Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct page *page,
 222				void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 
 
 
 
 
 
 375static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 376				 unsigned int idx)
 377{
 378	return page->s_mem + cache->size * idx;
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 381#define BOOT_CPUCACHE_ENTRIES	1
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 403{
 404	unsigned int num;
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 431	}
 432
 433	return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 
 
 
 
 
 
 
 
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct page *page, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int page_node;
 557	LIST_HEAD(list);
 558
 559	page_node = page_to_nid(page);
 560	n = get_node(cachep, page_node);
 561
 562	spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, page_node, &list);
 564	spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 623		gfp_t flags)
 624{
 625	return NULL;
 626}
 627
 628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 629		 gfp_t flags, int nodeid)
 630{
 631	return NULL;
 632}
 633
 634static inline gfp_t gfp_exact_node(gfp_t flags)
 635{
 636	return flags & ~__GFP_NOFAIL;
 637}
 638
 639#else	/* CONFIG_NUMA */
 640
 641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 643
 644static struct alien_cache *__alloc_alien_cache(int node, int entries,
 645						int batch, gfp_t gfp)
 646{
 647	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 648	struct alien_cache *alc = NULL;
 649
 650	alc = kmalloc_node(memsize, gfp, node);
 651	if (alc) {
 652		kmemleak_no_scan(alc);
 653		init_arraycache(&alc->ac, entries, batch);
 654		spin_lock_init(&alc->lock);
 655	}
 656	return alc;
 657}
 658
 659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 660{
 661	struct alien_cache **alc_ptr;
 
