Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2000 Tilmann Bitterberg
4 * (tilmann@bitterberg.de)
5 *
6 * RTAS (Runtime Abstraction Services) stuff
7 * Intention is to provide a clean user interface
8 * to use the RTAS.
9 *
10 * TODO:
11 * Split off a header file and maybe move it to a different
12 * location. Write Documentation on what the /proc/rtas/ entries
13 * actually do.
14 */
15
16#include <linux/errno.h>
17#include <linux/sched.h>
18#include <linux/proc_fs.h>
19#include <linux/stat.h>
20#include <linux/ctype.h>
21#include <linux/time.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/seq_file.h>
25#include <linux/bitops.h>
26#include <linux/rtc.h>
27
28#include <linux/uaccess.h>
29#include <asm/processor.h>
30#include <asm/io.h>
31#include <asm/prom.h>
32#include <asm/rtas.h>
33#include <asm/machdep.h> /* for ppc_md */
34#include <asm/time.h>
35
36/* Token for Sensors */
37#define KEY_SWITCH 0x0001
38#define ENCLOSURE_SWITCH 0x0002
39#define THERMAL_SENSOR 0x0003
40#define LID_STATUS 0x0004
41#define POWER_SOURCE 0x0005
42#define BATTERY_VOLTAGE 0x0006
43#define BATTERY_REMAINING 0x0007
44#define BATTERY_PERCENTAGE 0x0008
45#define EPOW_SENSOR 0x0009
46#define BATTERY_CYCLESTATE 0x000a
47#define BATTERY_CHARGING 0x000b
48
49/* IBM specific sensors */
50#define IBM_SURVEILLANCE 0x2328 /* 9000 */
51#define IBM_FANRPM 0x2329 /* 9001 */
52#define IBM_VOLTAGE 0x232a /* 9002 */
53#define IBM_DRCONNECTOR 0x232b /* 9003 */
54#define IBM_POWERSUPPLY 0x232c /* 9004 */
55
56/* Status return values */
57#define SENSOR_CRITICAL_HIGH 13
58#define SENSOR_WARNING_HIGH 12
59#define SENSOR_NORMAL 11
60#define SENSOR_WARNING_LOW 10
61#define SENSOR_CRITICAL_LOW 9
62#define SENSOR_SUCCESS 0
63#define SENSOR_HW_ERROR -1
64#define SENSOR_BUSY -2
65#define SENSOR_NOT_EXIST -3
66#define SENSOR_DR_ENTITY -9000
67
68/* Location Codes */
69#define LOC_SCSI_DEV_ADDR 'A'
70#define LOC_SCSI_DEV_LOC 'B'
71#define LOC_CPU 'C'
72#define LOC_DISKETTE 'D'
73#define LOC_ETHERNET 'E'
74#define LOC_FAN 'F'
75#define LOC_GRAPHICS 'G'
76/* reserved / not used 'H' */
77#define LOC_IO_ADAPTER 'I'
78/* reserved / not used 'J' */
79#define LOC_KEYBOARD 'K'
80#define LOC_LCD 'L'
81#define LOC_MEMORY 'M'
82#define LOC_NV_MEMORY 'N'
83#define LOC_MOUSE 'O'
84#define LOC_PLANAR 'P'
85#define LOC_OTHER_IO 'Q'
86#define LOC_PARALLEL 'R'
87#define LOC_SERIAL 'S'
88#define LOC_DEAD_RING 'T'
89#define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
90#define LOC_VOLTAGE 'V'
91#define LOC_SWITCH_ADAPTER 'W'
92#define LOC_OTHER 'X'
93#define LOC_FIRMWARE 'Y'
94#define LOC_SCSI 'Z'
95
96/* Tokens for indicators */
97#define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
98#define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
99#define SYSTEM_POWER_STATE 0x0003
100#define WARNING_LIGHT 0x0004
101#define DISK_ACTIVITY_LIGHT 0x0005
102#define HEX_DISPLAY_UNIT 0x0006
103#define BATTERY_WARNING_TIME 0x0007
104#define CONDITION_CYCLE_REQUEST 0x0008
105#define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
106#define DR_ACTION 0x2329 /* 9001 */
107#define DR_INDICATOR 0x232a /* 9002 */
108/* 9003 - 9004: Vendor specific */
109/* 9006 - 9999: Vendor specific */
110
111/* other */
112#define MAX_SENSORS 17 /* I only know of 17 sensors */
113#define MAX_LINELENGTH 256
114#define SENSOR_PREFIX "ibm,sensor-"
115#define cel_to_fahr(x) ((x*9/5)+32)
116
117struct individual_sensor {
118 unsigned int token;
119 unsigned int quant;
120};
121
122struct rtas_sensors {
123 struct individual_sensor sensor[MAX_SENSORS];
124 unsigned int quant;
125};
126
127/* Globals */
128static struct rtas_sensors sensors;
129static struct device_node *rtas_node = NULL;
130static unsigned long power_on_time = 0; /* Save the time the user set */
131static char progress_led[MAX_LINELENGTH];
132
133static unsigned long rtas_tone_frequency = 1000;
134static unsigned long rtas_tone_volume = 0;
135
136/* ****************************************************************** */
137/* Declarations */
138static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140static ssize_t ppc_rtas_clock_write(struct file *file,
141 const char __user *buf, size_t count, loff_t *ppos);
142static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143static ssize_t ppc_rtas_progress_write(struct file *file,
144 const char __user *buf, size_t count, loff_t *ppos);
145static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146static ssize_t ppc_rtas_poweron_write(struct file *file,
147 const char __user *buf, size_t count, loff_t *ppos);
148
149static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 const char __user *buf, size_t count, loff_t *ppos);
151static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 const char __user *buf, size_t count, loff_t *ppos);
154static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
157static int poweron_open(struct inode *inode, struct file *file)
158{
159 return single_open(file, ppc_rtas_poweron_show, NULL);
160}
161
162static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163 .proc_open = poweron_open,
164 .proc_read = seq_read,
165 .proc_lseek = seq_lseek,
166 .proc_write = ppc_rtas_poweron_write,
167 .proc_release = single_release,
168};
169
170static int progress_open(struct inode *inode, struct file *file)
171{
172 return single_open(file, ppc_rtas_progress_show, NULL);
173}
174
175static const struct proc_ops ppc_rtas_progress_proc_ops = {
176 .proc_open = progress_open,
177 .proc_read = seq_read,
178 .proc_lseek = seq_lseek,
179 .proc_write = ppc_rtas_progress_write,
180 .proc_release = single_release,
181};
182
183static int clock_open(struct inode *inode, struct file *file)
184{
185 return single_open(file, ppc_rtas_clock_show, NULL);
186}
187
188static const struct proc_ops ppc_rtas_clock_proc_ops = {
