Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Optimized version of the standard memset() function.
  3
  4   Copyright (c) 2002 Hewlett-Packard Co/CERN
  5	Sverre Jarp <Sverre.Jarp@cern.ch>
  6
  7   Return: dest
  8
  9   Inputs:
 10        in0:    dest
 11        in1:    value
 12        in2:    count
 13
 14   The algorithm is fairly straightforward: set byte by byte until we
 15   we get to a 16B-aligned address, then loop on 128 B chunks using an
 16   early store as prefetching, then loop on 32B chucks, then clear remaining
 17   words, finally clear remaining bytes.
 18   Since a stf.spill f0 can store 16B in one go, we use this instruction
 19   to get peak speed when value = 0.  */
 20
 21#include <asm/asmmacro.h>
 22#include <asm/export.h>
 23#undef ret
 24
 25#define dest		in0
 26#define value		in1
 27#define	cnt		in2
 28
 29#define tmp		r31
 30#define save_lc		r30
 31#define ptr0		r29
 32#define ptr1		r28
 33#define ptr2		r27
 34#define ptr3		r26
 35#define ptr9 		r24
 36#define	loopcnt		r23
 37#define linecnt		r22
 38#define bytecnt		r21
 39
 40#define fvalue		f6
 41
 42// This routine uses only scratch predicate registers (p6 - p15)
 43#define p_scr		p6			// default register for same-cycle branches
 44#define p_nz		p7
 45#define p_zr		p8
 46#define p_unalgn	p9
 47#define p_y		p11
 48#define p_n		p12
 49#define p_yy		p13
 50#define p_nn		p14
 51
 52#define MIN1		15
 53#define MIN1P1HALF	8
 54#define LINE_SIZE	128
 55#define LSIZE_SH        7			// shift amount
 56#define PREF_AHEAD	8
 57
 58GLOBAL_ENTRY(memset)
 59{ .mmi
 60	.prologue
 61	alloc	tmp = ar.pfs, 3, 0, 0, 0
 62	lfetch.nt1 [dest]			//
 63	.save   ar.lc, save_lc
 64	mov.i	save_lc = ar.lc
 65	.body
 66} { .mmi
 67	mov	ret0 = dest			// return value
 68	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
 69	cmp.eq	p_scr, p0 = cnt, r0
 70;; }
 71{ .mmi
 72	and	ptr2 = -(MIN1+1), dest		// aligned address
 73	and	tmp = MIN1, dest		// prepare to check for correct alignment
 74	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
 75} { .mib
 76	mov	ptr1 = dest
 77	mux1	value = value, @brcst		// create 8 identical bytes in word
 78(p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
 79;; }
 80{ .mib
 81	cmp.ne	p_unalgn, p0 = tmp, r0		//
 82} { .mib
 83	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
 84	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
 85(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
 86;; }
 87{ .mmi
 88(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
 89(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
 90(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
 91;; }
 92{ .mib
 93(p_y)	add	cnt = -8, cnt			//
 94(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
 95} { .mib
 96(p_y)	st8	[ptr2] = value,-4		//
 97(p_n)	add	ptr2 = 4, ptr2			//
 98;; }
 99{ .mib
100(p_yy)	add	cnt = -4, cnt			//
101(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
102} { .mib
103(p_yy)	st4	[ptr2] = value,-2		//
104(p_nn)	add	ptr2 = 2, ptr2			//
105;; }
106{ .mmi
107	mov	tmp = LINE_SIZE+1		// for compare
108(p_y)	add	cnt = -2, cnt			//
109(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
110} { .mmi
111	setf.sig fvalue=value			// transfer value to FLP side
112(p_y)	st2	[ptr2] = value,-1		//
113(p_n)	add	ptr2 = 1, ptr2			//
114;; }
115
116{ .mmi
117(p_yy)	st1	[ptr2] = value 			//
118  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
119} { .mbb
120(p_yy)	add	cnt = -1, cnt			//
121(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
122;; }
123
124{ .mib
125	nop.m 0
126	shr.u	linecnt = cnt, LSIZE_SH
127(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
128;; }
129
130	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
131{ .mmi
132	and	tmp = -(LINE_SIZE), cnt		// compute end of range
133	mov	ptr9 = ptr1			// used for prefetching
134	and	cnt = (LINE_SIZE-1), cnt	// remainder
135} { .mmi
136	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
137	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