 662	int i;
 663
 664	if (limit > 1)
 665		limit = 12;
 666	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 667	if (!alc_ptr)
 668		return NULL;
 669
 670	for_each_node(i) {
 671		if (i == node || !node_online(i))
 672			continue;
 673		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 674		if (!alc_ptr[i]) {
 675			for (i--; i >= 0; i--)
 676				kfree(alc_ptr[i]);
 677			kfree(alc_ptr);
 678			return NULL;
 679		}
 680	}
 681	return alc_ptr;
 682}
 683
 684static void free_alien_cache(struct alien_cache **alc_ptr)
 685{
 686	int i;
 687
 688	if (!alc_ptr)
 689		return;
 690	for_each_node(i)
 691	    kfree(alc_ptr[i]);
 692	kfree(alc_ptr);
 693}
 694
 695static void __drain_alien_cache(struct kmem_cache *cachep,
 696				struct array_cache *ac, int node,
 697				struct list_head *list)
 698{
 699	struct kmem_cache_node *n = get_node(cachep, node);
 700
 701	if (ac->avail) {
 702		spin_lock(&n->list_lock);
 703		/*
 704		 * Stuff objects into the remote nodes shared array first.
 705		 * That way we could avoid the overhead of putting the objects
 706		 * into the free lists and getting them back later.
 707		 */
 708		if (n->shared)
 709			transfer_objects(n->shared, ac, ac->limit);
 710
 711		free_block(cachep, ac->entry, ac->avail, node, list);
 712		ac->avail = 0;
 713		spin_unlock(&n->list_lock);
 714	}
 715}
 716
 717/*
 718 * Called from cache_reap() to regularly drain alien caches round robin.
 719 */
 720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 721{
 722	int node = __this_cpu_read(slab_reap_node);
 723
 724	if (n->alien) {
 725		struct alien_cache *alc = n->alien[node];
 726		struct array_cache *ac;
 727
 728		if (alc) {
 729			ac = &alc->ac;
 730			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 731				LIST_HEAD(list);
 732
 733				__drain_alien_cache(cachep, ac, node, &list);
 734				spin_unlock_irq(&alc->lock);
 735				slabs_destroy(cachep, &list);
 736			}
 737		}
 738	}
 739}
 740
 741static void drain_alien_cache(struct kmem_cache *cachep,
 742				struct alien_cache **alien)
 743{
 744	int i = 0;
 745	struct alien_cache *alc;
 746	struct array_cache *ac;
 747	unsigned long flags;
 748
 749	for_each_online_node(i) {
 750		alc = alien[i];
 751		if (alc) {
 752			LIST_HEAD(list);
 753
 754			ac = &alc->ac;
 755			spin_lock_irqsave(&alc->lock, flags);
 756			__drain_alien_cache(cachep, ac, i, &list);
 757			spin_unlock_irqrestore(&alc->lock, flags);
 758			slabs_destroy(cachep, &list);
 759		}
 760	}
 761}
 762
 763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 764				int node, int page_node)
 765{
 766	struct kmem_cache_node *n;
 767	struct alien_cache *alien = NULL;
 768	struct array_cache *ac;
 769	LIST_HEAD(list);
 770
 771	n = get_node(cachep, node);
 772	STATS_INC_NODEFREES(cachep);
 773	if (n->alien && n->alien[page_node]) {
 774		alien = n->alien[page_node];
 775		ac = &alien->ac;
 776		spin_lock(&alien->lock);
 777		if (unlikely(ac->avail == ac->limit)) {
 778			STATS_INC_ACOVERFLOW(cachep);
 779			__drain_alien_cache(cachep, ac, page_node, &list);
 780		}
 781		__free_one(ac, objp);
 782		spin_unlock(&alien->lock);
 783		slabs_destroy(cachep, &list);
 784	} else {
 785		n = get_node(cachep, page_node);
 786		spin_lock(&n->list_lock);
 787		free_block(cachep, &objp, 1, page_node, &list);
 788		spin_unlock(&n->list_lock);
 789		slabs_destroy(cachep, &list);
 790	}
 791	return 1;
 792}
 793
 794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 795{
 796	int page_node = page_to_nid(virt_to_page(objp));
 797	int node = numa_mem_id();
 798	/*
 799	 * Make sure we are not freeing a object from another node to the array
 800	 * cache on this cpu.
 801	 */
 802	if (likely(node == page_node))
 803		return 0;
 804
 805	return __cache_free_alien(cachep, objp, node, page_node);
 806}
 807
 808/*
 809 * Construct gfp mask to allocate from a specific node but do not reclaim or
 810 * warn about failures.
 811 */
 812static inline gfp_t gfp_exact_node(gfp_t flags)
 813{
 814	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 815}
 816#endif
 817
 818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 819{
 820	struct kmem_cache_node *n;
 821
 822	/*