189 .proc_open = clock_open,
190 .proc_read = seq_read,
191 .proc_lseek = seq_lseek,
192 .proc_write = ppc_rtas_clock_write,
193 .proc_release = single_release,
194};
195
196static int tone_freq_open(struct inode *inode, struct file *file)
197{
198 return single_open(file, ppc_rtas_tone_freq_show, NULL);
199}
200
201static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202 .proc_open = tone_freq_open,
203 .proc_read = seq_read,
204 .proc_lseek = seq_lseek,
205 .proc_write = ppc_rtas_tone_freq_write,
206 .proc_release = single_release,
207};
208
209static int tone_volume_open(struct inode *inode, struct file *file)
210{
211 return single_open(file, ppc_rtas_tone_volume_show, NULL);
212}
213
214static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215 .proc_open = tone_volume_open,
216 .proc_read = seq_read,
217 .proc_lseek = seq_lseek,
218 .proc_write = ppc_rtas_tone_volume_write,
219 .proc_release = single_release,
220};
221
222static int ppc_rtas_find_all_sensors(void);
223static void ppc_rtas_process_sensor(struct seq_file *m,
224 struct individual_sensor *s, int state, int error, const char *loc);
225static char *ppc_rtas_process_error(int error);
226static void get_location_code(struct seq_file *m,
227 struct individual_sensor *s, const char *loc);
228static void check_location_string(struct seq_file *m, const char *c);
229static void check_location(struct seq_file *m, const char *c);
230
231static int __init proc_rtas_init(void)
232{
233 if (!machine_is(pseries))
234 return -ENODEV;
235
236 rtas_node = of_find_node_by_name(NULL, "rtas");
237 if (rtas_node == NULL)
238 return -ENODEV;
239
240 proc_create("powerpc/rtas/progress", 0644, NULL,
241 &ppc_rtas_progress_proc_ops);
242 proc_create("powerpc/rtas/clock", 0644, NULL,
243 &ppc_rtas_clock_proc_ops);
244 proc_create("powerpc/rtas/poweron", 0644, NULL,
245 &ppc_rtas_poweron_proc_ops);
246 proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247 ppc_rtas_sensors_show);
248 proc_create("powerpc/rtas/frequency", 0644, NULL,
249 &ppc_rtas_tone_freq_proc_ops);
250 proc_create("powerpc/rtas/volume", 0644, NULL,
251 &ppc_rtas_tone_volume_proc_ops);
252 proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253 ppc_rtas_rmo_buf_show);
254 return 0;
255}
256
257__initcall(proc_rtas_init);
258
259static int parse_number(const char __user *p, size_t count, u64 *val)
260{
261 char buf[40];
262 char *end;
263
264 if (count > 39)
265 return -EINVAL;
266
267 if (copy_from_user(buf, p, count))
268 return -EFAULT;
269
270 buf[count] = 0;
271
272 *val = simple_strtoull(buf, &end, 10);
273 if (*end && *end != '\n')
274 return -EINVAL;
275
276 return 0;
277}
278
279/* ****************************************************************** */
280/* POWER-ON-TIME */
281/* ****************************************************************** */
282static ssize_t ppc_rtas_poweron_write(struct file *file,
283 const char __user *buf, size_t count, loff_t *ppos)
284{
285 struct rtc_time tm;
286 time64_t nowtime;
287 int error = parse_number(buf, count, &nowtime);
288 if (error)
289 return error;
290
291 power_on_time = nowtime; /* save the time */
292
293 rtc_time64_to_tm(nowtime, &tm);
294
295 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
296 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
297 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
298 if (error)
299 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
300 ppc_rtas_process_error(error));
301 return count;
302}
303/* ****************************************************************** */
304static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
305{
306 if (power_on_time == 0)
307 seq_printf(m, "Power on time not set\n");
308 else
309 seq_printf(m, "%lu\n",power_on_time);
310 return 0;
311}
312
313/* ****************************************************************** */
314/* PROGRESS */
315/* ****************************************************************** */
316static ssize_t ppc_rtas_progress_write(struct file *file,
317 const char __user *buf, size_t count, loff_t *ppos)
318{
319 unsigned long hex;
320
321 if (count >= MAX_LINELENGTH)
322 count = MAX_LINELENGTH -1;
323 if (copy_from_user(progress_led, buf, count)) { /* save the string */
324 return -EFAULT;
325 }
326 progress_led[count] = 0;
327
328 /* Lets see if the user passed hexdigits */
329 hex = simple_strtoul(progress_led, NULL, 10);
330
331 rtas_progress ((char *)progress_led, hex);
332 return count;
333
334 /* clear the line */
335 /* rtas_progress(" ", 0xffff);*/
336}
337/* ****************************************************************** */
338static int ppc_rtas_progress_show(struct seq_file *m, void *v)
339{
340 if (progress_led[0])
341 seq_printf(m, "%s\n", progress_led);
342 return 0;
343}
344
345/* ****************************************************************** */
346/* CLOCK */
347/* ****************************************************************** */
348static ssize_t ppc_rtas_clock_write(struct file *file,
349 const char __user *buf, size_t count, loff_t *ppos)
350{
351 struct rtc_time tm;
352 time64_t nowtime;
353 int error = parse_number(buf, count, &nowtime);
354 if (error)
355 return error;
356
357 rtc_time64_to_tm(nowtime, &tm);
358 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
359 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
360 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
361 if (error)
362 printk(KERN_WARNING "error: setting the clock returned: %s\n",
363 ppc_rtas_process_error(error));
364 return count;
365}
366/* ****************************************************************** */
367static int ppc_rtas_clock_show(struct seq_file *m, void *v)
368{
369 int ret[8];
370 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
371
372 if (error) {
373 printk(KERN_WARNING "error: reading the clock returned: %s\n",
