx_fifo_stall, 0);
2377 netif_wake_queue(netdev);
2378 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2379 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2380 }
2381 }
2382}
2383
2384bool e1000_has_link(struct e1000_adapter *adapter)
2385{
2386 struct e1000_hw *hw = &adapter->hw;
2387 bool link_active = false;
2388
2389 /* get_link_status is set on LSC (link status) interrupt or rx
2390 * sequence error interrupt (except on intel ce4100).
2391 * get_link_status will stay false until the
2392 * e1000_check_for_link establishes link for copper adapters
2393 * ONLY
2394 */
2395 switch (hw->media_type) {
2396 case e1000_media_type_copper:
2397 if (hw->mac_type == e1000_ce4100)
2398 hw->get_link_status = 1;
2399 if (hw->get_link_status) {
2400 e1000_check_for_link(hw);
2401 link_active = !hw->get_link_status;
2402 } else {
2403 link_active = true;
2404 }
2405 break;
2406 case e1000_media_type_fiber:
2407 e1000_check_for_link(hw);
2408 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2409 break;
2410 case e1000_media_type_internal_serdes:
2411 e1000_check_for_link(hw);
2412 link_active = hw->serdes_has_link;
2413 break;
2414 default:
2415 break;
2416 }
2417
2418 return link_active;
2419}
2420
2421/**
2422 * e1000_watchdog - work function
2423 * @work: work struct contained inside adapter struct
2424 **/
2425static void e1000_watchdog(struct work_struct *work)
2426{
2427 struct e1000_adapter *adapter = container_of(work,
2428 struct e1000_adapter,
2429 watchdog_task.work);
2430 struct e1000_hw *hw = &adapter->hw;
2431 struct net_device *netdev = adapter->netdev;
2432 struct e1000_tx_ring *txdr = adapter->tx_ring;
2433 u32 link, tctl;
2434
2435 link = e1000_has_link(adapter);
2436 if ((netif_carrier_ok(netdev)) && link)
2437 goto link_up;
2438
2439 if (link) {
2440 if (!netif_carrier_ok(netdev)) {
2441 u32 ctrl;
2442 /* update snapshot of PHY registers on LSC */
2443 e1000_get_speed_and_duplex(hw,
2444 &adapter->link_speed,
2445 &adapter->link_duplex);
2446
2447 ctrl = er32(CTRL);
2448 pr_info("%s NIC Link is Up %d Mbps %s, "
2449 "Flow Control: %s\n",
2450 netdev->name,
2451 adapter->link_speed,
2452 adapter->link_duplex == FULL_DUPLEX ?
2453 "Full Duplex" : "Half Duplex",
2454 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457 E1000_CTRL_TFCE) ? "TX" : "None")));
2458
2459 /* adjust timeout factor according to speed/duplex */
2460 adapter->tx_timeout_factor = 1;
2461 switch (adapter->link_speed) {
2462 case SPEED_10:
2463 adapter->tx_timeout_factor = 16;
2464 break;
2465 case SPEED_100:
2466 /* maybe add some timeout factor ? */
2467 break;
2468 }
2469
2470 /* enable transmits in the hardware */
2471 tctl = er32(TCTL);
2472 tctl |= E1000_TCTL_EN;
2473 ew32(TCTL, tctl);
2474
2475 netif_carrier_on(netdev);
2476 if (!test_bit(__E1000_DOWN, &adapter->flags))
2477 schedule_delayed_work(&adapter->phy_info_task,
2478 2 * HZ);
2479 adapter->smartspeed = 0;
2480 }
2481 } else {
2482 if (netif_carrier_ok(netdev)) {
2483 adapter->link_speed = 0;
2484 adapter->link_duplex = 0;
2485 pr_info("%s NIC Link is Down\n",
2486 netdev->name);
2487 netif_carrier_off(netdev);
2488
2489 if (!test_bit(__E1000_DOWN, &adapter->flags))
2490 schedule_delayed_work(&adapter->phy_info_task,
2491 2 * HZ);
2492 }
2493
2494 e1000_smartspeed(adapter);
2495 }
2496
2497link_up:
2498 e1000_update_stats(adapter);
2499
2500 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2501 adapter->tpt_old = adapter->stats.tpt;
2502 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2503 adapter->colc_old = adapter->stats.colc;
2504
2505 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2506 adapter->gorcl_old = adapter->stats.gorcl;
2507 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2508 adapter->gotcl_old = adapter->stats.gotcl;
2509
2510 e1000_update_adaptive(hw);
2511
2512 if (!netif_carrier_ok(netdev)) {
2513 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2514 /* We've lost link, so the controller stops DMA,
2515 * but we've got queued Tx work that's never going
2516 * to get done, so reset controller to flush Tx.
2517 * (Do the reset outside of interrupt context).
2518 */
2519 adapter->tx_timeout_count++;
2520 schedule_work(&adapter->reset_task);
2521 /* exit immediately since reset is imminent */
2522 return;
2523 }
2524 }
2525
2526 /* Simple mode for Interrupt Throttle Rate (ITR) */
2527 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2528 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2529 * Total asymmetrical Tx or Rx gets ITR=8000;
2530 * everyone else is between 2000-8000.
2531 */
2532 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2533 u32 dif = (adapter->gotcl > adapter->gorcl ?
2534 adapter->gotcl - adapter->gorcl :
2535 adapter->gorcl - adapter->gotcl) / 10000;
2536 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2537
2538 ew32(ITR, 1000000000 / (itr * 256));
2539 }
2540
2541 /* Cause software interrupt to ensure rx ring is cleaned */
2542 ew32(ICS, E1000_ICS_RXDMT0);
2543
2544 /* Force detection of hung controller every watchdog period */
2545 adapter->detect_tx_hung = true;
2546
2547 /* Reschedule the task */
2548 if (!test_bit(__E1000_DOWN, &adapter->flags))
2549 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2550}
2551
2552enum latency_range {
2553 lowest_latency = 0,
2554 low_latency = 1,
2555 bulk_latency = 2,
2556 latency_invalid = 255
2557};
2558
2559/**
2560 * e1000_update_itr - update the dynamic ITR value based on statistics
2561 * @adapter: pointer to adapter
2562 * @itr_setting: current adapter->itr
2563 * @packets: the number of packets during this measurement interval
2564 * @bytes: the number of bytes during this measurement interval
2565 *
2566 * Stores a new ITR value based on packets and byte
2567 * counts during the last interrupt. The advantage of per interrupt
2568 * computation is faster updates and more accurate ITR for the current
2569 * traffic pattern. Constants in this function were computed
2570 * based on theoretical maximum wire speed and thresholds were set based
2571 * on testing data as well as attempting to minimize response time
2572 * while increasing bulk throughput.
2573 * this functionality is controlled by the InterruptThrottleRate module
2574 * parameter (see e1000_param.c)
2575 **/
2576static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577 u16 itr_setting, int packets, int bytes)
2578{
2579 unsigned int retval = itr_setting;
2580 struct e1000_hw *hw = &adapter->hw;
2581
2582 if (unlikely(hw->mac_type < e1000_82540))
2583 goto update_itr_done;
2584
2585 if (packets == 0)
2586 goto update_itr_done;
2587
2588 switch (itr_setting) {
2589 case lowest_latency:
2590 /* jumbo frames get bulk treatment*/
2591 if (bytes/packets > 8000)
2592 retval = bulk_latency;
2593 else if ((packets < 5) && (bytes > 512))
2594 retval = low_latency;
2595 break;
2596 case low_latency: /* 50 usec aka 20000 ints/s */
2597 if (bytes > 10000) {
2598 /* jumbo frames need bulk latency setting */
2599 if (bytes/packets > 8000)
2600 retval = bulk_latency;
2601 else if ((packets < 10) || ((bytes/packets) > 1200))
2602 retval = bulk_latency;
2603 else if ((packets > 35))
2604 retval = lowest_latency;
2605 } else if (bytes/packets > 2000)
2606 retval = bulk_latency;
2607 else if (packets <= 2 && bytes < 512)
2608 retval = lowest_latency;
2609 break;
2610 case bulk_latency: /* 250 usec aka 4000 ints/s */
2611 if (bytes > 25000) {
2612 if (packets > 35)
2613 retval = low_latency;
2614 } else if (bytes < 6000) {
2615 retval = low_latency;
2616 }
2617 break;
2618 }
2619
2620update_itr_done:
2621 return retval;
2622}
2623
2624static void e1000_set_itr(struct e1000_adapter *adapter)
2625{
2626 struct e1000_hw *hw = &adapter->hw;
2627 u16 current_itr;
2628 u32 new_itr = adapter->itr;
2629
2630 if (unlikely(hw->mac_type < e1000_82540))
2631 return;
2632
2633 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634 if (unlikely(adapter->link_speed != SPEED_1000)) {
2635 new_itr = 4000;
2636 goto set_itr_now;
2637 }
2638
2639 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640 adapter->total_tx_packets,
2641 adapter->total_tx_bytes);
2642 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2643 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644 adapter->tx_itr = low_latency;
2645
2646 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647 adapter->total_rx_packets,
2648 adapter->total_rx_bytes);
2649 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2650 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651 adapter->rx_itr = low_latency;
2652
2653 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2654
2655 switch (current_itr) {
2656 /* counts and packets in update_itr are dependent on these numbers */
2657 case lowest_latency:
2658 new_itr = 70000;
2659 break;
2660 case low_latency:
2661 new_itr = 20000; /* aka hwitr = ~200 */
2662 break;
2663 case bulk_latency:
2664 new_itr = 4000;
2665 break;
2666 default:
2667 break;
2668 }
2669
2670set_itr_now:
2671 if (new_itr != adapter->itr) {
2672 /* this attempts to bias the interrupt rate towards Bulk
2673 * by adding intermediate steps when interrupt rate is
2674 * increasing
2675 */
2676 new_itr = new_itr > adapter->itr ?
2677 min(adapter->itr + (new_itr >> 2), new_itr) :
2678 new_itr;
2679 adapter->itr = new_itr;
2680 ew32(ITR, 1000000000 / (new_itr * 256));
2681 }
2682}
2683
2684#define E1000_TX_FLAGS_CSUM 0x00000001
2685#define E1000_TX_FLAGS_VLAN 0x00000002
2686#define E1000_TX_FLAGS_TSO 0x00000004
2687#define E1000_TX_FLAGS_IPV4 0x00000008
2688#define E1000_TX_FLAGS_NO_FCS 0x00000010
2689#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2690#define E1000_TX_FLAGS_VLAN_SHIFT 16
2691
2692static int e1000_tso(struct e1000_adapter *adapter,
2693 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2694 __be16 protocol)
2695{
2696 struct e1000_context_desc *context_desc;
2697 struct e1000_tx_buffer *buffer_info;
2698 unsigned int i;
2699 u32 cmd_length = 0;
2700 u16 ipcse = 0, tucse, mss;
2701 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702
2703 if (skb_is_gso(skb)) {
2704 int err;
2705
2706 err = skb_cow_head(skb, 0);
2707 if (err < 0)
2708 return err;
2709
2710 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711 mss = skb_shinfo(skb)->gso_size;
2712 if (protocol == htons(ETH_P_IP)) {
2713 struct iphdr *iph = ip_hdr(skb);
2714 iph->tot_len = 0;
2715 iph->check = 0;
2716 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2717 iph->daddr, 0,
2718 IPPROTO_TCP,
2719 0);
2720 cmd_length = E1000_TXD_CMD_IP;
2721 ipcse = skb_transport_offset(skb) - 1;
2722 } else if (skb_is_gso_v6(skb)) {
2723 tcp_v6_gso_csum_prep(skb);
2724 ipcse = 0;
2725 }
2726 ipcss = skb_network_offset(skb);
2727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728 tucss = skb_transport_offset(skb);
2729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730 tucse = 0;
2731
2732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734
2735 i = tx_ring->next_to_use;
2736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737 buffer_info = &tx_ring->buffer_info[i];
2738
2739 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2740 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2742 context_desc->upper_setup.tcp_fields.tucss = tucss;
2743 context_desc->upper_setup.tcp_fields.tucso = tucso;
2744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748
2749 buffer_info->time_stamp = jiffies;
2750 buffer_info->next_to_watch = i;
2751
2752 if (++i == tx_ring->count)
2753 i = 0;
2754
2755 tx_ring->next_to_use = i;
2756
2757 return true;
2758 }
2759 return false;
2760}
2761
2762static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2764 __be16 protocol)
2765{
2766 struct e1000_context_desc *context_desc;
2767 struct e1000_tx_buffer *buffer_info;
2768 unsigned int i;
2769 u8 css;
2770 u32 cmd_len = E1000_TXD_CMD_DEXT;
2771
2772 if (skb->ip_summed != CHECKSUM_PARTIAL)
2773 return false;
2774
2775 switch (protocol) {
2776 case cpu_to_be16(ETH_P_IP):
2777 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778 cmd_len |= E1000_TXD_CMD_TCP;
2779 break;
2780 case cpu_to_be16(ETH_P_IPV6):
2781 /* XXX not handling all IPV6 headers */
2782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783 cmd_len |= E1000_TXD_CMD_TCP;
2784 break;
2785 default:
2786 if (unlikely(net_ratelimit()))
2787 e_warn(drv, "checksum_partial proto=%x!\n",
2788 skb->protocol);
2789 break;
2790 }
2791
2792 css = skb_checksum_start_offset(skb);
2793
2794 i = tx_ring->next_to_use;
2795 buffer_info = &tx_ring->buffer_info[i];
2796 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2797
2798 context_desc->lower_setup.ip_config = 0;
2799 context_desc->upper_setup.tcp_fields.tucss = css;
2800 context_desc->upper_setup.tcp_fields.tucso =
2801 css + skb->csum_offset;
2802 context_desc->upper_setup.tcp_fields.tucse = 0;
2803 context_desc->tcp_seg_setup.data = 0;
2804 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2805
2806 buffer_info->time_stamp = jiffies;
2807 buffer_info->next_to_watch = i;
2808
2809 if (unlikely(++i == tx_ring->count))
2810 i = 0;
2811
2812 tx_ring->next_to_use = i;
2813
2814 return true;
2815}
2816
2817#define E1000_MAX_TXD_PWR 12
2818#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2819
2820static int e1000_tx_map(struct e1000_adapter *adapter,
2821 struct e1000_tx_ring *tx_ring,
2822 struct sk_buff *skb, unsigned int first,
2823 unsigned int max_per_txd, unsigned int nr_frags,
2824 unsigned int mss)
2825{
2826 struct e1000_hw *hw = &adapter->hw;
2827 struct pci_dev *pdev = adapter->pdev;
2828 struct e1000_tx_buffer *buffer_info;
2829 unsigned int len = skb_headlen(skb);
2830 unsigned int offset = 0, size, count = 0, i;
2831 unsigned int f, bytecount, segs;
2832
2833 i = tx_ring->next_to_use;
2834
2835 while (len) {
2836 buffer_info = &tx_ring->buffer_info[i];
2837 size = min(len, max_per_txd);
2838 /* Workaround for Controller erratum --
2839 * descriptor for non-tso packet in a linear SKB that follows a
2840 * tso gets written back prematurely before the data is fully
2841 * DMA'd to the controller
2842 */
2843 if (!skb->data_len && tx_ring->last_tx_tso &&
2844 !skb_is_gso(skb)) {
2845 tx_ring->last_tx_tso = false;
2846 size -= 4;
2847 }
2848
2849 /* Workaround for premature desc write-backs
2850 * in TSO mode. Append 4-byte sentinel desc
2851 */
2852 if (unlikely(mss && !nr_frags && size == len && size > 8))
2853 size -= 4;
2854 /* work-around for errata 10 and it applies
2855 * to all controllers in PCI-X mode
2856 * The fix is to make sure that the first descriptor of a
2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858 */
2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 (size > 2015) && count == 0))
2861 size = 2015;
2862
2863 /* Workaround for potential 82544 hang in PCI-X. Avoid
2864 * terminating buffers within evenly-aligned dwords.
2865 */
2866 if (unlikely(adapter->pcix_82544 &&
2867 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868 size > 4))
2869 size -= 4;
2870
2871 buffer_info->length = size;
2872 /* set time_stamp *before* dma to help avoid a possible race */
2873 buffer_info->time_stamp = jiffies;
2874 buffer_info->mapped_as_page = false;
2875 buffer_info->dma = dma_map_single(&pdev->dev,
2876 skb->data + offset,
2877 size, DMA_TO_DEVICE);
2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879 goto dma_error;
2880 buffer_info->next_to_watch = i;
2881
2882 len -= size;
2883 offset += size;
2884 count++;
2885 if (len) {
2886 i++;
2887 if (unlikely(i == tx_ring->count))
2888 i = 0;
2889 }
2890 }
2891
2892 for (f = 0; f < nr_frags; f++) {
2893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2894
2895 len = skb_frag_size(frag);
2896 offset = 0;
2897
2898 while (len) {
2899 unsigned long bufend;
2900 i++;
2901 if (unlikely(i == tx_ring->count))
2902 i = 0;
2903
2904 buffer_info = &tx_ring->buffer_info[i];
2905 size = min(len, max_per_txd);
2906 /* Workaround for premature desc write-backs
2907 * in TSO mode. Append 4-byte sentinel desc
2908 */
2909 if (unlikely(mss && f == (nr_frags-1) &&
2910 size == len && size > 8))
2911 size -= 4;
2912 /* Workaround for potential 82544 hang in PCI-X.
2913 * Avoid terminating buffers within evenly-aligned
2914 * dwords.
2915 */
2916 bufend = (unsigned long)
2917 page_to_phys(skb_frag_page(frag));
2918 bufend += offset + size - 1;
2919 if (unlikely(adapter->pcix_82544 &&
2920 !(bufend & 4) &&
2921 size > 4))
2922 size -= 4;
2923
2924 buffer_info->length = size;
2925 buffer_info->time_stamp = jiffies;
2926 buffer_info->mapped_as_page = true;
2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928 offset, size, DMA_TO_DEVICE);
2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930 goto dma_error;
2931 buffer_info->next_to_watch = i;
2932
2933 len -= size;
2934 offset += size;
2935 count++;
2936 }
2937 }
2938
2939 segs = skb_shinfo(skb)->gso_segs ?: 1;
2940 /* multiply data chunks by size of headers */
2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943 tx_ring->buffer_info[i].skb = skb;
2944 tx_ring->buffer_info[i].segs = segs;
2945 tx_ring->buffer_info[i].bytecount = bytecount;
2946 tx_ring->buffer_info[first].next_to_watch = i;
2947
2948 return count;
2949
2950dma_error:
2951 dev_err(&pdev->dev, "TX DMA map failed\n");
2952 buffer_info->dma = 0;
2953 if (count)
2954 count--;
2955
2956 while (count--) {
2957 if (i == 0)
2958 i += tx_ring->count;
2959 i--;
2960 buffer_info = &tx_ring->buffer_info[i];
2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962 }
2963
2964 return 0;
2965}
2966
2967static void e1000_tx_queue(struct e1000_adapter *adapter,
2968 struct e1000_tx_ring *tx_ring, int tx_flags,
2969 int count)
2970{
2971 struct e1000_tx_desc *tx_desc = NULL;
2972 struct e1000_tx_buffer *buffer_info;
2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974 unsigned int i;
2975
2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978 E1000_TXD_CMD_TSE;
2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980
2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983 }
2984
2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988 }
2989
2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991 txd_lower |= E1000_TXD_CMD_VLE;
2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993 }
2994
2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997
2998 i = tx_ring->next_to_use;
2999
3000 while (count--) {
3001 buffer_info = &tx_ring->buffer_info[i];
3002 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 tx_desc->lower.data =
3005 cpu_to_le32(txd_lower | buffer_info->length);
3006 tx_desc->upper.data = cpu_to_le32(txd_upper);
3007 if (unlikely(++i == tx_ring->count))
3008 i = 0;
3009 }
3010
3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012
3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016
3017 /* Force memory writes to complete before letting h/w
3018 * know there are new descriptors to fetch. (Only
3019 * applicable for weak-ordered memory model archs,
3020 * such as IA-64).
3021 */
3022 dma_wmb();
3023
3024 tx_ring->next_to_use = i;
3025}
3026
3027/* 82547 workaround to avoid controller hang in half-duplex environment.
3028 * The workaround is to avoid queuing a large packet that would span
3029 * the internal Tx FIFO ring boundary by notifying the stack to resend
3030 * the packet at a later time. This gives the Tx FIFO an opportunity to
3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3032 * to the beginning of the Tx FIFO.
3033 */
3034
3035#define E1000_FIFO_HDR 0x10
3036#define E1000_82547_PAD_LEN 0x3E0
3037
3038static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039 struct sk_buff *skb)
3040{
3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043
3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045
3046 if (adapter->link_duplex != HALF_DUPLEX)
3047 goto no_fifo_stall_required;
3048
3049 if (atomic_read(&adapter->tx_fifo_stall))
3050 return 1;
3051
3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053 atomic_set(&adapter->tx_fifo_stall, 1);
3054 return 1;
3055 }
3056
3057no_fifo_stall_required:
3058 adapter->tx_fifo_head += skb_fifo_len;
3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061 return 0;
3062}
3063
3064static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065{
3066 struct e1000_adapter *adapter = netdev_priv(netdev);
3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068
3069 netif_stop_queue(netdev);
3070 /* Herbert's original patch had:
3071 * smp_mb__after_netif_stop_queue();
3072 * but since that doesn't exist yet, just open code it.
3073 */
3074 smp_mb();
3075
3076 /* We need to check again in a case another CPU has just
3077 * made room available.
3078 */
3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080 return -EBUSY;
3081
3082 /* A reprieve! */
3083 netif_start_queue(netdev);
3084 ++adapter->restart_queue;
3085 return 0;
3086}
3087
3088static int e1000_maybe_stop_tx(struct net_device *netdev,
3089 struct e1000_tx_ring *tx_ring, int size)
3090{
3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092 return 0;
3093 return __e1000_maybe_stop_tx(netdev, size);
3094}
3095
3096#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098 struct net_device *netdev)
3099{
3100 struct e1000_adapter *adapter = netdev_priv(netdev);
3101 struct e1000_hw *hw = &adapter->hw;
3102 struct e1000_tx_ring *tx_ring;
3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105 unsigned int tx_flags = 0;
3106 unsigned int len = skb_headlen(skb);
3107 unsigned int nr_frags;
3108 unsigned int mss;
3109 int count = 0;
3110 int tso;
3111 unsigned int f;
3112 __be16 protocol = vlan_get_protocol(skb);
3113
3114 /* This goes back to the question of how to logically map a Tx queue
3115 * to a flow. Right now, performance is impacted slightly negatively
3116 * if using multiple Tx queues. If the stack breaks away from a
3117 * single qdisc implementation, we can look at this again.
3118 */
3119 tx_ring = adapter->tx_ring;
3120
3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122 * packets may get corrupted during padding by HW.
3123 * To WA this issue, pad all small packets manually.
3124 */
3125 if (eth_skb_pad(skb))
3126 return NETDEV_TX_OK;
3127
3128 mss = skb_shinfo(skb)->gso_size;
3129 /* The controller does a simple calculation to
3130 * make sure there is enough room in the FIFO before
3131 * initiating the DMA for each buffer. The calc is:
3132 * 4 = ceil(buffer len/mss). To make sure we don't
3133 * overrun the FIFO, adjust the max buffer len if mss
3134 * drops.
