Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
 
 
 
 
 
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
 
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include "ppc32.h"
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
 
  50#endif
  51
  52#include "signal.h"
  53
  54
  55#ifdef CONFIG_PPC64
 
 
 
 
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
 
 
  61/*
  62 * Userspace code may pass a ucontext which doesn't include VSX added
  63 * at the end.  We need to check for this case.
  64 */
  65#define UCONTEXTSIZEWITHOUTVSX \
  66		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  67
  68/*
  69 * Returning 0 means we return to userspace via
  70 * ret_from_except and thus restore all user
  71 * registers from *regs.  This is what we need
  72 * to do when a signal has been delivered.
  73 */
  74
  75#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  76#undef __SIGNAL_FRAMESIZE
  77#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  78#undef ELF_NVRREG
  79#define ELF_NVRREG	ELF_NVRREG32
  80
  81/*
  82 * Functions for flipping sigsets (thanks to brain dead generic
  83 * implementation that makes things simple for little endian only)
  84 */
  85#define unsafe_put_sigset_t	unsafe_put_compat_sigset
  86#define unsafe_get_sigset_t	unsafe_get_compat_sigset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88#define to_user_ptr(p)		ptr_to_compat(p)
  89#define from_user_ptr(p)	compat_ptr(p)
  90
  91static __always_inline int
  92__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
  93{
  94	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
  95	int val, i;
  96
  97	for (i = 0; i <= PT_RESULT; i ++) {
  98		/* Force usr to alway see softe as 1 (interrupts enabled) */
  99		if (i == PT_SOFTE)
 100			val = 1;
 101		else
 102			val = gregs[i];
 103
 104		unsafe_put_user(val, &frame->mc_gregs[i], failed);
 
 
 
 
 105	}
 106	return 0;
 107
 108failed:
 109	return 1;
 110}
 111
 112static __always_inline int
 113__unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 114{
 115	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 116	int i;
 117
 118	for (i = 0; i <= PT_RESULT; i++) {
 119		if ((i == PT_MSR) || (i == PT_SOFTE))
 120			continue;
 121		unsafe_get_user(gregs[i], &sr->mc_gregs[i], failed);
 
 122	}
 123	return 0;
 124
 125failed:
 126	return 1;
 127}
 128
 129#else /* CONFIG_PPC64 */
 130
 131#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 132
 133#define unsafe_put_sigset_t(uset, set, label) do {			\
 134	sigset_t __user *__us = uset	;				\
 135	const sigset_t *__s = set;					\
 136									\
 137	unsafe_copy_to_user(__us, __s, sizeof(*__us), label);		\
 138} while (0)
 139
 140#define unsafe_get_sigset_t	unsafe_get_user_sigset
 
 
 
 141
 142#define to_user_ptr(p)		((unsigned long)(p))
 143#define from_user_ptr(p)	((void __user *)(p))
 144
 145static __always_inline int
 146__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
 147{
 148	unsafe_copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE, failed);
 149	return 0;
 150
 151failed:
 152	return 1;
 153}
 154
 155static __always_inline
 156int __unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 157{
 158	/* copy up to but not including MSR */
 159	unsafe_copy_from_user(regs, &sr->mc_gregs, PT_MSR * sizeof(elf_greg_t), failed);
 160
 
 161	/* copy from orig_r3 (the word after the MSR) up to the end */
 162	unsafe_copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 163			      GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t), failed);
 164
 165	return 0;
 166
 167failed:
 168	return 1;
 169}
 170#endif
 171
 172#define unsafe_save_general_regs(regs, frame, label) do {	\
 173	if (__unsafe_save_general_regs(regs, frame))		\
 174		goto label;					\
 175} while (0)
 176
 177#define unsafe_restore_general_regs(regs, frame, label) do {	\
 178	if (__unsafe_restore_general_regs(regs, frame))		\
 179		goto label;					\
 180} while (0)
 181
 182/*
 183 * When we have signals to deliver, we set up on the
 184 * user stack, going down from the original stack pointer:
 185 *	an ABI gap of 56 words
 186 *	an mcontext struct
 187 *	a sigcontext struct
 188 *	a gap of __SIGNAL_FRAMESIZE bytes
 189 *
 190 * Each of these things must be a multiple of 16 bytes in size. The following
 191 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 192 *
 193 */
 194struct sigframe {
 195	struct sigcontext sctx;		/* the sigcontext */
 196	struct mcontext	mctx;		/* all the register values */
 197#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 198	struct sigcontext sctx_transact;
 199	struct mcontext	mctx_transact;
 200#endif
 201	/*
 202	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 203	 * regs and 18 fp regs below sp before decrementing it.
 204	 */
 205	int			abigap[56];
 206};
 207
 
 
 
 208/*
 209 *  When we have rt signals to deliver, we set up on the
 210 *  user stack, going down from the original stack pointer:
 211 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 212 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 213 *  (the +16 is to get the siginfo and ucontext in the same
 214 *  positions as in older kernels).
 215 *
 216 *  Each of these things must be a multiple of 16 bytes in size.
 217 *
 218 */
 219struct rt_sigframe {
 220#ifdef CONFIG_PPC64
 221	compat_siginfo_t info;
 222#else
 223	struct siginfo info;
 224#endif
 225	struct ucontext	uc;
 226#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 227	struct ucontext	uc_transact;
 228#endif
 229	/*
 230	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 231	 * regs and 18 fp regs below sp before decrementing it.
 232	 */
 233	int			abigap[56];
 234};
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/*
 237 * Save the current user registers on the user stack.
 238 * We only save the altivec/spe registers if the process has used
 239 * altivec/spe instructions at some point.
 240 */
 241static void prepare_save_user_regs(int ctx_has_vsx_region)
 
 
 242{
 
 
 243	/* Make sure floating point registers are stored in regs */
 244	flush_fp_to_thread(current);
 245#ifdef CONFIG_ALTIVEC
 246	if (current->thread.used_vr)
 247		flush_altivec_to_thread(current);
 248	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 249		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 250#endif
 251#ifdef CONFIG_VSX
 252	if (current->thread.used_vsr && ctx_has_vsx_region)
 253		flush_vsx_to_thread(current);
 254#endif
 255#ifdef CONFIG_SPE
 256	if (current->thread.used_spe)
 257		flush_spe_to_thread(current);
 258#endif
 259}
 260
 261static int __unsafe_save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 262				   struct mcontext __user *tm_frame, int ctx_has_vsx_region)
 263{
 264	unsigned long msr = regs->msr;
 265
 266	/* save general registers */
 267	unsafe_save_general_regs(regs, frame, failed);
 
 268
 269#ifdef CONFIG_ALTIVEC
 270	/* save altivec registers */
 271	if (current->thread.used_vr) {
 272		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 273				    ELF_NVRREG * sizeof(vector128), failed);
 
 
 274		/* set MSR_VEC in the saved MSR value to indicate that
 275		   frame->mc_vregs contains valid data */
 276		msr |= MSR_VEC;
 277	}
 278	/* else assert((regs->msr & MSR_VEC) == 0) */
 279
 280	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 281	 * use altivec. Since VSCR only contains 32 bits saved in the least
 282	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 283	 * most significant bits of that same vector. --BenH
 284	 * Note that the current VRSAVE value is in the SPR at this point.
 285	 */
 286	unsafe_put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32],
 287			failed);
 
 
 288#endif /* CONFIG_ALTIVEC */
 289	unsafe_copy_fpr_to_user(&frame->mc_fregs, current, failed);
 
 290
 291	/*
 292	 * Clear the MSR VSX bit to indicate there is no valid state attached
 293	 * to this context, except in the specific case below where we set it.
 294	 */
 295	msr &= ~MSR_VSX;
 296#ifdef CONFIG_VSX
 297	/*
 298	 * Copy VSR 0-31 upper half from thread_struct to local
 299	 * buffer, then write that to userspace.  Also set MSR_VSX in
 300	 * the saved MSR value to indicate that frame->mc_vregs
 301	 * contains valid data
 302	 */
 303	if (current->thread.used_vsr && ctx_has_vsx_region) {
 304		unsafe_copy_vsx_to_user(&frame->mc_vsregs, current, failed);
 
 
 305		msr |= MSR_VSX;
 306	}
 307#endif /* CONFIG_VSX */
 308#ifdef CONFIG_SPE
 309	/* save spe registers */
 310	if (current->thread.used_spe) {
 311		unsafe_copy_to_user(&frame->mc_vregs, current->thread.evr,
 312				    ELF_NEVRREG * sizeof(u32), failed);
 
 
 313		/* set MSR_SPE in the saved MSR value to indicate that
 314		   frame->mc_vregs contains valid data */
 315		msr |= MSR_SPE;
 316	}
 317	/* else assert((regs->msr & MSR_SPE) == 0) */
 318
 319	/* We always copy to/from spefscr */
 320	unsafe_put_user(current->thread.spefscr,
 321			(u32 __user *)&frame->mc_vregs + ELF_NEVRREG, failed);
 322#endif /* CONFIG_SPE */
 323
 324	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 325
 326	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 327	 * can check it on the restore to see if TM is active
 328	 */
 329	if (tm_frame)
 330		unsafe_put_user(0, &tm_frame->mc_gregs[PT_MSR], failed);
 331
 332	return 0;
 
 
 
 
 
 
 
 333
 334failed:
 335	return 1;
 336}
 337
 338#define unsafe_save_user_regs(regs, frame, tm_frame, has_vsx, label) do { \
 339	if (__unsafe_save_user_regs(regs, frame, tm_frame, has_vsx))	\
 340		goto label;						\
 341} while (0)
 342
 343#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 344/*
 345 * Save the current user registers on the user stack.
 346 * We only save the altivec/spe registers if the process has used
 347 * altivec/spe instructions at some point.
 348 * We also save the transactional registers to a second ucontext in the
 349 * frame.
 350 *
 351 * See __unsafe_save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 352 */
 353static void prepare_save_tm_user_regs(void)
 
 
 354{
 355	WARN_ON(tm_suspend_disabled);
 356
 357	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 358		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 359}
 
 
 
 360
 361static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 362				    struct mcontext __user *tm_frame, unsigned long msr)
 363{
 364	/* Save both sets of general registers */
 365	unsafe_save_general_regs(&current->thread.ckpt_regs, frame, failed);
 366	unsafe_save_general_regs(regs, tm_frame, failed);
 
 367
 368	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 369	 * of the transactional mcontext.  This way we have a backward-compatible
 370	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 371	 * also look at what type of transaction (T or S) was active at the
 372	 * time of the signal.
 373	 */
 374	unsafe_put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR], failed);
 
 375
 
 376	/* save altivec registers */
 377	if (current->thread.used_vr) {
 378		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 379				    ELF_NVRREG * sizeof(vector128), failed);
 380		if (msr & MSR_VEC)
 381			unsafe_copy_to_user(&tm_frame->mc_vregs,
 382					    &current->thread.vr_state,
 383					    ELF_NVRREG * sizeof(vector128), failed);
 384		else
 385			unsafe_copy_to_user(&tm_frame->mc_vregs,
 386					    &current->thread.ckvr_state,
 387					    ELF_NVRREG * sizeof(vector128), failed);
 
 
 
