Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The file intends to implement PE based on the information from
  4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  5 * All the PEs should be organized as hierarchy tree. The first level
  6 * of the tree will be associated to existing PHBs since the particular
  7 * PE is only meaningful in one PHB domain.
  8 *
  9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 */
 11
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/gfp.h>
 15#include <linux/kernel.h>
 16#include <linux/pci.h>
 17#include <linux/string.h>
 18
 19#include <asm/pci-bridge.h>
 20#include <asm/ppc-pci.h>
 21
 22static int eeh_pe_aux_size = 0;
 23static LIST_HEAD(eeh_phb_pe);
 24
 25/**
 26 * eeh_set_pe_aux_size - Set PE auxillary data size
 27 * @size: PE auxillary data size
 28 *
 29 * Set PE auxillary data size
 30 */
 31void eeh_set_pe_aux_size(int size)
 32{
 33	if (size < 0)
 34		return;
 35
 36	eeh_pe_aux_size = size;
 37}
 38
 39/**
 40 * eeh_pe_alloc - Allocate PE
 41 * @phb: PCI controller
 42 * @type: PE type
 43 *
 44 * Allocate PE instance dynamically.
 45 */
 46static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 47{
 48	struct eeh_pe *pe;
 49	size_t alloc_size;
 50
 51	alloc_size = sizeof(struct eeh_pe);
 52	if (eeh_pe_aux_size) {
 53		alloc_size = ALIGN(alloc_size, cache_line_size());
 54		alloc_size += eeh_pe_aux_size;
 55	}
 56
 57	/* Allocate PHB PE */
 58	pe = kzalloc(alloc_size, GFP_KERNEL);
 59	if (!pe) return NULL;
 60
 61	/* Initialize PHB PE */
 62	pe->type = type;
 63	pe->phb = phb;
 64	INIT_LIST_HEAD(&pe->child_list);
 
 65	INIT_LIST_HEAD(&pe->edevs);
 66
 67	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 68				      cache_line_size());
 69	return pe;
 70}
 71
 72/**
 73 * eeh_phb_pe_create - Create PHB PE
 74 * @phb: PCI controller
 75 *
 76 * The function should be called while the PHB is detected during
 77 * system boot or PCI hotplug in order to create PHB PE.
 78 */
 79int eeh_phb_pe_create(struct pci_controller *phb)
 80{
 81	struct eeh_pe *pe;
 82
 83	/* Allocate PHB PE */
 84	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 85	if (!pe) {
 86		pr_err("%s: out of memory!\n", __func__);
 87		return -ENOMEM;
 88	}
 89
 90	/* Put it into the list */
 91	list_add_tail(&pe->child, &eeh_phb_pe);
 92
 93	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
 94
 95	return 0;
 96}
 97
 98/**
 99 * eeh_wait_state - Wait for PE state
100 * @pe: EEH PE
101 * @max_wait: maximal period in millisecond
102 *
103 * Wait for the state of associated PE. It might take some time
104 * to retrieve the PE's state.
105 */
106int eeh_wait_state(struct eeh_pe *pe, int max_wait)
107{
108	int ret;
109	int mwait;
110
111	/*
112	 * According to PAPR, the state of PE might be temporarily
113	 * unavailable. Under the circumstance, we have to wait
114	 * for indicated time determined by firmware. The maximal
115	 * wait time is 5 minutes, which is acquired from the original
116	 * EEH implementation. Also, the original implementation
117	 * also defined the minimal wait time as 1 second.
118	 */
119#define EEH_STATE_MIN_WAIT_TIME	(1000)
120#define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
121
122	while (1) {
123		ret = eeh_ops->get_state(pe, &mwait);
124
125		if (ret != EEH_STATE_UNAVAILABLE)
126			return ret;
127
128		if (max_wait <= 0) {
129			pr_warn("%s: Timeout when getting PE's state (%d)\n",
130				__func__, max_wait);
131			return EEH_STATE_NOT_SUPPORT;
132		}
133
134		if (mwait < EEH_STATE_MIN_WAIT_TIME) {
135			pr_warn("%s: Firmware returned bad wait value %d\n",
136				__func__, mwait);
137			mwait = EEH_STATE_MIN_WAIT_TIME;
138		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
139			pr_warn("%s: Firmware returned too long wait value %d\n",
140				__func__, mwait);
141			mwait = EEH_STATE_MAX_WAIT_TIME;
142		}
143
144		msleep(min(mwait, max_wait));
145		max_wait -= mwait;
146	}
147}
148
149/**
150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
151 * @phb: PCI controller
152 *
153 * The overall PEs form hierarchy tree. The first layer of the
154 * hierarchy tree is composed of PHB PEs. The function is used
155 * to retrieve the corresponding PHB PE according to the given PHB.
156 */
157struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
158{
159	struct eeh_pe *pe;
160
161	list_for_each_entry(pe, &eeh_phb_pe, child) {
162		/*
163		 * Actually, we needn't check the type since
164		 * the PE for PHB has been determined when that
165		 * was created.
166		 */
167		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
168			return pe;
169	}
170
171	return NULL;
172}
173
174/**
175 * eeh_pe_next - Retrieve the next PE in the tree
176 * @pe: current PE
177 * @root: root PE
178 *
179 * The function is used to retrieve the next PE in the
180 * hierarchy PE tree.
181 */
182struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
 
183{
184	struct list_head *next = pe->child_list.next;
185
186	if (next == &pe->child_list) {
187		while (1) {
188			if (pe == root)
189				return NULL;
190			next = pe->child.next;
191			if (next != &pe->parent->child_list)
192				break;
193			pe = pe->parent;
194		}
195	}
196
197	return list_entry(next, struct eeh_pe, child);
198}
199
200/**
201 * eeh_pe_traverse - Traverse PEs in the specified PHB
202 * @root: root PE
203 * @fn: callback
204 * @flag: extra parameter to callback
205 *
206 * The function is used to traverse the specified PE and its
207 * child PEs. The traversing is to be terminated once the
208 * callback returns something other than NULL, or no more PEs
209 * to be traversed.
210 */
211void *eeh_pe_traverse(struct eeh_pe *root,
212		      eeh_pe_traverse_func fn, void *flag)
213{
214	struct eeh_pe *pe;
215	void *ret;
216
217	eeh_for_each_pe(root, pe) {
218		ret = fn(pe, flag);
219		if (ret) return ret;
220	}
221
222	return NULL;
223}
224
225/**
226 * eeh_pe_dev_traverse - Traverse the devices from the PE
227 * @root: EEH PE
228 * @fn: function callback
229 * @flag: extra parameter to callback
230 *
231 * The function is used to traverse the devices of the specified
232 * PE and its child PEs.
233 */
234void eeh_pe_dev_traverse(struct eeh_pe *root,
235			  eeh_edev_traverse_func fn, void *flag)
236{
237	struct eeh_pe *pe;
238	struct eeh_dev *edev, *tmp;
 