374 ppc_rtas_process_error(error));
375 seq_printf(m, "0");
376 } else {
377 unsigned int year, mon, day, hour, min, sec;
378 year = ret[0]; mon = ret[1]; day = ret[2];
379 hour = ret[3]; min = ret[4]; sec = ret[5];
380 seq_printf(m, "%lld\n",
381 mktime64(year, mon, day, hour, min, sec));
382 }
383 return 0;
384}
385
386/* ****************************************************************** */
387/* SENSOR STUFF */
388/* ****************************************************************** */
389static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
390{
391 int i,j;
392 int state, error;
393 int get_sensor_state = rtas_token("get-sensor-state");
394
395 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
396 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
397 seq_printf(m, "********************************************************\n");
398
399 if (ppc_rtas_find_all_sensors() != 0) {
400 seq_printf(m, "\nNo sensors are available\n");
401 return 0;
402 }
403
404 for (i=0; i<sensors.quant; i++) {
405 struct individual_sensor *p = &sensors.sensor[i];
406 char rstr[64];
407 const char *loc;
408 int llen, offs;
409
410 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
411 loc = of_get_property(rtas_node, rstr, &llen);
412
413 /* A sensor may have multiple instances */
414 for (j = 0, offs = 0; j <= p->quant; j++) {
415 error = rtas_call(get_sensor_state, 2, 2, &state,
416 p->token, j);
417
418 ppc_rtas_process_sensor(m, p, state, error, loc);
419 seq_putc(m, '\n');
420 if (loc) {
421 offs += strlen(loc) + 1;
422 loc += strlen(loc) + 1;
423 if (offs >= llen)
424 loc = NULL;
425 }
426 }
427 }
428 return 0;
429}
430
431/* ****************************************************************** */
432
433static int ppc_rtas_find_all_sensors(void)
434{
435 const unsigned int *utmp;
436 int len, i;
437
438 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
439 if (utmp == NULL) {
440 printk (KERN_ERR "error: could not get rtas-sensors\n");
441 return 1;
442 }
443
444 sensors.quant = len / 8; /* int + int */
445
446 for (i=0; i<sensors.quant; i++) {
447 sensors.sensor[i].token = *utmp++;
448 sensors.sensor[i].quant = *utmp++;
449 }
450 return 0;
451}
452
453/* ****************************************************************** */
454/*
455 * Builds a string of what rtas returned
456 */
457static char *ppc_rtas_process_error(int error)
458{
459 switch (error) {
460 case SENSOR_CRITICAL_HIGH:
461 return "(critical high)";
462 case SENSOR_WARNING_HIGH:
463 return "(warning high)";
464 case SENSOR_NORMAL:
465 return "(normal)";
466 case SENSOR_WARNING_LOW:
467 return "(warning low)";
468 case SENSOR_CRITICAL_LOW:
469 return "(critical low)";
470 case SENSOR_SUCCESS:
471 return "(read ok)";
472 case SENSOR_HW_ERROR:
473 return "(hardware error)";
474 case SENSOR_BUSY:
475 return "(busy)";
476 case SENSOR_NOT_EXIST:
477 return "(non existent)";
478 case SENSOR_DR_ENTITY:
479 return "(dr entity removed)";
480 default:
481 return "(UNKNOWN)";
482 }
483}
484
485/* ****************************************************************** */
486/*
487 * Builds a string out of what the sensor said
488 */
489
490static void ppc_rtas_process_sensor(struct seq_file *m,
491 struct individual_sensor *s, int state, int error, const char *loc)
492{
493 /* Defined return vales */
494 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
495 "Maintenance" };
496 const char * enclosure_switch[] = { "Closed", "Open" };
497 const char * lid_status[] = { " ", "Open", "Closed" };
498 const char * power_source[] = { "AC\t", "Battery",
499 "AC & Battery" };
500 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
501 const char * epow_sensor[] = {
502 "EPOW Reset", "Cooling warning", "Power warning",
503 "System shutdown", "System halt", "EPOW main enclosure",
504 "EPOW power off" };
505 const char * battery_cyclestate[] = { "None", "In progress",
506 "Requested" };
507 const char * battery_charging[] = { "Charging", "Discharging",
508 "No current flow" };
509 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
510 "Exchange" };
511
512 int have_strings = 0;
513 int num_states = 0;
514 int temperature = 0;
515 int unknown = 0;
516
517 /* What kind of sensor do we have here? */
518
519 switch (s->token) {
520 case KEY_SWITCH:
521 seq_printf(m, "Key switch:\t");
522 num_states = sizeof(key_switch) / sizeof(char *);
523 if (state < num_states) {
524 seq_printf(m, "%s\t", key_switch[state]);
525 have_strings = 1;
526 }
527 break;
528 case ENCLOSURE_SWITCH:
529 seq_printf(m, "Enclosure switch:\t");
530 num_states = sizeof(enclosure_switch) / sizeof(char *);
531 if (state < num_states) {
532 seq_printf(m, "%s\t",
533 enclosure_switch[state]);
534 have_strings = 1;
535 }
536 break;
537 case THERMAL_SENSOR:
538 seq_printf(m, "Temp. (C/F):\t");
539 temperature = 1;
540 break;
541 case LID_STATUS:
542 seq_printf(m, "Lid status:\t");
543 num_states = sizeof(lid_status) / sizeof(char *);
544 if (state < num_states) {
545 seq_printf(m, "%s\t", lid_status[state]);
546 have_strings = 1;
547 }
548 break;
549 case POWER_SOURCE:
550 seq_printf(m, "Power source:\t");
551 num_states = sizeof(power_source) / sizeof(char *);
552 if (state < num_states) {
553 seq_printf(m, "%s\t",
554 power_source[state]);
555 have_strings = 1;
556 }
557 break;
558 case BATTERY_VOLTAGE:
559 seq_printf(m, "Battery voltage:\t");
560 break;
561 case BATTERY_REMAINING:
562 seq_printf(m, "Battery remaining:\t");
563 num_states = sizeof(battery_remaining) / sizeof(char *);
564 if (state < num_states)
565 {
566 seq_printf(m, "%s\t",
567 battery_remaining[state]);
568 have_strings = 1;
569 }
570 break;
571 case BATTERY_PERCENTAGE:
572 seq_printf(m, "Battery percentage:\t");
573 break;
574 case EPOW_SENSOR:
575 seq_printf(m, "EPOW Sensor:\t");