 
 388
 389		/* set MSR_VEC in the saved MSR value to indicate that
 390		 * frame->mc_vregs contains valid data
 391		 */
 392		msr |= MSR_VEC;
 393	}
 394
 395	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 396	 * use altivec. Since VSCR only contains 32 bits saved in the least
 397	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 398	 * most significant bits of that same vector. --BenH
 399	 */
 400	unsafe_put_user(current->thread.ckvrsave,
 401			(u32 __user *)&frame->mc_vregs[32], failed);
 402	if (msr & MSR_VEC)
 403		unsafe_put_user(current->thread.vrsave,
 404				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 405	else
 406		unsafe_put_user(current->thread.ckvrsave,
 407				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 
 
 
 
 
 
 
 408
 409	unsafe_copy_ckfpr_to_user(&frame->mc_fregs, current, failed);
 410	if (msr & MSR_FP)
 411		unsafe_copy_fpr_to_user(&tm_frame->mc_fregs, current, failed);
 412	else
 413		unsafe_copy_ckfpr_to_user(&tm_frame->mc_fregs, current, failed);
 
 
 
 
 414
 
 415	/*
 416	 * Copy VSR 0-31 upper half from thread_struct to local
 417	 * buffer, then write that to userspace.  Also set MSR_VSX in
 418	 * the saved MSR value to indicate that frame->mc_vregs
 419	 * contains valid data
 420	 */
 421	if (current->thread.used_vsr) {
 422		unsafe_copy_ckvsx_to_user(&frame->mc_vsregs, current, failed);
 423		if (msr & MSR_VSX)
 424			unsafe_copy_vsx_to_user(&tm_frame->mc_vsregs, current, failed);
 425		else
 426			unsafe_copy_ckvsx_to_user(&tm_frame->mc_vsregs, current, failed);
 
 
 
 
 
 427
 428		msr |= MSR_VSX;
 429	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 432
 433	return 0;
 
 434
 435failed:
 436	return 1;
 437}
 438#else
 439static void prepare_save_tm_user_regs(void) { }
 
 
 
 
 
 440
 441static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 442				    struct mcontext __user *tm_frame, unsigned long msr)
 443{
 444	return 0;
 445}
 446#endif
 447
 448#define unsafe_save_tm_user_regs(regs, frame, tm_frame, msr, label) do { \
 449	if (save_tm_user_regs_unsafe(regs, frame, tm_frame, msr))	\
 450		goto label;						\
 451} while (0)
 452
 453/*
 454 * Restore the current user register values from the user stack,
 455 * (except for MSR).
 456 */
 457static long restore_user_regs(struct pt_regs *regs,
 458			      struct mcontext __user *sr, int sig)
 459{
 
 460	unsigned int save_r2 = 0;
 461	unsigned long msr;
 462#ifdef CONFIG_VSX
 463	int i;
 464#endif
 465
 466	if (!user_read_access_begin(sr, sizeof(*sr)))
 467		return 1;
 468	/*
 469	 * restore general registers but not including MSR or SOFTE. Also
 470	 * take care of keeping r2 (TLS) intact if not a signal
 471	 */
 472	if (!sig)
 473		save_r2 = (unsigned int)regs->gpr[2];
 474	unsafe_restore_general_regs(regs, sr, failed);
 475	set_trap_norestart(regs);
 476	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 477	if (!sig)
 478		regs->gpr[2] = (unsigned long) save_r2;
 
 
 479
 480	/* if doing signal return, restore the previous little-endian mode */
 481	if (sig)
 482		regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 483
 484#ifdef CONFIG_ALTIVEC
 485	/*
 486	 * Force the process to reload the altivec registers from
 487	 * current->thread when it next does altivec instructions
 488	 */
 489	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 490	if (msr & MSR_VEC) {
 491		/* restore altivec registers from the stack */
 492		unsafe_copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 493				      sizeof(sr->mc_vregs), failed);
 
 494		current->thread.used_vr = true;
 495	} else if (current->thread.used_vr)
 496		memset(&current->thread.vr_state, 0,
 497		       ELF_NVRREG * sizeof(vector128));
 498
 499	/* Always get VRSAVE back */
 500	unsafe_get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32], failed);
 
 501	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 502		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 503#endif /* CONFIG_ALTIVEC */
 504	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 505
 506#ifdef CONFIG_VSX
 507	/*
 508	 * Force the process to reload the VSX registers from
 509	 * current->thread when it next does VSX instruction.
 510	 */
 511	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 512	if (msr & MSR_VSX) {
 513		/*
 514		 * Restore altivec registers from the stack to a local
 515		 * buffer, then write this out to the thread_struct
 516		 */
 517		unsafe_copy_vsx_from_user(current, &sr->mc_vsregs, failed);
 
 518		current->thread.used_vsr = true;
 519	} else if (current->thread.used_vsr)
 520		for (i = 0; i < 32 ; i++)
 521			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 522#endif /* CONFIG_VSX */
 523	/*
 524	 * force the process to reload the FP registers from
 525	 * current->thread when it next does FP instructions
 526	 */
 527	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 528
 529#ifdef CONFIG_SPE
 530	/* force the process to reload the spe registers from
 531	   current->thread when it next does spe instructions */
 532	regs_set_return_msr(regs, regs->msr & ~MSR_SPE);
 533	if (msr & MSR_SPE) {
 534		/* restore spe registers from the stack */
 535		unsafe_copy_from_user(current->thread.evr, &sr->mc_vregs,
 536				      ELF_NEVRREG * sizeof(u32), failed);
 
 537		current->thread.used_spe = true;
 538	} else if (current->thread.used_spe)
 539		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 540
 541	/* Always get SPEFSCR back */
 542	unsafe_get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG, failed);
 
 543#endif /* CONFIG_SPE */
 544
 545	user_read_access_end();
 546	return 0;
 547
 548failed:
 549	user_read_access_end();
 550	return 1;
 551}
 552
 553#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 554/*
 555 * Restore the current user register values from the user stack, except for
 556 * MSR, and recheckpoint the original checkpointed register state for processes
 557 * in transactions.
 558 */
 559static long restore_tm_user_regs(struct pt_regs *regs,
 560				 struct mcontext __user *sr,
 561				 struct mcontext __user *tm_sr)
 562{
 
 563	unsigned long msr, msr_hi;
 
 564	int i;
 
 565
 566	if (tm_suspend_disabled)
 567		return 1;
 568	/*
 569	 * restore general registers but not including MSR or SOFTE. Also
 570	 * take care of keeping r2 (TLS) intact if not a signal.
 571	 * See comment in signal_64.c:restore_tm_sigcontexts();
 572	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 573	 * were set by the signal delivery.
 574	 */
 575	if (!user_read_access_begin(sr, sizeof(*sr)))
 576		return 1;
 
 
 577
 578	unsafe_restore_general_regs(&current->thread.ckpt_regs, sr, failed);
 579	unsafe_get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP], failed);
 580	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 581
 582	/* Restore the previous little-endian mode */
 583	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 584
 585	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 
 586	if (msr & MSR_VEC) {
 587		/* restore altivec registers from the stack */
 588		unsafe_copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 589				      sizeof(sr->mc_vregs), failed);
 
 
 
 
 590		current->thread.used_vr = true;
 591	} else if (current->thread.used_vr) {
 592		memset(&current->thread.vr_state, 0,
 593		       ELF_NVRREG * sizeof(vector128));
 594		memset(&current->thread.ckvr_state, 0,
 595		       ELF_NVRREG * sizeof(vector128));
 596	}
 597
 598	/* Always get VRSAVE back */
 599	unsafe_get_user(current->thread.ckvrsave,
 600			(u32 __user *)&sr->mc_vregs[32], failed);
 
 
 
 601	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 602		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 
 603
 604	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 605
 606	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 
 607
 608	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 
 609	if (msr & MSR_VSX) {
 610		/*
 611		 * Restore altivec registers from the stack to a local
 612		 * buffer, then write this out to the thread_struct
 613		 */
 614		unsafe_copy_ckvsx_from_user(current, &sr->mc_vsregs, failed);
 
 
 615		current->thread.used_vsr = true;
 616	} else if (current->thread.used_vsr)
 617		for (i = 0; i < 32 ; i++) {
 618			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 619			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 620		}
 
 621
 622	user_read_access_end();
 
 
 
 
 
 
 
 
 
 
 
 623
 624	if (!user_read_access_begin(tm_sr, sizeof(*tm_sr)))
 
 
 625		return 1;
 626
 627	unsafe_restore_general_regs(regs, tm_sr, failed);
 628
 629	/* restore altivec registers from the stack */
 630	if (msr & MSR_VEC)
 631		unsafe_copy_from_user(&current->thread.vr_state, &tm_sr->mc_vregs,
 632				      sizeof(sr->mc_vregs), failed);
 633
 634	/* Always get VRSAVE back */
 635	unsafe_get_user(current->thread.vrsave,
 636			(u32 __user *)&tm_sr->mc_vregs[32], failed);
 637
 638	unsafe_copy_ckfpr_from_user(current, &tm_sr->mc_fregs, failed);
 639
 640	if (msr & MSR_VSX) {
 641		/*
 642		 * Restore altivec registers from the stack to a local
 643		 * buffer, then write this out to the thread_struct
 644		 */
 645		unsafe_copy_vsx_from_user(current, &tm_sr->mc_vsregs, failed);
 646		current->thread.used_vsr = true;
 647	}
 648
 649	/* Get the top half of the MSR from the user context */
 650	unsafe_get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR], failed);
 
 651	msr_hi <<= 32;
 652
 653	user_read_access_end();
 654
 655	/* If TM bits are set to the reserved value, it's an invalid context */
 656	if (MSR_TM_RESV(msr_hi))
 657		return 1;
 658
 659	/*
 660	 * Disabling preemption, since it is unsafe to be preempted
 661	 * with MSR[TS] set without recheckpointing.
 662	 */
 663	preempt_disable();
 664
 665	/*
 666	 * CAUTION:
 667	 * After regs->MSR[TS] being updated, make sure that get_user(),
 668	 * put_user() or similar functions are *not* called. These
 669	 * functions can generate page faults which will cause the process
 670	 * to be de-scheduled with MSR[TS] set but without calling
 671	 * tm_recheckpoint(). This can cause a bug.
 672	 *
 673	 * Pull in the MSR TM bits from the user context
 674	 */
 675	regs_set_return_msr(regs, (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK));
 676	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 677	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 678	 * transactional versions should be loaded.
 679	 */
 680	tm_enable();
 681	/* Make sure the transaction is marked as failed */
 682	current->thread.tm_texasr |= TEXASR_FS;
 683	/* This loads the checkpointed FP/VEC state, if used */
 684	tm_recheckpoint(&current->thread);
 685
 686	/* This loads the speculative FP/VEC state, if used */
 687	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 688	if (msr & MSR_FP) {
 689		load_fp_state(&current->thread.fp_state);
 690		regs_set_return_msr(regs, regs->msr | (MSR_FP | current->thread.fpexc_mode));
 691	}
 
 692	if (msr & MSR_VEC) {
 693		load_vr_state(&current->thread.vr_state);
 694		regs_set_return_msr(regs, regs->msr | MSR_VEC);
 695	}
 
 696
 697	preempt_enable();
 698
 699	return 0;
 700
 701failed:
 702	user_read_access_end();
 703	return 1;
 704}
 705#else
 706static long restore_tm_user_regs(struct pt_regs *regs, struct mcontext __user *sr,
 707				 struct mcontext __user *tm_sr)
 708{
 709	return 0;
 710}
 711#endif
 712
 713#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715#define copy_siginfo_to_user	copy_siginfo_to_user32
 716
 
