Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/mm.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/hugetlb.h>
  13#include <linux/mman.h>
  14#include <linux/slab.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/swap.h>
  17#include <linux/vmalloc.h>
  18#include <linux/pagemap.h>
  19#include <linux/namei.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/writeback.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/init.h>
  27#include <linux/ksm.h>
  28#include <linux/rmap.h>
  29#include <linux/security.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mutex.h>
  32#include <linux/capability.h>
  33#include <linux/syscalls.h>
  34#include <linux/memcontrol.h>
  35#include <linux/poll.h>
  36#include <linux/oom.h>
  37#include <linux/frontswap.h>
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43
 
  44#include <asm/tlbflush.h>
  45#include <linux/swapops.h>
  46#include <linux/swap_cgroup.h>
  47
  48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  49				 unsigned char);
  50static void free_swap_count_continuations(struct swap_info_struct *);
 
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static struct swap_info_struct *swap_type_to_swap_info(int type)
 102{
 103	if (type >= MAX_SWAPFILES)
 104		return NULL;
 105
 106	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 107}
 108
 109static inline unsigned char swap_count(unsigned char ent)
 110{
 111	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 112}
 113
 114/* Reclaim the swap entry anyway if possible */
 115#define TTRS_ANYWAY		0x1
 116/*
 117 * Reclaim the swap entry if there are no more mappings of the
 118 * corresponding page
 119 */
 120#define TTRS_UNMAPPED		0x2
 121/* Reclaim the swap entry if swap is getting full*/
 122#define TTRS_FULL		0x4
 123
 124/* returns 1 if swap entry is freed */
 125static int __try_to_reclaim_swap(struct swap_info_struct *si,
 126				 unsigned long offset, unsigned long flags)
 127{
 128	swp_entry_t entry = swp_entry(si->type, offset);
 129	struct page *page;
 130	int ret = 0;
 131
 132	page = find_get_page(swap_address_space(entry), offset);
 133	if (!page)
 134		return 0;
 135	/*
 136	 * When this function is called from scan_swap_map_slots() and it's
 137	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
 138	 * here. We have to use trylock for avoiding deadlock. This is a special
 139	 * case and you should use try_to_free_swap() with explicit lock_page()
 140	 * in usual operations.
 141	 */
 142	if (trylock_page(page)) {
 143		if ((flags & TTRS_ANYWAY) ||
 144		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
 145		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
 146			ret = try_to_free_swap(page);
 147		unlock_page(page);
 148	}
 149	put_page(page);
 150	return ret;
 151}
 152
 153static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 154{
 155	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 156	return rb_entry(rb, struct swap_extent, rb_node);
 157}
 158
 159static inline struct swap_extent *next_se(struct swap_extent *se)
 160{
 161	struct rb_node *rb = rb_next(&se->rb_node);
 162	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 163}
 164
 165/*
 166 * swapon tell device that all the old swap contents can be discarded,
 167 * to allow the swap device to optimize its wear-levelling.
 168 */
 169static int discard_swap(struct swap_info_struct *si)
 170{
 171	struct swap_extent *se;
 172	sector_t start_block;
 173	sector_t nr_blocks;
 174	int err = 0;
 175
 176	/* Do not discard the swap header page! */
 177	se = first_se(si);
 178	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 179	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 180	if (nr_blocks) {
 181		err = blkdev_issue_discard(si->bdev, start_block,
 182				nr_blocks, GFP_KERNEL, 0);
 183		if (err)
 184			return err;
 185		cond_resched();
 186	}
 187
 188	for (se = next_se(se); se; se = next_se(se)) {
 189		start_block = se->start_block << (PAGE_SHIFT - 9);
 190		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 191
 192		err = blkdev_issue_discard(si->bdev, start_block,
 193				nr_blocks, GFP_KERNEL, 0);
 194		if (err)
 195			break;
 196
 197		cond_resched();
 198	}
 199	return err;		/* That will often be -EOPNOTSUPP */
 200}
 201
 202static struct swap_extent *
 203offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 204{
 205	struct swap_extent *se;
 206	struct rb_node *rb;
 207
 208	rb = sis->swap_extent_root.rb_node;
 209	while (rb) {
 210		se = rb_entry(rb, struct swap_extent, rb_node);
 211		if (offset < se->start_page)
 212			rb = rb->rb_left;
 213		else if (offset >= se->start_page + se->nr_pages)
 214			rb = rb->rb_right;
 215		else
 216			return se;
 217	}
 218	/* It *must* be present */
 219	BUG();
 220}
 221
 222sector_t swap_page_sector(struct page *page)
 223{
 224	struct swap_info_struct *sis = page_swap_info(page);
 225	struct swap_extent *se;
 226	sector_t sector;
 227	pgoff_t offset;
 228
 229	offset = __page_file_index(page);
 230	se = offset_to_swap_extent(sis, offset);
 231	sector = se->start_block + (offset - se->start_page);
 232	return sector << (PAGE_SHIFT - 9);
 233}
 234
 235/*
 236 * swap allocation tell device that a cluster of swap can now be discarded,
 237 * to allow the swap device to optimize its wear-levelling.
 238 */
 239static void discard_swap_cluster(struct swap_info_struct *si,
 240				 pgoff_t start_page, pgoff_t nr_pages)
 241{
 242	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 243
 244	while (nr_pages) {
 245		pgoff_t offset = start_page - se->start_page;
 246		sector_t start_block = se->start_block + offset;
 247		sector_t nr_blocks = se->nr_pages - offset;
 248
 249		if (nr_blocks > nr_pages)
 250			nr_blocks = nr_pages;
 251		start_page += nr_blocks;
 252		nr_pages -= nr_blocks;
 253
 254		start_block <<= PAGE_SHIFT - 9;
 255		nr_blocks <<= PAGE_SHIFT - 9;
 256		if (blkdev_issue_discard(si->bdev, start_block,
 257					nr_blocks, GFP_NOIO, 0))
 258			break;
 
 
 
 
 
 
 259
 260		se = next_se(se);
 261	}
 262}
 263
 264#ifdef CONFIG_THP_SWAP
 265#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 266
 267#define swap_entry_size(size)	(size)
 268#else
 269#define SWAPFILE_CLUSTER	256
 270
 271/*
 272 * Define swap_entry_size() as constant to let compiler to optimize
 273 * out some code if !CONFIG_THP_SWAP
 274 */
 275#define swap_entry_size(size)	1
 276#endif
 277#define LATENCY_LIMIT		256
 278
 279static inline void cluster_set_flag(struct swap_cluster_info *info,
 280	unsigned int flag)
 281{
 282	info->flags = flag;
 283}
 284
 285static inline unsigned int cluster_count(struct swap_cluster_info *info)
 286{
 287	return info->data;
 288}
 289
 290static inline void cluster_set_count(struct swap_cluster_info *info,
 291				     unsigned int c)
 292{
 293	info->data = c;
 294}
 295
 296static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 297					 unsigned int c, unsigned int f)
 298{
 299	info->flags = f;
 300	info->data = c;
 301}
 302
 303static inline unsigned int cluster_next(struct swap_cluster_info *info)
 304{
 305	return info->data;
 306}
 307
 308static inline void cluster_set_next(struct swap_cluster_info *info,
 309				    unsigned int n)
 310{
 311	info->data = n;
 312}
 313
 314static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 315					 unsigned int n, unsigned int f)
 316{
 317	info->flags = f;
 318	info->data = n;
 319}
 320
 321static inline bool cluster_is_free(struct swap_cluster_info *info)
 322{
 323	return info->flags & CLUSTER_FLAG_FREE;
 324}
 325
 326static inline bool cluster_is_null(struct swap_cluster_info *info)
 327{
 328	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 329}
 330
 331static inline void cluster_set_null(struct swap_cluster_info *info)
 332{
 333	info->flags = CLUSTER_FLAG_NEXT_NULL;
 334	info->data = 0;
 335}
 336
 337static inline bool cluster_is_huge(struct swap_cluster_info *info)
 338{
 339	if (IS_ENABLED(CONFIG_THP_SWAP))
 340		return info->flags & CLUSTER_FLAG_HUGE;
 341	return false;
 342}
 343
 344static inline void cluster_clear_huge(struct swap_cluster_info *info)
 345{
 346	info->flags &= ~CLUSTER_FLAG_HUGE;
 347}
 348
 349static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 350						     unsigned long offset)
 351{
 352	struct swap_cluster_info *ci;
 353
 354	ci = si->cluster_info;
 355	if (ci) {
 356		ci += offset / SWAPFILE_CLUSTER;
 357		spin_lock(&ci->lock);
 358	}
 359	return ci;
 360}
 361
 362static inline void unlock_cluster(struct swap_cluster_info *ci)
 363{
 364	if (ci)
 365		spin_unlock(&ci->lock);
 366}
 367
 368/*
 369 * Determine the locking method in use for this device.  Return
 370 * swap_cluster_info if SSD-style cluster-based locking is in place.
 371 */
 372static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 373		struct swap_info_struct *si, unsigned long offset)
 374{
 375	struct swap_cluster_info *ci;
 376
 377	/* Try to use fine-grained SSD-style locking if available: */
 378	ci = lock_cluster(si, offset);
 379	/* Otherwise, fall back to traditional, coarse locking: */
 380	if (!ci)
 381		spin_lock(&si->lock);
 382
 383	return ci;
 384}
 385
 386static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 387					       struct swap_cluster_info *ci)
 388{
 389	if (ci)
 390		unlock_cluster(ci);
 391	else
 392		spin_unlock(&si->lock);
 393}
 394
 395static inline bool cluster_list_empty(struct swap_cluster_list *list)
 396{
 397	return cluster_is_null(&list->head);
 398}
 399
 400static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 401{
 402	return cluster_next(&list->head);
 403}
 404
 405static void cluster_list_init(struct swap_cluster_list *list)
 406{
 407	cluster_set_null(&list->head);
 408	cluster_set_null(&list->tail);
 409}
 410
 411static void cluster_list_add_tail(struct swap_cluster_list *list,
 412				  struct swap_cluster_info *ci,
 413				  unsigned int idx)
 414{
 415	if (cluster_list_empty(list)) {
 416		cluster_set_next_flag(&list->head, idx, 0);
 417		cluster_set_next_flag(&list->tail, idx, 0);
 418	} else {
 419		struct swap_cluster_info *ci_tail;
 420		unsigned int tail = cluster_next(&list->tail);
 421
 422		/*
 423		 * Nested cluster lock, but both cluster locks are
 424		 * only acquired when we held swap_info_struct->lock
 425		 */
 426		ci_tail = ci + tail;
 427		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 428		cluster_set_next(ci_tail, idx);
 429		spin_unlock(&ci_tail->lock);
 430		cluster_set_next_flag(&list->tail, idx, 0);
 431	}
 432}
 433
 434static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 435					   struct swap_cluster_info *ci)
 436{
 437	unsigned int idx;
 438
 439	idx = cluster_next(&list->head);
 440	if (cluster_next(&list->tail) == idx) {
 441		cluster_set_null(&list->head);
 442		cluster_set_null(&list->tail);
 443	} else
 444		cluster_set_next_flag(&list->head,
 445				      cluster_next(&ci[idx]), 0);
 446
 447	return idx;
 448}
 449
 450/* Add a cluster to discard list and schedule it to do discard */
 451static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 452		unsigned int idx)
 453{
 454	/*
 455	 * If scan_swap_map_slots() can't find a free cluster, it will check
 456	 * si->swap_map directly. To make sure the discarding cluster isn't
 457	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 458	 * It will be cleared after discard
 459	 */
 460	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 461			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 462
 463	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 464
 465	schedule_work(&si->discard_work);
 466}
 467
 468static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 469{
 470	struct swap_cluster_info *ci = si->cluster_info;
 471
 472	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 473	cluster_list_add_tail(&si->free_clusters, ci, idx);
 474}
 475
 476/*
 477 * Doing discard actually. After a cluster discard is finished, the cluster
 478 * will be added to free cluster list. caller should hold si->lock.
 479*/
 480static void swap_do_scheduled_discard(struct swap_info_struct *si)
 481{
 482	struct swap_cluster_info *info, *ci;
 483	unsigned int idx;
 484
 485	info = si->cluster_info;
 486
 487	while (!cluster_list_empty(&si->discard_clusters)) {
 488		idx = cluster_list_del_first(&si->discard_clusters, info);
 489		spin_unlock(&si->lock);
 490
 491		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 492				SWAPFILE_CLUSTER);
 493
 494		spin_lock(&si->lock);
 495		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 496		__free_cluster(si, idx);
 497		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 498				0, SWAPFILE_CLUSTER);
 499		unlock_cluster(ci);
 500	}
 501}
 502
 503static void swap_discard_work(struct work_struct *work)
 504{
 505	struct swap_info_struct *si;
 506
 507	si = container_of(work, struct swap_info_struct, discard_work);
 508
 509	spin_lock(&si->lock);
 510	swap_do_scheduled_discard(si);
 511	spin_unlock(&si->lock);
 512}
 513
 514static void swap_users_ref_free(struct percpu_ref *ref)
 515{
 516	struct swap_info_struct *si;
 517
 518	si = container_of(ref, struct swap_info_struct, users);
 519	complete(&si->comp);
 520}
 521
 522static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 523{
 524	struct swap_cluster_info *ci = si->cluster_info;
 525
 526	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 527	cluster_list_del_first(&si->free_clusters, ci);
 528	cluster_set_count_flag(ci + idx, 0, 0);
 529}
 530
 531static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info + idx;
 534
 535	VM_BUG_ON(cluster_count(ci) != 0);
 536	/*
 537	 * If the swap is discardable, prepare discard the cluster
 538	 * instead of free it immediately. The cluster will be freed
 539	 * after discard.
 540	 */
 541	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 542	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 543		swap_cluster_schedule_discard(si, idx);
 544		return;
 545	}
 546
 547	__free_cluster(si, idx);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr will be used. The cluster will be
 552 * removed from free cluster list and its usage counter will be increased.
 553 */
 554static void inc_cluster_info_page(struct swap_info_struct *p,
 555	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 556{
 557	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 558
 559	if (!cluster_info)
 560		return;
 561	if (cluster_is_free(&cluster_info[idx]))
 562		alloc_cluster(p, idx);
 
 
 
 563
 564	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 565	cluster_set_count(&cluster_info[idx],
 566		cluster_count(&cluster_info[idx]) + 1);
 567}
 568
 569/*
 570 * The cluster corresponding to page_nr decreases one usage. If the usage
 571 * counter becomes 0, which means no page in the cluster is in using, we can
 572 * optionally discard the cluster and add it to free cluster list.
 573 */
 574static void dec_cluster_info_page(struct swap_info_struct *p,
 575	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 576{
 577	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 578
 579	if (!cluster_info)
 580		return;
 581
 582	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 583	cluster_set_count(&cluster_info[idx],
 584		cluster_count(&cluster_info[idx]) - 1);
 585
 586	if (cluster_count(&cluster_info[idx]) == 0)
 587		free_cluster(p, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 588}
 589
 590/*
 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 592 * cluster list. Avoiding such abuse to avoid list corruption.
 593 */
 594static bool
 595scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 596	unsigned long offset)
 597{
 598	struct percpu_cluster *percpu_cluster;
 599	bool conflict;
 600
 601	offset /= SWAPFILE_CLUSTER;
 602	conflict = !cluster_list_empty(&si->free_clusters) &&
 603		offset != cluster_list_first(&si->free_clusters) &&
 604		cluster_is_free(&si->cluster_info[offset]);
 605
 606	if (!conflict)
 607		return false;
 608
 609	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 610	cluster_set_null(&percpu_cluster->index);
 611	return true;
 612}
 613
 614/*
 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 616 * might involve allocating a new cluster for current CPU too.
 617 */
 618static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 619	unsigned long *offset, unsigned long *scan_base)
 620{
 621	struct percpu_cluster *cluster;
 622	struct swap_cluster_info *ci;
 623	unsigned long tmp, max;
 624
 625new_cluster:
 626	cluster = this_cpu_ptr(si->percpu_cluster);
 627	if (cluster_is_null(&cluster->index)) {
 628		if (!cluster_list_empty(&si->free_clusters)) {
 629			cluster->index = si->free_clusters.head;
 630			cluster->next = cluster_next(&cluster->index) *
 631					SWAPFILE_CLUSTER;
 632		} else if (!cluster_list_empty(&si->discard_clusters)) {
 633			/*
 634			 * we don't have free cluster but have some clusters in
 635			 * discarding, do discard now and reclaim them, then
 636			 * reread cluster_next_cpu since we dropped si->lock
 637			 */
 638			swap_do_scheduled_discard(si);
 639			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 640			*offset = *scan_base;
 641			goto new_cluster;
 642		} else
 643			return false;
 644	}
 645
 
 
 646	/*
 647	 * Other CPUs can use our cluster if they can't find a free cluster,
 648	 * check if there is still free entry in the cluster
 649	 */
 650	tmp = cluster->next;
 651	max = min_t(unsigned long, si->max,
 652		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 653	if (tmp < max) {
 654		ci = lock_cluster(si, tmp);
 655		while (tmp < max) {
 656			if (!si->swap_map[tmp])
 657				break;
 658			tmp++;
 659		}
 660		unlock_cluster(ci);
 661	}
 662	if (tmp >= max) {
 663		cluster_set_null(&cluster->index);
 664		goto new_cluster;
 665	}
 666	cluster->next = tmp + 1;
 667	*offset = tmp;
 668	*scan_base = tmp;
 669	return true;
 670}
 671
 672static void __del_from_avail_list(struct swap_info_struct *p)
 
 673{
 674	int nid;
 675
 676	for_each_node(nid)
 677		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 678}
 679
 680static void del_from_avail_list(struct swap_info_struct *p)
 681{
 682	spin_lock(&swap_avail_lock);
 683	__del_from_avail_list(p);
 684	spin_unlock(&swap_avail_lock);
 685}
 686
 687static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 688			     unsigned int nr_entries)
 689{
 690	unsigned int end = offset + nr_entries - 1;
 691
 692	if (offset == si->lowest_bit)
 693		si->lowest_bit += nr_entries;
 694	if (end == si->highest_bit)
 695		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 696	si->inuse_pages += nr_entries;
 697	if (si->inuse_pages == si->pages) {
 698		si->lowest_bit = si->max;
 699		si->highest_bit = 0;
 700		del_from_avail_list(si);
 701	}
 702}
 703
 704static void add_to_avail_list(struct swap_info_struct *p)
 705{
 706	int nid;
 707
 708	spin_lock(&swap_avail_lock);
 709	for_each_node(nid) {
 710		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 711		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 712	}
 713	spin_unlock(&swap_avail_lock);
 714}
 715
 716static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 717			    unsigned int nr_entries)
 718{
 719	unsigned long begin = offset;
 720	unsigned long end = offset + nr_entries - 1;
 721	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 722
 723	if (offset < si->lowest_bit)
 724		si->lowest_bit = offset;
 725	if (end > si->highest_bit) {
 726		bool was_full = !si->highest_bit;
 727
 728		WRITE_ONCE(si->highest_bit, end);
 729		if (was_full && (si->flags & SWP_WRITEOK))
 730			add_to_avail_list(si);
 731	}
 732	atomic_long_add(nr_entries, &nr_swap_pages);
 733	si->inuse_pages -= nr_entries;
 734	if (si->flags & SWP_BLKDEV)
 735		swap_slot_free_notify =
 736			si->bdev->bd_disk->fops->swap_slot_free_notify;
 737	else
 738		swap_slot_free_notify = NULL;
 739	while (offset <= end) {
 740		arch_swap_invalidate_page(si->type, offset);
 741		frontswap_invalidate_page(si->type, offset);
 742		if (swap_slot_free_notify)
 743			swap_slot_free_notify(si->bdev, offset);
 744		offset++;
 745	}
 746	clear_shadow_from_swap_cache(si->type, begin, end);
 747}
 748
 749static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 750{
 751	unsigned long prev;
 752
 753	if (!(si->flags & SWP_SOLIDSTATE)) {
 754		si->cluster_next = next;
 755		return;
 756	}
 757
 758	prev = this_cpu_read(*si->cluster_next_cpu);
 759	/*
 760	 * Cross the swap address space size aligned trunk, choose
 761	 * another trunk randomly to avoid lock contention on swap
 762	 * address space if possible.
 763	 */
 764	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 765	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 766		/* No free swap slots available */
 767		if (si->highest_bit <= si->lowest_bit)
 768			return;
 769		next = si->lowest_bit +
 770			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
 771		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 772		next = max_t(unsigned int, next, si->lowest_bit);
 773	}
 774	this_cpu_write(*si->cluster_next_cpu, next);
 775}
 776
 777static int scan_swap_map_slots(struct swap_info_struct *si,
 778			       unsigned char usage, int nr,
 779			       swp_entry_t slots[])
 780{
 781	struct swap_cluster_info *ci;
 782	unsigned long offset;
 783	unsigned long scan_base;
 784	unsigned long last_in_cluster = 0;
 785	int latency_ration = LATENCY_LIMIT;
 786	int n_ret = 0;
 787	bool scanned_many = false;
 788
 789	/*
 790	 * We try to cluster swap pages by allocating them sequentially
 791	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 792	 * way, however, we resort to first-free allocation, starting
 793	 * a new cluster.  This prevents us from scattering swap pages
 794	 * all over the entire swap partition, so that we reduce
 795	 * overall disk seek times between swap pages.  -- sct
 796	 * But we do now try to find an empty cluster.  -Andrea
 797	 * And we let swap pages go all over an SSD partition.  Hugh
 798	 */
 799
 800	si->flags += SWP_SCANNING;
 801	/*
 802	 * Use percpu scan base for SSD to reduce lock contention on
 803	 * cluster and swap cache.  For HDD, sequential access is more
 804	 * important.
 805	 */
 806	if (si->flags & SWP_SOLIDSTATE)
 807		scan_base = this_cpu_read(*si->cluster_next_cpu);
 808	else
 809		scan_base = si->cluster_next;
 810	offset = scan_base;
 811
 812	/* SSD algorithm */
 813	if (si->cluster_info) {
 814		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 815			goto scan;
 816	} else if (unlikely(!si->cluster_nr--)) {
 
 
 817		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 818			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 819			goto checks;
 820		}
 821
 822		spin_unlock(&si->lock);
 823
 824		/*
 825		 * If seek is expensive, start searching for new cluster from
 826		 * start of partition, to minimize the span of allocated swap.
 827		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 828		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 829		 */
 830		scan_base = offset = si->lowest_bit;
 831		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 832
 833		/* Locate the first empty (unaligned) cluster */
 834		for (; last_in_cluster <= si->highest_bit; offset++) {
 835			if (si->swap_map[offset])
 836				last_in_cluster = offset + SWAPFILE_CLUSTER;
 837			else if (offset == last_in_cluster) {
 838				spin_lock(&si->lock);
 839				offset -= SWAPFILE_CLUSTER - 1;
 840				si->cluster_next = offset;
 841				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 842				goto checks;
 843			}
 844			if (unlikely(--latency_ration < 0)) {
 845				cond_resched();
 846				latency_ration = LATENCY_LIMIT;
 847			}
 848		}
 849
 850		offset = scan_base;
 851		spin_lock(&si->lock);
 852		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 853	}
 854
 855checks:
 856	if (si->cluster_info) {
 857		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 858		/* take a break if we already got some slots */
 859			if (n_ret)
 860				goto done;
 861			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 862							&scan_base))
 863				goto scan;
 864		}
 865	}
 866	if (!(si->flags & SWP_WRITEOK))
 867		goto no_page;
 868	if (!si->highest_bit)
 869		goto no_page;
 870	if (offset > si->highest_bit)
 871		scan_base = offset = si->lowest_bit;
 872
 873	ci = lock_cluster(si, offset);
 874	/* reuse swap entry of cache-only swap if not busy. */
 875	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 876		int swap_was_freed;
 877		unlock_cluster(ci);
 878		spin_unlock(&si->lock);
 879		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 880		spin_lock(&si->lock);
 881		/* entry was freed successfully, try to use this again */
 882		if (swap_was_freed)
 883			goto checks;
 884		goto scan; /* check next one */
 885	}
 886
 887	if (si->swap_map[offset]) {
 888		unlock_cluster(ci);
 889		if (!n_ret)
 890			goto scan;
 891		else
 892			goto done;
 893	}
 894	WRITE_ONCE(si->swap_map[offset], usage);
 895	inc_cluster_info_page(si, si->cluster_info, offset);
 896	unlock_cluster(ci);
 897
 898	swap_range_alloc(si, offset, 1);
 899	slots[n_ret++] = swp_entry(si->type, offset);
 900
 901	/* got enough slots or reach max slots? */
 902	if ((n_ret == nr) || (offset >= si->highest_bit))
 903		goto done;
 904
 905	/* search for next available slot */
 906
 907	/* time to take a break? */
 908	if (unlikely(--latency_ration < 0)) {
 909		if (n_ret)
 910			goto done;
 911		spin_unlock(&si->lock);
 912		cond_resched();
 913		spin_lock(&si->lock);
 914		latency_ration = LATENCY_LIMIT;
 915	}
 916
 917	/* try to get more slots in cluster */
 918	if (si->cluster_info) {
 919		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 920			goto checks;
 921	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 922		/* non-ssd case, still more slots in cluster? */
 923		--si->cluster_nr;
 924		goto checks;
 925	}
 926
 927	/*
 928	 * Even if there's no free clusters available (fragmented),
 929	 * try to scan a little more quickly with lock held unless we
 930	 * have scanned too many slots already.
 931	 */
 932	if (!scanned_many) {
 933		unsigned long scan_limit;
 934
 935		if (offset < scan_base)
 936			scan_limit = scan_base;
 937		else
 938			scan_limit = si->highest_bit;
 939		for (; offset <= scan_limit && --latency_ration > 0;
 940		     offset++) {
 941			if (!si->swap_map[offset])
 942				goto checks;
 943		}
 944	}
 945
 946done:
 947	set_cluster_next(si, offset + 1);
 948	si->flags -= SWP_SCANNING;
 949	return n_ret;
 