3135 */
3136 if (mss) {
3137 u8 hdr_len;
3138 max_per_txd = min(mss << 2, max_per_txd);
3139 max_txd_pwr = fls(max_per_txd) - 1;
3140
3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142 if (skb->data_len && hdr_len == len) {
3143 switch (hw->mac_type) {
3144 case e1000_82544: {
3145 unsigned int pull_size;
3146
3147 /* Make sure we have room to chop off 4 bytes,
3148 * and that the end alignment will work out to
3149 * this hardware's requirements
3150 * NOTE: this is a TSO only workaround
3151 * if end byte alignment not correct move us
3152 * into the next dword
3153 */
3154 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3155 & 4)
3156 break;
3157 pull_size = min((unsigned int)4, skb->data_len);
3158 if (!__pskb_pull_tail(skb, pull_size)) {
3159 e_err(drv, "__pskb_pull_tail "
3160 "failed.\n");
3161 dev_kfree_skb_any(skb);
3162 return NETDEV_TX_OK;
3163 }
3164 len = skb_headlen(skb);
3165 break;
3166 }
3167 default:
3168 /* do nothing */
3169 break;
3170 }
3171 }
3172 }
3173
3174 /* reserve a descriptor for the offload context */
3175 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3176 count++;
3177 count++;
3178
3179 /* Controller Erratum workaround */
3180 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3181 count++;
3182
3183 count += TXD_USE_COUNT(len, max_txd_pwr);
3184
3185 if (adapter->pcix_82544)
3186 count++;
3187
3188 /* work-around for errata 10 and it applies to all controllers
3189 * in PCI-X mode, so add one more descriptor to the count
3190 */
3191 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3192 (len > 2015)))
3193 count++;
3194
3195 nr_frags = skb_shinfo(skb)->nr_frags;
3196 for (f = 0; f < nr_frags; f++)
3197 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3198 max_txd_pwr);
3199 if (adapter->pcix_82544)
3200 count += nr_frags;
3201
3202 /* need: count + 2 desc gap to keep tail from touching
3203 * head, otherwise try next time
3204 */
3205 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206 return NETDEV_TX_BUSY;
3207
3208 if (unlikely((hw->mac_type == e1000_82547) &&
3209 (e1000_82547_fifo_workaround(adapter, skb)))) {
3210 netif_stop_queue(netdev);
3211 if (!test_bit(__E1000_DOWN, &adapter->flags))
3212 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213 return NETDEV_TX_BUSY;
3214 }
3215
3216 if (skb_vlan_tag_present(skb)) {
3217 tx_flags |= E1000_TX_FLAGS_VLAN;
3218 tx_flags |= (skb_vlan_tag_get(skb) <<
3219 E1000_TX_FLAGS_VLAN_SHIFT);
3220 }
3221
3222 first = tx_ring->next_to_use;
3223
3224 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3225 if (tso < 0) {
3226 dev_kfree_skb_any(skb);
3227 return NETDEV_TX_OK;
3228 }
3229
3230 if (likely(tso)) {
3231 if (likely(hw->mac_type != e1000_82544))
3232 tx_ring->last_tx_tso = true;
3233 tx_flags |= E1000_TX_FLAGS_TSO;
3234 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235 tx_flags |= E1000_TX_FLAGS_CSUM;
3236
3237 if (protocol == htons(ETH_P_IP))
3238 tx_flags |= E1000_TX_FLAGS_IPV4;
3239
3240 if (unlikely(skb->no_fcs))
3241 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3242
3243 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3244 nr_frags, mss);
3245
3246 if (count) {
3247 /* The descriptors needed is higher than other Intel drivers
3248 * due to a number of workarounds. The breakdown is below:
3249 * Data descriptors: MAX_SKB_FRAGS + 1
3250 * Context Descriptor: 1
3251 * Keep head from touching tail: 2
3252 * Workarounds: 3
3253 */
3254 int desc_needed = MAX_SKB_FRAGS + 7;
3255
3256 netdev_sent_queue(netdev, skb->len);
3257 skb_tx_timestamp(skb);
3258
3259 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3260
3261 /* 82544 potentially requires twice as many data descriptors
3262 * in order to guarantee buffers don't end on evenly-aligned
3263 * dwords
3264 */
3265 if (adapter->pcix_82544)
3266 desc_needed += MAX_SKB_FRAGS + 1;
3267
3268 /* Make sure there is space in the ring for the next send. */
3269 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3270
3271 if (!netdev_xmit_more() ||
3272 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3274 }
3275 } else {
3276 dev_kfree_skb_any(skb);
3277 tx_ring->buffer_info[first].time_stamp = 0;
3278 tx_ring->next_to_use = first;
3279 }
3280
3281 return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287 struct e1000_hw *hw = &adapter->hw;
3288 u32 regs[NUM_REGS];
3289 u32 *regs_buff = regs;
3290 int i = 0;
3291
3292 static const char * const reg_name[] = {
3293 "CTRL", "STATUS",
3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 "TIDV", "TXDCTL", "TADV", "TARC0",
3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 "TXDCTL1", "TARC1",
3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302 };
3303
3304 regs_buff[0] = er32(CTRL);
3305 regs_buff[1] = er32(STATUS);
3306
3307 regs_buff[2] = er32(RCTL);
3308 regs_buff[3] = er32(RDLEN);
3309 regs_buff[4] = er32(RDH);
3310 regs_buff[5] = er32(RDT);
3311 regs_buff[6] = er32(RDTR);
3312
3313 regs_buff[7] = er32(TCTL);
3314 regs_buff[8] = er32(TDBAL);
3315 regs_buff[9] = er32(TDBAH);
3316 regs_buff[10] = er32(TDLEN);
3317 regs_buff[11] = er32(TDH);
3318 regs_buff[12] = er32(TDT);
3319 regs_buff[13] = er32(TIDV);
3320 regs_buff[14] = er32(TXDCTL);
3321 regs_buff[15] = er32(TADV);
3322 regs_buff[16] = er32(TARC0);
3323
3324 regs_buff[17] = er32(TDBAL1);
3325 regs_buff[18] = er32(TDBAH1);
3326 regs_buff[19] = er32(TDLEN1);
3327 regs_buff[20] = er32(TDH1);
3328 regs_buff[21] = er32(TDT1);
3329 regs_buff[22] = er32(TXDCTL1);
3330 regs_buff[23] = er32(TARC1);
3331 regs_buff[24] = er32(CTRL_EXT);
3332 regs_buff[25] = er32(ERT);
3333 regs_buff[26] = er32(RDBAL0);
3334 regs_buff[27] = er32(RDBAH0);
3335 regs_buff[28] = er32(TDFH);
3336 regs_buff[29] = er32(TDFT);
3337 regs_buff[30] = er32(TDFHS);
3338 regs_buff[31] = er32(TDFTS);
3339 regs_buff[32] = er32(TDFPC);
3340 regs_buff[33] = er32(RDFH);
3341 regs_buff[34] = er32(RDFT);
3342 regs_buff[35] = er32(RDFHS);
3343 regs_buff[36] = er32(RDFTS);
3344 regs_buff[37] = er32(RDFPC);
3345
3346 pr_info("Register dump\n");
3347 for (i = 0; i < NUM_REGS; i++)
3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356 /* this code doesn't handle multiple rings */
3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 int i;
3360
3361 if (!netif_msg_hw(adapter))
3362 return;
3363
3364 /* Print Registers */
3365 e1000_regdump(adapter);
3366
3367 /* transmit dump */
3368 pr_info("TX Desc ring0 dump\n");
3369
3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 *
3372 * Legacy Transmit Descriptor
3373 * +--------------------------------------------------------------+
3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3375 * +--------------------------------------------------------------+
3376 * 8 | Special | CSS | Status | CMD | CSO | Length |
3377 * +--------------------------------------------------------------+
3378 * 63 48 47 36 35 32 31 24 23 16 15 0
3379 *
3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 * 63 48 47 40 39 32 31 16 15 8 7 0
3382 * +----------------------------------------------------------------+
3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3384 * +----------------------------------------------------------------+
3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3388 *
3389 * Extended Data Descriptor (DTYP=0x1)
3390 * +----------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] |
3392 * +----------------------------------------------------------------+
3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3394 * +----------------------------------------------------------------+
3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3396 */
3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399
3400 if (!netif_msg_tx_done(adapter))
3401 goto rx_ring_summary;
3402
3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 struct my_u { __le64 a; __le64 b; };
3407 struct my_u *u = (struct my_u *)tx_desc;
3408 const char *type;
3409
3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411 type = "NTC/U";
3412 else if (i == tx_ring->next_to_use)
3413 type = "NTU";
3414 else if (i == tx_ring->next_to_clean)
3415 type = "NTC";
3416 else
3417 type = "";
3418
3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 (u64)buffer_info->dma, buffer_info->length,
3423 buffer_info->next_to_watch,
3424 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3425 }
3426
3427rx_ring_summary:
3428 /* receive dump */
3429 pr_info("\nRX Desc ring dump\n");
3430
3431 /* Legacy Receive Descriptor Format
3432 *
3433 * +-----------------------------------------------------+
3434 * | Buffer Address [63:0] |
3435 * +-----------------------------------------------------+
3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 * +-----------------------------------------------------+
3438 * 63 48 47 40 39 32 31 16 15 0
3439 */
3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3441
3442 if (!netif_msg_rx_status(adapter))
3443 goto exit;
3444
3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 struct my_u { __le64 a; __le64 b; };
3449 struct my_u *u = (struct my_u *)rx_desc;
3450 const char *type;
3451
3452 if (i == rx_ring->next_to_use)
3453 type = "NTU";
3454 else if (i == rx_ring->next_to_clean)
3455 type = "NTC";
3456 else
3457 type = "";
3458
3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462 } /* for */
3463
3464 /* dump the descriptor caches */
3465 /* rx */
3466 pr_info("Rx descriptor cache in 64bit format\n");
3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 i,
3470 readl(adapter->hw.hw_addr + i+4),
3471 readl(adapter->hw.hw_addr + i),
3472 readl(adapter->hw.hw_addr + i+12),
3473 readl(adapter->hw.hw_addr + i+8));
3474 }
3475 /* tx */
3476 pr_info("Tx descriptor cache in 64bit format\n");
3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 i,
3480 readl(adapter->hw.hw_addr + i+4),
3481 readl(adapter->hw.hw_addr + i),
3482 readl(adapter->hw.hw_addr + i+12),
3483 readl(adapter->hw.hw_addr + i+8));
3484 }
3485exit:
3486 return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 * @txqueue: number of the Tx queue that hung (unused)
3493 **/
3494static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3495{
3496 struct e1000_adapter *adapter = netdev_priv(netdev);
3497
3498 /* Do the reset outside of interrupt context */
3499 adapter->tx_timeout_count++;
3500 schedule_work(&adapter->reset_task);
3501}
3502
3503static void e1000_reset_task(struct work_struct *work)
3504{
3505 struct e1000_adapter *adapter =
3506 container_of(work, struct e1000_adapter, reset_task);
3507
3508 e_err(drv, "Reset adapter\n");
3509 e1000_reinit_locked(adapter);
3510}
3511
3512/**
3513 * e1000_change_mtu - Change the Maximum Transfer Unit
3514 * @netdev: network interface device structure
3515 * @new_mtu: new value for maximum frame size
3516 *
3517 * Returns 0 on success, negative on failure
3518 **/
3519static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3520{
3521 struct e1000_adapter *adapter = netdev_priv(netdev);
3522 struct e1000_hw *hw = &adapter->hw;
3523 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3524
3525 /* Adapter-specific max frame size limits. */
3526 switch (hw->mac_type) {
3527 case e1000_undefined ... e1000_82542_rev2_1:
3528 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3529 e_err(probe, "Jumbo Frames not supported.\n");
3530 return -EINVAL;
3531 }
3532 break;
3533 default:
3534 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3535 break;
3536 }
3537
3538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3539 msleep(1);
3540 /* e1000_down has a dependency on max_frame_size */
3541 hw->max_frame_size = max_frame;
3542 if (netif_running(netdev)) {
3543 /* prevent buffers from being reallocated */
3544 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3545 e1000_down(adapter);
3546 }
3547
3548 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3549 * means we reserve 2 more, this pushes us to allocate from the next
3550 * larger slab size.
3551 * i.e. RXBUFFER_2048 --> size-4096 slab
3552 * however with the new *_jumbo_rx* routines, jumbo receives will use
3553 * fragmented skbs
3554 */
3555
3556 if (max_frame <= E1000_RXBUFFER_2048)
3557 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3558 else
3559#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3560 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3561#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3562 adapter->rx_buffer_len = PAGE_SIZE;
3563#endif
3564
3565 /* adjust allocation if LPE protects us, and we aren't using SBP */
3566 if (!hw->tbi_compatibility_on &&
3567 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3568 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3569 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3570
3571 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3572 netdev->mtu, new_mtu);
3573 netdev->mtu = new_mtu;
3574
3575 if (netif_running(netdev))
3576 e1000_up(adapter);
3577 else
3578 e1000_reset(adapter);
3579
3580 clear_bit(__E1000_RESETTING, &adapter->flags);
3581
3582 return 0;
3583}
3584
3585/**
3586 * e1000_update_stats - Update the board statistics counters
3587 * @adapter: board private structure
3588 **/
3589void e1000_update_stats(struct e1000_adapter *adapter)
3590{
3591 struct net_device *netdev = adapter->netdev;
3592 struct e1000_hw *hw = &adapter->hw;
3593 struct pci_dev *pdev = adapter->pdev;
3594 unsigned long flags;
3595 u16 phy_tmp;
3596
3597#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3598
3599 /* Prevent stats update while adapter is being reset, or if the pci
3600 * connection is down.
3601 */
3602 if (adapter->link_speed == 0)
3603 return;
3604 if (pci_channel_offline(pdev))
3605 return;
3606
3607 spin_lock_irqsave(&adapter->stats_lock, flags);
3608
3609 /* these counters are modified from e1000_tbi_adjust_stats,
3610 * called from the interrupt context, so they must only
3611 * be written while holding adapter->stats_lock
3612 */
3613
3614 adapter->stats.crcerrs += er32(CRCERRS);
3615 adapter->stats.gprc += er32(GPRC);
3616 adapter->stats.gorcl += er32(GORCL);
3617 adapter->stats.gorch += er32(GORCH);
3618 adapter->stats.bprc += er32(BPRC);
3619 adapter->stats.mprc += er32(MPRC);
3620 adapter->stats.roc += er32(ROC);
3621
3622 adapter->stats.prc64 += er32(PRC64);
3623 adapter->stats.prc127 += er32(PRC127);
3624 adapter->stats.prc255 += er32(PRC255);
3625 adapter->stats.prc511 += er32(PRC511);
3626 adapter->stats.prc1023 += er32(PRC1023);
3627 adapter->stats.prc1522 += er32(PRC1522);
3628
3629 adapter->stats.symerrs += er32(SYMERRS);
3630 adapter->stats.mpc += er32(MPC);
3631 adapter->stats.scc += er32(SCC);
3632 adapter->stats.ecol += er32(ECOL);
3633 adapter->stats.mcc += er32(MCC);
3634 adapter->stats.latecol += er32(LATECOL);
3635 adapter->stats.dc += er32(DC);
3636 adapter->stats.sec += er32(SEC);
3637 adapter->stats.rlec += er32(RLEC);
3638 adapter->stats.xonrxc += er32(XONRXC);
3639 adapter->stats.xontxc += er32(XONTXC);
3640 adapter->stats.xoffrxc += er32(XOFFRXC);
3641 adapter->stats.xofftxc += er32(XOFFTXC);
3642 adapter->stats.fcruc += er32(FCRUC);
3643 adapter->stats.gptc += er32(GPTC);
3644 adapter->stats.gotcl += er32(GOTCL);
3645 adapter->stats.gotch += er32(GOTCH);
3646 adapter->stats.rnbc += er32(RNBC);
3647 adapter->stats.ruc += er32(RUC);
3648 adapter->stats.rfc += er32(RFC);
3649 adapter->stats.rjc += er32(RJC);
3650 adapter->stats.torl += er32(TORL);
3651 adapter->stats.torh += er32(TORH);
3652 adapter->stats.totl += er32(TOTL);
3653 adapter->stats.toth += er32(TOTH);
3654 adapter->stats.tpr += er32(TPR);
3655
3656 adapter->stats.ptc64 += er32(PTC64);
3657 adapter->stats.ptc127 += er32(PTC127);
3658 adapter->stats.ptc255 += er32(PTC255);
3659 adapter->stats.ptc511 += er32(PTC511);
3660 adapter->stats.ptc1023 += er32(PTC1023);
3661 adapter->stats.ptc1522 += er32(PTC1522);
3662
3663 adapter->stats.mptc += er32(MPTC);
3664 adapter->stats.bptc += er32(BPTC);
3665
3666 /* used for adaptive IFS */
3667
3668 hw->tx_packet_delta = er32(TPT);
3669 adapter->stats.tpt += hw->tx_packet_delta;
3670 hw->collision_delta = er32(COLC);
3671 adapter->stats.colc += hw->collision_delta;
3672
3673 if (hw->mac_type >= e1000_82543) {
3674 adapter->stats.algnerrc += er32(ALGNERRC);
3675 adapter->stats.rxerrc += er32(RXERRC);
3676 adapter->stats.tncrs += er32(TNCRS);
3677 adapter->stats.cexterr += er32(CEXTERR);
3678 adapter->stats.tsctc += er32(TSCTC);
3679 adapter->stats.tsctfc += er32(TSCTFC);
3680 }
3681
3682 /* Fill out the OS statistics structure */
3683 netdev->stats.multicast = adapter->stats.mprc;
3684 netdev->stats.collisions = adapter->stats.colc;
3685
3686 /* Rx Errors */
3687
3688 /* RLEC on some newer hardware can be incorrect so build
3689 * our own version based on RUC and ROC
3690 */
3691 netdev->stats.rx_errors = adapter->stats.rxerrc +
3692 adapter->stats.crcerrs + adapter->stats.algnerrc +
3693 adapter->stats.ruc + adapter->stats.roc +
3694 adapter->stats.cexterr;
3695 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3696 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3697 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3698 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3699 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3700
3701 /* Tx Errors */
3702 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3703 netdev->stats.tx_errors = adapter->stats.txerrc;
3704 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3705 netdev->stats.tx_window_errors = adapter->stats.latecol;
3706 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3707 if (hw->bad_tx_carr_stats_fd &&
3708 adapter->link_duplex == FULL_DUPLEX) {
3709 netdev->stats.tx_carrier_errors = 0;
3710 adapter->stats.tncrs = 0;
3711 }
3712
3713 /* Tx Dropped needs to be maintained elsewhere */
3714
3715 /* Phy Stats */
3716 if (hw->media_type == e1000_media_type_copper) {
3717 if ((adapter->link_speed == SPEED_1000) &&
3718 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3719 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3720 adapter->phy_stats.idle_errors += phy_tmp;
3721 }
3722
3723 if ((hw->mac_type <= e1000_82546) &&
3724 (hw->phy_type == e1000_phy_m88) &&
3725 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3726 adapter->phy_stats.receive_errors += phy_tmp;
3727 }
3728
3729 /* Management Stats */
3730 if (hw->has_smbus) {
3731 adapter->stats.mgptc += er32(MGTPTC);
3732 adapter->stats.mgprc += er32(MGTPRC);
3733 adapter->stats.mgpdc += er32(MGTPDC);
3734 }
3735
3736 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3737}
3738
3739/**
3740 * e1000_intr - Interrupt Handler
3741 * @irq: interrupt number
3742 * @data: pointer to a network interface device structure
3743 **/
3744static irqreturn_t e1000_intr(int irq, void *data)
3745{
3746 struct net_device *netdev = data;
3747 struct e1000_adapter *adapter = netdev_priv(netdev);
3748 struct e1000_hw *hw = &adapter->hw;
3749 u32 icr = er32(ICR);
3750
3751 if (unlikely((!icr)))
3752 return IRQ_NONE; /* Not our interrupt */
3753
3754 /* we might have caused the interrupt, but the above
3755 * read cleared it, and just in case the driver is
3756 * down there is nothing to do so return handled
3757 */
3758 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3759 return IRQ_HANDLED;
3760
3761 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3762 hw->get_link_status = 1;
3763 /* guard against interrupt when we're going down */
3764 if (!test_bit(__E1000_DOWN, &adapter->flags))
3765 schedule_delayed_work(&adapter->watchdog_task, 1);
3766 }
3767
3768 /* disable interrupts, without the synchronize_irq bit */
3769 ew32(IMC, ~0);
3770 E1000_WRITE_FLUSH();
3771
3772 if (likely(napi_schedule_prep(&adapter->napi))) {
3773 adapter->total_tx_bytes = 0;
3774 adapter->total_tx_packets = 0;
3775 adapter->total_rx_bytes = 0;
3776 adapter->total_rx_packets = 0;
3777 __napi_schedule(&adapter->napi);
3778 } else {
3779 /* this really should not happen! if it does it is basically a
3780 * bug, but not a hard error, so enable ints and continue
3781 */
3782 if (!test_bit(__E1000_DOWN, &adapter->flags))
3783 e1000_irq_enable(adapter);
3784 }
3785
3786 return IRQ_HANDLED;
3787}
3788
3789/**
3790 * e1000_clean - NAPI Rx polling callback
3791 * @napi: napi struct containing references to driver info
3792 * @budget: budget given to driver for receive packets
3793 **/
3794static int e1000_clean(struct napi_struct *napi, int budget)
3795{
3796 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3797 napi);
3798 int tx_clean_complete = 0, work_done = 0;
3799
3800 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3801
3802 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3803
3804 if (!tx_clean_complete || work_done == budget)
3805 return budget;
3806
3807 /* Exit the polling mode, but don't re-enable interrupts if stack might
3808 * poll us due to busy-polling
3809 */
3810 if (likely(napi_complete_done(napi, work_done))) {
3811 if (likely(adapter->itr_setting & 3))
3812 e1000_set_itr(adapter);
3813 if (!test_bit(__E1000_DOWN, &adapter->flags))
3814 e1000_irq_enable(adapter);
3815 }
3816
3817 return work_done;
3818}
3819
3820/**
3821 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3822 * @adapter: board private structure
3823 * @tx_ring: ring to clean
3824 **/
3825static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3826 struct e1000_tx_ring *tx_ring)
3827{
3828 struct e1000_hw *hw = &adapter->hw;
3829 struct net_device *netdev = adapter->netdev;
3830 struct e1000_tx_desc *tx_desc, *eop_desc;
3831 struct e1000_tx_buffer *buffer_info;
3832 unsigned int i, eop;
3833 unsigned int count = 0;
3834 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3835 unsigned int bytes_compl = 0, pkts_compl = 0;
3836
3837 i = tx_ring->next_to_clean;
3838 eop = tx_ring->buffer_info[i].next_to_watch;
3839 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3840
3841 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3842 (count < tx_ring->count)) {
3843 bool cleaned = false;
3844 dma_rmb(); /* read buffer_info after eop_desc */
3845 for ( ; !cleaned; count++) {
3846 tx_desc = E1000_TX_DESC(*tx_ring, i);
3847 buffer_info = &tx_ring->buffer_info[i];
3848 cleaned = (i == eop);
3849
3850 if (cleaned) {
3851 total_tx_packets += buffer_info->segs;
3852 total_tx_bytes += buffer_info->bytecount;
3853 if (buffer_info->skb) {
3854 bytes_compl += buffer_info->skb->len;
3855 pkts_compl++;
3856 }
3857
3858 }
3859 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3860 tx_desc->upper.data = 0;
3861
3862 if (unlikely(++i == tx_ring->count))
3863 i = 0;
3864 }
3865
3866 eop = tx_ring->buffer_info[i].next_to_watch;
3867 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868 }
3869
3870 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3871 * which will reuse the cleaned buffers.
3872 */
3873 smp_store_release(&tx_ring->next_to_clean, i);
3874
3875 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3876
3877#define TX_WAKE_THRESHOLD 32
3878 if (unlikely(count && netif_carrier_ok(netdev) &&
3879 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3880 /* Make sure that anybody stopping the queue after this
3881 * sees the new next_to_clean.
3882 */
3883 smp_mb();
3884
3885 if (netif_queue_stopped(netdev) &&
3886 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3887 netif_wake_queue(netdev);
3888 ++adapter->restart_queue;
3889 }
3890 }
3891
3892 if (adapter->detect_tx_hung) {
3893 /* Detect a transmit hang in hardware, this serializes the
3894 * check with the clearing of time_stamp and movement of i
3895 */
3896 adapter->detect_tx_hung = false;
3897 if (tx_ring->buffer_info[eop].time_stamp &&
3898 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899 (adapter->tx_timeout_factor * HZ)) &&
3900 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3901
3902 /* detected Tx unit hang */
3903 e_err(drv, "Detected Tx Unit Hang\n"
3904 " Tx Queue <%lu>\n"
3905 " TDH <%x>\n"
3906 " TDT <%x>\n"
3907 " next_to_use <%x>\n"
3908 " next_to_clean <%x>\n"
3909 "buffer_info[next_to_clean]\n"
3910 " time_stamp <%lx>\n"
3911 " next_to_watch <%x>\n"
3912 " jiffies <%lx>\n"
3913 " next_to_watch.status <%x>\n",
3914 (unsigned long)(tx_ring - adapter->tx_ring),
3915 readl(hw->hw_addr + tx_ring->tdh),
3916 readl(hw->hw_addr + tx_ring->tdt),
3917 tx_ring->next_to_use,
3918 tx_ring->next_to_clean,
3919 tx_ring->buffer_info[eop].time_stamp,
3920 eop,
3921 jiffies,
3922 eop_desc->upper.fields.status);
3923 e1000_dump(adapter);
3924 netif_stop_queue(netdev);
3925 }
3926 }
3927 adapter->total_tx_bytes += total_tx_bytes;
3928 adapter->total_tx_packets += total_tx_packets;
3929 netdev->stats.tx_bytes += total_tx_bytes;
3930 netdev->stats.tx_packets += total_tx_packets;
3931 return count < tx_ring->count;
3932}
3933
3934/**
3935 * e1000_rx_checksum - Receive Checksum Offload for 82543
3936 * @adapter: board private structure
3937 * @status_err: receive descriptor status and error fields
3938 * @csum: receive descriptor csum field
3939 * @skb: socket buffer with received data
3940 **/
3941static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3942 u32 csum, struct sk_buff *skb)
3943{
3944 struct e1000_hw *hw = &adapter->hw;
3945 u16 status = (u16)status_err;
3946 u8 errors = (u8)(status_err >> 24);
3947
3948 skb_checksum_none_assert(skb);
3949
3950 /* 82543 or newer only */
3951 if (unlikely(hw->mac_type < e1000_82543))
3952 return;
3953 /* Ignore Checksum bit is set */
3954 if (unlikely(status & E1000_RXD_STAT_IXSM))
3955 return;
3956 /* TCP/UDP checksum error bit is set */
3957 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3958 /* let the stack verify checksum errors */
3959 adapter->hw_csum_err++;
3960 return;
3961 }
3962 /* TCP/UDP Checksum has not been calculated */
3963 if (!(status & E1000_RXD_STAT_TCPCS))
3964 return;
3965
3966 /* It must be a TCP or UDP packet with a valid checksum */
3967 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3968 /* TCP checksum is good */
3969 skb->ip_summed = CHECKSUM_UNNECESSARY;
3970 }
3971 adapter->hw_csum_good++;
3972}
3973
3974/**
3975 * e1000_consume_page - helper function for jumbo Rx path
3976 * @bi: software descriptor shadow data
3977 * @skb: skb being modified
3978 * @length: length of data being added
3979 **/
3980static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3981 u16 length)
3982{
3983 bi->rxbuf.page = NULL;
3984 skb->len += length;
3985 skb->data_len += length;
3986 skb->truesize += PAGE_SIZE;
3987}
3988
3989/**
3990 * e1000_receive_skb - helper function to handle rx indications
3991 * @adapter: board private structure
3992 * @status: descriptor status field as written by hardware
3993 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994 * @skb: pointer to sk_buff to be indicated to stack
3995 */
3996static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997 __le16 vlan, struct sk_buff *skb)
3998{
3999 skb->protocol = eth_type_trans(skb, adapter->netdev);
4000
4001 if (status & E1000_RXD_STAT_VP) {
4002 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4003
4004 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4005 }
4006 napi_gro_receive(&adapter->napi, skb);
4007}
4008
4009/**
4010 * e1000_tbi_adjust_stats
4011 * @hw: Struct containing variables accessed by shared code
4012 * @stats: point to stats struct
4013 * @frame_len: The length of the frame in question
4014 * @mac_addr: The Ethernet destination address of the frame in question
4015 *
4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4017 */
4018static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4019 struct e1000_hw_stats *stats,
4020 u32 frame_len, const u8 *mac_addr)
4021{
4022 u64 carry_bit;
4023
4024 /* First adjust the frame length. */
4025 frame_len--;
4026 /* We need to adjust the statistics counters, since the hardware
4027 * counters overcount this packet as a CRC error and undercount
4028 * the packet as a good packet
4029 */
4030 /* This packet should not be counted as a CRC error. */
4031 stats->crcerrs--;
4032 /* This packet does count as a Good Packet Received. */
4033 stats->gprc++;
4034
4035 /* Adjust the Good Octets received counters */
4036 carry_bit = 0x80000000 & stats->gorcl;
4037 stats->gorcl += frame_len;
4038 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4039 * Received Count) was one before the addition,
4040 * AND it is zero after, then we lost the carry out,
4041 * need to add one to Gorch (Good Octets Received Count High).