 
 
 
 
 
 
 
 
 717#endif /* CONFIG_PPC64 */
 718
 719/*
 720 * Set up a signal frame for a "real-time" signal handler
 721 * (one which gets siginfo).
 722 */
 723int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 724		       struct task_struct *tsk)
 725{
 726	struct rt_sigframe __user *frame;
 727	struct mcontext __user *mctx;
 728	struct mcontext __user *tm_mctx = NULL;
 
 729	unsigned long newsp = 0;
 
 730	unsigned long tramp;
 731	struct pt_regs *regs = tsk->thread.regs;
 732	/* Save the thread's msr before get_tm_stackpointer() changes it */
 733	unsigned long msr = regs->msr;
 734
 735	/* Set up Signal Frame */
 736	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 737	mctx = &frame->uc.uc_mcontext;
 738#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 739	tm_mctx = &frame->uc_transact.uc_mcontext;
 740#endif
 741	if (MSR_TM_ACTIVE(msr))
 742		prepare_save_tm_user_regs();
 743	else
 744		prepare_save_user_regs(1);
 745
 746	if (!user_access_begin(frame, sizeof(*frame)))
 
 
 
 
 747		goto badframe;
 748
 749	/* Put the siginfo & fill in most of the ucontext */
 750	unsafe_put_user(0, &frame->uc.uc_flags, failed);
 751#ifdef CONFIG_PPC64
 752	unsafe_compat_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 753#else
 754	unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 755#endif
 756	unsafe_put_user(to_user_ptr(&frame->uc.uc_mcontext), &frame->uc.uc_regs, failed);
 757
 758	if (MSR_TM_ACTIVE(msr)) {
 759#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 760		unsafe_put_user((unsigned long)&frame->uc_transact,
 761				&frame->uc.uc_link, failed);
 762		unsafe_put_user((unsigned long)tm_mctx,
 763				&frame->uc_transact.uc_regs, failed);
 764#endif
 765		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 766	} else {
 767		unsafe_put_user(0, &frame->uc.uc_link, failed);
 768		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 769	}
 770
 771	/* Save user registers on the stack */
 772	if (tsk->mm->context.vdso) {
 773		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp_rt32);
 
 
 
 774	} else {
 775		tramp = (unsigned long)mctx->mc_pad;
 776		unsafe_put_user(PPC_RAW_LI(_R0, __NR_rt_sigreturn), &mctx->mc_pad[0], failed);
 777		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 778		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 779	}
 780	unsafe_put_sigset_t(&frame->uc.uc_sigmask, oldset, failed);
 781
 782	user_access_end();
 783
 784	if (copy_siginfo_to_user(&frame->info, &ksig->info))
 785		goto badframe;
 786
 787	regs->link = tramp;
 788
 789#ifdef CONFIG_PPC_FPU_REGS
 790	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 791#endif
 792
 793	/* create a stack frame for the caller of the handler */
 794	newsp = ((unsigned long)frame) - (__SIGNAL_FRAMESIZE + 16);
 795	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 796		goto badframe;
 797
 798	/* Fill registers for signal handler */
 799	regs->gpr[1] = newsp;
 800	regs->gpr[3] = ksig->sig;
 801	regs->gpr[4] = (unsigned long)&frame->info;
 802	regs->gpr[5] = (unsigned long)&frame->uc;
 803	regs->gpr[6] = (unsigned long)frame;
 804	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 805	/* enter the signal handler in native-endian mode */
 806	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 807
 808	return 0;
 809
 810failed:
 811	user_access_end();
 812
 813badframe:
 814	signal_fault(tsk, regs, "handle_rt_signal32", frame);
 815
 816	return 1;
 817}
 818
 819/*
 820 * OK, we're invoking a handler
 821 */
 822int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
 823		struct task_struct *tsk)
 824{
 825	struct sigcontext __user *sc;
 826	struct sigframe __user *frame;
 827	struct mcontext __user *mctx;
 828	struct mcontext __user *tm_mctx = NULL;
 829	unsigned long newsp = 0;
 830	unsigned long tramp;
 831	struct pt_regs *regs = tsk->thread.regs;
 832	/* Save the thread's msr before get_tm_stackpointer() changes it */
 833	unsigned long msr = regs->msr;
 834
 835	/* Set up Signal Frame */
 836	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 837	mctx = &frame->mctx;
 838#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 839	tm_mctx = &frame->mctx_transact;
 840#endif
 841	if (MSR_TM_ACTIVE(msr))
 842		prepare_save_tm_user_regs();
 
 
 
 
 
 
 843	else
 844		prepare_save_user_regs(1);
 845
 846	if (!user_access_begin(frame, sizeof(*frame)))
 847		goto badframe;
 848	sc = (struct sigcontext __user *) &frame->sctx;
 849
 850#if _NSIG != 64
 851#error "Please adjust handle_signal()"
 852#endif
 853	unsafe_put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler, failed);
 854	unsafe_put_user(oldset->sig[0], &sc->oldmask, failed);
 855#ifdef CONFIG_PPC64
 856	unsafe_put_user((oldset->sig[0] >> 32), &sc->_unused[3], failed);
 857#else
 858	unsafe_put_user(oldset->sig[1], &sc->_unused[3], failed);
 859#endif
 860	unsafe_put_user(to_user_ptr(mctx), &sc->regs, failed);
 861	unsafe_put_user(ksig->sig, &sc->signal, failed);
 862
 863	if (MSR_TM_ACTIVE(msr))
 864		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 865	else
 866		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 867
 868	if (tsk->mm->context.vdso) {
 869		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp32);
 870	} else {
 871		tramp = (unsigned long)mctx->mc_pad;
 872		unsafe_put_user(PPC_RAW_LI(_R0, __NR_sigreturn), &mctx->mc_pad[0], failed);
 873		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 874		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 875	}
 876	user_access_end();
 877
 878	regs->link = tramp;
 879
 880#ifdef CONFIG_PPC_FPU_REGS
 881	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 882#endif
 883
 884	/* create a stack frame for the caller of the handler */
 885	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
 
 886	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 887		goto badframe;
 888
 
 889	regs->gpr[1] = newsp;
 890	regs->gpr[3] = ksig->sig;
 891	regs->gpr[4] = (unsigned long) sc;
 892	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 
 
 893	/* enter the signal handler in native-endian mode */
 894	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 895
 896	return 0;
 897
 898failed:
 899	user_access_end();
 900
 901badframe:
 902	signal_fault(tsk, regs, "handle_signal32", frame);
 
 
 
 
 
 903
 904	return 1;
 905}
 906
 907static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 908{
 909	sigset_t set;
 910	struct mcontext __user *mcp;
 911
 912	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 913		return -EFAULT;
 914
 915	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 916#ifdef CONFIG_PPC64
 917	{
 918		u32 cmcp;
 919
 920		unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 
 921		mcp = (struct mcontext __user *)(u64)cmcp;
 
 922	}
 923#else
 924	unsafe_get_user(mcp, &ucp->uc_regs, failed);
 
 
 
 925#endif
 926	user_read_access_end();
 927
 928	set_current_blocked(&set);
 929	if (restore_user_regs(regs, mcp, sig))
 930		return -EFAULT;
 931
 932	return 0;
 933
 934failed:
 935	user_read_access_end();
 936	return -EFAULT;
 937}
 938
 939#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 940static int do_setcontext_tm(struct ucontext __user *ucp,
 941			    struct ucontext __user *tm_ucp,
 942			    struct pt_regs *regs)
 943{
 944	sigset_t set;
 945	struct mcontext __user *mcp;
 946	struct mcontext __user *tm_mcp;
 947	u32 cmcp;
 948	u32 tm_cmcp;
 949
 950	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 951		return -EFAULT;
 952
 953	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 954	unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 955
 956	user_read_access_end();
 957
 958	if (__get_user(tm_cmcp, &tm_ucp->uc_regs))
 959		return -EFAULT;
 960	mcp = (struct mcontext __user *)(u64)cmcp;
 961	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 962	/* no need to check access_ok(mcp), since mcp < 4GB */
 963
 964	set_current_blocked(&set);
 965	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 966		return -EFAULT;
 967
 968	return 0;
 969
 970failed:
 971	user_read_access_end();
 972	return -EFAULT;
 973}
 974#endif
 975
 976#ifdef CONFIG_PPC64
 977COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 978		       struct ucontext __user *, new_ctx, int, ctx_size)
 979#else
 980SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 981		       struct ucontext __user *, new_ctx, long, ctx_size)
 982#endif
 983{
 984	struct pt_regs *regs = current_pt_regs();
 985	int ctx_has_vsx_region = 0;
 986
 987#ifdef CONFIG_PPC64
 988	unsigned long new_msr = 0;
 989
 990	if (new_ctx) {
 991		struct mcontext __user *mcp;
 992		u32 cmcp;
 993
 994		/*
 995		 * Get pointer to the real mcontext.  No need for
 996		 * access_ok since we are dealing with compat
 997		 * pointers.
 998		 */
 999		if (__get_user(cmcp, &new_ctx->uc_regs))
1000			return -EFAULT;
1001		mcp = (struct mcontext __user *)(u64)cmcp;
1002		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1003			return -EFAULT;
1004	}
1005	/*
1006	 * Check that the context is not smaller than the original
1007	 * size (with VMX but without VSX)
1008	 */
1009	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1010		return -EINVAL;
1011	/*
1012	 * If the new context state sets the MSR VSX bits but
1013	 * it doesn't provide VSX state.
1014	 */
1015	if ((ctx_size < sizeof(struct ucontext)) &&
1016	    (new_msr & MSR_VSX))
1017		return -EINVAL;
1018	/* Does the context have enough room to store VSX data? */
1019	if (ctx_size >= sizeof(struct ucontext))
1020		ctx_has_vsx_region = 1;
1021#else
1022	/* Context size is for future use. Right now, we only make sure
1023	 * we are passed something we understand
1024	 */
1025	if (ctx_size < sizeof(struct ucontext))
1026		return -EINVAL;
1027#endif
1028	if (old_ctx != NULL) {
1029		struct mcontext __user *mctx;
1030
1031		/*
1032		 * old_ctx might not be 16-byte aligned, in which
1033		 * case old_ctx->uc_mcontext won't be either.
1034		 * Because we have the old_ctx->uc_pad2 field
1035		 * before old_ctx->uc_mcontext, we need to round down
1036		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1037		 */
1038		mctx = (struct mcontext __user *)
1039			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1040		prepare_save_user_regs(ctx_has_vsx_region);
1041		if (!user_write_access_begin(old_ctx, ctx_size))
 
 
1042			return -EFAULT;
1043		unsafe_save_user_regs(regs, mctx, NULL, ctx_has_vsx_region, failed);
1044		unsafe_put_sigset_t(&old_ctx->uc_sigmask, &current->blocked, failed);
1045		unsafe_put_user(to_user_ptr(mctx), &old_ctx->uc_regs, failed);
1046		user_write_access_end();
1047	}
1048	if (new_ctx == NULL)
1049		return 0;
1050	if (!access_ok(new_ctx, ctx_size) ||
1051	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
 