 950
 951scan:
 952	spin_unlock(&si->lock);
 953	while (++offset <= READ_ONCE(si->highest_bit)) {
 954		if (data_race(!si->swap_map[offset])) {
 955			spin_lock(&si->lock);
 956			goto checks;
 957		}
 958		if (vm_swap_full() &&
 959		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 960			spin_lock(&si->lock);
 961			goto checks;
 962		}
 963		if (unlikely(--latency_ration < 0)) {
 964			cond_resched();
 965			latency_ration = LATENCY_LIMIT;
 966			scanned_many = true;
 967		}
 968	}
 969	offset = si->lowest_bit;
 970	while (offset < scan_base) {
 971		if (data_race(!si->swap_map[offset])) {
 972			spin_lock(&si->lock);
 973			goto checks;
 974		}
 975		if (vm_swap_full() &&
 976		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 977			spin_lock(&si->lock);
 978			goto checks;
 979		}
 980		if (unlikely(--latency_ration < 0)) {
 981			cond_resched();
 982			latency_ration = LATENCY_LIMIT;
 983			scanned_many = true;
 984		}
 985		offset++;
 986	}
 987	spin_lock(&si->lock);
 988
 989no_page:
 990	si->flags -= SWP_SCANNING;
 991	return n_ret;
 992}
 993
 994static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 995{
 996	unsigned long idx;
 997	struct swap_cluster_info *ci;
 998	unsigned long offset;
 999
1000	/*
1001	 * Should not even be attempting cluster allocations when huge
1002	 * page swap is disabled.  Warn and fail the allocation.
1003	 */
1004	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005		VM_WARN_ON_ONCE(1);
1006		return 0;
1007	}
1008
1009	if (cluster_list_empty(&si->free_clusters))
1010		return 0;
1011
1012	idx = cluster_list_first(&si->free_clusters);
1013	offset = idx * SWAPFILE_CLUSTER;
1014	ci = lock_cluster(si, offset);
1015	alloc_cluster(si, idx);
1016	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019	unlock_cluster(ci);
1020	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021	*slot = swp_entry(si->type, offset);
1022
1023	return 1;
1024}
1025
1026static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027{
1028	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029	struct swap_cluster_info *ci;
1030
1031	ci = lock_cluster(si, offset);
1032	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033	cluster_set_count_flag(ci, 0, 0);
1034	free_cluster(si, idx);
1035	unlock_cluster(ci);
1036	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037}
1038
1039int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040{
1041	unsigned long size = swap_entry_size(entry_size);
1042	struct swap_info_struct *si, *next;
1043	long avail_pgs;
1044	int n_ret = 0;
1045	int node;
1046
1047	/* Only single cluster request supported */
1048	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050	spin_lock(&swap_avail_lock);
1051
1052	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053	if (avail_pgs <= 0) {
1054		spin_unlock(&swap_avail_lock);
1055		goto noswap;
1056	}
1057
1058	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062start_over:
1063	node = numa_node_id();
1064	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065		/* requeue si to after same-priority siblings */
1066		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067		spin_unlock(&swap_avail_lock);
1068		spin_lock(&si->lock);
1069		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070			spin_lock(&swap_avail_lock);
1071			if (plist_node_empty(&si->avail_lists[node])) {
1072				spin_unlock(&si->lock);
1073				goto nextsi;
1074			}
1075			WARN(!si->highest_bit,
1076			     "swap_info %d in list but !highest_bit\n",
1077			     si->type);
1078			WARN(!(si->flags & SWP_WRITEOK),
1079			     "swap_info %d in list but !SWP_WRITEOK\n",
1080			     si->type);
1081			__del_from_avail_list(si);
1082			spin_unlock(&si->lock);
1083			goto nextsi;
1084		}
1085		if (size == SWAPFILE_CLUSTER) {
1086			if (si->flags & SWP_BLKDEV)
1087				n_ret = swap_alloc_cluster(si, swp_entries);
1088		} else
1089			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090						    n_goal, swp_entries);
1091		spin_unlock(&si->lock);
1092		if (n_ret || size == SWAPFILE_CLUSTER)
1093			goto check_out;
1094		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095			si->type);
1096
1097		spin_lock(&swap_avail_lock);
1098nextsi:
1099		/*
1100		 * if we got here, it's likely that si was almost full before,
1101		 * and since scan_swap_map_slots() can drop the si->lock,
1102		 * multiple callers probably all tried to get a page from the
1103		 * same si and it filled up before we could get one; or, the si
1104		 * filled up between us dropping swap_avail_lock and taking
1105		 * si->lock. Since we dropped the swap_avail_lock, the
1106		 * swap_avail_head list may have been modified; so if next is
1107		 * still in the swap_avail_head list then try it, otherwise
1108		 * start over if we have not gotten any slots.
1109		 */
1110		if (plist_node_empty(&next->avail_lists[node]))
1111			goto start_over;
1112	}
1113
1114	spin_unlock(&swap_avail_lock);
1115
1116check_out:
1117	if (n_ret < n_goal)
1118		atomic_long_add((long)(n_goal - n_ret) * size,
1119				&nr_swap_pages);
1120noswap:
1121	return n_ret;
1122}
1123
1124static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125{
1126	struct swap_info_struct *p;
1127	unsigned long offset;
1128
1129	if (!entry.val)
1130		goto out;
1131	p = swp_swap_info(entry);
1132	if (!p)
1133		goto bad_nofile;
1134	if (data_race(!(p->flags & SWP_USED)))
 
1135		goto bad_device;
1136	offset = swp_offset(entry);
1137	if (offset >= p->max)
1138		goto bad_offset;
 
 
 
1139	return p;
1140
 
 
 
1141bad_offset:
1142	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143	goto out;
1144bad_device:
1145	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146	goto out;
1147bad_nofile:
1148	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149out:
1150	return NULL;
1151}
1152
1153static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154{
1155	struct swap_info_struct *p;
1156
1157	p = __swap_info_get(entry);
1158	if (!p)
1159		goto out;
1160	if (data_race(!p->swap_map[swp_offset(entry)]))
1161		goto bad_free;
1162	return p;
1163
1164bad_free:
1165	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166out:
1167	return NULL;
1168}
1169
1170static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171{
1172	struct swap_info_struct *p;
1173
1174	p = _swap_info_get(entry);
1175	if (p)
1176		spin_lock(&p->lock);
1177	return p;
1178}
1179
1180static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181					struct swap_info_struct *q)
1182{
1183	struct swap_info_struct *p;
1184
1185	p = _swap_info_get(entry);
1186
1187	if (p != q) {
1188		if (q != NULL)
1189			spin_unlock(&q->lock);
1190		if (p != NULL)
1191			spin_lock(&p->lock);
1192	}
1193	return p;
1194}
1195
1196static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197					      unsigned long offset,
1198					      unsigned char usage)
1199{
 
1200	unsigned char count;
1201	unsigned char has_cache;
1202
1203	count = p->swap_map[offset];
1204
1205	has_cache = count & SWAP_HAS_CACHE;
1206	count &= ~SWAP_HAS_CACHE;
1207
1208	if (usage == SWAP_HAS_CACHE) {
1209		VM_BUG_ON(!has_cache);
1210		has_cache = 0;
1211	} else if (count == SWAP_MAP_SHMEM) {
1212		/*
1213		 * Or we could insist on shmem.c using a special
1214		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215		 */
1216		count = 0;
1217	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218		if (count == COUNT_CONTINUED) {
1219			if (swap_count_continued(p, offset, count))
1220				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221			else
1222				count = SWAP_MAP_MAX;
1223		} else
1224			count--;
1225	}
1226
1227	usage = count | has_cache;
1228	if (usage)
1229		WRITE_ONCE(p->swap_map[offset], usage);
1230	else
1231		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233	return usage;
1234}
1235
1236/*
1237 * Check whether swap entry is valid in the swap device.  If so,
1238 * return pointer to swap_info_struct, and keep the swap entry valid
1239 * via preventing the swap device from being swapoff, until
1240 * put_swap_device() is called.  Otherwise return NULL.
1241 *
1242 * Notice that swapoff or swapoff+swapon can still happen before the
1243 * percpu_ref_tryget_live() in get_swap_device() or after the
1244 * percpu_ref_put() in put_swap_device() if there isn't any other way
1245 * to prevent swapoff, such as page lock, page table lock, etc.  The
1246 * caller must be prepared for that.  For example, the following
1247 * situation is possible.
1248 *
1249 *   CPU1				CPU2
1250 *   do_swap_page()
1251 *     ...				swapoff+swapon
1252 *     __read_swap_cache_async()
1253 *       swapcache_prepare()
1254 *         __swap_duplicate()
1255 *           // check swap_map
1256 *     // verify PTE not changed
1257 *
1258 * In __swap_duplicate(), the swap_map need to be checked before
1259 * changing partly because the specified swap entry may be for another
1260 * swap device which has been swapoff.  And in do_swap_page(), after
1261 * the page is read from the swap device, the PTE is verified not
1262 * changed with the page table locked to check whether the swap device
1263 * has been swapoff or swapoff+swapon.
1264 */
1265struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266{
1267	struct swap_info_struct *si;
1268	unsigned long offset;
1269
1270	if (!entry.val)
1271		goto out;
1272	si = swp_swap_info(entry);
1273	if (!si)
1274		goto bad_nofile;
1275	if (!percpu_ref_tryget_live(&si->users))
1276		goto out;
1277	/*
1278	 * Guarantee the si->users are checked before accessing other
1279	 * fields of swap_info_struct.
1280	 *
1281	 * Paired with the spin_unlock() after setup_swap_info() in
1282	 * enable_swap_info().
1283	 */
1284	smp_rmb();
1285	offset = swp_offset(entry);
1286	if (offset >= si->max)
1287		goto put_out;
1288
1289	return si;
1290bad_nofile:
1291	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292out:
1293	return NULL;
1294put_out:
1295	percpu_ref_put(&si->users);
1296	return NULL;
1297}
1298
1299static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300				       swp_entry_t entry)
1301{
1302	struct swap_cluster_info *ci;
1303	unsigned long offset = swp_offset(entry);
1304	unsigned char usage;
1305
1306	ci = lock_cluster_or_swap_info(p, offset);
1307	usage = __swap_entry_free_locked(p, offset, 1);
1308	unlock_cluster_or_swap_info(p, ci);
1309	if (!usage)
1310		free_swap_slot(entry);
 
 
 
 
 
 
1311
1312	return usage;
1313}
1314
1315static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316{
1317	struct swap_cluster_info *ci;
1318	unsigned long offset = swp_offset(entry);
1319	unsigned char count;
1320
1321	ci = lock_cluster(p, offset);
1322	count = p->swap_map[offset];
1323	VM_BUG_ON(count != SWAP_HAS_CACHE);
1324	p->swap_map[offset] = 0;
1325	dec_cluster_info_page(p, p->cluster_info, offset);
1326	unlock_cluster(ci);
1327
1328	mem_cgroup_uncharge_swap(entry, 1);
1329	swap_range_free(p, offset, 1);
1330}
1331
1332/*
1333 * Caller has made sure that the swap device corresponding to entry
1334 * is still around or has not been recycled.
1335 */
1336void swap_free(swp_entry_t entry)
1337{
1338	struct swap_info_struct *p;
1339
1340	p = _swap_info_get(entry);
1341	if (p)
1342		__swap_entry_free(p, entry);
 
 
1343}
1344
1345/*
1346 * Called after dropping swapcache to decrease refcnt to swap entries.
1347 */
1348void put_swap_page(struct page *page, swp_entry_t entry)
1349{
1350	unsigned long offset = swp_offset(entry);
1351	unsigned long idx = offset / SWAPFILE_CLUSTER;
1352	struct swap_cluster_info *ci;
1353	struct swap_info_struct *si;
1354	unsigned char *map;
1355	unsigned int i, free_entries = 0;
1356	unsigned char val;
1357	int size = swap_entry_size(thp_nr_pages(page));
1358
1359	si = _swap_info_get(entry);
1360	if (!si)
1361		return;
1362
1363	ci = lock_cluster_or_swap_info(si, offset);
1364	if (size == SWAPFILE_CLUSTER) {
1365		VM_BUG_ON(!cluster_is_huge(ci));
1366		map = si->swap_map + offset;
1367		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368			val = map[i];
1369			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370			if (val == SWAP_HAS_CACHE)
1371				free_entries++;
1372		}
1373		cluster_clear_huge(ci);
1374		if (free_entries == SWAPFILE_CLUSTER) {
1375			unlock_cluster_or_swap_info(si, ci);
1376			spin_lock(&si->lock);
1377			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378			swap_free_cluster(si, idx);
1379			spin_unlock(&si->lock);
1380			return;
1381		}
1382	}
1383	for (i = 0; i < size; i++, entry.val++) {
1384		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385			unlock_cluster_or_swap_info(si, ci);
1386			free_swap_slot(entry);
1387			if (i == size - 1)
1388				return;
1389			lock_cluster_or_swap_info(si, offset);
1390		}
1391	}
1392	unlock_cluster_or_swap_info(si, ci);
1393}
1394
1395#ifdef CONFIG_THP_SWAP
1396int split_swap_cluster(swp_entry_t entry)
1397{
1398	struct swap_info_struct *si;
1399	struct swap_cluster_info *ci;
1400	unsigned long offset = swp_offset(entry);
1401
1402	si = _swap_info_get(entry);
1403	if (!si)
1404		return -EBUSY;
1405	ci = lock_cluster(si, offset);
1406	cluster_clear_huge(ci);
1407	unlock_cluster(ci);
1408	return 0;
1409}
1410#endif
1411
1412static int swp_entry_cmp(const void *ent1, const void *ent2)
1413{
1414	const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416	return (int)swp_type(*e1) - (int)swp_type(*e2);
1417}
1418
1419void swapcache_free_entries(swp_entry_t *entries, int n)
1420{
1421	struct swap_info_struct *p, *prev;
1422	int i;
1423
1424	if (n <= 0)
1425		return;
1426
1427	prev = NULL;
1428	p = NULL;
1429
1430	/*
1431	 * Sort swap entries by swap device, so each lock is only taken once.
1432	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433	 * so low that it isn't necessary to optimize further.
1434	 */
1435	if (nr_swapfiles > 1)
1436		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437	for (i = 0; i < n; ++i) {
1438		p = swap_info_get_cont(entries[i], prev);
1439		if (p)
1440			swap_entry_free(p, entries[i]);
1441		prev = p;
1442	}
1443	if (p)
1444		spin_unlock(&p->lock);
 
1445}
1446
1447/*
1448 * How many references to page are currently swapped out?
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1451 */
1452int page_swapcount(struct page *page)
1453{
1454	int count = 0;
1455	struct swap_info_struct *p;
1456	struct swap_cluster_info *ci;
1457	swp_entry_t entry;
1458	unsigned long offset;
1459
1460	entry.val = page_private(page);
1461	p = _swap_info_get(entry);
1462	if (p) {
1463		offset = swp_offset(entry);
1464		ci = lock_cluster_or_swap_info(p, offset);
1465		count = swap_count(p->swap_map[offset]);
1466		unlock_cluster_or_swap_info(p, ci);
1467	}
1468	return count;
1469}
1470
1471int __swap_count(swp_entry_t entry)
1472{
1473	struct swap_info_struct *si;
1474	pgoff_t offset = swp_offset(entry);
1475	int count = 0;
1476
1477	si = get_swap_device(entry);
1478	if (si) {
1479		count = swap_count(si->swap_map[offset]);
1480		put_swap_device(si);
1481	}
1482	return count;
1483}
1484
1485static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486{
1487	int count = 0;
1488	pgoff_t offset = swp_offset(entry);
1489	struct swap_cluster_info *ci;
1490
1491	ci = lock_cluster_or_swap_info(si, offset);
1492	count = swap_count(si->swap_map[offset]);
1493	unlock_cluster_or_swap_info(si, ci);
1494	return count;
1495}
1496
1497/*
1498 * How many references to @entry are currently swapped out?
1499 * This does not give an exact answer when swap count is continued,
1500 * but does include the high COUNT_CONTINUED flag to allow for that.
1501 */
1502int __swp_swapcount(swp_entry_t entry)
1503{
1504	int count = 0;
1505	struct swap_info_struct *si;
1506
1507	si = get_swap_device(entry);
1508	if (si) {
1509		count = swap_swapcount(si, entry);
1510		put_swap_device(si);
1511	}
1512	return count;
1513}
1514
1515/*
1516 * How many references to @entry are currently swapped out?
1517 * This considers COUNT_CONTINUED so it returns exact answer.
1518 */
1519int swp_swapcount(swp_entry_t entry)
1520{
1521	int count, tmp_count, n;
1522	struct swap_info_struct *p;
1523	struct swap_cluster_info *ci;
1524	struct page *page;
1525	pgoff_t offset;
1526	unsigned char *map;
1527
1528	p = _swap_info_get(entry);
1529	if (!p)
1530		return 0;
1531
1532	offset = swp_offset(entry);
1533
1534	ci = lock_cluster_or_swap_info(p, offset);
1535
1536	count = swap_count(p->swap_map[offset]);
1537	if (!(count & COUNT_CONTINUED))
1538		goto out;
1539
1540	count &= ~COUNT_CONTINUED;
1541	n = SWAP_MAP_MAX + 1;
1542
 
1543	page = vmalloc_to_page(p->swap_map + offset);
1544	offset &= ~PAGE_MASK;
1545	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547	do {
1548		page = list_next_entry(page, lru);
1549		map = kmap_atomic(page);
1550		tmp_count = map[offset];
1551		kunmap_atomic(map);
1552
1553		count += (tmp_count & ~COUNT_CONTINUED) * n;
1554		n *= (SWAP_CONT_MAX + 1);
1555	} while (tmp_count & COUNT_CONTINUED);
1556out:
1557	unlock_cluster_or_swap_info(p, ci);
1558	return count;
1559}
1560
1561static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562					 swp_entry_t entry)
1563{
1564	struct swap_cluster_info *ci;
1565	unsigned char *map = si->swap_map;
1566	unsigned long roffset = swp_offset(entry);
1567	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568	int i;
1569	bool ret = false;
1570
1571	ci = lock_cluster_or_swap_info(si, offset);
1572	if (!ci || !cluster_is_huge(ci)) {
1573		if (swap_count(map[roffset]))
1574			ret = true;
1575		goto unlock_out;
1576	}
1577	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578		if (swap_count(map[offset + i])) {
1579			ret = true;
1580			break;
1581		}
1582	}
1583unlock_out:
1584	unlock_cluster_or_swap_info(si, ci);
1585	return ret;
1586}
1587
1588static bool page_swapped(struct page *page)
1589{
1590	swp_entry_t entry;
1591	struct swap_info_struct *si;
1592
1593	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594		return page_swapcount(page) != 0;
1595
1596	page = compound_head(page);
1597	entry.val = page_private(page);
1598	si = _swap_info_get(entry);
1599	if (si)
1600		return swap_page_trans_huge_swapped(si, entry);
1601	return false;
1602}
1603
1604static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1605					 int *total_swapcount)
1606{
1607	int i, map_swapcount, _total_mapcount, _total_swapcount;
1608	unsigned long offset = 0;
1609	struct swap_info_struct *si;
1610	struct swap_cluster_info *ci = NULL;
1611	unsigned char *map = NULL;
1612	int mapcount, swapcount = 0;
1613
1614	/* hugetlbfs shouldn't call it */
1615	VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1619		if (PageSwapCache(page))
1620			swapcount = page_swapcount(page);
1621		if (total_swapcount)
1622			*total_swapcount = swapcount;
1623		return mapcount + swapcount;
1624	}
1625
1626	page = compound_head(page);
1627
1628	_total_mapcount = _total_swapcount = map_swapcount = 0;
1629	if (PageSwapCache(page)) {
1630		swp_entry_t entry;
1631
1632		entry.val = page_private(page);
1633		si = _swap_info_get(entry);
1634		if (si) {
1635			map = si->swap_map;
1636			offset = swp_offset(entry);
1637		}
1638	}
1639	if (map)
1640		ci = lock_cluster(si, offset);
1641	for (i = 0; i < HPAGE_PMD_NR; i++) {
1642		mapcount = atomic_read(&page[i]._mapcount) + 1;
1643		_total_mapcount += mapcount;
1644		if (map) {
1645			swapcount = swap_count(map[offset + i]);
1646			_total_swapcount += swapcount;
1647		}
1648		map_swapcount = max(map_swapcount, mapcount + swapcount);
1649	}
1650	unlock_cluster(ci);
1651	if (PageDoubleMap(page)) {
1652		map_swapcount -= 1;
1653		_total_mapcount -= HPAGE_PMD_NR;
1654	}
1655	mapcount = compound_mapcount(page);
1656	map_swapcount += mapcount;
1657	_total_mapcount += mapcount;
1658	if (total_mapcount)
1659		*total_mapcount = _total_mapcount;
1660	if (total_swapcount)
1661		*total_swapcount = _total_swapcount;
1662
1663	return map_swapcount;
1664}
1665
1666/*
1667 * We can write to an anon page without COW if there are no other references
1668 * to it.  And as a side-effect, free up its swap: because the old content
1669 * on disk will never be read, and seeking back there to write new content
1670 * later would only waste time away from clustering.
1671 *
1672 * NOTE: total_map_swapcount should not be relied upon by the caller if
1673 * reuse_swap_page() returns false, but it may be always overwritten
1674 * (see the other implementation for CONFIG_SWAP=n).
1675 */
1676bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1677{
1678	int count, total_mapcount, total_swapcount;
1679
1680	VM_BUG_ON_PAGE(!PageLocked(page), page);
1681	if (unlikely(PageKsm(page)))
1682		return false;
1683	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1684					      &total_swapcount);
1685	if (total_map_swapcount)
1686		*total_map_swapcount = total_mapcount + total_swapcount;
1687	if (count == 1 && PageSwapCache(page) &&
1688	    (likely(!PageTransCompound(page)) ||
1689	     /* The remaining swap count will be freed soon */
1690	     total_swapcount == page_swapcount(page))) {
1691		if (!PageWriteback(page)) {
1692			page = compound_head(page);
1693			delete_from_swap_cache(page);
1694			SetPageDirty(page);
1695		} else {
1696			swp_entry_t entry;
1697			struct swap_info_struct *p;
1698
1699			entry.val = page_private(page);
1700			p = swap_info_get(entry);
1701			if (p->flags & SWP_STABLE_WRITES) {
1702				spin_unlock(&p->lock);
1703				return false;
1704			}
1705			spin_unlock(&p->lock);
1706		}
1707	}
1708
1709	return count <= 1;
1710}
1711
1712/*
1713 * If swap is getting full, or if there are no more mappings of this page,
1714 * then try_to_free_swap is called to free its swap space.
1715 */
1716int try_to_free_swap(struct page *page)
1717{
1718	VM_BUG_ON_PAGE(!PageLocked(page), page);
1719
1720	if (!PageSwapCache(page))
1721		return 0;
1722	if (PageWriteback(page))
1723		return 0;
1724	if (page_swapped(page))
1725		return 0;
1726
1727	/*
1728	 * Once hibernation has begun to create its image of memory,
1729	 * there's a danger that one of the calls to try_to_free_swap()
1730	 * - most probably a call from __try_to_reclaim_swap() while
1731	 * hibernation is allocating its own swap pages for the image,
1732	 * but conceivably even a call from memory reclaim - will free
1733	 * the swap from a page which has already been recorded in the
1734	 * image as a clean swapcache page, and then reuse its swap for
1735	 * another page of the image.  On waking from hibernation, the
1736	 * original page might be freed under memory pressure, then
1737	 * later read back in from swap, now with the wrong data.
1738	 *
1739	 * Hibernation suspends storage while it is writing the image
1740	 * to disk so check that here.
1741	 */
1742	if (pm_suspended_storage())
1743		return 0;
1744
1745	page = compound_head(page);
1746	delete_from_swap_cache(page);
1747	SetPageDirty(page);
1748	return 1;
1749}
1750
1751/*
1752 * Free the swap entry like above, but also try to
1753 * free the page cache entry if it is the last user.
1754 */
1755int free_swap_and_cache(swp_entry_t entry)
1756{
1757	struct swap_info_struct *p;
1758	unsigned char count;
1759
1760	if (non_swap_entry(entry))
1761		return 1;
1762
1763	p = _swap_info_get(entry);
1764	if (p) {
1765		count = __swap_entry_free(p, entry);
1766		if (count == SWAP_HAS_CACHE &&
1767		    !swap_page_trans_huge_swapped(p, entry))
1768			__try_to_reclaim_swap(p, swp_offset(entry),
1769					      TTRS_UNMAPPED | TTRS_FULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	}
1771	return p != NULL;
1772}
1773
1774#ifdef CONFIG_HIBERNATION
1775
1776swp_entry_t get_swap_page_of_type(int type)
1777{
1778	struct swap_info_struct *si = swap_type_to_swap_info(type);
1779	swp_entry_t entry = {0};
1780
1781	if (!si)
1782		goto fail;
1783
1784	/* This is called for allocating swap entry, not cache */
1785	spin_lock(&si->lock);
1786	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1787		atomic_long_dec(&nr_swap_pages);
1788	spin_unlock(&si->lock);
1789fail:
1790	return entry;
1791}
1792
1793/*
1794 * Find the swap type that corresponds to given device (if any).
1795 *
1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797 * from 0, in which the swap header is expected to be located.
1798 *
1799 * This is needed for the suspend to disk (aka swsusp).
1800 */
1801int swap_type_of(dev_t device, sector_t offset)
1802{
 