 823	 * Set up the kmem_cache_node for cpu before we can
 824	 * begin anything. Make sure some other cpu on this
 825	 * node has not already allocated this
 826	 */
 827	n = get_node(cachep, node);
 828	if (n) {
 829		spin_lock_irq(&n->list_lock);
 830		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 831				cachep->num;
 832		spin_unlock_irq(&n->list_lock);
 833
 834		return 0;
 835	}
 836
 837	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 838	if (!n)
 839		return -ENOMEM;
 840
 841	kmem_cache_node_init(n);
 842	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 843		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 844
 845	n->free_limit =
 846		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 847
 848	/*
 849	 * The kmem_cache_nodes don't come and go as CPUs
 850	 * come and go.  slab_mutex is sufficient
 851	 * protection here.
 852	 */
 853	cachep->node[node] = n;
 854
 855	return 0;
 856}
 857
 858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 859/*
 860 * Allocates and initializes node for a node on each slab cache, used for
 861 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 862 * will be allocated off-node since memory is not yet online for the new node.
 863 * When hotplugging memory or a cpu, existing node are not replaced if
 864 * already in use.
 865 *
 866 * Must hold slab_mutex.
 867 */
 868static int init_cache_node_node(int node)
 869{
 870	int ret;
 871	struct kmem_cache *cachep;
 872
 873	list_for_each_entry(cachep, &slab_caches, list) {
 874		ret = init_cache_node(cachep, node, GFP_KERNEL);
 875		if (ret)
 876			return ret;
 877	}
 878
 879	return 0;
 880}
 881#endif
 882
 883static int setup_kmem_cache_node(struct kmem_cache *cachep,
 884				int node, gfp_t gfp, bool force_change)
 885{
 886	int ret = -ENOMEM;
 887	struct kmem_cache_node *n;
 888	struct array_cache *old_shared = NULL;
 889	struct array_cache *new_shared = NULL;
 890	struct alien_cache **new_alien = NULL;
 891	LIST_HEAD(list);
 892
 893	if (use_alien_caches) {
 894		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 895		if (!new_alien)
 896			goto fail;
 897	}
 898
 899	if (cachep->shared) {
 900		new_shared = alloc_arraycache(node,
 901			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 902		if (!new_shared)
 903			goto fail;
 904	}
 905
 906	ret = init_cache_node(cachep, node, gfp);
 907	if (ret)
 908		goto fail;
 909
 910	n = get_node(cachep, node);
 911	spin_lock_irq(&n->list_lock);
 912	if (n->shared && force_change) {
 913		free_block(cachep, n->shared->entry,
 914				n->shared->avail, node, &list);
 915		n->shared->avail = 0;
 916	}
 917
 918	if (!n->shared || force_change) {
 919		old_shared = n->shared;
 920		n->shared = new_shared;
 921		new_shared = NULL;
 922	}
 923
 924	if (!n->alien) {
 925		n->alien = new_alien;
 926		new_alien = NULL;
 927	}
 928
 929	spin_unlock_irq(&n->list_lock);
 930	slabs_destroy(cachep, &list);
 931
 932	/*
 933	 * To protect lockless access to n->shared during irq disabled context.
 934	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 935	 * guaranteed to be valid until irq is re-enabled, because it will be
 936	 * freed after synchronize_rcu().
 937	 */
 938	if (old_shared && force_change)
 939		synchronize_rcu();
 940
 941fail:
 942	kfree(old_shared);
 943	kfree(new_shared);
 944	free_alien_cache(new_alien);
 945
 946	return ret;
 947}
 948
 949#ifdef CONFIG_SMP
 950
 951static void cpuup_canceled(long cpu)
 952{
 953	struct kmem_cache *cachep;
 954	struct kmem_cache_node *n = NULL;
 955	int node = cpu_to_mem(cpu);
 956	const struct cpumask *mask = cpumask_of_node(node);
 957
 958	list_for_each_entry(cachep, &slab_caches, list) {
 959		struct array_cache *nc;
 960		struct array_cache *shared;
 961		struct alien_cache **alien;
 962		LIST_HEAD(list);
 963
 964		n = get_node(cachep, node);
 965		if (!n)
 966			continue;
 967
 968		spin_lock_irq(&n->list_lock);
 969
 970		/* Free limit for this kmem_cache_node */
 971		n->free_limit -= cachep->batchcount;
 972
 973		/* cpu is dead; no one can alloc from it. */
 974		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 975		free_block(cachep, nc->entry, nc->avail, node, &list);
 976		nc->avail = 0;
 