4042 * This could be simplified if all environments supported
4043 * 64-bit integers.
4044 */
4045 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4046 stats->gorch++;
4047 /* Is this a broadcast or multicast? Check broadcast first,
4048 * since the test for a multicast frame will test positive on
4049 * a broadcast frame.
4050 */
4051 if (is_broadcast_ether_addr(mac_addr))
4052 stats->bprc++;
4053 else if (is_multicast_ether_addr(mac_addr))
4054 stats->mprc++;
4055
4056 if (frame_len == hw->max_frame_size) {
4057 /* In this case, the hardware has overcounted the number of
4058 * oversize frames.
4059 */
4060 if (stats->roc > 0)
4061 stats->roc--;
4062 }
4063
4064 /* Adjust the bin counters when the extra byte put the frame in the
4065 * wrong bin. Remember that the frame_len was adjusted above.
4066 */
4067 if (frame_len == 64) {
4068 stats->prc64++;
4069 stats->prc127--;
4070 } else if (frame_len == 127) {
4071 stats->prc127++;
4072 stats->prc255--;
4073 } else if (frame_len == 255) {
4074 stats->prc255++;
4075 stats->prc511--;
4076 } else if (frame_len == 511) {
4077 stats->prc511++;
4078 stats->prc1023--;
4079 } else if (frame_len == 1023) {
4080 stats->prc1023++;
4081 stats->prc1522--;
4082 } else if (frame_len == 1522) {
4083 stats->prc1522++;
4084 }
4085}
4086
4087static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4088 u8 status, u8 errors,
4089 u32 length, const u8 *data)
4090{
4091 struct e1000_hw *hw = &adapter->hw;
4092 u8 last_byte = *(data + length - 1);
4093
4094 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4095 unsigned long irq_flags;
4096
4097 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4098 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4099 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4100
4101 return true;
4102 }
4103
4104 return false;
4105}
4106
4107static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4108 unsigned int bufsz)
4109{
4110 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4111
4112 if (unlikely(!skb))
4113 adapter->alloc_rx_buff_failed++;
4114 return skb;
4115}
4116
4117/**
4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4119 * @adapter: board private structure
4120 * @rx_ring: ring to clean
4121 * @work_done: amount of napi work completed this call
4122 * @work_to_do: max amount of work allowed for this call to do
4123 *
4124 * the return value indicates whether actual cleaning was done, there
4125 * is no guarantee that everything was cleaned
4126 */
4127static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4128 struct e1000_rx_ring *rx_ring,
4129 int *work_done, int work_to_do)
4130{
4131 struct net_device *netdev = adapter->netdev;
4132 struct pci_dev *pdev = adapter->pdev;
4133 struct e1000_rx_desc *rx_desc, *next_rxd;
4134 struct e1000_rx_buffer *buffer_info, *next_buffer;
4135 u32 length;
4136 unsigned int i;
4137 int cleaned_count = 0;
4138 bool cleaned = false;
4139 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4140
4141 i = rx_ring->next_to_clean;
4142 rx_desc = E1000_RX_DESC(*rx_ring, i);
4143 buffer_info = &rx_ring->buffer_info[i];
4144
4145 while (rx_desc->status & E1000_RXD_STAT_DD) {
4146 struct sk_buff *skb;
4147 u8 status;
4148
4149 if (*work_done >= work_to_do)
4150 break;
4151 (*work_done)++;
4152 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4153
4154 status = rx_desc->status;
4155
4156 if (++i == rx_ring->count)
4157 i = 0;
4158
4159 next_rxd = E1000_RX_DESC(*rx_ring, i);
4160 prefetch(next_rxd);
4161
4162 next_buffer = &rx_ring->buffer_info[i];
4163
4164 cleaned = true;
4165 cleaned_count++;
4166 dma_unmap_page(&pdev->dev, buffer_info->dma,
4167 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4168 buffer_info->dma = 0;
4169
4170 length = le16_to_cpu(rx_desc->length);
4171
4172 /* errors is only valid for DD + EOP descriptors */
4173 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4174 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4175 u8 *mapped = page_address(buffer_info->rxbuf.page);
4176
4177 if (e1000_tbi_should_accept(adapter, status,
4178 rx_desc->errors,
4179 length, mapped)) {
4180 length--;
4181 } else if (netdev->features & NETIF_F_RXALL) {
4182 goto process_skb;
4183 } else {
4184 /* an error means any chain goes out the window
4185 * too
4186 */
4187 dev_kfree_skb(rx_ring->rx_skb_top);
4188 rx_ring->rx_skb_top = NULL;
4189 goto next_desc;
4190 }
4191 }
4192
4193#define rxtop rx_ring->rx_skb_top
4194process_skb:
4195 if (!(status & E1000_RXD_STAT_EOP)) {
4196 /* this descriptor is only the beginning (or middle) */
4197 if (!rxtop) {
4198 /* this is the beginning of a chain */
4199 rxtop = napi_get_frags(&adapter->napi);
4200 if (!rxtop)
4201 break;
4202
4203 skb_fill_page_desc(rxtop, 0,
4204 buffer_info->rxbuf.page,
4205 0, length);
4206 } else {
4207 /* this is the middle of a chain */
4208 skb_fill_page_desc(rxtop,
4209 skb_shinfo(rxtop)->nr_frags,
4210 buffer_info->rxbuf.page, 0, length);
4211 }
4212 e1000_consume_page(buffer_info, rxtop, length);
4213 goto next_desc;
4214 } else {
4215 if (rxtop) {
4216 /* end of the chain */
4217 skb_fill_page_desc(rxtop,
4218 skb_shinfo(rxtop)->nr_frags,
4219 buffer_info->rxbuf.page, 0, length);
4220 skb = rxtop;
4221 rxtop = NULL;
4222 e1000_consume_page(buffer_info, skb, length);
4223 } else {
4224 struct page *p;
4225 /* no chain, got EOP, this buf is the packet
4226 * copybreak to save the put_page/alloc_page
4227 */
4228 p = buffer_info->rxbuf.page;
4229 if (length <= copybreak) {
4230 u8 *vaddr;
4231
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 length -= 4;
4234 skb = e1000_alloc_rx_skb(adapter,
4235 length);
4236 if (!skb)
4237 break;
4238
4239 vaddr = kmap_atomic(p);
4240 memcpy(skb_tail_pointer(skb), vaddr,
4241 length);
4242 kunmap_atomic(vaddr);
4243 /* re-use the page, so don't erase
4244 * buffer_info->rxbuf.page
4245 */
4246 skb_put(skb, length);
4247 e1000_rx_checksum(adapter,
4248 status | rx_desc->errors << 24,
4249 le16_to_cpu(rx_desc->csum), skb);
4250
4251 total_rx_bytes += skb->len;
4252 total_rx_packets++;
4253
4254 e1000_receive_skb(adapter, status,
4255 rx_desc->special, skb);
4256 goto next_desc;
4257 } else {
4258 skb = napi_get_frags(&adapter->napi);
4259 if (!skb) {
4260 adapter->alloc_rx_buff_failed++;
4261 break;
4262 }
4263 skb_fill_page_desc(skb, 0, p, 0,
4264 length);
4265 e1000_consume_page(buffer_info, skb,
4266 length);
4267 }
4268 }
4269 }
4270
4271 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4272 e1000_rx_checksum(adapter,
4273 (u32)(status) |
4274 ((u32)(rx_desc->errors) << 24),
4275 le16_to_cpu(rx_desc->csum), skb);
4276
4277 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4278 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4279 pskb_trim(skb, skb->len - 4);
4280 total_rx_packets++;
4281
4282 if (status & E1000_RXD_STAT_VP) {
4283 __le16 vlan = rx_desc->special;
4284 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4285
4286 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4287 }
4288
4289 napi_gro_frags(&adapter->napi);
4290
4291next_desc:
4292 rx_desc->status = 0;
4293
4294 /* return some buffers to hardware, one at a time is too slow */
4295 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4296 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4297 cleaned_count = 0;
4298 }
4299
4300 /* use prefetched values */
4301 rx_desc = next_rxd;
4302 buffer_info = next_buffer;
4303 }
4304 rx_ring->next_to_clean = i;
4305
4306 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4307 if (cleaned_count)
4308 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309
4310 adapter->total_rx_packets += total_rx_packets;
4311 adapter->total_rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_bytes += total_rx_bytes;
4313 netdev->stats.rx_packets += total_rx_packets;
4314 return cleaned;
4315}
4316
4317/* this should improve performance for small packets with large amounts
4318 * of reassembly being done in the stack
4319 */
4320static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4321 struct e1000_rx_buffer *buffer_info,
4322 u32 length, const void *data)
4323{
4324 struct sk_buff *skb;
4325
4326 if (length > copybreak)
4327 return NULL;
4328
4329 skb = e1000_alloc_rx_skb(adapter, length);
4330 if (!skb)
4331 return NULL;
4332
4333 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4334 length, DMA_FROM_DEVICE);
4335
4336 skb_put_data(skb, data, length);
4337
4338 return skb;
4339}
4340
4341/**
4342 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4343 * @adapter: board private structure
4344 * @rx_ring: ring to clean
4345 * @work_done: amount of napi work completed this call
4346 * @work_to_do: max amount of work allowed for this call to do
4347 */
4348static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4349 struct e1000_rx_ring *rx_ring,
4350 int *work_done, int work_to_do)
4351{
4352 struct net_device *netdev = adapter->netdev;
4353 struct pci_dev *pdev = adapter->pdev;
4354 struct e1000_rx_desc *rx_desc, *next_rxd;
4355 struct e1000_rx_buffer *buffer_info, *next_buffer;
4356 u32 length;
4357 unsigned int i;
4358 int cleaned_count = 0;
4359 bool cleaned = false;
4360 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4361
4362 i = rx_ring->next_to_clean;
4363 rx_desc = E1000_RX_DESC(*rx_ring, i);
4364 buffer_info = &rx_ring->buffer_info[i];
4365
4366 while (rx_desc->status & E1000_RXD_STAT_DD) {
4367 struct sk_buff *skb;
4368 u8 *data;
4369 u8 status;
4370
4371 if (*work_done >= work_to_do)
4372 break;
4373 (*work_done)++;
4374 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4375
4376 status = rx_desc->status;
4377 length = le16_to_cpu(rx_desc->length);
4378
4379 data = buffer_info->rxbuf.data;
4380 prefetch(data);
4381 skb = e1000_copybreak(adapter, buffer_info, length, data);
4382 if (!skb) {
4383 unsigned int frag_len = e1000_frag_len(adapter);
4384
4385 skb = build_skb(data - E1000_HEADROOM, frag_len);
4386 if (!skb) {
4387 adapter->alloc_rx_buff_failed++;
4388 break;
4389 }
4390
4391 skb_reserve(skb, E1000_HEADROOM);
4392 dma_unmap_single(&pdev->dev, buffer_info->dma,
4393 adapter->rx_buffer_len,
4394 DMA_FROM_DEVICE);
4395 buffer_info->dma = 0;
4396 buffer_info->rxbuf.data = NULL;
4397 }
4398
4399 if (++i == rx_ring->count)
4400 i = 0;
4401
4402 next_rxd = E1000_RX_DESC(*rx_ring, i);
4403 prefetch(next_rxd);
4404
4405 next_buffer = &rx_ring->buffer_info[i];
4406
4407 cleaned = true;
4408 cleaned_count++;
4409
4410 /* !EOP means multiple descriptors were used to store a single
4411 * packet, if thats the case we need to toss it. In fact, we
4412 * to toss every packet with the EOP bit clear and the next
4413 * frame that _does_ have the EOP bit set, as it is by
4414 * definition only a frame fragment
4415 */
4416 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4417 adapter->discarding = true;
4418
4419 if (adapter->discarding) {
4420 /* All receives must fit into a single buffer */
4421 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4422 dev_kfree_skb(skb);
4423 if (status & E1000_RXD_STAT_EOP)
4424 adapter->discarding = false;
4425 goto next_desc;
4426 }
4427
4428 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4429 if (e1000_tbi_should_accept(adapter, status,
4430 rx_desc->errors,
4431 length, data)) {
4432 length--;
4433 } else if (netdev->features & NETIF_F_RXALL) {
4434 goto process_skb;
4435 } else {
4436 dev_kfree_skb(skb);
4437 goto next_desc;
4438 }
4439 }
4440
4441process_skb:
4442 total_rx_bytes += (length - 4); /* don't count FCS */
4443 total_rx_packets++;
4444
4445 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4446 /* adjust length to remove Ethernet CRC, this must be
4447 * done after the TBI_ACCEPT workaround above
4448 */
4449 length -= 4;
4450
4451 if (buffer_info->rxbuf.data == NULL)
4452 skb_put(skb, length);
4453 else /* copybreak skb */
4454 skb_trim(skb, length);
4455
4456 /* Receive Checksum Offload */
4457 e1000_rx_checksum(adapter,
4458 (u32)(status) |
4459 ((u32)(rx_desc->errors) << 24),
4460 le16_to_cpu(rx_desc->csum), skb);
4461
4462 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4463
4464next_desc:
4465 rx_desc->status = 0;
4466
4467 /* return some buffers to hardware, one at a time is too slow */
4468 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4469 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4470 cleaned_count = 0;
4471 }
4472
4473 /* use prefetched values */
4474 rx_desc = next_rxd;
4475 buffer_info = next_buffer;
4476 }
4477 rx_ring->next_to_clean = i;
4478
4479 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4480 if (cleaned_count)
4481 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482
4483 adapter->total_rx_packets += total_rx_packets;
4484 adapter->total_rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_bytes += total_rx_bytes;
4486 netdev->stats.rx_packets += total_rx_packets;
4487 return cleaned;
4488}
4489
4490/**
4491 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4492 * @adapter: address of board private structure
4493 * @rx_ring: pointer to receive ring structure
4494 * @cleaned_count: number of buffers to allocate this pass
4495 **/
4496static void
4497e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4498 struct e1000_rx_ring *rx_ring, int cleaned_count)
4499{
4500 struct pci_dev *pdev = adapter->pdev;
4501 struct e1000_rx_desc *rx_desc;
4502 struct e1000_rx_buffer *buffer_info;
4503 unsigned int i;
4504
4505 i = rx_ring->next_to_use;
4506 buffer_info = &rx_ring->buffer_info[i];
4507
4508 while (cleaned_count--) {
4509 /* allocate a new page if necessary */
4510 if (!buffer_info->rxbuf.page) {
4511 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4512 if (unlikely(!buffer_info->rxbuf.page)) {
4513 adapter->alloc_rx_buff_failed++;
4514 break;
4515 }
4516 }
4517
4518 if (!buffer_info->dma) {
4519 buffer_info->dma = dma_map_page(&pdev->dev,
4520 buffer_info->rxbuf.page, 0,
4521 adapter->rx_buffer_len,
4522 DMA_FROM_DEVICE);
4523 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4524 put_page(buffer_info->rxbuf.page);
4525 buffer_info->rxbuf.page = NULL;
4526 buffer_info->dma = 0;
4527 adapter->alloc_rx_buff_failed++;
4528 break;
4529 }
4530 }
4531
4532 rx_desc = E1000_RX_DESC(*rx_ring, i);
4533 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4534
4535 if (unlikely(++i == rx_ring->count))
4536 i = 0;
4537 buffer_info = &rx_ring->buffer_info[i];
4538 }
4539
4540 if (likely(rx_ring->next_to_use != i)) {
4541 rx_ring->next_to_use = i;
4542 if (unlikely(i-- == 0))
4543 i = (rx_ring->count - 1);
4544
4545 /* Force memory writes to complete before letting h/w
4546 * know there are new descriptors to fetch. (Only
4547 * applicable for weak-ordered memory model archs,
4548 * such as IA-64).
4549 */
4550 dma_wmb();
4551 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4552 }
4553}
4554
4555/**
4556 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4557 * @adapter: address of board private structure
4558 * @rx_ring: pointer to ring struct
4559 * @cleaned_count: number of new Rx buffers to try to allocate
4560 **/
4561static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562 struct e1000_rx_ring *rx_ring,
4563 int cleaned_count)
4564{
4565 struct e1000_hw *hw = &adapter->hw;
4566 struct pci_dev *pdev = adapter->pdev;
4567 struct e1000_rx_desc *rx_desc;
4568 struct e1000_rx_buffer *buffer_info;
4569 unsigned int i;
4570 unsigned int bufsz = adapter->rx_buffer_len;
4571
4572 i = rx_ring->next_to_use;
4573 buffer_info = &rx_ring->buffer_info[i];
4574
4575 while (cleaned_count--) {
4576 void *data;
4577
4578 if (buffer_info->rxbuf.data)
4579 goto skip;
4580
4581 data = e1000_alloc_frag(adapter);
4582 if (!data) {
4583 /* Better luck next round */
4584 adapter->alloc_rx_buff_failed++;
4585 break;
4586 }
4587
4588 /* Fix for errata 23, can't cross 64kB boundary */
4589 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590 void *olddata = data;
4591 e_err(rx_err, "skb align check failed: %u bytes at "
4592 "%p\n", bufsz, data);
4593 /* Try again, without freeing the previous */
4594 data = e1000_alloc_frag(adapter);
4595 /* Failed allocation, critical failure */
4596 if (!data) {
4597 skb_free_frag(olddata);
4598 adapter->alloc_rx_buff_failed++;
4599 break;
4600 }
4601
4602 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4603 /* give up */
4604 skb_free_frag(data);
4605 skb_free_frag(olddata);
4606 adapter->alloc_rx_buff_failed++;
4607 break;
4608 }
4609
4610 /* Use new allocation */
4611 skb_free_frag(olddata);
4612 }
4613 buffer_info->dma = dma_map_single(&pdev->dev,
4614 data,
4615 adapter->rx_buffer_len,
4616 DMA_FROM_DEVICE);
4617 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618 skb_free_frag(data);
4619 buffer_info->dma = 0;
4620 adapter->alloc_rx_buff_failed++;
4621 break;
4622 }
4623
4624 /* XXX if it was allocated cleanly it will never map to a
4625 * boundary crossing
4626 */
4627
4628 /* Fix for errata 23, can't cross 64kB boundary */
4629 if (!e1000_check_64k_bound(adapter,
4630 (void *)(unsigned long)buffer_info->dma,
4631 adapter->rx_buffer_len)) {
4632 e_err(rx_err, "dma align check failed: %u bytes at "
4633 "%p\n", adapter->rx_buffer_len,
4634 (void *)(unsigned long)buffer_info->dma);
4635
4636 dma_unmap_single(&pdev->dev, buffer_info->dma,
4637 adapter->rx_buffer_len,
4638 DMA_FROM_DEVICE);
4639
4640 skb_free_frag(data);
4641 buffer_info->rxbuf.data = NULL;
4642 buffer_info->dma = 0;
4643
4644 adapter->alloc_rx_buff_failed++;
4645 break;
4646 }
4647 buffer_info->rxbuf.data = data;
4648 skip:
4649 rx_desc = E1000_RX_DESC(*rx_ring, i);
4650 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651
4652 if (unlikely(++i == rx_ring->count))
4653 i = 0;
4654 buffer_info = &rx_ring->buffer_info[i];
4655 }
4656
4657 if (likely(rx_ring->next_to_use != i)) {
4658 rx_ring->next_to_use = i;
4659 if (unlikely(i-- == 0))
4660 i = (rx_ring->count - 1);
4661
4662 /* Force memory writes to complete before letting h/w
4663 * know there are new descriptors to fetch. (Only
4664 * applicable for weak-ordered memory model archs,
4665 * such as IA-64).