1803	int type;
1804
1805	if (!device)
1806		return -1;
1807
1808	spin_lock(&swap_lock);
1809	for (type = 0; type < nr_swapfiles; type++) {
1810		struct swap_info_struct *sis = swap_info[type];
1811
1812		if (!(sis->flags & SWP_WRITEOK))
1813			continue;
1814
1815		if (device == sis->bdev->bd_dev) {
1816			struct swap_extent *se = first_se(sis);
 
 
 
 
 
 
 
1817
1818			if (se->start_block == offset) {
 
 
 
1819				spin_unlock(&swap_lock);
 
1820				return type;
1821			}
1822		}
1823	}
1824	spin_unlock(&swap_lock);
1825	return -ENODEV;
1826}
1827
1828int find_first_swap(dev_t *device)
1829{
1830	int type;
1831
1832	spin_lock(&swap_lock);
1833	for (type = 0; type < nr_swapfiles; type++) {
1834		struct swap_info_struct *sis = swap_info[type];
1835
1836		if (!(sis->flags & SWP_WRITEOK))
1837			continue;
1838		*device = sis->bdev->bd_dev;
1839		spin_unlock(&swap_lock);
1840		return type;
1841	}
1842	spin_unlock(&swap_lock);
1843	return -ENODEV;
1844}
1845
1846/*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850sector_t swapdev_block(int type, pgoff_t offset)
1851{
1852	struct swap_info_struct *si = swap_type_to_swap_info(type);
1853	struct swap_extent *se;
1854
1855	if (!si || !(si->flags & SWP_WRITEOK))
1856		return 0;
1857	se = offset_to_swap_extent(si, offset);
1858	return se->start_block + (offset - se->start_page);
 
1859}
1860
1861/*
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1864 *
1865 * This is needed for software suspend
1866 */
1867unsigned int count_swap_pages(int type, int free)
1868{
1869	unsigned int n = 0;
1870
1871	spin_lock(&swap_lock);
1872	if ((unsigned int)type < nr_swapfiles) {
1873		struct swap_info_struct *sis = swap_info[type];
1874
1875		spin_lock(&sis->lock);
1876		if (sis->flags & SWP_WRITEOK) {
1877			n = sis->pages;
1878			if (free)
1879				n -= sis->inuse_pages;
1880		}
1881		spin_unlock(&sis->lock);
1882	}
1883	spin_unlock(&swap_lock);
1884	return n;
1885}
1886#endif /* CONFIG_HIBERNATION */
1887
1888static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889{
1890	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1891}
1892
1893/*
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1897 */
1898static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899		unsigned long addr, swp_entry_t entry, struct page *page)
1900{
1901	struct page *swapcache;
 
1902	spinlock_t *ptl;
1903	pte_t *pte;
1904	int ret = 1;
1905
1906	swapcache = page;
1907	page = ksm_might_need_to_copy(page, vma, addr);
1908	if (unlikely(!page))
1909		return -ENOMEM;
1910
 
 
 
 
 
 
1911	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 
1913		ret = 0;
1914		goto out;
1915	}
1916
1917	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919	get_page(page);
1920	set_pte_at(vma->vm_mm, addr, pte,
1921		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922	if (page == swapcache) {
1923		page_add_anon_rmap(page, vma, addr, false);
 
1924	} else { /* ksm created a completely new copy */
1925		page_add_new_anon_rmap(page, vma, addr, false);
1926		lru_cache_add_inactive_or_unevictable(page, vma);
 
1927	}
1928	swap_free(entry);
 
 
 
 
 
1929out:
1930	pte_unmap_unlock(pte, ptl);
 
1931	if (page != swapcache) {
1932		unlock_page(page);
1933		put_page(page);
1934	}
1935	return ret;
1936}
1937
1938static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939			unsigned long addr, unsigned long end,
1940			unsigned int type, bool frontswap,
1941			unsigned long *fs_pages_to_unuse)
1942{
1943	struct page *page;
1944	swp_entry_t entry;
1945	pte_t *pte;
1946	struct swap_info_struct *si;
1947	unsigned long offset;
1948	int ret = 0;
1949	volatile unsigned char *swap_map;
1950
1951	si = swap_info[type];
 
 
 
 
 
 
 
 
1952	pte = pte_offset_map(pmd, addr);
1953	do {
1954		if (!is_swap_pte(*pte))
1955			continue;
1956
1957		entry = pte_to_swp_entry(*pte);
1958		if (swp_type(entry) != type)
1959			continue;
1960
1961		offset = swp_offset(entry);
1962		if (frontswap && !frontswap_test(si, offset))
1963			continue;
1964
1965		pte_unmap(pte);
1966		swap_map = &si->swap_map[offset];
1967		page = lookup_swap_cache(entry, vma, addr);
1968		if (!page) {
1969			struct vm_fault vmf = {
1970				.vma = vma,
1971				.address = addr,
1972				.pmd = pmd,
1973			};
1974
1975			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976						&vmf);
1977		}
1978		if (!page) {
1979			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980				goto try_next;
1981			return -ENOMEM;
1982		}
1983
1984		lock_page(page);
1985		wait_on_page_writeback(page);
1986		ret = unuse_pte(vma, pmd, addr, entry, page);
1987		if (ret < 0) {
1988			unlock_page(page);
1989			put_page(page);
1990			goto out;
1991		}
1992
1993		try_to_free_swap(page);
1994		unlock_page(page);
1995		put_page(page);
1996
1997		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998			ret = FRONTSWAP_PAGES_UNUSED;
1999			goto out;
2000		}
2001try_next:
2002		pte = pte_offset_map(pmd, addr);
2003	} while (pte++, addr += PAGE_SIZE, addr != end);
2004	pte_unmap(pte - 1);
2005
2006	ret = 0;
2007out:
2008	return ret;
2009}
2010
2011static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012				unsigned long addr, unsigned long end,
2013				unsigned int type, bool frontswap,
2014				unsigned long *fs_pages_to_unuse)
2015{
2016	pmd_t *pmd;
2017	unsigned long next;
2018	int ret;
2019
2020	pmd = pmd_offset(pud, addr);
2021	do {
2022		cond_resched();
2023		next = pmd_addr_end(addr, end);
2024		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025			continue;
2026		ret = unuse_pte_range(vma, pmd, addr, next, type,
2027				      frontswap, fs_pages_to_unuse);
2028		if (ret)
2029			return ret;
2030	} while (pmd++, addr = next, addr != end);
2031	return 0;
2032}
2033
2034static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035				unsigned long addr, unsigned long end,
2036				unsigned int type, bool frontswap,
2037				unsigned long *fs_pages_to_unuse)
2038{
2039	pud_t *pud;
2040	unsigned long next;
2041	int ret;
2042
2043	pud = pud_offset(p4d, addr);
2044	do {
2045		next = pud_addr_end(addr, end);
2046		if (pud_none_or_clear_bad(pud))
2047			continue;
2048		ret = unuse_pmd_range(vma, pud, addr, next, type,
2049				      frontswap, fs_pages_to_unuse);
2050		if (ret)
2051			return ret;
2052	} while (pud++, addr = next, addr != end);
2053	return 0;
2054}
2055
2056static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057				unsigned long addr, unsigned long end,
2058				unsigned int type, bool frontswap,
2059				unsigned long *fs_pages_to_unuse)
2060{
2061	p4d_t *p4d;
2062	unsigned long next;
2063	int ret;
2064
2065	p4d = p4d_offset(pgd, addr);
2066	do {
2067		next = p4d_addr_end(addr, end);
2068		if (p4d_none_or_clear_bad(p4d))
2069			continue;
2070		ret = unuse_pud_range(vma, p4d, addr, next, type,
2071				      frontswap, fs_pages_to_unuse);
2072		if (ret)
2073			return ret;
2074	} while (p4d++, addr = next, addr != end);
2075	return 0;
2076}
2077
2078static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079		     bool frontswap, unsigned long *fs_pages_to_unuse)
2080{
2081	pgd_t *pgd;
2082	unsigned long addr, end, next;
2083	int ret;
2084
2085	addr = vma->vm_start;
2086	end = vma->vm_end;
 
 
 
 
 
 
 
 
2087
2088	pgd = pgd_offset(vma->vm_mm, addr);
2089	do {
2090		next = pgd_addr_end(addr, end);
2091		if (pgd_none_or_clear_bad(pgd))
2092			continue;
2093		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094				      frontswap, fs_pages_to_unuse);
2095		if (ret)
2096			return ret;
2097	} while (pgd++, addr = next, addr != end);
2098	return 0;
2099}
2100
2101static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102		    bool frontswap, unsigned long *fs_pages_to_unuse)
2103{
2104	struct vm_area_struct *vma;
2105	int ret = 0;
2106
2107	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
 
2108	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109		if (vma->anon_vma) {
2110			ret = unuse_vma(vma, type, frontswap,
2111					fs_pages_to_unuse);
2112			if (ret)
2113				break;
2114		}
2115		cond_resched();
2116	}
2117	mmap_read_unlock(mm);
2118	return ret;
2119}
2120
2121/*
2122 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123 * from current position to next entry still in use. Return 0
2124 * if there are no inuse entries after prev till end of the map.
2125 */
2126static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127					unsigned int prev, bool frontswap)
2128{
2129	unsigned int i;
 
2130	unsigned char count;
2131
2132	/*
2133	 * No need for swap_lock here: we're just looking
2134	 * for whether an entry is in use, not modifying it; false
2135	 * hits are okay, and sys_swapoff() has already prevented new
2136	 * allocations from this area (while holding swap_lock).
2137	 */
2138	for (i = prev + 1; i < si->max; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2139		count = READ_ONCE(si->swap_map[i]);
2140		if (count && swap_count(count) != SWAP_MAP_BAD)
2141			if (!frontswap || frontswap_test(si, i))
2142				break;
2143		if ((i % LATENCY_LIMIT) == 0)
2144			cond_resched();
2145	}
2146
2147	if (i == si->max)
2148		i = 0;
2149
2150	return i;
2151}
2152
2153/*
2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
 
 
 
 
2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156 */
2157int try_to_unuse(unsigned int type, bool frontswap,
2158		 unsigned long pages_to_unuse)
2159{
2160	struct mm_struct *prev_mm;
2161	struct mm_struct *mm;
2162	struct list_head *p;
2163	int retval = 0;
2164	struct swap_info_struct *si = swap_info[type];
 
 
 
 
 
 
 
2165	struct page *page;
2166	swp_entry_t entry;
2167	unsigned int i;
2168
2169	if (!READ_ONCE(si->inuse_pages))
2170		return 0;
2171
2172	if (!frontswap)
2173		pages_to_unuse = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174
2175retry:
2176	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177	if (retval)
2178		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179
2180	prev_mm = &init_mm;
2181	mmget(prev_mm);
 
 
 
 
 
 
2182
2183	spin_lock(&mmlist_lock);
2184	p = &init_mm.mmlist;
2185	while (READ_ONCE(si->inuse_pages) &&
2186	       !signal_pending(current) &&
2187	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2188
2189		mm = list_entry(p, struct mm_struct, mmlist);
2190		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2191			continue;
2192		spin_unlock(&mmlist_lock);
2193		mmput(prev_mm);
2194		prev_mm = mm;
2195		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196
2197		if (retval) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198			mmput(prev_mm);
2199			goto out;
 
 
 
 
 
 
2200		}
2201
2202		/*
2203		 * Make sure that we aren't completely killing
2204		 * interactive performance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		 */
2206		cond_resched();
2207		spin_lock(&mmlist_lock);
2208	}
2209	spin_unlock(&mmlist_lock);
2210
2211	mmput(prev_mm);
2212
2213	i = 0;
2214	while (READ_ONCE(si->inuse_pages) &&
2215	       !signal_pending(current) &&
2216	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217
2218		entry = swp_entry(type, i);
2219		page = find_get_page(swap_address_space(entry), i);
2220		if (!page)
2221			continue;
2222
2223		/*
2224		 * It is conceivable that a racing task removed this page from
2225		 * swap cache just before we acquired the page lock. The page
2226		 * might even be back in swap cache on another swap area. But
2227		 * that is okay, try_to_free_swap() only removes stale pages.
 
2228		 */
2229		lock_page(page);
2230		wait_on_page_writeback(page);
2231		try_to_free_swap(page);
 
 
 
 
 
 
 
2232		unlock_page(page);
2233		put_page(page);
2234
2235		/*
2236		 * For frontswap, we just need to unuse pages_to_unuse, if
2237		 * it was specified. Need not check frontswap again here as
2238		 * we already zeroed out pages_to_unuse if not frontswap.
2239		 */
2240		if (pages_to_unuse && --pages_to_unuse == 0)
2241			goto out;
 
 
 
2242	}
2243
2244	/*
2245	 * Lets check again to see if there are still swap entries in the map.
2246	 * If yes, we would need to do retry the unuse logic again.
2247	 * Under global memory pressure, swap entries can be reinserted back
2248	 * into process space after the mmlist loop above passes over them.
2249	 *
2250	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252	 * at its own independent pace; and even shmem_writepage() could have
2253	 * been preempted after get_swap_page(), temporarily hiding that swap.
2254	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255	 */
2256	if (READ_ONCE(si->inuse_pages)) {
2257		if (!signal_pending(current))
2258			goto retry;
2259		retval = -EINTR;
2260	}
2261out:
2262	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263}
2264
2265/*
2266 * After a successful try_to_unuse, if no swap is now in use, we know
2267 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269 * added to the mmlist just after page_duplicate - before would be racy.
2270 */
2271static void drain_mmlist(void)
2272{
2273	struct list_head *p, *next;
2274	unsigned int type;
2275
2276	for (type = 0; type < nr_swapfiles; type++)
2277		if (swap_info[type]->inuse_pages)
2278			return;
2279	spin_lock(&mmlist_lock);
2280	list_for_each_safe(p, next, &init_mm.mmlist)
2281		list_del_init(p);
2282	spin_unlock(&mmlist_lock);
2283}
2284
2285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286 * Free all of a swapdev's extent information
2287 */
2288static void destroy_swap_extents(struct swap_info_struct *sis)
2289{
2290	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291		struct rb_node *rb = sis->swap_extent_root.rb_node;
2292		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293
2294		rb_erase(rb, &sis->swap_extent_root);
 
 
2295		kfree(se);
2296	}
2297
2298	if (sis->flags & SWP_ACTIVATED) {
2299		struct file *swap_file = sis->swap_file;
2300		struct address_space *mapping = swap_file->f_mapping;
2301
2302		sis->flags &= ~SWP_ACTIVATED;
2303		if (mapping->a_ops->swap_deactivate)
2304			mapping->a_ops->swap_deactivate(swap_file);
2305	}
2306}
2307
2308/*
2309 * Add a block range (and the corresponding page range) into this swapdev's
2310 * extent tree.
2311 *
2312 * This function rather assumes that it is called in ascending page order.
2313 */
2314int
2315add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316		unsigned long nr_pages, sector_t start_block)
2317{
2318	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319	struct swap_extent *se;
2320	struct swap_extent *new_se;
 
2321
2322	/*
2323	 * place the new node at the right most since the
2324	 * function is called in ascending page order.
2325	 */
2326	while (*link) {
2327		parent = *link;
2328		link = &parent->rb_right;
2329	}
2330
2331	if (parent) {
2332		se = rb_entry(parent, struct swap_extent, rb_node);
2333		BUG_ON(se->start_page + se->nr_pages != start_page);
2334		if (se->start_block + se->nr_pages == start_block) {
2335			/* Merge it */
2336			se->nr_pages += nr_pages;
2337			return 0;
2338		}
2339	}
2340
2341	/* No merge, insert a new extent. */
 
 
2342	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343	if (new_se == NULL)
2344		return -ENOMEM;
2345	new_se->start_page = start_page;
2346	new_se->nr_pages = nr_pages;
2347	new_se->start_block = start_block;
2348
2349	rb_link_node(&new_se->rb_node, parent, link);
2350	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351	return 1;
2352}
2353EXPORT_SYMBOL_GPL(add_swap_extent);
2354
2355/*
2356 * A `swap extent' is a simple thing which maps a contiguous range of pages
2357 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2358 * is built at swapon time and is then used at swap_writepage/swap_readpage
2359 * time for locating where on disk a page belongs.
2360 *
2361 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363 * swap files identically.
2364 *
2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2367 * swapfiles are handled *identically* after swapon time.
2368 *
2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372 * requirements, they are simply tossed out - we will never use those blocks
2373 * for swapping.
2374 *
2375 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2376 * prevents users from writing to the swap device, which will corrupt memory.
 
2377 *
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2380 * extents in the list.  To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective.  The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2384 */
2385static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386{
2387	struct file *swap_file = sis->swap_file;
2388	struct address_space *mapping = swap_file->f_mapping;
2389	struct inode *inode = mapping->host;
2390	int ret;
2391
2392	if (S_ISBLK(inode->i_mode)) {
2393		ret = add_swap_extent(sis, 0, sis->max, 0);
2394		*span = sis->pages;
2395		return ret;
2396	}
2397
2398	if (mapping->a_ops->swap_activate) {
2399		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400		if (ret >= 0)
2401			sis->flags |= SWP_ACTIVATED;
2402		if (!ret) {
2403			sis->flags |= SWP_FS_OPS;
2404			ret = add_swap_extent(sis, 0, sis->max, 0);
2405			*span = sis->pages;
2406		}
2407		return ret;
2408	}
2409
2410	return generic_swapfile_activate(sis, swap_file, span);
2411}
2412
2413static int swap_node(struct swap_info_struct *p)
2414{
2415	struct block_device *bdev;
2416
2417	if (p->bdev)
2418		bdev = p->bdev;
2419	else
2420		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2421
2422	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2423}
2424
2425static void setup_swap_info(struct swap_info_struct *p, int prio,
2426			    unsigned char *swap_map,
2427			    struct swap_cluster_info *cluster_info)
2428{
2429	int i;
2430
2431	if (prio >= 0)
2432		p->prio = prio;
2433	else
2434		p->prio = --least_priority;
2435	/*
2436	 * the plist prio is negated because plist ordering is
2437	 * low-to-high, while swap ordering is high-to-low
2438	 */
2439	p->list.prio = -p->prio;
2440	for_each_node(i) {
2441		if (p->prio >= 0)
2442			p->avail_lists[i].prio = -p->prio;
2443		else {
2444			if (swap_node(p) == i)
2445				p->avail_lists[i].prio = 1;
2446			else
2447				p->avail_lists[i].prio = -p->prio;
2448		}
2449	}
2450	p->swap_map = swap_map;
2451	p->cluster_info = cluster_info;
2452}
2453
2454static void _enable_swap_info(struct swap_info_struct *p)
2455{
2456	p->flags |= SWP_WRITEOK;
2457	atomic_long_add(p->pages, &nr_swap_pages);
2458	total_swap_pages += p->pages;
2459
2460	assert_spin_locked(&swap_lock);
2461	/*
2462	 * both lists are plists, and thus priority ordered.
2463	 * swap_active_head needs to be priority ordered for swapoff(),
2464	 * which on removal of any swap_info_struct with an auto-assigned
2465	 * (i.e. negative) priority increments the auto-assigned priority
2466	 * of any lower-priority swap_info_structs.
2467	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468	 * which allocates swap pages from the highest available priority
2469	 * swap_info_struct.
2470	 */
2471	plist_add(&p->list, &swap_active_head);
2472	add_to_avail_list(p);
 
 
2473}
2474
2475static void enable_swap_info(struct swap_info_struct *p, int prio,
2476				unsigned char *swap_map,
2477				struct swap_cluster_info *cluster_info,
2478				unsigned long *frontswap_map)
2479{
2480	frontswap_init(p->type, frontswap_map);
2481	spin_lock(&swap_lock);
2482	spin_lock(&p->lock);
2483	setup_swap_info(p, prio, swap_map, cluster_info);
2484	spin_unlock(&p->lock);
2485	spin_unlock(&swap_lock);
2486	/*
2487	 * Finished initializing swap device, now it's safe to reference it.
2488	 */
2489	percpu_ref_resurrect(&p->users);
2490	spin_lock(&swap_lock);
2491	spin_lock(&p->lock);
2492	_enable_swap_info(p);
2493	spin_unlock(&p->lock);
2494	spin_unlock(&swap_lock);
2495}
2496
2497static void reinsert_swap_info(struct swap_info_struct *p)
2498{
2499	spin_lock(&swap_lock);
2500	spin_lock(&p->lock);
2501	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502	_enable_swap_info(p);
2503	spin_unlock(&p->lock);
2504	spin_unlock(&swap_lock);
2505}
2506
2507bool has_usable_swap(void)
2508{
2509	bool ret = true;
2510
2511	spin_lock(&swap_lock);
2512	if (plist_head_empty(&swap_active_head))
2513		ret = false;
2514	spin_unlock(&swap_lock);
2515	return ret;
2516}
2517
2518SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519{
2520	struct swap_info_struct *p = NULL;
2521	unsigned char *swap_map;
2522	struct swap_cluster_info *cluster_info;
2523	unsigned long *frontswap_map;
2524	struct file *swap_file, *victim;
2525	struct address_space *mapping;
2526	struct inode *inode;
2527	struct filename *pathname;
2528	int err, found = 0;
2529	unsigned int old_block_size;
2530
2531	if (!capable(CAP_SYS_ADMIN))
2532		return -EPERM;
2533
2534	BUG_ON(!current->mm);
2535
2536	pathname = getname(specialfile);
2537	if (IS_ERR(pathname))
2538		return PTR_ERR(pathname);
2539
2540	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541	err = PTR_ERR(victim);
2542	if (IS_ERR(victim))
2543		goto out;
2544
2545	mapping = victim->f_mapping;
2546	spin_lock(&swap_lock);
2547	plist_for_each_entry(p, &swap_active_head, list) {
2548		if (p->flags & SWP_WRITEOK) {
2549			if (p->swap_file->f_mapping == mapping) {
2550				found = 1;
2551				break;
2552			}
2553		}
2554	}
2555	if (!found) {
2556		err = -EINVAL;
2557		spin_unlock(&swap_lock);
2558		goto out_dput;
2559	}
2560	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561		vm_unacct_memory(p->pages);
2562	else {
2563		err = -ENOMEM;
2564		spin_unlock(&swap_lock);
2565		goto out_dput;
2566	}
2567	del_from_avail_list(p);
 
 
2568	spin_lock(&p->lock);
2569	if (p->prio < 0) {
2570		struct swap_info_struct *si = p;
2571		int nid;
2572
2573		plist_for_each_entry_continue(si, &swap_active_head, list) {
2574			si->prio++;
2575			si->list.prio--;
2576			for_each_node(nid) {
2577				if (si->avail_lists[nid].prio != 1)
2578					si->avail_lists[nid].prio--;
2579			}
2580		}
2581		least_priority++;
2582	}
2583	plist_del(&p->list, &swap_active_head);
2584	atomic_long_sub(p->pages, &nr_swap_pages);
2585	total_swap_pages -= p->pages;
2586	p->flags &= ~SWP_WRITEOK;
2587	spin_unlock(&p->lock);
2588	spin_unlock(&swap_lock);
2589
2590	disable_swap_slots_cache_lock();
2591
2592	set_current_oom_origin();
2593	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594	clear_current_oom_origin();
2595
2596	if (err) {
2597		/* re-insert swap space back into swap_list */
2598		reinsert_swap_info(p);
2599		reenable_swap_slots_cache_unlock();
2600		goto out_dput;
2601	}
2602
2603	reenable_swap_slots_cache_unlock();
2604
2605	/*
2606	 * Wait for swap operations protected by get/put_swap_device()
2607	 * to complete.
2608	 *
2609	 * We need synchronize_rcu() here to protect the accessing to
2610	 * the swap cache data structure.
2611	 */
2612	percpu_ref_kill(&p->users);
2613	synchronize_rcu();
2614	wait_for_completion(&p->comp);
2615
2616	flush_work(&p->discard_work);
2617
2618	destroy_swap_extents(p);
2619	if (p->flags & SWP_CONTINUED)
2620		free_swap_count_continuations(p);
2621
2622	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623		atomic_dec(&nr_rotate_swap);
2624
2625	mutex_lock(&swapon_mutex);
2626	spin_lock(&swap_lock);
2627	spin_lock(&p->lock);
2628	drain_mmlist();
2629
2630	/* wait for anyone still in scan_swap_map_slots */
2631	p->highest_bit = 0;		/* cuts scans short */
2632	while (p->flags >= SWP_SCANNING) {
2633		spin_unlock(&p->lock);
2634		spin_unlock(&swap_lock);
2635		schedule_timeout_uninterruptible(1);
2636		spin_lock(&swap_lock);
2637		spin_lock(&p->lock);
2638	}
2639
2640	swap_file = p->swap_file;
2641	old_block_size = p->old_block_size;
2642	p->swap_file = NULL;
2643	p->max = 0;
2644	swap_map = p->swap_map;
2645	p->swap_map = NULL;
2646	cluster_info = p->cluster_info;
2647	p->cluster_info = NULL;
2648	frontswap_map = frontswap_map_get(p);
2649	spin_unlock(&p->lock);
2650	spin_unlock(&swap_lock);
2651	arch_swap_invalidate_area(p->type);
2652	frontswap_invalidate_area(p->type);
2653	frontswap_map_set(p, NULL);
2654	mutex_unlock(&swapon_mutex);
2655	free_percpu(p->percpu_cluster);
2656	p->percpu_cluster = NULL;
2657	free_percpu(p->cluster_next_cpu);
2658	p->cluster_next_cpu = NULL;
2659	vfree(swap_map);
2660	kvfree(cluster_info);
2661	kvfree(frontswap_map);
2662	/* Destroy swap account information */
2663	swap_cgroup_swapoff(p->type);
2664	exit_swap_address_space(p->type);
2665
2666	inode = mapping->host;
2667	if (S_ISBLK(inode->i_mode)) {
2668		struct block_device *bdev = I_BDEV(inode);
2669
2670		set_blocksize(bdev, old_block_size);
2671		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
 