 
 977
 978		if (!cpumask_empty(mask)) {
 979			spin_unlock_irq(&n->list_lock);
 980			goto free_slab;
 981		}
 982
 983		shared = n->shared;
 984		if (shared) {
 985			free_block(cachep, shared->entry,
 986				   shared->avail, node, &list);
 987			n->shared = NULL;
 988		}
 989
 990		alien = n->alien;
 991		n->alien = NULL;
 992
 993		spin_unlock_irq(&n->list_lock);
 994
 995		kfree(shared);
 996		if (alien) {
 997			drain_alien_cache(cachep, alien);
 998			free_alien_cache(alien);
 999		}
1000
1001free_slab:
1002		slabs_destroy(cachep, &list);
1003	}
1004	/*
1005	 * In the previous loop, all the objects were freed to
1006	 * the respective cache's slabs,  now we can go ahead and
1007	 * shrink each nodelist to its limit.
1008	 */
1009	list_for_each_entry(cachep, &slab_caches, list) {
1010		n = get_node(cachep, node);
1011		if (!n)
1012			continue;
1013		drain_freelist(cachep, n, INT_MAX);
1014	}
1015}
1016
1017static int cpuup_prepare(long cpu)
1018{
1019	struct kmem_cache *cachep;
1020	int node = cpu_to_mem(cpu);
1021	int err;
1022
1023	/*
1024	 * We need to do this right in the beginning since
1025	 * alloc_arraycache's are going to use this list.
1026	 * kmalloc_node allows us to add the slab to the right
1027	 * kmem_cache_node and not this cpu's kmem_cache_node
1028	 */
1029	err = init_cache_node_node(node);
1030	if (err < 0)
1031		goto bad;
1032
1033	/*
1034	 * Now we can go ahead with allocating the shared arrays and
1035	 * array caches
1036	 */
1037	list_for_each_entry(cachep, &slab_caches, list) {
1038		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039		if (err)
1040			goto bad;
1041	}
1042
1043	return 0;
1044bad:
1045	cpuup_canceled(cpu);
1046	return -ENOMEM;
1047}
1048
1049int slab_prepare_cpu(unsigned int cpu)
1050{
1051	int err;
1052
1053	mutex_lock(&slab_mutex);
1054	err = cpuup_prepare(cpu);
1055	mutex_unlock(&slab_mutex);
1056	return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1065 * a kmalloc allocation from another cpu for memory from the node of
1066 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071	mutex_lock(&slab_mutex);
1072	cpuup_canceled(cpu);
1073	mutex_unlock(&slab_mutex);
1074	return 0;
1075}
1076#endif
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080	start_cpu_timer(cpu);
1081	return 0;
1082}
1083
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086	/*
1087	 * Shutdown cache reaper. Note that the slab_mutex is held so
1088	 * that if cache_reap() is invoked it cannot do anything
1089	 * expensive but will only modify reap_work and reschedule the
1090	 * timer.
1091	 */
1092	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093	/* Now the cache_reaper is guaranteed to be not running. */
1094	per_cpu(slab_reap_work, cpu).work.func = NULL;
1095	return 0;
1096}
1097
1098#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
1104 * Must hold slab_mutex.
1105 */
1106static int __meminit drain_cache_node_node(int node)
1107{
1108	struct kmem_cache *cachep;
1109	int ret = 0;
1110
1111	list_for_each_entry(cachep, &slab_caches, list) {
1112		struct kmem_cache_node *n;
1113
1114		n = get_node(cachep, node);
1115		if (!n)
1116			continue;
1117
1118		drain_freelist(cachep, n, INT_MAX);
1119
1120		if (!list_empty(&n->slabs_full) ||
1121		    !list_empty(&n->slabs_partial)) {
1122			ret = -EBUSY;
1123			break;
1124		}
1125	}
1126	return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130					unsigned long action, void *arg)
1131{
1132	struct memory_notify *mnb = arg;
1133	int ret = 0;
1134	int nid;
1135
1136	nid = mnb->status_change_nid;
1137	if (nid < 0)
1138		goto out;
1139
1140	switch (action) {
1141	case MEM_GOING_ONLINE:
1142		mutex_lock(&slab_mutex);
1143		ret = init_cache_node_node(nid);
1144		mutex_unlock(&slab_mutex);
1145		break;
1146	case MEM_GOING_OFFLINE:
1147		mutex_lock(&slab_mutex);
1148		ret = drain_cache_node_node(nid);
1149		mutex_unlock(&slab_mutex);
1150		break;
1151	case MEM_ONLINE:
1152	case MEM_OFFLINE:
1153	case MEM_CANCEL_ONLINE:
1154	case MEM_CANCEL_OFFLINE:
1155		break;
1156	}
1157out:
1158	return notifier_from_errno(ret);
1159}
1160#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1161
1162/*
1163 * swap the static kmem_cache_node with kmalloced memory
1164 */
1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1166				int nodeid)
1167{
1168	struct kmem_cache_node *ptr;
1169
1170	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1171	BUG_ON(!ptr);
1172
1173	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174	/*
1175	 * Do not assume that spinlocks can be initialized via memcpy:
1176	 */
1177	spin_lock_init(&ptr->list_lock);
1178
1179	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1180	cachep->node[nodeid] = ptr;
1181}
1182
1183/*
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
1186 */
1187static void __init set_up_node(struct kmem_cache *cachep, int index)
1188{
1189	int node;
1190
1191	for_each_online_node(node) {
1192		cachep->node[node] = &init_kmem_cache_node[index + node];
1193		cachep->node[node]->next_reap = jiffies +
1194		    REAPTIMEOUT_NODE +
1195		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1196	}
1197}
1198
1199/*
1200 * Initialisation.  Called after the page allocator have been initialised and
1201 * before smp_init().
1202 */
1203void __init kmem_cache_init(void)
1204{
1205	int i;
1206
 
