Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
7 *
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
10
11#include <linux/delay.h>
12#include <linux/sched.h>
13#include <linux/init.h>
14#include <linux/list.h>
15#include <linux/pci.h>
16#include <linux/iommu.h>
17#include <linux/proc_fs.h>
18#include <linux/rbtree.h>
19#include <linux/reboot.h>
20#include <linux/seq_file.h>
21#include <linux/spinlock.h>
22#include <linux/export.h>
23#include <linux/of.h>
24
25#include <linux/atomic.h>
26#include <asm/debugfs.h>
27#include <asm/eeh.h>
28#include <asm/eeh_event.h>
29#include <asm/io.h>
30#include <asm/iommu.h>
31#include <asm/machdep.h>
32#include <asm/ppc-pci.h>
33#include <asm/rtas.h>
34#include <asm/pte-walk.h>
35
36
37/** Overview:
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
51 *
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
59 * with EEH.
60 *
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
69 */
70
71/* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
75 */
76#define EEH_MAX_FAILS 2100000
77
78/* Time to wait for a PCI slot to report status, in milliseconds */
79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80
81/*
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
90 */
91int eeh_subsystem_flags;
92EXPORT_SYMBOL(eeh_subsystem_flags);
93
94/*
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
98 */
99u32 eeh_max_freezes = 5;
100
101/*
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
105 */
106bool eeh_debugfs_no_recover;
107
108/* Platform dependent EEH operations */
109struct eeh_ops *eeh_ops = NULL;
110
111/* Lock to avoid races due to multiple reports of an error */
112DEFINE_RAW_SPINLOCK(confirm_error_lock);
113EXPORT_SYMBOL_GPL(confirm_error_lock);
114
115/* Lock to protect passed flags */
116static DEFINE_MUTEX(eeh_dev_mutex);
117
118/* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
121 */
122#define EEH_PCI_REGS_LOG_LEN 8192
123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124
125/*
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
129 */
130struct eeh_stats {
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
138};
139
140static struct eeh_stats eeh_stats;
141
142static int __init eeh_setup(char *str)
143{
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
148
149 return 1;
150}
151__setup("eeh=", eeh_setup);
152
153void eeh_show_enabled(void)
154{
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 else
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
161}
162
163/*
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
167 */
168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169{
170 u32 cfg;
171 int cap, i;
172 int n = 0, l = 0;
173 char buffer[128];
174
175 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 edev->pe->phb->global_number, edev->bdfn >> 8,
177 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev->pe->phb->global_number, edev->bdfn >> 8,
180 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181
182 eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185
186 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189
190 /* Gather bridge-specific registers */
191 if (edev->mode & EEH_DEV_BRIDGE) {
192 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195
196 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 pr_warn("EEH: Bridge control: %04x\n", cfg);
199 }
200
201 /* Dump out the PCI-X command and status regs */
202 cap = edev->pcix_cap;
203 if (cap) {
204 eeh_ops->read_config(edev, cap, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207
208 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 }
212
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap = edev->pcie_cap;
215 if (cap) {
216 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
218
219 for (i=0; i<=8; i++) {
220 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222
223 if ((i % 4) == 0) {
224 if (i != 0)
225 pr_warn("%s\n", buffer);
226
227 l = scnprintf(buffer, sizeof(buffer),
228 "EEH: PCI-E %02x: %08x ",
229 4*i, cfg);
230 } else {
231 l += scnprintf(buffer+l, sizeof(buffer)-l,
232 "%08x ", cfg);
233 }
234
235 }
236
237 pr_warn("%s\n", buffer);
238 }
239
240 /* If AER capable, dump it */
241 cap = edev->aer_cap;
242 if (cap) {
243 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
245
246 for (i=0; i<=13; i++) {
247 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249
250 if ((i % 4) == 0) {
251 if (i != 0)
252 pr_warn("%s\n", buffer);
253
254 l = scnprintf(buffer, sizeof(buffer),
255 "EEH: PCI-E AER %02x: %08x ",
256 4*i, cfg);
257 } else {
258 l += scnprintf(buffer+l, sizeof(buffer)-l,
259 "%08x ", cfg);
260 }
261 }
262
263 pr_warn("%s\n", buffer);
264 }
265
266 return n;
267}
268
269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270{
271 struct eeh_dev *edev, *tmp;
272 size_t *plen = flag;
273
274 eeh_pe_for_each_dev(pe, edev, tmp)
275 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 EEH_PCI_REGS_LOG_LEN - *plen);
277
278 return NULL;
279}
280
281/**
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
283 * @pe: EEH PE
284 * @severity: temporary or permanent error log
285 *
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
290 */
291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292{
293 size_t loglen = 0;
294
295 /*
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
299 * config space.
300 *
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
303 *
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
310 */
311 if (!(pe->type & EEH_PE_PHB)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 severity == EEH_LOG_PERM)
314 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315
316 /*
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 *
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
327 */
328 eeh_ops->configure_bridge(pe);
329 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 eeh_pe_restore_bars(pe);
331
332 pci_regs_buf[0] = 0;
333 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 }
335 }
336
337 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338}
339
340/**
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
343 *
344 * This routine should be called to convert virtual I/O address
345 * to physical one.
346 */
347static inline unsigned long eeh_token_to_phys(unsigned long token)
348{
349 return ppc_find_vmap_phys(token);
350}
351
352/*
353 * On PowerNV platform, we might already have fenced PHB there.
354 * For that case, it's meaningless to recover frozen PE. Intead,
355 * We have to handle fenced PHB firstly.
356 */
357static int eeh_phb_check_failure(struct eeh_pe *pe)
358{
359 struct eeh_pe *phb_pe;
360 unsigned long flags;
361 int ret;
362
363 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364 return -EPERM;
365
366 /* Find the PHB PE */
367 phb_pe = eeh_phb_pe_get(pe->phb);
368 if (!phb_pe) {
369 pr_warn("%s Can't find PE for PHB#%x\n",
370 __func__, pe->phb->global_number);
371 return -EEXIST;
372 }
373
374 /* If the PHB has been in problematic state */
375 eeh_serialize_lock(&flags);
376 if (phb_pe->state & EEH_PE_ISOLATED) {
377 ret = 0;
378 goto out;
379 }
380
381 /* Check PHB state */
382 ret = eeh_ops->get_state(phb_pe, NULL);
383 if ((ret < 0) ||
384 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385 ret = 0;
386 goto out;
387 }
388
389 /* Isolate the PHB and send event */
390 eeh_pe_mark_isolated(phb_pe);
391 eeh_serialize_unlock(flags);
392
393 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 eeh_send_failure_event(phb_pe);
396 return 1;
397out:
398 eeh_serialize_unlock(flags);
399 return ret;
400}
401
402/**
403 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
404 * @edev: eeh device
405 *
406 * Check for an EEH failure for the given device node. Call this
407 * routine if the result of a read was all 0xff's and you want to
408 * find out if this is due to an EEH slot freeze. This routine
409 * will query firmware for the EEH status.
410 *
411 * Returns 0 if there has not been an EEH error; otherwise returns
412 * a non-zero value and queues up a slot isolation event notification.
413 *
414 * It is safe to call this routine in an interrupt context.
415 */
416int eeh_dev_check_failure(struct eeh_dev *edev)
417{
418 int ret;
419 unsigned long flags;
420 struct device_node *dn;
421 struct pci_dev *dev;
422 struct eeh_pe *pe, *parent_pe;
423 int rc = 0;
424 const char *location = NULL;
425
426 eeh_stats.total_mmio_ffs++;
427
428 if (!eeh_enabled())
429 return 0;
430
431 if (!edev) {
432 eeh_stats.no_dn++;
433 return 0;
434 }
435 dev = eeh_dev_to_pci_dev(edev);
436 pe = eeh_dev_to_pe(edev);
437
438 /* Access to IO BARs might get this far and still not want checking. */
439 if (!pe) {
440 eeh_stats.ignored_check++;
441 eeh_edev_dbg(edev, "Ignored check\n");
442 return 0;
443 }
444
445 /*
446 * On PowerNV platform, we might already have fenced PHB
447 * there and we need take care of that firstly.
448 */
449 ret = eeh_phb_check_failure(pe);
450 if (ret > 0)
451 return ret;
452
453 /*
454 * If the PE isn't owned by us, we shouldn't check the
455 * state. Instead, let the owner handle it if the PE has
456 * been frozen.
457 */
458 if (eeh_pe_passed(pe))
459 return 0;
460
461 /* If we already have a pending isolation event for this
462 * slot, we know it's bad already, we don't need to check.
463 * Do this checking under a lock; as multiple PCI devices
464 * in one slot might report errors simultaneously, and we
465 * only want one error recovery routine running.
466 */
467 eeh_serialize_lock(&flags);
468 rc = 1;
469 if (pe->state & EEH_PE_ISOLATED) {
470 pe->check_count++;
471 if (pe->check_count == EEH_MAX_FAILS) {
472 dn = pci_device_to_OF_node(dev);
473 if (dn)
474 location = of_get_property(dn, "ibm,loc-code",
475 NULL);
476 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
477 pe->check_count,
478 location ? location : "unknown",
479 eeh_driver_name(dev));
480 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
481 eeh_driver_name(dev));
482 dump_stack();
483 }
484 goto dn_unlock;
485 }
486
487 /*
488 * Now test for an EEH failure. This is VERY expensive.
489 * Note that the eeh_config_addr may be a parent device
490 * in the case of a device behind a bridge, or it may be
491 * function zero of a multi-function device.
492 * In any case they must share a common PHB.
493 */
494 ret = eeh_ops->get_state(pe, NULL);
495
496 /* Note that config-io to empty slots may fail;
497 * they are empty when they don't have children.
498 * We will punt with the following conditions: Failure to get
499 * PE's state, EEH not support and Permanently unavailable
500 * state, PE is in good state.
501 */
502 if ((ret < 0) ||
503 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
504 eeh_stats.false_positives++;
505 pe->false_positives++;
506 rc = 0;
507 goto dn_unlock;
508 }
509
510 /*
511 * It should be corner case that the parent PE has been
512 * put into frozen state as well. We should take care
513 * that at first.
514 */
515 parent_pe = pe->parent;
516 while (parent_pe) {
517 /* Hit the ceiling ? */
518 if (parent_pe->type & EEH_PE_PHB)
519 break;
520
521 /* Frozen parent PE ? */
522 ret = eeh_ops->get_state(parent_pe, NULL);
523 if (ret > 0 && !eeh_state_active(ret)) {
524 pe = parent_pe;
525 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
526 pe->phb->global_number, pe->addr,
527 pe->phb->global_number, parent_pe->addr);
528 }
529
530 /* Next parent level */
531 parent_pe = parent_pe->parent;
532 }
533
534 eeh_stats.slot_resets++;
535
536 /* Avoid repeated reports of this failure, including problems
537 * with other functions on this device, and functions under
538 * bridges.
539 */
540 eeh_pe_mark_isolated(pe);
541 eeh_serialize_unlock(flags);
542
543 /* Most EEH events are due to device driver bugs. Having
544 * a stack trace will help the device-driver authors figure
545 * out what happened. So print that out.
546 */
547 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
548 __func__, pe->phb->global_number, pe->addr);
549 eeh_send_failure_event(pe);
550
551 return 1;
552
553dn_unlock:
554 eeh_serialize_unlock(flags);
555 return rc;
556}
557
558EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
559
560/**
561 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
562 * @token: I/O address
563 *
564 * Check for an EEH failure at the given I/O address. Call this
565 * routine if the result of a read was all 0xff's and you want to
566 * find out if this is due to an EEH slot freeze event. This routine
567 * will query firmware for the EEH status.
568 *
569 * Note this routine is safe to call in an interrupt context.