 
 
2672	}
2673
2674	inode_lock(inode);
2675	inode->i_flags &= ~S_SWAPFILE;
2676	inode_unlock(inode);
2677	filp_close(swap_file, NULL);
2678
2679	/*
2680	 * Clear the SWP_USED flag after all resources are freed so that swapon
2681	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682	 * not hold p->lock after we cleared its SWP_WRITEOK.
2683	 */
2684	spin_lock(&swap_lock);
2685	p->flags = 0;
2686	spin_unlock(&swap_lock);
2687
2688	err = 0;
2689	atomic_inc(&proc_poll_event);
2690	wake_up_interruptible(&proc_poll_wait);
2691
2692out_dput:
2693	filp_close(victim, NULL);
2694out:
2695	putname(pathname);
2696	return err;
2697}
2698
2699#ifdef CONFIG_PROC_FS
2700static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701{
2702	struct seq_file *seq = file->private_data;
2703
2704	poll_wait(file, &proc_poll_wait, wait);
2705
2706	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707		seq->poll_event = atomic_read(&proc_poll_event);
2708		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709	}
2710
2711	return EPOLLIN | EPOLLRDNORM;
2712}
2713
2714/* iterator */
2715static void *swap_start(struct seq_file *swap, loff_t *pos)
2716{
2717	struct swap_info_struct *si;
2718	int type;
2719	loff_t l = *pos;
2720
2721	mutex_lock(&swapon_mutex);
2722
2723	if (!l)
2724		return SEQ_START_TOKEN;
2725
2726	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2727		if (!(si->flags & SWP_USED) || !si->swap_map)
2728			continue;
2729		if (!--l)
2730			return si;
2731	}
2732
2733	return NULL;
2734}
2735
2736static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2737{
2738	struct swap_info_struct *si = v;
2739	int type;
2740
2741	if (v == SEQ_START_TOKEN)
2742		type = 0;
2743	else
2744		type = si->type + 1;
2745
2746	++(*pos);
2747	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2748		if (!(si->flags & SWP_USED) || !si->swap_map)
2749			continue;
 
2750		return si;
2751	}
2752
2753	return NULL;
2754}
2755
2756static void swap_stop(struct seq_file *swap, void *v)
2757{
2758	mutex_unlock(&swapon_mutex);
2759}
2760
2761static int swap_show(struct seq_file *swap, void *v)
2762{
2763	struct swap_info_struct *si = v;
2764	struct file *file;
2765	int len;
2766	unsigned int bytes, inuse;
2767
2768	if (si == SEQ_START_TOKEN) {
2769		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2770		return 0;
2771	}
2772
2773	bytes = si->pages << (PAGE_SHIFT - 10);
2774	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2775
2776	file = si->swap_file;
2777	len = seq_file_path(swap, file, " \t\n\\");
2778	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779			len < 40 ? 40 - len : 1, " ",
2780			S_ISBLK(file_inode(file)->i_mode) ?
2781				"partition" : "file\t",
2782			bytes, bytes < 10000000 ? "\t" : "",
2783			inuse, inuse < 10000000 ? "\t" : "",
2784			si->prio);
2785	return 0;
2786}
2787
2788static const struct seq_operations swaps_op = {
2789	.start =	swap_start,
2790	.next =		swap_next,
2791	.stop =		swap_stop,
2792	.show =		swap_show
2793};
2794
2795static int swaps_open(struct inode *inode, struct file *file)
2796{
2797	struct seq_file *seq;
2798	int ret;
2799
2800	ret = seq_open(file, &swaps_op);
2801	if (ret)
2802		return ret;
2803
2804	seq = file->private_data;
2805	seq->poll_event = atomic_read(&proc_poll_event);
2806	return 0;
2807}
2808
2809static const struct proc_ops swaps_proc_ops = {
2810	.proc_flags	= PROC_ENTRY_PERMANENT,
2811	.proc_open	= swaps_open,
2812	.proc_read	= seq_read,
2813	.proc_lseek	= seq_lseek,
2814	.proc_release	= seq_release,
2815	.proc_poll	= swaps_poll,
2816};
2817
2818static int __init procswaps_init(void)
2819{
2820	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2821	return 0;
2822}
2823__initcall(procswaps_init);
2824#endif /* CONFIG_PROC_FS */
2825
2826#ifdef MAX_SWAPFILES_CHECK
2827static int __init max_swapfiles_check(void)
2828{
2829	MAX_SWAPFILES_CHECK();
2830	return 0;
2831}
2832late_initcall(max_swapfiles_check);
2833#endif
2834
2835static struct swap_info_struct *alloc_swap_info(void)
2836{
2837	struct swap_info_struct *p;
2838	struct swap_info_struct *defer = NULL;
2839	unsigned int type;
2840	int i;
2841
2842	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2843	if (!p)
2844		return ERR_PTR(-ENOMEM);
2845
2846	if (percpu_ref_init(&p->users, swap_users_ref_free,
2847			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2848		kvfree(p);
2849		return ERR_PTR(-ENOMEM);
2850	}
2851
2852	spin_lock(&swap_lock);
2853	for (type = 0; type < nr_swapfiles; type++) {
2854		if (!(swap_info[type]->flags & SWP_USED))
2855			break;
2856	}
2857	if (type >= MAX_SWAPFILES) {
2858		spin_unlock(&swap_lock);
2859		percpu_ref_exit(&p->users);
2860		kvfree(p);
2861		return ERR_PTR(-EPERM);
2862	}
2863	if (type >= nr_swapfiles) {
2864		p->type = type;
 
2865		/*
2866		 * Publish the swap_info_struct after initializing it.
2867		 * Note that kvzalloc() above zeroes all its fields.
 
2868		 */
2869		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2870		nr_swapfiles++;
2871	} else {
2872		defer = p;
2873		p = swap_info[type];
2874		/*
2875		 * Do not memset this entry: a racing procfs swap_next()
2876		 * would be relying on p->type to remain valid.
2877		 */
2878	}
2879	p->swap_extent_root = RB_ROOT;
2880	plist_node_init(&p->list, 0);
2881	for_each_node(i)
2882		plist_node_init(&p->avail_lists[i], 0);
2883	p->flags = SWP_USED;
2884	spin_unlock(&swap_lock);
2885	if (defer) {
2886		percpu_ref_exit(&defer->users);
2887		kvfree(defer);
2888	}
2889	spin_lock_init(&p->lock);
2890	spin_lock_init(&p->cont_lock);
2891	init_completion(&p->comp);
2892
2893	return p;
2894}
2895
2896static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2897{
2898	int error;
2899
2900	if (S_ISBLK(inode->i_mode)) {
2901		p->bdev = blkdev_get_by_dev(inode->i_rdev,
 
2902				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903		if (IS_ERR(p->bdev)) {
2904			error = PTR_ERR(p->bdev);
2905			p->bdev = NULL;
2906			return error;
2907		}
2908		p->old_block_size = block_size(p->bdev);
2909		error = set_blocksize(p->bdev, PAGE_SIZE);
2910		if (error < 0)
2911			return error;
2912		/*
2913		 * Zoned block devices contain zones that have a sequential
2914		 * write only restriction.  Hence zoned block devices are not
2915		 * suitable for swapping.  Disallow them here.
2916		 */
2917		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2918			return -EINVAL;
2919		p->flags |= SWP_BLKDEV;
2920	} else if (S_ISREG(inode->i_mode)) {
2921		p->bdev = inode->i_sb->s_bdev;
2922	}
 
 
 
 
2923
2924	return 0;
2925}
2926
2927
2928/*
2929 * Find out how many pages are allowed for a single swap device. There
2930 * are two limiting factors:
2931 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2932 * 2) the number of bits in the swap pte, as defined by the different
2933 * architectures.
2934 *
2935 * In order to find the largest possible bit mask, a swap entry with
2936 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2937 * decoded to a swp_entry_t again, and finally the swap offset is
2938 * extracted.
2939 *
2940 * This will mask all the bits from the initial ~0UL mask that can't
2941 * be encoded in either the swp_entry_t or the architecture definition
2942 * of a swap pte.
2943 */
2944unsigned long generic_max_swapfile_size(void)
2945{
2946	return swp_offset(pte_to_swp_entry(
2947			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2948}
2949
2950/* Can be overridden by an architecture for additional checks. */
2951__weak unsigned long max_swapfile_size(void)
2952{
2953	return generic_max_swapfile_size();
2954}
2955
2956static unsigned long read_swap_header(struct swap_info_struct *p,
2957					union swap_header *swap_header,
2958					struct inode *inode)
2959{
2960	int i;
2961	unsigned long maxpages;
2962	unsigned long swapfilepages;
2963	unsigned long last_page;
2964
2965	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2966		pr_err("Unable to find swap-space signature\n");
2967		return 0;
2968	}
2969
2970	/* swap partition endianness hack... */
2971	if (swab32(swap_header->info.version) == 1) {
2972		swab32s(&swap_header->info.version);
2973		swab32s(&swap_header->info.last_page);
2974		swab32s(&swap_header->info.nr_badpages);
2975		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2976			return 0;
2977		for (i = 0; i < swap_header->info.nr_badpages; i++)
2978			swab32s(&swap_header->info.badpages[i]);
2979	}
2980	/* Check the swap header's sub-version */
2981	if (swap_header->info.version != 1) {
2982		pr_warn("Unable to handle swap header version %d\n",
2983			swap_header->info.version);
2984		return 0;
2985	}
2986
2987	p->lowest_bit  = 1;
2988	p->cluster_next = 1;
2989	p->cluster_nr = 0;
2990
2991	maxpages = max_swapfile_size();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992	last_page = swap_header->info.last_page;
2993	if (!last_page) {
2994		pr_warn("Empty swap-file\n");
2995		return 0;
2996	}
2997	if (last_page > maxpages) {
2998		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2999			maxpages << (PAGE_SHIFT - 10),
3000			last_page << (PAGE_SHIFT - 10));
3001	}
3002	if (maxpages > last_page) {
3003		maxpages = last_page + 1;
3004		/* p->max is an unsigned int: don't overflow it */
3005		if ((unsigned int)maxpages == 0)
3006			maxpages = UINT_MAX;
3007	}
3008	p->highest_bit = maxpages - 1;
3009
3010	if (!maxpages)
3011		return 0;
3012	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3013	if (swapfilepages && maxpages > swapfilepages) {
3014		pr_warn("Swap area shorter than signature indicates\n");
3015		return 0;
3016	}
3017	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3018		return 0;
3019	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3020		return 0;
3021
3022	return maxpages;
3023}
3024
3025#define SWAP_CLUSTER_INFO_COLS						\
3026	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3027#define SWAP_CLUSTER_SPACE_COLS						\
3028	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3029#define SWAP_CLUSTER_COLS						\
3030	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3031
3032static int setup_swap_map_and_extents(struct swap_info_struct *p,
3033					union swap_header *swap_header,
3034					unsigned char *swap_map,
3035					struct swap_cluster_info *cluster_info,
3036					unsigned long maxpages,
3037					sector_t *span)
3038{
3039	unsigned int j, k;
3040	unsigned int nr_good_pages;
3041	int nr_extents;
3042	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3043	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3044	unsigned long i, idx;
3045
3046	nr_good_pages = maxpages - 1;	/* omit header page */
3047
3048	cluster_list_init(&p->free_clusters);
3049	cluster_list_init(&p->discard_clusters);
3050
3051	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3052		unsigned int page_nr = swap_header->info.badpages[i];
3053		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3054			return -EINVAL;
3055		if (page_nr < maxpages) {
3056			swap_map[page_nr] = SWAP_MAP_BAD;
3057			nr_good_pages--;
3058			/*
3059			 * Haven't marked the cluster free yet, no list
3060			 * operation involved
3061			 */
3062			inc_cluster_info_page(p, cluster_info, page_nr);
3063		}
3064	}
3065
3066	/* Haven't marked the cluster free yet, no list operation involved */
3067	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3068		inc_cluster_info_page(p, cluster_info, i);
3069
3070	if (nr_good_pages) {
3071		swap_map[0] = SWAP_MAP_BAD;
3072		/*
3073		 * Not mark the cluster free yet, no list
3074		 * operation involved
3075		 */
3076		inc_cluster_info_page(p, cluster_info, 0);
3077		p->max = maxpages;
3078		p->pages = nr_good_pages;
3079		nr_extents = setup_swap_extents(p, span);
3080		if (nr_extents < 0)
3081			return nr_extents;
3082		nr_good_pages = p->pages;
3083	}
3084	if (!nr_good_pages) {
3085		pr_warn("Empty swap-file\n");
3086		return -EINVAL;
3087	}
3088
3089	if (!cluster_info)
3090		return nr_extents;
3091
3092
3093	/*
3094	 * Reduce false cache line sharing between cluster_info and
3095	 * sharing same address space.
3096	 */
3097	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3098		j = (k + col) % SWAP_CLUSTER_COLS;
3099		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3100			idx = i * SWAP_CLUSTER_COLS + j;
3101			if (idx >= nr_clusters)
3102				continue;
3103			if (cluster_count(&cluster_info[idx]))
3104				continue;
3105			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3106			cluster_list_add_tail(&p->free_clusters, cluster_info,
3107					      idx);
3108		}
 
 
 
3109	}
3110	return nr_extents;
3111}
3112
3113/*
3114 * Helper to sys_swapon determining if a given swap
3115 * backing device queue supports DISCARD operations.
3116 */
3117static bool swap_discardable(struct swap_info_struct *si)
3118{
3119	struct request_queue *q = bdev_get_queue(si->bdev);
3120
3121	if (!q || !blk_queue_discard(q))
3122		return false;
3123
3124	return true;
3125}
3126
3127SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3128{
3129	struct swap_info_struct *p;
3130	struct filename *name;
3131	struct file *swap_file = NULL;
3132	struct address_space *mapping;
3133	int prio;
3134	int error;
3135	union swap_header *swap_header;
3136	int nr_extents;
3137	sector_t span;
3138	unsigned long maxpages;
3139	unsigned char *swap_map = NULL;
3140	struct swap_cluster_info *cluster_info = NULL;
3141	unsigned long *frontswap_map = NULL;
3142	struct page *page = NULL;
3143	struct inode *inode = NULL;
3144	bool inced_nr_rotate_swap = false;
3145
3146	if (swap_flags & ~SWAP_FLAGS_VALID)
3147		return -EINVAL;
3148
3149	if (!capable(CAP_SYS_ADMIN))
3150		return -EPERM;
3151
3152	if (!swap_avail_heads)
3153		return -ENOMEM;
3154
3155	p = alloc_swap_info();
3156	if (IS_ERR(p))
3157		return PTR_ERR(p);
3158
3159	INIT_WORK(&p->discard_work, swap_discard_work);
3160
3161	name = getname(specialfile);
3162	if (IS_ERR(name)) {
3163		error = PTR_ERR(name);
3164		name = NULL;
3165		goto bad_swap;
3166	}
3167	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3168	if (IS_ERR(swap_file)) {
3169		error = PTR_ERR(swap_file);
3170		swap_file = NULL;
3171		goto bad_swap;
3172	}
3173
3174	p->swap_file = swap_file;
3175	mapping = swap_file->f_mapping;
3176	inode = mapping->host;
3177
 
3178	error = claim_swapfile(p, inode);
3179	if (unlikely(error))
3180		goto bad_swap;
3181
3182	inode_lock(inode);
3183	if (IS_SWAPFILE(inode)) {
3184		error = -EBUSY;
3185		goto bad_swap_unlock_inode;
3186	}
3187
3188	/*
3189	 * Read the swap header.
3190	 */
3191	if (!mapping->a_ops->readpage) {
3192		error = -EINVAL;
3193		goto bad_swap_unlock_inode;
3194	}
3195	page = read_mapping_page(mapping, 0, swap_file);
3196	if (IS_ERR(page)) {
3197		error = PTR_ERR(page);
3198		goto bad_swap_unlock_inode;
3199	}
3200	swap_header = kmap(page);
3201
3202	maxpages = read_swap_header(p, swap_header, inode);
3203	if (unlikely(!maxpages)) {
3204		error = -EINVAL;
3205		goto bad_swap_unlock_inode;
3206	}
3207
3208	/* OK, set up the swap map and apply the bad block list */
3209	swap_map = vzalloc(maxpages);
3210	if (!swap_map) {
3211		error = -ENOMEM;
3212		goto bad_swap_unlock_inode;
3213	}
3214
3215	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3216		p->flags |= SWP_STABLE_WRITES;
3217
3218	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3219		p->flags |= SWP_SYNCHRONOUS_IO;
3220
3221	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3222		int cpu;
3223		unsigned long ci, nr_cluster;
3224
3225		p->flags |= SWP_SOLIDSTATE;
3226		p->cluster_next_cpu = alloc_percpu(unsigned int);
3227		if (!p->cluster_next_cpu) {
3228			error = -ENOMEM;
3229			goto bad_swap_unlock_inode;
3230		}
3231		/*
3232		 * select a random position to start with to help wear leveling
3233		 * SSD
3234		 */
3235		for_each_possible_cpu(cpu) {
3236			per_cpu(*p->cluster_next_cpu, cpu) =
3237				1 + prandom_u32_max(p->highest_bit);
3238		}
3239		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3240
3241		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3242					GFP_KERNEL);
3243		if (!cluster_info) {
3244			error = -ENOMEM;
3245			goto bad_swap_unlock_inode;
3246		}
3247
3248		for (ci = 0; ci < nr_cluster; ci++)
3249			spin_lock_init(&((cluster_info + ci)->lock));
3250
3251		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3252		if (!p->percpu_cluster) {
3253			error = -ENOMEM;
3254			goto bad_swap_unlock_inode;
3255		}
3256		for_each_possible_cpu(cpu) {
3257			struct percpu_cluster *cluster;
3258			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3259			cluster_set_null(&cluster->index);
3260		}
3261	} else {
3262		atomic_inc(&nr_rotate_swap);
3263		inced_nr_rotate_swap = true;
3264	}
3265
3266	error = swap_cgroup_swapon(p->type, maxpages);
3267	if (error)
3268		goto bad_swap_unlock_inode;
3269
3270	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3271		cluster_info, maxpages, &span);
3272	if (unlikely(nr_extents < 0)) {
3273		error = nr_extents;
3274		goto bad_swap_unlock_inode;
3275	}
3276	/* frontswap enabled? set up bit-per-page map for frontswap */
3277	if (IS_ENABLED(CONFIG_FRONTSWAP))
3278		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3279					 sizeof(long),
3280					 GFP_KERNEL);
3281
3282	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3283		/*
3284		 * When discard is enabled for swap with no particular
3285		 * policy flagged, we set all swap discard flags here in
3286		 * order to sustain backward compatibility with older
3287		 * swapon(8) releases.
3288		 */
3289		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3290			     SWP_PAGE_DISCARD);
3291
3292		/*
3293		 * By flagging sys_swapon, a sysadmin can tell us to
3294		 * either do single-time area discards only, or to just
3295		 * perform discards for released swap page-clusters.
3296		 * Now it's time to adjust the p->flags accordingly.
3297		 */
3298		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3299			p->flags &= ~SWP_PAGE_DISCARD;
3300		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3301			p->flags &= ~SWP_AREA_DISCARD;
3302
3303		/* issue a swapon-time discard if it's still required */
3304		if (p->flags & SWP_AREA_DISCARD) {
3305			int err = discard_swap(p);
3306			if (unlikely(err))
3307				pr_err("swapon: discard_swap(%p): %d\n",
3308					p, err);
3309		}
3310	}
3311
3312	error = init_swap_address_space(p->type, maxpages);
3313	if (error)
3314		goto bad_swap_unlock_inode;
3315
3316	/*
3317	 * Flush any pending IO and dirty mappings before we start using this
3318	 * swap device.
3319	 */
3320	inode->i_flags |= S_SWAPFILE;
3321	error = inode_drain_writes(inode);
3322	if (error) {
3323		inode->i_flags &= ~S_SWAPFILE;
3324		goto free_swap_address_space;
3325	}
3326
3327	mutex_lock(&swapon_mutex);
3328	prio = -1;
3329	if (swap_flags & SWAP_FLAG_PREFER)
3330		prio =
3331		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3332	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3333
3334	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3335		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3336		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3337		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3338		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3339		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3340		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3341		(frontswap_map) ? "FS" : "");
3342
3343	mutex_unlock(&swapon_mutex);
3344	atomic_inc(&proc_poll_event);
3345	wake_up_interruptible(&proc_poll_wait);
3346
 
 
3347	error = 0;
3348	goto out;
3349free_swap_address_space:
3350	exit_swap_address_space(p->type);
3351bad_swap_unlock_inode:
3352	inode_unlock(inode);
3353bad_swap:
3354	free_percpu(p->percpu_cluster);
3355	p->percpu_cluster = NULL;
3356	free_percpu(p->cluster_next_cpu);
3357	p->cluster_next_cpu = NULL;
3358	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3359		set_blocksize(p->bdev, p->old_block_size);
3360		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3361	}
3362	inode = NULL;
3363	destroy_swap_extents(p);
3364	swap_cgroup_swapoff(p->type);
3365	spin_lock(&swap_lock);
3366	p->swap_file = NULL;
3367	p->flags = 0;
3368	spin_unlock(&swap_lock);
3369	vfree(swap_map);
3370	kvfree(cluster_info);
3371	kvfree(frontswap_map);
3372	if (inced_nr_rotate_swap)
3373		atomic_dec(&nr_rotate_swap);
3374	if (swap_file)
 
3375		filp_close(swap_file, NULL);
 
3376out:
3377	if (page && !IS_ERR(page)) {
3378		kunmap(page);
3379		put_page(page);
3380	}
3381	if (name)
3382		putname(name);
3383	if (inode)
3384		inode_unlock(inode);
3385	if (!error)
3386		enable_swap_slots_cache();
3387	return error;
3388}
3389
3390void si_swapinfo(struct sysinfo *val)
3391{
3392	unsigned int type;
3393	unsigned long nr_to_be_unused = 0;
3394
3395	spin_lock(&swap_lock);
3396	for (type = 0; type < nr_swapfiles; type++) {
3397		struct swap_info_struct *si = swap_info[type];
3398
3399		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3400			nr_to_be_unused += si->inuse_pages;
3401	}
3402	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3403	val->totalswap = total_swap_pages + nr_to_be_unused;
3404	spin_unlock(&swap_lock);
3405}
3406
3407/*
3408 * Verify that a swap entry is valid and increment its swap map count.
3409 *
3410 * Returns error code in following case.
3411 * - success -> 0
3412 * - swp_entry is invalid -> EINVAL
3413 * - swp_entry is migration entry -> EINVAL
3414 * - swap-cache reference is requested but there is already one. -> EEXIST
3415 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3416 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3417 */
3418static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3419{
3420	struct swap_info_struct *p;
3421	struct swap_cluster_info *ci;
3422	unsigned long offset;
3423	unsigned char count;
3424	unsigned char has_cache;
3425	int err;
3426
3427	p = get_swap_device(entry);
3428	if (!p)
3429		return -EINVAL;
3430
 
 
 
 
3431	offset = swp_offset(entry);
3432	ci = lock_cluster_or_swap_info(p, offset);
 
 
 
3433
3434	count = p->swap_map[offset];
3435
3436	/*
3437	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3438	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3439	 */
3440	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3441		err = -ENOENT;
3442		goto unlock_out;
3443	}
3444
3445	has_cache = count & SWAP_HAS_CACHE;
3446	count &= ~SWAP_HAS_CACHE;
3447	err = 0;
3448
3449	if (usage == SWAP_HAS_CACHE) {
3450
3451		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3452		if (!has_cache && count)
3453			has_cache = SWAP_HAS_CACHE;
3454		else if (has_cache)		/* someone else added cache */
3455			err = -EEXIST;
3456		else				/* no users remaining */
3457			err = -ENOENT;
3458
3459	} else if (count || has_cache) {
3460
3461		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3462			count += usage;
3463		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3464			err = -EINVAL;
3465		else if (swap_count_continued(p, offset, count))
3466			count = COUNT_CONTINUED;
3467		else
3468			err = -ENOMEM;
3469	} else
3470		err = -ENOENT;			/* unused swap entry */
3471
3472	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3473
3474unlock_out:
3475	unlock_cluster_or_swap_info(p, ci);
3476	if (p)
3477		put_swap_device(p);
3478	return err;
 
 
 