1052		return -EFAULT;
1053
1054	/*
1055	 * If we get a fault copying the context into the kernel's
1056	 * image of the user's registers, we can't just return -EFAULT
1057	 * because the user's registers will be corrupted.  For instance
1058	 * the NIP value may have been updated but not some of the
1059	 * other registers.  Given that we have done the access_ok
1060	 * and successfully read the first and last bytes of the region
1061	 * above, this should only happen in an out-of-memory situation
1062	 * or if another thread unmaps the region containing the context.
1063	 * We kill the task with a SIGSEGV in this situation.
1064	 */
1065	if (do_setcontext(new_ctx, regs, 0))
1066		do_exit(SIGSEGV);
1067
1068	set_thread_flag(TIF_RESTOREALL);
1069	return 0;
1070
1071failed:
1072	user_write_access_end();
1073	return -EFAULT;
1074}
1075
1076#ifdef CONFIG_PPC64
1077COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1078#else
1079SYSCALL_DEFINE0(rt_sigreturn)
1080#endif
1081{
1082	struct rt_sigframe __user *rt_sf;
1083	struct pt_regs *regs = current_pt_regs();
1084	int tm_restore = 0;
1085#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1086	struct ucontext __user *uc_transact;
1087	unsigned long msr_hi;
1088	unsigned long tmp;
 
1089#endif
1090	/* Always make any pending restarted system calls return -EINTR */
1091	current->restart_block.fn = do_no_restart_syscall;
1092
1093	rt_sf = (struct rt_sigframe __user *)
1094		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1095	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1096		goto bad;
1097
1098#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1099	/*
1100	 * If there is a transactional state then throw it away.
1101	 * The purpose of a sigreturn is to destroy all traces of the
1102	 * signal frame, this includes any transactional state created
1103	 * within in. We only check for suspended as we can never be
1104	 * active in the kernel, we are active, there is nothing better to
1105	 * do than go ahead and Bad Thing later.
1106	 * The cause is not important as there will never be a
1107	 * recheckpoint so it's not user visible.
1108	 */
1109	if (MSR_TM_SUSPENDED(mfmsr()))
1110		tm_reclaim_current(0);
1111
1112	if (__get_user(tmp, &rt_sf->uc.uc_link))
1113		goto bad;
1114	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1115	if (uc_transact) {
1116		u32 cmcp;
1117		struct mcontext __user *mcp;
1118
1119		if (__get_user(cmcp, &uc_transact->uc_regs))
1120			return -EFAULT;
1121		mcp = (struct mcontext __user *)(u64)cmcp;
1122		/* The top 32 bits of the MSR are stashed in the transactional
1123		 * ucontext. */
1124		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1125			goto bad;
1126
1127		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1128			/* Trying to start TM on non TM system */
1129			if (!cpu_has_feature(CPU_FTR_TM))
1130				goto bad;
1131			/* We only recheckpoint on return if we're
1132			 * transaction.
1133			 */
1134			tm_restore = 1;
1135			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1136				goto bad;
1137		}
1138	}
1139	if (!tm_restore) {
1140		/*
1141		 * Unset regs->msr because ucontext MSR TS is not
1142		 * set, and recheckpoint was not called. This avoid
1143		 * hitting a TM Bad thing at RFID
1144		 */
1145		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
1146	}
1147	/* Fall through, for non-TM restore */
1148#endif
1149	if (!tm_restore)
1150		if (do_setcontext(&rt_sf->uc, regs, 1))
1151			goto bad;
 
 
1152
1153	/*
1154	 * It's not clear whether or why it is desirable to save the
1155	 * sigaltstack setting on signal delivery and restore it on
1156	 * signal return.  But other architectures do this and we have
1157	 * always done it up until now so it is probably better not to
1158	 * change it.  -- paulus
1159	 */
1160#ifdef CONFIG_PPC64
1161	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1162		goto bad;
1163#else
1164	if (restore_altstack(&rt_sf->uc.uc_stack))
1165		goto bad;
1166#endif
1167	set_thread_flag(TIF_RESTOREALL);
1168	return 0;
1169
1170 bad:
1171	signal_fault(current, regs, "sys_rt_sigreturn", rt_sf);
 
 
 
 
 
1172
1173	force_sig(SIGSEGV);
1174	return 0;
1175}
1176
1177#ifdef CONFIG_PPC32
1178SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1179			 int, ndbg, struct sig_dbg_op __user *, dbg)
 
 
1180{
1181	struct pt_regs *regs = current_pt_regs();
1182	struct sig_dbg_op op;
1183	int i;
 
1184	unsigned long new_msr = regs->msr;
1185#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1186	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1187#endif
1188
1189	for (i=0; i<ndbg; i++) {
1190		if (copy_from_user(&op, dbg + i, sizeof(op)))
1191			return -EFAULT;
1192		switch (op.dbg_type) {
1193		case SIG_DBG_SINGLE_STEPPING:
1194#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1195			if (op.dbg_value) {
1196				new_msr |= MSR_DE;
1197				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1198			} else {
1199				new_dbcr0 &= ~DBCR0_IC;
1200				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1201						current->thread.debug.dbcr1)) {
1202					new_msr &= ~MSR_DE;
1203					new_dbcr0 &= ~DBCR0_IDM;
1204				}
1205			}
1206#else
1207			if (op.dbg_value)
1208				new_msr |= MSR_SE;
1209			else
1210				new_msr &= ~MSR_SE;
1211#endif
1212			break;
1213		case SIG_DBG_BRANCH_TRACING:
1214#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1215			return -EINVAL;
1216#else
1217			if (op.dbg_value)
1218				new_msr |= MSR_BE;
1219			else
1220				new_msr &= ~MSR_BE;
1221#endif
1222			break;
1223
1224		default:
1225			return -EINVAL;
1226		}
1227	}
1228
1229	/* We wait until here to actually install the values in the
1230	   registers so if we fail in the above loop, it will not
1231	   affect the contents of these registers.  After this point,
1232	   failure is a problem, anyway, and it's very unlikely unless
1233	   the user is really doing something wrong. */
1234	regs_set_return_msr(regs, new_msr);
1235#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1236	current->thread.debug.dbcr0 = new_dbcr0;
1237#endif
1238
1239	if (!access_ok(ctx, sizeof(*ctx)) ||
1240	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
 
1241		return -EFAULT;
1242
1243	/*
1244	 * If we get a fault copying the context into the kernel's
1245	 * image of the user's registers, we can't just return -EFAULT
1246	 * because the user's registers will be corrupted.  For instance
1247	 * the NIP value may have been updated but not some of the
1248	 * other registers.  Given that we have done the access_ok
1249	 * and successfully read the first and last bytes of the region
1250	 * above, this should only happen in an out-of-memory situation
1251	 * or if another thread unmaps the region containing the context.
1252	 * We kill the task with a SIGSEGV in this situation.
1253	 */
1254	if (do_setcontext(ctx, regs, 1)) {
1255		signal_fault(current, regs, "sys_debug_setcontext", ctx);
 
 
 
 
 
1256
1257		force_sig(SIGSEGV);
1258		goto out;
1259	}
1260
1261	/*
1262	 * It's not clear whether or why it is desirable to save the
1263	 * sigaltstack setting on signal delivery and restore it on
1264	 * signal return.  But other architectures do this and we have
1265	 * always done it up until now so it is probably better not to
1266	 * change it.  -- paulus
1267	 */
1268	restore_altstack(&ctx->uc_stack);
1269
1270	set_thread_flag(TIF_RESTOREALL);
1271 out:
1272	return 0;
1273}
1274#endif
1275
1276/*
1277 * Do a signal return; undo the signal stack.
1278 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279#ifdef CONFIG_PPC64
1280COMPAT_SYSCALL_DEFINE0(sigreturn)
1281#else
1282SYSCALL_DEFINE0(sigreturn)
1283#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284{
1285	struct pt_regs *regs = current_pt_regs();
1286	struct sigframe __user *sf;
1287	struct sigcontext __user *sc;
1288	struct sigcontext sigctx;
1289	struct mcontext __user *sr;
 
1290	sigset_t set;
1291	struct mcontext __user *mcp;
1292	struct mcontext __user *tm_mcp = NULL;
1293	unsigned long long msr_hi = 0;
 
1294
1295	/* Always make any pending restarted system calls return -EINTR */
1296	current->restart_block.fn = do_no_restart_syscall;
1297
1298	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1299	sc = &sf->sctx;
 
1300	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1301		goto badframe;
1302
1303#ifdef CONFIG_PPC64
1304	/*
1305	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1306	 * unused part of the signal stackframe
1307	 */
1308	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1309#else
1310	set.sig[0] = sigctx.oldmask;
1311	set.sig[1] = sigctx._unused[3];
1312#endif
1313	set_current_blocked(&set);
1314
1315	mcp = (struct mcontext __user *)&sf->mctx;
1316#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
1317	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1318	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1319		goto badframe;
1320#endif
1321	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1322		if (!cpu_has_feature(CPU_FTR_TM))
1323			goto badframe;
1324		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1325			goto badframe;
1326	} else {
 
 
1327		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1328		if (restore_user_regs(regs, sr, 1)) {
1329			signal_fault(current, regs, "sys_sigreturn", sr);
1330
1331			force_sig(SIGSEGV);
1332			return 0;
1333		}
1334	}
1335
1336	set_thread_flag(TIF_RESTOREALL);
1337	return 0;
1338
1339badframe:
1340	signal_fault(current, regs, "sys_sigreturn", sc);
 
 
 
 
 
1341
1342	force_sig(SIGSEGV);
1343	return 0;
1344}
v4.10.11
 
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
 
  28#include <linux/ratelimit.h>
 
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <linux/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
  47#include <asm/asm-prototypes.h>
  48#ifdef CONFIG_PPC64
  49#include "ppc32.h"
  50#include <asm/unistd.h>
  51#else
  52#include <asm/ucontext.h>
  53#include <asm/pgtable.h>
  54#endif
  55
  56#include "signal.h"
  57
  58
  59#ifdef CONFIG_PPC64
  60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  61#define sys_swapcontext	compat_sys_swapcontext
  62#define sys_sigreturn	compat_sys_sigreturn
  63
  64#define old_sigaction	old_sigaction32
  65#define sigcontext	sigcontext32
  66#define mcontext	mcontext32
  67#define ucontext	ucontext32
  68
  69#define __save_altstack __compat_save_altstack
  70
  71/*
  72 * Userspace code may pass a ucontext which doesn't include VSX added
  73 * at the end.  We need to check for this case.
  74 */
  75#define UCONTEXTSIZEWITHOUTVSX \
  76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  77
  78/*
  79 * Returning 0 means we return to userspace via
  80 * ret_from_except and thus restore all user
  81 * registers from *regs.  This is what we need
  82 * to do when a signal has been delivered.
  83 */
  84
  85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  86#undef __SIGNAL_FRAMESIZE
  87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  88#undef ELF_NVRREG
  89#define ELF_NVRREG	ELF_NVRREG32
  90
  91/*
  92 * Functions for flipping sigsets (thanks to brain dead generic
  93 * implementation that makes things simple for little endian only)
  94 */
  95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  96{
  97	compat_sigset_t	cset;
  98
  99	switch (_NSIG_WORDS) {
 100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 101		cset.sig[7] = set->sig[3] >> 32;
 102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 103		cset.sig[5] = set->sig[2] >> 32;
 104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 105		cset.sig[3] = set->sig[1] >> 32;
 106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 107		cset.sig[1] = set->sig[0] >> 32;
 108	}
 109	return copy_to_user(uset, &cset, sizeof(*uset));
 110}
 111
 112static inline int get_sigset_t(sigset_t *set,
 113			       const compat_sigset_t __user *uset)
 114{
 115	compat_sigset_t s32;
 116
 117	if (copy_from_user(&s32, uset, sizeof(*uset)))
 118		return -EFAULT;
 119
 120	/*
 121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
 122	 * in the "wrong" endian in 32-bit user storage).
 123	 */
 124	switch (_NSIG_WORDS) {
 125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 129	}
 130	return 0;
 131}
 132
 133#define to_user_ptr(p)		ptr_to_compat(p)
 134#define from_user_ptr(p)	compat_ptr(p)
 135
 136static inline int save_general_regs(struct pt_regs *regs,
 137		struct mcontext __user *frame)
 138{
 139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 140	int i;
 141
 142	WARN_ON(!FULL_REGS(regs));
 