239
240	if (!root) {
241		pr_warn("%s: Invalid PE %p\n",
242			__func__, root);
243		return;
244	}
245
246	/* Traverse root PE */
247	eeh_for_each_pe(root, pe)
248		eeh_pe_for_each_dev(pe, edev, tmp)
249			fn(edev, flag);
 
 
 
 
 
 
250}
251
252/**
253 * __eeh_pe_get - Check the PE address
 
 
254 *
255 * For one particular PE, it can be identified by PE address
256 * or tranditional BDF address. BDF address is composed of
257 * Bus/Device/Function number. The extra data referred by flag
258 * indicates which type of address should be used.
259 */
260static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
261{
262	int *target_pe = flag;
 
263
264	/* PHB PEs are special and should be ignored */
265	if (pe->type & EEH_PE_PHB)
266		return NULL;
267
268	if (*target_pe == pe->addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269		return pe;
270
271	return NULL;
272}
273
274/**
275 * eeh_pe_get - Search PE based on the given address
276 * @phb: PCI controller
277 * @pe_no: PE number
278 *
279 * Search the corresponding PE based on the specified address which
280 * is included in the eeh device. The function is used to check if
281 * the associated PE has been created against the PE address. It's
282 * notable that the PE address has 2 format: traditional PE address
283 * which is composed of PCI bus/device/function number, or unified
284 * PE address.
285 */
286struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
287{
288	struct eeh_pe *root = eeh_phb_pe_get(phb);
 
289
290	return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
 
 
291}
292
293/**
294 * eeh_pe_tree_insert - Add EEH device to parent PE
295 * @edev: EEH device
296 * @new_pe_parent: PE to create additional PEs under
297 *
298 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
299 * exists with that address then @edev is added to that PE. Otherwise
300 * a new PE is created and inserted into the PE tree as a child of
301 * @new_pe_parent.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302 *
303 * If @new_pe_parent is NULL then the new PE will be inserted under
304 * directly under the the PHB.
 
 
305 */
306int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
307{
308	struct pci_controller *hose = edev->controller;
309	struct eeh_pe *pe, *parent;
310
 
 
 
 
 
 
 
311	/*
312	 * Search the PE has been existing or not according
313	 * to the PE address. If that has been existing, the
314	 * PE should be composed of PCI bus and its subordinate
315	 * components.
316	 */
317	pe = eeh_pe_get(hose, edev->pe_config_addr);
318	if (pe) {
319		if (pe->type & EEH_PE_INVALID) {
320			list_add_tail(&edev->entry, &pe->edevs);
321			edev->pe = pe;
322			/*
323			 * We're running to here because of PCI hotplug caused by
324			 * EEH recovery. We need clear EEH_PE_INVALID until the top.
325			 */
326			parent = pe;
327			while (parent) {
328				if (!(parent->type & EEH_PE_INVALID))
329					break;
330				parent->type &= ~EEH_PE_INVALID;
331				parent = parent->parent;
332			}
333
334			eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
335				     pe->parent->addr);
336		} else {
337			/* Mark the PE as type of PCI bus */
338			pe->type = EEH_PE_BUS;
339			edev->pe = pe;
340
341			/* Put the edev to PE */
342			list_add_tail(&edev->entry, &pe->edevs);
343			eeh_edev_dbg(edev, "Added to bus PE\n");
 
344		}
 
 
 
 
 
 
 
 
345		return 0;
346	}
347
348	/* Create a new EEH PE */
349	if (edev->physfn)
350		pe = eeh_pe_alloc(hose, EEH_PE_VF);
351	else
352		pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
353	if (!pe) {
354		pr_err("%s: out of memory!\n", __func__);
355		return -ENOMEM;
356	}
357
358	pe->addr = edev->pe_config_addr;
359
360	/*
361	 * Put the new EEH PE into hierarchy tree. If the parent
362	 * can't be found, the newly created PE will be attached
363	 * to PHB directly. Otherwise, we have to associate the
364	 * PE with its parent.
365	 */
366	if (!new_pe_parent) {
367		new_pe_parent = eeh_phb_pe_get(hose);
368		if (!new_pe_parent) {
 
369			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
370				__func__, hose->global_number);
371			edev->pe = NULL;
372			kfree(pe);
373			return -EEXIST;
374		}
375	}
376
377	/* link new PE into the tree */
378	pe->parent = new_pe_parent;
379	list_add_tail(&pe->child, &new_pe_parent->child_list);
380
381	/*
382	 * Put the newly created PE into the child list and
383	 * link the EEH device accordingly.
384	 */
385	list_add_tail(&edev->entry, &pe->edevs);
 
386	edev->pe = pe;
387	eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
388		     new_pe_parent->addr);
 
 
 
 
 
389
390	return 0;
391}
392
393/**
394 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
395 * @edev: EEH device
396 *
397 * The PE hierarchy tree might be changed when doing PCI hotplug.
398 * Also, the PCI devices or buses could be removed from the system
399 * during EEH recovery. So we have to call the function remove the
400 * corresponding PE accordingly if necessary.
401 */
402int eeh_pe_tree_remove(struct eeh_dev *edev)
403{
404	struct eeh_pe *pe, *parent, *child;
405	bool keep, recover;
406	int cnt;
407
408	pe = eeh_dev_to_pe(edev);
409	if (!pe) {
410		eeh_edev_dbg(edev, "No PE found for device.\n");
 
 
 