 
3479}
3480
3481/*
3482 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3483 * (in which case its reference count is never incremented).
3484 */
3485void swap_shmem_alloc(swp_entry_t entry)
3486{
3487	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3488}
3489
3490/*
3491 * Increase reference count of swap entry by 1.
3492 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3493 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3494 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3495 * might occur if a page table entry has got corrupted.
3496 */
3497int swap_duplicate(swp_entry_t entry)
3498{
3499	int err = 0;
3500
3501	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3502		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3503	return err;
3504}
3505
3506/*
3507 * @entry: swap entry for which we allocate swap cache.
3508 *
3509 * Called when allocating swap cache for existing swap entry,
3510 * This can return error codes. Returns 0 at success.
3511 * -EEXIST means there is a swap cache.
3512 * Note: return code is different from swap_duplicate().
3513 */
3514int swapcache_prepare(swp_entry_t entry)
3515{
3516	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3517}
3518
3519struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3520{
3521	return swap_type_to_swap_info(swp_type(entry));
3522}
3523
3524struct swap_info_struct *page_swap_info(struct page *page)
3525{
3526	swp_entry_t entry = { .val = page_private(page) };
3527	return swp_swap_info(entry);
3528}
3529
3530/*
3531 * out-of-line __page_file_ methods to avoid include hell.
3532 */
3533struct address_space *__page_file_mapping(struct page *page)
3534{
 
3535	return page_swap_info(page)->swap_file->f_mapping;
3536}
3537EXPORT_SYMBOL_GPL(__page_file_mapping);
3538
3539pgoff_t __page_file_index(struct page *page)
3540{
3541	swp_entry_t swap = { .val = page_private(page) };
 
3542	return swp_offset(swap);
3543}
3544EXPORT_SYMBOL_GPL(__page_file_index);
3545
3546/*
3547 * add_swap_count_continuation - called when a swap count is duplicated
3548 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3549 * page of the original vmalloc'ed swap_map, to hold the continuation count
3550 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3551 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3552 *
3553 * These continuation pages are seldom referenced: the common paths all work
3554 * on the original swap_map, only referring to a continuation page when the
3555 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3556 *
3557 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3558 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3559 * can be called after dropping locks.
3560 */
3561int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3562{
3563	struct swap_info_struct *si;
3564	struct swap_cluster_info *ci;
3565	struct page *head;
3566	struct page *page;
3567	struct page *list_page;
3568	pgoff_t offset;
3569	unsigned char count;
3570	int ret = 0;
3571
3572	/*
3573	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3574	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3575	 */
3576	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3577
3578	si = get_swap_device(entry);
3579	if (!si) {
3580		/*
3581		 * An acceptable race has occurred since the failing
3582		 * __swap_duplicate(): the swap device may be swapoff
 
3583		 */
3584		goto outer;
3585	}
3586	spin_lock(&si->lock);
3587
3588	offset = swp_offset(entry);
3589
3590	ci = lock_cluster(si, offset);
3591
3592	count = swap_count(si->swap_map[offset]);
3593
3594	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3595		/*
3596		 * The higher the swap count, the more likely it is that tasks
3597		 * will race to add swap count continuation: we need to avoid
3598		 * over-provisioning.
3599		 */
3600		goto out;
3601	}
3602
3603	if (!page) {
3604		ret = -ENOMEM;
3605		goto out;
3606	}
3607
3608	/*
3609	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3610	 * no architecture is using highmem pages for kernel page tables: so it
3611	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3612	 */
3613	head = vmalloc_to_page(si->swap_map + offset);
3614	offset &= ~PAGE_MASK;
3615
3616	spin_lock(&si->cont_lock);
3617	/*
3618	 * Page allocation does not initialize the page's lru field,
3619	 * but it does always reset its private field.
3620	 */
3621	if (!page_private(head)) {
3622		BUG_ON(count & COUNT_CONTINUED);
3623		INIT_LIST_HEAD(&head->lru);
3624		set_page_private(head, SWP_CONTINUED);
3625		si->flags |= SWP_CONTINUED;
3626	}
3627
3628	list_for_each_entry(list_page, &head->lru, lru) {
3629		unsigned char *map;
3630
3631		/*
3632		 * If the previous map said no continuation, but we've found
3633		 * a continuation page, free our allocation and use this one.
3634		 */
3635		if (!(count & COUNT_CONTINUED))
3636			goto out_unlock_cont;
3637
3638		map = kmap_atomic(list_page) + offset;
3639		count = *map;
3640		kunmap_atomic(map);
3641
3642		/*
3643		 * If this continuation count now has some space in it,
3644		 * free our allocation and use this one.
3645		 */
3646		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3647			goto out_unlock_cont;
3648	}
3649
3650	list_add_tail(&page->lru, &head->lru);
3651	page = NULL;			/* now it's attached, don't free it */
3652out_unlock_cont:
3653	spin_unlock(&si->cont_lock);
3654out:
3655	unlock_cluster(ci);
3656	spin_unlock(&si->lock);
3657	put_swap_device(si);
3658outer:
3659	if (page)
3660		__free_page(page);
3661	return ret;
3662}
3663
3664/*
3665 * swap_count_continued - when the original swap_map count is incremented
3666 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3667 * into, carry if so, or else fail until a new continuation page is allocated;
3668 * when the original swap_map count is decremented from 0 with continuation,
3669 * borrow from the continuation and report whether it still holds more.
3670 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3671 * lock.
3672 */
3673static bool swap_count_continued(struct swap_info_struct *si,
3674				 pgoff_t offset, unsigned char count)
3675{
3676	struct page *head;
3677	struct page *page;
3678	unsigned char *map;
3679	bool ret;
3680
3681	head = vmalloc_to_page(si->swap_map + offset);
3682	if (page_private(head) != SWP_CONTINUED) {
3683		BUG_ON(count & COUNT_CONTINUED);
3684		return false;		/* need to add count continuation */
3685	}
3686
3687	spin_lock(&si->cont_lock);
3688	offset &= ~PAGE_MASK;
3689	page = list_next_entry(head, lru);
3690	map = kmap_atomic(page) + offset;
3691
3692	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3693		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3694
3695	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3696		/*
3697		 * Think of how you add 1 to 999
3698		 */
3699		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3700			kunmap_atomic(map);
3701			page = list_next_entry(page, lru);
3702			BUG_ON(page == head);
3703			map = kmap_atomic(page) + offset;
3704		}
3705		if (*map == SWAP_CONT_MAX) {
3706			kunmap_atomic(map);
3707			page = list_next_entry(page, lru);
3708			if (page == head) {
3709				ret = false;	/* add count continuation */
3710				goto out;
3711			}
3712			map = kmap_atomic(page) + offset;
3713init_map:		*map = 0;		/* we didn't zero the page */
3714		}
3715		*map += 1;
3716		kunmap_atomic(map);
3717		while ((page = list_prev_entry(page, lru)) != head) {
 
3718			map = kmap_atomic(page) + offset;
3719			*map = COUNT_CONTINUED;
3720			kunmap_atomic(map);
 
3721		}
3722		ret = true;			/* incremented */
3723
3724	} else {				/* decrementing */
3725		/*
3726		 * Think of how you subtract 1 from 1000
3727		 */
3728		BUG_ON(count != COUNT_CONTINUED);
3729		while (*map == COUNT_CONTINUED) {
3730			kunmap_atomic(map);
3731			page = list_next_entry(page, lru);
3732			BUG_ON(page == head);
3733			map = kmap_atomic(page) + offset;
3734		}
3735		BUG_ON(*map == 0);
3736		*map -= 1;
3737		if (*map == 0)
3738			count = 0;
3739		kunmap_atomic(map);
3740		while ((page = list_prev_entry(page, lru)) != head) {
 
3741			map = kmap_atomic(page) + offset;
3742			*map = SWAP_CONT_MAX | count;
3743			count = COUNT_CONTINUED;
3744			kunmap_atomic(map);
 
3745		}
3746		ret = count == COUNT_CONTINUED;
3747	}
3748out:
3749	spin_unlock(&si->cont_lock);
3750	return ret;
3751}
3752
3753/*
3754 * free_swap_count_continuations - swapoff free all the continuation pages
3755 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3756 */
3757static void free_swap_count_continuations(struct swap_info_struct *si)
3758{
3759	pgoff_t offset;
3760
3761	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3762		struct page *head;
3763		head = vmalloc_to_page(si->swap_map + offset);
3764		if (page_private(head)) {
3765			struct page *page, *next;
3766
3767			list_for_each_entry_safe(page, next, &head->lru, lru) {
3768				list_del(&page->lru);
3769				__free_page(page);
3770			}
3771		}
3772	}
3773}
3774
3775#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3776void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3777{
3778	struct swap_info_struct *si, *next;
3779	int nid = page_to_nid(page);
3780
3781	if (!(gfp_mask & __GFP_IO))
3782		return;
3783
3784	if (!blk_cgroup_congested())
3785		return;
3786
3787	/*
3788	 * We've already scheduled a throttle, avoid taking the global swap
3789	 * lock.
3790	 */
3791	if (current->throttle_queue)
3792		return;
3793
3794	spin_lock(&swap_avail_lock);
3795	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3796				  avail_lists[nid]) {
3797		if (si->bdev) {
3798			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3799			break;
3800		}
3801	}
3802	spin_unlock(&swap_avail_lock);
3803}
3804#endif
3805
3806static int __init swapfile_init(void)
3807{
3808	int nid;
3809
3810	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3811					 GFP_KERNEL);
3812	if (!swap_avail_heads) {
3813		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3814		return -ENOMEM;
3815	}
3816
3817	for_each_node(nid)
3818		plist_head_init(&swap_avail_heads[nid]);
3819
3820	return 0;
3821}
3822subsys_initcall(swapfile_init);
v4.10.11
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/security.h>
  27#include <linux/backing-dev.h>
  28#include <linux/mutex.h>
  29#include <linux/capability.h>
  30#include <linux/syscalls.h>
  31#include <linux/memcontrol.h>
  32#include <linux/poll.h>
  33#include <linux/oom.h>
  34#include <linux/frontswap.h>
  35#include <linux/swapfile.h>
  36#include <linux/export.h>
 
 
 
  37
  38#include <asm/pgtable.h>
  39#include <asm/tlbflush.h>
  40#include <linux/swapops.h>
  41#include <linux/swap_cgroup.h>
  42
  43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  44				 unsigned char);
  45static void free_swap_count_continuations(struct swap_info_struct *);
  46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  47
  48DEFINE_SPINLOCK(swap_lock);
  49static unsigned int nr_swapfiles;
  50atomic_long_t nr_swap_pages;
  51/*
  52 * Some modules use swappable objects and may try to swap them out under
  53 * memory pressure (via the shrinker). Before doing so, they may wish to
  54 * check to see if any swap space is available.
  55 */
  56EXPORT_SYMBOL_GPL(nr_swap_pages);
  57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  58long total_swap_pages;
  59static int least_priority;
  60
  61static const char Bad_file[] = "Bad swap file entry ";
  62static const char Unused_file[] = "Unused swap file entry ";
  63static const char Bad_offset[] = "Bad swap offset entry ";
  64static const char Unused_offset[] = "Unused swap offset entry ";
  65
  66/*
  67 * all active swap_info_structs
  68 * protected with swap_lock, and ordered by priority.
  69 */
  70PLIST_HEAD(swap_active_head);
  71
  72/*
  73 * all available (active, not full) swap_info_structs
  74 * protected with swap_avail_lock, ordered by priority.
  75 * This is used by get_swap_page() instead of swap_active_head
  76 * because swap_active_head includes all swap_info_structs,
  77 * but get_swap_page() doesn't need to look at full ones.
  78 * This uses its own lock instead of swap_lock because when a
  79 * swap_info_struct changes between not-full/full, it needs to
  80 * add/remove itself to/from this list, but the swap_info_struct->lock
  81 * is held and the locking order requires swap_lock to be taken
  82 * before any swap_info_struct->lock.
  83 */
  84static PLIST_HEAD(swap_avail_head);
  85static DEFINE_SPINLOCK(swap_avail_lock);
  86
  87struct swap_info_struct *swap_info[MAX_SWAPFILES];
  88
  89static DEFINE_MUTEX(swapon_mutex);
  90
  91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  92/* Activity counter to indicate that a swapon or swapoff has occurred */
  93static atomic_t proc_poll_event = ATOMIC_INIT(0);
  94
 
 
 
 
 
 
 
 
 
 
  95static inline unsigned char swap_count(unsigned char ent)
  96{
  97	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  98}
  99
 
 
 
 
 
 
 
 
 
 
 100/* returns 1 if swap entry is freed */
 101static int
 102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 103{
 104	swp_entry_t entry = swp_entry(si->type, offset);
 105	struct page *page;
 106	int ret = 0;
 107
 108	page = find_get_page(swap_address_space(entry), swp_offset(entry));
 109	if (!page)
 110		return 0;
 111	/*
 112	 * This function is called from scan_swap_map() and it's called
 113	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 114	 * We have to use trylock for avoiding deadlock. This is a special
 115	 * case and you should use try_to_free_swap() with explicit lock_page()
 116	 * in usual operations.
 117	 */
 118	if (trylock_page(page)) {
 119		ret = try_to_free_swap(page);
 
 
 
 120		unlock_page(page);
 121	}
 122	put_page(page);
 123	return ret;
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 126/*
 127 * swapon tell device that all the old swap contents can be discarded,
 128 * to allow the swap device to optimize its wear-levelling.
 129 */
 130static int discard_swap(struct swap_info_struct *si)
 131{
 132	struct swap_extent *se;
 133	sector_t start_block;
 134	sector_t nr_blocks;
 135	int err = 0;
 136
 137	/* Do not discard the swap header page! */
 138	se = &si->first_swap_extent;
 139	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 140	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 141	if (nr_blocks) {
 142		err = blkdev_issue_discard(si->bdev, start_block,
 143				nr_blocks, GFP_KERNEL, 0);
 144		if (err)
 145			return err;
 146		cond_resched();
 147	}
 148
 149	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 150		start_block = se->start_block << (PAGE_SHIFT - 9);
 151		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 152
 153		err = blkdev_issue_discard(si->bdev, start_block,
 154				nr_blocks, GFP_KERNEL, 0);
 155		if (err)
 156			break;
 157
 158		cond_resched();
 159	}
 160	return err;		/* That will often be -EOPNOTSUPP */
 161}
 162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163/*
 164 * swap allocation tell device that a cluster of swap can now be discarded,
 165 * to allow the swap device to optimize its wear-levelling.
 166 */
 167static void discard_swap_cluster(struct swap_info_struct *si,
 168				 pgoff_t start_page, pgoff_t nr_pages)
 169{
 170	struct swap_extent *se = si->curr_swap_extent;
 171	int found_extent = 0;
 172
 173	while (nr_pages) {
 174		if (se->start_page <= start_page &&
 175		    start_page < se->start_page + se->nr_pages) {
 176			pgoff_t offset = start_page - se->start_page;
 177			sector_t start_block = se->start_block + offset;
 178			sector_t nr_blocks = se->nr_pages - offset;
 179
 180			if (nr_blocks > nr_pages)
 181				nr_blocks = nr_pages;
 182			start_page += nr_blocks;
 183			nr_pages -= nr_blocks;
 184
 185			if (!found_extent++)
 186				si->curr_swap_extent = se;
 187
 188			start_block <<= PAGE_SHIFT - 9;
 189			nr_blocks <<= PAGE_SHIFT - 9;
 190			if (blkdev_issue_discard(si->bdev, start_block,
 191				    nr_blocks, GFP_NOIO, 0))
 192				break;
 193		}
 194
 195		se = list_next_entry(se, list);
 196	}
 197}
 198
 
 
 
 
 
 199#define SWAPFILE_CLUSTER	256
 
 
 
 
 
 
 
 200#define LATENCY_LIMIT		256
 201
 202static inline void cluster_set_flag(struct swap_cluster_info *info,
 203	unsigned int flag)
 204{
 205	info->flags = flag;
 206}
 207
 208static inline unsigned int cluster_count(struct swap_cluster_info *info)
 209{
 210	return info->data;
 211}
 212
 213static inline void cluster_set_count(struct swap_cluster_info *info,
 214				     unsigned int c)
 215{
 216	info->data = c;
 217}
 218
 219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 220					 unsigned int c, unsigned int f)
 221{
 222	info->flags = f;
 223	info->data = c;
 224}
 225
 226static inline unsigned int cluster_next(struct swap_cluster_info *info)
 227{
 228	return info->data;
 229}
 230
 231static inline void cluster_set_next(struct swap_cluster_info *info,
 232				    unsigned int n)
 233{
 234	info->data = n;
 235}
 236
 237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 238					 unsigned int n, unsigned int f)
 239{
 240	info->flags = f;
 241	info->data = n;
 242}
 243
 244static inline bool cluster_is_free(struct swap_cluster_info *info)
 245{
 246	return info->flags & CLUSTER_FLAG_FREE;
 247}
 248
 249static inline bool cluster_is_null(struct swap_cluster_info *info)
 250{
 251	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 252}
 253
 254static inline void cluster_set_null(struct swap_cluster_info *info)
 255{
 256	info->flags = CLUSTER_FLAG_NEXT_NULL;
 257	info->data = 0;
 258}
 259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260static inline bool cluster_list_empty(struct swap_cluster_list *list)
 261{
 262	return cluster_is_null(&list->head);
 263}
 264
 265static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 266{
 267	return cluster_next(&list->head);
 268}
 269
 270static void cluster_list_init(struct swap_cluster_list *list)
 271{
 272	cluster_set_null(&list->head);
 273	cluster_set_null(&list->tail);
 274}
 275
 276static void cluster_list_add_tail(struct swap_cluster_list *list,
 277				  struct swap_cluster_info *ci,
 278				  unsigned int idx)
 279{
 280	if (cluster_list_empty(list)) {
 281		cluster_set_next_flag(&list->head, idx, 0);
 282		cluster_set_next_flag(&list->tail, idx, 0);
 283	} else {
 
 284		unsigned int tail = cluster_next(&list->tail);
 285
 286		cluster_set_next(&ci[tail], idx);
 
 
 
 
 
 
 
 287		cluster_set_next_flag(&list->tail, idx, 0);
 288	}
 289}
 290
 291static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 292					   struct swap_cluster_info *ci)
 293{
 294	unsigned int idx;
 295
 296	idx = cluster_next(&list->head);
 297	if (cluster_next(&list->tail) == idx) {
 298		cluster_set_null(&list->head);
 299		cluster_set_null(&list->tail);
 300	} else
 301		cluster_set_next_flag(&list->head,
 302				      cluster_next(&ci[idx]), 0);
 303
 304	return idx;
 305}
 306
 307/* Add a cluster to discard list and schedule it to do discard */
 308static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 309		unsigned int idx)
 310{
 311	/*
 312	 * If scan_swap_map() can't find a free cluster, it will check
 313	 * si->swap_map directly. To make sure the discarding cluster isn't
 314	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 315	 * will be cleared after discard
 316	 */
 317	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 318			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 319
 320	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 321
 322	schedule_work(&si->discard_work);
 323}
 324
 
 
 
 
 
 
 
 
 325/*
 326 * Doing discard actually. After a cluster discard is finished, the cluster
 327 * will be added to free cluster list. caller should hold si->lock.
 328*/
 329static void swap_do_scheduled_discard(struct swap_info_struct *si)
 330{
 331	struct swap_cluster_info *info;
 332	unsigned int idx;
 333
 334	info = si->cluster_info;
 335
 336	while (!cluster_list_empty(&si->discard_clusters)) {
 337		idx = cluster_list_del_first(&si->discard_clusters, info);
 338		spin_unlock(&si->lock);
 339
 340		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 341				SWAPFILE_CLUSTER);
 342
 343		spin_lock(&si->lock);
 344		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
 345		cluster_list_add_tail(&si->free_clusters, info, idx);
 346		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 347				0, SWAPFILE_CLUSTER);
 
 348	}
 349}
 350
 351static void swap_discard_work(struct work_struct *work)
 352{
 353	struct swap_info_struct *si;
 354
 355	si = container_of(work, struct swap_info_struct, discard_work);
 356
 357	spin_lock(&si->lock);
 358	swap_do_scheduled_discard(si);
 359	spin_unlock(&si->lock);
 360}
 361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362/*
 363 * The cluster corresponding to page_nr will be used. The cluster will be
 364 * removed from free cluster list and its usage counter will be increased.
 365 */
 366static void inc_cluster_info_page(struct swap_info_struct *p,
 367	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 368{
 369	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 370
 371	if (!cluster_info)
 372		return;
 373	if (cluster_is_free(&cluster_info[idx])) {
 374		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
 375		cluster_list_del_first(&p->free_clusters, cluster_info);
 376		cluster_set_count_flag(&cluster_info[idx], 0, 0);
 377	}
 378
 379	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 380	cluster_set_count(&cluster_info[idx],
 381		cluster_count(&cluster_info[idx]) + 1);
 382}
 383
 384/*
 385 * The cluster corresponding to page_nr decreases one usage. If the usage
 386 * counter becomes 0, which means no page in the cluster is in using, we can
 387 * optionally discard the cluster and add it to free cluster list.
 388 */
 389static void dec_cluster_info_page(struct swap_info_struct *p,
 390	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 391{
 392	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 393
 394	if (!cluster_info)
 395		return;
 396
 397	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 398	cluster_set_count(&cluster_info[idx],
 399		cluster_count(&cluster_info[idx]) - 1);
 400
 401	if (cluster_count(&cluster_info[idx]) == 0) {
 402		/*
 403		 * If the swap is discardable, prepare discard the cluster
 404		 * instead of free it immediately. The cluster will be freed
 405		 * after discard.
 406		 */
 407		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 408				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 409			swap_cluster_schedule_discard(p, idx);
 410			return;
 411		}
 412
 413		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 414		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
 415	}
 416}
 417
 418/*
 419 * It's possible scan_swap_map() uses a free cluster in the middle of free
 420 * cluster list. Avoiding such abuse to avoid list corruption.
 421 */
 422static bool
 423scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 424	unsigned long offset)
 425{
 426	struct percpu_cluster *percpu_cluster;
 427	bool conflict;
 428
 429	offset /= SWAPFILE_CLUSTER;
 430	conflict = !cluster_list_empty(&si->free_clusters) &&
 431		offset != cluster_list_first(&si->free_clusters) &&
 432		cluster_is_free(&si->cluster_info[offset]);
 433
 434	if (!conflict)
 435		return false;
 436
 437	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 438	cluster_set_null(&percpu_cluster->index);
 439	return true;
 440}
 441
 442/*
 443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 444 * might involve allocating a new cluster for current CPU too.
 445 */
 446static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 447	unsigned long *offset, unsigned long *scan_base)
 448{
 449	struct percpu_cluster *cluster;
 450	bool found_free;
 451	unsigned long tmp;
 452
 453new_cluster:
 454	cluster = this_cpu_ptr(si->percpu_cluster);
 455	if (cluster_is_null(&cluster->index)) {
 456		if (!cluster_list_empty(&si->free_clusters)) {
 457			cluster->index = si->free_clusters.head;
 458			cluster->next = cluster_next(&cluster->index) *
 459					SWAPFILE_CLUSTER;
 460		} else if (!cluster_list_empty(&si->discard_clusters)) {
 461			/*
 462			 * we don't have free cluster but have some clusters in
 463			 * discarding, do discard now and reclaim them
 
 464			 */
 465			swap_do_scheduled_discard(si);
 466			*scan_base = *offset = si->cluster_next;
 
 467			goto new_cluster;
 468		} else
 469			return;
 470	}
 471
 472	found_free = false;
 473
 474	/*
 475	 * Other CPUs can use our cluster if they can't find a free cluster,
 476	 * check if there is still free entry in the cluster
 477	 */
 478	tmp = cluster->next;
 479	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
 480	       SWAPFILE_CLUSTER) {
 481		if (!si->swap_map[tmp]) {
 482			found_free = true;
 483			break;
 
 
 
 484		}
 485		tmp++;
 486	}
 487	if (!found_free) {
 488		cluster_set_null(&cluster->index);
 489		goto new_cluster;
 490	}
 491	cluster->next = tmp + 1;
 492	*offset = tmp;
 493	*scan_base = tmp;
 
 494}
 495
 496static unsigned long scan_swap_map(struct swap_info_struct *si,
 497				   unsigned char usage)
 498{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499	unsigned long offset;
 500	unsigned long scan_base;
 501	unsigned long last_in_cluster = 0;
 502	int latency_ration = LATENCY_LIMIT;
 
 
 503
 504	/*
 505	 * We try to cluster swap pages by allocating them sequentially
 506	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 507	 * way, however, we resort to first-free allocation, starting
 508	 * a new cluster.  This prevents us from scattering swap pages
 509	 * all over the entire swap partition, so that we reduce
 510	 * overall disk seek times between swap pages.  -- sct
 511	 * But we do now try to find an empty cluster.  -Andrea
 512	 * And we let swap pages go all over an SSD partition.  Hugh
 513	 */
 514
 515	si->flags += SWP_SCANNING;
 516	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 
 517
 518	/* SSD algorithm */
 519	if (si->cluster_info) {
 520		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 521		goto checks;
 522	}
 523
 524	if (unlikely(!si->cluster_nr--)) {
 525		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 526			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 527			goto checks;
 528		}
 529
 530		spin_unlock(&si->lock);
 531
 532		/*
 533		 * If seek is expensive, start searching for new cluster from
 534		 * start of partition, to minimize the span of allocated swap.
 535		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 536		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 537		 */
 538		scan_base = offset = si->lowest_bit;
 539		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 540
 541		/* Locate the first empty (unaligned) cluster */
 542		for (; last_in_cluster <= si->highest_bit; offset++) {
 543			if (si->swap_map[offset])
 544				last_in_cluster = offset + SWAPFILE_CLUSTER;
 545			else if (offset == last_in_cluster) {
 546				spin_lock(&si->lock);
 547				offset -= SWAPFILE_CLUSTER - 1;
 548				si->cluster_next = offset;
 549				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 550				goto checks;
 551			}
 552			if (unlikely(--latency_ration < 0)) {
 553				cond_resched();
 554				latency_ration = LATENCY_LIMIT;
 555			}
 556		}
 557
 558		offset = scan_base;
 559		spin_lock(&si->lock);
 560		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 561	}
 562
 563checks:
 564	if (si->cluster_info) {
 565		while (scan_swap_map_ssd_cluster_conflict(si, offset))
 566			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 
 