 
1207	kmem_cache = &kmem_cache_boot;
1208
1209	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1210		use_alien_caches = 0;
1211
1212	for (i = 0; i < NUM_INIT_LISTS; i++)
1213		kmem_cache_node_init(&init_kmem_cache_node[i]);
1214
1215	/*
1216	 * Fragmentation resistance on low memory - only use bigger
1217	 * page orders on machines with more than 32MB of memory if
1218	 * not overridden on the command line.
1219	 */
1220	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1221		slab_max_order = SLAB_MAX_ORDER_HI;
1222
1223	/* Bootstrap is tricky, because several objects are allocated
1224	 * from caches that do not exist yet:
1225	 * 1) initialize the kmem_cache cache: it contains the struct
1226	 *    kmem_cache structures of all caches, except kmem_cache itself:
1227	 *    kmem_cache is statically allocated.
1228	 *    Initially an __init data area is used for the head array and the
1229	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1230	 *    array at the end of the bootstrap.
1231	 * 2) Create the first kmalloc cache.
1232	 *    The struct kmem_cache for the new cache is allocated normally.
1233	 *    An __init data area is used for the head array.
1234	 * 3) Create the remaining kmalloc caches, with minimally sized
1235	 *    head arrays.
1236	 * 4) Replace the __init data head arrays for kmem_cache and the first
1237	 *    kmalloc cache with kmalloc allocated arrays.
1238	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1239	 *    the other cache's with kmalloc allocated memory.
1240	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1241	 */
1242
1243	/* 1) create the kmem_cache */
1244
1245	/*
1246	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247	 */
1248	create_boot_cache(kmem_cache, "kmem_cache",
1249		offsetof(struct kmem_cache, node) +
1250				  nr_node_ids * sizeof(struct kmem_cache_node *),
1251				  SLAB_HWCACHE_ALIGN, 0, 0);
1252	list_add(&kmem_cache->list, &slab_caches);
1253	slab_state = PARTIAL;
1254
1255	/*
1256	 * Initialize the caches that provide memory for the  kmem_cache_node
1257	 * structures first.  Without this, further allocations will bug.
1258	 */
1259	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1260				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1261				kmalloc_info[INDEX_NODE].size,
1262				ARCH_KMALLOC_FLAGS, 0,
1263				kmalloc_info[INDEX_NODE].size);
1264	slab_state = PARTIAL_NODE;
1265	setup_kmalloc_cache_index_table();
1266
1267	slab_early_init = 0;
1268
1269	/* 5) Replace the bootstrap kmem_cache_node */
1270	{
1271		int nid;
1272
1273		for_each_online_node(nid) {
1274			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275
1276			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1277					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1278		}
1279	}
1280
1281	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286	struct kmem_cache *cachep;
1287
 