4666 */
4667 dma_wmb();
4668 writel(i, hw->hw_addr + rx_ring->rdt);
4669 }
4670}
4671
4672/**
4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674 * @adapter: address of board private structure
4675 **/
4676static void e1000_smartspeed(struct e1000_adapter *adapter)
4677{
4678 struct e1000_hw *hw = &adapter->hw;
4679 u16 phy_status;
4680 u16 phy_ctrl;
4681
4682 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4684 return;
4685
4686 if (adapter->smartspeed == 0) {
4687 /* If Master/Slave config fault is asserted twice,
4688 * we assume back-to-back
4689 */
4690 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4692 return;
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4697 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4698 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4699 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4700 phy_ctrl);
4701 adapter->smartspeed++;
4702 if (!e1000_phy_setup_autoneg(hw) &&
4703 !e1000_read_phy_reg(hw, PHY_CTRL,
4704 &phy_ctrl)) {
4705 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4706 MII_CR_RESTART_AUTO_NEG);
4707 e1000_write_phy_reg(hw, PHY_CTRL,
4708 phy_ctrl);
4709 }
4710 }
4711 return;
4712 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4713 /* If still no link, perhaps using 2/3 pair cable */
4714 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4715 phy_ctrl |= CR_1000T_MS_ENABLE;
4716 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4717 if (!e1000_phy_setup_autoneg(hw) &&
4718 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4719 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4720 MII_CR_RESTART_AUTO_NEG);
4721 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4722 }
4723 }
4724 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4725 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4726 adapter->smartspeed = 0;
4727}
4728
4729/**
4730 * e1000_ioctl - handle ioctl calls
4731 * @netdev: pointer to our netdev
4732 * @ifr: pointer to interface request structure
4733 * @cmd: ioctl data
4734 **/
4735static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4736{
4737 switch (cmd) {
4738 case SIOCGMIIPHY:
4739 case SIOCGMIIREG:
4740 case SIOCSMIIREG:
4741 return e1000_mii_ioctl(netdev, ifr, cmd);
4742 default:
4743 return -EOPNOTSUPP;
4744 }
4745}
4746
4747/**
4748 * e1000_mii_ioctl -
4749 * @netdev: pointer to our netdev
4750 * @ifr: pointer to interface request structure
4751 * @cmd: ioctl data
4752 **/
4753static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4754 int cmd)
4755{
4756 struct e1000_adapter *adapter = netdev_priv(netdev);
4757 struct e1000_hw *hw = &adapter->hw;
4758 struct mii_ioctl_data *data = if_mii(ifr);
4759 int retval;
4760 u16 mii_reg;
4761 unsigned long flags;
4762
4763 if (hw->media_type != e1000_media_type_copper)
4764 return -EOPNOTSUPP;
4765
4766 switch (cmd) {
4767 case SIOCGMIIPHY:
4768 data->phy_id = hw->phy_addr;
4769 break;
4770 case SIOCGMIIREG:
4771 spin_lock_irqsave(&adapter->stats_lock, flags);
4772 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4773 &data->val_out)) {
4774 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4775 return -EIO;
4776 }
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 break;
4779 case SIOCSMIIREG:
4780 if (data->reg_num & ~(0x1F))
4781 return -EFAULT;
4782 mii_reg = data->val_in;
4783 spin_lock_irqsave(&adapter->stats_lock, flags);
4784 if (e1000_write_phy_reg(hw, data->reg_num,
4785 mii_reg)) {
4786 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4787 return -EIO;
4788 }
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 if (hw->media_type == e1000_media_type_copper) {
4791 switch (data->reg_num) {
4792 case PHY_CTRL:
4793 if (mii_reg & MII_CR_POWER_DOWN)
4794 break;
4795 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4796 hw->autoneg = 1;
4797 hw->autoneg_advertised = 0x2F;
4798 } else {
4799 u32 speed;
4800 if (mii_reg & 0x40)
4801 speed = SPEED_1000;
4802 else if (mii_reg & 0x2000)
4803 speed = SPEED_100;
4804 else
4805 speed = SPEED_10;
4806 retval = e1000_set_spd_dplx(
4807 adapter, speed,
4808 ((mii_reg & 0x100)
4809 ? DUPLEX_FULL :
4810 DUPLEX_HALF));
4811 if (retval)
4812 return retval;
4813 }
4814 if (netif_running(adapter->netdev))
4815 e1000_reinit_locked(adapter);
4816 else
4817 e1000_reset(adapter);
4818 break;
4819 case M88E1000_PHY_SPEC_CTRL:
4820 case M88E1000_EXT_PHY_SPEC_CTRL:
4821 if (e1000_phy_reset(hw))
4822 return -EIO;
4823 break;
4824 }
4825 } else {
4826 switch (data->reg_num) {
4827 case PHY_CTRL:
4828 if (mii_reg & MII_CR_POWER_DOWN)
4829 break;
4830 if (netif_running(adapter->netdev))
4831 e1000_reinit_locked(adapter);
4832 else
4833 e1000_reset(adapter);
4834 break;
4835 }
4836 }
4837 break;
4838 default:
4839 return -EOPNOTSUPP;
4840 }
4841 return E1000_SUCCESS;
4842}
4843
4844void e1000_pci_set_mwi(struct e1000_hw *hw)
4845{
4846 struct e1000_adapter *adapter = hw->back;
4847 int ret_val = pci_set_mwi(adapter->pdev);
4848
4849 if (ret_val)
4850 e_err(probe, "Error in setting MWI\n");
4851}
4852
4853void e1000_pci_clear_mwi(struct e1000_hw *hw)
4854{
4855 struct e1000_adapter *adapter = hw->back;
4856
4857 pci_clear_mwi(adapter->pdev);
4858}
4859
4860int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4861{
4862 struct e1000_adapter *adapter = hw->back;
4863 return pcix_get_mmrbc(adapter->pdev);
4864}
4865
4866void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4867{
4868 struct e1000_adapter *adapter = hw->back;
4869 pcix_set_mmrbc(adapter->pdev, mmrbc);
4870}
4871
4872void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4873{
4874 outl(value, port);
4875}
4876
4877static bool e1000_vlan_used(struct e1000_adapter *adapter)
4878{
4879 u16 vid;
4880
4881 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4882 return true;
4883 return false;
4884}
4885
4886static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4887 netdev_features_t features)
4888{
4889 struct e1000_hw *hw = &adapter->hw;
4890 u32 ctrl;
4891
4892 ctrl = er32(CTRL);
4893 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4894 /* enable VLAN tag insert/strip */
4895 ctrl |= E1000_CTRL_VME;
4896 } else {
4897 /* disable VLAN tag insert/strip */
4898 ctrl &= ~E1000_CTRL_VME;
4899 }
4900 ew32(CTRL, ctrl);
4901}
4902static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4903 bool filter_on)
4904{
4905 struct e1000_hw *hw = &adapter->hw;
4906 u32 rctl;
4907
4908 if (!test_bit(__E1000_DOWN, &adapter->flags))
4909 e1000_irq_disable(adapter);
4910
4911 __e1000_vlan_mode(adapter, adapter->netdev->features);
4912 if (filter_on) {
4913 /* enable VLAN receive filtering */
4914 rctl = er32(RCTL);
4915 rctl &= ~E1000_RCTL_CFIEN;
4916 if (!(adapter->netdev->flags & IFF_PROMISC))
4917 rctl |= E1000_RCTL_VFE;
4918 ew32(RCTL, rctl);
4919 e1000_update_mng_vlan(adapter);
4920 } else {
4921 /* disable VLAN receive filtering */
4922 rctl = er32(RCTL);
4923 rctl &= ~E1000_RCTL_VFE;
4924 ew32(RCTL, rctl);
4925 }
4926
4927 if (!test_bit(__E1000_DOWN, &adapter->flags))
4928 e1000_irq_enable(adapter);
4929}
4930
4931static void e1000_vlan_mode(struct net_device *netdev,
4932 netdev_features_t features)
4933{
4934 struct e1000_adapter *adapter = netdev_priv(netdev);
4935
4936 if (!test_bit(__E1000_DOWN, &adapter->flags))
4937 e1000_irq_disable(adapter);
4938
4939 __e1000_vlan_mode(adapter, features);
4940
4941 if (!test_bit(__E1000_DOWN, &adapter->flags))
4942 e1000_irq_enable(adapter);
4943}
4944
4945static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4946 __be16 proto, u16 vid)
4947{
4948 struct e1000_adapter *adapter = netdev_priv(netdev);
4949 struct e1000_hw *hw = &adapter->hw;
4950 u32 vfta, index;
4951
4952 if ((hw->mng_cookie.status &
4953 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4954 (vid == adapter->mng_vlan_id))
4955 return 0;
4956
4957 if (!e1000_vlan_used(adapter))
4958 e1000_vlan_filter_on_off(adapter, true);
4959
4960 /* add VID to filter table */
4961 index = (vid >> 5) & 0x7F;
4962 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4963 vfta |= (1 << (vid & 0x1F));
4964 e1000_write_vfta(hw, index, vfta);
4965
4966 set_bit(vid, adapter->active_vlans);
4967
4968 return 0;
4969}
4970
4971static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4972 __be16 proto, u16 vid)
4973{
4974 struct e1000_adapter *adapter = netdev_priv(netdev);
4975 struct e1000_hw *hw = &adapter->hw;
4976 u32 vfta, index;
4977
4978 if (!test_bit(__E1000_DOWN, &adapter->flags))
4979 e1000_irq_disable(adapter);
4980 if (!test_bit(__E1000_DOWN, &adapter->flags))
4981 e1000_irq_enable(adapter);
4982
4983 /* remove VID from filter table */
4984 index = (vid >> 5) & 0x7F;
4985 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4986 vfta &= ~(1 << (vid & 0x1F));
4987 e1000_write_vfta(hw, index, vfta);
4988
4989 clear_bit(vid, adapter->active_vlans);
4990
4991 if (!e1000_vlan_used(adapter))
4992 e1000_vlan_filter_on_off(adapter, false);
4993
4994 return 0;
4995}
4996
4997static void e1000_restore_vlan(struct e1000_adapter *adapter)
4998{
4999 u16 vid;
5000
5001 if (!e1000_vlan_used(adapter))
5002 return;
5003
5004 e1000_vlan_filter_on_off(adapter, true);
5005 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5006 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5007}
5008
5009int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5010{
5011 struct e1000_hw *hw = &adapter->hw;
5012
5013 hw->autoneg = 0;
5014
5015 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5016 * for the switch() below to work
5017 */
5018 if ((spd & 1) || (dplx & ~1))
5019 goto err_inval;
5020
5021 /* Fiber NICs only allow 1000 gbps Full duplex */
5022 if ((hw->media_type == e1000_media_type_fiber) &&
5023 spd != SPEED_1000 &&
5024 dplx != DUPLEX_FULL)
5025 goto err_inval;
5026
5027 switch (spd + dplx) {
5028 case SPEED_10 + DUPLEX_HALF:
5029 hw->forced_speed_duplex = e1000_10_half;
5030 break;
5031 case SPEED_10 + DUPLEX_FULL:
5032 hw->forced_speed_duplex = e1000_10_full;
5033 break;
5034 case SPEED_100 + DUPLEX_HALF:
5035 hw->forced_speed_duplex = e1000_100_half;
5036 break;
5037 case SPEED_100 + DUPLEX_FULL:
5038 hw->forced_speed_duplex = e1000_100_full;
5039 break;
5040 case SPEED_1000 + DUPLEX_FULL:
5041 hw->autoneg = 1;
5042 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5043 break;
5044 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5045 default:
5046 goto err_inval;
5047 }
5048
5049 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5050 hw->mdix = AUTO_ALL_MODES;
5051
5052 return 0;
5053
5054err_inval:
5055 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5056 return -EINVAL;
5057}
5058
5059static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5060{
5061 struct net_device *netdev = pci_get_drvdata(pdev);
5062 struct e1000_adapter *adapter = netdev_priv(netdev);
5063 struct e1000_hw *hw = &adapter->hw;
5064 u32 ctrl, ctrl_ext, rctl, status;
5065 u32 wufc = adapter->wol;
5066
5067 netif_device_detach(netdev);
5068
5069 if (netif_running(netdev)) {
5070 int count = E1000_CHECK_RESET_COUNT;
5071
5072 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5073 usleep_range(10000, 20000);
5074
5075 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5076 e1000_down(adapter);
5077 }
5078
5079 status = er32(STATUS);
5080 if (status & E1000_STATUS_LU)
5081 wufc &= ~E1000_WUFC_LNKC;
5082
5083 if (wufc) {
5084 e1000_setup_rctl(adapter);
5085 e1000_set_rx_mode(netdev);
5086
5087 rctl = er32(RCTL);
5088
5089 /* turn on all-multi mode if wake on multicast is enabled */
5090 if (wufc & E1000_WUFC_MC)
5091 rctl |= E1000_RCTL_MPE;
5092
5093 /* enable receives in the hardware */
5094 ew32(RCTL, rctl | E1000_RCTL_EN);
5095
5096 if (hw->mac_type >= e1000_82540) {
5097 ctrl = er32(CTRL);
5098 /* advertise wake from D3Cold */
5099 #define E1000_CTRL_ADVD3WUC 0x00100000
5100 /* phy power management enable */
5101 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5102 ctrl |= E1000_CTRL_ADVD3WUC |
5103 E1000_CTRL_EN_PHY_PWR_MGMT;
5104 ew32(CTRL, ctrl);
5105 }
5106
5107 if (hw->media_type == e1000_media_type_fiber ||
5108 hw->media_type == e1000_media_type_internal_serdes) {
5109 /* keep the laser running in D3 */
5110 ctrl_ext = er32(CTRL_EXT);
5111 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5112 ew32(CTRL_EXT, ctrl_ext);
5113 }
5114
5115 ew32(WUC, E1000_WUC_PME_EN);
5116 ew32(WUFC, wufc);
5117 } else {
5118 ew32(WUC, 0);
5119 ew32(WUFC, 0);
5120 }
5121
5122 e1000_release_manageability(adapter);
5123
5124 *enable_wake = !!wufc;
5125
5126 /* make sure adapter isn't asleep if manageability is enabled */
5127 if (adapter->en_mng_pt)
5128 *enable_wake = true;
5129
5130 if (netif_running(netdev))
5131 e1000_free_irq(adapter);
5132
5133 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5134 pci_disable_device(pdev);
5135
5136 return 0;
5137}
5138
5139static int __maybe_unused e1000_suspend(struct device *dev)
5140{
5141 int retval;
5142 struct pci_dev *pdev = to_pci_dev(dev);
5143 bool wake;
5144
5145 retval = __e1000_shutdown(pdev, &wake);
5146 device_set_wakeup_enable(dev, wake);
5147
5148 return retval;
5149}
5150
5151static int __maybe_unused e1000_resume(struct device *dev)
5152{
5153 struct pci_dev *pdev = to_pci_dev(dev);
5154 struct net_device *netdev = pci_get_drvdata(pdev);
5155 struct e1000_adapter *adapter = netdev_priv(netdev);
5156 struct e1000_hw *hw = &adapter->hw;
5157 u32 err;
5158
5159 if (adapter->need_ioport)
5160 err = pci_enable_device(pdev);
5161 else
5162 err = pci_enable_device_mem(pdev);
5163 if (err) {
5164 pr_err("Cannot enable PCI device from suspend\n");
5165 return err;
5166 }
5167
5168 /* flush memory to make sure state is correct */
5169 smp_mb__before_atomic();
5170 clear_bit(__E1000_DISABLED, &adapter->flags);
5171 pci_set_master(pdev);
5172
5173 pci_enable_wake(pdev, PCI_D3hot, 0);
5174 pci_enable_wake(pdev, PCI_D3cold, 0);
5175
5176 if (netif_running(netdev)) {
5177 err = e1000_request_irq(adapter);
5178 if (err)
5179 return err;
5180 }
5181
5182 e1000_power_up_phy(adapter);
5183 e1000_reset(adapter);
5184 ew32(WUS, ~0);
5185
5186 e1000_init_manageability(adapter);
5187
5188 if (netif_running(netdev))
5189 e1000_up(adapter);
5190
5191 netif_device_attach(netdev);
5192
5193 return 0;
5194}
5195
5196static void e1000_shutdown(struct pci_dev *pdev)
5197{
5198 bool wake;
5199
5200 __e1000_shutdown(pdev, &wake);
5201
5202 if (system_state == SYSTEM_POWER_OFF) {
5203 pci_wake_from_d3(pdev, wake);
5204 pci_set_power_state(pdev, PCI_D3hot);
5205 }
5206}
5207
5208#ifdef CONFIG_NET_POLL_CONTROLLER
5209/* Polling 'interrupt' - used by things like netconsole to send skbs
5210 * without having to re-enable interrupts. It's not called while
5211 * the interrupt routine is executing.
5212 */
5213static void e1000_netpoll(struct net_device *netdev)
5214{
5215 struct e1000_adapter *adapter = netdev_priv(netdev);
5216
5217 if (disable_hardirq(adapter->pdev->irq))
5218 e1000_intr(adapter->pdev->irq, netdev);
5219 enable_irq(adapter->pdev->irq);
5220}
5221#endif
5222
5223/**
5224 * e1000_io_error_detected - called when PCI error is detected
5225 * @pdev: Pointer to PCI device
5226 * @state: The current pci connection state
5227 *
5228 * This function is called after a PCI bus error affecting
5229 * this device has been detected.
5230 */
5231static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5232 pci_channel_state_t state)
5233{
5234 struct net_device *netdev = pci_get_drvdata(pdev);
5235 struct e1000_adapter *adapter = netdev_priv(netdev);
5236
5237 netif_device_detach(netdev);
5238
5239 if (state == pci_channel_io_perm_failure)
5240 return PCI_ERS_RESULT_DISCONNECT;
5241
5242 if (netif_running(netdev))
5243 e1000_down(adapter);
5244
5245 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5246 pci_disable_device(pdev);
5247
5248 /* Request a slot reset. */
5249 return PCI_ERS_RESULT_NEED_RESET;
5250}
5251
5252/**
5253 * e1000_io_slot_reset - called after the pci bus has been reset.
5254 * @pdev: Pointer to PCI device
5255 *
5256 * Restart the card from scratch, as if from a cold-boot. Implementation
5257 * resembles the first-half of the e1000_resume routine.
5258 */
5259static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5260{
5261 struct net_device *netdev = pci_get_drvdata(pdev);
5262 struct e1000_adapter *adapter = netdev_priv(netdev);
5263 struct e1000_hw *hw = &adapter->hw;
5264 int err;
5265
5266 if (adapter->need_ioport)
5267 err = pci_enable_device(pdev);
5268 else
5269 err = pci_enable_device_mem(pdev);
5270 if (err) {
5271 pr_err("Cannot re-enable PCI device after reset.\n");
5272 return PCI_ERS_RESULT_DISCONNECT;
5273 }
5274
5275 /* flush memory to make sure state is correct */
5276 smp_mb__before_atomic();
5277 clear_bit(__E1000_DISABLED, &adapter->flags);
5278 pci_set_master(pdev);
5279
5280 pci_enable_wake(pdev, PCI_D3hot, 0);
5281 pci_enable_wake(pdev, PCI_D3cold, 0);
5282
5283 e1000_reset(adapter);
5284 ew32(WUS, ~0);
5285
5286 return PCI_ERS_RESULT_RECOVERED;
5287}
5288
5289/**
5290 * e1000_io_resume - called when traffic can start flowing again.
5291 * @pdev: Pointer to PCI device
5292 *
5293 * This callback is called when the error recovery driver tells us that
5294 * its OK to resume normal operation. Implementation resembles the
5295 * second-half of the e1000_resume routine.
5296 */
5297static void e1000_io_resume(struct pci_dev *pdev)
5298{
5299 struct net_device *netdev = pci_get_drvdata(pdev);
5300 struct e1000_adapter *adapter = netdev_priv(netdev);
5301
5302 e1000_init_manageability(adapter);
5303
5304 if (netif_running(netdev)) {
5305 if (e1000_up(adapter)) {
5306 pr_info("can't bring device back up after reset\n");
5307 return;
5308 }
5309 }
5310
5311 netif_device_attach(netdev);
5312}
5313
5314/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117int e1000_open(struct net_device *netdev);
118int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 /* MTU range: 46 - 16110 */
1089 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1091
1092 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1093
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw)) {
1096 e_err(probe, "EEPROM initialization failed\n");
1097 goto err_eeprom;
1098 }
1099
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state
1102 */
1103
1104 e1000_reset_hw(hw);
1105
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter);
1110 /* set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1115 * `ip set address`
1116 */
1117 memset(hw->mac_addr, 0, netdev->addr_len);
1118 } else {
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw))
1121 e_err(probe, "EEPROM Read Error\n");
1122 }
1123 /* don't block initialization here due to bad MAC address */
1124 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1125
1126 if (!is_valid_ether_addr(netdev->dev_addr))
1127 e_err(probe, "Invalid MAC Address\n");
1128
1129
1130 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132 e1000_82547_tx_fifo_stall_task);
1133 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135
1136 e1000_check_options(adapter);
1137
1138 /* Initial Wake on LAN setting
1139 * If APM wake is enabled in the EEPROM,
1140 * enable the ACPI Magic Packet filter
1141 */
1142
1143 switch (hw->mac_type) {
1144 case e1000_82542_rev2_0:
1145 case e1000_82542_rev2_1:
1146 case e1000_82543:
1147 break;
1148 case e1000_82544:
1149 e1000_read_eeprom(hw,
1150 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152 break;
1153 case e1000_82546:
1154 case e1000_82546_rev_3:
1155 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 break;
1159 }
1160 /* Fall Through */
1161 default:
1162 e1000_read_eeprom(hw,
1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 break;
1165 }
1166 if (eeprom_data & eeprom_apme_mask)
1167 adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169 /* now that we have the eeprom settings, apply the special cases
1170 * where the eeprom may be wrong or the board simply won't support
1171 * wake on lan on a particular port
1172 */
1173 switch (pdev->device) {
1174 case E1000_DEV_ID_82546GB_PCIE:
1175 adapter->eeprom_wol = 0;
1176 break;
1177 case E1000_DEV_ID_82546EB_FIBER:
1178 case E1000_DEV_ID_82546GB_FIBER:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting
1181 */
1182 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 adapter->eeprom_wol = 0;
1184 break;
1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 /* if quad port adapter, disable WoL on all but port A */
1187 if (global_quad_port_a != 0)
1188 adapter->eeprom_wol = 0;
1189 else
1190 adapter->quad_port_a = true;
1191 /* Reset for multiple quad port adapters */
1192 if (++global_quad_port_a == 4)
1193 global_quad_port_a = 0;
1194 break;
1195 }
1196
1197 /* initialize the wol settings based on the eeprom settings */
1198 adapter->wol = adapter->eeprom_wol;
1199 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200
1201 /* Auto detect PHY address */
1202 if (hw->mac_type == e1000_ce4100) {
1203 for (i = 0; i < 32; i++) {
1204 hw->phy_addr = i;
1205 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206
1207 if (tmp != 0 && tmp != 0xFF)
1208 break;
1209 }
1210
1211 if (i >= 32)
1212 goto err_eeprom;
1213 }
1214
1215 /* reset the hardware with the new settings */
1216 e1000_reset(adapter);
1217
1218 strcpy(netdev->name, "eth%d");
1219 err = register_netdev(netdev);
1220 if (err)
1221 goto err_register;
1222
1223 e1000_vlan_filter_on_off(adapter, false);
1224
1225 /* print bus type/speed/width info */
1226 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 netdev->dev_addr);
1234
1235 /* carrier off reporting is important to ethtool even BEFORE open */
1236 netif_carrier_off(netdev);
1237
1238 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239
1240 cards_found++;
1241 return 0;
1242
1243err_register:
1244err_eeprom:
1245 e1000_phy_hw_reset(hw);
1246
1247 if (hw->flash_address)
1248 iounmap(hw->flash_address);
1249 kfree(adapter->tx_ring);
1250 kfree(adapter->rx_ring);
1251err_dma:
1252err_sw_init:
1253err_mdio_ioremap:
1254 iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 iounmap(hw->hw_addr);
1256err_ioremap:
1257 free_netdev(netdev);
1258err_alloc_etherdev:
1259 pci_release_selected_regions(pdev, bars);
1260err_pci_reg:
1261 pci_disable_device(pdev);
1262 return err;
1263}
1264
1265/**
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1268 *
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1272 * memory.
1273 **/
1274static void e1000_remove(struct pci_dev *pdev)
1275{
1276 struct net_device *netdev = pci_get_drvdata(pdev);
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1279
1280 e1000_down_and_stop(adapter);
1281 e1000_release_manageability(adapter);
1282
1283 unregister_netdev(netdev);
1284
1285 e1000_phy_hw_reset(hw);
1286
1287 kfree(adapter->tx_ring);
1288 kfree(adapter->rx_ring);
1289
1290 if (hw->mac_type == e1000_ce4100)
1291 iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1296
1297 free_netdev(netdev);
1298
1299 pci_disable_device(pdev);
1300}
1301
1302/**
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1305 *
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1308 **/
1309static int e1000_sw_init(struct e1000_adapter *adapter)
1310{
1311 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312
1313 adapter->num_tx_queues = 1;
1314 adapter->num_rx_queues = 1;
1315
1316 if (e1000_alloc_queues(adapter)) {
1317 e_err(probe, "Unable to allocate memory for queues\n");
1318 return -ENOMEM;
1319 }
1320
1321 /* Explicitly disable IRQ since the NIC can be in any state. */
1322 e1000_irq_disable(adapter);
1323
1324 spin_lock_init(&adapter->stats_lock);
1325
1326 set_bit(__E1000_DOWN, &adapter->flags);
1327
1328 return 0;
1329}
1330
1331/**
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1334 *
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1337 **/
1338static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339{
1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342 if (!adapter->tx_ring)
1343 return -ENOMEM;
1344
1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347 if (!adapter->rx_ring) {
1348 kfree(adapter->tx_ring);
1349 return -ENOMEM;
1350 }
1351
1352 return E1000_SUCCESS;
1353}
1354
1355/**
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1358 *
1359 * Returns 0 on success, negative value on failure
1360 *
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1366 **/
1367int e1000_open(struct net_device *netdev)
1368{
1369 struct e1000_adapter *adapter = netdev_priv(netdev);
1370 struct e1000_hw *hw = &adapter->hw;
1371 int err;
1372
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING, &adapter->flags))
1375 return -EBUSY;
1376
1377 netif_carrier_off(netdev);
1378
1379 /* allocate transmit descriptors */
1380 err = e1000_setup_all_tx_resources(adapter);
1381 if (err)
1382 goto err_setup_tx;
1383
1384 /* allocate receive descriptors */
1385 err = e1000_setup_all_rx_resources(adapter);
1386 if (err)
1387 goto err_setup_rx;
1388
1389 e1000_power_up_phy(adapter);
1390
1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392 if ((hw->mng_cookie.status &
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394 e1000_update_mng_vlan(adapter);
1395 }
1396
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1401 */
1402 e1000_configure(adapter);
1403
1404 err = e1000_request_irq(adapter);
1405 if (err)
1406 goto err_req_irq;
1407
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411 napi_enable(&adapter->napi);
1412
1413 e1000_irq_enable(adapter);
1414
1415 netif_start_queue(netdev);
1416
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS, E1000_ICS_LSC);
1419
1420 return E1000_SUCCESS;
1421
1422err_req_irq:
1423 e1000_power_down_phy(adapter);
1424 e1000_free_all_rx_resources(adapter);
1425err_setup_rx:
1426 e1000_free_all_tx_resources(adapter);
1427err_setup_tx:
1428 e1000_reset(adapter);
1429
1430 return err;
1431}
1432
1433/**
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1436 *
1437 * Returns 0, this is not allowed to fail
1438 *
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1443 **/
1444int e1000_close(struct net_device *netdev)
1445{
1446 struct e1000_adapter *adapter = netdev_priv(netdev);
1447 struct e1000_hw *hw = &adapter->hw;
1448 int count = E1000_CHECK_RESET_COUNT;
1449
1450 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451 usleep_range(10000, 20000);
1452
1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 e1000_down(adapter);
1455 e1000_power_down_phy(adapter);
1456 e1000_free_irq(adapter);
1457
1458 e1000_free_all_tx_resources(adapter);
1459 e1000_free_all_rx_resources(adapter);
1460
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it)
1463 */
1464 if ((hw->mng_cookie.status &
1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468 adapter->mng_vlan_id);
1469 }
1470
1471 return 0;
1472}
1473
1474/**
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1479 **/
1480static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 unsigned long len)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long begin = (unsigned long)start;
1485 unsigned long end = begin + len;
1486
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23
1489 */
1490 if (hw->mac_type == e1000_82545 ||
1491 hw->mac_type == e1000_ce4100 ||
1492 hw->mac_type == e1000_82546) {
1493 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494 }
1495
1496 return true;
1497}
1498
1499/**
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1503 *
1504 * Return 0 on success, negative on failure
1505 **/
1506static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 struct e1000_tx_ring *txdr)
1508{
1509 struct pci_dev *pdev = adapter->pdev;
1510 int size;
1511
1512 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513 txdr->buffer_info = vzalloc(size);
1514 if (!txdr->buffer_info)
1515 return -ENOMEM;
1516
1517 /* round up to nearest 4K */
1518
1519 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520 txdr->size = ALIGN(txdr->size, 4096);
1521
1522 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523 GFP_KERNEL);
1524 if (!txdr->desc) {
1525setup_tx_desc_die:
1526 vfree(txdr->buffer_info);
1527 return -ENOMEM;
1528 }
1529
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 void *olddesc = txdr->desc;
1533 dma_addr_t olddma = txdr->dma;
1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 txdr->size, txdr->desc);
1536 /* Try again, without freeing the previous */
1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 &txdr->dma, GFP_KERNEL);
1539 /* Failed allocation, critical failure */
1540 if (!txdr->desc) {
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 goto setup_tx_desc_die;
1544 }
1545
1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 /* give up */
1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 txdr->dma);
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 e_err(probe, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr->buffer_info);
1555 return -ENOMEM;
1556 } else {
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 olddma);
1560 }
1561 }
1562 memset(txdr->desc, 0, txdr->size);
1563
1564 txdr->next_to_use = 0;
1565 txdr->next_to_clean = 0;
1566
1567 return 0;
1568}
1569
1570/**
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1574 *
1575 * Return 0 on success, negative on failure
1576 **/
1577int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1578{
1579 int i, err = 0;
1580
1581 for (i = 0; i < adapter->num_tx_queues; i++) {
1582 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583 if (err) {
1584 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585 for (i-- ; i >= 0; i--)
1586 e1000_free_tx_resources(adapter,
1587 &adapter->tx_ring[i]);
1588 break;
1589 }
1590 }
1591
1592 return err;
1593}
1594
1595/**
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1598 *
1599 * Configure the Tx unit of the MAC after a reset.
1600 **/
1601static void e1000_configure_tx(struct e1000_adapter *adapter)
1602{
1603 u64 tdba;
1604 struct e1000_hw *hw = &adapter->hw;
1605 u32 tdlen, tctl, tipg;
1606 u32 ipgr1, ipgr2;
1607
1608 /* Setup the HW Tx Head and Tail descriptor pointers */
1609
1610 switch (adapter->num_tx_queues) {
1611 case 1:
1612 default:
1613 tdba = adapter->tx_ring[0].dma;
1614 tdlen = adapter->tx_ring[0].count *
1615 sizeof(struct e1000_tx_desc);
1616 ew32(TDLEN, tdlen);
1617 ew32(TDBAH, (tdba >> 32));
1618 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619 ew32(TDT, 0);
1620 ew32(TDH, 0);
1621 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622 E1000_TDH : E1000_82542_TDH);
1623 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624 E1000_TDT : E1000_82542_TDT);
1625 break;
1626 }
1627
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw->media_type == e1000_media_type_fiber ||
1630 hw->media_type == e1000_media_type_internal_serdes))
1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 else
1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634
1635 switch (hw->mac_type) {
1636 case e1000_82542_rev2_0:
1637 case e1000_82542_rev2_1:
1638 tipg = DEFAULT_82542_TIPG_IPGT;
1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 break;
1642 default:
1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 break;
1646 }
1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 ew32(TIPG, tipg);
1650
1651 /* Set the Tx Interrupt Delay register */
1652
1653 ew32(TIDV, adapter->tx_int_delay);
1654 if (hw->mac_type >= e1000_82540)
1655 ew32(TADV, adapter->tx_abs_int_delay);
1656
1657 /* Program the Transmit Control Register */
1658
1659 tctl = er32(TCTL);
1660 tctl &= ~E1000_TCTL_CT;
1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663
1664 e1000_config_collision_dist(hw);
1665
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter->tx_int_delay)
1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672
1673 if (hw->mac_type < e1000_82543)
1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 else
1676 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path.