570 */
571int eeh_check_failure(const volatile void __iomem *token)
572{
573 unsigned long addr;
574 struct eeh_dev *edev;
575
576 /* Finding the phys addr + pci device; this is pretty quick. */
577 addr = eeh_token_to_phys((unsigned long __force) token);
578 edev = eeh_addr_cache_get_dev(addr);
579 if (!edev) {
580 eeh_stats.no_device++;
581 return 0;
582 }
583
584 return eeh_dev_check_failure(edev);
585}
586EXPORT_SYMBOL(eeh_check_failure);
587
588
589/**
590 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
591 * @pe: EEH PE
592 *
593 * This routine should be called to reenable frozen MMIO or DMA
594 * so that it would work correctly again. It's useful while doing
595 * recovery or log collection on the indicated device.
596 */
597int eeh_pci_enable(struct eeh_pe *pe, int function)
598{
599 int active_flag, rc;
600
601 /*
602 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
603 * Also, it's pointless to enable them on unfrozen PE. So
604 * we have to check before enabling IO or DMA.
605 */
606 switch (function) {
607 case EEH_OPT_THAW_MMIO:
608 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
609 break;
610 case EEH_OPT_THAW_DMA:
611 active_flag = EEH_STATE_DMA_ACTIVE;
612 break;
613 case EEH_OPT_DISABLE:
614 case EEH_OPT_ENABLE:
615 case EEH_OPT_FREEZE_PE:
616 active_flag = 0;
617 break;
618 default:
619 pr_warn("%s: Invalid function %d\n",
620 __func__, function);
621 return -EINVAL;
622 }
623
624 /*
625 * Check if IO or DMA has been enabled before
626 * enabling them.
627 */
628 if (active_flag) {
629 rc = eeh_ops->get_state(pe, NULL);
630 if (rc < 0)
631 return rc;
632
633 /* Needn't enable it at all */
634 if (rc == EEH_STATE_NOT_SUPPORT)
635 return 0;
636
637 /* It's already enabled */
638 if (rc & active_flag)
639 return 0;
640 }
641
642
643 /* Issue the request */
644 rc = eeh_ops->set_option(pe, function);
645 if (rc)
646 pr_warn("%s: Unexpected state change %d on "
647 "PHB#%x-PE#%x, err=%d\n",
648 __func__, function, pe->phb->global_number,
649 pe->addr, rc);
650
651 /* Check if the request is finished successfully */
652 if (active_flag) {
653 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
654 if (rc < 0)
655 return rc;
656
657 if (rc & active_flag)
658 return 0;
659
660 return -EIO;
661 }
662
663 return rc;
664}
665
666static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
667 void *userdata)
668{
669 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
670 struct pci_dev *dev = userdata;
671
672 /*
673 * The caller should have disabled and saved the
674 * state for the specified device
675 */
676 if (!pdev || pdev == dev)
677 return;
678
679 /* Ensure we have D0 power state */
680 pci_set_power_state(pdev, PCI_D0);
681
682 /* Save device state */
683 pci_save_state(pdev);
684
685 /*
686 * Disable device to avoid any DMA traffic and
687 * interrupt from the device
688 */
689 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
690}
691
692static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
693{
694 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
695 struct pci_dev *dev = userdata;
696
697 if (!pdev)
698 return;
699
700 /* Apply customization from firmware */
701 if (eeh_ops->restore_config)
702 eeh_ops->restore_config(edev);
703
704 /* The caller should restore state for the specified device */
705 if (pdev != dev)
706 pci_restore_state(pdev);
707}
708
709/**
710 * pcibios_set_pcie_reset_state - Set PCI-E reset state
711 * @dev: pci device struct
712 * @state: reset state to enter
713 *
714 * Return value:
715 * 0 if success
716 */
717int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
718{
719 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
720 struct eeh_pe *pe = eeh_dev_to_pe(edev);
721
722 if (!pe) {
723 pr_err("%s: No PE found on PCI device %s\n",
724 __func__, pci_name(dev));
725 return -EINVAL;
726 }
727
728 switch (state) {
729 case pcie_deassert_reset:
730 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
731 eeh_unfreeze_pe(pe);
732 if (!(pe->type & EEH_PE_VF))
733 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
734 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
735 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
736 break;
737 case pcie_hot_reset:
738 eeh_pe_mark_isolated(pe);
739 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
740 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
741 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
742 if (!(pe->type & EEH_PE_VF))
743 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
744 eeh_ops->reset(pe, EEH_RESET_HOT);
745 break;
746 case pcie_warm_reset:
747 eeh_pe_mark_isolated(pe);
748 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
749 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
750 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
751 if (!(pe->type & EEH_PE_VF))
752 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
753 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
754 break;
755 default:
756 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
757 return -EINVAL;
758 }
759
760 return 0;
761}
762
763/**
764 * eeh_set_pe_freset - Check the required reset for the indicated device
765 * @data: EEH device
766 * @flag: return value
767 *
768 * Each device might have its preferred reset type: fundamental or
769 * hot reset. The routine is used to collected the information for
770 * the indicated device and its children so that the bunch of the
771 * devices could be reset properly.
772 */
773static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
774{
775 struct pci_dev *dev;
776 unsigned int *freset = (unsigned int *)flag;
777
778 dev = eeh_dev_to_pci_dev(edev);
779 if (dev)
780 *freset |= dev->needs_freset;
781}
782
783static void eeh_pe_refreeze_passed(struct eeh_pe *root)
784{
785 struct eeh_pe *pe;
786 int state;
787
788 eeh_for_each_pe(root, pe) {
789 if (eeh_pe_passed(pe)) {
790 state = eeh_ops->get_state(pe, NULL);
791 if (state &
792 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
793 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
794 pe->phb->global_number, pe->addr);
795 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
796 }
797 }
798 }
799}
800
801/**
802 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
803 * @pe: EEH PE
804 *
805 * This function executes a full reset procedure on a PE, including setting
806 * the appropriate flags, performing a fundamental or hot reset, and then
807 * deactivating the reset status. It is designed to be used within the EEH
808 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
809 * only performs a single operation at a time.
810 *
811 * This function will attempt to reset a PE three times before failing.
812 */
813int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
814{
815 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
816 int type = EEH_RESET_HOT;
817 unsigned int freset = 0;
818 int i, state = 0, ret;
819
820 /*
821 * Determine the type of reset to perform - hot or fundamental.
822 * Hot reset is the default operation, unless any device under the
823 * PE requires a fundamental reset.
824 */
825 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
826
827 if (freset)
828 type = EEH_RESET_FUNDAMENTAL;
829
830 /* Mark the PE as in reset state and block config space accesses */
831 eeh_pe_state_mark(pe, reset_state);
832
833 /* Make three attempts at resetting the bus */
834 for (i = 0; i < 3; i++) {
835 ret = eeh_pe_reset(pe, type, include_passed);
836 if (!ret)
837 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
838 include_passed);
839 if (ret) {
840 ret = -EIO;
841 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
842 state, pe->phb->global_number, pe->addr, i + 1);
843 continue;
844 }
845 if (i)
846 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
847 pe->phb->global_number, pe->addr, i + 1);
848
849 /* Wait until the PE is in a functioning state */
850 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
851 if (state < 0) {
852 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
853 pe->phb->global_number, pe->addr);
854 ret = -ENOTRECOVERABLE;
855 break;
856 }
857 if (eeh_state_active(state))
858 break;
859 else
860 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
861 pe->phb->global_number, pe->addr, state, i + 1);
862 }
863
864 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
865 * (potentially) passed through to a guest, re-freeze them:
866 */
867 if (!include_passed)
868 eeh_pe_refreeze_passed(pe);
869
870 eeh_pe_state_clear(pe, reset_state, true);
871 return ret;
872}
873
874/**
875 * eeh_save_bars - Save device bars
876 * @edev: PCI device associated EEH device
877 *
878 * Save the values of the device bars. Unlike the restore
879 * routine, this routine is *not* recursive. This is because
880 * PCI devices are added individually; but, for the restore,
881 * an entire slot is reset at a time.
882 */
883void eeh_save_bars(struct eeh_dev *edev)
884{
885 int i;
886
887 if (!edev)
888 return;
889
890 for (i = 0; i < 16; i++)
891 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
892
893 /*
894 * For PCI bridges including root port, we need enable bus
895 * master explicitly. Otherwise, it can't fetch IODA table
896 * entries correctly. So we cache the bit in advance so that
897 * we can restore it after reset, either PHB range or PE range.
898 */
899 if (edev->mode & EEH_DEV_BRIDGE)
900 edev->config_space[1] |= PCI_COMMAND_MASTER;
901}
902
903static int eeh_reboot_notifier(struct notifier_block *nb,
904 unsigned long action, void *unused)
905{
906 eeh_clear_flag(EEH_ENABLED);
907 return NOTIFY_DONE;
908}
909
910static struct notifier_block eeh_reboot_nb = {
911 .notifier_call = eeh_reboot_notifier,
912};
913
914static int eeh_device_notifier(struct notifier_block *nb,
915 unsigned long action, void *data)
916{
917 struct device *dev = data;
918
919 switch (action) {
920 /*
921 * Note: It's not possible to perform EEH device addition (i.e.
922 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
923 * the device's resources, which have not yet been set up.
924 */
925 case BUS_NOTIFY_DEL_DEVICE:
926 eeh_remove_device(to_pci_dev(dev));
927 break;
928 default:
929 break;
930 }
931 return NOTIFY_DONE;
932}
933
934static struct notifier_block eeh_device_nb = {
935 .notifier_call = eeh_device_notifier,
936};
937
938/**
939 * eeh_init - System wide EEH initialization
940 *
941 * It's the platform's job to call this from an arch_initcall().
942 */
943int eeh_init(struct eeh_ops *ops)
944{
945 struct pci_controller *hose, *tmp;
946 int ret = 0;
947
948 /* the platform should only initialise EEH once */
949 if (WARN_ON(eeh_ops))
950 return -EEXIST;
951 if (WARN_ON(!ops))
952 return -ENOENT;
953 eeh_ops = ops;
954
955 /* Register reboot notifier */
956 ret = register_reboot_notifier(&eeh_reboot_nb);
957 if (ret) {
958 pr_warn("%s: Failed to register reboot notifier (%d)\n",
959 __func__, ret);
960 return ret;
961 }
962
963 ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
964 if (ret) {
965 pr_warn("%s: Failed to register bus notifier (%d)\n",
966 __func__, ret);
967 return ret;
968 }
969
970 /* Initialize PHB PEs */
971 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
972 eeh_phb_pe_create(hose);
973
974 eeh_addr_cache_init();
975
976 /* Initialize EEH event */
977 return eeh_event_init();
978}
979
980/**
981 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
982 * @dev: pci device for which to set up EEH
983 *
984 * This routine must be used to complete EEH initialization for PCI
985 * devices that were added after system boot (e.g. hotplug, dlpar).
986 */
987void eeh_probe_device(struct pci_dev *dev)
988{
989 struct eeh_dev *edev;
990
991 pr_debug("EEH: Adding device %s\n", pci_name(dev));
992
993 /*
994 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
995 * already called for this device.
996 */
997 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
998 pci_dbg(dev, "Already bound to an eeh_dev!\n");
999 return;
1000 }
1001
1002 edev = eeh_ops->probe(dev);
1003 if (!edev) {
1004 pr_debug("EEH: Adding device failed\n");
1005 return;
1006 }
1007
1008 /*
1009 * FIXME: We rely on pcibios_release_device() to remove the
1010 * existing EEH state. The release function is only called if
1011 * the pci_dev's refcount drops to zero so if something is
1012 * keeping a ref to a device (e.g. a filesystem) we need to
1013 * remove the old EEH state.
1014 *
1015 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1016 */
1017 if (edev->pdev && edev->pdev != dev) {
1018 eeh_pe_tree_remove(edev);
1019 eeh_addr_cache_rmv_dev(edev->pdev);
1020 eeh_sysfs_remove_device(edev->pdev);
1021
1022 /*
1023 * We definitely should have the PCI device removed
1024 * though it wasn't correctly. So we needn't call
1025 * into error handler afterwards.