576 num_states = sizeof(epow_sensor) / sizeof(char *);
577 if (state < num_states) {
578 seq_printf(m, "%s\t", epow_sensor[state]);
579 have_strings = 1;
580 }
581 break;
582 case BATTERY_CYCLESTATE:
583 seq_printf(m, "Battery cyclestate:\t");
584 num_states = sizeof(battery_cyclestate) /
585 sizeof(char *);
586 if (state < num_states) {
587 seq_printf(m, "%s\t",
588 battery_cyclestate[state]);
589 have_strings = 1;
590 }
591 break;
592 case BATTERY_CHARGING:
593 seq_printf(m, "Battery Charging:\t");
594 num_states = sizeof(battery_charging) / sizeof(char *);
595 if (state < num_states) {
596 seq_printf(m, "%s\t",
597 battery_charging[state]);
598 have_strings = 1;
599 }
600 break;
601 case IBM_SURVEILLANCE:
602 seq_printf(m, "Surveillance:\t");
603 break;
604 case IBM_FANRPM:
605 seq_printf(m, "Fan (rpm):\t");
606 break;
607 case IBM_VOLTAGE:
608 seq_printf(m, "Voltage (mv):\t");
609 break;
610 case IBM_DRCONNECTOR:
611 seq_printf(m, "DR connector:\t");
612 num_states = sizeof(ibm_drconnector) / sizeof(char *);
613 if (state < num_states) {
614 seq_printf(m, "%s\t",
615 ibm_drconnector[state]);
616 have_strings = 1;
617 }
618 break;
619 case IBM_POWERSUPPLY:
620 seq_printf(m, "Powersupply:\t");
621 break;
622 default:
623 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
624 s->token);
625 unknown = 1;
626 have_strings = 1;
627 break;
628 }
629 if (have_strings == 0) {
630 if (temperature) {
631 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
632 } else
633 seq_printf(m, "%10d\t", state);
634 }
635 if (unknown == 0) {
636 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
637 get_location_code(m, s, loc);
638 }
639}
640
641/* ****************************************************************** */
642
643static void check_location(struct seq_file *m, const char *c)
644{
645 switch (c[0]) {
646 case LOC_PLANAR:
647 seq_printf(m, "Planar #%c", c[1]);
648 break;
649 case LOC_CPU:
650 seq_printf(m, "CPU #%c", c[1]);
651 break;
652 case LOC_FAN:
653 seq_printf(m, "Fan #%c", c[1]);
654 break;
655 case LOC_RACKMOUNTED:
656 seq_printf(m, "Rack #%c", c[1]);
657 break;
658 case LOC_VOLTAGE:
659 seq_printf(m, "Voltage #%c", c[1]);
660 break;
661 case LOC_LCD:
662 seq_printf(m, "LCD #%c", c[1]);
663 break;
664 case '.':
665 seq_printf(m, "- %c", c[1]);
666 break;
667 default:
668 seq_printf(m, "Unknown location");
669 break;
670 }
671}
672
673
674/* ****************************************************************** */
675/*
676 * Format:
677 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
678 * the '.' may be an abbreviation
679 */
680static void check_location_string(struct seq_file *m, const char *c)
681{
682 while (*c) {
683 if (isalpha(*c) || *c == '.')
684 check_location(m, c);
685 else if (*c == '/' || *c == '-')
686 seq_printf(m, " at ");
687 c++;
688 }
689}
690
691
692/* ****************************************************************** */
693
694static void get_location_code(struct seq_file *m, struct individual_sensor *s,
695 const char *loc)
696{
697 if (!loc || !*loc) {
698 seq_printf(m, "---");/* does not have a location */
699 } else {
700 check_location_string(m, loc);
701 }
702 seq_putc(m, ' ');
703}
704/* ****************************************************************** */
705/* INDICATORS - Tone Frequency */
706/* ****************************************************************** */
707static ssize_t ppc_rtas_tone_freq_write(struct file *file,
708 const char __user *buf, size_t count, loff_t *ppos)
709{
710 u64 freq;
711 int error = parse_number(buf, count, &freq);
712 if (error)
713 return error;
714
715 rtas_tone_frequency = freq; /* save it for later */
716 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
717 TONE_FREQUENCY, 0, freq);
718 if (error)
719 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
720 ppc_rtas_process_error(error));
721 return count;
722}
723/* ****************************************************************** */
724static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
725{
726 seq_printf(m, "%lu\n", rtas_tone_frequency);
727 return 0;
728}
729/* ****************************************************************** */
730/* INDICATORS - Tone Volume */
731/* ****************************************************************** */
732static ssize_t ppc_rtas_tone_volume_write(struct file *file,
733 const char __user *buf, size_t count, loff_t *ppos)
734{
735 u64 volume;
736 int error = parse_number(buf, count, &volume);
737 if (error)
738 return error;
739
740 if (volume > 100)
741 volume = 100;
742
743 rtas_tone_volume = volume; /* save it for later */
744 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
745 TONE_VOLUME, 0, volume);
746 if (error)
747 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
748 ppc_rtas_process_error(error));
749 return count;
750}
751/* ****************************************************************** */
752static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
753{
754 seq_printf(m, "%lu\n", rtas_tone_volume);
755 return 0;
756}
757
758/**
759 * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
760 *
761 * Base + size description of a range of RTAS-addressable memory set
762 * aside for user space to use as work area(s) for certain RTAS
763 * functions. User space accesses this region via /dev/mem. Apart from
764 * security policies, the kernel does not arbitrate or serialize
765 * access to this region, and user space must ensure that concurrent
766 * users do not interfere with each other.
767 */
768static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
769{
770 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
771 return 0;
772}
1/*
2 * Copyright (C) 2000 Tilmann Bitterberg
3 * (tilmann@bitterberg.de)
4 *
5 * RTAS (Runtime Abstraction Services) stuff
6 * Intention is to provide a clean user interface
7 * to use the RTAS.