 
 
 
 
 143
 144	for (i = 0; i <= PT_RESULT; i ++) {
 145		if (i == 14 && !FULL_REGS(regs))
 146			i = 32;
 147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 148			return -EFAULT;
 149	}
 150	return 0;
 
 
 
 151}
 152
 153static inline int restore_general_regs(struct pt_regs *regs,
 154		struct mcontext __user *sr)
 155{
 156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 157	int i;
 158
 159	for (i = 0; i <= PT_RESULT; i++) {
 160		if ((i == PT_MSR) || (i == PT_SOFTE))
 161			continue;
 162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 163			return -EFAULT;
 164	}
 165	return 0;
 
 
 
 166}
 167
 168#else /* CONFIG_PPC64 */
 169
 170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 171
 172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 173{
 174	return copy_to_user(uset, set, sizeof(*uset));
 175}
 
 
 176
 177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 178{
 179	return copy_from_user(set, uset, sizeof(*uset));
 180}
 181
 182#define to_user_ptr(p)		((unsigned long)(p))
 183#define from_user_ptr(p)	((void __user *)(p))
 184
 185static inline int save_general_regs(struct pt_regs *regs,
 186		struct mcontext __user *frame)
 187{
 188	WARN_ON(!FULL_REGS(regs));
 189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 
 
 
 190}
 191
 192static inline int restore_general_regs(struct pt_regs *regs,
 193		struct mcontext __user *sr)
 194{
 195	/* copy up to but not including MSR */
 196	if (__copy_from_user(regs, &sr->mc_gregs,
 197				PT_MSR * sizeof(elf_greg_t)))
 198		return -EFAULT;
 199	/* copy from orig_r3 (the word after the MSR) up to the end */
 200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 202		return -EFAULT;
 203	return 0;
 
 
 
 204}
 205#endif
 206
 
 
 
 
 
 
 
 
 
 
 207/*
 208 * When we have signals to deliver, we set up on the
 209 * user stack, going down from the original stack pointer:
 210 *	an ABI gap of 56 words
 211 *	an mcontext struct
 212 *	a sigcontext struct
 213 *	a gap of __SIGNAL_FRAMESIZE bytes
 214 *
 215 * Each of these things must be a multiple of 16 bytes in size. The following
 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 217 *
 218 */
 219struct sigframe {
 220	struct sigcontext sctx;		/* the sigcontext */
 221	struct mcontext	mctx;		/* all the register values */
 222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 223	struct sigcontext sctx_transact;
 224	struct mcontext	mctx_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 233/* We use the mc_pad field for the signal return trampoline. */
 234#define tramp	mc_pad
 235
 236/*
 237 *  When we have rt signals to deliver, we set up on the
 238 *  user stack, going down from the original stack pointer:
 239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 241 *  (the +16 is to get the siginfo and ucontext in the same
 242 *  positions as in older kernels).
 243 *
 244 *  Each of these things must be a multiple of 16 bytes in size.
 245 *
 246 */
 247struct rt_sigframe {
 248#ifdef CONFIG_PPC64
 249	compat_siginfo_t info;
 250#else
 251	struct siginfo info;
 252#endif
 253	struct ucontext	uc;
 254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 255	struct ucontext	uc_transact;
 256#endif
 257	/*
 258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 259	 * regs and 18 fp regs below sp before decrementing it.
 260	 */
 261	int			abigap[56];
 262};
 263
 264#ifdef CONFIG_VSX
 265unsigned long copy_fpr_to_user(void __user *to,
 266			       struct task_struct *task)
 267{
 268	u64 buf[ELF_NFPREG];
 269	int i;
 270
 271	/* save FPR copy to local buffer then write to the thread_struct */
 272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 273		buf[i] = task->thread.TS_FPR(i);
 274	buf[i] = task->thread.fp_state.fpscr;
 275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 276}
 277
 278unsigned long copy_fpr_from_user(struct task_struct *task,
 279				 void __user *from)
 280{
 281	u64 buf[ELF_NFPREG];
 282	int i;
 283
 284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 285		return 1;
 286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 287		task->thread.TS_FPR(i) = buf[i];
 288	task->thread.fp_state.fpscr = buf[i];
 289
 290	return 0;
 291}
 292
 293unsigned long copy_vsx_to_user(void __user *to,
 294			       struct task_struct *task)
 295{
 296	u64 buf[ELF_NVSRHALFREG];
 297	int i;
 298
 299	/* save FPR copy to local buffer then write to the thread_struct */
 300	for (i = 0; i < ELF_NVSRHALFREG; i++)
 301		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 303}
 304
 305unsigned long copy_vsx_from_user(struct task_struct *task,
 306				 void __user *from)
 307{
 308	u64 buf[ELF_NVSRHALFREG];
 309	int i;
 310
 311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 312		return 1;
 313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 314		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 315	return 0;
 316}
 317
 318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 319unsigned long copy_ckfpr_to_user(void __user *to,
 320				  struct task_struct *task)
 321{
 322	u64 buf[ELF_NFPREG];
 323	int i;
 324
 325	/* save FPR copy to local buffer then write to the thread_struct */
 326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 327		buf[i] = task->thread.TS_CKFPR(i);
 328	buf[i] = task->thread.ckfp_state.fpscr;
 329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 330}
 331
 332unsigned long copy_ckfpr_from_user(struct task_struct *task,
 333					  void __user *from)
 334{
 335	u64 buf[ELF_NFPREG];
 336	int i;
 337
 338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 339		return 1;
 340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 341		task->thread.TS_CKFPR(i) = buf[i];
 342	task->thread.ckfp_state.fpscr = buf[i];
 343
 344	return 0;
 345}
 346
 347unsigned long copy_ckvsx_to_user(void __user *to,
 348				  struct task_struct *task)
 349{
 350	u64 buf[ELF_NVSRHALFREG];
 351	int i;
 352
 353	/* save FPR copy to local buffer then write to the thread_struct */
 354	for (i = 0; i < ELF_NVSRHALFREG; i++)
 355		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
 356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 357}
 358
 359unsigned long copy_ckvsx_from_user(struct task_struct *task,
 360					  void __user *from)
 361{
 362	u64 buf[ELF_NVSRHALFREG];
 363	int i;
 364
 365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 366		return 1;
 367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 368		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 369	return 0;
 370}
 371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 372#else
 373inline unsigned long copy_fpr_to_user(void __user *to,
 374				      struct task_struct *task)
 375{
 376	return __copy_to_user(to, task->thread.fp_state.fpr,
 377			      ELF_NFPREG * sizeof(double));
 378}
 379
 380inline unsigned long copy_fpr_from_user(struct task_struct *task,
 381					void __user *from)
 382{
 383	return __copy_from_user(task->thread.fp_state.fpr, from,
 384			      ELF_NFPREG * sizeof(double));
 385}
 386
 387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 388inline unsigned long copy_ckfpr_to_user(void __user *to,
 389					 struct task_struct *task)
 390{
 391	return __copy_to_user(to, task->thread.ckfp_state.fpr,
 392			      ELF_NFPREG * sizeof(double));
 393}
 394
 395inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
 396						 void __user *from)
 397{
 398	return __copy_from_user(task->thread.ckfp_state.fpr, from,
 399				ELF_NFPREG * sizeof(double));
 400}
 401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 402#endif
 403
 404/*
 405 * Save the current user registers on the user stack.
 406 * We only save the altivec/spe registers if the process has used
 407 * altivec/spe instructions at some point.
 408 */
 409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 410			  struct mcontext __user *tm_frame, int sigret,
 411			  int ctx_has_vsx_region)
 412{
 413	unsigned long msr = regs->msr;
 414
 415	/* Make sure floating point registers are stored in regs */
 416	flush_fp_to_thread(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	/* save general registers */
 419	if (save_general_regs(regs, frame))
 420		return 1;
 421
 422#ifdef CONFIG_ALTIVEC
 423	/* save altivec registers */
 424	if (current->thread.used_vr) {
 425		flush_altivec_to_thread(current);
 426		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 427				   ELF_NVRREG * sizeof(vector128)))
 428			return 1;
 429		/* set MSR_VEC in the saved MSR value to indicate that
 430		   frame->mc_vregs contains valid data */
 431		msr |= MSR_VEC;
 432	}
 433	/* else assert((regs->msr & MSR_VEC) == 0) */
 434
 435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 436	 * use altivec. Since VSCR only contains 32 bits saved in the least
 437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 438	 * most significant bits of that same vector. --BenH
 439	 * Note that the current VRSAVE value is in the SPR at this point.
 440	 */
 441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 444		return 1;
 445#endif /* CONFIG_ALTIVEC */
 446	if (copy_fpr_to_user(&frame->mc_fregs, current))
 447		return 1;
 448
 449	/*
 450	 * Clear the MSR VSX bit to indicate there is no valid state attached
 451	 * to this context, except in the specific case below where we set it.
 452	 */
 453	msr &= ~MSR_VSX;
 454#ifdef CONFIG_VSX
 455	/*
 456	 * Copy VSR 0-31 upper half from thread_struct to local
 457	 * buffer, then write that to userspace.  Also set MSR_VSX in
 458	 * the saved MSR value to indicate that frame->mc_vregs
 459	 * contains valid data
 460	 */
 461	if (current->thread.used_vsr && ctx_has_vsx_region) {
 462		flush_vsx_to_thread(current);
 463		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 464			return 1;
 465		msr |= MSR_VSX;
 466	}
 467#endif /* CONFIG_VSX */
 468#ifdef CONFIG_SPE
 469	/* save spe registers */
 470	if (current->thread.used_spe) {
 471		flush_spe_to_thread(current);
 472		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 473				   ELF_NEVRREG * sizeof(u32)))
 474			return 1;
 475		/* set MSR_SPE in the saved MSR value to indicate that
 476		   frame->mc_vregs contains valid data */
 477		msr |= MSR_SPE;
 478	}
 479	/* else assert((regs->msr & MSR_SPE) == 0) */
 480
 481	/* We always copy to/from spefscr */
 482	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 483		return 1;
 484#endif /* CONFIG_SPE */
 485
 486	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 487		return 1;
 488	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 489	 * can check it on the restore to see if TM is active
 490	 */
 491	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 492		return 1;
 493
 494	if (sigret) {
 495		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 496		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 497		    || __put_user(0x44000002UL, &frame->tramp[1]))
 498			return 1;
 499		flush_icache_range((unsigned long) &frame->tramp[0],
 500				   (unsigned long) &frame->tramp[2]);
 501	}
 502
 503	return 0;
 
 504}
 505
 
 
 
 
 