411		return -EEXIST;
412	}
413
414	/* Remove the EEH device */
 
415	edev->pe = NULL;
416	list_del(&edev->entry);
417
418	/*
419	 * Check if the parent PE includes any EEH devices.
420	 * If not, we should delete that. Also, we should
421	 * delete the parent PE if it doesn't have associated
422	 * child PEs and EEH devices.
423	 */
424	while (1) {
425		parent = pe->parent;
426
427		/* PHB PEs should never be removed */
428		if (pe->type & EEH_PE_PHB)
429			break;
430
431		/*
432		 * XXX: KEEP is set while resetting a PE. I don't think it's
433		 * ever set without RECOVERING also being set. I could
434		 * be wrong though so catch that with a WARN.
435		 */
436		keep = !!(pe->state & EEH_PE_KEEP);
437		recover = !!(pe->state & EEH_PE_RECOVERING);
438		WARN_ON(keep && !recover);
439
440		if (!keep && !recover) {
441			if (list_empty(&pe->edevs) &&
442			    list_empty(&pe->child_list)) {
443				list_del(&pe->child);
444				kfree(pe);
445			} else {
446				break;
447			}
448		} else {
449			/*
450			 * Mark the PE as invalid. At the end of the recovery
451			 * process any invalid PEs will be garbage collected.
452			 *
453			 * We need to delay the free()ing of them since we can
454			 * remove edev's while traversing the PE tree which
455			 * might trigger the removal of a PE and we can't
456			 * deal with that (yet).
457			 */
458			if (list_empty(&pe->edevs)) {
459				cnt = 0;
460				list_for_each_entry(child, &pe->child_list, child) {
461					if (!(child->type & EEH_PE_INVALID)) {
462						cnt++;
463						break;
464					}
465				}
466
467				if (!cnt)
468					pe->type |= EEH_PE_INVALID;
469				else
470					break;
471			}
472		}
473
474		pe = parent;
475	}
476
477	return 0;
478}
479
480/**
481 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
482 * @pe: EEH PE
483 *
484 * We have time stamp for each PE to trace its time of getting
485 * frozen in last hour. The function should be called to update
486 * the time stamp on first error of the specific PE. On the other
487 * handle, we needn't account for errors happened in last hour.
488 */
489void eeh_pe_update_time_stamp(struct eeh_pe *pe)
490{
491	time64_t tstamp;
492
493	if (!pe) return;
494
495	if (pe->freeze_count <= 0) {
496		pe->freeze_count = 0;
497		pe->tstamp = ktime_get_seconds();
498	} else {
499		tstamp = ktime_get_seconds();
500		if (tstamp - pe->tstamp > 3600) {
501			pe->tstamp = tstamp;
502			pe->freeze_count = 0;
503		}
504	}
505}
506
507/**
508 * eeh_pe_state_mark - Mark specified state for PE and its associated device
509 * @pe: EEH PE
 
510 *
511 * EEH error affects the current PE and its child PEs. The function
512 * is used to mark appropriate state for the affected PEs and the
513 * associated devices.
514 */
515void eeh_pe_state_mark(struct eeh_pe *root, int state)
516{
517	struct eeh_pe *pe;
 
 
 
 
 
 
 
 
 
518
519	eeh_for_each_pe(root, pe)
520		if (!(pe->state & EEH_PE_REMOVED))
521			pe->state |= state;
 
 
 
 
 
 
 
 
 
 
 
 
522}
523EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
524
525/**
526 * eeh_pe_mark_isolated
527 * @pe: EEH PE
528 *
529 * Record that a PE has been isolated by marking the PE and it's children as
530 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
531 * as pci_channel_io_frozen.
532 */
533void eeh_pe_mark_isolated(struct eeh_pe *root)
534{
535	struct eeh_pe *pe;
536	struct eeh_dev *edev;
537	struct pci_dev *pdev;
538
539	eeh_pe_state_mark(root, EEH_PE_ISOLATED);
540	eeh_for_each_pe(root, pe) {
541		list_for_each_entry(edev, &pe->edevs, entry) {
542			pdev = eeh_dev_to_pci_dev(edev);
543			if (pdev)
544				pdev->error_state = pci_channel_io_frozen;
545		}
546		/* Block PCI config access if required */
547		if (pe->state & EEH_PE_CFG_RESTRICTED)
548			pe->state |= EEH_PE_CFG_BLOCKED;
549	}
550}
551EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
552
553static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
554{
 
555	int mode = *((int *)flag);
556
557	edev->mode |= mode;
 
 
558}
559
560/**
561 * eeh_pe_dev_state_mark - Mark state for all device under the PE
562 * @pe: EEH PE
563 *
564 * Mark specific state for all child devices of the PE.
565 */
566void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
567{
568	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
569}
570
571/**
572 * eeh_pe_state_clear - Clear state for the PE
573 * @data: EEH PE
574 * @state: state
575 * @include_passed: include passed-through devices?
576 *
577 * The function is used to clear the indicated state from the
578 * given PE. Besides, we also clear the check count of the PE
579 * as well.
580 */
581void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
582{
583	struct eeh_pe *pe;
 
584	struct eeh_dev *edev, *tmp;
585	struct pci_dev *pdev;
586
587	eeh_for_each_pe(root, pe) {
588		/* Keep the state of permanently removed PE intact */
589		if (pe->state & EEH_PE_REMOVED)
590			continue;
591
592		if (!include_passed && eeh_pe_passed(pe))
593			continue;
594
595		pe->state &= ~state;
 
 
 
 
 
 
596
597		/*
598		 * Special treatment on clearing isolated state. Clear
599		 * check count since last isolation and put all affected
600		 * devices to normal state.
601		 */
602		if (!(state & EEH_PE_ISOLATED))
603			continue;
604
605		pe->check_count = 0;
606		eeh_pe_for_each_dev(pe, edev, tmp) {
607			pdev = eeh_dev_to_pci_dev(edev);
608			if (!pdev)
609				continue;
610
611			pdev->error_state = pci_channel_io_normal;
612		}
 
613
614		/* Unblock PCI config access if required */
615		if (pe->state & EEH_PE_CFG_RESTRICTED)
616			pe->state &= ~EEH_PE_CFG_BLOCKED;
617	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618}
619
620/*
621 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
622 * buses assigned explicitly by firmware, and we probably have
623 * lost that after reset. So we have to delay the check until
624 * the PCI-CFG registers have been restored for the parent
625 * bridge.
626 *
627 * Don't use normal PCI-CFG accessors, which probably has been
628 * blocked on normal path during the stage. So we need utilize
629 * eeh operations, which is always permitted.
630 */
631static void eeh_bridge_check_link(struct eeh_dev *edev)
632{
 