8 *
9 * TODO:
10 * Split off a header file and maybe move it to a different
11 * location. Write Documentation on what the /proc/rtas/ entries
12 * actually do.
13 */
14
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/proc_fs.h>
18#include <linux/stat.h>
19#include <linux/ctype.h>
20#include <linux/time.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/seq_file.h>
24#include <linux/bitops.h>
25#include <linux/rtc.h>
26
27#include <linux/uaccess.h>
28#include <asm/processor.h>
29#include <asm/io.h>
30#include <asm/prom.h>
31#include <asm/rtas.h>
32#include <asm/machdep.h> /* for ppc_md */
33#include <asm/time.h>
34
35/* Token for Sensors */
36#define KEY_SWITCH 0x0001
37#define ENCLOSURE_SWITCH 0x0002
38#define THERMAL_SENSOR 0x0003
39#define LID_STATUS 0x0004
40#define POWER_SOURCE 0x0005
41#define BATTERY_VOLTAGE 0x0006
42#define BATTERY_REMAINING 0x0007
43#define BATTERY_PERCENTAGE 0x0008
44#define EPOW_SENSOR 0x0009
45#define BATTERY_CYCLESTATE 0x000a
46#define BATTERY_CHARGING 0x000b
47
48/* IBM specific sensors */
49#define IBM_SURVEILLANCE 0x2328 /* 9000 */
50#define IBM_FANRPM 0x2329 /* 9001 */
51#define IBM_VOLTAGE 0x232a /* 9002 */
52#define IBM_DRCONNECTOR 0x232b /* 9003 */
53#define IBM_POWERSUPPLY 0x232c /* 9004 */
54
55/* Status return values */
56#define SENSOR_CRITICAL_HIGH 13
57#define SENSOR_WARNING_HIGH 12
58#define SENSOR_NORMAL 11
59#define SENSOR_WARNING_LOW 10
60#define SENSOR_CRITICAL_LOW 9
61#define SENSOR_SUCCESS 0
62#define SENSOR_HW_ERROR -1
63#define SENSOR_BUSY -2
64#define SENSOR_NOT_EXIST -3
65#define SENSOR_DR_ENTITY -9000
66
67/* Location Codes */
68#define LOC_SCSI_DEV_ADDR 'A'
69#define LOC_SCSI_DEV_LOC 'B'
70#define LOC_CPU 'C'
71#define LOC_DISKETTE 'D'
72#define LOC_ETHERNET 'E'
73#define LOC_FAN 'F'
74#define LOC_GRAPHICS 'G'
75/* reserved / not used 'H' */
76#define LOC_IO_ADAPTER 'I'
77/* reserved / not used 'J' */
78#define LOC_KEYBOARD 'K'
79#define LOC_LCD 'L'
80#define LOC_MEMORY 'M'
81#define LOC_NV_MEMORY 'N'
82#define LOC_MOUSE 'O'
83#define LOC_PLANAR 'P'
84#define LOC_OTHER_IO 'Q'
85#define LOC_PARALLEL 'R'
86#define LOC_SERIAL 'S'
87#define LOC_DEAD_RING 'T'
88#define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
89#define LOC_VOLTAGE 'V'
90#define LOC_SWITCH_ADAPTER 'W'
91#define LOC_OTHER 'X'
92#define LOC_FIRMWARE 'Y'
93#define LOC_SCSI 'Z'
94
95/* Tokens for indicators */
96#define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
97#define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
98#define SYSTEM_POWER_STATE 0x0003
99#define WARNING_LIGHT 0x0004
100#define DISK_ACTIVITY_LIGHT 0x0005
101#define HEX_DISPLAY_UNIT 0x0006
102#define BATTERY_WARNING_TIME 0x0007
103#define CONDITION_CYCLE_REQUEST 0x0008
104#define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
105#define DR_ACTION 0x2329 /* 9001 */
106#define DR_INDICATOR 0x232a /* 9002 */
107/* 9003 - 9004: Vendor specific */
108/* 9006 - 9999: Vendor specific */
109
110/* other */
111#define MAX_SENSORS 17 /* I only know of 17 sensors */
112#define MAX_LINELENGTH 256
113#define SENSOR_PREFIX "ibm,sensor-"
114#define cel_to_fahr(x) ((x*9/5)+32)
115
116struct individual_sensor {
117 unsigned int token;
118 unsigned int quant;
119};
120
121struct rtas_sensors {
122 struct individual_sensor sensor[MAX_SENSORS];
123 unsigned int quant;
124};
125
126/* Globals */
127static struct rtas_sensors sensors;
128static struct device_node *rtas_node = NULL;
129static unsigned long power_on_time = 0; /* Save the time the user set */
130static char progress_led[MAX_LINELENGTH];
131
132static unsigned long rtas_tone_frequency = 1000;
133static unsigned long rtas_tone_volume = 0;
134
135/* ****************************************************************** */
136/* Declarations */
137static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
138static int ppc_rtas_clock_show(struct seq_file *m, void *v);
139static ssize_t ppc_rtas_clock_write(struct file *file,
140 const char __user *buf, size_t count, loff_t *ppos);
141static int ppc_rtas_progress_show(struct seq_file *m, void *v);
142static ssize_t ppc_rtas_progress_write(struct file *file,
143 const char __user *buf, size_t count, loff_t *ppos);
144static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
145static ssize_t ppc_rtas_poweron_write(struct file *file,
146 const char __user *buf, size_t count, loff_t *ppos);
147
148static ssize_t ppc_rtas_tone_freq_write(struct file *file,
149 const char __user *buf, size_t count, loff_t *ppos);
150static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
151static ssize_t ppc_rtas_tone_volume_write(struct file *file,
152 const char __user *buf, size_t count, loff_t *ppos);
153static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
154static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
155
156static int sensors_open(struct inode *inode, struct file *file)
157{
158 return single_open(file, ppc_rtas_sensors_show, NULL);
159}
160
161static const struct file_operations ppc_rtas_sensors_operations = {
162 .open = sensors_open,
163 .read = seq_read,
164 .llseek = seq_lseek,
165 .release = single_release,
166};
167
168static int poweron_open(struct inode *inode, struct file *file)
169{
170 return single_open(file, ppc_rtas_poweron_show, NULL);
171}
172
173static const struct file_operations ppc_rtas_poweron_operations = {
174 .open = poweron_open,
175 .read = seq_read,
176 .llseek = seq_lseek,
177 .write = ppc_rtas_poweron_write,
178 .release = single_release,
179};
180
181static int progress_open(struct inode *inode, struct file *file)
182{
183 return single_open(file, ppc_rtas_progress_show, NULL);
184}
185
186static const struct file_operations ppc_rtas_progress_operations = {
187 .open = progress_open,
188 .read = seq_read,
189 .llseek = seq_lseek,
190 .write = ppc_rtas_progress_write,