 506#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 507/*
 508 * Save the current user registers on the user stack.
 509 * We only save the altivec/spe registers if the process has used
 510 * altivec/spe instructions at some point.
 511 * We also save the transactional registers to a second ucontext in the
 512 * frame.
 513 *
 514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 515 */
 516static int save_tm_user_regs(struct pt_regs *regs,
 517			     struct mcontext __user *frame,
 518			     struct mcontext __user *tm_frame, int sigret)
 519{
 520	unsigned long msr = regs->msr;
 521
 522	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 523	 * just indicates to userland that we were doing a transaction, but we
 524	 * don't want to return in transactional state.  This also ensures
 525	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 526	 */
 527	regs->msr &= ~MSR_TS_MASK;
 528
 
 
 
 529	/* Save both sets of general registers */
 530	if (save_general_regs(&current->thread.ckpt_regs, frame)
 531	    || save_general_regs(regs, tm_frame))
 532		return 1;
 533
 534	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 535	 * of the transactional mcontext.  This way we have a backward-compatible
 536	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 537	 * also look at what type of transaction (T or S) was active at the
 538	 * time of the signal.
 539	 */
 540	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 541		return 1;
 542
 543#ifdef CONFIG_ALTIVEC
 544	/* save altivec registers */
 545	if (current->thread.used_vr) {
 546		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 547				   ELF_NVRREG * sizeof(vector128)))
 548			return 1;
 549		if (msr & MSR_VEC) {
 550			if (__copy_to_user(&tm_frame->mc_vregs,
 551					   &current->thread.vr_state,
 552					   ELF_NVRREG * sizeof(vector128)))
 553				return 1;
 554		} else {
 555			if (__copy_to_user(&tm_frame->mc_vregs,
 556					   &current->thread.ckvr_state,
 557					   ELF_NVRREG * sizeof(vector128)))
 558				return 1;
 559		}
 560
 561		/* set MSR_VEC in the saved MSR value to indicate that
 562		 * frame->mc_vregs contains valid data
 563		 */
 564		msr |= MSR_VEC;
 565	}
 566
 567	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 568	 * use altivec. Since VSCR only contains 32 bits saved in the least
 569	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 570	 * most significant bits of that same vector. --BenH
 571	 */
 572	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 573		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 574	if (__put_user(current->thread.ckvrsave,
 575		       (u32 __user *)&frame->mc_vregs[32]))
 576		return 1;
 577	if (msr & MSR_VEC) {
 578		if (__put_user(current->thread.vrsave,
 579			       (u32 __user *)&tm_frame->mc_vregs[32]))
 580			return 1;
 581	} else {
 582		if (__put_user(current->thread.ckvrsave,
 583			       (u32 __user *)&tm_frame->mc_vregs[32]))
 584			return 1;
 585	}
 586#endif /* CONFIG_ALTIVEC */
 587
 588	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 589		return 1;
 590	if (msr & MSR_FP) {
 591		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 592			return 1;
 593	} else {
 594		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 595			return 1;
 596	}
 597
 598#ifdef CONFIG_VSX
 599	/*
 600	 * Copy VSR 0-31 upper half from thread_struct to local
 601	 * buffer, then write that to userspace.  Also set MSR_VSX in
 602	 * the saved MSR value to indicate that frame->mc_vregs
 603	 * contains valid data
 604	 */
 605	if (current->thread.used_vsr) {
 606		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 607			return 1;
 608		if (msr & MSR_VSX) {
 609			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 610						      current))
 611				return 1;
 612		} else {
 613			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 614				return 1;
 615		}
 616
 617		msr |= MSR_VSX;
 618	}
 619#endif /* CONFIG_VSX */
 620#ifdef CONFIG_SPE
 621	/* SPE regs are not checkpointed with TM, so this section is
 622	 * simply the same as in save_user_regs().
 623	 */
 624	if (current->thread.used_spe) {
 625		flush_spe_to_thread(current);
 626		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 627				   ELF_NEVRREG * sizeof(u32)))
 628			return 1;
 629		/* set MSR_SPE in the saved MSR value to indicate that
 630		 * frame->mc_vregs contains valid data */
 631		msr |= MSR_SPE;
 632	}
 633
 634	/* We always copy to/from spefscr */
 635	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 636		return 1;
 637#endif /* CONFIG_SPE */
 638
 639	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 640		return 1;
 641	if (sigret) {
 642		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 643		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 644		    || __put_user(0x44000002UL, &frame->tramp[1]))
 645			return 1;
 646		flush_icache_range((unsigned long) &frame->tramp[0],
 647				   (unsigned long) &frame->tramp[2]);
 648	}
 649
 
 
 
 650	return 0;
 651}
 652#endif
 653
 
 
 
 
 
 654/*
 655 * Restore the current user register values from the user stack,
 656 * (except for MSR).
 657 */
 658static long restore_user_regs(struct pt_regs *regs,
 659			      struct mcontext __user *sr, int sig)
 660{
 661	long err;
 662	unsigned int save_r2 = 0;
 663	unsigned long msr;
 664#ifdef CONFIG_VSX
 665	int i;
 666#endif
 667
 
 
 668	/*
 669	 * restore general registers but not including MSR or SOFTE. Also
 670	 * take care of keeping r2 (TLS) intact if not a signal
 671	 */
 672	if (!sig)
 673		save_r2 = (unsigned int)regs->gpr[2];
 674	err = restore_general_regs(regs, sr);
 675	regs->trap = 0;
 676	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 677	if (!sig)
 678		regs->gpr[2] = (unsigned long) save_r2;
 679	if (err)
 680		return 1;
 681
 682	/* if doing signal return, restore the previous little-endian mode */
 683	if (sig)
 684		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 685
 686#ifdef CONFIG_ALTIVEC
 687	/*
 688	 * Force the process to reload the altivec registers from
 689	 * current->thread when it next does altivec instructions
 690	 */
 691	regs->msr &= ~MSR_VEC;
 692	if (msr & MSR_VEC) {
 693		/* restore altivec registers from the stack */
 694		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 695				     sizeof(sr->mc_vregs)))
 696			return 1;
 697		current->thread.used_vr = true;
 698	} else if (current->thread.used_vr)
 699		memset(&current->thread.vr_state, 0,
 700		       ELF_NVRREG * sizeof(vector128));
 701
 702	/* Always get VRSAVE back */
 703	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 704		return 1;
 705	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 706		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 707#endif /* CONFIG_ALTIVEC */
 708	if (copy_fpr_from_user(current, &sr->mc_fregs))
 709		return 1;
 710
 711#ifdef CONFIG_VSX
 712	/*
 713	 * Force the process to reload the VSX registers from
 714	 * current->thread when it next does VSX instruction.
 715	 */
 716	regs->msr &= ~MSR_VSX;
 717	if (msr & MSR_VSX) {
 718		/*
 719		 * Restore altivec registers from the stack to a local
 720		 * buffer, then write this out to the thread_struct
 721		 */
 722		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 723			return 1;
 724		current->thread.used_vsr = true;
 725	} else if (current->thread.used_vsr)
 726		for (i = 0; i < 32 ; i++)
 727			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 728#endif /* CONFIG_VSX */
 729	/*
 730	 * force the process to reload the FP registers from
 731	 * current->thread when it next does FP instructions
 732	 */
 733	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 734
 735#ifdef CONFIG_SPE
 736	/* force the process to reload the spe registers from
 737	   current->thread when it next does spe instructions */
 738	regs->msr &= ~MSR_SPE;
 739	if (msr & MSR_SPE) {
 740		/* restore spe registers from the stack */
 741		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 742				     ELF_NEVRREG * sizeof(u32)))
 743			return 1;
 744		current->thread.used_spe = true;
 745	} else if (current->thread.used_spe)
 746		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 747
 748	/* Always get SPEFSCR back */
 749	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 750		return 1;
 751#endif /* CONFIG_SPE */
 752
 
 753	return 0;
 
 
 
 
 754}
 755
 756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 757/*
 758 * Restore the current user register values from the user stack, except for
 759 * MSR, and recheckpoint the original checkpointed register state for processes
 760 * in transactions.
 761 */
 762static long restore_tm_user_regs(struct pt_regs *regs,
 763				 struct mcontext __user *sr,
 764				 struct mcontext __user *tm_sr)
 765{
 766	long err;
 767	unsigned long msr, msr_hi;
 768#ifdef CONFIG_VSX
 769	int i;
 770#endif
 771
 
 
 772	/*
 773	 * restore general registers but not including MSR or SOFTE. Also
 774	 * take care of keeping r2 (TLS) intact if not a signal.
 775	 * See comment in signal_64.c:restore_tm_sigcontexts();
 776	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 777	 * were set by the signal delivery.
 778	 */
 779	err = restore_general_regs(regs, tm_sr);
 780	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 781
 782	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 783
 784	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 785	if (err)
 786		return 1;
 787
 788	/* Restore the previous little-endian mode */
 789	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 790
 791#ifdef CONFIG_ALTIVEC
 792	regs->msr &= ~MSR_VEC;
 793	if (msr & MSR_VEC) {
 794		/* restore altivec registers from the stack */
 795		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 796				     sizeof(sr->mc_vregs)) ||
 797		    __copy_from_user(&current->thread.vr_state,
 798				     &tm_sr->mc_vregs,
 799				     sizeof(sr->mc_vregs)))
 800			return 1;
 801		current->thread.used_vr = true;
 802	} else if (current->thread.used_vr) {
 803		memset(&current->thread.vr_state, 0,
 804		       ELF_NVRREG * sizeof(vector128));
 805		memset(&current->thread.ckvr_state, 0,
 806		       ELF_NVRREG * sizeof(vector128));
 807	}
 808
 809	/* Always get VRSAVE back */
 810	if (__get_user(current->thread.ckvrsave,
 811		       (u32 __user *)&sr->mc_vregs[32]) ||
 812	    __get_user(current->thread.vrsave,
 813		       (u32 __user *)&tm_sr->mc_vregs[32]))
 814		return 1;
 815	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 816		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 817#endif /* CONFIG_ALTIVEC */
 818
 819	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 820
 821	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 822	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 823		return 1;
 824
 825#ifdef CONFIG_VSX
 826	regs->msr &= ~MSR_VSX;
 827	if (msr & MSR_VSX) {
 828		/*
 829		 * Restore altivec registers from the stack to a local
 830		 * buffer, then write this out to the thread_struct
 831		 */
 832		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 833		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 834			return 1;
 835		current->thread.used_vsr = true;
 836	} else if (current->thread.used_vsr)
 837		for (i = 0; i < 32 ; i++) {
 838			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 839			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 840		}
 841#endif /* CONFIG_VSX */
 842
 843#ifdef CONFIG_SPE
 844	/* SPE regs are not checkpointed with TM, so this section is
 845	 * simply the same as in restore_user_regs().
 846	 */
 847	regs->msr &= ~MSR_SPE;
 848	if (msr & MSR_SPE) {
 849		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 850				     ELF_NEVRREG * sizeof(u32)))
 851			return 1;
 852		current->thread.used_spe = true;
 853	} else if (current->thread.used_spe)
 854		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 855
 856	/* Always get SPEFSCR back */
 857	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 858		       + ELF_NEVRREG))
 859		return 1;
 860#endif /* CONFIG_SPE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	/* Get the top half of the MSR from the user context */
 863	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 864		return 1;
 865	msr_hi <<= 32;
 
 
 