138;; }
139{ .mmi
140(p_scr)	add	loopcnt = -1, linecnt		//
141	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
142	add	ptr1 = tmp, ptr1		// first address beyond total range
143;; }
144{ .mmi
145	add	tmp = -1, linecnt		// next loop count
146	mov.i	ar.lc = loopcnt			//
147;; }
148.pref_l1a:
149{ .mib
150	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
151	nop.i	0
152	br.cloop.dptk.few .pref_l1a
153;; }
154{ .mmi
155	add	ptr0 = 16, ptr2			// Two stores in parallel
156	mov.i	ar.lc = tmp			//
157;; }
158.l1ax:
159 { .mmi
160	stf8 [ptr2] = fvalue, 8
161	stf8 [ptr0] = fvalue, 8
162 ;; }
163 { .mmi
164	stf8 [ptr2] = fvalue, 24
165	stf8 [ptr0] = fvalue, 24
166 ;; }
167 { .mmi
168	stf8 [ptr2] = fvalue, 8
169	stf8 [ptr0] = fvalue, 8
170 ;; }
171 { .mmi
172	stf8 [ptr2] = fvalue, 24
173	stf8 [ptr0] = fvalue, 24
174 ;; }
175 { .mmi
176	stf8 [ptr2] = fvalue, 8
177	stf8 [ptr0] = fvalue, 8
178 ;; }
179 { .mmi
180	stf8 [ptr2] = fvalue, 24
181	stf8 [ptr0] = fvalue, 24
182 ;; }
183 { .mmi
184	stf8 [ptr2] = fvalue, 8
185	stf8 [ptr0] = fvalue, 32
186 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
187 ;; }
188{ .mmb
189	stf8 [ptr2] = fvalue, 24
190(p_scr)	stf8 [ptr9] = fvalue, 128
191	br.cloop.dptk.few .l1ax
192;; }
193{ .mbb
194	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
195(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
196	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
197;; }
198
199	TEXT_ALIGN(32)
200.l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
201{ .mmi
202	and	tmp = -(LINE_SIZE), cnt		// compute end of range
203	mov	ptr9 = ptr1			// used for prefetching
204	and	cnt = (LINE_SIZE-1), cnt	// remainder
205} { .mmi
206	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
207	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
208;; }
209{ .mmi
210(p_scr)	add	loopcnt = -1, linecnt
211	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
212	add	ptr1 = tmp, ptr1		// first address beyond total range
213;; }
214{ .mmi
215	add	tmp = -1, linecnt		// next loop count
216	mov.i	ar.lc = loopcnt
217;; }
218.pref_l1b:
219{ .mib
220	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
221	nop.i   0
222	br.cloop.dptk.few .pref_l1b
223;; }
224{ .mmi
225	add	ptr0 = 16, ptr2			// Two stores in parallel
226	mov.i	ar.lc = tmp
227;; }
228.l1bx:
229 { .mmi
230	stf.spill [ptr2] = f0, 32
231	stf.spill [ptr0] = f0, 32
232 ;; }
233 { .mmi
234	stf.spill [ptr2] = f0, 32
235	stf.spill [ptr0] = f0, 32
236 ;; }
237 { .mmi
238	stf.spill [ptr2] = f0, 32
239	stf.spill [ptr0] = f0, 64
240 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
241 ;; }
242{ .mmb
243	stf.spill [ptr2] = f0, 32
244(p_scr)	stf.spill [ptr9] = f0, 128
245	br.cloop.dptk.few .l1bx
246;; }
247{ .mib
248	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
249(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
250;; }
251
252.fraction_of_line:
253{ .mib
254	add	ptr2 = 16, ptr1
255	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
256;; }
257{ .mib
258	cmp.eq	p_scr, p0 = loopcnt, r0
259	add	loopcnt = -1, loopcnt
260(p_scr)	br.cond.dpnt.many .store_words
261;; }
262{ .mib
263	and	cnt = 0x1f, cnt			// compute the remaining cnt
264	mov.i   ar.lc = loopcnt
265;; }
266	TEXT_ALIGN(32)
267.l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
268{ .mmb
269	stf8	[ptr1] = fvalue, 8
270	stf8	[ptr2] = fvalue, 8
271;; } { .mmb
272	stf8	[ptr1] = fvalue, 24
273	stf8	[ptr2] = fvalue, 24
274	br.cloop.dptk.many .l2
275;; }
276.store_words:
277{ .mib
278	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
279(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
280;; }
281
282{ .mmi
283	stf8	[ptr1] = fvalue, 8		// store
284	cmp.le	p_y, p_n = 16, cnt
285	add	cnt = -8, cnt			// subtract
286;; }
287{ .mmi
288(p_y)	stf8	[ptr1] = fvalue, 8		// store
289(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
290(p_y)	add	cnt = -8, cnt			// subtract
291;; }
292{ .mmi						// store
293(p_yy)	stf8	[ptr1] = fvalue, 8