191 .release = single_release,
192};
193
194static int clock_open(struct inode *inode, struct file *file)
195{
196 return single_open(file, ppc_rtas_clock_show, NULL);
197}
198
199static const struct file_operations ppc_rtas_clock_operations = {
200 .open = clock_open,
201 .read = seq_read,
202 .llseek = seq_lseek,
203 .write = ppc_rtas_clock_write,
204 .release = single_release,
205};
206
207static int tone_freq_open(struct inode *inode, struct file *file)
208{
209 return single_open(file, ppc_rtas_tone_freq_show, NULL);
210}
211
212static const struct file_operations ppc_rtas_tone_freq_operations = {
213 .open = tone_freq_open,
214 .read = seq_read,
215 .llseek = seq_lseek,
216 .write = ppc_rtas_tone_freq_write,
217 .release = single_release,
218};
219
220static int tone_volume_open(struct inode *inode, struct file *file)
221{
222 return single_open(file, ppc_rtas_tone_volume_show, NULL);
223}
224
225static const struct file_operations ppc_rtas_tone_volume_operations = {
226 .open = tone_volume_open,
227 .read = seq_read,
228 .llseek = seq_lseek,
229 .write = ppc_rtas_tone_volume_write,
230 .release = single_release,
231};
232
233static int rmo_buf_open(struct inode *inode, struct file *file)
234{
235 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
236}
237
238static const struct file_operations ppc_rtas_rmo_buf_ops = {
239 .open = rmo_buf_open,
240 .read = seq_read,
241 .llseek = seq_lseek,
242 .release = single_release,
243};
244
245static int ppc_rtas_find_all_sensors(void);
246static void ppc_rtas_process_sensor(struct seq_file *m,
247 struct individual_sensor *s, int state, int error, const char *loc);
248static char *ppc_rtas_process_error(int error);
249static void get_location_code(struct seq_file *m,
250 struct individual_sensor *s, const char *loc);
251static void check_location_string(struct seq_file *m, const char *c);
252static void check_location(struct seq_file *m, const char *c);
253
254static int __init proc_rtas_init(void)
255{
256 if (!machine_is(pseries))
257 return -ENODEV;
258
259 rtas_node = of_find_node_by_name(NULL, "rtas");
260 if (rtas_node == NULL)
261 return -ENODEV;
262
263 proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
264 &ppc_rtas_progress_operations);
265 proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
266 &ppc_rtas_clock_operations);
267 proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
268 &ppc_rtas_poweron_operations);
269 proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
270 &ppc_rtas_sensors_operations);
271 proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
272 &ppc_rtas_tone_freq_operations);
273 proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
274 &ppc_rtas_tone_volume_operations);
275 proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
276 &ppc_rtas_rmo_buf_ops);
277 return 0;
278}
279
280__initcall(proc_rtas_init);
281
282static int parse_number(const char __user *p, size_t count, unsigned long *val)
283{
284 char buf[40];
285 char *end;
286
287 if (count > 39)
288 return -EINVAL;
289
290 if (copy_from_user(buf, p, count))
291 return -EFAULT;
292
293 buf[count] = 0;
294
295 *val = simple_strtoul(buf, &end, 10);
296 if (*end && *end != '\n')
297 return -EINVAL;
298
299 return 0;
300}
301
302/* ****************************************************************** */
303/* POWER-ON-TIME */
304/* ****************************************************************** */
305static ssize_t ppc_rtas_poweron_write(struct file *file,
306 const char __user *buf, size_t count, loff_t *ppos)
307{
308 struct rtc_time tm;
309 unsigned long nowtime;
310 int error = parse_number(buf, count, &nowtime);
311 if (error)
312 return error;
313
314 power_on_time = nowtime; /* save the time */
315
316 to_tm(nowtime, &tm);
317
318 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
319 tm.tm_year, tm.tm_mon, tm.tm_mday,
320 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
321 if (error)
322 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
323 ppc_rtas_process_error(error));
324 return count;
325}
326/* ****************************************************************** */
327static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
328{
329 if (power_on_time == 0)
330 seq_printf(m, "Power on time not set\n");
331 else
332 seq_printf(m, "%lu\n",power_on_time);
333 return 0;
334}
335
336/* ****************************************************************** */
337/* PROGRESS */
338/* ****************************************************************** */
339static ssize_t ppc_rtas_progress_write(struct file *file,
340 const char __user *buf, size_t count, loff_t *ppos)
341{
342 unsigned long hex;
343
344 if (count >= MAX_LINELENGTH)
345 count = MAX_LINELENGTH -1;
346 if (copy_from_user(progress_led, buf, count)) { /* save the string */
347 return -EFAULT;
348 }
349 progress_led[count] = 0;
350
351 /* Lets see if the user passed hexdigits */
352 hex = simple_strtoul(progress_led, NULL, 10);
353
354 rtas_progress ((char *)progress_led, hex);
355 return count;
356
357 /* clear the line */
358 /* rtas_progress(" ", 0xffff);*/
359}
360/* ****************************************************************** */
361static int ppc_rtas_progress_show(struct seq_file *m, void *v)
362{
363 if (progress_led[0])
364 seq_printf(m, "%s\n", progress_led);
365 return 0;
366}
367
368/* ****************************************************************** */
369/* CLOCK */
370/* ****************************************************************** */
371static ssize_t ppc_rtas_clock_write(struct file *file,
372 const char __user *buf, size_t count, loff_t *ppos)
373{
374 struct rtc_time tm;
375 unsigned long nowtime;
376 int error = parse_number(buf, count, &nowtime);
377 if (error)
378 return error;
379
380 to_tm(nowtime, &tm);