 866	/* If TM bits are set to the reserved value, it's an invalid context */
 867	if (MSR_TM_RESV(msr_hi))
 868		return 1;
 869	/* Pull in the MSR TM bits from the user context */
 870	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 872	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 873	 * transactional versions should be loaded.
 874	 */
 875	tm_enable();
 876	/* Make sure the transaction is marked as failed */
 877	current->thread.tm_texasr |= TEXASR_FS;
 878	/* This loads the checkpointed FP/VEC state, if used */
 879	tm_recheckpoint(&current->thread, msr);
 880
 881	/* This loads the speculative FP/VEC state, if used */
 882	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 883	if (msr & MSR_FP) {
 884		load_fp_state(&current->thread.fp_state);
 885		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 886	}
 887#ifdef CONFIG_ALTIVEC
 888	if (msr & MSR_VEC) {
 889		load_vr_state(&current->thread.vr_state);
 890		regs->msr |= MSR_VEC;
 891	}
 892#endif
 893
 
 
 
 
 
 
 
 
 
 
 
 
 894	return 0;
 895}
 896#endif
 897
 898#ifdef CONFIG_PPC64
 899int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
 900{
 901	int err;
 902
 903	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 904		return -EFAULT;
 905
 906	/* If you change siginfo_t structure, please be sure
 907	 * this code is fixed accordingly.
 908	 * It should never copy any pad contained in the structure
 909	 * to avoid security leaks, but must copy the generic
 910	 * 3 ints plus the relevant union member.
 911	 * This routine must convert siginfo from 64bit to 32bit as well
 912	 * at the same time.
 913	 */
 914	err = __put_user(s->si_signo, &d->si_signo);
 915	err |= __put_user(s->si_errno, &d->si_errno);
 916	err |= __put_user((short)s->si_code, &d->si_code);
 917	if (s->si_code < 0)
 918		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 919				      SI_PAD_SIZE32);
 920	else switch(s->si_code >> 16) {
 921	case __SI_CHLD >> 16:
 922		err |= __put_user(s->si_pid, &d->si_pid);
 923		err |= __put_user(s->si_uid, &d->si_uid);
 924		err |= __put_user(s->si_utime, &d->si_utime);
 925		err |= __put_user(s->si_stime, &d->si_stime);
 926		err |= __put_user(s->si_status, &d->si_status);
 927		break;
 928	case __SI_FAULT >> 16:
 929		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 930				  &d->si_addr);
 931		break;
 932	case __SI_POLL >> 16:
 933		err |= __put_user(s->si_band, &d->si_band);
 934		err |= __put_user(s->si_fd, &d->si_fd);
 935		break;
 936	case __SI_TIMER >> 16:
 937		err |= __put_user(s->si_tid, &d->si_tid);
 938		err |= __put_user(s->si_overrun, &d->si_overrun);
 939		err |= __put_user(s->si_int, &d->si_int);
 940		break;
 941	case __SI_SYS >> 16:
 942		err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
 943		err |= __put_user(s->si_syscall, &d->si_syscall);
 944		err |= __put_user(s->si_arch, &d->si_arch);
 945		break;
 946	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 947	case __SI_MESGQ >> 16:
 948		err |= __put_user(s->si_int, &d->si_int);
 949		/* fallthrough */
 950	case __SI_KILL >> 16:
 951	default:
 952		err |= __put_user(s->si_pid, &d->si_pid);
 953		err |= __put_user(s->si_uid, &d->si_uid);
 954		break;
 955	}
 956	return err;
 957}
 958
 959#define copy_siginfo_to_user	copy_siginfo_to_user32
 960
 961int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 962{
 963	if (copy_from_user(to, from, 3*sizeof(int)) ||
 964	    copy_from_user(to->_sifields._pad,
 965			   from->_sifields._pad, SI_PAD_SIZE32))
 966		return -EFAULT;
 967
 968	return 0;
 969}
 970#endif /* CONFIG_PPC64 */
 971
 972/*
 973 * Set up a signal frame for a "real-time" signal handler
 974 * (one which gets siginfo).
 975 */
 976int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 977		       struct task_struct *tsk)
 978{
 979	struct rt_sigframe __user *rt_sf;
 980	struct mcontext __user *frame;
 981	struct mcontext __user *tm_frame = NULL;
 982	void __user *addr;
 983	unsigned long newsp = 0;
 984	int sigret;
 985	unsigned long tramp;
 986	struct pt_regs *regs = tsk->thread.regs;
 
 
 987
 988	BUG_ON(tsk != current);
 
 
 
 
 
 
 
 
 
 989
 990	/* Set up Signal Frame */
 991	/* Put a Real Time Context onto stack */
 992	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 993	addr = rt_sf;
 994	if (unlikely(rt_sf == NULL))
 995		goto badframe;
 996
 997	/* Put the siginfo & fill in most of the ucontext */
 998	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 999	    || __put_user(0, &rt_sf->uc.uc_flags)
1000	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1001	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1002		    &rt_sf->uc.uc_regs)
1003	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1004		goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006	/* Save user registers on the stack */
1007	frame = &rt_sf->uc.uc_mcontext;
1008	addr = frame;
1009	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
1010		sigret = 0;
1011		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
1012	} else {
1013		sigret = __NR_rt_sigreturn;
1014		tramp = (unsigned long) frame->tramp;
 
 
1015	}
 
1016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1019	if (MSR_TM_ACTIVE(regs->msr)) {
1020		if (__put_user((unsigned long)&rt_sf->uc_transact,
1021			       &rt_sf->uc.uc_link) ||
1022		    __put_user((unsigned long)tm_frame,
1023			       &rt_sf->uc_transact.uc_regs))
1024			goto badframe;
1025		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1026			goto badframe;
1027	}
1028	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029#endif
1030	{
1031		if (__put_user(0, &rt_sf->uc.uc_link))
1032			goto badframe;
1033		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1034			goto badframe;
 
 
 
 
 
 
 
 
 
 
1035	}
 
 
1036	regs->link = tramp;
1037
 
1038	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 
1039
1040	/* create a stack frame for the caller of the handler */
1041	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1042	addr = (void __user *)regs->gpr[1];
1043	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1044		goto badframe;
1045
1046	/* Fill registers for signal handler */
1047	regs->gpr[1] = newsp;
1048	regs->gpr[3] = ksig->sig;
1049	regs->gpr[4] = (unsigned long) &rt_sf->info;
1050	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1051	regs->gpr[6] = (unsigned long) rt_sf;
1052	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1053	/* enter the signal handler in native-endian mode */
1054	regs->msr &= ~MSR_LE;
1055	regs->msr |= (MSR_KERNEL & MSR_LE);
1056	return 0;
1057
 
 
 
1058badframe:
1059	if (show_unhandled_signals)
1060		printk_ratelimited(KERN_INFO
1061				   "%s[%d]: bad frame in handle_rt_signal32: "
1062				   "%p nip %08lx lr %08lx\n",
1063				   tsk->comm, tsk->pid,
1064				   addr, regs->nip, regs->link);
1065
1066	return 1;
1067}
1068
1069static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1070{
1071	sigset_t set;
1072	struct mcontext __user *mcp;
1073
1074	if (get_sigset_t(&set, &ucp->uc_sigmask))
1075		return -EFAULT;
 
 
1076#ifdef CONFIG_PPC64
1077	{
1078		u32 cmcp;
1079
1080		if (__get_user(cmcp, &ucp->uc_regs))
1081			return -EFAULT;
1082		mcp = (struct mcontext __user *)(u64)cmcp;
1083		/* no need to check access_ok(mcp), since mcp < 4GB */
1084	}
1085#else
1086	if (__get_user(mcp, &ucp->uc_regs))
1087		return -EFAULT;
1088	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1089		return -EFAULT;
1090#endif
 
 
1091	set_current_blocked(&set);
1092	if (restore_user_regs(regs, mcp, sig))
1093		return -EFAULT;
1094
1095	return 0;
 
 
 
 
1096}
1097
1098#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1099static int do_setcontext_tm(struct ucontext __user *ucp,
1100			    struct ucontext __user *tm_ucp,
1101			    struct pt_regs *regs)
1102{
1103	sigset_t set;
1104	struct mcontext __user *mcp;
1105	struct mcontext __user *tm_mcp;
1106	u32 cmcp;
1107	u32 tm_cmcp;
1108
1109	if (get_sigset_t(&set, &ucp->uc_sigmask))
1110		return -EFAULT;
1111
1112	if (__get_user(cmcp, &ucp->uc_regs) ||
1113	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 
 
 
 
1114		return -EFAULT;
1115	mcp = (struct mcontext __user *)(u64)cmcp;
1116	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1117	/* no need to check access_ok(mcp), since mcp < 4GB */
1118
1119	set_current_blocked(&set);
1120	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1121		return -EFAULT;
1122
1123	return 0;
 
 
 
 
1124}
1125#endif
1126
1127long sys_swapcontext(struct ucontext __user *old_ctx,
1128		     struct ucontext __user *new_ctx,
1129		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
 
 
 
 
1130{
1131	unsigned char tmp;
1132	int ctx_has_vsx_region = 0;
1133
1134#ifdef CONFIG_PPC64
1135	unsigned long new_msr = 0;
1136
1137	if (new_ctx) {
1138		struct mcontext __user *mcp;
1139		u32 cmcp;
1140
1141		/*
1142		 * Get pointer to the real mcontext.  No need for
1143		 * access_ok since we are dealing with compat
1144		 * pointers.
1145		 */
1146		if (__get_user(cmcp, &new_ctx->uc_regs))
1147			return -EFAULT;
1148		mcp = (struct mcontext __user *)(u64)cmcp;
1149		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1150			return -EFAULT;
1151	}
1152	/*
1153	 * Check that the context is not smaller than the original
1154	 * size (with VMX but without VSX)
1155	 */
1156	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1157		return -EINVAL;
1158	/*
1159	 * If the new context state sets the MSR VSX bits but
1160	 * it doesn't provide VSX state.
1161	 */
1162	if ((ctx_size < sizeof(struct ucontext)) &&
1163	    (new_msr & MSR_VSX))
1164		return -EINVAL;
1165	/* Does the context have enough room to store VSX data? */
1166	if (ctx_size >= sizeof(struct ucontext))
1167		ctx_has_vsx_region = 1;
1168#else
1169	/* Context size is for future use. Right now, we only make sure
1170	 * we are passed something we understand
1171	 */
1172	if (ctx_size < sizeof(struct ucontext))
1173		return -EINVAL;
1174#endif
1175	if (old_ctx != NULL) {
1176		struct mcontext __user *mctx;
1177
1178		/*
1179		 * old_ctx might not be 16-byte aligned, in which
1180		 * case old_ctx->uc_mcontext won't be either.
1181		 * Because we have the old_ctx->uc_pad2 field
1182		 * before old_ctx->uc_mcontext, we need to round down
1183		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1184		 */
1185		mctx = (struct mcontext __user *)
1186			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1187		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1188		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1189		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1190		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1191			return -EFAULT;
 
 
 
 
1192	}
1193	if (new_ctx == NULL)
1194		return 0;
1195	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1196	    || __get_user(tmp, (u8 __user *) new_ctx)
1197	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1198		return -EFAULT;
1199
1200	/*
1201	 * If we get a fault copying the context into the kernel's
1202	 * image of the user's registers, we can't just return -EFAULT
1203	 * because the user's registers will be corrupted.  For instance
1204	 * the NIP value may have been updated but not some of the
1205	 * other registers.  Given that we have done the access_ok
1206	 * and successfully read the first and last bytes of the region
1207	 * above, this should only happen in an out-of-memory situation
1208	 * or if another thread unmaps the region containing the context.
1209	 * We kill the task with a SIGSEGV in this situation.
1210	 */
1211	if (do_setcontext(new_ctx, regs, 0))
1212		do_exit(SIGSEGV);
1213
1214	set_thread_flag(TIF_RESTOREALL);
1215	return 0;
 