1026 */
1027 edev->mode |= EEH_DEV_NO_HANDLER;
1028 }
1029
1030 /* bind the pdev and the edev together */
1031 edev->pdev = dev;
1032 dev->dev.archdata.edev = edev;
1033 eeh_addr_cache_insert_dev(dev);
1034 eeh_sysfs_add_device(dev);
1035}
1036
1037/**
1038 * eeh_remove_device - Undo EEH setup for the indicated pci device
1039 * @dev: pci device to be removed
1040 *
1041 * This routine should be called when a device is removed from
1042 * a running system (e.g. by hotplug or dlpar). It unregisters
1043 * the PCI device from the EEH subsystem. I/O errors affecting
1044 * this device will no longer be detected after this call; thus,
1045 * i/o errors affecting this slot may leave this device unusable.
1046 */
1047void eeh_remove_device(struct pci_dev *dev)
1048{
1049 struct eeh_dev *edev;
1050
1051 if (!dev || !eeh_enabled())
1052 return;
1053 edev = pci_dev_to_eeh_dev(dev);
1054
1055 /* Unregister the device with the EEH/PCI address search system */
1056 dev_dbg(&dev->dev, "EEH: Removing device\n");
1057
1058 if (!edev || !edev->pdev || !edev->pe) {
1059 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1060 return;
1061 }
1062
1063 /*
1064 * During the hotplug for EEH error recovery, we need the EEH
1065 * device attached to the parent PE in order for BAR restore
1066 * a bit later. So we keep it for BAR restore and remove it
1067 * from the parent PE during the BAR resotre.
1068 */
1069 edev->pdev = NULL;
1070
1071 /*
1072 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1073 * remove the sysfs files before clearing dev.archdata.edev
1074 */
1075 if (edev->mode & EEH_DEV_SYSFS)
1076 eeh_sysfs_remove_device(dev);
1077
1078 /*
1079 * We're removing from the PCI subsystem, that means
1080 * the PCI device driver can't support EEH or not
1081 * well. So we rely on hotplug completely to do recovery
1082 * for the specific PCI device.
1083 */
1084 edev->mode |= EEH_DEV_NO_HANDLER;
1085
1086 eeh_addr_cache_rmv_dev(dev);
1087
1088 /*
1089 * The flag "in_error" is used to trace EEH devices for VFs
1090 * in error state or not. It's set in eeh_report_error(). If
1091 * it's not set, eeh_report_{reset,resume}() won't be called
1092 * for the VF EEH device.
1093 */
1094 edev->in_error = false;
1095 dev->dev.archdata.edev = NULL;
1096 if (!(edev->pe->state & EEH_PE_KEEP))
1097 eeh_pe_tree_remove(edev);
1098 else
1099 edev->mode |= EEH_DEV_DISCONNECTED;
1100}
1101
1102int eeh_unfreeze_pe(struct eeh_pe *pe)
1103{
1104 int ret;
1105
1106 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1107 if (ret) {
1108 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1109 __func__, ret, pe->phb->global_number, pe->addr);
1110 return ret;
1111 }
1112
1113 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1114 if (ret) {
1115 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1116 __func__, ret, pe->phb->global_number, pe->addr);
1117 return ret;
1118 }
1119
1120 return ret;
1121}
1122
1123
1124static struct pci_device_id eeh_reset_ids[] = {
1125 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1126 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1127 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1128 { 0 }
1129};
1130
1131static int eeh_pe_change_owner(struct eeh_pe *pe)
1132{
1133 struct eeh_dev *edev, *tmp;
1134 struct pci_dev *pdev;
1135 struct pci_device_id *id;
1136 int ret;
1137
1138 /* Check PE state */
1139 ret = eeh_ops->get_state(pe, NULL);
1140 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1141 return 0;
1142
1143 /* Unfrozen PE, nothing to do */
1144 if (eeh_state_active(ret))
1145 return 0;
1146
1147 /* Frozen PE, check if it needs PE level reset */
1148 eeh_pe_for_each_dev(pe, edev, tmp) {
1149 pdev = eeh_dev_to_pci_dev(edev);
1150 if (!pdev)
1151 continue;
1152
1153 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1154 if (id->vendor != PCI_ANY_ID &&
1155 id->vendor != pdev->vendor)
1156 continue;
1157 if (id->device != PCI_ANY_ID &&
1158 id->device != pdev->device)
1159 continue;
1160 if (id->subvendor != PCI_ANY_ID &&
1161 id->subvendor != pdev->subsystem_vendor)
1162 continue;
1163 if (id->subdevice != PCI_ANY_ID &&
1164 id->subdevice != pdev->subsystem_device)
1165 continue;
1166
1167 return eeh_pe_reset_and_recover(pe);
1168 }
1169 }
1170
1171 ret = eeh_unfreeze_pe(pe);
1172 if (!ret)
1173 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1174 return ret;
1175}
1176
1177/**
1178 * eeh_dev_open - Increase count of pass through devices for PE
1179 * @pdev: PCI device
1180 *
1181 * Increase count of passed through devices for the indicated
1182 * PE. In the result, the EEH errors detected on the PE won't be
1183 * reported. The PE owner will be responsible for detection
1184 * and recovery.
1185 */
1186int eeh_dev_open(struct pci_dev *pdev)
1187{
1188 struct eeh_dev *edev;
1189 int ret = -ENODEV;
1190
1191 mutex_lock(&eeh_dev_mutex);
1192
1193 /* No PCI device ? */
1194 if (!pdev)
1195 goto out;
1196
1197 /* No EEH device or PE ? */
1198 edev = pci_dev_to_eeh_dev(pdev);
1199 if (!edev || !edev->pe)
1200 goto out;
1201
1202 /*
1203 * The PE might have been put into frozen state, but we
1204 * didn't detect that yet. The passed through PCI devices
1205 * in frozen PE won't work properly. Clear the frozen state
1206 * in advance.
1207 */
1208 ret = eeh_pe_change_owner(edev->pe);
1209 if (ret)
1210 goto out;
1211
1212 /* Increase PE's pass through count */
1213 atomic_inc(&edev->pe->pass_dev_cnt);
1214 mutex_unlock(&eeh_dev_mutex);
1215
1216 return 0;
1217out:
1218 mutex_unlock(&eeh_dev_mutex);
1219 return ret;
1220}
1221EXPORT_SYMBOL_GPL(eeh_dev_open);
1222
1223/**
1224 * eeh_dev_release - Decrease count of pass through devices for PE
1225 * @pdev: PCI device
1226 *
1227 * Decrease count of pass through devices for the indicated PE. If
1228 * there is no passed through device in PE, the EEH errors detected
1229 * on the PE will be reported and handled as usual.
1230 */
1231void eeh_dev_release(struct pci_dev *pdev)
1232{
1233 struct eeh_dev *edev;
1234
1235 mutex_lock(&eeh_dev_mutex);
1236
1237 /* No PCI device ? */
1238 if (!pdev)
1239 goto out;
1240
1241 /* No EEH device ? */
1242 edev = pci_dev_to_eeh_dev(pdev);
1243 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1244 goto out;
1245
1246 /* Decrease PE's pass through count */
1247 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1248 eeh_pe_change_owner(edev->pe);
1249out:
1250 mutex_unlock(&eeh_dev_mutex);
1251}
1252EXPORT_SYMBOL(eeh_dev_release);
1253
1254#ifdef CONFIG_IOMMU_API
1255
1256static int dev_has_iommu_table(struct device *dev, void *data)
1257{
1258 struct pci_dev *pdev = to_pci_dev(dev);
1259 struct pci_dev **ppdev = data;
1260
1261 if (!dev)
1262 return 0;
1263
1264 if (device_iommu_mapped(dev)) {
1265 *ppdev = pdev;
1266 return 1;
1267 }
1268
1269 return 0;
1270}
1271
1272/**
1273 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1274 * @group: IOMMU group
1275 *
1276 * The routine is called to convert IOMMU group to EEH PE.
1277 */
1278struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1279{
1280 struct pci_dev *pdev = NULL;
1281 struct eeh_dev *edev;
1282 int ret;
1283
1284 /* No IOMMU group ? */
1285 if (!group)
1286 return NULL;
1287
1288 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1289 if (!ret || !pdev)
1290 return NULL;
1291
1292 /* No EEH device or PE ? */
1293 edev = pci_dev_to_eeh_dev(pdev);
1294 if (!edev || !edev->pe)
1295 return NULL;
1296
1297 return edev->pe;
1298}
1299EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1300
1301#endif /* CONFIG_IOMMU_API */
1302
1303/**
1304 * eeh_pe_set_option - Set options for the indicated PE
1305 * @pe: EEH PE
1306 * @option: requested option
1307 *
1308 * The routine is called to enable or disable EEH functionality
1309 * on the indicated PE, to enable IO or DMA for the frozen PE.
1310 */
1311int eeh_pe_set_option(struct eeh_pe *pe, int option)
1312{
1313 int ret = 0;
1314
1315 /* Invalid PE ? */
1316 if (!pe)
1317 return -ENODEV;
1318
1319 /*
1320 * EEH functionality could possibly be disabled, just
1321 * return error for the case. And the EEH functinality
1322 * isn't expected to be disabled on one specific PE.
1323 */
1324 switch (option) {
1325 case EEH_OPT_ENABLE:
1326 if (eeh_enabled()) {
1327 ret = eeh_pe_change_owner(pe);
1328 break;
1329 }
1330 ret = -EIO;
1331 break;
1332 case EEH_OPT_DISABLE:
1333 break;
1334 case EEH_OPT_THAW_MMIO:
1335 case EEH_OPT_THAW_DMA:
1336 case EEH_OPT_FREEZE_PE:
1337 if (!eeh_ops || !eeh_ops->set_option) {
1338 ret = -ENOENT;
1339 break;
1340 }
1341
1342 ret = eeh_pci_enable(pe, option);
1343 break;
1344 default:
1345 pr_debug("%s: Option %d out of range (%d, %d)\n",
1346 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1347 ret = -EINVAL;
1348 }
1349
1350 return ret;
1351}
1352EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1353
1354/**
1355 * eeh_pe_get_state - Retrieve PE's state
1356 * @pe: EEH PE
1357 *
1358 * Retrieve the PE's state, which includes 3 aspects: enabled
1359 * DMA, enabled IO and asserted reset.
1360 */
1361int eeh_pe_get_state(struct eeh_pe *pe)
1362{
1363 int result, ret = 0;
1364 bool rst_active, dma_en, mmio_en;
1365
1366 /* Existing PE ? */
1367 if (!pe)
1368 return -ENODEV;
1369
1370 if (!eeh_ops || !eeh_ops->get_state)
1371 return -ENOENT;
1372
1373 /*
1374 * If the parent PE is owned by the host kernel and is undergoing
1375 * error recovery, we should return the PE state as temporarily
1376 * unavailable so that the error recovery on the guest is suspended
1377 * until the recovery completes on the host.
1378 */
1379 if (pe->parent &&
1380 !(pe->state & EEH_PE_REMOVED) &&
1381 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1382 return EEH_PE_STATE_UNAVAIL;
1383
1384 result = eeh_ops->get_state(pe, NULL);
1385 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1386 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1387 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1388
1389 if (rst_active)
1390 ret = EEH_PE_STATE_RESET;
1391 else if (dma_en && mmio_en)
1392 ret = EEH_PE_STATE_NORMAL;
1393 else if (!dma_en && !mmio_en)
1394 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1395 else if (!dma_en && mmio_en)
1396 ret = EEH_PE_STATE_STOPPED_DMA;
1397 else
1398 ret = EEH_PE_STATE_UNAVAIL;
1399
1400 return ret;
1401}
1402EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1403
1404static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1405{
1406 struct eeh_dev *edev, *tmp;
1407 struct pci_dev *pdev;
1408 int ret = 0;
1409
1410 eeh_pe_restore_bars(pe);
1411
1412 /*
1413 * Reenable PCI devices as the devices passed
1414 * through are always enabled before the reset.