381 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
382 tm.tm_year, tm.tm_mon, tm.tm_mday,
383 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
384 if (error)
385 printk(KERN_WARNING "error: setting the clock returned: %s\n",
386 ppc_rtas_process_error(error));
387 return count;
388}
389/* ****************************************************************** */
390static int ppc_rtas_clock_show(struct seq_file *m, void *v)
391{
392 int ret[8];
393 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
394
395 if (error) {
396 printk(KERN_WARNING "error: reading the clock returned: %s\n",
397 ppc_rtas_process_error(error));
398 seq_printf(m, "0");
399 } else {
400 unsigned int year, mon, day, hour, min, sec;
401 year = ret[0]; mon = ret[1]; day = ret[2];
402 hour = ret[3]; min = ret[4]; sec = ret[5];
403 seq_printf(m, "%lu\n",
404 mktime(year, mon, day, hour, min, sec));
405 }
406 return 0;
407}
408
409/* ****************************************************************** */
410/* SENSOR STUFF */
411/* ****************************************************************** */
412static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
413{
414 int i,j;
415 int state, error;
416 int get_sensor_state = rtas_token("get-sensor-state");
417
418 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
419 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
420 seq_printf(m, "********************************************************\n");
421
422 if (ppc_rtas_find_all_sensors() != 0) {
423 seq_printf(m, "\nNo sensors are available\n");
424 return 0;
425 }
426
427 for (i=0; i<sensors.quant; i++) {
428 struct individual_sensor *p = &sensors.sensor[i];
429 char rstr[64];
430 const char *loc;
431 int llen, offs;
432
433 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
434 loc = of_get_property(rtas_node, rstr, &llen);
435
436 /* A sensor may have multiple instances */
437 for (j = 0, offs = 0; j <= p->quant; j++) {
438 error = rtas_call(get_sensor_state, 2, 2, &state,
439 p->token, j);
440
441 ppc_rtas_process_sensor(m, p, state, error, loc);
442 seq_putc(m, '\n');
443 if (loc) {
444 offs += strlen(loc) + 1;
445 loc += strlen(loc) + 1;
446 if (offs >= llen)
447 loc = NULL;
448 }
449 }
450 }
451 return 0;
452}
453
454/* ****************************************************************** */
455
456static int ppc_rtas_find_all_sensors(void)
457{
458 const unsigned int *utmp;
459 int len, i;
460
461 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
462 if (utmp == NULL) {
463 printk (KERN_ERR "error: could not get rtas-sensors\n");
464 return 1;
465 }
466
467 sensors.quant = len / 8; /* int + int */
468
469 for (i=0; i<sensors.quant; i++) {
470 sensors.sensor[i].token = *utmp++;
471 sensors.sensor[i].quant = *utmp++;
472 }
473 return 0;
474}
475
476/* ****************************************************************** */
477/*
478 * Builds a string of what rtas returned
479 */
480static char *ppc_rtas_process_error(int error)
481{
482 switch (error) {
483 case SENSOR_CRITICAL_HIGH:
484 return "(critical high)";
485 case SENSOR_WARNING_HIGH:
486 return "(warning high)";
487 case SENSOR_NORMAL:
488 return "(normal)";
489 case SENSOR_WARNING_LOW:
490 return "(warning low)";
491 case SENSOR_CRITICAL_LOW:
492 return "(critical low)";
493 case SENSOR_SUCCESS:
494 return "(read ok)";
495 case SENSOR_HW_ERROR:
496 return "(hardware error)";
497 case SENSOR_BUSY:
498 return "(busy)";
499 case SENSOR_NOT_EXIST:
500 return "(non existent)";
501 case SENSOR_DR_ENTITY:
502 return "(dr entity removed)";
503 default:
504 return "(UNKNOWN)";
505 }
506}
507
508/* ****************************************************************** */
509/*
510 * Builds a string out of what the sensor said
511 */
512
513static void ppc_rtas_process_sensor(struct seq_file *m,
514 struct individual_sensor *s, int state, int error, const char *loc)
515{
516 /* Defined return vales */
517 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
518 "Maintenance" };
519 const char * enclosure_switch[] = { "Closed", "Open" };
520 const char * lid_status[] = { " ", "Open", "Closed" };
521 const char * power_source[] = { "AC\t", "Battery",
522 "AC & Battery" };
523 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
524 const char * epow_sensor[] = {
525 "EPOW Reset", "Cooling warning", "Power warning",
526 "System shutdown", "System halt", "EPOW main enclosure",
527 "EPOW power off" };
528 const char * battery_cyclestate[] = { "None", "In progress",
529 "Requested" };
530 const char * battery_charging[] = { "Charging", "Discharching",
531 "No current flow" };
532 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
533 "Exchange" };
534
535 int have_strings = 0;
536 int num_states = 0;
537 int temperature = 0;
538 int unknown = 0;
539
540 /* What kind of sensor do we have here? */
541
542 switch (s->token) {
543 case KEY_SWITCH:
544 seq_printf(m, "Key switch:\t");
545 num_states = sizeof(key_switch) / sizeof(char *);
546 if (state < num_states) {
547 seq_printf(m, "%s\t", key_switch[state]);
548 have_strings = 1;
549 }
550 break;
551 case ENCLOSURE_SWITCH:
552 seq_printf(m, "Enclosure switch:\t");
553 num_states = sizeof(enclosure_switch) / sizeof(char *);
554 if (state < num_states) {
555 seq_printf(m, "%s\t",
556 enclosure_switch[state]);
557 have_strings = 1;
558 }
559 break;
560 case THERMAL_SENSOR:
561 seq_printf(m, "Temp. (C/F):\t");
562 temperature = 1;
563 break;
564 case LID_STATUS:
565 seq_printf(m, "Lid status:\t");
566 num_states = sizeof(lid_status) / sizeof(char *);
567 if (state < num_states) {
568 seq_printf(m, "%s\t", lid_status[state]);
569 have_strings = 1;
570 }
571 break;
572 case POWER_SOURCE:
573 seq_printf(m, "Power source:\t");
574 num_states = sizeof(power_source) / sizeof(char *);
575 if (state < num_states) {
576 seq_printf(m, "%s\t",