633	int cap;
634	uint32_t val;
635	int timeout = 0;
636
637	/*
638	 * We only check root port and downstream ports of
639	 * PCIe switches
640	 */
641	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
642		return;
643
644	eeh_edev_dbg(edev, "Checking PCIe link...\n");
 
 
 
 
645
646	/* Check slot status */
647	cap = edev->pcie_cap;
648	eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
649	if (!(val & PCI_EXP_SLTSTA_PDS)) {
650		eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
651		return;
652	}
653
654	/* Check power status if we have the capability */
655	eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
656	if (val & PCI_EXP_SLTCAP_PCP) {
657		eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
658		if (val & PCI_EXP_SLTCTL_PCC) {
659			eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
660			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
661			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
662			eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
663			msleep(2 * 1000);
664		}
665	}
666
667	/* Enable link */
668	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
669	val &= ~PCI_EXP_LNKCTL_LD;
670	eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
671
672	/* Check link */
673	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
674	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
675		eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
676		msleep(1000);
677		return;
678	}
679
680	/* Wait the link is up until timeout (5s) */
681	timeout = 0;
682	while (timeout < 5000) {
683		msleep(20);
684		timeout += 20;
685
686		eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687		if (val & PCI_EXP_LNKSTA_DLLLA)
688			break;
689	}
690
691	if (val & PCI_EXP_LNKSTA_DLLLA)
692		eeh_edev_dbg(edev, "Link up (%s)\n",
693			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694	else
695		eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696}
697
698#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
699#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700
701static void eeh_restore_bridge_bars(struct eeh_dev *edev)
702{
 
703	int i;
704
705	/*
706	 * Device BARs: 0x10 - 0x18
707	 * Bus numbers and windows: 0x18 - 0x30
708	 */
709	for (i = 4; i < 13; i++)
710		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711	/* Rom: 0x38 */
712	eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713
714	/* Cache line & Latency timer: 0xC 0xD */
715	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718		SAVED_BYTE(PCI_LATENCY_TIMER));
719	/* Max latency, min grant, interrupt ping and line: 0x3C */
720	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721
722	/* PCI Command: 0x4 */
723	eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724			      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725
726	/* Check the PCIe link is ready */
727	eeh_bridge_check_link(edev);
728}
729
730static void eeh_restore_device_bars(struct eeh_dev *edev)
731{
 
732	int i;
733	u32 cmd;
734
735	for (i = 4; i < 10; i++)
736		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737	/* 12 == Expansion ROM Address */
738	eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739
740	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743		SAVED_BYTE(PCI_LATENCY_TIMER));
744
745	/* max latency, min grant, interrupt pin and line */
746	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747
748	/*
749	 * Restore PERR & SERR bits, some devices require it,
750	 * don't touch the other command bits
751	 */
752	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753	if (edev->config_space[1] & PCI_COMMAND_PARITY)
754		cmd |= PCI_COMMAND_PARITY;
755	else
756		cmd &= ~PCI_COMMAND_PARITY;
757	if (edev->config_space[1] & PCI_COMMAND_SERR)
758		cmd |= PCI_COMMAND_SERR;
759	else
760		cmd &= ~PCI_COMMAND_SERR;
761	eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762}
763
764/**
765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766 * @data: EEH device
767 * @flag: Unused
768 *
769 * Loads the PCI configuration space base address registers,
770 * the expansion ROM base address, the latency timer, and etc.
771 * from the saved values in the device node.
772 */
773static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774{
 
 
 
775	/* Do special restore for bridges */
776	if (edev->mode & EEH_DEV_BRIDGE)
777		eeh_restore_bridge_bars(edev);
778	else
779		eeh_restore_device_bars(edev);
780
781	if (eeh_ops->restore_config)
782		eeh_ops->restore_config(edev);
 
 
783}
784
785/**
786 * eeh_pe_restore_bars - Restore the PCI config space info
787 * @pe: EEH PE
788 *
789 * This routine performs a recursive walk to the children
790 * of this device as well.
791 */
792void eeh_pe_restore_bars(struct eeh_pe *pe)
793{
794	/*
795	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796	 * will take that.
797	 */
798	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799}
800
801/**
802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
803 * @pe: EEH PE
804 *
805 * Retrieve the location code of the given PE. If the primary PE bus
806 * is root bus, we will grab location code from PHB device tree node
807 * or root port. Otherwise, the upstream bridge's device tree node
808 * of the primary PE bus will be checked for the location code.
809 */
810const char *eeh_pe_loc_get(struct eeh_pe *pe)
811{
812	struct pci_bus *bus = eeh_pe_bus_get(pe);
813	struct device_node *dn;
814	const char *loc = NULL;
815
816	while (bus) {
817		dn = pci_bus_to_OF_node(bus);
818		if (!dn) {
819			bus = bus->parent;
820			continue;
821		}
822
823		if (pci_is_root_bus(bus))
824			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825		else
826			loc = of_get_property(dn, "ibm,slot-location-code",
827					      NULL);
828
829		if (loc)
830			return loc;
831
832		bus = bus->parent;
833	}
834
835	return "N/A";
836}
837
838/**
839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840 * @pe: EEH PE
841 *
842 * Retrieve the PCI bus according to the given PE. Basically,
843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844 * primary PCI bus will be retrieved. The parent bus will be
845 * returned for BUS PE. However, we don't have associated PCI
846 * bus for DEVICE PE.
847 */
848struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849{
850	struct eeh_dev *edev;
851	struct pci_dev *pdev;
852
853	if (pe->type & EEH_PE_PHB)
854		return pe->phb->bus;
855
856	/* The primary bus might be cached during probe time */
857	if (pe->state & EEH_PE_PRI_BUS)
858		return pe->bus;
859
860	/* Retrieve the parent PCI bus of first (top) PCI device */
861	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862	pdev = eeh_dev_to_pci_dev(edev);
863	if (pdev)
864		return pdev->bus;
865
866	return NULL;
867}
v4.10.11
 