 
1288	/* 6) resize the head arrays to their final sizes */
1289	mutex_lock(&slab_mutex);
1290	list_for_each_entry(cachep, &slab_caches, list)
1291		if (enable_cpucache(cachep, GFP_NOWAIT))
1292			BUG();
1293	mutex_unlock(&slab_mutex);
1294
1295	/* Done! */
1296	slab_state = FULL;
1297
1298#ifdef CONFIG_NUMA
1299	/*
1300	 * Register a memory hotplug callback that initializes and frees
1301	 * node.
1302	 */
1303	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
1306	/*
1307	 * The reap timers are started later, with a module init call: That part
1308	 * of the kernel is not yet operational.
1309	 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
1314	int ret;
1315
1316	/*
1317	 * Register the timers that return unneeded pages to the page allocator
1318	 */
1319	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320				slab_online_cpu, slab_offline_cpu);
1321	WARN_ON(ret < 0);
1322
 
 
1323	return 0;
1324}
1325__initcall(cpucache_init);
1326
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
1330#if DEBUG
1331	struct kmem_cache_node *n;
1332	unsigned long flags;
1333	int node;
1334	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335				      DEFAULT_RATELIMIT_BURST);
1336
1337	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338		return;
1339
1340	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341		nodeid, gfpflags, &gfpflags);
1342	pr_warn("  cache: %s, object size: %d, order: %d\n",
1343		cachep->name, cachep->size, cachep->gfporder);
1344
1345	for_each_kmem_cache_node(cachep, node, n) {
1346		unsigned long total_slabs, free_slabs, free_objs;
1347
1348		spin_lock_irqsave(&n->list_lock, flags);
1349		total_slabs = n->total_slabs;
1350		free_slabs = n->free_slabs;
1351		free_objs = n->free_objects;
1352		spin_unlock_irqrestore(&n->list_lock, flags);
1353
1354		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355			node, total_slabs - free_slabs, total_slabs,
1356			(total_slabs * cachep->num) - free_objs,
1357			total_slabs * cachep->num);
1358	}
1359#endif
1360}
1361
1362/*
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371								int nodeid)
1372{
1373	struct page *page;
 
1374
1375	flags |= cachep->allocflags;
 
 
1376
1377	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1378	if (!page) {
1379		slab_out_of_memory(cachep, flags, nodeid);
1380		return NULL;
1381	}
1382
1383	account_slab_page(page, cachep->gfporder, cachep, flags);
 
 
 
 
 
 
 
 
 
 
 
 
1384	__SetPageSlab(page);
1385	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1387		SetPageSlabPfmemalloc(page);
1388
 
 
 
 
 
 
 
 
 
1389	return page;
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396{
1397	int order = cachep->gfporder;
 
 
 
 
 
 
 
 
 
 
1398
1399	BUG_ON(!PageSlab(page));
1400	__ClearPageSlabPfmemalloc(page);
1401	__ClearPageSlab(page);
1402	page_mapcount_reset(page);
1403	/* In union with page->mapping where page allocator expects NULL */
1404	page->slab_cache = NULL;
1405
1406	if (current->reclaim_state)
1407		current->reclaim_state->reclaimed_slab += 1 << order;
1408	unaccount_slab_page(page, order, cachep);
1409	__free_pages(page, order);
1410}
1411
1412static void kmem_rcu_free(struct rcu_head *head)
1413{
1414	struct kmem_cache *cachep;
1415	struct page *page;
1416
1417	page = container_of(head, struct page, rcu_head);
1418	cachep = page->slab_cache;
1419
1420	kmem_freepages(cachep, page);
1421}
1422
1423#if DEBUG
1424static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425{
1426	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1427		(cachep->size % PAGE_SIZE) == 0)
1428		return true;
1429
1430	return false;
1431}
1432
1433#ifdef CONFIG_DEBUG_PAGEALLOC
1434static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435{
1436	if (!is_debug_pagealloc_cache(cachep))
1437		return;
1438
1439	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
 
 
 