 
 
 
 
 567	}
 568	if (!(si->flags & SWP_WRITEOK))
 569		goto no_page;
 570	if (!si->highest_bit)
 571		goto no_page;
 572	if (offset > si->highest_bit)
 573		scan_base = offset = si->lowest_bit;
 574
 
 575	/* reuse swap entry of cache-only swap if not busy. */
 576	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 577		int swap_was_freed;
 
 578		spin_unlock(&si->lock);
 579		swap_was_freed = __try_to_reclaim_swap(si, offset);
 580		spin_lock(&si->lock);
 581		/* entry was freed successfully, try to use this again */
 582		if (swap_was_freed)
 583			goto checks;
 584		goto scan; /* check next one */
 585	}
 586
 587	if (si->swap_map[offset])
 588		goto scan;
 
 
 
 
 
 
 
 
 589
 590	if (offset == si->lowest_bit)
 591		si->lowest_bit++;
 592	if (offset == si->highest_bit)
 593		si->highest_bit--;
 594	si->inuse_pages++;
 595	if (si->inuse_pages == si->pages) {
 596		si->lowest_bit = si->max;
 597		si->highest_bit = 0;
 598		spin_lock(&swap_avail_lock);
 599		plist_del(&si->avail_list, &swap_avail_head);
 600		spin_unlock(&swap_avail_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	}
 602	si->swap_map[offset] = usage;
 603	inc_cluster_info_page(si, si->cluster_info, offset);
 604	si->cluster_next = offset + 1;
 605	si->flags -= SWP_SCANNING;
 606
 607	return offset;
 608
 609scan:
 610	spin_unlock(&si->lock);
 611	while (++offset <= si->highest_bit) {
 612		if (!si->swap_map[offset]) {
 613			spin_lock(&si->lock);
 614			goto checks;
 615		}
 616		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 
 617			spin_lock(&si->lock);
 618			goto checks;
 619		}
 620		if (unlikely(--latency_ration < 0)) {
 621			cond_resched();
 622			latency_ration = LATENCY_LIMIT;
 
 623		}
 624	}
 625	offset = si->lowest_bit;
 626	while (offset < scan_base) {
 627		if (!si->swap_map[offset]) {
 628			spin_lock(&si->lock);
 629			goto checks;
 630		}
 631		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 
 632			spin_lock(&si->lock);
 633			goto checks;
 634		}
 635		if (unlikely(--latency_ration < 0)) {
 636			cond_resched();
 637			latency_ration = LATENCY_LIMIT;
 
 638		}
 639		offset++;
 640	}
 641	spin_lock(&si->lock);
 642
 643no_page:
 644	si->flags -= SWP_SCANNING;
 645	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648swp_entry_t get_swap_page(void)
 649{
 
 650	struct swap_info_struct *si, *next;
 651	pgoff_t offset;
 
 
 
 
 
 
 
 652
 653	if (atomic_long_read(&nr_swap_pages) <= 0)
 
 
 654		goto noswap;
 655	atomic_long_dec(&nr_swap_pages);
 656
 657	spin_lock(&swap_avail_lock);
 
 
 658
 659start_over:
 660	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
 
 661		/* requeue si to after same-priority siblings */
 662		plist_requeue(&si->avail_list, &swap_avail_head);
 663		spin_unlock(&swap_avail_lock);
 664		spin_lock(&si->lock);
 665		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 666			spin_lock(&swap_avail_lock);
 667			if (plist_node_empty(&si->avail_list)) {
 668				spin_unlock(&si->lock);
 669				goto nextsi;
 670			}
 671			WARN(!si->highest_bit,
 672			     "swap_info %d in list but !highest_bit\n",
 673			     si->type);
 674			WARN(!(si->flags & SWP_WRITEOK),
 675			     "swap_info %d in list but !SWP_WRITEOK\n",
 676			     si->type);
 677			plist_del(&si->avail_list, &swap_avail_head);
 678			spin_unlock(&si->lock);
 679			goto nextsi;
 680		}
 681
 682		/* This is called for allocating swap entry for cache */
 683		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 
 
 
 684		spin_unlock(&si->lock);
 685		if (offset)
 686			return swp_entry(si->type, offset);
 687		pr_debug("scan_swap_map of si %d failed to find offset\n",
 688		       si->type);
 
 689		spin_lock(&swap_avail_lock);
 690nextsi:
 691		/*
 692		 * if we got here, it's likely that si was almost full before,
 693		 * and since scan_swap_map() can drop the si->lock, multiple
 694		 * callers probably all tried to get a page from the same si
 695		 * and it filled up before we could get one; or, the si filled
 696		 * up between us dropping swap_avail_lock and taking si->lock.
 697		 * Since we dropped the swap_avail_lock, the swap_avail_head
 698		 * list may have been modified; so if next is still in the
 699		 * swap_avail_head list then try it, otherwise start over.
 
 700		 */
 701		if (plist_node_empty(&next->avail_list))
 702			goto start_over;
 703	}
 704
 705	spin_unlock(&swap_avail_lock);
 706
 707	atomic_long_inc(&nr_swap_pages);
 
 
 
 708noswap:
 709	return (swp_entry_t) {0};
 710}
 711
 712/* The only caller of this function is now suspend routine */
 713swp_entry_t get_swap_page_of_type(int type)
 714{
 715	struct swap_info_struct *si;
 716	pgoff_t offset;
 717
 718	si = swap_info[type];
 719	spin_lock(&si->lock);
 720	if (si && (si->flags & SWP_WRITEOK)) {
 721		atomic_long_dec(&nr_swap_pages);
 722		/* This is called for allocating swap entry, not cache */
 723		offset = scan_swap_map(si, 1);
 724		if (offset) {
 725			spin_unlock(&si->lock);
 726			return swp_entry(type, offset);
 727		}
 728		atomic_long_inc(&nr_swap_pages);
 729	}
 730	spin_unlock(&si->lock);
 731	return (swp_entry_t) {0};
 732}
 733
 734static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 735{
 736	struct swap_info_struct *p;
 737	unsigned long offset, type;
 738
 739	if (!entry.val)
 740		goto out;
 741	type = swp_type(entry);
 742	if (type >= nr_swapfiles)
 743		goto bad_nofile;
 744	p = swap_info[type];
 745	if (!(p->flags & SWP_USED))
 746		goto bad_device;
 747	offset = swp_offset(entry);
 748	if (offset >= p->max)
 749		goto bad_offset;
 750	if (!p->swap_map[offset])
 751		goto bad_free;
 752	spin_lock(&p->lock);
 753	return p;
 754
 755bad_free:
 756	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
 757	goto out;
 758bad_offset:
 759	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
 760	goto out;
 761bad_device:
 762	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
 763	goto out;
 764bad_nofile:
 765	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
 766out:
 767	return NULL;
 768}
 769
 770static unsigned char swap_entry_free(struct swap_info_struct *p,
 771				     swp_entry_t entry, unsigned char usage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772{
 773	unsigned long offset = swp_offset(entry);
 774	unsigned char count;
 775	unsigned char has_cache;
 776
 777	count = p->swap_map[offset];
 
 778	has_cache = count & SWAP_HAS_CACHE;
 779	count &= ~SWAP_HAS_CACHE;
 780
 781	if (usage == SWAP_HAS_CACHE) {
 782		VM_BUG_ON(!has_cache);
 783		has_cache = 0;
 784	} else if (count == SWAP_MAP_SHMEM) {
 785		/*
 786		 * Or we could insist on shmem.c using a special
 787		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 788		 */
 789		count = 0;
 790	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 791		if (count == COUNT_CONTINUED) {
 792			if (swap_count_continued(p, offset, count))
 793				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 794			else
 795				count = SWAP_MAP_MAX;
 796		} else
 797			count--;
 798	}
 799
 800	usage = count | has_cache;
 801	p->swap_map[offset] = usage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	/* free if no reference */
 804	if (!usage) {
 805		mem_cgroup_uncharge_swap(entry);
 806		dec_cluster_info_page(p, p->cluster_info, offset);
 807		if (offset < p->lowest_bit)
 808			p->lowest_bit = offset;
 809		if (offset > p->highest_bit) {
 810			bool was_full = !p->highest_bit;
 811			p->highest_bit = offset;
 812			if (was_full && (p->flags & SWP_WRITEOK)) {
 813				spin_lock(&swap_avail_lock);
 814				WARN_ON(!plist_node_empty(&p->avail_list));
 815				if (plist_node_empty(&p->avail_list))
 816					plist_add(&p->avail_list,
 817						  &swap_avail_head);
 818				spin_unlock(&swap_avail_lock);
 819			}
 820		}
 821		atomic_long_inc(&nr_swap_pages);
 822		p->inuse_pages--;
 823		frontswap_invalidate_page(p->type, offset);
 824		if (p->flags & SWP_BLKDEV) {
 825			struct gendisk *disk = p->bdev->bd_disk;
 826			if (disk->fops->swap_slot_free_notify)
 827				disk->fops->swap_slot_free_notify(p->bdev,
 828								  offset);
 829		}
 830	}
 831
 832	return usage;
 833}
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835/*
 836 * Caller has made sure that the swap device corresponding to entry
 837 * is still around or has not been recycled.
 838 */
 839void swap_free(swp_entry_t entry)
 840{
 841	struct swap_info_struct *p;
 842
 843	p = swap_info_get(entry);
 844	if (p) {
 845		swap_entry_free(p, entry, 1);
 846		spin_unlock(&p->lock);
 847	}
 848}
 849
 850/*
 851 * Called after dropping swapcache to decrease refcnt to swap entries.
 852 */
 853void swapcache_free(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854{
 855	struct swap_info_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856
 857	p = swap_info_get(entry);
 858	if (p) {
 859		swap_entry_free(p, entry, SWAP_HAS_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 860		spin_unlock(&p->lock);
 861	}
 862}
 863
 864/*
 865 * How many references to page are currently swapped out?
 866 * This does not give an exact answer when swap count is continued,
 867 * but does include the high COUNT_CONTINUED flag to allow for that.
 868 */
 869int page_swapcount(struct page *page)
 870{
 871	int count = 0;
 872	struct swap_info_struct *p;
 
 873	swp_entry_t entry;
 
 874
 875	entry.val = page_private(page);
 876	p = swap_info_get(entry);
 877	if (p) {
 878		count = swap_count(p->swap_map[swp_offset(entry)]);
 879		spin_unlock(&p->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880	}
 881	return count;
 882}
 883
 884/*
 885 * How many references to @entry are currently swapped out?
 886 * This considers COUNT_CONTINUED so it returns exact answer.
 887 */
 888int swp_swapcount(swp_entry_t entry)
 889{
 890	int count, tmp_count, n;
 891	struct swap_info_struct *p;
 
 892	struct page *page;
 893	pgoff_t offset;
 894	unsigned char *map;
 895
 896	p = swap_info_get(entry);
 897	if (!p)
 898		return 0;
 899
 900	count = swap_count(p->swap_map[swp_offset(entry)]);
 
 
 
 
 901	if (!(count & COUNT_CONTINUED))
 902		goto out;
 903
 904	count &= ~COUNT_CONTINUED;
 905	n = SWAP_MAP_MAX + 1;
 906
 907	offset = swp_offset(entry);
 908	page = vmalloc_to_page(p->swap_map + offset);
 909	offset &= ~PAGE_MASK;
 910	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
 911
 912	do {
 913		page = list_next_entry(page, lru);
 914		map = kmap_atomic(page);
 915		tmp_count = map[offset];
 916		kunmap_atomic(map);
 917
 918		count += (tmp_count & ~COUNT_CONTINUED) * n;
 919		n *= (SWAP_CONT_MAX + 1);
 920	} while (tmp_count & COUNT_CONTINUED);
 921out:
 922	spin_unlock(&p->lock);
 923	return count;
 924}
 925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926/*
 927 * We can write to an anon page without COW if there are no other references
 928 * to it.  And as a side-effect, free up its swap: because the old content
 929 * on disk will never be read, and seeking back there to write new content
 930 * later would only waste time away from clustering.
 931 *
 932 * NOTE: total_mapcount should not be relied upon by the caller if
 933 * reuse_swap_page() returns false, but it may be always overwritten
 934 * (see the other implementation for CONFIG_SWAP=n).
 935 */
 936bool reuse_swap_page(struct page *page, int *total_mapcount)
 937{
 938	int count;
 939
 940	VM_BUG_ON_PAGE(!PageLocked(page), page);
 941	if (unlikely(PageKsm(page)))
 942		return false;
 943	count = page_trans_huge_mapcount(page, total_mapcount);
 944	if (count <= 1 && PageSwapCache(page)) {
 945		count += page_swapcount(page);
 946		if (count != 1)
 947			goto out;
 
 
 
 948		if (!PageWriteback(page)) {
 
 949			delete_from_swap_cache(page);
 950			SetPageDirty(page);
 951		} else {
 952			swp_entry_t entry;
 953			struct swap_info_struct *p;
 954
 955			entry.val = page_private(page);
 956			p = swap_info_get(entry);
 957			if (p->flags & SWP_STABLE_WRITES) {
 958				spin_unlock(&p->lock);
 959				return false;
 960			}
 961			spin_unlock(&p->lock);
 962		}
 963	}
 964out:
 965	return count <= 1;
 966}
 967
 968/*
 969 * If swap is getting full, or if there are no more mappings of this page,
 970 * then try_to_free_swap is called to free its swap space.
 971 */
 972int try_to_free_swap(struct page *page)
 973{
 974	VM_BUG_ON_PAGE(!PageLocked(page), page);
 975
 976	if (!PageSwapCache(page))
 977		return 0;
 978	if (PageWriteback(page))
 979		return 0;
 980	if (page_swapcount(page))
 981		return 0;
 982
 983	/*
 984	 * Once hibernation has begun to create its image of memory,
 985	 * there's a danger that one of the calls to try_to_free_swap()
 986	 * - most probably a call from __try_to_reclaim_swap() while
 987	 * hibernation is allocating its own swap pages for the image,
 988	 * but conceivably even a call from memory reclaim - will free
 989	 * the swap from a page which has already been recorded in the
 990	 * image as a clean swapcache page, and then reuse its swap for
 991	 * another page of the image.  On waking from hibernation, the
 992	 * original page might be freed under memory pressure, then
 993	 * later read back in from swap, now with the wrong data.
 994	 *
 995	 * Hibernation suspends storage while it is writing the image
 996	 * to disk so check that here.
 997	 */
 998	if (pm_suspended_storage())
 999		return 0;
1000
 
1001	delete_from_swap_cache(page);
1002	SetPageDirty(page);
1003	return 1;
1004}
1005
1006/*
1007 * Free the swap entry like above, but also try to
1008 * free the page cache entry if it is the last user.
1009 */
1010int free_swap_and_cache(swp_entry_t entry)
1011{
1012	struct swap_info_struct *p;
1013	struct page *page = NULL;
1014
1015	if (non_swap_entry(entry))
1016		return 1;
1017
1018	p = swap_info_get(entry);
1019	if (p) {
1020		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1021			page = find_get_page(swap_address_space(entry),
1022					     swp_offset(entry));
1023			if (page && !trylock_page(page)) {
1024				put_page(page);
1025				page = NULL;
1026			}
1027		}
1028		spin_unlock(&p->lock);
1029	}
1030	if (page) {
1031		/*
1032		 * Not mapped elsewhere, or swap space full? Free it!
1033		 * Also recheck PageSwapCache now page is locked (above).
1034		 */
1035		if (PageSwapCache(page) && !PageWriteback(page) &&
1036		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1037			delete_from_swap_cache(page);
1038			SetPageDirty(page);
1039		}
1040		unlock_page(page);
1041		put_page(page);
1042	}
1043	return p != NULL;
1044}
1045
1046#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047/*
1048 * Find the swap type that corresponds to given device (if any).
1049 *
1050 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051 * from 0, in which the swap header is expected to be located.
1052 *
1053 * This is needed for the suspend to disk (aka swsusp).
1054 */
1055int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1056{
1057	struct block_device *bdev = NULL;
1058	int type;
1059
1060	if (device)
1061		bdev = bdget(device);
1062
1063	spin_lock(&swap_lock);
1064	for (type = 0; type < nr_swapfiles; type++) {
1065		struct swap_info_struct *sis = swap_info[type];
1066
1067		if (!(sis->flags & SWP_WRITEOK))
1068			continue;
1069
1070		if (!bdev) {
1071			if (bdev_p)
1072				*bdev_p = bdgrab(sis->bdev);
1073
1074			spin_unlock(&swap_lock);
1075			return type;
1076		}
1077		if (bdev == sis->bdev) {
1078			struct swap_extent *se = &sis->first_swap_extent;
1079
1080			if (se->start_block == offset) {
1081				if (bdev_p)
1082					*bdev_p = bdgrab(sis->bdev);
1083
1084				spin_unlock(&swap_lock);
1085				bdput(bdev);
1086				return type;
1087			}
1088		}
1089	}
1090	spin_unlock(&swap_lock);
1091	if (bdev)
1092		bdput(bdev);
1093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	return -ENODEV;
1095}
1096
1097/*
1098 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099 * corresponding to given index in swap_info (swap type).
1100 */
1101sector_t swapdev_block(int type, pgoff_t offset)
1102{
1103	struct block_device *bdev;
 
1104
1105	if ((unsigned int)type >= nr_swapfiles)
1106		return 0;
1107	if (!(swap_info[type]->flags & SWP_WRITEOK))
1108		return 0;
1109	return map_swap_entry(swp_entry(type, offset), &bdev);
1110}
1111
1112/*
1113 * Return either the total number of swap pages of given type, or the number
1114 * of free pages of that type (depending on @free)
1115 *
1116 * This is needed for software suspend
1117 */
1118unsigned int count_swap_pages(int type, int free)
1119{
1120	unsigned int n = 0;
1121
1122	spin_lock(&swap_lock);
1123	if ((unsigned int)type < nr_swapfiles) {
1124		struct swap_info_struct *sis = swap_info[type];
1125
1126		spin_lock(&sis->lock);
1127		if (sis->flags & SWP_WRITEOK) {
1128			n = sis->pages;
1129			if (free)
1130				n -= sis->inuse_pages;
1131		}
1132		spin_unlock(&sis->lock);
1133	}
1134	spin_unlock(&swap_lock);
1135	return n;
1136}
1137#endif /* CONFIG_HIBERNATION */
1138
1139static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1140{
1141	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1142}
1143
1144/*
1145 * No need to decide whether this PTE shares the swap entry with others,
1146 * just let do_wp_page work it out if a write is requested later - to
1147 * force COW, vm_page_prot omits write permission from any private vma.
1148 */
1149static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1150		unsigned long addr, swp_entry_t entry, struct page *page)
1151{
1152	struct page *swapcache;
1153	struct mem_cgroup *memcg;
1154	spinlock_t *ptl;
1155	pte_t *pte;
1156	int ret = 1;
1157
1158	swapcache = page;
1159	page = ksm_might_need_to_copy(page, vma, addr);
1160	if (unlikely(!page))
1161		return -ENOMEM;
1162
1163	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164				&memcg, false)) {
1165		ret = -ENOMEM;
1166		goto out_nolock;
1167	}
1168
1169	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1170	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1171		mem_cgroup_cancel_charge(page, memcg, false);
1172		ret = 0;
1173		goto out;
1174	}
1175
1176	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1177	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1178	get_page(page);
1179	set_pte_at(vma->vm_mm, addr, pte,
1180		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1181	if (page == swapcache) {
1182		page_add_anon_rmap(page, vma, addr, false);
1183		mem_cgroup_commit_charge(page, memcg, true, false);
1184	} else { /* ksm created a completely new copy */
1185		page_add_new_anon_rmap(page, vma, addr, false);
1186		mem_cgroup_commit_charge(page, memcg, false, false);
1187		lru_cache_add_active_or_unevictable(page, vma);
1188	}
1189	swap_free(entry);
1190	/*
1191	 * Move the page to the active list so it is not
1192	 * immediately swapped out again after swapon.
1193	 */
1194	activate_page(page);
1195out:
1196	pte_unmap_unlock(pte, ptl);
1197out_nolock:
1198	if (page != swapcache) {
1199		unlock_page(page);
1200		put_page(page);
1201	}
1202	return ret;
1203}
1204
1205static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206				unsigned long addr, unsigned long end,
1207				swp_entry_t entry, struct page *page)
 
1208{
1209	pte_t swp_pte = swp_entry_to_pte(entry);
 
1210	pte_t *pte;
 
 
1211	int ret = 0;
 
1212
1213	/*
1214	 * We don't actually need pte lock while scanning for swp_pte: since
1215	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216	 * page table while we're scanning; though it could get zapped, and on
1217	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218	 * of unmatched parts which look like swp_pte, so unuse_pte must
1219	 * recheck under pte lock.  Scanning without pte lock lets it be
1220	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1221	 */
1222	pte = pte_offset_map(pmd, addr);
1223	do {
1224		/*
1225		 * swapoff spends a _lot_ of time in this loop!
1226		 * Test inline before going to call unuse_pte.
1227		 */
1228		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1229			pte_unmap(pte);
1230			ret = unuse_pte(vma, pmd, addr, entry, page);
1231			if (ret)
1232				goto out;
1233			pte = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234		}
 
 
1235	} while (pte++, addr += PAGE_SIZE, addr != end);
1236	pte_unmap(pte - 1);
 
 
1237out:
1238	return ret;
1239}
1240
1241static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242				unsigned long addr, unsigned long end,
1243				swp_entry_t entry, struct page *page)
 
1244{
1245	pmd_t *pmd;
1246	unsigned long next;
1247	int ret;
1248
1249	pmd = pmd_offset(pud, addr);
1250	do {
1251		cond_resched();
1252		next = pmd_addr_end(addr, end);
1253		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254			continue;
1255		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 
1256		if (ret)
1257			return ret;
1258	} while (pmd++, addr = next, addr != end);
1259	return 0;
1260}
1261
1262static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1263				unsigned long addr, unsigned long end,
1264				swp_entry_t entry, struct page *page)
 
1265{
1266	pud_t *pud;
1267	unsigned long next;
1268	int ret;
1269
1270	pud = pud_offset(pgd, addr);
1271	do {
1272		next = pud_addr_end(addr, end);
1273		if (pud_none_or_clear_bad(pud))
1274			continue;
1275		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 
1276		if (ret)
1277			return ret;
1278	} while (pud++, addr = next, addr != end);
1279	return 0;
1280}
1281
1282static int unuse_vma(struct vm_area_struct *vma,
1283				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284{
1285	pgd_t *pgd;
1286	unsigned long addr, end, next;
1287	int ret;
1288
1289	if (page_anon_vma(page)) {
1290		addr = page_address_in_vma(page, vma);
1291		if (addr == -EFAULT)
1292			return 0;
1293		else
1294			end = addr + PAGE_SIZE;
1295	} else {
1296		addr = vma->vm_start;
1297		end = vma->vm_end;
1298	}
1299
1300	pgd = pgd_offset(vma->vm_mm, addr);
1301	do {
1302		next = pgd_addr_end(addr, end);
1303		if (pgd_none_or_clear_bad(pgd))
1304			continue;
1305		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 
1306		if (ret)
1307			return ret;
1308	} while (pgd++, addr = next, addr != end);
1309	return 0;
1310}
1311
1312static int unuse_mm(struct mm_struct *mm,
1313				swp_entry_t entry, struct page *page)
1314{
1315	struct vm_area_struct *vma;
1316	int ret = 0;
1317
1318	if (!down_read_trylock(&mm->mmap_sem)) {
1319		/*
1320		 * Activate page so shrink_inactive_list is unlikely to unmap
1321		 * its ptes while lock is dropped, so swapoff can make progress.
1322		 */
1323		activate_page(page);
1324		unlock_page(page);
1325		down_read(&mm->mmap_sem);
1326		lock_page(page);
1327	}
1328	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1329		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1330			break;
 
 
 
 
1331		cond_resched();
1332	}
1333	up_read(&mm->mmap_sem);
1334	return (ret < 0)? ret: 0;
1335}
1336
1337/*
1338 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1339 * from current position to next entry still in use.
1340 * Recycle to start on reaching the end, returning 0 when empty.
1341 */
1342static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1343					unsigned int prev, bool frontswap)
1344{
1345	unsigned int max = si->max;
1346	unsigned int i = prev;
1347	unsigned char count;
1348
1349	/*
1350	 * No need for swap_lock here: we're just looking
1351	 * for whether an entry is in use, not modifying it; false
1352	 * hits are okay, and sys_swapoff() has already prevented new
1353	 * allocations from this area (while holding swap_lock).
1354	 */
1355	for (;;) {
1356		if (++i >= max) {
1357			if (!prev) {
1358				i = 0;
1359				break;
1360			}
1361			/*
1362			 * No entries in use at top of swap_map,
1363			 * loop back to start and recheck there.
1364			 */
1365			max = prev + 1;
1366			prev = 0;
1367			i = 1;
1368		}
1369		count = READ_ONCE(si->swap_map[i]);
1370		if (count && swap_count(count) != SWAP_MAP_BAD)
1371			if (!frontswap || frontswap_test(si, i))
1372				break;
1373		if ((i % LATENCY_LIMIT) == 0)
1374			cond_resched();
1375	}
 