577 power_source[state]);
578 have_strings = 1;
579 }
580 break;
581 case BATTERY_VOLTAGE:
582 seq_printf(m, "Battery voltage:\t");
583 break;
584 case BATTERY_REMAINING:
585 seq_printf(m, "Battery remaining:\t");
586 num_states = sizeof(battery_remaining) / sizeof(char *);
587 if (state < num_states)
588 {
589 seq_printf(m, "%s\t",
590 battery_remaining[state]);
591 have_strings = 1;
592 }
593 break;
594 case BATTERY_PERCENTAGE:
595 seq_printf(m, "Battery percentage:\t");
596 break;
597 case EPOW_SENSOR:
598 seq_printf(m, "EPOW Sensor:\t");
599 num_states = sizeof(epow_sensor) / sizeof(char *);
600 if (state < num_states) {
601 seq_printf(m, "%s\t", epow_sensor[state]);
602 have_strings = 1;
603 }
604 break;
605 case BATTERY_CYCLESTATE:
606 seq_printf(m, "Battery cyclestate:\t");
607 num_states = sizeof(battery_cyclestate) /
608 sizeof(char *);
609 if (state < num_states) {
610 seq_printf(m, "%s\t",
611 battery_cyclestate[state]);
612 have_strings = 1;
613 }
614 break;
615 case BATTERY_CHARGING:
616 seq_printf(m, "Battery Charging:\t");
617 num_states = sizeof(battery_charging) / sizeof(char *);
618 if (state < num_states) {
619 seq_printf(m, "%s\t",
620 battery_charging[state]);
621 have_strings = 1;
622 }
623 break;
624 case IBM_SURVEILLANCE:
625 seq_printf(m, "Surveillance:\t");
626 break;
627 case IBM_FANRPM:
628 seq_printf(m, "Fan (rpm):\t");
629 break;
630 case IBM_VOLTAGE:
631 seq_printf(m, "Voltage (mv):\t");
632 break;
633 case IBM_DRCONNECTOR:
634 seq_printf(m, "DR connector:\t");
635 num_states = sizeof(ibm_drconnector) / sizeof(char *);
636 if (state < num_states) {
637 seq_printf(m, "%s\t",
638 ibm_drconnector[state]);
639 have_strings = 1;
640 }
641 break;
642 case IBM_POWERSUPPLY:
643 seq_printf(m, "Powersupply:\t");
644 break;
645 default:
646 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
647 s->token);
648 unknown = 1;
649 have_strings = 1;
650 break;
651 }
652 if (have_strings == 0) {
653 if (temperature) {
654 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
655 } else
656 seq_printf(m, "%10d\t", state);
657 }
658 if (unknown == 0) {
659 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
660 get_location_code(m, s, loc);
661 }
662}
663
664/* ****************************************************************** */
665
666static void check_location(struct seq_file *m, const char *c)
667{
668 switch (c[0]) {
669 case LOC_PLANAR:
670 seq_printf(m, "Planar #%c", c[1]);
671 break;
672 case LOC_CPU:
673 seq_printf(m, "CPU #%c", c[1]);
674 break;
675 case LOC_FAN:
676 seq_printf(m, "Fan #%c", c[1]);
677 break;
678 case LOC_RACKMOUNTED:
679 seq_printf(m, "Rack #%c", c[1]);
680 break;
681 case LOC_VOLTAGE:
682 seq_printf(m, "Voltage #%c", c[1]);
683 break;
684 case LOC_LCD:
685 seq_printf(m, "LCD #%c", c[1]);
686 break;
687 case '.':
688 seq_printf(m, "- %c", c[1]);
689 break;
690 default:
691 seq_printf(m, "Unknown location");
692 break;
693 }
694}
695
696
697/* ****************************************************************** */
698/*
699 * Format:
700 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
701 * the '.' may be an abbreviation
702 */
703static void check_location_string(struct seq_file *m, const char *c)
704{
705 while (*c) {
706 if (isalpha(*c) || *c == '.')
707 check_location(m, c);
708 else if (*c == '/' || *c == '-')
709 seq_printf(m, " at ");
710 c++;
711 }
712}
713
714
715/* ****************************************************************** */
716
717static void get_location_code(struct seq_file *m, struct individual_sensor *s,
718 const char *loc)
719{
720 if (!loc || !*loc) {
721 seq_printf(m, "---");/* does not have a location */
722 } else {
723 check_location_string(m, loc);
724 }
725 seq_putc(m, ' ');
726}
727/* ****************************************************************** */
728/* INDICATORS - Tone Frequency */
729/* ****************************************************************** */
730static ssize_t ppc_rtas_tone_freq_write(struct file *file,
731 const char __user *buf, size_t count, loff_t *ppos)
732{
733 unsigned long freq;
734 int error = parse_number(buf, count, &freq);
735 if (error)
736 return error;
737
738 rtas_tone_frequency = freq; /* save it for later */
739 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
740 TONE_FREQUENCY, 0, freq);
741 if (error)
742 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
743 ppc_rtas_process_error(error));
744 return count;
745}
746/* ****************************************************************** */
747static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
748{
749 seq_printf(m, "%lu\n", rtas_tone_frequency);
750 return 0;
751}
752/* ****************************************************************** */
753/* INDICATORS - Tone Volume */
754/* ****************************************************************** */
755static ssize_t ppc_rtas_tone_volume_write(struct file *file,
756 const char __user *buf, size_t count, loff_t *ppos)
757{
758 unsigned long volume;
759 int error = parse_number(buf, count, &volume);
760 if (error)
761 return error;
762
763 if (volume > 100)
764 volume = 100;
765
766 rtas_tone_volume = volume; /* save it for later */
767 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
768 TONE_VOLUME, 0, volume);
769 if (error)
770 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
771 ppc_rtas_process_error(error));
772 return count;
773}
774/* ****************************************************************** */
775static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
776{
777 seq_printf(m, "%lu\n", rtas_tone_volume);
778 return 0;
779}
780
781#define RMO_READ_BUF_MAX 30
782
783/* RTAS Userspace access */
784static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
785{
786 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
787 return 0;
788}