1415 */
1416 eeh_pe_for_each_dev(pe, edev, tmp) {
1417 pdev = eeh_dev_to_pci_dev(edev);
1418 if (!pdev)
1419 continue;
1420
1421 ret = pci_reenable_device(pdev);
1422 if (ret) {
1423 pr_warn("%s: Failure %d reenabling %s\n",
1424 __func__, ret, pci_name(pdev));
1425 return ret;
1426 }
1427 }
1428
1429 /* The PE is still in frozen state */
1430 if (include_passed || !eeh_pe_passed(pe)) {
1431 ret = eeh_unfreeze_pe(pe);
1432 } else
1433 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1434 pe->phb->global_number, pe->addr);
1435 if (!ret)
1436 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1437 return ret;
1438}
1439
1440
1441/**
1442 * eeh_pe_reset - Issue PE reset according to specified type
1443 * @pe: EEH PE
1444 * @option: reset type
1445 *
1446 * The routine is called to reset the specified PE with the
1447 * indicated type, either fundamental reset or hot reset.
1448 * PE reset is the most important part for error recovery.
1449 */
1450int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1451{
1452 int ret = 0;
1453
1454 /* Invalid PE ? */
1455 if (!pe)
1456 return -ENODEV;
1457
1458 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1459 return -ENOENT;
1460
1461 switch (option) {
1462 case EEH_RESET_DEACTIVATE:
1463 ret = eeh_ops->reset(pe, option);
1464 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1465 if (ret)
1466 break;
1467
1468 ret = eeh_pe_reenable_devices(pe, include_passed);
1469 break;
1470 case EEH_RESET_HOT:
1471 case EEH_RESET_FUNDAMENTAL:
1472 /*
1473 * Proactively freeze the PE to drop all MMIO access
1474 * during reset, which should be banned as it's always
1475 * cause recursive EEH error.
1476 */
1477 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1478
1479 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1480 ret = eeh_ops->reset(pe, option);
1481 break;
1482 default:
1483 pr_debug("%s: Unsupported option %d\n",
1484 __func__, option);
1485 ret = -EINVAL;
1486 }
1487
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(eeh_pe_reset);
1491
1492/**
1493 * eeh_pe_configure - Configure PCI bridges after PE reset
1494 * @pe: EEH PE
1495 *
1496 * The routine is called to restore the PCI config space for
1497 * those PCI devices, especially PCI bridges affected by PE
1498 * reset issued previously.
1499 */
1500int eeh_pe_configure(struct eeh_pe *pe)
1501{
1502 int ret = 0;
1503
1504 /* Invalid PE ? */
1505 if (!pe)
1506 return -ENODEV;
1507
1508 return ret;
1509}
1510EXPORT_SYMBOL_GPL(eeh_pe_configure);
1511
1512/**
1513 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1514 * @pe: the indicated PE
1515 * @type: error type
1516 * @function: error function
1517 * @addr: address
1518 * @mask: address mask
1519 *
1520 * The routine is called to inject the specified PCI error, which
1521 * is determined by @type and @function, to the indicated PE for
1522 * testing purpose.
1523 */
1524int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1525 unsigned long addr, unsigned long mask)
1526{
1527 /* Invalid PE ? */
1528 if (!pe)
1529 return -ENODEV;
1530
1531 /* Unsupported operation ? */
1532 if (!eeh_ops || !eeh_ops->err_inject)
1533 return -ENOENT;
1534
1535 /* Check on PCI error type */
1536 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1537 return -EINVAL;
1538
1539 /* Check on PCI error function */
1540 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1541 return -EINVAL;
1542
1543 return eeh_ops->err_inject(pe, type, func, addr, mask);
1544}
1545EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1546
1547#ifdef CONFIG_PROC_FS
1548static int proc_eeh_show(struct seq_file *m, void *v)
1549{
1550 if (!eeh_enabled()) {
1551 seq_printf(m, "EEH Subsystem is globally disabled\n");
1552 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1553 } else {
1554 seq_printf(m, "EEH Subsystem is enabled\n");
1555 seq_printf(m,
1556 "no device=%llu\n"
1557 "no device node=%llu\n"
1558 "no config address=%llu\n"
1559 "check not wanted=%llu\n"
1560 "eeh_total_mmio_ffs=%llu\n"
1561 "eeh_false_positives=%llu\n"
1562 "eeh_slot_resets=%llu\n",
1563 eeh_stats.no_device,
1564 eeh_stats.no_dn,
1565 eeh_stats.no_cfg_addr,
1566 eeh_stats.ignored_check,
1567 eeh_stats.total_mmio_ffs,
1568 eeh_stats.false_positives,
1569 eeh_stats.slot_resets);
1570 }
1571
1572 return 0;
1573}
1574#endif /* CONFIG_PROC_FS */
1575
1576#ifdef CONFIG_DEBUG_FS
1577
1578
1579static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1580 const char __user *user_buf,
1581 size_t count, loff_t *ppos)
1582{
1583 uint32_t domain, bus, dev, fn;
1584 struct pci_dev *pdev;
1585 char buf[20];
1586 int ret;
1587
1588 memset(buf, 0, sizeof(buf));
1589 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1590 if (!ret)
1591 return ERR_PTR(-EFAULT);
1592
1593 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1594 if (ret != 4) {
1595 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1596 return ERR_PTR(-EINVAL);
1597 }
1598
1599 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1600 if (!pdev)
1601 return ERR_PTR(-ENODEV);
1602
1603 return pdev;
1604}
1605
1606static int eeh_enable_dbgfs_set(void *data, u64 val)
1607{
1608 if (val)
1609 eeh_clear_flag(EEH_FORCE_DISABLED);
1610 else
1611 eeh_add_flag(EEH_FORCE_DISABLED);
1612
1613 return 0;
1614}
1615
1616static int eeh_enable_dbgfs_get(void *data, u64 *val)
1617{
1618 if (eeh_enabled())
1619 *val = 0x1ul;
1620 else
1621 *val = 0x0ul;
1622 return 0;
1623}
1624
1625DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1626 eeh_enable_dbgfs_set, "0x%llx\n");
1627
1628static ssize_t eeh_force_recover_write(struct file *filp,
1629 const char __user *user_buf,
1630 size_t count, loff_t *ppos)
1631{
1632 struct pci_controller *hose;
1633 uint32_t phbid, pe_no;
1634 struct eeh_pe *pe;
1635 char buf[20];
1636 int ret;
1637
1638 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1639 if (!ret)
1640 return -EFAULT;
1641
1642 /*
1643 * When PE is NULL the event is a "special" event. Rather than
1644 * recovering a specific PE it forces the EEH core to scan for failed
1645 * PHBs and recovers each. This needs to be done before any device
1646 * recoveries can occur.
1647 */
1648 if (!strncmp(buf, "hwcheck", 7)) {
1649 __eeh_send_failure_event(NULL);
1650 return count;
1651 }
1652
1653 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1654 if (ret != 2)
1655 return -EINVAL;
1656
1657 hose = pci_find_controller_for_domain(phbid);
1658 if (!hose)
1659 return -ENODEV;
1660
1661 /* Retrieve PE */
1662 pe = eeh_pe_get(hose, pe_no);
1663 if (!pe)
1664 return -ENODEV;
1665
1666 /*
1667 * We don't do any state checking here since the detection
1668 * process is async to the recovery process. The recovery
1669 * thread *should* not break even if we schedule a recovery
1670 * from an odd state (e.g. PE removed, or recovery of a
1671 * non-isolated PE)
1672 */
1673 __eeh_send_failure_event(pe);
1674
1675 return ret < 0 ? ret : count;
1676}
1677
1678static const struct file_operations eeh_force_recover_fops = {
1679 .open = simple_open,
1680 .llseek = no_llseek,
1681 .write = eeh_force_recover_write,
1682};
1683
1684static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1685 char __user *user_buf,
1686 size_t count, loff_t *ppos)
1687{
1688 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1689
1690 return simple_read_from_buffer(user_buf, count, ppos,
1691 usage, sizeof(usage) - 1);
1692}
1693
1694static ssize_t eeh_dev_check_write(struct file *filp,
1695 const char __user *user_buf,
1696 size_t count, loff_t *ppos)
1697{
1698 struct pci_dev *pdev;
1699 struct eeh_dev *edev;
1700 int ret;
1701
1702 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1703 if (IS_ERR(pdev))
1704 return PTR_ERR(pdev);
1705
1706 edev = pci_dev_to_eeh_dev(pdev);
1707 if (!edev) {
1708 pci_err(pdev, "No eeh_dev for this device!\n");
1709 pci_dev_put(pdev);
1710 return -ENODEV;
1711 }
1712
1713 ret = eeh_dev_check_failure(edev);
1714 pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1715 pci_name(pdev), ret);
1716
1717 pci_dev_put(pdev);
1718
1719 return count;
1720}
1721
1722static const struct file_operations eeh_dev_check_fops = {
1723 .open = simple_open,
1724 .llseek = no_llseek,
1725 .write = eeh_dev_check_write,
1726 .read = eeh_debugfs_dev_usage,
1727};
1728
1729static int eeh_debugfs_break_device(struct pci_dev *pdev)
1730{
1731 struct resource *bar = NULL;
1732 void __iomem *mapped;
1733 u16 old, bit;
1734 int i, pos;
1735
1736 /* Do we have an MMIO BAR to disable? */
1737 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1738 struct resource *r = &pdev->resource[i];
1739
1740 if (!r->flags || !r->start)
1741 continue;
1742 if (r->flags & IORESOURCE_IO)
1743 continue;
1744 if (r->flags & IORESOURCE_UNSET)
1745 continue;
1746
1747 bar = r;
1748 break;
1749 }
1750
1751 if (!bar) {
1752 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1753 return -ENXIO;
1754 }
1755
1756 pci_err(pdev, "Going to break: %pR\n", bar);
1757
1758 if (pdev->is_virtfn) {
1759#ifndef CONFIG_PCI_IOV
1760 return -ENXIO;
1761#else
1762 /*
1763 * VFs don't have a per-function COMMAND register, so the best
1764 * we can do is clear the Memory Space Enable bit in the PF's
1765 * SRIOV control reg.
1766 *
1767 * Unfortunately, this requires that we have a PF (i.e doesn't
1768 * work for a passed-through VF) and it has the potential side
1769 * effect of also causing an EEH on every other VF under the
1770 * PF. Oh well.
1771 */
1772 pdev = pdev->physfn;
1773 if (!pdev)
1774 return -ENXIO; /* passed through VFs have no PF */
1775
1776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1777 pos += PCI_SRIOV_CTRL;
1778 bit = PCI_SRIOV_CTRL_MSE;
1779#endif /* !CONFIG_PCI_IOV */
1780 } else {
1781 bit = PCI_COMMAND_MEMORY;
1782 pos = PCI_COMMAND;
1783 }
1784
1785 /*
1786 * Process here is:
1787 *
1788 * 1. Disable Memory space.
1789 *
1790 * 2. Perform an MMIO to the device. This should result in an error
1791 * (CA / UR) being raised by the device which results in an EEH
1792 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1793 * so the freeze hook so the EEH Detection machinery won't be
1794 * triggered here. This is to match the usual behaviour of EEH
1795 * where the HW will asyncronously freeze a PE and it's up to
1796 * the kernel to notice and deal with it.
1797 *
1798 * 3. Turn Memory space back on. This is more important for VFs
1799 * since recovery will probably fail if we don't. For normal
1800 * the COMMAND register is reset as a part of re-initialising
1801 * the device.