1440}
1441
1442#else
1443static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1444				int map) {}
1445
1446#endif
1447
1448static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449{
1450	int size = cachep->object_size;
1451	addr = &((char *)addr)[obj_offset(cachep)];
1452
1453	memset(addr, val, size);
1454	*(unsigned char *)(addr + size - 1) = POISON_END;
1455}
1456
1457static void dump_line(char *data, int offset, int limit)
1458{
1459	int i;
1460	unsigned char error = 0;
1461	int bad_count = 0;
1462
1463	pr_err("%03x: ", offset);
1464	for (i = 0; i < limit; i++) {
1465		if (data[offset + i] != POISON_FREE) {
1466			error = data[offset + i];
1467			bad_count++;
1468		}
1469	}
1470	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471			&data[offset], limit, 1);
1472
1473	if (bad_count == 1) {
1474		error ^= POISON_FREE;
1475		if (!(error & (error - 1))) {
1476			pr_err("Single bit error detected. Probably bad RAM.\n");
1477#ifdef CONFIG_X86
1478			pr_err("Run memtest86+ or a similar memory test tool.\n");
1479#else
1480			pr_err("Run a memory test tool.\n");
1481#endif
1482		}
1483	}
1484}
1485#endif
1486
1487#if DEBUG
1488
1489static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490{
1491	int i, size;
1492	char *realobj;
1493
1494	if (cachep->flags & SLAB_RED_ZONE) {
1495		pr_err("Redzone: 0x%llx/0x%llx\n",
1496		       *dbg_redzone1(cachep, objp),
1497		       *dbg_redzone2(cachep, objp));
1498	}
1499
1500	if (cachep->flags & SLAB_STORE_USER)
1501		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
1502	realobj = (char *)objp + obj_offset(cachep);
1503	size = cachep->object_size;
1504	for (i = 0; i < size && lines; i += 16, lines--) {
1505		int limit;
1506		limit = 16;
1507		if (i + limit > size)
1508			limit = size - i;
1509		dump_line(realobj, i, limit);
1510	}
1511}
1512
1513static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514{
1515	char *realobj;
1516	int size, i;
1517	int lines = 0;
1518
1519	if (is_debug_pagealloc_cache(cachep))
1520		return;
1521
1522	realobj = (char *)objp + obj_offset(cachep);
1523	size = cachep->object_size;
1524
1525	for (i = 0; i < size; i++) {
1526		char exp = POISON_FREE;
1527		if (i == size - 1)
1528			exp = POISON_END;
1529		if (realobj[i] != exp) {
1530			int limit;
1531			/* Mismatch ! */
1532			/* Print header */
1533			if (lines == 0) {
1534				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1535				       print_tainted(), cachep->name,
1536				       realobj, size);
1537				print_objinfo(cachep, objp, 0);
1538			}
1539			/* Hexdump the affected line */
1540			i = (i / 16) * 16;
1541			limit = 16;
1542			if (i + limit > size)
1543				limit = size - i;
1544			dump_line(realobj, i, limit);
1545			i += 16;
1546			lines++;
1547			/* Limit to 5 lines */
1548			if (lines > 5)
1549				break;
1550		}
1551	}
1552	if (lines != 0) {
1553		/* Print some data about the neighboring objects, if they
1554		 * exist:
1555		 */
1556		struct page *page = virt_to_head_page(objp);
1557		unsigned int objnr;
1558
1559		objnr = obj_to_index(cachep, page, objp);
1560		if (objnr) {
1561			objp = index_to_obj(cachep, page, objnr - 1);
1562			realobj = (char *)objp + obj_offset(cachep);
1563			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1564			print_objinfo(cachep, objp, 2);
1565		}
1566		if (objnr + 1 < cachep->num) {
1567			objp = index_to_obj(cachep, page, objnr + 1);
1568			realobj = (char *)objp + obj_offset(cachep);
1569			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1570			print_objinfo(cachep, objp, 2);
1571		}
1572	}
1573}
1574#endif
1575
1576#if DEBUG
1577static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578						struct page *page)
1579{
1580	int i;
1581
1582	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583		poison_obj(cachep, page->freelist - obj_offset(cachep),
1584			POISON_FREE);
1585	}
1586
1587	for (i = 0; i < cachep->num; i++) {
1588		void *objp = index_to_obj(cachep, page, i);
1589
1590		if (cachep->flags & SLAB_POISON) {
1591			check_poison_obj(cachep, objp);
1592			slab_kernel_map(cachep, objp, 1);
1593		}
1594		if (cachep->flags & SLAB_RED_ZONE) {
1595			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1596				slab_error(cachep, "start of a freed object was overwritten");
1597			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1598				slab_error(cachep, "end of a freed object was overwritten");
1599		}
1600	}
1601}
1602#else
1603static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604						struct page *page)
1605{
1606}
1607#endif
1608
1609/**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
1612 * @page: page pointer being destroyed
1613 *
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
1617 */
1618static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619{