1680 */
1681 if (hw->mac_type == e1000_82544 &&
1682 hw->bus_type == e1000_bus_type_pcix)
1683 adapter->pcix_82544 = true;
1684
1685 ew32(TCTL, tctl);
1686
1687}
1688
1689/**
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr: rx descriptor ring (for a specific queue) to setup
1693 *
1694 * Returns 0 on success, negative on failure
1695 **/
1696static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 struct e1000_rx_ring *rxdr)
1698{
1699 struct pci_dev *pdev = adapter->pdev;
1700 int size, desc_len;
1701
1702 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703 rxdr->buffer_info = vzalloc(size);
1704 if (!rxdr->buffer_info)
1705 return -ENOMEM;
1706
1707 desc_len = sizeof(struct e1000_rx_desc);
1708
1709 /* Round up to nearest 4K */
1710
1711 rxdr->size = rxdr->count * desc_len;
1712 rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1716 if (!rxdr->desc) {
1717setup_rx_desc_die:
1718 vfree(rxdr->buffer_info);
1719 return -ENOMEM;
1720 }
1721
1722 /* Fix for errata 23, can't cross 64kB boundary */
1723 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724 void *olddesc = rxdr->desc;
1725 dma_addr_t olddma = rxdr->dma;
1726 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727 rxdr->size, rxdr->desc);
1728 /* Try again, without freeing the previous */
1729 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730 &rxdr->dma, GFP_KERNEL);
1731 /* Failed allocation, critical failure */
1732 if (!rxdr->desc) {
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 goto setup_rx_desc_die;
1736 }
1737
1738 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739 /* give up */
1740 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741 rxdr->dma);
1742 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 olddma);
1744 e_err(probe, "Unable to allocate aligned memory for "
1745 "the Rx descriptor ring\n");
1746 goto setup_rx_desc_die;
1747 } else {
1748 /* Free old allocation, new allocation was successful */
1749 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750 olddma);
1751 }
1752 }
1753 memset(rxdr->desc, 0, rxdr->size);
1754
1755 rxdr->next_to_clean = 0;
1756 rxdr->next_to_use = 0;
1757 rxdr->rx_skb_top = NULL;
1758
1759 return 0;
1760}
1761
1762/**
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * (Descriptors) for all queues
1765 * @adapter: board private structure
1766 *
1767 * Return 0 on success, negative on failure
1768 **/
1769int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1770{
1771 int i, err = 0;
1772
1773 for (i = 0; i < adapter->num_rx_queues; i++) {
1774 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775 if (err) {
1776 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777 for (i-- ; i >= 0; i--)
1778 e1000_free_rx_resources(adapter,
1779 &adapter->rx_ring[i]);
1780 break;
1781 }
1782 }
1783
1784 return err;
1785}
1786
1787/**
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1790 **/
1791static void e1000_setup_rctl(struct e1000_adapter *adapter)
1792{
1793 struct e1000_hw *hw = &adapter->hw;
1794 u32 rctl;
1795
1796 rctl = er32(RCTL);
1797
1798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1799
1800 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801 E1000_RCTL_RDMTS_HALF |
1802 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1803
1804 if (hw->tbi_compatibility_on == 1)
1805 rctl |= E1000_RCTL_SBP;
1806 else
1807 rctl &= ~E1000_RCTL_SBP;
1808
1809 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810 rctl &= ~E1000_RCTL_LPE;
1811 else
1812 rctl |= E1000_RCTL_LPE;
1813
1814 /* Setup buffer sizes */
1815 rctl &= ~E1000_RCTL_SZ_4096;
1816 rctl |= E1000_RCTL_BSEX;
1817 switch (adapter->rx_buffer_len) {
1818 case E1000_RXBUFFER_2048:
1819 default:
1820 rctl |= E1000_RCTL_SZ_2048;
1821 rctl &= ~E1000_RCTL_BSEX;
1822 break;
1823 case E1000_RXBUFFER_4096:
1824 rctl |= E1000_RCTL_SZ_4096;
1825 break;
1826 case E1000_RXBUFFER_8192:
1827 rctl |= E1000_RCTL_SZ_8192;
1828 break;
1829 case E1000_RXBUFFER_16384:
1830 rctl |= E1000_RCTL_SZ_16384;
1831 break;
1832 }
1833
1834 /* This is useful for sniffing bad packets. */
1835 if (adapter->netdev->features & NETIF_F_RXALL) {
1836 /* UPE and MPE will be handled by normal PROMISC logic
1837 * in e1000e_set_rx_mode
1838 */
1839 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1842
1843 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844 E1000_RCTL_DPF | /* Allow filtered pause */
1845 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 * and that breaks VLANs.
1848 */
1849 }
1850
1851 ew32(RCTL, rctl);
1852}
1853
1854/**
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1857 *
1858 * Configure the Rx unit of the MAC after a reset.
1859 **/
1860static void e1000_configure_rx(struct e1000_adapter *adapter)
1861{
1862 u64 rdba;
1863 struct e1000_hw *hw = &adapter->hw;
1864 u32 rdlen, rctl, rxcsum;
1865
1866 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867 rdlen = adapter->rx_ring[0].count *
1868 sizeof(struct e1000_rx_desc);
1869 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871 } else {
1872 rdlen = adapter->rx_ring[0].count *
1873 sizeof(struct e1000_rx_desc);
1874 adapter->clean_rx = e1000_clean_rx_irq;
1875 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1876 }
1877
1878 /* disable receives while setting up the descriptors */
1879 rctl = er32(RCTL);
1880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1881
1882 /* set the Receive Delay Timer Register */
1883 ew32(RDTR, adapter->rx_int_delay);
1884
1885 if (hw->mac_type >= e1000_82540) {
1886 ew32(RADV, adapter->rx_abs_int_delay);
1887 if (adapter->itr_setting != 0)
1888 ew32(ITR, 1000000000 / (adapter->itr * 256));
1889 }
1890
1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 * the Base and Length of the Rx Descriptor Ring
1893 */
1894 switch (adapter->num_rx_queues) {
1895 case 1:
1896 default:
1897 rdba = adapter->rx_ring[0].dma;
1898 ew32(RDLEN, rdlen);
1899 ew32(RDBAH, (rdba >> 32));
1900 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901 ew32(RDT, 0);
1902 ew32(RDH, 0);
1903 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904 E1000_RDH : E1000_82542_RDH);
1905 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906 E1000_RDT : E1000_82542_RDT);
1907 break;
1908 }
1909
1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 if (hw->mac_type >= e1000_82543) {
1912 rxcsum = er32(RXCSUM);
1913 if (adapter->rx_csum)
1914 rxcsum |= E1000_RXCSUM_TUOFL;
1915 else
1916 /* don't need to clear IPPCSE as it defaults to 0 */
1917 rxcsum &= ~E1000_RXCSUM_TUOFL;
1918 ew32(RXCSUM, rxcsum);
1919 }
1920
1921 /* Enable Receives */
1922 ew32(RCTL, rctl | E1000_RCTL_EN);
1923}
1924
1925/**
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1929 *
1930 * Free all transmit software resources
1931 **/
1932static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933 struct e1000_tx_ring *tx_ring)
1934{
1935 struct pci_dev *pdev = adapter->pdev;
1936
1937 e1000_clean_tx_ring(adapter, tx_ring);
1938
1939 vfree(tx_ring->buffer_info);
1940 tx_ring->buffer_info = NULL;
1941
1942 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943 tx_ring->dma);
1944
1945 tx_ring->desc = NULL;
1946}
1947
1948/**
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1951 *
1952 * Free all transmit software resources
1953 **/
1954void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1955{
1956 int i;
1957
1958 for (i = 0; i < adapter->num_tx_queues; i++)
1959 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1960}
1961
1962static void
1963e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964 struct e1000_tx_buffer *buffer_info)
1965{
1966 if (buffer_info->dma) {
1967 if (buffer_info->mapped_as_page)
1968 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969 buffer_info->length, DMA_TO_DEVICE);
1970 else
1971 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972 buffer_info->length,
1973 DMA_TO_DEVICE);
1974 buffer_info->dma = 0;
1975 }
1976 if (buffer_info->skb) {
1977 dev_kfree_skb_any(buffer_info->skb);
1978 buffer_info->skb = NULL;
1979 }
1980 buffer_info->time_stamp = 0;
1981 /* buffer_info must be completely set up in the transmit path */
1982}
1983
1984/**
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1988 **/
1989static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990 struct e1000_tx_ring *tx_ring)
1991{
1992 struct e1000_hw *hw = &adapter->hw;
1993 struct e1000_tx_buffer *buffer_info;
1994 unsigned long size;
1995 unsigned int i;
1996
1997 /* Free all the Tx ring sk_buffs */
1998
1999 for (i = 0; i < tx_ring->count; i++) {
2000 buffer_info = &tx_ring->buffer_info[i];
2001 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2002 }
2003
2004 netdev_reset_queue(adapter->netdev);
2005 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006 memset(tx_ring->buffer_info, 0, size);
2007
2008 /* Zero out the descriptor ring */
2009
2010 memset(tx_ring->desc, 0, tx_ring->size);
2011
2012 tx_ring->next_to_use = 0;
2013 tx_ring->next_to_clean = 0;
2014 tx_ring->last_tx_tso = false;
2015
2016 writel(0, hw->hw_addr + tx_ring->tdh);
2017 writel(0, hw->hw_addr + tx_ring->tdt);
2018}
2019
2020/**
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2023 **/
2024static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2025{
2026 int i;
2027
2028 for (i = 0; i < adapter->num_tx_queues; i++)
2029 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2030}
2031
2032/**
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2036 *
2037 * Free all receive software resources
2038 **/
2039static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040 struct e1000_rx_ring *rx_ring)
2041{
2042 struct pci_dev *pdev = adapter->pdev;
2043
2044 e1000_clean_rx_ring(adapter, rx_ring);
2045
2046 vfree(rx_ring->buffer_info);
2047 rx_ring->buffer_info = NULL;
2048
2049 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050 rx_ring->dma);
2051
2052 rx_ring->desc = NULL;
2053}
2054
2055/**
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2058 *
2059 * Free all receive software resources
2060 **/
2061void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062{
2063 int i;
2064
2065 for (i = 0; i < adapter->num_rx_queues; i++)
2066 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067}
2068
2069#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2071{
2072 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2074}
2075
2076static void *e1000_alloc_frag(const struct e1000_adapter *a)
2077{
2078 unsigned int len = e1000_frag_len(a);
2079 u8 *data = netdev_alloc_frag(len);
2080
2081 if (likely(data))
2082 data += E1000_HEADROOM;
2083 return data;
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 struct e1000_rx_ring *rx_ring)
2093{
2094 struct e1000_hw *hw = &adapter->hw;
2095 struct e1000_rx_buffer *buffer_info;
2096 struct pci_dev *pdev = adapter->pdev;
2097 unsigned long size;
2098 unsigned int i;
2099
2100 /* Free all the Rx netfrags */
2101 for (i = 0; i < rx_ring->count; i++) {
2102 buffer_info = &rx_ring->buffer_info[i];
2103 if (adapter->clean_rx == e1000_clean_rx_irq) {
2104 if (buffer_info->dma)
2105 dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 adapter->rx_buffer_len,
2107 DMA_FROM_DEVICE);
2108 if (buffer_info->rxbuf.data) {
2109 skb_free_frag(buffer_info->rxbuf.data);
2110 buffer_info->rxbuf.data = NULL;
2111 }
2112 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113 if (buffer_info->dma)
2114 dma_unmap_page(&pdev->dev, buffer_info->dma,
2115 adapter->rx_buffer_len,
2116 DMA_FROM_DEVICE);
2117 if (buffer_info->rxbuf.page) {
2118 put_page(buffer_info->rxbuf.page);
2119 buffer_info->rxbuf.page = NULL;
2120 }
2121 }
2122
2123 buffer_info->dma = 0;
2124 }
2125
2126 /* there also may be some cached data from a chained receive */
2127 napi_free_frags(&adapter->napi);
2128 rx_ring->rx_skb_top = NULL;
2129
2130 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131 memset(rx_ring->buffer_info, 0, size);
2132
2133 /* Zero out the descriptor ring */
2134 memset(rx_ring->desc, 0, rx_ring->size);
2135
2136 rx_ring->next_to_clean = 0;
2137 rx_ring->next_to_use = 0;
2138
2139 writel(0, hw->hw_addr + rx_ring->rdh);
2140 writel(0, hw->hw_addr + rx_ring->rdt);
2141}
2142
2143/**
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2146 **/
2147static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2148{
2149 int i;
2150
2151 for (i = 0; i < adapter->num_rx_queues; i++)
2152 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2153}
2154
2155/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2157 */
2158static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2159{
2160 struct e1000_hw *hw = &adapter->hw;
2161 struct net_device *netdev = adapter->netdev;
2162 u32 rctl;
2163
2164 e1000_pci_clear_mwi(hw);
2165
2166 rctl = er32(RCTL);
2167 rctl |= E1000_RCTL_RST;
2168 ew32(RCTL, rctl);
2169 E1000_WRITE_FLUSH();
2170 mdelay(5);
2171
2172 if (netif_running(netdev))
2173 e1000_clean_all_rx_rings(adapter);
2174}
2175
2176static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2177{
2178 struct e1000_hw *hw = &adapter->hw;
2179 struct net_device *netdev = adapter->netdev;
2180 u32 rctl;
2181
2182 rctl = er32(RCTL);
2183 rctl &= ~E1000_RCTL_RST;
2184 ew32(RCTL, rctl);
2185 E1000_WRITE_FLUSH();
2186 mdelay(5);
2187
2188 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189 e1000_pci_set_mwi(hw);
2190
2191 if (netif_running(netdev)) {
2192 /* No need to loop, because 82542 supports only 1 queue */
2193 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194 e1000_configure_rx(adapter);
2195 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196 }
2197}
2198
2199/**
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2203 *
2204 * Returns 0 on success, negative on failure
2205 **/
2206static int e1000_set_mac(struct net_device *netdev, void *p)
2207{
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 struct e1000_hw *hw = &adapter->hw;
2210 struct sockaddr *addr = p;
2211
2212 if (!is_valid_ether_addr(addr->sa_data))
2213 return -EADDRNOTAVAIL;
2214
2215 /* 82542 2.0 needs to be in reset to write receive address registers */
2216
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_enter_82542_rst(adapter);
2219
2220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2222
2223 e1000_rar_set(hw, hw->mac_addr, 0);
2224
2225 if (hw->mac_type == e1000_82542_rev2_0)
2226 e1000_leave_82542_rst(adapter);
2227
2228 return 0;
2229}
2230
2231/**
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2234 *
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2239 **/
2240static void e1000_set_rx_mode(struct net_device *netdev)
2241{
2242 struct e1000_adapter *adapter = netdev_priv(netdev);
2243 struct e1000_hw *hw = &adapter->hw;
2244 struct netdev_hw_addr *ha;
2245 bool use_uc = false;
2246 u32 rctl;
2247 u32 hash_value;
2248 int i, rar_entries = E1000_RAR_ENTRIES;
2249 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251
2252 if (!mcarray)
2253 return;
2254
2255 /* Check for Promiscuous and All Multicast modes */
2256
2257 rctl = er32(RCTL);
2258
2259 if (netdev->flags & IFF_PROMISC) {
2260 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261 rctl &= ~E1000_RCTL_VFE;
2262 } else {
2263 if (netdev->flags & IFF_ALLMULTI)
2264 rctl |= E1000_RCTL_MPE;
2265 else
2266 rctl &= ~E1000_RCTL_MPE;
2267 /* Enable VLAN filter if there is a VLAN */
2268 if (e1000_vlan_used(adapter))
2269 rctl |= E1000_RCTL_VFE;
2270 }
2271
2272 if (netdev_uc_count(netdev) > rar_entries - 1) {
2273 rctl |= E1000_RCTL_UPE;
2274 } else if (!(netdev->flags & IFF_PROMISC)) {
2275 rctl &= ~E1000_RCTL_UPE;
2276 use_uc = true;
2277 }
2278
2279 ew32(RCTL, rctl);
2280
2281 /* 82542 2.0 needs to be in reset to write receive address registers */
2282
2283 if (hw->mac_type == e1000_82542_rev2_0)
2284 e1000_enter_82542_rst(adapter);
2285
2286 /* load the first 14 addresses into the exact filters 1-14. Unicast
2287 * addresses take precedence to avoid disabling unicast filtering
2288 * when possible.
2289 *
2290 * RAR 0 is used for the station MAC address
2291 * if there are not 14 addresses, go ahead and clear the filters
2292 */
2293 i = 1;
2294 if (use_uc)
2295 netdev_for_each_uc_addr(ha, netdev) {
2296 if (i == rar_entries)
2297 break;
2298 e1000_rar_set(hw, ha->addr, i++);
2299 }
2300
2301 netdev_for_each_mc_addr(ha, netdev) {
2302 if (i == rar_entries) {
2303 /* load any remaining addresses into the hash table */
2304 u32 hash_reg, hash_bit, mta;
2305 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306 hash_reg = (hash_value >> 5) & 0x7F;
2307 hash_bit = hash_value & 0x1F;
2308 mta = (1 << hash_bit);
2309 mcarray[hash_reg] |= mta;
2310 } else {
2311 e1000_rar_set(hw, ha->addr, i++);
2312 }
2313 }
2314
2315 for (; i < rar_entries; i++) {
2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 E1000_WRITE_FLUSH();
2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 E1000_WRITE_FLUSH();
2320 }
2321
2322 /* write the hash table completely, write from bottom to avoid
2323 * both stupid write combining chipsets, and flushing each write
2324 */
2325 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326 /* If we are on an 82544 has an errata where writing odd
2327 * offsets overwrites the previous even offset, but writing
2328 * backwards over the range solves the issue by always
2329 * writing the odd offset first
2330 */
2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2332 }
2333 E1000_WRITE_FLUSH();
2334
2335 if (hw->mac_type == e1000_82542_rev2_0)
2336 e1000_leave_82542_rst(adapter);
2337
2338 kfree(mcarray);
2339}
2340
2341/**
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2344 *
2345 * Need to wait a few seconds after link up to get diagnostic information from
2346 * the phy
2347 */
2348static void e1000_update_phy_info_task(struct work_struct *work)
2349{
2350 struct e1000_adapter *adapter = container_of(work,
2351 struct e1000_adapter,
2352 phy_info_task.work);
2353
2354 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2355}
2356
2357/**
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2360 **/
2361static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362{
2363 struct e1000_adapter *adapter = container_of(work,
2364 struct e1000_adapter,
2365 fifo_stall_task.work);
2366 struct e1000_hw *hw = &adapter->hw;
2367 struct net_device *netdev = adapter->netdev;
2368 u32 tctl;
2369
2370 if (atomic_read(&adapter->tx_fifo_stall)) {
2371 if ((er32(TDT) == er32(TDH)) &&
2372 (er32(TDFT) == er32(TDFH)) &&
2373 (er32(TDFTS) == er32(TDFHS))) {
2374 tctl = er32(TCTL);
2375 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376 ew32(TDFT, adapter->tx_head_addr);
2377 ew32(TDFH, adapter->tx_head_addr);
2378 ew32(TDFTS, adapter->tx_head_addr);
2379 ew32(TDFHS, adapter->tx_head_addr);
2380 ew32(TCTL, tctl);
2381 E1000_WRITE_FLUSH();
2382
2383 adapter->tx_fifo_head = 0;
2384 atomic_set(&adapter->tx_fifo_stall, 0);
2385 netif_wake_queue(netdev);
2386 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388 }
2389 }
2390}
2391
2392bool e1000_has_link(struct e1000_adapter *adapter)
2393{
2394 struct e1000_hw *hw = &adapter->hw;
2395 bool link_active = false;
2396
2397 /* get_link_status is set on LSC (link status) interrupt or rx
2398 * sequence error interrupt (except on intel ce4100).
2399 * get_link_status will stay false until the
2400 * e1000_check_for_link establishes link for copper adapters
2401 * ONLY
2402 */
2403 switch (hw->media_type) {
2404 case e1000_media_type_copper:
2405 if (hw->mac_type == e1000_ce4100)
2406 hw->get_link_status = 1;
2407 if (hw->get_link_status) {
2408 e1000_check_for_link(hw);
2409 link_active = !hw->get_link_status;
2410 } else {
2411 link_active = true;
2412 }
2413 break;
2414 case e1000_media_type_fiber:
2415 e1000_check_for_link(hw);
2416 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417 break;
2418 case e1000_media_type_internal_serdes:
2419 e1000_check_for_link(hw);
2420 link_active = hw->serdes_has_link;
2421 break;
2422 default:
2423 break;
2424 }
2425
2426 return link_active;
2427}
2428
2429/**
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2432 **/
2433static void e1000_watchdog(struct work_struct *work)
2434{
2435 struct e1000_adapter *adapter = container_of(work,
2436 struct e1000_adapter,
2437 watchdog_task.work);
2438 struct e1000_hw *hw = &adapter->hw;
2439 struct net_device *netdev = adapter->netdev;
2440 struct e1000_tx_ring *txdr = adapter->tx_ring;
2441 u32 link, tctl;
2442
2443 link = e1000_has_link(adapter);
2444 if ((netif_carrier_ok(netdev)) && link)
2445 goto link_up;
2446
2447 if (link) {
2448 if (!netif_carrier_ok(netdev)) {
2449 u32 ctrl;
2450 bool txb2b = true;
2451 /* update snapshot of PHY registers on LSC */
2452 e1000_get_speed_and_duplex(hw,
2453 &adapter->link_speed,
2454 &adapter->link_duplex);
2455
2456 ctrl = er32(CTRL);
2457 pr_info("%s NIC Link is Up %d Mbps %s, "
2458 "Flow Control: %s\n",
2459 netdev->name,
2460 adapter->link_speed,
2461 adapter->link_duplex == FULL_DUPLEX ?
2462 "Full Duplex" : "Half Duplex",
2463 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466 E1000_CTRL_TFCE) ? "TX" : "None")));
2467
2468 /* adjust timeout factor according to speed/duplex */
2469 adapter->tx_timeout_factor = 1;
2470 switch (adapter->link_speed) {
2471 case SPEED_10:
2472 txb2b = false;
2473 adapter->tx_timeout_factor = 16;
2474 break;
2475 case SPEED_100:
2476 txb2b = false;
2477 /* maybe add some timeout factor ? */
2478 break;
2479 }
2480
2481 /* enable transmits in the hardware */
2482 tctl = er32(TCTL);
2483 tctl |= E1000_TCTL_EN;
2484 ew32(TCTL, tctl);
2485
2486 netif_carrier_on(netdev);
2487 if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 schedule_delayed_work(&adapter->phy_info_task,
2489 2 * HZ);
2490 adapter->smartspeed = 0;
2491 }
2492 } else {
2493 if (netif_carrier_ok(netdev)) {
2494 adapter->link_speed = 0;
2495 adapter->link_duplex = 0;
2496 pr_info("%s NIC Link is Down\n",
2497 netdev->name);
2498 netif_carrier_off(netdev);
2499
2500 if (!test_bit(__E1000_DOWN, &adapter->flags))
2501 schedule_delayed_work(&adapter->phy_info_task,
2502 2 * HZ);
2503 }
2504
2505 e1000_smartspeed(adapter);
2506 }
2507
2508link_up:
2509 e1000_update_stats(adapter);
2510
2511 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512 adapter->tpt_old = adapter->stats.tpt;
2513 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514 adapter->colc_old = adapter->stats.colc;
2515
2516 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517 adapter->gorcl_old = adapter->stats.gorcl;
2518 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519 adapter->gotcl_old = adapter->stats.gotcl;
2520
2521 e1000_update_adaptive(hw);
2522
2523 if (!netif_carrier_ok(netdev)) {
2524 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525 /* We've lost link, so the controller stops DMA,
2526 * but we've got queued Tx work that's never going
2527 * to get done, so reset controller to flush Tx.
2528 * (Do the reset outside of interrupt context).
2529 */
2530 adapter->tx_timeout_count++;
2531 schedule_work(&adapter->reset_task);
2532 /* exit immediately since reset is imminent */
2533 return;
2534 }
2535 }
2536
2537 /* Simple mode for Interrupt Throttle Rate (ITR) */
2538 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 * everyone else is between 2000-8000.
2542 */
2543 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544 u32 dif = (adapter->gotcl > adapter->gorcl ?
2545 adapter->gotcl - adapter->gorcl :
2546 adapter->gorcl - adapter->gotcl) / 10000;
2547 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2548
2549 ew32(ITR, 1000000000 / (itr * 256));
2550 }
2551
2552 /* Cause software interrupt to ensure rx ring is cleaned */
2553 ew32(ICS, E1000_ICS_RXDMT0);
2554
2555 /* Force detection of hung controller every watchdog period */
2556 adapter->detect_tx_hung = true;
2557
2558 /* Reschedule the task */
2559 if (!test_bit(__E1000_DOWN, &adapter->flags))
2560 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2561}
2562
2563enum latency_range {
2564 lowest_latency = 0,
2565 low_latency = 1,
2566 bulk_latency = 2,
2567 latency_invalid = 255
2568};
2569
2570/**
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2576 *
2577 * Stores a new ITR value based on packets and byte
2578 * counts during the last interrupt. The advantage of per interrupt
2579 * computation is faster updates and more accurate ITR for the current
2580 * traffic pattern. Constants in this function were computed
2581 * based on theoretical maximum wire speed and thresholds were set based
2582 * on testing data as well as attempting to minimize response time
2583 * while increasing bulk throughput.