1802 *
1803 * Breaking stuff is the point so who cares if it's racy ;)
1804 */
1805 pci_read_config_word(pdev, pos, &old);
1806
1807 mapped = ioremap(bar->start, PAGE_SIZE);
1808 if (!mapped) {
1809 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1810 return -ENXIO;
1811 }
1812
1813 pci_write_config_word(pdev, pos, old & ~bit);
1814 in_8(mapped);
1815 pci_write_config_word(pdev, pos, old);
1816
1817 iounmap(mapped);
1818
1819 return 0;
1820}
1821
1822static ssize_t eeh_dev_break_write(struct file *filp,
1823 const char __user *user_buf,
1824 size_t count, loff_t *ppos)
1825{
1826 struct pci_dev *pdev;
1827 int ret;
1828
1829 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1830 if (IS_ERR(pdev))
1831 return PTR_ERR(pdev);
1832
1833 ret = eeh_debugfs_break_device(pdev);
1834 pci_dev_put(pdev);
1835
1836 if (ret < 0)
1837 return ret;
1838
1839 return count;
1840}
1841
1842static const struct file_operations eeh_dev_break_fops = {
1843 .open = simple_open,
1844 .llseek = no_llseek,
1845 .write = eeh_dev_break_write,
1846 .read = eeh_debugfs_dev_usage,
1847};
1848
1849static ssize_t eeh_dev_can_recover(struct file *filp,
1850 const char __user *user_buf,
1851 size_t count, loff_t *ppos)
1852{
1853 struct pci_driver *drv;
1854 struct pci_dev *pdev;
1855 size_t ret;
1856
1857 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1858 if (IS_ERR(pdev))
1859 return PTR_ERR(pdev);
1860
1861 /*
1862 * In order for error recovery to work the driver needs to implement
1863 * .error_detected(), so it can quiesce IO to the device, and
1864 * .slot_reset() so it can re-initialise the device after a reset.
1865 *
1866 * Ideally they'd implement .resume() too, but some drivers which
1867 * we need to support (notably IPR) don't so I guess we can tolerate
1868 * that.
1869 *
1870 * .mmio_enabled() is mostly there as a work-around for devices which
1871 * take forever to re-init after a hot reset. Implementing that is
1872 * strictly optional.
1873 */
1874 drv = pci_dev_driver(pdev);
1875 if (drv &&
1876 drv->err_handler &&
1877 drv->err_handler->error_detected &&
1878 drv->err_handler->slot_reset) {
1879 ret = count;
1880 } else {
1881 ret = -EOPNOTSUPP;
1882 }
1883
1884 pci_dev_put(pdev);
1885
1886 return ret;
1887}
1888
1889static const struct file_operations eeh_dev_can_recover_fops = {
1890 .open = simple_open,
1891 .llseek = no_llseek,
1892 .write = eeh_dev_can_recover,
1893 .read = eeh_debugfs_dev_usage,
1894};
1895
1896#endif
1897
1898static int __init eeh_init_proc(void)
1899{
1900 if (machine_is(pseries) || machine_is(powernv)) {
1901 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1902#ifdef CONFIG_DEBUG_FS
1903 debugfs_create_file_unsafe("eeh_enable", 0600,
1904 powerpc_debugfs_root, NULL,
1905 &eeh_enable_dbgfs_ops);
1906 debugfs_create_u32("eeh_max_freezes", 0600,
1907 powerpc_debugfs_root, &eeh_max_freezes);
1908 debugfs_create_bool("eeh_disable_recovery", 0600,
1909 powerpc_debugfs_root,
1910 &eeh_debugfs_no_recover);
1911 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1912 powerpc_debugfs_root, NULL,
1913 &eeh_dev_check_fops);
1914 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1915 powerpc_debugfs_root, NULL,
1916 &eeh_dev_break_fops);
1917 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1918 powerpc_debugfs_root, NULL,
1919 &eeh_force_recover_fops);
1920 debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1921 powerpc_debugfs_root, NULL,
1922 &eeh_dev_can_recover_fops);
1923 eeh_cache_debugfs_init();
1924#endif
1925 }
1926
1927 return 0;
1928}
1929__initcall(eeh_init_proc);
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/debugfs.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/pci.h>
30#include <linux/iommu.h>
31#include <linux/proc_fs.h>
32#include <linux/rbtree.h>
33#include <linux/reboot.h>
34#include <linux/seq_file.h>
35#include <linux/spinlock.h>
36#include <linux/export.h>
37#include <linux/of.h>
38
39#include <linux/atomic.h>
40#include <asm/debug.h>
41#include <asm/eeh.h>
42#include <asm/eeh_event.h>
43#include <asm/io.h>
44#include <asm/iommu.h>
45#include <asm/machdep.h>
46#include <asm/ppc-pci.h>
47#include <asm/rtas.h>
48
49
50/** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121/* Lock to protect passed flags */
122static DEFINE_MUTEX(eeh_dev_mutex);
123
124/* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128#define EEH_PCI_REGS_LOG_LEN 8192
129static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131/*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144};
145
146static struct eeh_stats eeh_stats;
147
148static int __init eeh_setup(char *str)
149{
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156}
157__setup("eeh=", eeh_setup);
158
159/*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
164static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165{
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 edev->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 edev->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
196 }
197
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208 }
209
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
223
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
230 }
231
232 }
233
234 pr_warn("%s\n", buffer);
235 }
236
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
250
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
257 }
258 }
259
260 pr_warn("%s\n", buffer);
261 }
262
263 return n;
264}
265
266static void *eeh_dump_pe_log(void *data, void *flag)
267{
268 struct eeh_pe *pe = data;
269 struct eeh_dev *edev, *tmp;
270 size_t *plen = flag;
271
272 eeh_pe_for_each_dev(pe, edev, tmp)
273 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274 EEH_PCI_REGS_LOG_LEN - *plen);
275
276 return NULL;
277}
278
279/**
280 * eeh_slot_error_detail - Generate combined log including driver log and error log
281 * @pe: EEH PE
282 * @severity: temporary or permanent error log
283 *
284 * This routine should be called to generate the combined log, which
285 * is comprised of driver log and error log. The driver log is figured
286 * out from the config space of the corresponding PCI device, while
287 * the error log is fetched through platform dependent function call.
288 */
289void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
290{
291 size_t loglen = 0;
292
293 /*
294 * When the PHB is fenced or dead, it's pointless to collect
295 * the data from PCI config space because it should return
296 * 0xFF's. For ER, we still retrieve the data from the PCI
297 * config space.
298 *
299 * For pHyp, we have to enable IO for log retrieval. Otherwise,
300 * 0xFF's is always returned from PCI config space.
301 *
302 * When the @severity is EEH_LOG_PERM, the PE is going to be
303 * removed. Prior to that, the drivers for devices included in
304 * the PE will be closed. The drivers rely on working IO path
305 * to bring the devices to quiet state. Otherwise, PCI traffic
306 * from those devices after they are removed is like to cause
307 * another unexpected EEH error.
308 */
309 if (!(pe->type & EEH_PE_PHB)) {
310 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
311 severity == EEH_LOG_PERM)
312 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313
314 /*
315 * The config space of some PCI devices can't be accessed
316 * when their PEs are in frozen state. Otherwise, fenced
317 * PHB might be seen. Those PEs are identified with flag
318 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 * is set automatically when the PE is put to EEH_PE_ISOLATED.
320 *
321 * Restoring BARs possibly triggers PCI config access in
322 * (OPAL) firmware and then causes fenced PHB. If the
323 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 * pointless to restore BARs and dump config space.
325 */
326 eeh_ops->configure_bridge(pe);
327 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 eeh_pe_restore_bars(pe);
329
330 pci_regs_buf[0] = 0;
331 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332 }
333 }
334
335 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336}
337
338/**
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
341 *
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
344 */
345static inline unsigned long eeh_token_to_phys(unsigned long token)
346{
347 pte_t *ptep;
348 unsigned long pa;
349 int hugepage_shift;
350
351 /*
352 * We won't find hugepages here(this is iomem). Hence we are not
353 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 * page table free, because of init_mm.
355 */
356 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
357 NULL, &hugepage_shift);
358 if (!ptep)
359 return token;
360 WARN_ON(hugepage_shift);
361 pa = pte_pfn(*ptep) << PAGE_SHIFT;
362
363 return pa | (token & (PAGE_SIZE-1));
364}
365
366/*
367 * On PowerNV platform, we might already have fenced PHB there.
368 * For that case, it's meaningless to recover frozen PE. Intead,
369 * We have to handle fenced PHB firstly.
370 */
371static int eeh_phb_check_failure(struct eeh_pe *pe)
372{
373 struct eeh_pe *phb_pe;
374 unsigned long flags;
375 int ret;
376
377 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
378 return -EPERM;
379
380 /* Find the PHB PE */
381 phb_pe = eeh_phb_pe_get(pe->phb);
382 if (!phb_pe) {
383 pr_warn("%s Can't find PE for PHB#%x\n",
384 __func__, pe->phb->global_number);
385 return -EEXIST;
386 }
387
388 /* If the PHB has been in problematic state */
389 eeh_serialize_lock(&flags);
390 if (phb_pe->state & EEH_PE_ISOLATED) {
391 ret = 0;
392 goto out;
393 }
394
395 /* Check PHB state */
396 ret = eeh_ops->get_state(phb_pe, NULL);
397 if ((ret < 0) ||
398 (ret == EEH_STATE_NOT_SUPPORT) ||
399 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
400 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
401 ret = 0;
402 goto out;
403 }
404
405 /* Isolate the PHB and send event */
406 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
407 eeh_serialize_unlock(flags);
408
409 pr_err("EEH: PHB#%x failure detected, location: %s\n",
410 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
411 dump_stack();
412 eeh_send_failure_event(phb_pe);
413
414 return 1;
415out:
416 eeh_serialize_unlock(flags);
417 return ret;
418}
419
420/**
421 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
422 * @edev: eeh device
423 *
424 * Check for an EEH failure for the given device node. Call this
425 * routine if the result of a read was all 0xff's and you want to
426 * find out if this is due to an EEH slot freeze. This routine
427 * will query firmware for the EEH status.
428 *
429 * Returns 0 if there has not been an EEH error; otherwise returns
430 * a non-zero value and queues up a slot isolation event notification.
431 *
432 * It is safe to call this routine in an interrupt context.
433 */
434int eeh_dev_check_failure(struct eeh_dev *edev)
435{
436 int ret;
437 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
438 unsigned long flags;
439 struct pci_dn *pdn;
440 struct pci_dev *dev;
441 struct eeh_pe *pe, *parent_pe, *phb_pe;
442 int rc = 0;
443 const char *location = NULL;
444
445 eeh_stats.total_mmio_ffs++;
446
447 if (!eeh_enabled())
448 return 0;
449
450 if (!edev) {
451 eeh_stats.no_dn++;
452 return 0;
453 }
454 dev = eeh_dev_to_pci_dev(edev);
455 pe = eeh_dev_to_pe(edev);
456
457 /* Access to IO BARs might get this far and still not want checking. */
458 if (!pe) {
459 eeh_stats.ignored_check++;
460 pr_debug("EEH: Ignored check for %s\n",
461 eeh_pci_name(dev));
462 return 0;
463 }
464
465 if (!pe->addr && !pe->config_addr) {
466 eeh_stats.no_cfg_addr++;
467 return 0;
468 }
469
470 /*
471 * On PowerNV platform, we might already have fenced PHB
472 * there and we need take care of that firstly.
473 */
474 ret = eeh_phb_check_failure(pe);
475 if (ret > 0)
476 return ret;
477
478 /*
479 * If the PE isn't owned by us, we shouldn't check the
480 * state. Instead, let the owner handle it if the PE has
481 * been frozen.
482 */
483 if (eeh_pe_passed(pe))
484 return 0;
485
486 /* If we already have a pending isolation event for this
487 * slot, we know it's bad already, we don't need to check.
488 * Do this checking under a lock; as multiple PCI devices
489 * in one slot might report errors simultaneously, and we
490 * only want one error recovery routine running.
491 */
492 eeh_serialize_lock(&flags);
493 rc = 1;
494 if (pe->state & EEH_PE_ISOLATED) {
495 pe->check_count++;
496 if (pe->check_count % EEH_MAX_FAILS == 0) {
497 pdn = eeh_dev_to_pdn(edev);
498 if (pdn->node)
499 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
500 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
501 "location=%s driver=%s pci addr=%s\n",
502 pe->check_count,
503 location ? location : "unknown",
504 eeh_driver_name(dev), eeh_pci_name(dev));
505 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
506 eeh_driver_name(dev));
507 dump_stack();
508 }
509 goto dn_unlock;
510 }
511
512 /*
513 * Now test for an EEH failure. This is VERY expensive.