294(p_yy)	add	cnt = -8, cnt			// subtract
295;; }
296
297.move_bytes_from_alignment:
298{ .mib
299	cmp.eq	p_scr, p0 = cnt, r0
300	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
301(p_scr)	br.cond.dpnt.few .restore_and_exit
302;; }
303{ .mib
304(p_y)	st4	[ptr1] = value,4
305	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
306;; }
307{ .mib
308(p_yy)	st2	[ptr1] = value,2
309	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
310;; }
311
312{ .mib
313(p_y)	st1	[ptr1] = value
314;; }
315.restore_and_exit:
316{ .mib
317	nop.m	0
318	mov.i	ar.lc = save_lc
319	br.ret.sptk.many rp
320;; }
321
322.move_bytes_unaligned:
323{ .mmi
324       .pred.rel "mutex",p_y, p_n
325       .pred.rel "mutex",p_yy, p_nn
326(p_n)	cmp.le  p_yy, p_nn = 4, cnt
327(p_y)	cmp.le  p_yy, p_nn = 5, cnt
328(p_n)	add	ptr2 = 2, ptr1
329} { .mmi
330(p_y)	add	ptr2 = 3, ptr1
331(p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
332(p_y)	add	cnt = -1, cnt
333;; }
334{ .mmi
335(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
336	add	ptr3 = ptr1, cnt		// prepare last store
337	mov.i	ar.lc = save_lc
338} { .mmi
339(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
340(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
341(p_yy)	add	cnt = -4, cnt
342;; }
343{ .mmi
344(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
345	add	ptr3 = -1, ptr3			// last store
346	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
347} { .mmi
348(p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
349(p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
350(p_y)	add	cnt = -4, cnt
351;; }
352{ .mmi
353(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
354(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
355	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
356} { .mmi
357(p_yy)	add	cnt = -4, cnt
358;; }
359{ .mmb
360(p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
361(p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
362	br.ret.sptk.many rp
363}
364END(memset)
365EXPORT_SYMBOL(memset)
v4.10.11
 
  1/* Optimized version of the standard memset() function.
  2
  3   Copyright (c) 2002 Hewlett-Packard Co/CERN
  4	Sverre Jarp <Sverre.Jarp@cern.ch>
  5
  6   Return: dest
  7
  8   Inputs:
  9        in0:    dest
 10        in1:    value
 11        in2:    count
 12
 13   The algorithm is fairly straightforward: set byte by byte until we
 14   we get to a 16B-aligned address, then loop on 128 B chunks using an
 15   early store as prefetching, then loop on 32B chucks, then clear remaining
 16   words, finally clear remaining bytes.
 17   Since a stf.spill f0 can store 16B in one go, we use this instruction
 18   to get peak speed when value = 0.  */
 19
 20#include <asm/asmmacro.h>
 21#include <asm/export.h>
 22#undef ret
 23
 24#define dest		in0
 25#define value		in1
 26#define	cnt		in2
 27
 28#define tmp		r31
 29#define save_lc		r30
 30#define ptr0		r29
 31#define ptr1		r28
 32#define ptr2		r27
 33#define ptr3		r26
 34#define ptr9 		r24
 35#define	loopcnt		r23
 36#define linecnt		r22
 37#define bytecnt		r21
 38
 39#define fvalue		f6
 40
 41// This routine uses only scratch predicate registers (p6 - p15)
 42#define p_scr		p6			// default register for same-cycle branches
 43#define p_nz		p7
 44#define p_zr		p8
 45#define p_unalgn	p9
 46#define p_y		p11
 47#define p_n		p12
 48#define p_yy		p13
 49#define p_nn		p14
 50
 51#define MIN1		15
 52#define MIN1P1HALF	8
 53#define LINE_SIZE	128
 54#define LSIZE_SH        7			// shift amount
 55#define PREF_AHEAD	8
 56
 57GLOBAL_ENTRY(memset)
 58{ .mmi
 59	.prologue
 60	alloc	tmp = ar.pfs, 3, 0, 0, 0
 61	lfetch.nt1 [dest]			//
 62	.save   ar.lc, save_lc
 63	mov.i	save_lc = ar.lc
 64	.body
 65} { .mmi
 66	mov	ret0 = dest			// return value
 67	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
 68	cmp.eq	p_scr, p0 = cnt, r0
 69;; }
 70{ .mmi
 71	and	ptr2 = -(MIN1+1), dest		// aligned address
 72	and	tmp = MIN1, dest		// prepare to check for correct alignment