2584 * this functionality is controlled by the InterruptThrottleRate module
2585 * parameter (see e1000_param.c)
2586 **/
2587static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588 u16 itr_setting, int packets, int bytes)
2589{
2590 unsigned int retval = itr_setting;
2591 struct e1000_hw *hw = &adapter->hw;
2592
2593 if (unlikely(hw->mac_type < e1000_82540))
2594 goto update_itr_done;
2595
2596 if (packets == 0)
2597 goto update_itr_done;
2598
2599 switch (itr_setting) {
2600 case lowest_latency:
2601 /* jumbo frames get bulk treatment*/
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 5) && (bytes > 512))
2605 retval = low_latency;
2606 break;
2607 case low_latency: /* 50 usec aka 20000 ints/s */
2608 if (bytes > 10000) {
2609 /* jumbo frames need bulk latency setting */
2610 if (bytes/packets > 8000)
2611 retval = bulk_latency;
2612 else if ((packets < 10) || ((bytes/packets) > 1200))
2613 retval = bulk_latency;
2614 else if ((packets > 35))
2615 retval = lowest_latency;
2616 } else if (bytes/packets > 2000)
2617 retval = bulk_latency;
2618 else if (packets <= 2 && bytes < 512)
2619 retval = lowest_latency;
2620 break;
2621 case bulk_latency: /* 250 usec aka 4000 ints/s */
2622 if (bytes > 25000) {
2623 if (packets > 35)
2624 retval = low_latency;
2625 } else if (bytes < 6000) {
2626 retval = low_latency;
2627 }
2628 break;
2629 }
2630
2631update_itr_done:
2632 return retval;
2633}
2634
2635static void e1000_set_itr(struct e1000_adapter *adapter)
2636{
2637 struct e1000_hw *hw = &adapter->hw;
2638 u16 current_itr;
2639 u32 new_itr = adapter->itr;
2640
2641 if (unlikely(hw->mac_type < e1000_82540))
2642 return;
2643
2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 if (unlikely(adapter->link_speed != SPEED_1000)) {
2646 current_itr = 0;
2647 new_itr = 4000;
2648 goto set_itr_now;
2649 }
2650
2651 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652 adapter->total_tx_packets,
2653 adapter->total_tx_bytes);
2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656 adapter->tx_itr = low_latency;
2657
2658 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659 adapter->total_rx_packets,
2660 adapter->total_rx_bytes);
2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663 adapter->rx_itr = low_latency;
2664
2665 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2666
2667 switch (current_itr) {
2668 /* counts and packets in update_itr are dependent on these numbers */
2669 case lowest_latency:
2670 new_itr = 70000;
2671 break;
2672 case low_latency:
2673 new_itr = 20000; /* aka hwitr = ~200 */
2674 break;
2675 case bulk_latency:
2676 new_itr = 4000;
2677 break;
2678 default:
2679 break;
2680 }
2681
2682set_itr_now:
2683 if (new_itr != adapter->itr) {
2684 /* this attempts to bias the interrupt rate towards Bulk
2685 * by adding intermediate steps when interrupt rate is
2686 * increasing
2687 */
2688 new_itr = new_itr > adapter->itr ?
2689 min(adapter->itr + (new_itr >> 2), new_itr) :
2690 new_itr;
2691 adapter->itr = new_itr;
2692 ew32(ITR, 1000000000 / (new_itr * 256));
2693 }
2694}
2695
2696#define E1000_TX_FLAGS_CSUM 0x00000001
2697#define E1000_TX_FLAGS_VLAN 0x00000002
2698#define E1000_TX_FLAGS_TSO 0x00000004
2699#define E1000_TX_FLAGS_IPV4 0x00000008
2700#define E1000_TX_FLAGS_NO_FCS 0x00000010
2701#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2702#define E1000_TX_FLAGS_VLAN_SHIFT 16
2703
2704static int e1000_tso(struct e1000_adapter *adapter,
2705 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706 __be16 protocol)
2707{
2708 struct e1000_context_desc *context_desc;
2709 struct e1000_tx_buffer *buffer_info;
2710 unsigned int i;
2711 u32 cmd_length = 0;
2712 u16 ipcse = 0, tucse, mss;
2713 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714
2715 if (skb_is_gso(skb)) {
2716 int err;
2717
2718 err = skb_cow_head(skb, 0);
2719 if (err < 0)
2720 return err;
2721
2722 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723 mss = skb_shinfo(skb)->gso_size;
2724 if (protocol == htons(ETH_P_IP)) {
2725 struct iphdr *iph = ip_hdr(skb);
2726 iph->tot_len = 0;
2727 iph->check = 0;
2728 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729 iph->daddr, 0,
2730 IPPROTO_TCP,
2731 0);
2732 cmd_length = E1000_TXD_CMD_IP;
2733 ipcse = skb_transport_offset(skb) - 1;
2734 } else if (skb_is_gso_v6(skb)) {
2735 ipv6_hdr(skb)->payload_len = 0;
2736 tcp_hdr(skb)->check =
2737 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738 &ipv6_hdr(skb)->daddr,
2739 0, IPPROTO_TCP, 0);
2740 ipcse = 0;
2741 }
2742 ipcss = skb_network_offset(skb);
2743 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744 tucss = skb_transport_offset(skb);
2745 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746 tucse = 0;
2747
2748 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2750
2751 i = tx_ring->next_to_use;
2752 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753 buffer_info = &tx_ring->buffer_info[i];
2754
2755 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2756 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2757 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2758 context_desc->upper_setup.tcp_fields.tucss = tucss;
2759 context_desc->upper_setup.tcp_fields.tucso = tucso;
2760 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2762 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2764
2765 buffer_info->time_stamp = jiffies;
2766 buffer_info->next_to_watch = i;
2767
2768 if (++i == tx_ring->count)
2769 i = 0;
2770
2771 tx_ring->next_to_use = i;
2772
2773 return true;
2774 }
2775 return false;
2776}
2777
2778static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780 __be16 protocol)
2781{
2782 struct e1000_context_desc *context_desc;
2783 struct e1000_tx_buffer *buffer_info;
2784 unsigned int i;
2785 u8 css;
2786 u32 cmd_len = E1000_TXD_CMD_DEXT;
2787
2788 if (skb->ip_summed != CHECKSUM_PARTIAL)
2789 return false;
2790
2791 switch (protocol) {
2792 case cpu_to_be16(ETH_P_IP):
2793 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794 cmd_len |= E1000_TXD_CMD_TCP;
2795 break;
2796 case cpu_to_be16(ETH_P_IPV6):
2797 /* XXX not handling all IPV6 headers */
2798 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799 cmd_len |= E1000_TXD_CMD_TCP;
2800 break;
2801 default:
2802 if (unlikely(net_ratelimit()))
2803 e_warn(drv, "checksum_partial proto=%x!\n",
2804 skb->protocol);
2805 break;
2806 }
2807
2808 css = skb_checksum_start_offset(skb);
2809
2810 i = tx_ring->next_to_use;
2811 buffer_info = &tx_ring->buffer_info[i];
2812 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2813
2814 context_desc->lower_setup.ip_config = 0;
2815 context_desc->upper_setup.tcp_fields.tucss = css;
2816 context_desc->upper_setup.tcp_fields.tucso =
2817 css + skb->csum_offset;
2818 context_desc->upper_setup.tcp_fields.tucse = 0;
2819 context_desc->tcp_seg_setup.data = 0;
2820 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2821
2822 buffer_info->time_stamp = jiffies;
2823 buffer_info->next_to_watch = i;
2824
2825 if (unlikely(++i == tx_ring->count))
2826 i = 0;
2827
2828 tx_ring->next_to_use = i;
2829
2830 return true;
2831}
2832
2833#define E1000_MAX_TXD_PWR 12
2834#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2835
2836static int e1000_tx_map(struct e1000_adapter *adapter,
2837 struct e1000_tx_ring *tx_ring,
2838 struct sk_buff *skb, unsigned int first,
2839 unsigned int max_per_txd, unsigned int nr_frags,
2840 unsigned int mss)
2841{
2842 struct e1000_hw *hw = &adapter->hw;
2843 struct pci_dev *pdev = adapter->pdev;
2844 struct e1000_tx_buffer *buffer_info;
2845 unsigned int len = skb_headlen(skb);
2846 unsigned int offset = 0, size, count = 0, i;
2847 unsigned int f, bytecount, segs;
2848
2849 i = tx_ring->next_to_use;
2850
2851 while (len) {
2852 buffer_info = &tx_ring->buffer_info[i];
2853 size = min(len, max_per_txd);
2854 /* Workaround for Controller erratum --
2855 * descriptor for non-tso packet in a linear SKB that follows a
2856 * tso gets written back prematurely before the data is fully
2857 * DMA'd to the controller
2858 */
2859 if (!skb->data_len && tx_ring->last_tx_tso &&
2860 !skb_is_gso(skb)) {
2861 tx_ring->last_tx_tso = false;
2862 size -= 4;
2863 }
2864
2865 /* Workaround for premature desc write-backs
2866 * in TSO mode. Append 4-byte sentinel desc
2867 */
2868 if (unlikely(mss && !nr_frags && size == len && size > 8))
2869 size -= 4;
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874 */
2875 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876 (size > 2015) && count == 0))
2877 size = 2015;
2878
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords.
2881 */
2882 if (unlikely(adapter->pcix_82544 &&
2883 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884 size > 4))
2885 size -= 4;
2886
2887 buffer_info->length = size;
2888 /* set time_stamp *before* dma to help avoid a possible race */
2889 buffer_info->time_stamp = jiffies;
2890 buffer_info->mapped_as_page = false;
2891 buffer_info->dma = dma_map_single(&pdev->dev,
2892 skb->data + offset,
2893 size, DMA_TO_DEVICE);
2894 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895 goto dma_error;
2896 buffer_info->next_to_watch = i;
2897
2898 len -= size;
2899 offset += size;
2900 count++;
2901 if (len) {
2902 i++;
2903 if (unlikely(i == tx_ring->count))
2904 i = 0;
2905 }
2906 }
2907
2908 for (f = 0; f < nr_frags; f++) {
2909 const struct skb_frag_struct *frag;
2910
2911 frag = &skb_shinfo(skb)->frags[f];
2912 len = skb_frag_size(frag);
2913 offset = 0;
2914
2915 while (len) {
2916 unsigned long bufend;
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920
2921 buffer_info = &tx_ring->buffer_info[i];
2922 size = min(len, max_per_txd);
2923 /* Workaround for premature desc write-backs
2924 * in TSO mode. Append 4-byte sentinel desc
2925 */
2926 if (unlikely(mss && f == (nr_frags-1) &&
2927 size == len && size > 8))
2928 size -= 4;
2929 /* Workaround for potential 82544 hang in PCI-X.
2930 * Avoid terminating buffers within evenly-aligned
2931 * dwords.
2932 */
2933 bufend = (unsigned long)
2934 page_to_phys(skb_frag_page(frag));
2935 bufend += offset + size - 1;
2936 if (unlikely(adapter->pcix_82544 &&
2937 !(bufend & 4) &&
2938 size > 4))
2939 size -= 4;
2940
2941 buffer_info->length = size;
2942 buffer_info->time_stamp = jiffies;
2943 buffer_info->mapped_as_page = true;
2944 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945 offset, size, DMA_TO_DEVICE);
2946 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947 goto dma_error;
2948 buffer_info->next_to_watch = i;
2949
2950 len -= size;
2951 offset += size;
2952 count++;
2953 }
2954 }
2955
2956 segs = skb_shinfo(skb)->gso_segs ?: 1;
2957 /* multiply data chunks by size of headers */
2958 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2959
2960 tx_ring->buffer_info[i].skb = skb;
2961 tx_ring->buffer_info[i].segs = segs;
2962 tx_ring->buffer_info[i].bytecount = bytecount;
2963 tx_ring->buffer_info[first].next_to_watch = i;
2964
2965 return count;
2966
2967dma_error:
2968 dev_err(&pdev->dev, "TX DMA map failed\n");
2969 buffer_info->dma = 0;
2970 if (count)
2971 count--;
2972
2973 while (count--) {
2974 if (i == 0)
2975 i += tx_ring->count;
2976 i--;
2977 buffer_info = &tx_ring->buffer_info[i];
2978 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2979 }
2980
2981 return 0;
2982}
2983
2984static void e1000_tx_queue(struct e1000_adapter *adapter,
2985 struct e1000_tx_ring *tx_ring, int tx_flags,
2986 int count)
2987{
2988 struct e1000_tx_desc *tx_desc = NULL;
2989 struct e1000_tx_buffer *buffer_info;
2990 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991 unsigned int i;
2992
2993 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995 E1000_TXD_CMD_TSE;
2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3000 }
3001
3002 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3005 }
3006
3007 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008 txd_lower |= E1000_TXD_CMD_VLE;
3009 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3010 }
3011
3012 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3014
3015 i = tx_ring->next_to_use;
3016
3017 while (count--) {
3018 buffer_info = &tx_ring->buffer_info[i];
3019 tx_desc = E1000_TX_DESC(*tx_ring, i);
3020 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021 tx_desc->lower.data =
3022 cpu_to_le32(txd_lower | buffer_info->length);
3023 tx_desc->upper.data = cpu_to_le32(txd_upper);
3024 if (unlikely(++i == tx_ring->count))
3025 i = 0;
3026 }
3027
3028 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3029
3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3033
3034 /* Force memory writes to complete before letting h/w
3035 * know there are new descriptors to fetch. (Only
3036 * applicable for weak-ordered memory model archs,
3037 * such as IA-64).
3038 */
3039 wmb();
3040
3041 tx_ring->next_to_use = i;
3042}
3043
3044/* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time. This gives the Tx FIFO an opportunity to
3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3050 */
3051
3052#define E1000_FIFO_HDR 0x10
3053#define E1000_82547_PAD_LEN 0x3E0
3054
3055static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056 struct sk_buff *skb)
3057{
3058 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3060
3061 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3062
3063 if (adapter->link_duplex != HALF_DUPLEX)
3064 goto no_fifo_stall_required;
3065
3066 if (atomic_read(&adapter->tx_fifo_stall))
3067 return 1;
3068
3069 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070 atomic_set(&adapter->tx_fifo_stall, 1);
3071 return 1;
3072 }
3073
3074no_fifo_stall_required:
3075 adapter->tx_fifo_head += skb_fifo_len;
3076 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078 return 0;
3079}
3080
3081static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3082{
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3085
3086 netif_stop_queue(netdev);
3087 /* Herbert's original patch had:
3088 * smp_mb__after_netif_stop_queue();
3089 * but since that doesn't exist yet, just open code it.
3090 */
3091 smp_mb();
3092
3093 /* We need to check again in a case another CPU has just
3094 * made room available.
3095 */
3096 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097 return -EBUSY;
3098
3099 /* A reprieve! */
3100 netif_start_queue(netdev);
3101 ++adapter->restart_queue;
3102 return 0;
3103}
3104
3105static int e1000_maybe_stop_tx(struct net_device *netdev,
3106 struct e1000_tx_ring *tx_ring, int size)
3107{
3108 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109 return 0;
3110 return __e1000_maybe_stop_tx(netdev, size);
3111}
3112
3113#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115 struct net_device *netdev)
3116{
3117 struct e1000_adapter *adapter = netdev_priv(netdev);
3118 struct e1000_hw *hw = &adapter->hw;
3119 struct e1000_tx_ring *tx_ring;
3120 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122 unsigned int tx_flags = 0;
3123 unsigned int len = skb_headlen(skb);
3124 unsigned int nr_frags;
3125 unsigned int mss;
3126 int count = 0;
3127 int tso;
3128 unsigned int f;
3129 __be16 protocol = vlan_get_protocol(skb);
3130
3131 /* This goes back to the question of how to logically map a Tx queue
3132 * to a flow. Right now, performance is impacted slightly negatively
3133 * if using multiple Tx queues. If the stack breaks away from a
3134 * single qdisc implementation, we can look at this again.
3135 */
3136 tx_ring = adapter->tx_ring;
3137
3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 * packets may get corrupted during padding by HW.
3140 * To WA this issue, pad all small packets manually.
3141 */
3142 if (eth_skb_pad(skb))
3143 return NETDEV_TX_OK;
3144
3145 mss = skb_shinfo(skb)->gso_size;
3146 /* The controller does a simple calculation to
3147 * make sure there is enough room in the FIFO before
3148 * initiating the DMA for each buffer. The calc is:
3149 * 4 = ceil(buffer len/mss). To make sure we don't
3150 * overrun the FIFO, adjust the max buffer len if mss
3151 * drops.
3152 */
3153 if (mss) {
3154 u8 hdr_len;
3155 max_per_txd = min(mss << 2, max_per_txd);
3156 max_txd_pwr = fls(max_per_txd) - 1;
3157
3158 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159 if (skb->data_len && hdr_len == len) {
3160 switch (hw->mac_type) {
3161 unsigned int pull_size;
3162 case e1000_82544:
3163 /* Make sure we have room to chop off 4 bytes,
3164 * and that the end alignment will work out to
3165 * this hardware's requirements
3166 * NOTE: this is a TSO only workaround
3167 * if end byte alignment not correct move us
3168 * into the next dword
3169 */
3170 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171 & 4)
3172 break;
3173 /* fall through */
3174 pull_size = min((unsigned int)4, skb->data_len);
3175 if (!__pskb_pull_tail(skb, pull_size)) {
3176 e_err(drv, "__pskb_pull_tail "
3177 "failed.\n");
3178 dev_kfree_skb_any(skb);
3179 return NETDEV_TX_OK;
3180 }
3181 len = skb_headlen(skb);
3182 break;
3183 default:
3184 /* do nothing */
3185 break;
3186 }
3187 }
3188 }
3189
3190 /* reserve a descriptor for the offload context */
3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 count++;
3193 count++;
3194
3195 /* Controller Erratum workaround */
3196 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197 count++;
3198
3199 count += TXD_USE_COUNT(len, max_txd_pwr);
3200
3201 if (adapter->pcix_82544)
3202 count++;
3203
3204 /* work-around for errata 10 and it applies to all controllers
3205 * in PCI-X mode, so add one more descriptor to the count
3206 */
3207 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208 (len > 2015)))
3209 count++;
3210
3211 nr_frags = skb_shinfo(skb)->nr_frags;
3212 for (f = 0; f < nr_frags; f++)
3213 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214 max_txd_pwr);
3215 if (adapter->pcix_82544)
3216 count += nr_frags;
3217
3218 /* need: count + 2 desc gap to keep tail from touching
3219 * head, otherwise try next time
3220 */
3221 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222 return NETDEV_TX_BUSY;
3223
3224 if (unlikely((hw->mac_type == e1000_82547) &&
3225 (e1000_82547_fifo_workaround(adapter, skb)))) {
3226 netif_stop_queue(netdev);
3227 if (!test_bit(__E1000_DOWN, &adapter->flags))
3228 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229 return NETDEV_TX_BUSY;
3230 }
3231
3232 if (skb_vlan_tag_present(skb)) {
3233 tx_flags |= E1000_TX_FLAGS_VLAN;
3234 tx_flags |= (skb_vlan_tag_get(skb) <<
3235 E1000_TX_FLAGS_VLAN_SHIFT);
3236 }
3237
3238 first = tx_ring->next_to_use;
3239
3240 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241 if (tso < 0) {
3242 dev_kfree_skb_any(skb);
3243 return NETDEV_TX_OK;
3244 }
3245
3246 if (likely(tso)) {
3247 if (likely(hw->mac_type != e1000_82544))
3248 tx_ring->last_tx_tso = true;
3249 tx_flags |= E1000_TX_FLAGS_TSO;
3250 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251 tx_flags |= E1000_TX_FLAGS_CSUM;
3252
3253 if (protocol == htons(ETH_P_IP))
3254 tx_flags |= E1000_TX_FLAGS_IPV4;
3255
3256 if (unlikely(skb->no_fcs))
3257 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258
3259 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260 nr_frags, mss);
3261
3262 if (count) {
3263 /* The descriptors needed is higher than other Intel drivers
3264 * due to a number of workarounds. The breakdown is below:
3265 * Data descriptors: MAX_SKB_FRAGS + 1
3266 * Context Descriptor: 1
3267 * Keep head from touching tail: 2
3268 * Workarounds: 3
3269 */
3270 int desc_needed = MAX_SKB_FRAGS + 7;
3271
3272 netdev_sent_queue(netdev, skb->len);
3273 skb_tx_timestamp(skb);
3274
3275 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3276
3277 /* 82544 potentially requires twice as many data descriptors
3278 * in order to guarantee buffers don't end on evenly-aligned
3279 * dwords
3280 */
3281 if (adapter->pcix_82544)
3282 desc_needed += MAX_SKB_FRAGS + 1;
3283
3284 /* Make sure there is space in the ring for the next send. */
3285 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3286
3287 if (!skb->xmit_more ||
3288 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290 /* we need this if more than one processor can write to
3291 * our tail at a time, it synchronizes IO on IA64/Altix
3292 * systems
3293 */
3294 mmiowb();
3295 }
3296 } else {
3297 dev_kfree_skb_any(skb);
3298 tx_ring->buffer_info[first].time_stamp = 0;
3299 tx_ring->next_to_use = first;
3300 }
3301
3302 return NETDEV_TX_OK;
3303}
3304
3305#define NUM_REGS 38 /* 1 based count */
3306static void e1000_regdump(struct e1000_adapter *adapter)
3307{
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 regs[NUM_REGS];
3310 u32 *regs_buff = regs;
3311 int i = 0;
3312
3313 static const char * const reg_name[] = {
3314 "CTRL", "STATUS",
3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 "TIDV", "TXDCTL", "TADV", "TARC0",
3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319 "TXDCTL1", "TARC1",
3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3323 };
3324
3325 regs_buff[0] = er32(CTRL);
3326 regs_buff[1] = er32(STATUS);
3327
3328 regs_buff[2] = er32(RCTL);
3329 regs_buff[3] = er32(RDLEN);
3330 regs_buff[4] = er32(RDH);
3331 regs_buff[5] = er32(RDT);
3332 regs_buff[6] = er32(RDTR);
3333
3334 regs_buff[7] = er32(TCTL);
3335 regs_buff[8] = er32(TDBAL);
3336 regs_buff[9] = er32(TDBAH);
3337 regs_buff[10] = er32(TDLEN);
3338 regs_buff[11] = er32(TDH);
3339 regs_buff[12] = er32(TDT);
3340 regs_buff[13] = er32(TIDV);
3341 regs_buff[14] = er32(TXDCTL);
3342 regs_buff[15] = er32(TADV);
3343 regs_buff[16] = er32(TARC0);
3344
3345 regs_buff[17] = er32(TDBAL1);
3346 regs_buff[18] = er32(TDBAH1);
3347 regs_buff[19] = er32(TDLEN1);
3348 regs_buff[20] = er32(TDH1);
3349 regs_buff[21] = er32(TDT1);
3350 regs_buff[22] = er32(TXDCTL1);
3351 regs_buff[23] = er32(TARC1);
3352 regs_buff[24] = er32(CTRL_EXT);
3353 regs_buff[25] = er32(ERT);
3354 regs_buff[26] = er32(RDBAL0);
3355 regs_buff[27] = er32(RDBAH0);
3356 regs_buff[28] = er32(TDFH);
3357 regs_buff[29] = er32(TDFT);
3358 regs_buff[30] = er32(TDFHS);
3359 regs_buff[31] = er32(TDFTS);
3360 regs_buff[32] = er32(TDFPC);
3361 regs_buff[33] = er32(RDFH);
3362 regs_buff[34] = er32(RDFT);
3363 regs_buff[35] = er32(RDFHS);
3364 regs_buff[36] = er32(RDFTS);
3365 regs_buff[37] = er32(RDFPC);
3366
3367 pr_info("Register dump\n");
3368 for (i = 0; i < NUM_REGS; i++)
3369 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3370}
3371
3372/*
3373 * e1000_dump: Print registers, tx ring and rx ring
3374 */
3375static void e1000_dump(struct e1000_adapter *adapter)
3376{
3377 /* this code doesn't handle multiple rings */
3378 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380 int i;
3381
3382 if (!netif_msg_hw(adapter))
3383 return;
3384
3385 /* Print Registers */
3386 e1000_regdump(adapter);
3387
3388 /* transmit dump */
3389 pr_info("TX Desc ring0 dump\n");
3390
3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3392 *
3393 * Legacy Transmit Descriptor
3394 * +--------------------------------------------------------------+
3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3396 * +--------------------------------------------------------------+
3397 * 8 | Special | CSS | Status | CMD | CSO | Length |
3398 * +--------------------------------------------------------------+
3399 * 63 48 47 36 35 32 31 24 23 16 15 0
3400 *
3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 * 63 48 47 40 39 32 31 16 15 8 7 0
3403 * +----------------------------------------------------------------+
3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3405 * +----------------------------------------------------------------+
3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3407 * +----------------------------------------------------------------+
3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3409 *
3410 * Extended Data Descriptor (DTYP=0x1)
3411 * +----------------------------------------------------------------+
3412 * 0 | Buffer Address [63:0] |
3413 * +----------------------------------------------------------------+
3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3415 * +----------------------------------------------------------------+
3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3417 */
3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3420
3421 if (!netif_msg_tx_done(adapter))
3422 goto rx_ring_summary;
3423
3424 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427 struct my_u { __le64 a; __le64 b; };
3428 struct my_u *u = (struct my_u *)tx_desc;
3429 const char *type;
3430
3431 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432 type = "NTC/U";
3433 else if (i == tx_ring->next_to_use)
3434 type = "NTU";
3435 else if (i == tx_ring->next_to_clean)
3436 type = "NTC";
3437 else
3438 type = "";
3439
3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3441 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442 le64_to_cpu(u->a), le64_to_cpu(u->b),
3443 (u64)buffer_info->dma, buffer_info->length,
3444 buffer_info->next_to_watch,
3445 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3446 }
3447
3448rx_ring_summary:
3449 /* receive dump */
3450 pr_info("\nRX Desc ring dump\n");
3451
3452 /* Legacy Receive Descriptor Format
3453 *
3454 * +-----------------------------------------------------+
3455 * | Buffer Address [63:0] |
3456 * +-----------------------------------------------------+
3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 * +-----------------------------------------------------+
3459 * 63 48 47 40 39 32 31 16 15 0
3460 */
3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3462
3463 if (!netif_msg_rx_status(adapter))
3464 goto exit;
3465
3466 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469 struct my_u { __le64 a; __le64 b; };
3470 struct my_u *u = (struct my_u *)rx_desc;
3471 const char *type;
3472
3473 if (i == rx_ring->next_to_use)
3474 type = "NTU";
3475 else if (i == rx_ring->next_to_clean)
3476 type = "NTC";
3477 else
3478 type = "";
3479
3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3481 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483 } /* for */
3484
3485 /* dump the descriptor caches */
3486 /* rx */
3487 pr_info("Rx descriptor cache in 64bit format\n");
3488 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3490 i,
3491 readl(adapter->hw.hw_addr + i+4),
3492 readl(adapter->hw.hw_addr + i),
3493 readl(adapter->hw.hw_addr + i+12),
3494 readl(adapter->hw.hw_addr + i+8));
3495 }
3496 /* tx */
3497 pr_info("Tx descriptor cache in 64bit format\n");
3498 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3500 i,
3501 readl(adapter->hw.hw_addr + i+4),
3502 readl(adapter->hw.hw_addr + i),
3503 readl(adapter->hw.hw_addr + i+12),
3504 readl(adapter->hw.hw_addr + i+8));
3505 }
3506exit:
3507 return;
3508}
3509
3510/**
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
3513 **/
3514static void e1000_tx_timeout(struct net_device *netdev)
3515{
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3517
3518 /* Do the reset outside of interrupt context */
3519 adapter->tx_timeout_count++;
3520 schedule_work(&adapter->reset_task);
3521}
3522
3523static void e1000_reset_task(struct work_struct *work)
3524{
3525 struct e1000_adapter *adapter =
3526 container_of(work, struct e1000_adapter, reset_task);
3527
3528 e_err(drv, "Reset adapter\n");
3529 e1000_reinit_locked(adapter);
3530}
3531
3532/**
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3535 *
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3538 **/
3539static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3540{
3541 /* only return the current stats */
3542 return &netdev->stats;
3543}
3544
3545/**
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3549 *
3550 * Returns 0 on success, negative on failure
3551 **/
3552static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3553{
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 struct e1000_hw *hw = &adapter->hw;
3556 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3557
3558 /* Adapter-specific max frame size limits. */
3559 switch (hw->mac_type) {
3560 case e1000_undefined ... e1000_82542_rev2_1:
3561 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562 e_err(probe, "Jumbo Frames not supported.\n");
3563 return -EINVAL;
3564 }
3565 break;
3566 default:
3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568 break;
3569 }
3570
3571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572 msleep(1);
3573 /* e1000_down has a dependency on max_frame_size */
3574 hw->max_frame_size = max_frame;
3575 if (netif_running(netdev)) {
3576 /* prevent buffers from being reallocated */
3577 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578 e1000_down(adapter);
3579 }
3580
3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 * means we reserve 2 more, this pushes us to allocate from the next
3583 * larger slab size.