 
 
 
1376	return i;
1377}
1378
1379/*
1380 * We completely avoid races by reading each swap page in advance,
1381 * and then search for the process using it.  All the necessary
1382 * page table adjustments can then be made atomically.
1383 *
1384 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1385 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1386 */
1387int try_to_unuse(unsigned int type, bool frontswap,
1388		 unsigned long pages_to_unuse)
1389{
 
 
 
 
1390	struct swap_info_struct *si = swap_info[type];
1391	struct mm_struct *start_mm;
1392	volatile unsigned char *swap_map; /* swap_map is accessed without
1393					   * locking. Mark it as volatile
1394					   * to prevent compiler doing
1395					   * something odd.
1396					   */
1397	unsigned char swcount;
1398	struct page *page;
1399	swp_entry_t entry;
1400	unsigned int i = 0;
1401	int retval = 0;
 
 
1402
1403	/*
1404	 * When searching mms for an entry, a good strategy is to
1405	 * start at the first mm we freed the previous entry from
1406	 * (though actually we don't notice whether we or coincidence
1407	 * freed the entry).  Initialize this start_mm with a hold.
1408	 *
1409	 * A simpler strategy would be to start at the last mm we
1410	 * freed the previous entry from; but that would take less
1411	 * advantage of mmlist ordering, which clusters forked mms
1412	 * together, child after parent.  If we race with dup_mmap(), we
1413	 * prefer to resolve parent before child, lest we miss entries
1414	 * duplicated after we scanned child: using last mm would invert
1415	 * that.
1416	 */
1417	start_mm = &init_mm;
1418	atomic_inc(&init_mm.mm_users);
1419
1420	/*
1421	 * Keep on scanning until all entries have gone.  Usually,
1422	 * one pass through swap_map is enough, but not necessarily:
1423	 * there are races when an instance of an entry might be missed.
1424	 */
1425	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1426		if (signal_pending(current)) {
1427			retval = -EINTR;
1428			break;
1429		}
1430
1431		/*
1432		 * Get a page for the entry, using the existing swap
1433		 * cache page if there is one.  Otherwise, get a clean
1434		 * page and read the swap into it.
1435		 */
1436		swap_map = &si->swap_map[i];
1437		entry = swp_entry(type, i);
1438		page = read_swap_cache_async(entry,
1439					GFP_HIGHUSER_MOVABLE, NULL, 0);
1440		if (!page) {
1441			/*
1442			 * Either swap_duplicate() failed because entry
1443			 * has been freed independently, and will not be
1444			 * reused since sys_swapoff() already disabled
1445			 * allocation from here, or alloc_page() failed.
1446			 */
1447			swcount = *swap_map;
1448			/*
1449			 * We don't hold lock here, so the swap entry could be
1450			 * SWAP_MAP_BAD (when the cluster is discarding).
1451			 * Instead of fail out, We can just skip the swap
1452			 * entry because swapoff will wait for discarding
1453			 * finish anyway.
1454			 */
1455			if (!swcount || swcount == SWAP_MAP_BAD)
1456				continue;
1457			retval = -ENOMEM;
1458			break;
1459		}
1460
1461		/*
1462		 * Don't hold on to start_mm if it looks like exiting.
1463		 */
1464		if (atomic_read(&start_mm->mm_users) == 1) {
1465			mmput(start_mm);
1466			start_mm = &init_mm;
1467			atomic_inc(&init_mm.mm_users);
1468		}
1469
1470		/*
1471		 * Wait for and lock page.  When do_swap_page races with
1472		 * try_to_unuse, do_swap_page can handle the fault much
1473		 * faster than try_to_unuse can locate the entry.  This
1474		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1475		 * defer to do_swap_page in such a case - in some tests,
1476		 * do_swap_page and try_to_unuse repeatedly compete.
1477		 */
1478		wait_on_page_locked(page);
1479		wait_on_page_writeback(page);
1480		lock_page(page);
1481		wait_on_page_writeback(page);
1482
1483		/*
1484		 * Remove all references to entry.
1485		 */
1486		swcount = *swap_map;
1487		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1488			retval = shmem_unuse(entry, page);
1489			/* page has already been unlocked and released */
1490			if (retval < 0)
1491				break;
1492			continue;
1493		}
1494		if (swap_count(swcount) && start_mm != &init_mm)
1495			retval = unuse_mm(start_mm, entry, page);
 
1496
1497		if (swap_count(*swap_map)) {
1498			int set_start_mm = (*swap_map >= swcount);
1499			struct list_head *p = &start_mm->mmlist;
1500			struct mm_struct *new_start_mm = start_mm;
1501			struct mm_struct *prev_mm = start_mm;
1502			struct mm_struct *mm;
1503
1504			atomic_inc(&new_start_mm->mm_users);
1505			atomic_inc(&prev_mm->mm_users);
1506			spin_lock(&mmlist_lock);
1507			while (swap_count(*swap_map) && !retval &&
1508					(p = p->next) != &start_mm->mmlist) {
1509				mm = list_entry(p, struct mm_struct, mmlist);
1510				if (!atomic_inc_not_zero(&mm->mm_users))
1511					continue;
1512				spin_unlock(&mmlist_lock);
1513				mmput(prev_mm);
1514				prev_mm = mm;
1515
1516				cond_resched();
1517
1518				swcount = *swap_map;
1519				if (!swap_count(swcount)) /* any usage ? */
1520					;
1521				else if (mm == &init_mm)
1522					set_start_mm = 1;
1523				else
1524					retval = unuse_mm(mm, entry, page);
1525
1526				if (set_start_mm && *swap_map < swcount) {
1527					mmput(new_start_mm);
1528					atomic_inc(&mm->mm_users);
1529					new_start_mm = mm;
1530					set_start_mm = 0;
1531				}
1532				spin_lock(&mmlist_lock);
1533			}
1534			spin_unlock(&mmlist_lock);
1535			mmput(prev_mm);
1536			mmput(start_mm);
1537			start_mm = new_start_mm;
1538		}
1539		if (retval) {
1540			unlock_page(page);
1541			put_page(page);
1542			break;
1543		}
1544
1545		/*
1546		 * If a reference remains (rare), we would like to leave
1547		 * the page in the swap cache; but try_to_unmap could
1548		 * then re-duplicate the entry once we drop page lock,
1549		 * so we might loop indefinitely; also, that page could
1550		 * not be swapped out to other storage meanwhile.  So:
1551		 * delete from cache even if there's another reference,
1552		 * after ensuring that the data has been saved to disk -
1553		 * since if the reference remains (rarer), it will be
1554		 * read from disk into another page.  Splitting into two
1555		 * pages would be incorrect if swap supported "shared
1556		 * private" pages, but they are handled by tmpfs files.
1557		 *
1558		 * Given how unuse_vma() targets one particular offset
1559		 * in an anon_vma, once the anon_vma has been determined,
1560		 * this splitting happens to be just what is needed to
1561		 * handle where KSM pages have been swapped out: re-reading
1562		 * is unnecessarily slow, but we can fix that later on.
1563		 */
1564		if (swap_count(*swap_map) &&
1565		     PageDirty(page) && PageSwapCache(page)) {
1566			struct writeback_control wbc = {
1567				.sync_mode = WB_SYNC_NONE,
1568			};
 
 
 
 
 
 
1569
1570			swap_writepage(page, &wbc);
1571			lock_page(page);
1572			wait_on_page_writeback(page);
1573		}
1574
1575		/*
1576		 * It is conceivable that a racing task removed this page from
1577		 * swap cache just before we acquired the page lock at the top,
1578		 * or while we dropped it in unuse_mm().  The page might even
1579		 * be back in swap cache on another swap area: that we must not
1580		 * delete, since it may not have been written out to swap yet.
1581		 */
1582		if (PageSwapCache(page) &&
1583		    likely(page_private(page) == entry.val))
1584			delete_from_swap_cache(page);
1585
1586		/*
1587		 * So we could skip searching mms once swap count went
1588		 * to 1, we did not mark any present ptes as dirty: must
1589		 * mark page dirty so shrink_page_list will preserve it.
1590		 */
1591		SetPageDirty(page);
1592		unlock_page(page);
1593		put_page(page);
1594
1595		/*
1596		 * Make sure that we aren't completely killing
1597		 * interactive performance.
 
1598		 */
1599		cond_resched();
1600		if (frontswap && pages_to_unuse > 0) {
1601			if (!--pages_to_unuse)
1602				break;
1603		}
1604	}
1605
1606	mmput(start_mm);
1607	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1608}
1609
1610/*
1611 * After a successful try_to_unuse, if no swap is now in use, we know
1612 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1613 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1614 * added to the mmlist just after page_duplicate - before would be racy.
1615 */
1616static void drain_mmlist(void)
1617{
1618	struct list_head *p, *next;
1619	unsigned int type;
1620
1621	for (type = 0; type < nr_swapfiles; type++)
1622		if (swap_info[type]->inuse_pages)
1623			return;
1624	spin_lock(&mmlist_lock);
1625	list_for_each_safe(p, next, &init_mm.mmlist)
1626		list_del_init(p);
1627	spin_unlock(&mmlist_lock);
1628}
1629
1630/*
1631 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1632 * corresponds to page offset for the specified swap entry.
1633 * Note that the type of this function is sector_t, but it returns page offset
1634 * into the bdev, not sector offset.
1635 */
1636static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1637{
1638	struct swap_info_struct *sis;
1639	struct swap_extent *start_se;
1640	struct swap_extent *se;
1641	pgoff_t offset;
1642
1643	sis = swap_info[swp_type(entry)];
1644	*bdev = sis->bdev;
1645
1646	offset = swp_offset(entry);
1647	start_se = sis->curr_swap_extent;
1648	se = start_se;
1649
1650	for ( ; ; ) {
1651		if (se->start_page <= offset &&
1652				offset < (se->start_page + se->nr_pages)) {
1653			return se->start_block + (offset - se->start_page);
1654		}
1655		se = list_next_entry(se, list);
1656		sis->curr_swap_extent = se;
1657		BUG_ON(se == start_se);		/* It *must* be present */
1658	}
1659}
1660
1661/*
1662 * Returns the page offset into bdev for the specified page's swap entry.
1663 */
1664sector_t map_swap_page(struct page *page, struct block_device **bdev)
1665{
1666	swp_entry_t entry;
1667	entry.val = page_private(page);
1668	return map_swap_entry(entry, bdev);
1669}
1670
1671/*
1672 * Free all of a swapdev's extent information
1673 */
1674static void destroy_swap_extents(struct swap_info_struct *sis)
1675{
1676	while (!list_empty(&sis->first_swap_extent.list)) {
1677		struct swap_extent *se;
 
1678
1679		se = list_first_entry(&sis->first_swap_extent.list,
1680				struct swap_extent, list);
1681		list_del(&se->list);
1682		kfree(se);
1683	}
1684
1685	if (sis->flags & SWP_FILE) {
1686		struct file *swap_file = sis->swap_file;
1687		struct address_space *mapping = swap_file->f_mapping;
1688
1689		sis->flags &= ~SWP_FILE;
1690		mapping->a_ops->swap_deactivate(swap_file);
 
1691	}
1692}
1693
1694/*
1695 * Add a block range (and the corresponding page range) into this swapdev's
1696 * extent list.  The extent list is kept sorted in page order.
1697 *
1698 * This function rather assumes that it is called in ascending page order.
1699 */
1700int
1701add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1702		unsigned long nr_pages, sector_t start_block)
1703{
 
1704	struct swap_extent *se;
1705	struct swap_extent *new_se;
1706	struct list_head *lh;
1707
1708	if (start_page == 0) {
1709		se = &sis->first_swap_extent;
1710		sis->curr_swap_extent = se;
1711		se->start_page = 0;
1712		se->nr_pages = nr_pages;
1713		se->start_block = start_block;
1714		return 1;
1715	} else {
1716		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1717		se = list_entry(lh, struct swap_extent, list);
 
1718		BUG_ON(se->start_page + se->nr_pages != start_page);
1719		if (se->start_block + se->nr_pages == start_block) {
1720			/* Merge it */
1721			se->nr_pages += nr_pages;
1722			return 0;
1723		}
1724	}
1725
1726	/*
1727	 * No merge.  Insert a new extent, preserving ordering.
1728	 */
1729	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1730	if (new_se == NULL)
1731		return -ENOMEM;
1732	new_se->start_page = start_page;
1733	new_se->nr_pages = nr_pages;
1734	new_se->start_block = start_block;
1735
1736	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1737	return 1;
1738}
 
1739
1740/*
1741 * A `swap extent' is a simple thing which maps a contiguous range of pages
1742 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1743 * is built at swapon time and is then used at swap_writepage/swap_readpage
1744 * time for locating where on disk a page belongs.
1745 *
1746 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1747 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1748 * swap files identically.
1749 *
1750 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1751 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1752 * swapfiles are handled *identically* after swapon time.
1753 *
1754 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1755 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1756 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1757 * requirements, they are simply tossed out - we will never use those blocks
1758 * for swapping.
1759 *
1760 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1761 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1762 * which will scribble on the fs.
1763 *
1764 * The amount of disk space which a single swap extent represents varies.
1765 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1766 * extents in the list.  To avoid much list walking, we cache the previous
1767 * search location in `curr_swap_extent', and start new searches from there.
1768 * This is extremely effective.  The average number of iterations in
1769 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1770 */
1771static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1772{
1773	struct file *swap_file = sis->swap_file;
1774	struct address_space *mapping = swap_file->f_mapping;
1775	struct inode *inode = mapping->host;
1776	int ret;
1777
1778	if (S_ISBLK(inode->i_mode)) {
1779		ret = add_swap_extent(sis, 0, sis->max, 0);
1780		*span = sis->pages;
1781		return ret;
1782	}
1783
1784	if (mapping->a_ops->swap_activate) {
1785		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 
 
1786		if (!ret) {
1787			sis->flags |= SWP_FILE;
1788			ret = add_swap_extent(sis, 0, sis->max, 0);
1789			*span = sis->pages;
1790		}
1791		return ret;
1792	}
1793
1794	return generic_swapfile_activate(sis, swap_file, span);
1795}
1796
1797static void _enable_swap_info(struct swap_info_struct *p, int prio,
1798				unsigned char *swap_map,
1799				struct swap_cluster_info *cluster_info)
 
 
 
 
 
 
 
 
 
 
 
 
1800{
 
 
1801	if (prio >= 0)
1802		p->prio = prio;
1803	else
1804		p->prio = --least_priority;
1805	/*
1806	 * the plist prio is negated because plist ordering is
1807	 * low-to-high, while swap ordering is high-to-low
1808	 */
1809	p->list.prio = -p->prio;
1810	p->avail_list.prio = -p->prio;
 
 
 
 
 
 
 
 
 
1811	p->swap_map = swap_map;
1812	p->cluster_info = cluster_info;
 
 
 
 
1813	p->flags |= SWP_WRITEOK;
1814	atomic_long_add(p->pages, &nr_swap_pages);
1815	total_swap_pages += p->pages;
1816
1817	assert_spin_locked(&swap_lock);
1818	/*
1819	 * both lists are plists, and thus priority ordered.
1820	 * swap_active_head needs to be priority ordered for swapoff(),
1821	 * which on removal of any swap_info_struct with an auto-assigned
1822	 * (i.e. negative) priority increments the auto-assigned priority
1823	 * of any lower-priority swap_info_structs.
1824	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1825	 * which allocates swap pages from the highest available priority
1826	 * swap_info_struct.
1827	 */
1828	plist_add(&p->list, &swap_active_head);
1829	spin_lock(&swap_avail_lock);
1830	plist_add(&p->avail_list, &swap_avail_head);
1831	spin_unlock(&swap_avail_lock);
1832}
1833
1834static void enable_swap_info(struct swap_info_struct *p, int prio,
1835				unsigned char *swap_map,
1836				struct swap_cluster_info *cluster_info,
1837				unsigned long *frontswap_map)
1838{
1839	frontswap_init(p->type, frontswap_map);
1840	spin_lock(&swap_lock);
1841	spin_lock(&p->lock);
1842	 _enable_swap_info(p, prio, swap_map, cluster_info);
 
 
 
 
 
 
 
 
 
1843	spin_unlock(&p->lock);
1844	spin_unlock(&swap_lock);
1845}
1846
1847static void reinsert_swap_info(struct swap_info_struct *p)
1848{
1849	spin_lock(&swap_lock);
1850	spin_lock(&p->lock);
1851	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
 
1852	spin_unlock(&p->lock);
1853	spin_unlock(&swap_lock);
1854}
1855
 
 
 
 
 
 
 
 
 
 
 
1856SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1857{
1858	struct swap_info_struct *p = NULL;
1859	unsigned char *swap_map;
1860	struct swap_cluster_info *cluster_info;
1861	unsigned long *frontswap_map;
1862	struct file *swap_file, *victim;
1863	struct address_space *mapping;
1864	struct inode *inode;
1865	struct filename *pathname;
1866	int err, found = 0;
1867	unsigned int old_block_size;
1868
1869	if (!capable(CAP_SYS_ADMIN))
1870		return -EPERM;
1871
1872	BUG_ON(!current->mm);
1873
1874	pathname = getname(specialfile);
1875	if (IS_ERR(pathname))
1876		return PTR_ERR(pathname);
1877
1878	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1879	err = PTR_ERR(victim);
1880	if (IS_ERR(victim))
1881		goto out;
1882
1883	mapping = victim->f_mapping;
1884	spin_lock(&swap_lock);
1885	plist_for_each_entry(p, &swap_active_head, list) {
1886		if (p->flags & SWP_WRITEOK) {
1887			if (p->swap_file->f_mapping == mapping) {
1888				found = 1;
1889				break;
1890			}
1891		}
1892	}
1893	if (!found) {
1894		err = -EINVAL;
1895		spin_unlock(&swap_lock);
1896		goto out_dput;
1897	}
1898	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1899		vm_unacct_memory(p->pages);
1900	else {
1901		err = -ENOMEM;
1902		spin_unlock(&swap_lock);
1903		goto out_dput;
1904	}
1905	spin_lock(&swap_avail_lock);
1906	plist_del(&p->avail_list, &swap_avail_head);
1907	spin_unlock(&swap_avail_lock);
1908	spin_lock(&p->lock);
1909	if (p->prio < 0) {
1910		struct swap_info_struct *si = p;
 
1911
1912		plist_for_each_entry_continue(si, &swap_active_head, list) {
1913			si->prio++;
1914			si->list.prio--;
1915			si->avail_list.prio--;
 
 
 
1916		}
1917		least_priority++;
1918	}
1919	plist_del(&p->list, &swap_active_head);
1920	atomic_long_sub(p->pages, &nr_swap_pages);
1921	total_swap_pages -= p->pages;
1922	p->flags &= ~SWP_WRITEOK;
1923	spin_unlock(&p->lock);
1924	spin_unlock(&swap_lock);
1925
 
 
1926	set_current_oom_origin();
1927	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1928	clear_current_oom_origin();
1929
1930	if (err) {
1931		/* re-insert swap space back into swap_list */
1932		reinsert_swap_info(p);
 
1933		goto out_dput;
1934	}
1935
 
 
 
 
 
 
 
 
 
 
 
 
 
1936	flush_work(&p->discard_work);
1937
1938	destroy_swap_extents(p);
1939	if (p->flags & SWP_CONTINUED)
1940		free_swap_count_continuations(p);
1941
 
 
 
1942	mutex_lock(&swapon_mutex);
1943	spin_lock(&swap_lock);
1944	spin_lock(&p->lock);
1945	drain_mmlist();
1946
1947	/* wait for anyone still in scan_swap_map */
1948	p->highest_bit = 0;		/* cuts scans short */
1949	while (p->flags >= SWP_SCANNING) {
1950		spin_unlock(&p->lock);
1951		spin_unlock(&swap_lock);
1952		schedule_timeout_uninterruptible(1);
1953		spin_lock(&swap_lock);
1954		spin_lock(&p->lock);
1955	}
1956
1957	swap_file = p->swap_file;
1958	old_block_size = p->old_block_size;
1959	p->swap_file = NULL;
1960	p->max = 0;
1961	swap_map = p->swap_map;
1962	p->swap_map = NULL;
1963	cluster_info = p->cluster_info;
1964	p->cluster_info = NULL;
1965	frontswap_map = frontswap_map_get(p);
1966	spin_unlock(&p->lock);
1967	spin_unlock(&swap_lock);
 
1968	frontswap_invalidate_area(p->type);
1969	frontswap_map_set(p, NULL);
1970	mutex_unlock(&swapon_mutex);
1971	free_percpu(p->percpu_cluster);
1972	p->percpu_cluster = NULL;
 
 
1973	vfree(swap_map);
1974	vfree(cluster_info);
1975	vfree(frontswap_map);
1976	/* Destroy swap account information */
1977	swap_cgroup_swapoff(p->type);
 
1978
1979	inode = mapping->host;
1980	if (S_ISBLK(inode->i_mode)) {
1981		struct block_device *bdev = I_BDEV(inode);
 
1982		set_blocksize(bdev, old_block_size);
1983		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1984	} else {
1985		inode_lock(inode);
1986		inode->i_flags &= ~S_SWAPFILE;
1987		inode_unlock(inode);
1988	}
 
 
 
 
1989	filp_close(swap_file, NULL);
1990
1991	/*
1992	 * Clear the SWP_USED flag after all resources are freed so that swapon
1993	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1994	 * not hold p->lock after we cleared its SWP_WRITEOK.
1995	 */
1996	spin_lock(&swap_lock);
1997	p->flags = 0;
1998	spin_unlock(&swap_lock);
1999
2000	err = 0;
2001	atomic_inc(&proc_poll_event);
2002	wake_up_interruptible(&proc_poll_wait);
2003
2004out_dput:
2005	filp_close(victim, NULL);
2006out:
2007	putname(pathname);
2008	return err;
2009}
2010
2011#ifdef CONFIG_PROC_FS
2012static unsigned swaps_poll(struct file *file, poll_table *wait)
2013{
2014	struct seq_file *seq = file->private_data;
2015
2016	poll_wait(file, &proc_poll_wait, wait);
2017
2018	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2019		seq->poll_event = atomic_read(&proc_poll_event);
2020		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2021	}
2022
2023	return POLLIN | POLLRDNORM;
2024}
2025
2026/* iterator */
2027static void *swap_start(struct seq_file *swap, loff_t *pos)
2028{
2029	struct swap_info_struct *si;
2030	int type;
2031	loff_t l = *pos;
2032
2033	mutex_lock(&swapon_mutex);
2034
2035	if (!l)
2036		return SEQ_START_TOKEN;
2037
2038	for (type = 0; type < nr_swapfiles; type++) {
2039		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2040		si = swap_info[type];
2041		if (!(si->flags & SWP_USED) || !si->swap_map)
2042			continue;
2043		if (!--l)
2044			return si;
2045	}
2046
2047	return NULL;
2048}
2049
2050static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2051{
2052	struct swap_info_struct *si = v;
2053	int type;
2054
2055	if (v == SEQ_START_TOKEN)
2056		type = 0;
2057	else
2058		type = si->type + 1;
2059
2060	for (; type < nr_swapfiles; type++) {
2061		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2062		si = swap_info[type];
2063		if (!(si->flags & SWP_USED) || !si->swap_map)
2064			continue;
2065		++*pos;
2066		return si;
2067	}
2068
2069	return NULL;
2070}
2071
2072static void swap_stop(struct seq_file *swap, void *v)
2073{
2074	mutex_unlock(&swapon_mutex);
2075}
2076
2077static int swap_show(struct seq_file *swap, void *v)
2078{
2079	struct swap_info_struct *si = v;
2080	struct file *file;
2081	int len;
 
2082
2083	if (si == SEQ_START_TOKEN) {
2084		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2085		return 0;
2086	}
2087
 
 
 
2088	file = si->swap_file;
2089	len = seq_file_path(swap, file, " \t\n\\");
2090	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2091			len < 40 ? 40 - len : 1, " ",
2092			S_ISBLK(file_inode(file)->i_mode) ?
2093				"partition" : "file\t",
2094			si->pages << (PAGE_SHIFT - 10),
2095			si->inuse_pages << (PAGE_SHIFT - 10),
2096			si->prio);
2097	return 0;
2098}
2099
2100static const struct seq_operations swaps_op = {
2101	.start =	swap_start,
2102	.next =		swap_next,
2103	.stop =		swap_stop,
2104	.show =		swap_show
2105};
2106
2107static int swaps_open(struct inode *inode, struct file *file)
2108{
2109	struct seq_file *seq;
2110	int ret;
2111
2112	ret = seq_open(file, &swaps_op);
2113	if (ret)
2114		return ret;
2115
2116	seq = file->private_data;
2117	seq->poll_event = atomic_read(&proc_poll_event);
2118	return 0;
2119}
2120
2121static const struct file_operations proc_swaps_operations = {
2122	.open		= swaps_open,
2123	.read		= seq_read,
2124	.llseek		= seq_lseek,
2125	.release	= seq_release,
2126	.poll		= swaps_poll,
 
2127};
2128
2129static int __init procswaps_init(void)
2130{
2131	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2132	return 0;
2133}
2134__initcall(procswaps_init);
2135#endif /* CONFIG_PROC_FS */
2136
2137#ifdef MAX_SWAPFILES_CHECK
2138static int __init max_swapfiles_check(void)
2139{
2140	MAX_SWAPFILES_CHECK();
2141	return 0;
2142}
2143late_initcall(max_swapfiles_check);
2144#endif
2145
2146static struct swap_info_struct *alloc_swap_info(void)
2147{
2148	struct swap_info_struct *p;
 