  1/*
  2 * The file intends to implement PE based on the information from
  3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  4 * All the PEs should be organized as hierarchy tree. The first level
  5 * of the tree will be associated to existing PHBs since the particular
  6 * PE is only meaningful in one PHB domain.
  7 *
  8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License as published by
 12 * the Free Software Foundation; either version 2 of the License, or
 13 * (at your option) any later version.
 14 *
 15 * This program is distributed in the hope that it will be useful,
 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 18 * GNU General Public License for more details.
 19 *
 20 * You should have received a copy of the GNU General Public License
 21 * along with this program; if not, write to the Free Software
 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 23 */
 24
 25#include <linux/delay.h>
 26#include <linux/export.h>
 27#include <linux/gfp.h>
 28#include <linux/kernel.h>
 29#include <linux/pci.h>
 30#include <linux/string.h>
 31
 32#include <asm/pci-bridge.h>
 33#include <asm/ppc-pci.h>
 34
 35static int eeh_pe_aux_size = 0;
 36static LIST_HEAD(eeh_phb_pe);
 37
 38/**
 39 * eeh_set_pe_aux_size - Set PE auxillary data size
 40 * @size: PE auxillary data size
 41 *
 42 * Set PE auxillary data size
 43 */
 44void eeh_set_pe_aux_size(int size)
 45{
 46	if (size < 0)
 47		return;
 48
 49	eeh_pe_aux_size = size;
 50}
 51
 52/**
 53 * eeh_pe_alloc - Allocate PE
 54 * @phb: PCI controller
 55 * @type: PE type
 56 *
 57 * Allocate PE instance dynamically.
 58 */
 59static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 60{
 61	struct eeh_pe *pe;
 62	size_t alloc_size;
 63
 64	alloc_size = sizeof(struct eeh_pe);
 65	if (eeh_pe_aux_size) {
 66		alloc_size = ALIGN(alloc_size, cache_line_size());
 67		alloc_size += eeh_pe_aux_size;
 68	}
 69
 70	/* Allocate PHB PE */
 71	pe = kzalloc(alloc_size, GFP_KERNEL);
 72	if (!pe) return NULL;
 73
 74	/* Initialize PHB PE */
 75	pe->type = type;
 76	pe->phb = phb;
 77	INIT_LIST_HEAD(&pe->child_list);
 78	INIT_LIST_HEAD(&pe->child);
 79	INIT_LIST_HEAD(&pe->edevs);
 80
 81	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 82				      cache_line_size());
 83	return pe;
 84}
 85
 86/**
 87 * eeh_phb_pe_create - Create PHB PE
 88 * @phb: PCI controller
 89 *
 90 * The function should be called while the PHB is detected during
 91 * system boot or PCI hotplug in order to create PHB PE.
 92 */
 93int eeh_phb_pe_create(struct pci_controller *phb)
 94{
 95	struct eeh_pe *pe;
 96
 97	/* Allocate PHB PE */
 98	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 99	if (!pe) {
100		pr_err("%s: out of memory!\n", __func__);
101		return -ENOMEM;
102	}
103
104	/* Put it into the list */
105	list_add_tail(&pe->child, &eeh_phb_pe);
106
107	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
108
109	return 0;
110}
111
112/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
120struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121{
122	struct eeh_pe *pe;
123
124	list_for_each_entry(pe, &eeh_phb_pe, child) {
125		/*
126		 * Actually, we needn't check the type since
127		 * the PE for PHB has been determined when that
128		 * was created.
129		 */
130		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131			return pe;
132	}
133
134	return NULL;
135}
136
137/**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
145static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146				  struct eeh_pe *root)
147{
148	struct list_head *next = pe->child_list.next;
149
150	if (next == &pe->child_list) {
151		while (1) {
152			if (pe == root)
153				return NULL;
154			next = pe->child.next;
155			if (next != &pe->parent->child_list)
156				break;
157			pe = pe->parent;
158		}
159	}
160
161	return list_entry(next, struct eeh_pe, child);
162}
163
164/**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
175void *eeh_pe_traverse(struct eeh_pe *root,
176		      eeh_traverse_func fn, void *flag)
177{
178	struct eeh_pe *pe;
179	void *ret;
180
181	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182		ret = fn(pe, flag);
183		if (ret) return ret;
184	}
185
186	return NULL;
187}
188
189/**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
198void *eeh_pe_dev_traverse(struct eeh_pe *root,
199		eeh_traverse_func fn, void *flag)
200{
201	struct eeh_pe *pe;
202	struct eeh_dev *edev, *tmp;
203	void *ret;
204
205	if (!root) {
206		pr_warn("%s: Invalid PE %p\n",
207			__func__, root);
208		return NULL;
209	}
210
211	/* Traverse root PE */
212	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213		eeh_pe_for_each_dev(pe, edev, tmp) {
214			ret = fn(edev, flag);
215			if (ret)
216				return ret;
217		}
218	}
219
220	return NULL;
221}
222
223/**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
233static void *__eeh_pe_get(void *data, void *flag)
234{
235	struct eeh_pe *pe = (struct eeh_pe *)data;
236	struct eeh_dev *edev = (struct eeh_dev *)flag;
237
238	/* Unexpected PHB PE */
239	if (pe->type & EEH_PE_PHB)
240		return NULL;
241
242	/*
243	 * We prefer PE address. For most cases, we should
244	 * have non-zero PE address
245	 */
246	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247		if (edev->pe_config_addr == pe->addr)
248			return pe;
249	} else {
250		if (edev->pe_config_addr &&
251		    (edev->pe_config_addr == pe->addr))
252			return pe;
253	}
254
255	/* Try BDF address */
256	if (edev->config_addr &&
257	   (edev->config_addr == pe->config_addr))
258		return pe;
259
260	return NULL;
261}
262
263/**
264 * eeh_pe_get - Search PE based on the given address
265 * @edev: EEH device
 
266 *
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
272 * PE address.
273 */
274struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275{
276	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277	struct eeh_pe *pe;
278
279	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280
281	return pe;
282}
283
284/**
285 * eeh_pe_get_parent - Retrieve the parent PE
286 * @edev: EEH device
 