514 * Note that the eeh_config_addr may be a parent device
515 * in the case of a device behind a bridge, or it may be
516 * function zero of a multi-function device.
517 * In any case they must share a common PHB.
518 */
519 ret = eeh_ops->get_state(pe, NULL);
520
521 /* Note that config-io to empty slots may fail;
522 * they are empty when they don't have children.
523 * We will punt with the following conditions: Failure to get
524 * PE's state, EEH not support and Permanently unavailable
525 * state, PE is in good state.
526 */
527 if ((ret < 0) ||
528 (ret == EEH_STATE_NOT_SUPPORT) ||
529 ((ret & active_flags) == active_flags)) {
530 eeh_stats.false_positives++;
531 pe->false_positives++;
532 rc = 0;
533 goto dn_unlock;
534 }
535
536 /*
537 * It should be corner case that the parent PE has been
538 * put into frozen state as well. We should take care
539 * that at first.
540 */
541 parent_pe = pe->parent;
542 while (parent_pe) {
543 /* Hit the ceiling ? */
544 if (parent_pe->type & EEH_PE_PHB)
545 break;
546
547 /* Frozen parent PE ? */
548 ret = eeh_ops->get_state(parent_pe, NULL);
549 if (ret > 0 &&
550 (ret & active_flags) != active_flags)
551 pe = parent_pe;
552
553 /* Next parent level */
554 parent_pe = parent_pe->parent;
555 }
556
557 eeh_stats.slot_resets++;
558
559 /* Avoid repeated reports of this failure, including problems
560 * with other functions on this device, and functions under
561 * bridges.
562 */
563 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
564 eeh_serialize_unlock(flags);
565
566 /* Most EEH events are due to device driver bugs. Having
567 * a stack trace will help the device-driver authors figure
568 * out what happened. So print that out.
569 */
570 phb_pe = eeh_phb_pe_get(pe->phb);
571 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
572 pe->phb->global_number, pe->addr);
573 pr_err("EEH: PE location: %s, PHB location: %s\n",
574 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
575 dump_stack();
576
577 eeh_send_failure_event(pe);
578
579 return 1;
580
581dn_unlock:
582 eeh_serialize_unlock(flags);
583 return rc;
584}
585
586EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
587
588/**
589 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
590 * @token: I/O address
591 *
592 * Check for an EEH failure at the given I/O address. Call this
593 * routine if the result of a read was all 0xff's and you want to
594 * find out if this is due to an EEH slot freeze event. This routine
595 * will query firmware for the EEH status.
596 *
597 * Note this routine is safe to call in an interrupt context.
598 */
599int eeh_check_failure(const volatile void __iomem *token)
600{
601 unsigned long addr;
602 struct eeh_dev *edev;
603
604 /* Finding the phys addr + pci device; this is pretty quick. */
605 addr = eeh_token_to_phys((unsigned long __force) token);
606 edev = eeh_addr_cache_get_dev(addr);
607 if (!edev) {
608 eeh_stats.no_device++;
609 return 0;
610 }
611
612 return eeh_dev_check_failure(edev);
613}
614EXPORT_SYMBOL(eeh_check_failure);
615
616
617/**
618 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
619 * @pe: EEH PE
620 *
621 * This routine should be called to reenable frozen MMIO or DMA
622 * so that it would work correctly again. It's useful while doing
623 * recovery or log collection on the indicated device.
624 */
625int eeh_pci_enable(struct eeh_pe *pe, int function)
626{
627 int active_flag, rc;
628
629 /*
630 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
631 * Also, it's pointless to enable them on unfrozen PE. So
632 * we have to check before enabling IO or DMA.
633 */
634 switch (function) {
635 case EEH_OPT_THAW_MMIO:
636 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
637 break;
638 case EEH_OPT_THAW_DMA:
639 active_flag = EEH_STATE_DMA_ACTIVE;
640 break;
641 case EEH_OPT_DISABLE:
642 case EEH_OPT_ENABLE:
643 case EEH_OPT_FREEZE_PE:
644 active_flag = 0;
645 break;
646 default:
647 pr_warn("%s: Invalid function %d\n",
648 __func__, function);
649 return -EINVAL;
650 }
651
652 /*
653 * Check if IO or DMA has been enabled before
654 * enabling them.
655 */
656 if (active_flag) {
657 rc = eeh_ops->get_state(pe, NULL);
658 if (rc < 0)
659 return rc;
660
661 /* Needn't enable it at all */
662 if (rc == EEH_STATE_NOT_SUPPORT)
663 return 0;
664
665 /* It's already enabled */
666 if (rc & active_flag)
667 return 0;
668 }
669
670
671 /* Issue the request */
672 rc = eeh_ops->set_option(pe, function);
673 if (rc)
674 pr_warn("%s: Unexpected state change %d on "
675 "PHB#%x-PE#%x, err=%d\n",
676 __func__, function, pe->phb->global_number,
677 pe->addr, rc);
678
679 /* Check if the request is finished successfully */
680 if (active_flag) {
681 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
682 if (rc < 0)
683 return rc;
684
685 if (rc & active_flag)
686 return 0;
687
688 return -EIO;
689 }
690
691 return rc;
692}
693
694static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
695{
696 struct eeh_dev *edev = data;
697 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
698 struct pci_dev *dev = userdata;
699
700 /*
701 * The caller should have disabled and saved the
702 * state for the specified device
703 */
704 if (!pdev || pdev == dev)
705 return NULL;
706
707 /* Ensure we have D0 power state */
708 pci_set_power_state(pdev, PCI_D0);
709
710 /* Save device state */
711 pci_save_state(pdev);
712
713 /*
714 * Disable device to avoid any DMA traffic and
715 * interrupt from the device
716 */
717 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
718
719 return NULL;
720}
721
722static void *eeh_restore_dev_state(void *data, void *userdata)
723{
724 struct eeh_dev *edev = data;
725 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
726 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
727 struct pci_dev *dev = userdata;
728
729 if (!pdev)
730 return NULL;
731
732 /* Apply customization from firmware */
733 if (pdn && eeh_ops->restore_config)
734 eeh_ops->restore_config(pdn);
735
736 /* The caller should restore state for the specified device */
737 if (pdev != dev)
738 pci_restore_state(pdev);
739
740 return NULL;
741}
742
743/**
744 * pcibios_set_pcie_reset_state - Set PCI-E reset state
745 * @dev: pci device struct
746 * @state: reset state to enter
747 *
748 * Return value:
749 * 0 if success
750 */
751int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
752{
753 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
754 struct eeh_pe *pe = eeh_dev_to_pe(edev);
755
756 if (!pe) {
757 pr_err("%s: No PE found on PCI device %s\n",
758 __func__, pci_name(dev));
759 return -EINVAL;
760 }
761
762 switch (state) {
763 case pcie_deassert_reset:
764 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
765 eeh_unfreeze_pe(pe, false);
766 if (!(pe->type & EEH_PE_VF))
767 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
768 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
769 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
770 break;
771 case pcie_hot_reset:
772 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
773 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
774 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
775 if (!(pe->type & EEH_PE_VF))
776 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
777 eeh_ops->reset(pe, EEH_RESET_HOT);
778 break;
779 case pcie_warm_reset:
780 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
781 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
782 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
783 if (!(pe->type & EEH_PE_VF))
784 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
785 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
786 break;
787 default:
788 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
789 return -EINVAL;
790 };
791
792 return 0;
793}
794
795/**
796 * eeh_set_pe_freset - Check the required reset for the indicated device
797 * @data: EEH device
798 * @flag: return value
799 *
800 * Each device might have its preferred reset type: fundamental or
801 * hot reset. The routine is used to collected the information for
802 * the indicated device and its children so that the bunch of the
803 * devices could be reset properly.
804 */
805static void *eeh_set_dev_freset(void *data, void *flag)
806{
807 struct pci_dev *dev;
808 unsigned int *freset = (unsigned int *)flag;
809 struct eeh_dev *edev = (struct eeh_dev *)data;
810
811 dev = eeh_dev_to_pci_dev(edev);
812 if (dev)
813 *freset |= dev->needs_freset;
814
815 return NULL;
816}
817
818/**
819 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
820 * @pe: EEH PE
821 *
822 * This function executes a full reset procedure on a PE, including setting
823 * the appropriate flags, performing a fundamental or hot reset, and then
824 * deactivating the reset status. It is designed to be used within the EEH
825 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
826 * only performs a single operation at a time.
827 *
828 * This function will attempt to reset a PE three times before failing.
829 */
830int eeh_pe_reset_full(struct eeh_pe *pe)
831{
832 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
833 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
834 int type = EEH_RESET_HOT;
835 unsigned int freset = 0;
836 int i, state, ret;
837
838 /*
839 * Determine the type of reset to perform - hot or fundamental.
840 * Hot reset is the default operation, unless any device under the
841 * PE requires a fundamental reset.
842 */
843 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
844
845 if (freset)
846 type = EEH_RESET_FUNDAMENTAL;
847
848 /* Mark the PE as in reset state and block config space accesses */
849 eeh_pe_state_mark(pe, reset_state);
850
851 /* Make three attempts at resetting the bus */
852 for (i = 0; i < 3; i++) {
853 ret = eeh_pe_reset(pe, type);
854 if (ret)
855 break;
856
857 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
858 if (ret)
859 break;
860
861 /* Wait until the PE is in a functioning state */
862 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
863 if ((state & active_flags) == active_flags)
864 break;
865
866 if (state < 0) {
867 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
868 __func__, pe->phb->global_number, pe->addr);
869 ret = -ENOTRECOVERABLE;
870 break;
871 }
872
873 /* Set error in case this is our last attempt */
874 ret = -EIO;
875 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
876 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
877 }
878
879 eeh_pe_state_clear(pe, reset_state);
880 return ret;
881}
882
883/**
884 * eeh_save_bars - Save device bars
885 * @edev: PCI device associated EEH device
886 *
887 * Save the values of the device bars. Unlike the restore
888 * routine, this routine is *not* recursive. This is because
889 * PCI devices are added individually; but, for the restore,
890 * an entire slot is reset at a time.
891 */
892void eeh_save_bars(struct eeh_dev *edev)
893{
894 struct pci_dn *pdn;
895 int i;
896
897 pdn = eeh_dev_to_pdn(edev);
898 if (!pdn)
899 return;
900
901 for (i = 0; i < 16; i++)
902 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
903
904 /*
905 * For PCI bridges including root port, we need enable bus
906 * master explicitly. Otherwise, it can't fetch IODA table
907 * entries correctly. So we cache the bit in advance so that
908 * we can restore it after reset, either PHB range or PE range.
909 */
910 if (edev->mode & EEH_DEV_BRIDGE)
911 edev->config_space[1] |= PCI_COMMAND_MASTER;
912}
913
914/**
915 * eeh_ops_register - Register platform dependent EEH operations
916 * @ops: platform dependent EEH operations
917 *
918 * Register the platform dependent EEH operation callback
919 * functions. The platform should call this function before
920 * any other EEH operations.
921 */
922int __init eeh_ops_register(struct eeh_ops *ops)
923{
924 if (!ops->name) {
925 pr_warn("%s: Invalid EEH ops name for %p\n",
926 __func__, ops);
927 return -EINVAL;
928 }
929
930 if (eeh_ops && eeh_ops != ops) {
931 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
932 __func__, eeh_ops->name, ops->name);
933 return -EEXIST;
934 }
935
936 eeh_ops = ops;
937
938 return 0;
939}
940
941/**
942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
943 * @name: name of EEH platform operations
944 *
945 * Unregister the platform dependent EEH operation callback
946 * functions.