3584 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586 * fragmented skbs
3587 */
3588
3589 if (max_frame <= E1000_RXBUFFER_2048)
3590 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591 else
3592#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 adapter->rx_buffer_len = PAGE_SIZE;
3596#endif
3597
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if (!hw->tbi_compatibility_on &&
3600 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3603
3604 pr_info("%s changing MTU from %d to %d\n",
3605 netdev->name, netdev->mtu, new_mtu);
3606 netdev->mtu = new_mtu;
3607
3608 if (netif_running(netdev))
3609 e1000_up(adapter);
3610 else
3611 e1000_reset(adapter);
3612
3613 clear_bit(__E1000_RESETTING, &adapter->flags);
3614
3615 return 0;
3616}
3617
3618/**
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3621 **/
3622void e1000_update_stats(struct e1000_adapter *adapter)
3623{
3624 struct net_device *netdev = adapter->netdev;
3625 struct e1000_hw *hw = &adapter->hw;
3626 struct pci_dev *pdev = adapter->pdev;
3627 unsigned long flags;
3628 u16 phy_tmp;
3629
3630#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631
3632 /* Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3634 */
3635 if (adapter->link_speed == 0)
3636 return;
3637 if (pci_channel_offline(pdev))
3638 return;
3639
3640 spin_lock_irqsave(&adapter->stats_lock, flags);
3641
3642 /* these counters are modified from e1000_tbi_adjust_stats,
3643 * called from the interrupt context, so they must only
3644 * be written while holding adapter->stats_lock
3645 */
3646
3647 adapter->stats.crcerrs += er32(CRCERRS);
3648 adapter->stats.gprc += er32(GPRC);
3649 adapter->stats.gorcl += er32(GORCL);
3650 adapter->stats.gorch += er32(GORCH);
3651 adapter->stats.bprc += er32(BPRC);
3652 adapter->stats.mprc += er32(MPRC);
3653 adapter->stats.roc += er32(ROC);
3654
3655 adapter->stats.prc64 += er32(PRC64);
3656 adapter->stats.prc127 += er32(PRC127);
3657 adapter->stats.prc255 += er32(PRC255);
3658 adapter->stats.prc511 += er32(PRC511);
3659 adapter->stats.prc1023 += er32(PRC1023);
3660 adapter->stats.prc1522 += er32(PRC1522);
3661
3662 adapter->stats.symerrs += er32(SYMERRS);
3663 adapter->stats.mpc += er32(MPC);
3664 adapter->stats.scc += er32(SCC);
3665 adapter->stats.ecol += er32(ECOL);
3666 adapter->stats.mcc += er32(MCC);
3667 adapter->stats.latecol += er32(LATECOL);
3668 adapter->stats.dc += er32(DC);
3669 adapter->stats.sec += er32(SEC);
3670 adapter->stats.rlec += er32(RLEC);
3671 adapter->stats.xonrxc += er32(XONRXC);
3672 adapter->stats.xontxc += er32(XONTXC);
3673 adapter->stats.xoffrxc += er32(XOFFRXC);
3674 adapter->stats.xofftxc += er32(XOFFTXC);
3675 adapter->stats.fcruc += er32(FCRUC);
3676 adapter->stats.gptc += er32(GPTC);
3677 adapter->stats.gotcl += er32(GOTCL);
3678 adapter->stats.gotch += er32(GOTCH);
3679 adapter->stats.rnbc += er32(RNBC);
3680 adapter->stats.ruc += er32(RUC);
3681 adapter->stats.rfc += er32(RFC);
3682 adapter->stats.rjc += er32(RJC);
3683 adapter->stats.torl += er32(TORL);
3684 adapter->stats.torh += er32(TORH);
3685 adapter->stats.totl += er32(TOTL);
3686 adapter->stats.toth += er32(TOTH);
3687 adapter->stats.tpr += er32(TPR);
3688
3689 adapter->stats.ptc64 += er32(PTC64);
3690 adapter->stats.ptc127 += er32(PTC127);
3691 adapter->stats.ptc255 += er32(PTC255);
3692 adapter->stats.ptc511 += er32(PTC511);
3693 adapter->stats.ptc1023 += er32(PTC1023);
3694 adapter->stats.ptc1522 += er32(PTC1522);
3695
3696 adapter->stats.mptc += er32(MPTC);
3697 adapter->stats.bptc += er32(BPTC);
3698
3699 /* used for adaptive IFS */
3700
3701 hw->tx_packet_delta = er32(TPT);
3702 adapter->stats.tpt += hw->tx_packet_delta;
3703 hw->collision_delta = er32(COLC);
3704 adapter->stats.colc += hw->collision_delta;
3705
3706 if (hw->mac_type >= e1000_82543) {
3707 adapter->stats.algnerrc += er32(ALGNERRC);
3708 adapter->stats.rxerrc += er32(RXERRC);
3709 adapter->stats.tncrs += er32(TNCRS);
3710 adapter->stats.cexterr += er32(CEXTERR);
3711 adapter->stats.tsctc += er32(TSCTC);
3712 adapter->stats.tsctfc += er32(TSCTFC);
3713 }
3714
3715 /* Fill out the OS statistics structure */
3716 netdev->stats.multicast = adapter->stats.mprc;
3717 netdev->stats.collisions = adapter->stats.colc;
3718
3719 /* Rx Errors */
3720
3721 /* RLEC on some newer hardware can be incorrect so build
3722 * our own version based on RUC and ROC
3723 */
3724 netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 adapter->stats.ruc + adapter->stats.roc +
3727 adapter->stats.cexterr;
3728 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733
3734 /* Tx Errors */
3735 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 netdev->stats.tx_errors = adapter->stats.txerrc;
3737 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 if (hw->bad_tx_carr_stats_fd &&
3741 adapter->link_duplex == FULL_DUPLEX) {
3742 netdev->stats.tx_carrier_errors = 0;
3743 adapter->stats.tncrs = 0;
3744 }
3745
3746 /* Tx Dropped needs to be maintained elsewhere */
3747
3748 /* Phy Stats */
3749 if (hw->media_type == e1000_media_type_copper) {
3750 if ((adapter->link_speed == SPEED_1000) &&
3751 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 adapter->phy_stats.idle_errors += phy_tmp;
3754 }
3755
3756 if ((hw->mac_type <= e1000_82546) &&
3757 (hw->phy_type == e1000_phy_m88) &&
3758 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 adapter->phy_stats.receive_errors += phy_tmp;
3760 }
3761
3762 /* Management Stats */
3763 if (hw->has_smbus) {
3764 adapter->stats.mgptc += er32(MGTPTC);
3765 adapter->stats.mgprc += er32(MGTPRC);
3766 adapter->stats.mgpdc += er32(MGTPDC);
3767 }
3768
3769 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770}
3771
3772/**
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3776 **/
3777static irqreturn_t e1000_intr(int irq, void *data)
3778{
3779 struct net_device *netdev = data;
3780 struct e1000_adapter *adapter = netdev_priv(netdev);
3781 struct e1000_hw *hw = &adapter->hw;
3782 u32 icr = er32(ICR);
3783
3784 if (unlikely((!icr)))
3785 return IRQ_NONE; /* Not our interrupt */
3786
3787 /* we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3790 */
3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 return IRQ_HANDLED;
3793
3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 hw->get_link_status = 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 schedule_delayed_work(&adapter->watchdog_task, 1);
3799 }
3800
3801 /* disable interrupts, without the synchronize_irq bit */
3802 ew32(IMC, ~0);
3803 E1000_WRITE_FLUSH();
3804
3805 if (likely(napi_schedule_prep(&adapter->napi))) {
3806 adapter->total_tx_bytes = 0;
3807 adapter->total_tx_packets = 0;
3808 adapter->total_rx_bytes = 0;
3809 adapter->total_rx_packets = 0;
3810 __napi_schedule(&adapter->napi);
3811 } else {
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue
3814 */
3815 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 e1000_irq_enable(adapter);
3817 }
3818
3819 return IRQ_HANDLED;
3820}
3821
3822/**
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
3825 **/
3826static int e1000_clean(struct napi_struct *napi, int budget)
3827{
3828 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829 napi);
3830 int tx_clean_complete = 0, work_done = 0;
3831
3832 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833
3834 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835
3836 if (!tx_clean_complete)
3837 work_done = budget;
3838
3839 /* If budget not fully consumed, exit the polling mode */
3840 if (work_done < budget) {
3841 if (likely(adapter->itr_setting & 3))
3842 e1000_set_itr(adapter);
3843 napi_complete_done(napi, work_done);
3844 if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 e1000_irq_enable(adapter);
3846 }
3847
3848 return work_done;
3849}
3850
3851/**
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
3854 **/
3855static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 struct e1000_tx_ring *tx_ring)
3857{
3858 struct e1000_hw *hw = &adapter->hw;
3859 struct net_device *netdev = adapter->netdev;
3860 struct e1000_tx_desc *tx_desc, *eop_desc;
3861 struct e1000_tx_buffer *buffer_info;
3862 unsigned int i, eop;
3863 unsigned int count = 0;
3864 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865 unsigned int bytes_compl = 0, pkts_compl = 0;
3866
3867 i = tx_ring->next_to_clean;
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870
3871 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 (count < tx_ring->count)) {
3873 bool cleaned = false;
3874 dma_rmb(); /* read buffer_info after eop_desc */
3875 for ( ; !cleaned; count++) {
3876 tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 buffer_info = &tx_ring->buffer_info[i];
3878 cleaned = (i == eop);
3879
3880 if (cleaned) {
3881 total_tx_packets += buffer_info->segs;
3882 total_tx_bytes += buffer_info->bytecount;
3883 if (buffer_info->skb) {
3884 bytes_compl += buffer_info->skb->len;
3885 pkts_compl++;
3886 }
3887
3888 }
3889 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 tx_desc->upper.data = 0;
3891
3892 if (unlikely(++i == tx_ring->count))
3893 i = 0;
3894 }
3895
3896 eop = tx_ring->buffer_info[i].next_to_watch;
3897 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3898 }
3899
3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 * which will reuse the cleaned buffers.
3902 */
3903 smp_store_release(&tx_ring->next_to_clean, i);
3904
3905 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3906
3907#define TX_WAKE_THRESHOLD 32
3908 if (unlikely(count && netif_carrier_ok(netdev) &&
3909 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910 /* Make sure that anybody stopping the queue after this
3911 * sees the new next_to_clean.
3912 */
3913 smp_mb();
3914
3915 if (netif_queue_stopped(netdev) &&
3916 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917 netif_wake_queue(netdev);
3918 ++adapter->restart_queue;
3919 }
3920 }
3921
3922 if (adapter->detect_tx_hung) {
3923 /* Detect a transmit hang in hardware, this serializes the
3924 * check with the clearing of time_stamp and movement of i
3925 */
3926 adapter->detect_tx_hung = false;
3927 if (tx_ring->buffer_info[eop].time_stamp &&
3928 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929 (adapter->tx_timeout_factor * HZ)) &&
3930 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3931
3932 /* detected Tx unit hang */
3933 e_err(drv, "Detected Tx Unit Hang\n"
3934 " Tx Queue <%lu>\n"
3935 " TDH <%x>\n"
3936 " TDT <%x>\n"
3937 " next_to_use <%x>\n"
3938 " next_to_clean <%x>\n"
3939 "buffer_info[next_to_clean]\n"
3940 " time_stamp <%lx>\n"
3941 " next_to_watch <%x>\n"
3942 " jiffies <%lx>\n"
3943 " next_to_watch.status <%x>\n",
3944 (unsigned long)(tx_ring - adapter->tx_ring),
3945 readl(hw->hw_addr + tx_ring->tdh),
3946 readl(hw->hw_addr + tx_ring->tdt),
3947 tx_ring->next_to_use,
3948 tx_ring->next_to_clean,
3949 tx_ring->buffer_info[eop].time_stamp,
3950 eop,
3951 jiffies,
3952 eop_desc->upper.fields.status);
3953 e1000_dump(adapter);
3954 netif_stop_queue(netdev);
3955 }
3956 }
3957 adapter->total_tx_bytes += total_tx_bytes;
3958 adapter->total_tx_packets += total_tx_packets;
3959 netdev->stats.tx_bytes += total_tx_bytes;
3960 netdev->stats.tx_packets += total_tx_packets;
3961 return count < tx_ring->count;
3962}
3963
3964/**
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter: board private structure
3967 * @status_err: receive descriptor status and error fields
3968 * @csum: receive descriptor csum field
3969 * @sk_buff: socket buffer with received data
3970 **/
3971static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972 u32 csum, struct sk_buff *skb)
3973{
3974 struct e1000_hw *hw = &adapter->hw;
3975 u16 status = (u16)status_err;
3976 u8 errors = (u8)(status_err >> 24);
3977
3978 skb_checksum_none_assert(skb);
3979
3980 /* 82543 or newer only */
3981 if (unlikely(hw->mac_type < e1000_82543))
3982 return;
3983 /* Ignore Checksum bit is set */
3984 if (unlikely(status & E1000_RXD_STAT_IXSM))
3985 return;
3986 /* TCP/UDP checksum error bit is set */
3987 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988 /* let the stack verify checksum errors */
3989 adapter->hw_csum_err++;
3990 return;
3991 }
3992 /* TCP/UDP Checksum has not been calculated */
3993 if (!(status & E1000_RXD_STAT_TCPCS))
3994 return;
3995
3996 /* It must be a TCP or UDP packet with a valid checksum */
3997 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998 /* TCP checksum is good */
3999 skb->ip_summed = CHECKSUM_UNNECESSARY;
4000 }
4001 adapter->hw_csum_good++;
4002}
4003
4004/**
4005 * e1000_consume_page - helper function for jumbo Rx path
4006 **/
4007static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008 u16 length)
4009{
4010 bi->rxbuf.page = NULL;
4011 skb->len += length;
4012 skb->data_len += length;
4013 skb->truesize += PAGE_SIZE;
4014}
4015
4016/**
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4022 */
4023static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024 __le16 vlan, struct sk_buff *skb)
4025{
4026 skb->protocol = eth_type_trans(skb, adapter->netdev);
4027
4028 if (status & E1000_RXD_STAT_VP) {
4029 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4030
4031 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4032 }
4033 napi_gro_receive(&adapter->napi, skb);
4034}
4035
4036/**
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4041 *
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4043 */
4044static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045 struct e1000_hw_stats *stats,
4046 u32 frame_len, const u8 *mac_addr)
4047{
4048 u64 carry_bit;
4049
4050 /* First adjust the frame length. */
4051 frame_len--;
4052 /* We need to adjust the statistics counters, since the hardware
4053 * counters overcount this packet as a CRC error and undercount
4054 * the packet as a good packet
4055 */
4056 /* This packet should not be counted as a CRC error. */
4057 stats->crcerrs--;
4058 /* This packet does count as a Good Packet Received. */
4059 stats->gprc++;
4060
4061 /* Adjust the Good Octets received counters */
4062 carry_bit = 0x80000000 & stats->gorcl;
4063 stats->gorcl += frame_len;
4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 * Received Count) was one before the addition,
4066 * AND it is zero after, then we lost the carry out,
4067 * need to add one to Gorch (Good Octets Received Count High).
4068 * This could be simplified if all environments supported
4069 * 64-bit integers.
4070 */
4071 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072 stats->gorch++;
4073 /* Is this a broadcast or multicast? Check broadcast first,
4074 * since the test for a multicast frame will test positive on
4075 * a broadcast frame.
4076 */
4077 if (is_broadcast_ether_addr(mac_addr))
4078 stats->bprc++;
4079 else if (is_multicast_ether_addr(mac_addr))
4080 stats->mprc++;
4081
4082 if (frame_len == hw->max_frame_size) {
4083 /* In this case, the hardware has overcounted the number of
4084 * oversize frames.
4085 */
4086 if (stats->roc > 0)
4087 stats->roc--;
4088 }
4089
4090 /* Adjust the bin counters when the extra byte put the frame in the
4091 * wrong bin. Remember that the frame_len was adjusted above.
4092 */
4093 if (frame_len == 64) {
4094 stats->prc64++;
4095 stats->prc127--;
4096 } else if (frame_len == 127) {
4097 stats->prc127++;
4098 stats->prc255--;
4099 } else if (frame_len == 255) {
4100 stats->prc255++;
4101 stats->prc511--;
4102 } else if (frame_len == 511) {
4103 stats->prc511++;
4104 stats->prc1023--;
4105 } else if (frame_len == 1023) {
4106 stats->prc1023++;
4107 stats->prc1522--;
4108 } else if (frame_len == 1522) {
4109 stats->prc1522++;
4110 }
4111}
4112
4113static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114 u8 status, u8 errors,
4115 u32 length, const u8 *data)
4116{
4117 struct e1000_hw *hw = &adapter->hw;
4118 u8 last_byte = *(data + length - 1);
4119
4120 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121 unsigned long irq_flags;
4122
4123 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4126
4127 return true;
4128 }
4129
4130 return false;
4131}
4132
4133static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134 unsigned int bufsz)
4135{
4136 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4137
4138 if (unlikely(!skb))
4139 adapter->alloc_rx_buff_failed++;
4140 return skb;
4141}
4142
4143/**
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4149 *
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4152 */
4153static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154 struct e1000_rx_ring *rx_ring,
4155 int *work_done, int work_to_do)
4156{
4157 struct net_device *netdev = adapter->netdev;
4158 struct pci_dev *pdev = adapter->pdev;
4159 struct e1000_rx_desc *rx_desc, *next_rxd;
4160 struct e1000_rx_buffer *buffer_info, *next_buffer;
4161 u32 length;
4162 unsigned int i;
4163 int cleaned_count = 0;
4164 bool cleaned = false;
4165 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4166
4167 i = rx_ring->next_to_clean;
4168 rx_desc = E1000_RX_DESC(*rx_ring, i);
4169 buffer_info = &rx_ring->buffer_info[i];
4170
4171 while (rx_desc->status & E1000_RXD_STAT_DD) {
4172 struct sk_buff *skb;
4173 u8 status;
4174
4175 if (*work_done >= work_to_do)
4176 break;
4177 (*work_done)++;
4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4179
4180 status = rx_desc->status;
4181
4182 if (++i == rx_ring->count)
4183 i = 0;
4184
4185 next_rxd = E1000_RX_DESC(*rx_ring, i);
4186 prefetch(next_rxd);
4187
4188 next_buffer = &rx_ring->buffer_info[i];
4189
4190 cleaned = true;
4191 cleaned_count++;
4192 dma_unmap_page(&pdev->dev, buffer_info->dma,
4193 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194 buffer_info->dma = 0;
4195
4196 length = le16_to_cpu(rx_desc->length);
4197
4198 /* errors is only valid for DD + EOP descriptors */
4199 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201 u8 *mapped = page_address(buffer_info->rxbuf.page);
4202
4203 if (e1000_tbi_should_accept(adapter, status,
4204 rx_desc->errors,
4205 length, mapped)) {
4206 length--;
4207 } else if (netdev->features & NETIF_F_RXALL) {
4208 goto process_skb;
4209 } else {
4210 /* an error means any chain goes out the window
4211 * too
4212 */
4213 if (rx_ring->rx_skb_top)
4214 dev_kfree_skb(rx_ring->rx_skb_top);
4215 rx_ring->rx_skb_top = NULL;
4216 goto next_desc;
4217 }
4218 }
4219
4220#define rxtop rx_ring->rx_skb_top
4221process_skb:
4222 if (!(status & E1000_RXD_STAT_EOP)) {
4223 /* this descriptor is only the beginning (or middle) */
4224 if (!rxtop) {
4225 /* this is the beginning of a chain */
4226 rxtop = napi_get_frags(&adapter->napi);
4227 if (!rxtop)
4228 break;
4229
4230 skb_fill_page_desc(rxtop, 0,
4231 buffer_info->rxbuf.page,
4232 0, length);
4233 } else {
4234 /* this is the middle of a chain */
4235 skb_fill_page_desc(rxtop,
4236 skb_shinfo(rxtop)->nr_frags,
4237 buffer_info->rxbuf.page, 0, length);
4238 }
4239 e1000_consume_page(buffer_info, rxtop, length);
4240 goto next_desc;
4241 } else {
4242 if (rxtop) {
4243 /* end of the chain */
4244 skb_fill_page_desc(rxtop,
4245 skb_shinfo(rxtop)->nr_frags,
4246 buffer_info->rxbuf.page, 0, length);
4247 skb = rxtop;
4248 rxtop = NULL;
4249 e1000_consume_page(buffer_info, skb, length);
4250 } else {
4251 struct page *p;
4252 /* no chain, got EOP, this buf is the packet
4253 * copybreak to save the put_page/alloc_page
4254 */
4255 p = buffer_info->rxbuf.page;
4256 if (length <= copybreak) {
4257 u8 *vaddr;
4258
4259 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260 length -= 4;
4261 skb = e1000_alloc_rx_skb(adapter,
4262 length);
4263 if (!skb)
4264 break;
4265
4266 vaddr = kmap_atomic(p);
4267 memcpy(skb_tail_pointer(skb), vaddr,
4268 length);
4269 kunmap_atomic(vaddr);
4270 /* re-use the page, so don't erase
4271 * buffer_info->rxbuf.page
4272 */
4273 skb_put(skb, length);
4274 e1000_rx_checksum(adapter,
4275 status | rx_desc->errors << 24,
4276 le16_to_cpu(rx_desc->csum), skb);
4277
4278 total_rx_bytes += skb->len;
4279 total_rx_packets++;
4280
4281 e1000_receive_skb(adapter, status,
4282 rx_desc->special, skb);
4283 goto next_desc;
4284 } else {
4285 skb = napi_get_frags(&adapter->napi);
4286 if (!skb) {
4287 adapter->alloc_rx_buff_failed++;
4288 break;
4289 }
4290 skb_fill_page_desc(skb, 0, p, 0,
4291 length);
4292 e1000_consume_page(buffer_info, skb,
4293 length);
4294 }
4295 }
4296 }
4297
4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 e1000_rx_checksum(adapter,
4300 (u32)(status) |
4301 ((u32)(rx_desc->errors) << 24),
4302 le16_to_cpu(rx_desc->csum), skb);
4303
4304 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306 pskb_trim(skb, skb->len - 4);
4307 total_rx_packets++;
4308
4309 if (status & E1000_RXD_STAT_VP) {
4310 __le16 vlan = rx_desc->special;
4311 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4312
4313 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4314 }
4315
4316 napi_gro_frags(&adapter->napi);
4317
4318next_desc:
4319 rx_desc->status = 0;
4320
4321 /* return some buffers to hardware, one at a time is too slow */
4322 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324 cleaned_count = 0;
4325 }
4326
4327 /* use prefetched values */
4328 rx_desc = next_rxd;
4329 buffer_info = next_buffer;
4330 }
4331 rx_ring->next_to_clean = i;
4332
4333 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334 if (cleaned_count)
4335 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4336
4337 adapter->total_rx_packets += total_rx_packets;
4338 adapter->total_rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_bytes += total_rx_bytes;
4340 netdev->stats.rx_packets += total_rx_packets;
4341 return cleaned;
4342}
4343
4344/* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4346 */
4347static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348 struct e1000_rx_buffer *buffer_info,
4349 u32 length, const void *data)
4350{
4351 struct sk_buff *skb;
4352
4353 if (length > copybreak)
4354 return NULL;
4355
4356 skb = e1000_alloc_rx_skb(adapter, length);
4357 if (!skb)
4358 return NULL;
4359
4360 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361 length, DMA_FROM_DEVICE);
4362
4363 memcpy(skb_put(skb, length), data, length);
4364
4365 return skb;
4366}
4367
4368/**
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4374 */
4375static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376 struct e1000_rx_ring *rx_ring,
4377 int *work_done, int work_to_do)
4378{
4379 struct net_device *netdev = adapter->netdev;
4380 struct pci_dev *pdev = adapter->pdev;
4381 struct e1000_rx_desc *rx_desc, *next_rxd;
4382 struct e1000_rx_buffer *buffer_info, *next_buffer;
4383 u32 length;
4384 unsigned int i;
4385 int cleaned_count = 0;
4386 bool cleaned = false;
4387 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4388
4389 i = rx_ring->next_to_clean;
4390 rx_desc = E1000_RX_DESC(*rx_ring, i);
4391 buffer_info = &rx_ring->buffer_info[i];
4392
4393 while (rx_desc->status & E1000_RXD_STAT_DD) {
4394 struct sk_buff *skb;
4395 u8 *data;
4396 u8 status;
4397
4398 if (*work_done >= work_to_do)
4399 break;
4400 (*work_done)++;
4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4402
4403 status = rx_desc->status;
4404 length = le16_to_cpu(rx_desc->length);
4405
4406 data = buffer_info->rxbuf.data;
4407 prefetch(data);
4408 skb = e1000_copybreak(adapter, buffer_info, length, data);
4409 if (!skb) {
4410 unsigned int frag_len = e1000_frag_len(adapter);
4411
4412 skb = build_skb(data - E1000_HEADROOM, frag_len);
4413 if (!skb) {
4414 adapter->alloc_rx_buff_failed++;
4415 break;
4416 }
4417
4418 skb_reserve(skb, E1000_HEADROOM);
4419 dma_unmap_single(&pdev->dev, buffer_info->dma,
4420 adapter->rx_buffer_len,
4421 DMA_FROM_DEVICE);
4422 buffer_info->dma = 0;
4423 buffer_info->rxbuf.data = NULL;
4424 }
4425
4426 if (++i == rx_ring->count)
4427 i = 0;
4428
4429 next_rxd = E1000_RX_DESC(*rx_ring, i);
4430 prefetch(next_rxd);
4431
4432 next_buffer = &rx_ring->buffer_info[i];
4433
4434 cleaned = true;
4435 cleaned_count++;
4436
4437 /* !EOP means multiple descriptors were used to store a single
4438 * packet, if thats the case we need to toss it. In fact, we
4439 * to toss every packet with the EOP bit clear and the next
4440 * frame that _does_ have the EOP bit set, as it is by
4441 * definition only a frame fragment
4442 */
4443 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444 adapter->discarding = true;
4445
4446 if (adapter->discarding) {
4447 /* All receives must fit into a single buffer */
4448 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449 dev_kfree_skb(skb);
4450 if (status & E1000_RXD_STAT_EOP)
4451 adapter->discarding = false;
4452 goto next_desc;
4453 }
4454
4455 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456 if (e1000_tbi_should_accept(adapter, status,
4457 rx_desc->errors,
4458 length, data)) {
4459 length--;
4460 } else if (netdev->features & NETIF_F_RXALL) {
4461 goto process_skb;
4462 } else {
4463 dev_kfree_skb(skb);
4464 goto next_desc;
4465 }
4466 }
4467
4468process_skb:
4469 total_rx_bytes += (length - 4); /* don't count FCS */
4470 total_rx_packets++;
4471
4472 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473 /* adjust length to remove Ethernet CRC, this must be
4474 * done after the TBI_ACCEPT workaround above
4475 */
4476 length -= 4;
4477
4478 if (buffer_info->rxbuf.data == NULL)
4479 skb_put(skb, length);
4480 else /* copybreak skb */
4481 skb_trim(skb, length);
4482
4483 /* Receive Checksum Offload */
4484 e1000_rx_checksum(adapter,
4485 (u32)(status) |
4486 ((u32)(rx_desc->errors) << 24),
4487 le16_to_cpu(rx_desc->csum), skb);
4488
4489 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4490
4491next_desc:
4492 rx_desc->status = 0;
4493
4494 /* return some buffers to hardware, one at a time is too slow */
4495 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497 cleaned_count = 0;
4498 }
4499
4500 /* use prefetched values */
4501 rx_desc = next_rxd;
4502 buffer_info = next_buffer;
4503 }
4504 rx_ring->next_to_clean = i;
4505
4506 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507 if (cleaned_count)
4508 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4509
4510 adapter->total_rx_packets += total_rx_packets;
4511 adapter->total_rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_bytes += total_rx_bytes;
4513 netdev->stats.rx_packets += total_rx_packets;
4514 return cleaned;
4515}
4516
4517/**
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4522 **/
4523static void
4524e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525 struct e1000_rx_ring *rx_ring, int cleaned_count)
4526{
4527 struct pci_dev *pdev = adapter->pdev;
4528 struct e1000_rx_desc *rx_desc;
4529 struct e1000_rx_buffer *buffer_info;
4530 unsigned int i;
4531
4532 i = rx_ring->next_to_use;
4533 buffer_info = &rx_ring->buffer_info[i];
4534
4535 while (cleaned_count--) {
4536 /* allocate a new page if necessary */
4537 if (!buffer_info->rxbuf.page) {
4538 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539 if (unlikely(!buffer_info->rxbuf.page)) {
4540 adapter->alloc_rx_buff_failed++;
4541 break;
4542 }
4543 }
4544
4545 if (!buffer_info->dma) {
4546 buffer_info->dma = dma_map_page(&pdev->dev,
4547 buffer_info->rxbuf.page, 0,
4548 adapter->rx_buffer_len,
4549 DMA_FROM_DEVICE);
4550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551 put_page(buffer_info->rxbuf.page);
4552 buffer_info->rxbuf.page = NULL;
4553 buffer_info->dma = 0;
4554 adapter->alloc_rx_buff_failed++;
4555 break;
4556 }
4557 }
4558
4559 rx_desc = E1000_RX_DESC(*rx_ring, i);
4560 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4561
4562 if (unlikely(++i == rx_ring->count))
4563 i = 0;
4564 buffer_info = &rx_ring->buffer_info[i];
4565 }
4566
4567 if (likely(rx_ring->next_to_use != i)) {
4568 rx_ring->next_to_use = i;
4569 if (unlikely(i-- == 0))
4570 i = (rx_ring->count - 1);
4571
4572 /* Force memory writes to complete before letting h/w
4573 * know there are new descriptors to fetch. (Only
4574 * applicable for weak-ordered memory model archs,
4575 * such as IA-64).