287 *
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
291 */
292static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293{
294	struct eeh_dev *parent;
295	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
296
297	/*
298	 * It might have the case for the indirect parent
299	 * EEH device already having associated PE, but
300	 * the direct parent EEH device doesn't have yet.
301	 */
302	if (edev->physfn)
303		pdn = pci_get_pdn(edev->physfn);
304	else
305		pdn = pdn ? pdn->parent : NULL;
306	while (pdn) {
307		/* We're poking out of PCI territory */
308		parent = pdn_to_eeh_dev(pdn);
309		if (!parent)
310			return NULL;
311
312		if (parent->pe)
313			return parent->pe;
314
315		pdn = pdn->parent;
316	}
317
318	return NULL;
319}
320
321/**
322 * eeh_add_to_parent_pe - Add EEH device to parent PE
323 * @edev: EEH device
324 *
325 * Add EEH device to the parent PE. If the parent PE already
326 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
327 * we have to create new PE to hold the EEH device and the new
328 * PE will be linked to its parent PE as well.
329 */
330int eeh_add_to_parent_pe(struct eeh_dev *edev)
331{
 
332	struct eeh_pe *pe, *parent;
333
334	/* Check if the PE number is valid */
335	if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
336		pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
337		       __func__, edev->config_addr, edev->phb->global_number);
338		return -EINVAL;
339	}
340
341	/*
342	 * Search the PE has been existing or not according
343	 * to the PE address. If that has been existing, the
344	 * PE should be composed of PCI bus and its subordinate
345	 * components.
346	 */
347	pe = eeh_pe_get(edev);
348	if (pe && !(pe->type & EEH_PE_INVALID)) {
349		/* Mark the PE as type of PCI bus */
350		pe->type = EEH_PE_BUS;
351		edev->pe = pe;
352
353		/* Put the edev to PE */
354		list_add_tail(&edev->list, &pe->edevs);
355		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
356			edev->phb->global_number,
357			edev->config_addr >> 8,
358			PCI_SLOT(edev->config_addr & 0xFF),
359			PCI_FUNC(edev->config_addr & 0xFF),
360			pe->addr);
361		return 0;
362	} else if (pe && (pe->type & EEH_PE_INVALID)) {
363		list_add_tail(&edev->list, &pe->edevs);
364		edev->pe = pe;
365		/*
366		 * We're running to here because of PCI hotplug caused by
367		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
368		 */
369		parent = pe;
370		while (parent) {
371			if (!(parent->type & EEH_PE_INVALID))
372				break;
373			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
374			parent = parent->parent;
375		}
376
377		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
378			 "PE#%x, Parent PE#%x\n",
379			edev->phb->global_number,
380			edev->config_addr >> 8,
381                        PCI_SLOT(edev->config_addr & 0xFF),
382                        PCI_FUNC(edev->config_addr & 0xFF),
383			pe->addr, pe->parent->addr);
384		return 0;
385	}
386
387	/* Create a new EEH PE */
388	if (edev->physfn)
389		pe = eeh_pe_alloc(edev->phb, EEH_PE_VF);
390	else
391		pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
392	if (!pe) {
393		pr_err("%s: out of memory!\n", __func__);
394		return -ENOMEM;
395	}
396	pe->addr	= edev->pe_config_addr;
397	pe->config_addr	= edev->config_addr;
398
399	/*
400	 * Put the new EEH PE into hierarchy tree. If the parent
401	 * can't be found, the newly created PE will be attached
402	 * to PHB directly. Otherwise, we have to associate the
403	 * PE with its parent.
404	 */
405	parent = eeh_pe_get_parent(edev);
406	if (!parent) {
407		parent = eeh_phb_pe_get(edev->phb);
408		if (!parent) {
409			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
410				__func__, edev->phb->global_number);
411			edev->pe = NULL;
412			kfree(pe);
413			return -EEXIST;
414		}
415	}
416	pe->parent = parent;
 
 
 
417
418	/*
419	 * Put the newly created PE into the child list and
420	 * link the EEH device accordingly.
421	 */
422	list_add_tail(&pe->child, &parent->child_list);
423	list_add_tail(&edev->list, &pe->edevs);
424	edev->pe = pe;
425	pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
426		 "Device PE#%x, Parent PE#%x\n",
427		 edev->phb->global_number,
428		 edev->config_addr >> 8,
429		 PCI_SLOT(edev->config_addr & 0xFF),
430		 PCI_FUNC(edev->config_addr & 0xFF),
431		 pe->addr, pe->parent->addr);
432
433	return 0;
434}
435
436/**
437 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
438 * @edev: EEH device
439 *
440 * The PE hierarchy tree might be changed when doing PCI hotplug.
441 * Also, the PCI devices or buses could be removed from the system
442 * during EEH recovery. So we have to call the function remove the
443 * corresponding PE accordingly if necessary.
444 */
445int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
446{
447	struct eeh_pe *pe, *parent, *child;
 
448	int cnt;
449
450	if (!edev->pe) {
451		pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
452			 __func__,  edev->phb->global_number,
453			 edev->config_addr >> 8,
454			 PCI_SLOT(edev->config_addr & 0xFF),
455			 PCI_FUNC(edev->config_addr & 0xFF));
456		return -EEXIST;
457	}
458
459	/* Remove the EEH device */
460	pe = eeh_dev_to_pe(edev);
461	edev->pe = NULL;
462	list_del(&edev->list);
463
464	/*
465	 * Check if the parent PE includes any EEH devices.
466	 * If not, we should delete that. Also, we should
467	 * delete the parent PE if it doesn't have associated
468	 * child PEs and EEH devices.
469	 */
470	while (1) {
471		parent = pe->parent;
 
 
472		if (pe->type & EEH_PE_PHB)
473			break;
474
475		if (!(pe->state & EEH_PE_KEEP)) {
 
 
 
 
 
 
 
 
 
476			if (list_empty(&pe->edevs) &&
477			    list_empty(&pe->child_list)) {
478				list_del(&pe->child);
479				kfree(pe);
480			} else {
481				break;
482			}
483		} else {
 
 
 
 
 
 
 
 
 