 73	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
 74} { .mib
 75	mov	ptr1 = dest
 76	mux1	value = value, @brcst		// create 8 identical bytes in word
 77(p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
 78;; }
 79{ .mib
 80	cmp.ne	p_unalgn, p0 = tmp, r0		//
 81} { .mib
 82	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
 83	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
 84(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
 85;; }
 86{ .mmi
 87(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
 88(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
 89(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
 90;; }
 91{ .mib
 92(p_y)	add	cnt = -8, cnt			//
 93(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
 94} { .mib
 95(p_y)	st8	[ptr2] = value,-4		//
 96(p_n)	add	ptr2 = 4, ptr2			//
 97;; }
 98{ .mib
 99(p_yy)	add	cnt = -4, cnt			//
100(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
101} { .mib
102(p_yy)	st4	[ptr2] = value,-2		//
103(p_nn)	add	ptr2 = 2, ptr2			//
104;; }
105{ .mmi
106	mov	tmp = LINE_SIZE+1		// for compare
107(p_y)	add	cnt = -2, cnt			//
108(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
109} { .mmi
110	setf.sig fvalue=value			// transfer value to FLP side
111(p_y)	st2	[ptr2] = value,-1		//
112(p_n)	add	ptr2 = 1, ptr2			//
113;; }
114
115{ .mmi
116(p_yy)	st1	[ptr2] = value 			//
117  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
118} { .mbb
119(p_yy)	add	cnt = -1, cnt			//
120(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
121;; }
122
123{ .mib
124	nop.m 0
125	shr.u	linecnt = cnt, LSIZE_SH
126(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
127;; }
128
129	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
130{ .mmi
131	and	tmp = -(LINE_SIZE), cnt		// compute end of range
132	mov	ptr9 = ptr1			// used for prefetching
133	and	cnt = (LINE_SIZE-1), cnt	// remainder
134} { .mmi
135	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
136	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
137;; }
138{ .mmi
139(p_scr)	add	loopcnt = -1, linecnt		//
140	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
141	add	ptr1 = tmp, ptr1		// first address beyond total range
142;; }
143{ .mmi
144	add	tmp = -1, linecnt		// next loop count
145	mov.i	ar.lc = loopcnt			//
146;; }
147.pref_l1a:
148{ .mib
149	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
150	nop.i	0
151	br.cloop.dptk.few .pref_l1a
152;; }
153{ .mmi
154	add	ptr0 = 16, ptr2			// Two stores in parallel
155	mov.i	ar.lc = tmp			//
156;; }
157.l1ax:
158 { .mmi
159	stf8 [ptr2] = fvalue, 8
160	stf8 [ptr0] = fvalue, 8
161 ;; }
162 { .mmi
163	stf8 [ptr2] = fvalue, 24
164	stf8 [ptr0] = fvalue, 24
165 ;; }
166 { .mmi
167	stf8 [ptr2] = fvalue, 8
168	stf8 [ptr0] = fvalue, 8
169 ;; }
170 { .mmi
171	stf8 [ptr2] = fvalue, 24
172	stf8 [ptr0] = fvalue, 24
173 ;; }
174 { .mmi
175	stf8 [ptr2] = fvalue, 8
176	stf8 [ptr0] = fvalue, 8
177 ;; }
178 { .mmi
179	stf8 [ptr2] = fvalue, 24
180	stf8 [ptr0] = fvalue, 24
181 ;; }
182 { .mmi
183	stf8 [ptr2] = fvalue, 8
184	stf8 [ptr0] = fvalue, 32
185 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
186 ;; }
187{ .mmb
188	stf8 [ptr2] = fvalue, 24
189(p_scr)	stf8 [ptr9] = fvalue, 128
190	br.cloop.dptk.few .l1ax
191;; }
192{ .mbb
193	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
194(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
195	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
196;; }
197
198	TEXT_ALIGN(32)
199.l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
200{ .mmi
201	and	tmp = -(LINE_SIZE), cnt		// compute end of range
202	mov	ptr9 = ptr1			// used for prefetching
203	and	cnt = (LINE_SIZE-1), cnt	// remainder
204} { .mmi
205	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
206	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
207;; }
208{ .mmi
209(p_scr)	add	loopcnt = -1, linecnt
210	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
211	add	ptr1 = tmp, ptr1		// first address beyond total range
212;; }
213{ .mmi