 
 
 
1216}
1217
1218long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1219		     struct pt_regs *regs)
 
 
 
1220{
1221	struct rt_sigframe __user *rt_sf;
 
 
1222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1223	struct ucontext __user *uc_transact;
1224	unsigned long msr_hi;
1225	unsigned long tmp;
1226	int tm_restore = 0;
1227#endif
1228	/* Always make any pending restarted system calls return -EINTR */
1229	current->restart_block.fn = do_no_restart_syscall;
1230
1231	rt_sf = (struct rt_sigframe __user *)
1232		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1233	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1234		goto bad;
1235
1236#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1237	/*
1238	 * If there is a transactional state then throw it away.
1239	 * The purpose of a sigreturn is to destroy all traces of the
1240	 * signal frame, this includes any transactional state created
1241	 * within in. We only check for suspended as we can never be
1242	 * active in the kernel, we are active, there is nothing better to
1243	 * do than go ahead and Bad Thing later.
1244	 * The cause is not important as there will never be a
1245	 * recheckpoint so it's not user visible.
1246	 */
1247	if (MSR_TM_SUSPENDED(mfmsr()))
1248		tm_reclaim_current(0);
1249
1250	if (__get_user(tmp, &rt_sf->uc.uc_link))
1251		goto bad;
1252	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1253	if (uc_transact) {
1254		u32 cmcp;
1255		struct mcontext __user *mcp;
1256
1257		if (__get_user(cmcp, &uc_transact->uc_regs))
1258			return -EFAULT;
1259		mcp = (struct mcontext __user *)(u64)cmcp;
1260		/* The top 32 bits of the MSR are stashed in the transactional
1261		 * ucontext. */
1262		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1263			goto bad;
1264
1265		if (MSR_TM_ACTIVE(msr_hi<<32)) {
 
 
 
1266			/* We only recheckpoint on return if we're
1267			 * transaction.
1268			 */
1269			tm_restore = 1;
1270			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1271				goto bad;
1272		}
1273	}
 
 
 
 
 
 
 
 
 
 
1274	if (!tm_restore)
1275		/* Fall through, for non-TM restore */
1276#endif
1277	if (do_setcontext(&rt_sf->uc, regs, 1))
1278		goto bad;
1279
1280	/*
1281	 * It's not clear whether or why it is desirable to save the
1282	 * sigaltstack setting on signal delivery and restore it on
1283	 * signal return.  But other architectures do this and we have
1284	 * always done it up until now so it is probably better not to
1285	 * change it.  -- paulus
1286	 */
1287#ifdef CONFIG_PPC64
1288	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1289		goto bad;
1290#else
1291	if (restore_altstack(&rt_sf->uc.uc_stack))
1292		goto bad;
1293#endif
1294	set_thread_flag(TIF_RESTOREALL);
1295	return 0;
1296
1297 bad:
1298	if (show_unhandled_signals)
1299		printk_ratelimited(KERN_INFO
1300				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1301				   "%p nip %08lx lr %08lx\n",
1302				   current->comm, current->pid,
1303				   rt_sf, regs->nip, regs->link);
1304
1305	force_sig(SIGSEGV, current);
1306	return 0;
1307}
1308
1309#ifdef CONFIG_PPC32
1310int sys_debug_setcontext(struct ucontext __user *ctx,
1311			 int ndbg, struct sig_dbg_op __user *dbg,
1312			 int r6, int r7, int r8,
1313			 struct pt_regs *regs)
1314{
 
1315	struct sig_dbg_op op;
1316	int i;
1317	unsigned char tmp;
1318	unsigned long new_msr = regs->msr;
1319#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1320	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1321#endif
1322
1323	for (i=0; i<ndbg; i++) {
1324		if (copy_from_user(&op, dbg + i, sizeof(op)))
1325			return -EFAULT;
1326		switch (op.dbg_type) {
1327		case SIG_DBG_SINGLE_STEPPING:
1328#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329			if (op.dbg_value) {
1330				new_msr |= MSR_DE;
1331				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1332			} else {
1333				new_dbcr0 &= ~DBCR0_IC;
1334				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1335						current->thread.debug.dbcr1)) {
1336					new_msr &= ~MSR_DE;
1337					new_dbcr0 &= ~DBCR0_IDM;
1338				}
1339			}
1340#else
1341			if (op.dbg_value)
1342				new_msr |= MSR_SE;
1343			else
1344				new_msr &= ~MSR_SE;
1345#endif
1346			break;
1347		case SIG_DBG_BRANCH_TRACING:
1348#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1349			return -EINVAL;
1350#else
1351			if (op.dbg_value)
1352				new_msr |= MSR_BE;
1353			else
1354				new_msr &= ~MSR_BE;
1355#endif
1356			break;
1357
1358		default:
1359			return -EINVAL;
1360		}
1361	}
1362
1363	/* We wait until here to actually install the values in the
1364	   registers so if we fail in the above loop, it will not
1365	   affect the contents of these registers.  After this point,
1366	   failure is a problem, anyway, and it's very unlikely unless
1367	   the user is really doing something wrong. */
1368	regs->msr = new_msr;
1369#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1370	current->thread.debug.dbcr0 = new_dbcr0;
1371#endif
1372
1373	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1374	    || __get_user(tmp, (u8 __user *) ctx)
1375	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1376		return -EFAULT;
1377
1378	/*
1379	 * If we get a fault copying the context into the kernel's
1380	 * image of the user's registers, we can't just return -EFAULT
1381	 * because the user's registers will be corrupted.  For instance
1382	 * the NIP value may have been updated but not some of the
1383	 * other registers.  Given that we have done the access_ok
1384	 * and successfully read the first and last bytes of the region
1385	 * above, this should only happen in an out-of-memory situation
1386	 * or if another thread unmaps the region containing the context.
1387	 * We kill the task with a SIGSEGV in this situation.
1388	 */
1389	if (do_setcontext(ctx, regs, 1)) {
1390		if (show_unhandled_signals)
1391			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1392					   "sys_debug_setcontext: %p nip %08lx "
1393					   "lr %08lx\n",
1394					   current->comm, current->pid,
1395					   ctx, regs->nip, regs->link);
1396
1397		force_sig(SIGSEGV, current);
1398		goto out;
1399	}
1400
1401	/*
1402	 * It's not clear whether or why it is desirable to save the
1403	 * sigaltstack setting on signal delivery and restore it on
1404	 * signal return.  But other architectures do this and we have
1405	 * always done it up until now so it is probably better not to
1406	 * change it.  -- paulus
1407	 */
1408	restore_altstack(&ctx->uc_stack);
1409
1410	set_thread_flag(TIF_RESTOREALL);
1411 out:
1412	return 0;
1413}
1414#endif
1415
1416/*
1417 * OK, we're invoking a handler
1418 */
1419int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1420		struct task_struct *tsk)
1421{
1422	struct sigcontext __user *sc;
1423	struct sigframe __user *frame;
1424	struct mcontext __user *tm_mctx = NULL;
1425	unsigned long newsp = 0;
1426	int sigret;
1427	unsigned long tramp;
1428	struct pt_regs *regs = tsk->thread.regs;
1429
1430	BUG_ON(tsk != current);
1431
1432	/* Set up Signal Frame */
1433	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1434	if (unlikely(frame == NULL))
1435		goto badframe;
1436	sc = (struct sigcontext __user *) &frame->sctx;
1437
1438#if _NSIG != 64
1439#error "Please adjust handle_signal()"
1440#endif
1441	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1442	    || __put_user(oldset->sig[0], &sc->oldmask)
1443#ifdef CONFIG_PPC64
1444	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1445#else
1446	    || __put_user(oldset->sig[1], &sc->_unused[3])
1447#endif
1448	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1449	    || __put_user(ksig->sig, &sc->signal))
1450		goto badframe;
1451
1452	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1453		sigret = 0;
1454		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1455	} else {
1456		sigret = __NR_sigreturn;
1457		tramp = (unsigned long) frame->mctx.tramp;
1458	}
1459
1460#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1461	tm_mctx = &frame->mctx_transact;
1462	if (MSR_TM_ACTIVE(regs->msr)) {
1463		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1464				      sigret))
1465			goto badframe;
1466	}
1467	else
1468#endif
1469	{
1470		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1471			goto badframe;
1472	}
1473
1474	regs->link = tramp;
1475
1476	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1477
1478	/* create a stack frame for the caller of the handler */
1479	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1480	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1481		goto badframe;
1482
1483	regs->gpr[1] = newsp;
1484	regs->gpr[3] = ksig->sig;
1485	regs->gpr[4] = (unsigned long) sc;
1486	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1487	/* enter the signal handler in big-endian mode */
1488	regs->msr &= ~MSR_LE;
1489	return 0;
1490
1491badframe:
1492	if (show_unhandled_signals)
1493		printk_ratelimited(KERN_INFO
1494				   "%s[%d]: bad frame in handle_signal32: "
1495				   "%p nip %08lx lr %08lx\n",
1496				   tsk->comm, tsk->pid,
1497				   frame, regs->nip, regs->link);
1498
1499	return 1;
1500}
1501
1502/*
1503 * Do a signal return; undo the signal stack.
1504 */
1505long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1506		       struct pt_regs *regs)
1507{
 
1508	struct sigframe __user *sf;
1509	struct sigcontext __user *sc;
1510	struct sigcontext sigctx;
1511	struct mcontext __user *sr;
1512	void __user *addr;
1513	sigset_t set;
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515	struct mcontext __user *mcp, *tm_mcp;
1516	unsigned long msr_hi;
1517#endif
1518
1519	/* Always make any pending restarted system calls return -EINTR */
1520	current->restart_block.fn = do_no_restart_syscall;
1521
1522	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1523	sc = &sf->sctx;
1524	addr = sc;
1525	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1526		goto badframe;
1527
1528#ifdef CONFIG_PPC64
1529	/*
1530	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1531	 * unused part of the signal stackframe
1532	 */
1533	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1534#else
1535	set.sig[0] = sigctx.oldmask;
1536	set.sig[1] = sigctx._unused[3];
1537#endif
1538	set_current_blocked(&set);
1539
 
1540#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541	mcp = (struct mcontext __user *)&sf->mctx;
1542	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1543	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1544		goto badframe;
 
1545	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1546		if (!cpu_has_feature(CPU_FTR_TM))
1547			goto badframe;
1548		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1549			goto badframe;
1550	} else
1551#endif
1552	{
1553		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1554		addr = sr;
1555		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1556		    || restore_user_regs(regs, sr, 1))
1557			goto badframe;
 
 
1558	}
1559
1560	set_thread_flag(TIF_RESTOREALL);
1561	return 0;
1562
1563badframe:
1564	if (show_unhandled_signals)
1565		printk_ratelimited(KERN_INFO
1566				   "%s[%d]: bad frame in sys_sigreturn: "
1567				   "%p nip %08lx lr %08lx\n",
1568				   current->comm, current->pid,
1569				   addr, regs->nip, regs->link);
1570
1571	force_sig(SIGSEGV, current);
1572	return 0;
1573}