484			if (list_empty(&pe->edevs)) {
485				cnt = 0;
486				list_for_each_entry(child, &pe->child_list, child) {
487					if (!(child->type & EEH_PE_INVALID)) {
488						cnt++;
489						break;
490					}
491				}
492
493				if (!cnt)
494					pe->type |= EEH_PE_INVALID;
495				else
496					break;
497			}
498		}
499
500		pe = parent;
501	}
502
503	return 0;
504}
505
506/**
507 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
508 * @pe: EEH PE
509 *
510 * We have time stamp for each PE to trace its time of getting
511 * frozen in last hour. The function should be called to update
512 * the time stamp on first error of the specific PE. On the other
513 * handle, we needn't account for errors happened in last hour.
514 */
515void eeh_pe_update_time_stamp(struct eeh_pe *pe)
516{
517	struct timeval tstamp;
518
519	if (!pe) return;
520
521	if (pe->freeze_count <= 0) {
522		pe->freeze_count = 0;
523		do_gettimeofday(&pe->tstamp);
524	} else {
525		do_gettimeofday(&tstamp);
526		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
527			pe->tstamp = tstamp;
528			pe->freeze_count = 0;
529		}
530	}
531}
532
533/**
534 * __eeh_pe_state_mark - Mark the state for the PE
535 * @data: EEH PE
536 * @flag: state
537 *
538 * The function is used to mark the indicated state for the given
539 * PE. Also, the associated PCI devices will be put into IO frozen
540 * state as well.
541 */
542static void *__eeh_pe_state_mark(void *data, void *flag)
543{
544	struct eeh_pe *pe = (struct eeh_pe *)data;
545	int state = *((int *)flag);
546	struct eeh_dev *edev, *tmp;
547	struct pci_dev *pdev;
548
549	/* Keep the state of permanently removed PE intact */
550	if (pe->state & EEH_PE_REMOVED)
551		return NULL;
552
553	pe->state |= state;
554
555	/* Offline PCI devices if applicable */
556	if (!(state & EEH_PE_ISOLATED))
557		return NULL;
558
559	eeh_pe_for_each_dev(pe, edev, tmp) {
560		pdev = eeh_dev_to_pci_dev(edev);
561		if (pdev)
562			pdev->error_state = pci_channel_io_frozen;
563	}
564
565	/* Block PCI config access if required */
566	if (pe->state & EEH_PE_CFG_RESTRICTED)
567		pe->state |= EEH_PE_CFG_BLOCKED;
568
569	return NULL;
570}
 
571
572/**
573 * eeh_pe_state_mark - Mark specified state for PE and its associated device
574 * @pe: EEH PE
575 *
576 * EEH error affects the current PE and its child PEs. The function
577 * is used to mark appropriate state for the affected PEs and the
578 * associated devices.
579 */
580void eeh_pe_state_mark(struct eeh_pe *pe, int state)
581{
582	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583}
584EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
585
586static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
587{
588	struct eeh_dev *edev = data;
589	int mode = *((int *)flag);
590
591	edev->mode |= mode;
592
593	return NULL;
594}
595
596/**
597 * eeh_pe_dev_state_mark - Mark state for all device under the PE
598 * @pe: EEH PE
599 *
600 * Mark specific state for all child devices of the PE.
601 */
602void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
603{
604	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
605}
606
607/**
608 * __eeh_pe_state_clear - Clear state for the PE
609 * @data: EEH PE
610 * @flag: state
 
611 *
612 * The function is used to clear the indicated state from the
613 * given PE. Besides, we also clear the check count of the PE
614 * as well.
615 */
616static void *__eeh_pe_state_clear(void *data, void *flag)
617{
618	struct eeh_pe *pe = (struct eeh_pe *)data;
619	int state = *((int *)flag);
620	struct eeh_dev *edev, *tmp;
621	struct pci_dev *pdev;
622
623	/* Keep the state of permanently removed PE intact */
624	if (pe->state & EEH_PE_REMOVED)
625		return NULL;
 
626
627	pe->state &= ~state;
 
628
629	/*
630	 * Special treatment on clearing isolated state. Clear
631	 * check count since last isolation and put all affected
632	 * devices to normal state.
633	 */
634	if (!(state & EEH_PE_ISOLATED))
635		return NULL;
636
637	pe->check_count = 0;
638	eeh_pe_for_each_dev(pe, edev, tmp) {
639		pdev = eeh_dev_to_pci_dev(edev);
640		if (!pdev)
 
 
641			continue;
642
643		pdev->error_state = pci_channel_io_normal;
644	}
 
 
 