4576 */
4577 wmb();
4578 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4579 }
4580}
4581
4582/**
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
4585 **/
4586static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587 struct e1000_rx_ring *rx_ring,
4588 int cleaned_count)
4589{
4590 struct e1000_hw *hw = &adapter->hw;
4591 struct pci_dev *pdev = adapter->pdev;
4592 struct e1000_rx_desc *rx_desc;
4593 struct e1000_rx_buffer *buffer_info;
4594 unsigned int i;
4595 unsigned int bufsz = adapter->rx_buffer_len;
4596
4597 i = rx_ring->next_to_use;
4598 buffer_info = &rx_ring->buffer_info[i];
4599
4600 while (cleaned_count--) {
4601 void *data;
4602
4603 if (buffer_info->rxbuf.data)
4604 goto skip;
4605
4606 data = e1000_alloc_frag(adapter);
4607 if (!data) {
4608 /* Better luck next round */
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Fix for errata 23, can't cross 64kB boundary */
4614 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615 void *olddata = data;
4616 e_err(rx_err, "skb align check failed: %u bytes at "
4617 "%p\n", bufsz, data);
4618 /* Try again, without freeing the previous */
4619 data = e1000_alloc_frag(adapter);
4620 /* Failed allocation, critical failure */
4621 if (!data) {
4622 skb_free_frag(olddata);
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628 /* give up */
4629 skb_free_frag(data);
4630 skb_free_frag(olddata);
4631 adapter->alloc_rx_buff_failed++;
4632 break;
4633 }
4634
4635 /* Use new allocation */
4636 skb_free_frag(olddata);
4637 }
4638 buffer_info->dma = dma_map_single(&pdev->dev,
4639 data,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643 skb_free_frag(data);
4644 buffer_info->dma = 0;
4645 adapter->alloc_rx_buff_failed++;
4646 break;
4647 }
4648
4649 /* XXX if it was allocated cleanly it will never map to a
4650 * boundary crossing
4651 */
4652
4653 /* Fix for errata 23, can't cross 64kB boundary */
4654 if (!e1000_check_64k_bound(adapter,
4655 (void *)(unsigned long)buffer_info->dma,
4656 adapter->rx_buffer_len)) {
4657 e_err(rx_err, "dma align check failed: %u bytes at "
4658 "%p\n", adapter->rx_buffer_len,
4659 (void *)(unsigned long)buffer_info->dma);
4660
4661 dma_unmap_single(&pdev->dev, buffer_info->dma,
4662 adapter->rx_buffer_len,
4663 DMA_FROM_DEVICE);
4664
4665 skb_free_frag(data);
4666 buffer_info->rxbuf.data = NULL;
4667 buffer_info->dma = 0;
4668
4669 adapter->alloc_rx_buff_failed++;
4670 break;
4671 }
4672 buffer_info->rxbuf.data = data;
4673 skip:
4674 rx_desc = E1000_RX_DESC(*rx_ring, i);
4675 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4676
4677 if (unlikely(++i == rx_ring->count))
4678 i = 0;
4679 buffer_info = &rx_ring->buffer_info[i];
4680 }
4681
4682 if (likely(rx_ring->next_to_use != i)) {
4683 rx_ring->next_to_use = i;
4684 if (unlikely(i-- == 0))
4685 i = (rx_ring->count - 1);
4686
4687 /* Force memory writes to complete before letting h/w
4688 * know there are new descriptors to fetch. (Only
4689 * applicable for weak-ordered memory model archs,
4690 * such as IA-64).
4691 */
4692 wmb();
4693 writel(i, hw->hw_addr + rx_ring->rdt);
4694 }
4695}
4696
4697/**
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 * @adapter:
4700 **/
4701static void e1000_smartspeed(struct e1000_adapter *adapter)
4702{
4703 struct e1000_hw *hw = &adapter->hw;
4704 u16 phy_status;
4705 u16 phy_ctrl;
4706
4707 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709 return;
4710
4711 if (adapter->smartspeed == 0) {
4712 /* If Master/Slave config fault is asserted twice,
4713 * we assume back-to-back
4714 */
4715 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717 return;
4718 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 return;
4721 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725 phy_ctrl);
4726 adapter->smartspeed++;
4727 if (!e1000_phy_setup_autoneg(hw) &&
4728 !e1000_read_phy_reg(hw, PHY_CTRL,
4729 &phy_ctrl)) {
4730 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731 MII_CR_RESTART_AUTO_NEG);
4732 e1000_write_phy_reg(hw, PHY_CTRL,
4733 phy_ctrl);
4734 }
4735 }
4736 return;
4737 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738 /* If still no link, perhaps using 2/3 pair cable */
4739 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740 phy_ctrl |= CR_1000T_MS_ENABLE;
4741 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742 if (!e1000_phy_setup_autoneg(hw) &&
4743 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745 MII_CR_RESTART_AUTO_NEG);
4746 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4747 }
4748 }
4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751 adapter->smartspeed = 0;
4752}
4753
4754/**
4755 * e1000_ioctl -
4756 * @netdev:
4757 * @ifreq:
4758 * @cmd:
4759 **/
4760static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4761{
4762 switch (cmd) {
4763 case SIOCGMIIPHY:
4764 case SIOCGMIIREG:
4765 case SIOCSMIIREG:
4766 return e1000_mii_ioctl(netdev, ifr, cmd);
4767 default:
4768 return -EOPNOTSUPP;
4769 }
4770}
4771
4772/**
4773 * e1000_mii_ioctl -
4774 * @netdev:
4775 * @ifreq:
4776 * @cmd:
4777 **/
4778static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779 int cmd)
4780{
4781 struct e1000_adapter *adapter = netdev_priv(netdev);
4782 struct e1000_hw *hw = &adapter->hw;
4783 struct mii_ioctl_data *data = if_mii(ifr);
4784 int retval;
4785 u16 mii_reg;
4786 unsigned long flags;
4787
4788 if (hw->media_type != e1000_media_type_copper)
4789 return -EOPNOTSUPP;
4790
4791 switch (cmd) {
4792 case SIOCGMIIPHY:
4793 data->phy_id = hw->phy_addr;
4794 break;
4795 case SIOCGMIIREG:
4796 spin_lock_irqsave(&adapter->stats_lock, flags);
4797 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798 &data->val_out)) {
4799 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 return -EIO;
4801 }
4802 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803 break;
4804 case SIOCSMIIREG:
4805 if (data->reg_num & ~(0x1F))
4806 return -EFAULT;
4807 mii_reg = data->val_in;
4808 spin_lock_irqsave(&adapter->stats_lock, flags);
4809 if (e1000_write_phy_reg(hw, data->reg_num,
4810 mii_reg)) {
4811 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812 return -EIO;
4813 }
4814 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815 if (hw->media_type == e1000_media_type_copper) {
4816 switch (data->reg_num) {
4817 case PHY_CTRL:
4818 if (mii_reg & MII_CR_POWER_DOWN)
4819 break;
4820 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821 hw->autoneg = 1;
4822 hw->autoneg_advertised = 0x2F;
4823 } else {
4824 u32 speed;
4825 if (mii_reg & 0x40)
4826 speed = SPEED_1000;
4827 else if (mii_reg & 0x2000)
4828 speed = SPEED_100;
4829 else
4830 speed = SPEED_10;
4831 retval = e1000_set_spd_dplx(
4832 adapter, speed,
4833 ((mii_reg & 0x100)
4834 ? DUPLEX_FULL :
4835 DUPLEX_HALF));
4836 if (retval)
4837 return retval;
4838 }
4839 if (netif_running(adapter->netdev))
4840 e1000_reinit_locked(adapter);
4841 else
4842 e1000_reset(adapter);
4843 break;
4844 case M88E1000_PHY_SPEC_CTRL:
4845 case M88E1000_EXT_PHY_SPEC_CTRL:
4846 if (e1000_phy_reset(hw))
4847 return -EIO;
4848 break;
4849 }
4850 } else {
4851 switch (data->reg_num) {
4852 case PHY_CTRL:
4853 if (mii_reg & MII_CR_POWER_DOWN)
4854 break;
4855 if (netif_running(adapter->netdev))
4856 e1000_reinit_locked(adapter);
4857 else
4858 e1000_reset(adapter);
4859 break;
4860 }
4861 }
4862 break;
4863 default:
4864 return -EOPNOTSUPP;
4865 }
4866 return E1000_SUCCESS;
4867}
4868
4869void e1000_pci_set_mwi(struct e1000_hw *hw)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 int ret_val = pci_set_mwi(adapter->pdev);
4873
4874 if (ret_val)
4875 e_err(probe, "Error in setting MWI\n");
4876}
4877
4878void e1000_pci_clear_mwi(struct e1000_hw *hw)
4879{
4880 struct e1000_adapter *adapter = hw->back;
4881
4882 pci_clear_mwi(adapter->pdev);
4883}
4884
4885int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4886{
4887 struct e1000_adapter *adapter = hw->back;
4888 return pcix_get_mmrbc(adapter->pdev);
4889}
4890
4891void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892{
4893 struct e1000_adapter *adapter = hw->back;
4894 pcix_set_mmrbc(adapter->pdev, mmrbc);
4895}
4896
4897void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4898{
4899 outl(value, port);
4900}
4901
4902static bool e1000_vlan_used(struct e1000_adapter *adapter)
4903{
4904 u16 vid;
4905
4906 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907 return true;
4908 return false;
4909}
4910
4911static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912 netdev_features_t features)
4913{
4914 struct e1000_hw *hw = &adapter->hw;
4915 u32 ctrl;
4916
4917 ctrl = er32(CTRL);
4918 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919 /* enable VLAN tag insert/strip */
4920 ctrl |= E1000_CTRL_VME;
4921 } else {
4922 /* disable VLAN tag insert/strip */
4923 ctrl &= ~E1000_CTRL_VME;
4924 }
4925 ew32(CTRL, ctrl);
4926}
4927static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928 bool filter_on)
4929{
4930 struct e1000_hw *hw = &adapter->hw;
4931 u32 rctl;
4932
4933 if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 e1000_irq_disable(adapter);
4935
4936 __e1000_vlan_mode(adapter, adapter->netdev->features);
4937 if (filter_on) {
4938 /* enable VLAN receive filtering */
4939 rctl = er32(RCTL);
4940 rctl &= ~E1000_RCTL_CFIEN;
4941 if (!(adapter->netdev->flags & IFF_PROMISC))
4942 rctl |= E1000_RCTL_VFE;
4943 ew32(RCTL, rctl);
4944 e1000_update_mng_vlan(adapter);
4945 } else {
4946 /* disable VLAN receive filtering */
4947 rctl = er32(RCTL);
4948 rctl &= ~E1000_RCTL_VFE;
4949 ew32(RCTL, rctl);
4950 }
4951
4952 if (!test_bit(__E1000_DOWN, &adapter->flags))
4953 e1000_irq_enable(adapter);
4954}
4955
4956static void e1000_vlan_mode(struct net_device *netdev,
4957 netdev_features_t features)
4958{
4959 struct e1000_adapter *adapter = netdev_priv(netdev);
4960
4961 if (!test_bit(__E1000_DOWN, &adapter->flags))
4962 e1000_irq_disable(adapter);
4963
4964 __e1000_vlan_mode(adapter, features);
4965
4966 if (!test_bit(__E1000_DOWN, &adapter->flags))
4967 e1000_irq_enable(adapter);
4968}
4969
4970static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if ((hw->mng_cookie.status &
4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979 (vid == adapter->mng_vlan_id))
4980 return 0;
4981
4982 if (!e1000_vlan_used(adapter))
4983 e1000_vlan_filter_on_off(adapter, true);
4984
4985 /* add VID to filter table */
4986 index = (vid >> 5) & 0x7F;
4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 vfta |= (1 << (vid & 0x1F));
4989 e1000_write_vfta(hw, index, vfta);
4990
4991 set_bit(vid, adapter->active_vlans);
4992
4993 return 0;
4994}
4995
4996static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997 __be16 proto, u16 vid)
4998{
4999 struct e1000_adapter *adapter = netdev_priv(netdev);
5000 struct e1000_hw *hw = &adapter->hw;
5001 u32 vfta, index;
5002
5003 if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 e1000_irq_disable(adapter);
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_enable(adapter);
5007
5008 /* remove VID from filter table */
5009 index = (vid >> 5) & 0x7F;
5010 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011 vfta &= ~(1 << (vid & 0x1F));
5012 e1000_write_vfta(hw, index, vfta);
5013
5014 clear_bit(vid, adapter->active_vlans);
5015
5016 if (!e1000_vlan_used(adapter))
5017 e1000_vlan_filter_on_off(adapter, false);
5018
5019 return 0;
5020}
5021
5022static void e1000_restore_vlan(struct e1000_adapter *adapter)
5023{
5024 u16 vid;
5025
5026 if (!e1000_vlan_used(adapter))
5027 return;
5028
5029 e1000_vlan_filter_on_off(adapter, true);
5030 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5032}
5033
5034int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5035{
5036 struct e1000_hw *hw = &adapter->hw;
5037
5038 hw->autoneg = 0;
5039
5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 * for the switch() below to work
5042 */
5043 if ((spd & 1) || (dplx & ~1))
5044 goto err_inval;
5045
5046 /* Fiber NICs only allow 1000 gbps Full duplex */
5047 if ((hw->media_type == e1000_media_type_fiber) &&
5048 spd != SPEED_1000 &&
5049 dplx != DUPLEX_FULL)
5050 goto err_inval;
5051
5052 switch (spd + dplx) {
5053 case SPEED_10 + DUPLEX_HALF:
5054 hw->forced_speed_duplex = e1000_10_half;
5055 break;
5056 case SPEED_10 + DUPLEX_FULL:
5057 hw->forced_speed_duplex = e1000_10_full;
5058 break;
5059 case SPEED_100 + DUPLEX_HALF:
5060 hw->forced_speed_duplex = e1000_100_half;
5061 break;
5062 case SPEED_100 + DUPLEX_FULL:
5063 hw->forced_speed_duplex = e1000_100_full;
5064 break;
5065 case SPEED_1000 + DUPLEX_FULL:
5066 hw->autoneg = 1;
5067 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068 break;
5069 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070 default:
5071 goto err_inval;
5072 }
5073
5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 hw->mdix = AUTO_ALL_MODES;
5076
5077 return 0;
5078
5079err_inval:
5080 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081 return -EINVAL;
5082}
5083
5084static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5085{
5086 struct net_device *netdev = pci_get_drvdata(pdev);
5087 struct e1000_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 ctrl, ctrl_ext, rctl, status;
5090 u32 wufc = adapter->wol;
5091#ifdef CONFIG_PM
5092 int retval = 0;
5093#endif
5094
5095 netif_device_detach(netdev);
5096
5097 if (netif_running(netdev)) {
5098 int count = E1000_CHECK_RESET_COUNT;
5099
5100 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101 usleep_range(10000, 20000);
5102
5103 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5104 e1000_down(adapter);
5105 }
5106
5107#ifdef CONFIG_PM
5108 retval = pci_save_state(pdev);
5109 if (retval)
5110 return retval;
5111#endif
5112
5113 status = er32(STATUS);
5114 if (status & E1000_STATUS_LU)
5115 wufc &= ~E1000_WUFC_LNKC;
5116
5117 if (wufc) {
5118 e1000_setup_rctl(adapter);
5119 e1000_set_rx_mode(netdev);
5120
5121 rctl = er32(RCTL);
5122
5123 /* turn on all-multi mode if wake on multicast is enabled */
5124 if (wufc & E1000_WUFC_MC)
5125 rctl |= E1000_RCTL_MPE;
5126
5127 /* enable receives in the hardware */
5128 ew32(RCTL, rctl | E1000_RCTL_EN);
5129
5130 if (hw->mac_type >= e1000_82540) {
5131 ctrl = er32(CTRL);
5132 /* advertise wake from D3Cold */
5133 #define E1000_CTRL_ADVD3WUC 0x00100000
5134 /* phy power management enable */
5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 ctrl |= E1000_CTRL_ADVD3WUC |
5137 E1000_CTRL_EN_PHY_PWR_MGMT;
5138 ew32(CTRL, ctrl);
5139 }
5140
5141 if (hw->media_type == e1000_media_type_fiber ||
5142 hw->media_type == e1000_media_type_internal_serdes) {
5143 /* keep the laser running in D3 */
5144 ctrl_ext = er32(CTRL_EXT);
5145 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146 ew32(CTRL_EXT, ctrl_ext);
5147 }
5148
5149 ew32(WUC, E1000_WUC_PME_EN);
5150 ew32(WUFC, wufc);
5151 } else {
5152 ew32(WUC, 0);
5153 ew32(WUFC, 0);
5154 }
5155
5156 e1000_release_manageability(adapter);
5157
5158 *enable_wake = !!wufc;
5159
5160 /* make sure adapter isn't asleep if manageability is enabled */
5161 if (adapter->en_mng_pt)
5162 *enable_wake = true;
5163
5164 if (netif_running(netdev))
5165 e1000_free_irq(adapter);
5166
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211 pci_set_master(pdev);
5212
5213 pci_enable_wake(pdev, PCI_D3hot, 0);
5214 pci_enable_wake(pdev, PCI_D3cold, 0);
5215
5216 if (netif_running(netdev)) {
5217 err = e1000_request_irq(adapter);
5218 if (err)
5219 return err;
5220 }
5221
5222 e1000_power_up_phy(adapter);
5223 e1000_reset(adapter);
5224 ew32(WUS, ~0);
5225
5226 e1000_init_manageability(adapter);
5227
5228 if (netif_running(netdev))
5229 e1000_up(adapter);
5230
5231 netif_device_attach(netdev);
5232
5233 return 0;
5234}
5235#endif
5236
5237static void e1000_shutdown(struct pci_dev *pdev)
5238{
5239 bool wake;
5240
5241 __e1000_shutdown(pdev, &wake);
5242
5243 if (system_state == SYSTEM_POWER_OFF) {
5244 pci_wake_from_d3(pdev, wake);
5245 pci_set_power_state(pdev, PCI_D3hot);
5246 }
5247}
5248
5249#ifdef CONFIG_NET_POLL_CONTROLLER
5250/* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5253 */
5254static void e1000_netpoll(struct net_device *netdev)
5255{
5256 struct e1000_adapter *adapter = netdev_priv(netdev);
5257
5258 if (disable_hardirq(adapter->pdev->irq))
5259 e1000_intr(adapter->pdev->irq, netdev);
5260 enable_irq(adapter->pdev->irq);
5261}
5262#endif
5263
5264/**
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5268 *
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5271 */
5272static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273 pci_channel_state_t state)
5274{
5275 struct net_device *netdev = pci_get_drvdata(pdev);
5276 struct e1000_adapter *adapter = netdev_priv(netdev);
5277
5278 netif_device_detach(netdev);
5279
5280 if (state == pci_channel_io_perm_failure)
5281 return PCI_ERS_RESULT_DISCONNECT;
5282
5283 if (netif_running(netdev))
5284 e1000_down(adapter);
5285 pci_disable_device(pdev);
5286
5287 /* Request a slot slot reset. */
5288 return PCI_ERS_RESULT_NEED_RESET;
5289}
5290
5291/**
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5294 *
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5297 */
5298static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5299{
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct e1000_adapter *adapter = netdev_priv(netdev);
5302 struct e1000_hw *hw = &adapter->hw;
5303 int err;
5304
5305 if (adapter->need_ioport)
5306 err = pci_enable_device(pdev);
5307 else
5308 err = pci_enable_device_mem(pdev);
5309 if (err) {
5310 pr_err("Cannot re-enable PCI device after reset.\n");
5311 return PCI_ERS_RESULT_DISCONNECT;
5312 }
5313 pci_set_master(pdev);
5314
5315 pci_enable_wake(pdev, PCI_D3hot, 0);
5316 pci_enable_wake(pdev, PCI_D3cold, 0);
5317
5318 e1000_reset(adapter);
5319 ew32(WUS, ~0);
5320
5321 return PCI_ERS_RESULT_RECOVERED;
5322}
5323
5324/**
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5327 *
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5331 */
5332static void e1000_io_resume(struct pci_dev *pdev)
5333{
5334 struct net_device *netdev = pci_get_drvdata(pdev);
5335 struct e1000_adapter *adapter = netdev_priv(netdev);
5336
5337 e1000_init_manageability(adapter);
5338
5339 if (netif_running(netdev)) {
5340 if (e1000_up(adapter)) {
5341 pr_info("can't bring device back up after reset\n");
5342 return;
5343 }
5344 }
5345
5346 netif_device_attach(netdev);
5347}
5348
5349/* e1000_main.c */