2149	unsigned int type;
 
2150
2151	p = kzalloc(sizeof(*p), GFP_KERNEL);
2152	if (!p)
2153		return ERR_PTR(-ENOMEM);
2154
 
 
 
 
 
 
2155	spin_lock(&swap_lock);
2156	for (type = 0; type < nr_swapfiles; type++) {
2157		if (!(swap_info[type]->flags & SWP_USED))
2158			break;
2159	}
2160	if (type >= MAX_SWAPFILES) {
2161		spin_unlock(&swap_lock);
2162		kfree(p);
 
2163		return ERR_PTR(-EPERM);
2164	}
2165	if (type >= nr_swapfiles) {
2166		p->type = type;
2167		swap_info[type] = p;
2168		/*
2169		 * Write swap_info[type] before nr_swapfiles, in case a
2170		 * racing procfs swap_start() or swap_next() is reading them.
2171		 * (We never shrink nr_swapfiles, we never free this entry.)
2172		 */
2173		smp_wmb();
2174		nr_swapfiles++;
2175	} else {
2176		kfree(p);
2177		p = swap_info[type];
2178		/*
2179		 * Do not memset this entry: a racing procfs swap_next()
2180		 * would be relying on p->type to remain valid.
2181		 */
2182	}
2183	INIT_LIST_HEAD(&p->first_swap_extent.list);
2184	plist_node_init(&p->list, 0);
2185	plist_node_init(&p->avail_list, 0);
 
2186	p->flags = SWP_USED;
2187	spin_unlock(&swap_lock);
 
 
 
 
2188	spin_lock_init(&p->lock);
 
 
2189
2190	return p;
2191}
2192
2193static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2194{
2195	int error;
2196
2197	if (S_ISBLK(inode->i_mode)) {
2198		p->bdev = bdgrab(I_BDEV(inode));
2199		error = blkdev_get(p->bdev,
2200				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2201		if (error < 0) {
 
2202			p->bdev = NULL;
2203			return error;
2204		}
2205		p->old_block_size = block_size(p->bdev);
2206		error = set_blocksize(p->bdev, PAGE_SIZE);
2207		if (error < 0)
2208			return error;
 
 
 
 
 
 
 
2209		p->flags |= SWP_BLKDEV;
2210	} else if (S_ISREG(inode->i_mode)) {
2211		p->bdev = inode->i_sb->s_bdev;
2212		inode_lock(inode);
2213		if (IS_SWAPFILE(inode))
2214			return -EBUSY;
2215	} else
2216		return -EINVAL;
2217
2218	return 0;
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221static unsigned long read_swap_header(struct swap_info_struct *p,
2222					union swap_header *swap_header,
2223					struct inode *inode)
2224{
2225	int i;
2226	unsigned long maxpages;
2227	unsigned long swapfilepages;
2228	unsigned long last_page;
2229
2230	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2231		pr_err("Unable to find swap-space signature\n");
2232		return 0;
2233	}
2234
2235	/* swap partition endianess hack... */
2236	if (swab32(swap_header->info.version) == 1) {
2237		swab32s(&swap_header->info.version);
2238		swab32s(&swap_header->info.last_page);
2239		swab32s(&swap_header->info.nr_badpages);
2240		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2241			return 0;
2242		for (i = 0; i < swap_header->info.nr_badpages; i++)
2243			swab32s(&swap_header->info.badpages[i]);
2244	}
2245	/* Check the swap header's sub-version */
2246	if (swap_header->info.version != 1) {
2247		pr_warn("Unable to handle swap header version %d\n",
2248			swap_header->info.version);
2249		return 0;
2250	}
2251
2252	p->lowest_bit  = 1;
2253	p->cluster_next = 1;
2254	p->cluster_nr = 0;
2255
2256	/*
2257	 * Find out how many pages are allowed for a single swap
2258	 * device. There are two limiting factors: 1) the number
2259	 * of bits for the swap offset in the swp_entry_t type, and
2260	 * 2) the number of bits in the swap pte as defined by the
2261	 * different architectures. In order to find the
2262	 * largest possible bit mask, a swap entry with swap type 0
2263	 * and swap offset ~0UL is created, encoded to a swap pte,
2264	 * decoded to a swp_entry_t again, and finally the swap
2265	 * offset is extracted. This will mask all the bits from
2266	 * the initial ~0UL mask that can't be encoded in either
2267	 * the swp_entry_t or the architecture definition of a
2268	 * swap pte.
2269	 */
2270	maxpages = swp_offset(pte_to_swp_entry(
2271			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2272	last_page = swap_header->info.last_page;
 
 
 
 
2273	if (last_page > maxpages) {
2274		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2275			maxpages << (PAGE_SHIFT - 10),
2276			last_page << (PAGE_SHIFT - 10));
2277	}
2278	if (maxpages > last_page) {
2279		maxpages = last_page + 1;
2280		/* p->max is an unsigned int: don't overflow it */
2281		if ((unsigned int)maxpages == 0)
2282			maxpages = UINT_MAX;
2283	}
2284	p->highest_bit = maxpages - 1;
2285
2286	if (!maxpages)
2287		return 0;
2288	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2289	if (swapfilepages && maxpages > swapfilepages) {
2290		pr_warn("Swap area shorter than signature indicates\n");
2291		return 0;
2292	}
2293	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2294		return 0;
2295	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2296		return 0;
2297
2298	return maxpages;
2299}
2300
 
 
 
 
 
 
 
2301static int setup_swap_map_and_extents(struct swap_info_struct *p,
2302					union swap_header *swap_header,
2303					unsigned char *swap_map,
2304					struct swap_cluster_info *cluster_info,
2305					unsigned long maxpages,
2306					sector_t *span)
2307{
2308	int i;
2309	unsigned int nr_good_pages;
2310	int nr_extents;
2311	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2312	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
 
2313
2314	nr_good_pages = maxpages - 1;	/* omit header page */
2315
2316	cluster_list_init(&p->free_clusters);
2317	cluster_list_init(&p->discard_clusters);
2318
2319	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2320		unsigned int page_nr = swap_header->info.badpages[i];
2321		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2322			return -EINVAL;
2323		if (page_nr < maxpages) {
2324			swap_map[page_nr] = SWAP_MAP_BAD;
2325			nr_good_pages--;
2326			/*
2327			 * Haven't marked the cluster free yet, no list
2328			 * operation involved
2329			 */
2330			inc_cluster_info_page(p, cluster_info, page_nr);
2331		}
2332	}
2333
2334	/* Haven't marked the cluster free yet, no list operation involved */
2335	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2336		inc_cluster_info_page(p, cluster_info, i);
2337
2338	if (nr_good_pages) {
2339		swap_map[0] = SWAP_MAP_BAD;
2340		/*
2341		 * Not mark the cluster free yet, no list
2342		 * operation involved
2343		 */
2344		inc_cluster_info_page(p, cluster_info, 0);
2345		p->max = maxpages;
2346		p->pages = nr_good_pages;
2347		nr_extents = setup_swap_extents(p, span);
2348		if (nr_extents < 0)
2349			return nr_extents;
2350		nr_good_pages = p->pages;
2351	}
2352	if (!nr_good_pages) {
2353		pr_warn("Empty swap-file\n");
2354		return -EINVAL;
2355	}
2356
2357	if (!cluster_info)
2358		return nr_extents;
2359
2360	for (i = 0; i < nr_clusters; i++) {
2361		if (!cluster_count(&cluster_info[idx])) {
 
 
 
 
 
 
 
 
 
 
 
2362			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2363			cluster_list_add_tail(&p->free_clusters, cluster_info,
2364					      idx);
2365		}
2366		idx++;
2367		if (idx == nr_clusters)
2368			idx = 0;
2369	}
2370	return nr_extents;
2371}
2372
2373/*
2374 * Helper to sys_swapon determining if a given swap
2375 * backing device queue supports DISCARD operations.
2376 */
2377static bool swap_discardable(struct swap_info_struct *si)
2378{
2379	struct request_queue *q = bdev_get_queue(si->bdev);
2380
2381	if (!q || !blk_queue_discard(q))
2382		return false;
2383
2384	return true;
2385}
2386
2387SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2388{
2389	struct swap_info_struct *p;
2390	struct filename *name;
2391	struct file *swap_file = NULL;
2392	struct address_space *mapping;
2393	int prio;
2394	int error;
2395	union swap_header *swap_header;
2396	int nr_extents;
2397	sector_t span;
2398	unsigned long maxpages;
2399	unsigned char *swap_map = NULL;
2400	struct swap_cluster_info *cluster_info = NULL;
2401	unsigned long *frontswap_map = NULL;
2402	struct page *page = NULL;
2403	struct inode *inode = NULL;
 
2404
2405	if (swap_flags & ~SWAP_FLAGS_VALID)
2406		return -EINVAL;
2407
2408	if (!capable(CAP_SYS_ADMIN))
2409		return -EPERM;
2410
 
 
 
2411	p = alloc_swap_info();
2412	if (IS_ERR(p))
2413		return PTR_ERR(p);
2414
2415	INIT_WORK(&p->discard_work, swap_discard_work);
2416
2417	name = getname(specialfile);
2418	if (IS_ERR(name)) {
2419		error = PTR_ERR(name);
2420		name = NULL;
2421		goto bad_swap;
2422	}
2423	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2424	if (IS_ERR(swap_file)) {
2425		error = PTR_ERR(swap_file);
2426		swap_file = NULL;
2427		goto bad_swap;
2428	}
2429
2430	p->swap_file = swap_file;
2431	mapping = swap_file->f_mapping;
2432	inode = mapping->host;
2433
2434	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2435	error = claim_swapfile(p, inode);
2436	if (unlikely(error))
2437		goto bad_swap;
2438
 
 
 
 
 
 
2439	/*
2440	 * Read the swap header.
2441	 */
2442	if (!mapping->a_ops->readpage) {
2443		error = -EINVAL;
2444		goto bad_swap;
2445	}
2446	page = read_mapping_page(mapping, 0, swap_file);
2447	if (IS_ERR(page)) {
2448		error = PTR_ERR(page);
2449		goto bad_swap;
2450	}
2451	swap_header = kmap(page);
2452
2453	maxpages = read_swap_header(p, swap_header, inode);
2454	if (unlikely(!maxpages)) {
2455		error = -EINVAL;
2456		goto bad_swap;
2457	}
2458
2459	/* OK, set up the swap map and apply the bad block list */
2460	swap_map = vzalloc(maxpages);
2461	if (!swap_map) {
2462		error = -ENOMEM;
2463		goto bad_swap;
2464	}
2465
2466	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2467		p->flags |= SWP_STABLE_WRITES;
2468
 
 
 
2469	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2470		int cpu;
 
2471
2472		p->flags |= SWP_SOLIDSTATE;
 
 
 
 
 
2473		/*
2474		 * select a random position to start with to help wear leveling
2475		 * SSD
2476		 */
2477		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
 
 
 
 
2478
2479		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2480			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2481		if (!cluster_info) {
2482			error = -ENOMEM;
2483			goto bad_swap;
2484		}
 
 
 
 
2485		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2486		if (!p->percpu_cluster) {
2487			error = -ENOMEM;
2488			goto bad_swap;
2489		}
2490		for_each_possible_cpu(cpu) {
2491			struct percpu_cluster *cluster;
2492			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2493			cluster_set_null(&cluster->index);
2494		}
 
 
 
2495	}
2496
2497	error = swap_cgroup_swapon(p->type, maxpages);
2498	if (error)
2499		goto bad_swap;
2500
2501	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2502		cluster_info, maxpages, &span);
2503	if (unlikely(nr_extents < 0)) {
2504		error = nr_extents;
2505		goto bad_swap;
2506	}
2507	/* frontswap enabled? set up bit-per-page map for frontswap */
2508	if (IS_ENABLED(CONFIG_FRONTSWAP))
2509		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
 
 
2510
2511	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2512		/*
2513		 * When discard is enabled for swap with no particular
2514		 * policy flagged, we set all swap discard flags here in
2515		 * order to sustain backward compatibility with older
2516		 * swapon(8) releases.
2517		 */
2518		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2519			     SWP_PAGE_DISCARD);
2520
2521		/*
2522		 * By flagging sys_swapon, a sysadmin can tell us to
2523		 * either do single-time area discards only, or to just
2524		 * perform discards for released swap page-clusters.
2525		 * Now it's time to adjust the p->flags accordingly.
2526		 */
2527		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2528			p->flags &= ~SWP_PAGE_DISCARD;
2529		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2530			p->flags &= ~SWP_AREA_DISCARD;
2531
2532		/* issue a swapon-time discard if it's still required */
2533		if (p->flags & SWP_AREA_DISCARD) {
2534			int err = discard_swap(p);
2535			if (unlikely(err))
2536				pr_err("swapon: discard_swap(%p): %d\n",
2537					p, err);
2538		}
2539	}
2540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2541	mutex_lock(&swapon_mutex);
2542	prio = -1;
2543	if (swap_flags & SWAP_FLAG_PREFER)
2544		prio =
2545		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2546	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2547
2548	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2549		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2550		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2551		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2552		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2553		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2554		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2555		(frontswap_map) ? "FS" : "");
2556
2557	mutex_unlock(&swapon_mutex);
2558	atomic_inc(&proc_poll_event);
2559	wake_up_interruptible(&proc_poll_wait);
2560
2561	if (S_ISREG(inode->i_mode))
2562		inode->i_flags |= S_SWAPFILE;
2563	error = 0;
2564	goto out;
 
 
 
 
2565bad_swap:
2566	free_percpu(p->percpu_cluster);
2567	p->percpu_cluster = NULL;
 
 
2568	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2569		set_blocksize(p->bdev, p->old_block_size);
2570		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2571	}
 
2572	destroy_swap_extents(p);
2573	swap_cgroup_swapoff(p->type);
2574	spin_lock(&swap_lock);
2575	p->swap_file = NULL;
2576	p->flags = 0;
2577	spin_unlock(&swap_lock);
2578	vfree(swap_map);
2579	vfree(cluster_info);
2580	if (swap_file) {
2581		if (inode && S_ISREG(inode->i_mode)) {
2582			inode_unlock(inode);
2583			inode = NULL;
2584		}
2585		filp_close(swap_file, NULL);
2586	}
2587out:
2588	if (page && !IS_ERR(page)) {
2589		kunmap(page);
2590		put_page(page);
2591	}
2592	if (name)
2593		putname(name);
2594	if (inode && S_ISREG(inode->i_mode))
2595		inode_unlock(inode);
 
 
2596	return error;
2597}
2598
2599void si_swapinfo(struct sysinfo *val)
2600{
2601	unsigned int type;
2602	unsigned long nr_to_be_unused = 0;
2603
2604	spin_lock(&swap_lock);
2605	for (type = 0; type < nr_swapfiles; type++) {
2606		struct swap_info_struct *si = swap_info[type];
2607
2608		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2609			nr_to_be_unused += si->inuse_pages;
2610	}
2611	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2612	val->totalswap = total_swap_pages + nr_to_be_unused;
2613	spin_unlock(&swap_lock);
2614}
2615
2616/*
2617 * Verify that a swap entry is valid and increment its swap map count.
2618 *
2619 * Returns error code in following case.
2620 * - success -> 0
2621 * - swp_entry is invalid -> EINVAL
2622 * - swp_entry is migration entry -> EINVAL
2623 * - swap-cache reference is requested but there is already one. -> EEXIST
2624 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2625 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2626 */
2627static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2628{
2629	struct swap_info_struct *p;
2630	unsigned long offset, type;
 
2631	unsigned char count;
2632	unsigned char has_cache;
2633	int err = -EINVAL;
2634
2635	if (non_swap_entry(entry))
2636		goto out;
 
2637
2638	type = swp_type(entry);
2639	if (type >= nr_swapfiles)
2640		goto bad_file;
2641	p = swap_info[type];
2642	offset = swp_offset(entry);
2643
2644	spin_lock(&p->lock);
2645	if (unlikely(offset >= p->max))
2646		goto unlock_out;
2647
2648	count = p->swap_map[offset];
2649
2650	/*
2651	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2652	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2653	 */
2654	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2655		err = -ENOENT;
2656		goto unlock_out;
2657	}
2658
2659	has_cache = count & SWAP_HAS_CACHE;
2660	count &= ~SWAP_HAS_CACHE;
2661	err = 0;
2662
2663	if (usage == SWAP_HAS_CACHE) {
2664
2665		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2666		if (!has_cache && count)
2667			has_cache = SWAP_HAS_CACHE;
2668		else if (has_cache)		/* someone else added cache */
2669			err = -EEXIST;
2670		else				/* no users remaining */
2671			err = -ENOENT;
2672
2673	} else if (count || has_cache) {
2674
2675		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2676			count += usage;
2677		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2678			err = -EINVAL;
2679		else if (swap_count_continued(p, offset, count))
2680			count = COUNT_CONTINUED;
2681		else
2682			err = -ENOMEM;
2683	} else
2684		err = -ENOENT;			/* unused swap entry */
2685
2686	p->swap_map[offset] = count | has_cache;
2687
2688unlock_out:
2689	spin_unlock(&p->lock);
2690out:
 
2691	return err;
2692
2693bad_file:
2694	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2695	goto out;
2696}
2697
2698/*
2699 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2700 * (in which case its reference count is never incremented).
2701 */
2702void swap_shmem_alloc(swp_entry_t entry)
2703{
2704	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2705}
2706
2707/*
2708 * Increase reference count of swap entry by 1.
2709 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2710 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2711 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2712 * might occur if a page table entry has got corrupted.
2713 */
2714int swap_duplicate(swp_entry_t entry)
2715{
2716	int err = 0;
2717
2718	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2719		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2720	return err;
2721}
2722
2723/*
2724 * @entry: swap entry for which we allocate swap cache.
2725 *
2726 * Called when allocating swap cache for existing swap entry,
2727 * This can return error codes. Returns 0 at success.
2728 * -EBUSY means there is a swap cache.
2729 * Note: return code is different from swap_duplicate().
2730 */
2731int swapcache_prepare(swp_entry_t entry)
2732{
2733	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2734}
2735
 
 
 
 
 
2736struct swap_info_struct *page_swap_info(struct page *page)
2737{
2738	swp_entry_t swap = { .val = page_private(page) };
2739	return swap_info[swp_type(swap)];
2740}
2741
2742/*
2743 * out-of-line __page_file_ methods to avoid include hell.
2744 */
2745struct address_space *__page_file_mapping(struct page *page)
2746{
2747	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2748	return page_swap_info(page)->swap_file->f_mapping;
2749}
2750EXPORT_SYMBOL_GPL(__page_file_mapping);
2751
2752pgoff_t __page_file_index(struct page *page)
2753{
2754	swp_entry_t swap = { .val = page_private(page) };
2755	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2756	return swp_offset(swap);
2757}
2758EXPORT_SYMBOL_GPL(__page_file_index);
2759
2760/*
2761 * add_swap_count_continuation - called when a swap count is duplicated
2762 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2763 * page of the original vmalloc'ed swap_map, to hold the continuation count
2764 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2765 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2766 *
2767 * These continuation pages are seldom referenced: the common paths all work
2768 * on the original swap_map, only referring to a continuation page when the
2769 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2770 *
2771 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2772 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2773 * can be called after dropping locks.
2774 */
2775int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2776{
2777	struct swap_info_struct *si;
 
2778	struct page *head;
2779	struct page *page;
2780	struct page *list_page;
2781	pgoff_t offset;
2782	unsigned char count;
 
2783
2784	/*
2785	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2786	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2787	 */
2788	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2789
2790	si = swap_info_get(entry);
2791	if (!si) {
2792		/*
2793		 * An acceptable race has occurred since the failing
2794		 * __swap_duplicate(): the swap entry has been freed,
2795		 * perhaps even the whole swap_map cleared for swapoff.
2796		 */
2797		goto outer;
2798	}
 
2799
2800	offset = swp_offset(entry);
2801	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 
 
 
2802
2803	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2804		/*
2805		 * The higher the swap count, the more likely it is that tasks
2806		 * will race to add swap count continuation: we need to avoid
2807		 * over-provisioning.
2808		 */
2809		goto out;
2810	}
2811
2812	if (!page) {
2813		spin_unlock(&si->lock);
2814		return -ENOMEM;
2815	}
2816
2817	/*
2818	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2819	 * no architecture is using highmem pages for kernel page tables: so it
2820	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2821	 */
2822	head = vmalloc_to_page(si->swap_map + offset);
2823	offset &= ~PAGE_MASK;
2824
 
2825	/*
2826	 * Page allocation does not initialize the page's lru field,
2827	 * but it does always reset its private field.
2828	 */
2829	if (!page_private(head)) {
2830		BUG_ON(count & COUNT_CONTINUED);
2831		INIT_LIST_HEAD(&head->lru);
2832		set_page_private(head, SWP_CONTINUED);
2833		si->flags |= SWP_CONTINUED;
2834	}
2835
2836	list_for_each_entry(list_page, &head->lru, lru) {
2837		unsigned char *map;
2838
2839		/*
2840		 * If the previous map said no continuation, but we've found
2841		 * a continuation page, free our allocation and use this one.
2842		 */
2843		if (!(count & COUNT_CONTINUED))
2844			goto out;
2845
2846		map = kmap_atomic(list_page) + offset;
2847		count = *map;
2848		kunmap_atomic(map);
2849
2850		/*
2851		 * If this continuation count now has some space in it,
2852		 * free our allocation and use this one.
2853		 */
2854		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2855			goto out;
2856	}
2857
2858	list_add_tail(&page->lru, &head->lru);
2859	page = NULL;			/* now it's attached, don't free it */
 
 
2860out:
 
2861	spin_unlock(&si->lock);
 
2862outer:
2863	if (page)
2864		__free_page(page);
2865	return 0;
2866}
2867
2868/*
2869 * swap_count_continued - when the original swap_map count is incremented
2870 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2871 * into, carry if so, or else fail until a new continuation page is allocated;
2872 * when the original swap_map count is decremented from 0 with continuation,
2873 * borrow from the continuation and report whether it still holds more.
2874 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2875 */
2876static bool swap_count_continued(struct swap_info_struct *si,
2877				 pgoff_t offset, unsigned char count)
2878{
2879	struct page *head;
2880	struct page *page;
2881	unsigned char *map;
 
2882
2883	head = vmalloc_to_page(si->swap_map + offset);
2884	if (page_private(head) != SWP_CONTINUED) {
2885		BUG_ON(count & COUNT_CONTINUED);
2886		return false;		/* need to add count continuation */
2887	}
2888
 
2889	offset &= ~PAGE_MASK;
2890	page = list_entry(head->lru.next, struct page, lru);
2891	map = kmap_atomic(page) + offset;
2892
2893	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2894		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2895
2896	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2897		/*
2898		 * Think of how you add 1 to 999
2899		 */
2900		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2901			kunmap_atomic(map);
2902			page = list_entry(page->lru.next, struct page, lru);
2903			BUG_ON(page == head);
2904			map = kmap_atomic(page) + offset;
2905		}
2906		if (*map == SWAP_CONT_MAX) {
2907			kunmap_atomic(map);
2908			page = list_entry(page->lru.next, struct page, lru);
2909			if (page == head)
2910				return false;	/* add count continuation */
 
 
2911			map = kmap_atomic(page) + offset;
2912init_map:		*map = 0;		/* we didn't zero the page */
2913		}
2914		*map += 1;
2915		kunmap_atomic(map);
2916		page = list_entry(page->lru.prev, struct page, lru);
2917		while (page != head) {
2918			map = kmap_atomic(page) + offset;
2919			*map = COUNT_CONTINUED;
2920			kunmap_atomic(map);
2921			page = list_entry(page->lru.prev, struct page, lru);
2922		}
2923		return true;			/* incremented */
2924
2925	} else {				/* decrementing */
2926		/*
2927		 * Think of how you subtract 1 from 1000
2928		 */
2929		BUG_ON(count != COUNT_CONTINUED);
2930		while (*map == COUNT_CONTINUED) {
2931			kunmap_atomic(map);
2932			page = list_entry(page->lru.next, struct page, lru);
2933			BUG_ON(page == head);
2934			map = kmap_atomic(page) + offset;
2935		}
2936		BUG_ON(*map == 0);
2937		*map -= 1;
2938		if (*map == 0)
2939			count = 0;
2940		kunmap_atomic(map);
2941		page = list_entry(page->lru.prev, struct page, lru);
2942		while (page != head) {
2943			map = kmap_atomic(page) + offset;
2944			*map = SWAP_CONT_MAX | count;
2945			count = COUNT_CONTINUED;
2946			kunmap_atomic(map);
2947			page = list_entry(page->lru.prev, struct page, lru);
2948		}
2949		return count == COUNT_CONTINUED;
2950	}
 
 
 
2951}
2952
2953/*
2954 * free_swap_count_continuations - swapoff free all the continuation pages
2955 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2956 */
2957static void free_swap_count_continuations(struct swap_info_struct *si)
2958{
2959	pgoff_t offset;
2960
2961	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2962		struct page *head;
2963		head = vmalloc_to_page(si->swap_map + offset);
2964		if (page_private(head)) {
2965			struct page *page, *next;
2966
2967			list_for_each_entry_safe(page, next, &head->lru, lru) {
2968				list_del(&page->lru);
2969				__free_page(page);
2970			}
2971		}
2972	}
2973}