645
646	/* Unblock PCI config access if required */
647	if (pe->state & EEH_PE_CFG_RESTRICTED)
648		pe->state &= ~EEH_PE_CFG_BLOCKED;
649
650	return NULL;
651}
652
653/**
654 * eeh_pe_state_clear - Clear state for the PE and its children
655 * @pe: PE
656 * @state: state to be cleared
657 *
658 * When the PE and its children has been recovered from error,
659 * we need clear the error state for that. The function is used
660 * for the purpose.
661 */
662void eeh_pe_state_clear(struct eeh_pe *pe, int state)
663{
664	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
665}
666
667/**
668 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
669 * @pe: PE
670 * @state: PE state to be set
671 *
672 * Set specified flag to PE and its child PEs. The PCI config space
673 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
674 * which isn't needed in some situations. The function allows to set
675 * the specified flag to indicated PEs without blocking their PCI
676 * config space.
677 */
678void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
679{
680	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
681	if (!(state & EEH_PE_ISOLATED))
682		return;
683
684	/* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
685	state = EEH_PE_CFG_BLOCKED;
686	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
687}
688
689/*
690 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
691 * buses assigned explicitly by firmware, and we probably have
692 * lost that after reset. So we have to delay the check until
693 * the PCI-CFG registers have been restored for the parent
694 * bridge.
695 *
696 * Don't use normal PCI-CFG accessors, which probably has been
697 * blocked on normal path during the stage. So we need utilize
698 * eeh operations, which is always permitted.
699 */
700static void eeh_bridge_check_link(struct eeh_dev *edev)
701{
702	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
703	int cap;
704	uint32_t val;
705	int timeout = 0;
706
707	/*
708	 * We only check root port and downstream ports of
709	 * PCIe switches
710	 */
711	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
712		return;
713
714	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
715		 __func__, edev->phb->global_number,
716		 edev->config_addr >> 8,
717		 PCI_SLOT(edev->config_addr & 0xFF),
718		 PCI_FUNC(edev->config_addr & 0xFF));
719
720	/* Check slot status */
721	cap = edev->pcie_cap;
722	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
723	if (!(val & PCI_EXP_SLTSTA_PDS)) {
724		pr_debug("  No card in the slot (0x%04x) !\n", val);
725		return;
726	}
727
728	/* Check power status if we have the capability */
729	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
730	if (val & PCI_EXP_SLTCAP_PCP) {
731		eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
732		if (val & PCI_EXP_SLTCTL_PCC) {
733			pr_debug("  In power-off state, power it on ...\n");
734			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
735			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
736			eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
737			msleep(2 * 1000);
738		}
739	}
740
741	/* Enable link */
742	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
743	val &= ~PCI_EXP_LNKCTL_LD;
744	eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
745
746	/* Check link */
747	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
748	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
749		pr_debug("  No link reporting capability (0x%08x) \n", val);
750		msleep(1000);
751		return;
752	}
753
754	/* Wait the link is up until timeout (5s) */
755	timeout = 0;
756	while (timeout < 5000) {
757		msleep(20);
758		timeout += 20;
759
760		eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
761		if (val & PCI_EXP_LNKSTA_DLLLA)
762			break;
763	}
764
765	if (val & PCI_EXP_LNKSTA_DLLLA)
766		pr_debug("  Link up (%s)\n",
767			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
768	else
769		pr_debug("  Link not ready (0x%04x)\n", val);
770}
771
772#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
773#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
774
775static void eeh_restore_bridge_bars(struct eeh_dev *edev)
776{
777	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
778	int i;
779
780	/*
781	 * Device BARs: 0x10 - 0x18
782	 * Bus numbers and windows: 0x18 - 0x30
783	 */
784	for (i = 4; i < 13; i++)
785		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
786	/* Rom: 0x38 */
787	eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
788
789	/* Cache line & Latency timer: 0xC 0xD */
790	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
791                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
792        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
793                SAVED_BYTE(PCI_LATENCY_TIMER));
794	/* Max latency, min grant, interrupt ping and line: 0x3C */
795	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
796
797	/* PCI Command: 0x4 */
798	eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
 
799
800	/* Check the PCIe link is ready */
801	eeh_bridge_check_link(edev);
802}
803
804static void eeh_restore_device_bars(struct eeh_dev *edev)
805{
806	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
807	int i;
808	u32 cmd;
809
810	for (i = 4; i < 10; i++)
811		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
812	/* 12 == Expansion ROM Address */
813	eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
814
815	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
816		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
817	eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
818		SAVED_BYTE(PCI_LATENCY_TIMER));
819
820	/* max latency, min grant, interrupt pin and line */
821	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
822
823	/*
824	 * Restore PERR & SERR bits, some devices require it,
825	 * don't touch the other command bits
826	 */
827	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
828	if (edev->config_space[1] & PCI_COMMAND_PARITY)
829		cmd |= PCI_COMMAND_PARITY;
830	else
831		cmd &= ~PCI_COMMAND_PARITY;
832	if (edev->config_space[1] & PCI_COMMAND_SERR)
833		cmd |= PCI_COMMAND_SERR;
834	else
835		cmd &= ~PCI_COMMAND_SERR;
836	eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
837}
838
839/**
840 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
841 * @data: EEH device
842 * @flag: Unused
843 *
844 * Loads the PCI configuration space base address registers,
845 * the expansion ROM base address, the latency timer, and etc.
846 * from the saved values in the device node.
847 */
848static void *eeh_restore_one_device_bars(void *data, void *flag)
849{
850	struct eeh_dev *edev = (struct eeh_dev *)data;
851	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
852
853	/* Do special restore for bridges */
854	if (edev->mode & EEH_DEV_BRIDGE)
855		eeh_restore_bridge_bars(edev);
856	else
857		eeh_restore_device_bars(edev);
858
859	if (eeh_ops->restore_config && pdn)
860		eeh_ops->restore_config(pdn);
861
862	return NULL;
863}
864
865/**
866 * eeh_pe_restore_bars - Restore the PCI config space info
867 * @pe: EEH PE
868 *
869 * This routine performs a recursive walk to the children
870 * of this device as well.
871 */
872void eeh_pe_restore_bars(struct eeh_pe *pe)
873{
874	/*
875	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
876	 * will take that.
877	 */
878	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
879}
880
881/**
882 * eeh_pe_loc_get - Retrieve location code binding to the given PE
883 * @pe: EEH PE
884 *
885 * Retrieve the location code of the given PE. If the primary PE bus
886 * is root bus, we will grab location code from PHB device tree node
887 * or root port. Otherwise, the upstream bridge's device tree node
888 * of the primary PE bus will be checked for the location code.
889 */
890const char *eeh_pe_loc_get(struct eeh_pe *pe)
891{
892	struct pci_bus *bus = eeh_pe_bus_get(pe);
893	struct device_node *dn;
894	const char *loc = NULL;
895
896	while (bus) {
897		dn = pci_bus_to_OF_node(bus);
898		if (!dn) {
899			bus = bus->parent;
900			continue;
901		}
902
903		if (pci_is_root_bus(bus))
904			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
905		else
906			loc = of_get_property(dn, "ibm,slot-location-code",
907					      NULL);
908
909		if (loc)
910			return loc;
911
912		bus = bus->parent;
913	}
914
915	return "N/A";
916}
917
918/**
919 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
920 * @pe: EEH PE
921 *
922 * Retrieve the PCI bus according to the given PE. Basically,
923 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
924 * primary PCI bus will be retrieved. The parent bus will be
925 * returned for BUS PE. However, we don't have associated PCI
926 * bus for DEVICE PE.
927 */
928struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
929{
930	struct eeh_dev *edev;
931	struct pci_dev *pdev;
932
933	if (pe->type & EEH_PE_PHB)
934		return pe->phb->bus;
935
936	/* The primary bus might be cached during probe time */
937	if (pe->state & EEH_PE_PRI_BUS)
938		return pe->bus;
939
940	/* Retrieve the parent PCI bus of first (top) PCI device */
941	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
942	pdev = eeh_dev_to_pci_dev(edev);
943	if (pdev)
944		return pdev->bus;
945
946	return NULL;
947}