947 */
948int __exit eeh_ops_unregister(const char *name)
949{
950 if (!name || !strlen(name)) {
951 pr_warn("%s: Invalid EEH ops name\n",
952 __func__);
953 return -EINVAL;
954 }
955
956 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
957 eeh_ops = NULL;
958 return 0;
959 }
960
961 return -EEXIST;
962}
963
964static int eeh_reboot_notifier(struct notifier_block *nb,
965 unsigned long action, void *unused)
966{
967 eeh_clear_flag(EEH_ENABLED);
968 return NOTIFY_DONE;
969}
970
971static struct notifier_block eeh_reboot_nb = {
972 .notifier_call = eeh_reboot_notifier,
973};
974
975/**
976 * eeh_init - EEH initialization
977 *
978 * Initialize EEH by trying to enable it for all of the adapters in the system.
979 * As a side effect we can determine here if eeh is supported at all.
980 * Note that we leave EEH on so failed config cycles won't cause a machine
981 * check. If a user turns off EEH for a particular adapter they are really
982 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
983 * grant access to a slot if EEH isn't enabled, and so we always enable
984 * EEH for all slots/all devices.
985 *
986 * The eeh-force-off option disables EEH checking globally, for all slots.
987 * Even if force-off is set, the EEH hardware is still enabled, so that
988 * newer systems can boot.
989 */
990int eeh_init(void)
991{
992 struct pci_controller *hose, *tmp;
993 struct pci_dn *pdn;
994 static int cnt = 0;
995 int ret = 0;
996
997 /*
998 * We have to delay the initialization on PowerNV after
999 * the PCI hierarchy tree has been built because the PEs
1000 * are figured out based on PCI devices instead of device
1001 * tree nodes
1002 */
1003 if (machine_is(powernv) && cnt++ <= 0)
1004 return ret;
1005
1006 /* Register reboot notifier */
1007 ret = register_reboot_notifier(&eeh_reboot_nb);
1008 if (ret) {
1009 pr_warn("%s: Failed to register notifier (%d)\n",
1010 __func__, ret);
1011 return ret;
1012 }
1013
1014 /* call platform initialization function */
1015 if (!eeh_ops) {
1016 pr_warn("%s: Platform EEH operation not found\n",
1017 __func__);
1018 return -EEXIST;
1019 } else if ((ret = eeh_ops->init()))
1020 return ret;
1021
1022 /* Initialize EEH event */
1023 ret = eeh_event_init();
1024 if (ret)
1025 return ret;
1026
1027 /* Enable EEH for all adapters */
1028 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029 pdn = hose->pci_data;
1030 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1031 }
1032
1033 /*
1034 * Call platform post-initialization. Actually, It's good chance
1035 * to inform platform that EEH is ready to supply service if the
1036 * I/O cache stuff has been built up.
1037 */
1038 if (eeh_ops->post_init) {
1039 ret = eeh_ops->post_init();
1040 if (ret)
1041 return ret;
1042 }
1043
1044 if (eeh_enabled())
1045 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046 else
1047 pr_info("EEH: No capable adapters found\n");
1048
1049 return ret;
1050}
1051
1052core_initcall_sync(eeh_init);
1053
1054/**
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1057 *
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1065 */
1066void eeh_add_device_early(struct pci_dn *pdn)
1067{
1068 struct pci_controller *phb;
1069 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1070
1071 if (!edev)
1072 return;
1073
1074 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075 return;
1076
1077 /* USB Bus children of PCI devices will not have BUID's */
1078 phb = edev->phb;
1079 if (NULL == phb ||
1080 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081 return;
1082
1083 eeh_ops->probe(pdn, NULL);
1084}
1085
1086/**
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1089 *
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1093 */
1094void eeh_add_device_tree_early(struct pci_dn *pdn)
1095{
1096 struct pci_dn *n;
1097
1098 if (!pdn)
1099 return;
1100
1101 list_for_each_entry(n, &pdn->child_list, list)
1102 eeh_add_device_tree_early(n);
1103 eeh_add_device_early(pdn);
1104}
1105EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1106
1107/**
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1110 *
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1113 */
1114void eeh_add_device_late(struct pci_dev *dev)
1115{
1116 struct pci_dn *pdn;
1117 struct eeh_dev *edev;
1118
1119 if (!dev || !eeh_enabled())
1120 return;
1121
1122 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1123
1124 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125 edev = pdn_to_eeh_dev(pdn);
1126 if (edev->pdev == dev) {
1127 pr_debug("EEH: Already referenced !\n");
1128 return;
1129 }
1130
1131 /*
1132 * The EEH cache might not be removed correctly because of
1133 * unbalanced kref to the device during unplug time, which
1134 * relies on pcibios_release_device(). So we have to remove
1135 * that here explicitly.
1136 */
1137 if (edev->pdev) {
1138 eeh_rmv_from_parent_pe(edev);
1139 eeh_addr_cache_rmv_dev(edev->pdev);
1140 eeh_sysfs_remove_device(edev->pdev);
1141 edev->mode &= ~EEH_DEV_SYSFS;
1142
1143 /*
1144 * We definitely should have the PCI device removed
1145 * though it wasn't correctly. So we needn't call
1146 * into error handler afterwards.
1147 */
1148 edev->mode |= EEH_DEV_NO_HANDLER;
1149
1150 edev->pdev = NULL;
1151 dev->dev.archdata.edev = NULL;
1152 }
1153
1154 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155 eeh_ops->probe(pdn, NULL);
1156
1157 edev->pdev = dev;
1158 dev->dev.archdata.edev = edev;
1159
1160 eeh_addr_cache_insert_dev(dev);
1161}
1162
1163/**
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1166 *
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1170 */
1171void eeh_add_device_tree_late(struct pci_bus *bus)
1172{
1173 struct pci_dev *dev;
1174
1175 list_for_each_entry(dev, &bus->devices, bus_list) {
1176 eeh_add_device_late(dev);
1177 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178 struct pci_bus *subbus = dev->subordinate;
1179 if (subbus)
1180 eeh_add_device_tree_late(subbus);
1181 }
1182 }
1183}
1184EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1185
1186/**
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1189 *
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1193 */
1194void eeh_add_sysfs_files(struct pci_bus *bus)
1195{
1196 struct pci_dev *dev;
1197
1198 list_for_each_entry(dev, &bus->devices, bus_list) {
1199 eeh_sysfs_add_device(dev);
1200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201 struct pci_bus *subbus = dev->subordinate;
1202 if (subbus)
1203 eeh_add_sysfs_files(subbus);
1204 }
1205 }
1206}
1207EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1208
1209/**
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1212 *
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar). It unregisters
1215 * the PCI device from the EEH subsystem. I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1218 */
1219void eeh_remove_device(struct pci_dev *dev)
1220{
1221 struct eeh_dev *edev;
1222
1223 if (!dev || !eeh_enabled())
1224 return;
1225 edev = pci_dev_to_eeh_dev(dev);
1226
1227 /* Unregister the device with the EEH/PCI address search system */
1228 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1229
1230 if (!edev || !edev->pdev || !edev->pe) {
1231 pr_debug("EEH: Not referenced !\n");
1232 return;
1233 }
1234
1235 /*
1236 * During the hotplug for EEH error recovery, we need the EEH
1237 * device attached to the parent PE in order for BAR restore
1238 * a bit later. So we keep it for BAR restore and remove it
1239 * from the parent PE during the BAR resotre.
1240 */
1241 edev->pdev = NULL;
1242
1243 /*
1244 * The flag "in_error" is used to trace EEH devices for VFs
1245 * in error state or not. It's set in eeh_report_error(). If
1246 * it's not set, eeh_report_{reset,resume}() won't be called
1247 * for the VF EEH device.
1248 */
1249 edev->in_error = false;
1250 dev->dev.archdata.edev = NULL;
1251 if (!(edev->pe->state & EEH_PE_KEEP))
1252 eeh_rmv_from_parent_pe(edev);
1253 else
1254 edev->mode |= EEH_DEV_DISCONNECTED;
1255
1256 /*
1257 * We're removing from the PCI subsystem, that means
1258 * the PCI device driver can't support EEH or not
1259 * well. So we rely on hotplug completely to do recovery
1260 * for the specific PCI device.
1261 */
1262 edev->mode |= EEH_DEV_NO_HANDLER;
1263
1264 eeh_addr_cache_rmv_dev(dev);
1265 eeh_sysfs_remove_device(dev);
1266 edev->mode &= ~EEH_DEV_SYSFS;
1267}
1268
1269int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1270{
1271 int ret;
1272
1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274 if (ret) {
1275 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276 __func__, ret, pe->phb->global_number, pe->addr);
1277 return ret;
1278 }
1279
1280 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281 if (ret) {
1282 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283 __func__, ret, pe->phb->global_number, pe->addr);
1284 return ret;
1285 }
1286
1287 /* Clear software isolated state */
1288 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1290
1291 return ret;
1292}
1293
1294
1295static struct pci_device_id eeh_reset_ids[] = {
1296 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1297 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299 { 0 }
1300};
1301
1302static int eeh_pe_change_owner(struct eeh_pe *pe)
1303{
1304 struct eeh_dev *edev, *tmp;
1305 struct pci_dev *pdev;
1306 struct pci_device_id *id;
1307 int flags, ret;
1308
1309 /* Check PE state */
1310 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311 ret = eeh_ops->get_state(pe, NULL);
1312 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313 return 0;
1314
1315 /* Unfrozen PE, nothing to do */
1316 if ((ret & flags) == flags)
1317 return 0;
1318
1319 /* Frozen PE, check if it needs PE level reset */
1320 eeh_pe_for_each_dev(pe, edev, tmp) {
1321 pdev = eeh_dev_to_pci_dev(edev);
1322 if (!pdev)
1323 continue;
1324
1325 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326 if (id->vendor != PCI_ANY_ID &&
1327 id->vendor != pdev->vendor)
1328 continue;
1329 if (id->device != PCI_ANY_ID &&
1330 id->device != pdev->device)
1331 continue;
1332 if (id->subvendor != PCI_ANY_ID &&
1333 id->subvendor != pdev->subsystem_vendor)
1334 continue;
1335 if (id->subdevice != PCI_ANY_ID &&
1336 id->subdevice != pdev->subsystem_device)
1337 continue;
1338
1339 return eeh_pe_reset_and_recover(pe);
1340 }
1341 }
1342
1343 return eeh_unfreeze_pe(pe, true);
1344}
1345
1346/**
1347 * eeh_dev_open - Increase count of pass through devices for PE
1348 * @pdev: PCI device
1349 *
1350 * Increase count of passed through devices for the indicated
1351 * PE. In the result, the EEH errors detected on the PE won't be
1352 * reported. The PE owner will be responsible for detection
1353 * and recovery.
1354 */
1355int eeh_dev_open(struct pci_dev *pdev)
1356{
1357 struct eeh_dev *edev;
1358 int ret = -ENODEV;
1359
1360 mutex_lock(&eeh_dev_mutex);
1361
1362 /* No PCI device ? */
1363 if (!pdev)
1364 goto out;
1365
1366 /* No EEH device or PE ? */
1367 edev = pci_dev_to_eeh_dev(pdev);
1368 if (!edev || !edev->pe)
1369 goto out;
1370
1371 /*
1372 * The PE might have been put into frozen state, but we
1373 * didn't detect that yet. The passed through PCI devices
1374 * in frozen PE won't work properly. Clear the frozen state
1375 * in advance.
1376 */
1377 ret = eeh_pe_change_owner(edev->pe);
1378 if (ret)
1379 goto out;
1380
1381 /* Increase PE's pass through count */
1382 atomic_inc(&edev->pe->pass_dev_cnt);
1383 mutex_unlock(&eeh_dev_mutex);
1384
1385 return 0;
1386out:
1387 mutex_unlock(&eeh_dev_mutex);
1388 return ret;
1389}
1390EXPORT_SYMBOL_GPL(eeh_dev_open);
1391
1392/**
1393 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * @pdev: PCI device
1395 *
1396 * Decrease count of pass through devices for the indicated PE. If
1397 * there is no passed through device in PE, the EEH errors detected
1398 * on the PE will be reported and handled as usual.