214	add	tmp = -1, linecnt		// next loop count
215	mov.i	ar.lc = loopcnt
216;; }
217.pref_l1b:
218{ .mib
219	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
220	nop.i   0
221	br.cloop.dptk.few .pref_l1b
222;; }
223{ .mmi
224	add	ptr0 = 16, ptr2			// Two stores in parallel
225	mov.i	ar.lc = tmp
226;; }
227.l1bx:
228 { .mmi
229	stf.spill [ptr2] = f0, 32
230	stf.spill [ptr0] = f0, 32
231 ;; }
232 { .mmi
233	stf.spill [ptr2] = f0, 32
234	stf.spill [ptr0] = f0, 32
235 ;; }
236 { .mmi
237	stf.spill [ptr2] = f0, 32
238	stf.spill [ptr0] = f0, 64
239 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
240 ;; }
241{ .mmb
242	stf.spill [ptr2] = f0, 32
243(p_scr)	stf.spill [ptr9] = f0, 128
244	br.cloop.dptk.few .l1bx
245;; }
246{ .mib
247	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
248(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
249;; }
250
251.fraction_of_line:
252{ .mib
253	add	ptr2 = 16, ptr1
254	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
255;; }
256{ .mib
257	cmp.eq	p_scr, p0 = loopcnt, r0
258	add	loopcnt = -1, loopcnt
259(p_scr)	br.cond.dpnt.many .store_words
260;; }
261{ .mib
262	and	cnt = 0x1f, cnt			// compute the remaining cnt
263	mov.i   ar.lc = loopcnt
264;; }
265	TEXT_ALIGN(32)
266.l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
267{ .mmb
268	stf8	[ptr1] = fvalue, 8
269	stf8	[ptr2] = fvalue, 8
270;; } { .mmb
271	stf8	[ptr1] = fvalue, 24
272	stf8	[ptr2] = fvalue, 24
273	br.cloop.dptk.many .l2
274;; }
275.store_words:
276{ .mib
277	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
278(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
279;; }
280
281{ .mmi
282	stf8	[ptr1] = fvalue, 8		// store
283	cmp.le	p_y, p_n = 16, cnt
284	add	cnt = -8, cnt			// subtract
285;; }
286{ .mmi
287(p_y)	stf8	[ptr1] = fvalue, 8		// store
288(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
289(p_y)	add	cnt = -8, cnt			// subtract
290;; }
291{ .mmi						// store
292(p_yy)	stf8	[ptr1] = fvalue, 8
293(p_yy)	add	cnt = -8, cnt			// subtract
294;; }
295
296.move_bytes_from_alignment:
297{ .mib
298	cmp.eq	p_scr, p0 = cnt, r0
299	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
300(p_scr)	br.cond.dpnt.few .restore_and_exit
301;; }
302{ .mib
303(p_y)	st4	[ptr1] = value,4
304	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
305;; }
306{ .mib
307(p_yy)	st2	[ptr1] = value,2
308	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
309;; }
310
311{ .mib
312(p_y)	st1	[ptr1] = value
313;; }
314.restore_and_exit:
315{ .mib
316	nop.m	0
317	mov.i	ar.lc = save_lc
318	br.ret.sptk.many rp
319;; }
320
321.move_bytes_unaligned:
322{ .mmi
323       .pred.rel "mutex",p_y, p_n
324       .pred.rel "mutex",p_yy, p_nn
325(p_n)	cmp.le  p_yy, p_nn = 4, cnt
326(p_y)	cmp.le  p_yy, p_nn = 5, cnt
327(p_n)	add	ptr2 = 2, ptr1
328} { .mmi
329(p_y)	add	ptr2 = 3, ptr1
330(p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
331(p_y)	add	cnt = -1, cnt
332;; }
333{ .mmi
334(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
335	add	ptr3 = ptr1, cnt		// prepare last store
336	mov.i	ar.lc = save_lc
337} { .mmi
338(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
339(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
340(p_yy)	add	cnt = -4, cnt
341;; }
342{ .mmi
343(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
344	add	ptr3 = -1, ptr3			// last store
345	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
346} { .mmi
347(p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
348(p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
349(p_y)	add	cnt = -4, cnt
350;; }
351{ .mmi
352(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
353(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
354	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
355} { .mmi
356(p_yy)	add	cnt = -4, cnt
357;; }
358{ .mmb
359(p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
360(p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
361	br.ret.sptk.many rp
362}
363END(memset)
364EXPORT_SYMBOL(memset)