1399 */
1400void eeh_dev_release(struct pci_dev *pdev)
1401{
1402 struct eeh_dev *edev;
1403
1404 mutex_lock(&eeh_dev_mutex);
1405
1406 /* No PCI device ? */
1407 if (!pdev)
1408 goto out;
1409
1410 /* No EEH device ? */
1411 edev = pci_dev_to_eeh_dev(pdev);
1412 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413 goto out;
1414
1415 /* Decrease PE's pass through count */
1416 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1417 eeh_pe_change_owner(edev->pe);
1418out:
1419 mutex_unlock(&eeh_dev_mutex);
1420}
1421EXPORT_SYMBOL(eeh_dev_release);
1422
1423#ifdef CONFIG_IOMMU_API
1424
1425static int dev_has_iommu_table(struct device *dev, void *data)
1426{
1427 struct pci_dev *pdev = to_pci_dev(dev);
1428 struct pci_dev **ppdev = data;
1429
1430 if (!dev)
1431 return 0;
1432
1433 if (dev->iommu_group) {
1434 *ppdev = pdev;
1435 return 1;
1436 }
1437
1438 return 0;
1439}
1440
1441/**
1442 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1443 * @group: IOMMU group
1444 *
1445 * The routine is called to convert IOMMU group to EEH PE.
1446 */
1447struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1448{
1449 struct pci_dev *pdev = NULL;
1450 struct eeh_dev *edev;
1451 int ret;
1452
1453 /* No IOMMU group ? */
1454 if (!group)
1455 return NULL;
1456
1457 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1458 if (!ret || !pdev)
1459 return NULL;
1460
1461 /* No EEH device or PE ? */
1462 edev = pci_dev_to_eeh_dev(pdev);
1463 if (!edev || !edev->pe)
1464 return NULL;
1465
1466 return edev->pe;
1467}
1468EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1469
1470#endif /* CONFIG_IOMMU_API */
1471
1472/**
1473 * eeh_pe_set_option - Set options for the indicated PE
1474 * @pe: EEH PE
1475 * @option: requested option
1476 *
1477 * The routine is called to enable or disable EEH functionality
1478 * on the indicated PE, to enable IO or DMA for the frozen PE.
1479 */
1480int eeh_pe_set_option(struct eeh_pe *pe, int option)
1481{
1482 int ret = 0;
1483
1484 /* Invalid PE ? */
1485 if (!pe)
1486 return -ENODEV;
1487
1488 /*
1489 * EEH functionality could possibly be disabled, just
1490 * return error for the case. And the EEH functinality
1491 * isn't expected to be disabled on one specific PE.
1492 */
1493 switch (option) {
1494 case EEH_OPT_ENABLE:
1495 if (eeh_enabled()) {
1496 ret = eeh_pe_change_owner(pe);
1497 break;
1498 }
1499 ret = -EIO;
1500 break;
1501 case EEH_OPT_DISABLE:
1502 break;
1503 case EEH_OPT_THAW_MMIO:
1504 case EEH_OPT_THAW_DMA:
1505 case EEH_OPT_FREEZE_PE:
1506 if (!eeh_ops || !eeh_ops->set_option) {
1507 ret = -ENOENT;
1508 break;
1509 }
1510
1511 ret = eeh_pci_enable(pe, option);
1512 break;
1513 default:
1514 pr_debug("%s: Option %d out of range (%d, %d)\n",
1515 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1516 ret = -EINVAL;
1517 }
1518
1519 return ret;
1520}
1521EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1522
1523/**
1524 * eeh_pe_get_state - Retrieve PE's state
1525 * @pe: EEH PE
1526 *
1527 * Retrieve the PE's state, which includes 3 aspects: enabled
1528 * DMA, enabled IO and asserted reset.
1529 */
1530int eeh_pe_get_state(struct eeh_pe *pe)
1531{
1532 int result, ret = 0;
1533 bool rst_active, dma_en, mmio_en;
1534
1535 /* Existing PE ? */
1536 if (!pe)
1537 return -ENODEV;
1538
1539 if (!eeh_ops || !eeh_ops->get_state)
1540 return -ENOENT;
1541
1542 /*
1543 * If the parent PE is owned by the host kernel and is undergoing
1544 * error recovery, we should return the PE state as temporarily
1545 * unavailable so that the error recovery on the guest is suspended
1546 * until the recovery completes on the host.
1547 */
1548 if (pe->parent &&
1549 !(pe->state & EEH_PE_REMOVED) &&
1550 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1551 return EEH_PE_STATE_UNAVAIL;
1552
1553 result = eeh_ops->get_state(pe, NULL);
1554 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1555 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1556 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1557
1558 if (rst_active)
1559 ret = EEH_PE_STATE_RESET;
1560 else if (dma_en && mmio_en)
1561 ret = EEH_PE_STATE_NORMAL;
1562 else if (!dma_en && !mmio_en)
1563 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1564 else if (!dma_en && mmio_en)
1565 ret = EEH_PE_STATE_STOPPED_DMA;
1566 else
1567 ret = EEH_PE_STATE_UNAVAIL;
1568
1569 return ret;
1570}
1571EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1572
1573static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1574{
1575 struct eeh_dev *edev, *tmp;
1576 struct pci_dev *pdev;
1577 int ret = 0;
1578
1579 /* Restore config space */
1580 eeh_pe_restore_bars(pe);
1581
1582 /*
1583 * Reenable PCI devices as the devices passed
1584 * through are always enabled before the reset.
1585 */
1586 eeh_pe_for_each_dev(pe, edev, tmp) {
1587 pdev = eeh_dev_to_pci_dev(edev);
1588 if (!pdev)
1589 continue;
1590
1591 ret = pci_reenable_device(pdev);
1592 if (ret) {
1593 pr_warn("%s: Failure %d reenabling %s\n",
1594 __func__, ret, pci_name(pdev));
1595 return ret;
1596 }
1597 }
1598
1599 /* The PE is still in frozen state */
1600 return eeh_unfreeze_pe(pe, true);
1601}
1602
1603
1604/**
1605 * eeh_pe_reset - Issue PE reset according to specified type
1606 * @pe: EEH PE
1607 * @option: reset type
1608 *
1609 * The routine is called to reset the specified PE with the
1610 * indicated type, either fundamental reset or hot reset.
1611 * PE reset is the most important part for error recovery.
1612 */
1613int eeh_pe_reset(struct eeh_pe *pe, int option)
1614{
1615 int ret = 0;
1616
1617 /* Invalid PE ? */
1618 if (!pe)
1619 return -ENODEV;
1620
1621 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1622 return -ENOENT;
1623
1624 switch (option) {
1625 case EEH_RESET_DEACTIVATE:
1626 ret = eeh_ops->reset(pe, option);
1627 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1628 if (ret)
1629 break;
1630
1631 ret = eeh_pe_reenable_devices(pe);
1632 break;
1633 case EEH_RESET_HOT:
1634 case EEH_RESET_FUNDAMENTAL:
1635 /*
1636 * Proactively freeze the PE to drop all MMIO access
1637 * during reset, which should be banned as it's always
1638 * cause recursive EEH error.
1639 */
1640 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1641
1642 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1643 ret = eeh_ops->reset(pe, option);
1644 break;
1645 default:
1646 pr_debug("%s: Unsupported option %d\n",
1647 __func__, option);
1648 ret = -EINVAL;
1649 }
1650
1651 return ret;
1652}
1653EXPORT_SYMBOL_GPL(eeh_pe_reset);
1654
1655/**
1656 * eeh_pe_configure - Configure PCI bridges after PE reset
1657 * @pe: EEH PE
1658 *
1659 * The routine is called to restore the PCI config space for
1660 * those PCI devices, especially PCI bridges affected by PE
1661 * reset issued previously.
1662 */
1663int eeh_pe_configure(struct eeh_pe *pe)
1664{
1665 int ret = 0;
1666
1667 /* Invalid PE ? */
1668 if (!pe)
1669 return -ENODEV;
1670
1671 return ret;
1672}
1673EXPORT_SYMBOL_GPL(eeh_pe_configure);
1674
1675/**
1676 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1677 * @pe: the indicated PE
1678 * @type: error type
1679 * @function: error function
1680 * @addr: address
1681 * @mask: address mask
1682 *
1683 * The routine is called to inject the specified PCI error, which
1684 * is determined by @type and @function, to the indicated PE for
1685 * testing purpose.
1686 */
1687int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1688 unsigned long addr, unsigned long mask)
1689{
1690 /* Invalid PE ? */
1691 if (!pe)
1692 return -ENODEV;
1693
1694 /* Unsupported operation ? */
1695 if (!eeh_ops || !eeh_ops->err_inject)
1696 return -ENOENT;
1697
1698 /* Check on PCI error type */
1699 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1700 return -EINVAL;
1701
1702 /* Check on PCI error function */
1703 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1704 return -EINVAL;
1705
1706 return eeh_ops->err_inject(pe, type, func, addr, mask);
1707}
1708EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1709
1710static int proc_eeh_show(struct seq_file *m, void *v)
1711{
1712 if (!eeh_enabled()) {
1713 seq_printf(m, "EEH Subsystem is globally disabled\n");
1714 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1715 } else {
1716 seq_printf(m, "EEH Subsystem is enabled\n");
1717 seq_printf(m,
1718 "no device=%llu\n"
1719 "no device node=%llu\n"
1720 "no config address=%llu\n"
1721 "check not wanted=%llu\n"
1722 "eeh_total_mmio_ffs=%llu\n"
1723 "eeh_false_positives=%llu\n"
1724 "eeh_slot_resets=%llu\n",
1725 eeh_stats.no_device,
1726 eeh_stats.no_dn,
1727 eeh_stats.no_cfg_addr,
1728 eeh_stats.ignored_check,
1729 eeh_stats.total_mmio_ffs,
1730 eeh_stats.false_positives,
1731 eeh_stats.slot_resets);
1732 }
1733
1734 return 0;
1735}
1736
1737static int proc_eeh_open(struct inode *inode, struct file *file)
1738{
1739 return single_open(file, proc_eeh_show, NULL);
1740}
1741
1742static const struct file_operations proc_eeh_operations = {
1743 .open = proc_eeh_open,
1744 .read = seq_read,
1745 .llseek = seq_lseek,
1746 .release = single_release,
1747};
1748
1749#ifdef CONFIG_DEBUG_FS
1750static int eeh_enable_dbgfs_set(void *data, u64 val)
1751{
1752 if (val)
1753 eeh_clear_flag(EEH_FORCE_DISABLED);
1754 else
1755 eeh_add_flag(EEH_FORCE_DISABLED);
1756
1757 /* Notify the backend */
1758 if (eeh_ops->post_init)
1759 eeh_ops->post_init();
1760
1761 return 0;
1762}
1763
1764static int eeh_enable_dbgfs_get(void *data, u64 *val)
1765{
1766 if (eeh_enabled())
1767 *val = 0x1ul;
1768 else
1769 *val = 0x0ul;
1770 return 0;
1771}
1772
1773static int eeh_freeze_dbgfs_set(void *data, u64 val)
1774{
1775 eeh_max_freezes = val;
1776 return 0;
1777}
1778
1779static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1780{
1781 *val = eeh_max_freezes;
1782 return 0;
1783}
1784
1785DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1786 eeh_enable_dbgfs_set, "0x%llx\n");
1787DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1788 eeh_freeze_dbgfs_set, "0x%llx\n");
1789#endif
1790
1791static int __init eeh_init_proc(void)
1792{
1793 if (machine_is(pseries) || machine_is(powernv)) {
1794 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1795#ifdef CONFIG_DEBUG_FS
1796 debugfs_create_file("eeh_enable", 0600,
1797 powerpc_debugfs_root, NULL,
1798 &eeh_enable_dbgfs_ops);
1799 debugfs_create_file("eeh_max_freezes", 0600,
1800 powerpc_debugfs_root, NULL,
1801 &eeh_freeze_dbgfs_ops);
1802#endif
1803 }
1804
1805 return 0;
1806}
1807__initcall(eeh_init_proc);