1620	void *freelist;
1621
1622	freelist = page->freelist;
1623	slab_destroy_debugcheck(cachep, page);
1624	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1625		call_rcu(&page->rcu_head, kmem_rcu_free);
1626	else
1627		kmem_freepages(cachep, page);
1628
1629	/*
1630	 * From now on, we don't use freelist
1631	 * although actual page can be freed in rcu context
1632	 */
1633	if (OFF_SLAB(cachep))
1634		kmem_cache_free(cachep->freelist_cache, freelist);
1635}
1636
1637/*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
1641static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642{
1643	struct page *page, *n;
1644
1645	list_for_each_entry_safe(page, n, list, slab_list) {
1646		list_del(&page->slab_list);
1647		slab_destroy(cachep, page);
1648	}
1649}
1650
1651/**
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
1658 *
1659 * This could be made much more intelligent.  For now, try to avoid using
1660 * high order pages for slabs.  When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
1662 *
1663 * Return: number of left-over bytes in a slab
1664 */
1665static size_t calculate_slab_order(struct kmem_cache *cachep,
1666				size_t size, slab_flags_t flags)
1667{
1668	size_t left_over = 0;
1669	int gfporder;
1670
1671	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1672		unsigned int num;
1673		size_t remainder;
1674
1675		num = cache_estimate(gfporder, size, flags, &remainder);
1676		if (!num)
1677			continue;
1678
1679		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680		if (num > SLAB_OBJ_MAX_NUM)
1681			break;
1682
1683		if (flags & CFLGS_OFF_SLAB) {
1684			struct kmem_cache *freelist_cache;
1685			size_t freelist_size;
1686
1687			freelist_size = num * sizeof(freelist_idx_t);
1688			freelist_cache = kmalloc_slab(freelist_size, 0u);
1689			if (!freelist_cache)
1690				continue;
1691
1692			/*
1693			 * Needed to avoid possible looping condition
1694			 * in cache_grow_begin()
1695			 */
1696			if (OFF_SLAB(freelist_cache))
1697				continue;
1698
1699			/* check if off slab has enough benefit */
1700			if (freelist_cache->size > cachep->size / 2)
1701				continue;
1702		}
1703
1704		/* Found something acceptable - save it away */
1705		cachep->num = num;
1706		cachep->gfporder = gfporder;
1707		left_over = remainder;
1708
1709		/*
1710		 * A VFS-reclaimable slab tends to have most allocations
1711		 * as GFP_NOFS and we really don't want to have to be allocating
1712		 * higher-order pages when we are unable to shrink dcache.
1713		 */
1714		if (flags & SLAB_RECLAIM_ACCOUNT)
1715			break;
1716
1717		/*
1718		 * Large number of objects is good, but very large slabs are
1719		 * currently bad for the gfp()s.
1720		 */
1721		if (gfporder >= slab_max_order)
1722			break;
1723
1724		/*
1725		 * Acceptable internal fragmentation?
1726		 */
1727		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1728			break;
1729	}
1730	return left_over;
1731}
1732
1733static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734		struct kmem_cache *cachep, int entries, int batchcount)
1735{
1736	int cpu;
1737	size_t size;
1738	struct array_cache __percpu *cpu_cache;
1739
1740	size = sizeof(void *) * entries + sizeof(struct array_cache);
1741	cpu_cache = __alloc_percpu(size, sizeof(void *));
1742
1743	if (!cpu_cache)
1744		return NULL;
1745
1746	for_each_possible_cpu(cpu) {
1747		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748				entries, batchcount);
1749	}
1750
1751	return cpu_cache;
1752}
1753
1754static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755{
1756	if (slab_state >= FULL)
1757		return enable_cpucache(cachep, gfp);
1758
1759	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760	if (!cachep->cpu_cache)
1761		return 1;
1762
1763	if (slab_state == DOWN) {
1764		/* Creation of first cache (kmem_cache). */
1765		set_up_node(kmem_cache, CACHE_CACHE);
1766	} else if (slab_state == PARTIAL) {
1767		/* For kmem_cache_node */
1768		set_up_node(cachep, SIZE_NODE);
1769	} else {
1770		int node;
1771
1772		for_each_online_node(node) {
1773			cachep->node[node] = kmalloc_node(
1774				sizeof(struct kmem_cache_node), gfp, node);
1775			BUG_ON(!cachep->node[node]);
1776			kmem_cache_node_init(cachep->node[node]);
1777		}
1778	}
1779
1780	cachep->node[numa_mem_id()]->next_reap =
1781			jiffies + REAPTIMEOUT_NODE +
1782			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783
1784	cpu_cache_get(cachep)->avail = 0;
1785	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786	cpu_cache_get(cachep)->batchcount = 1;
1787	cpu_cache_get(cachep)->touched = 0;
1788	cachep->batchcount = 1;
1789	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1790	return 0;
1791}
1792
1793slab_flags_t kmem_cache_flags(unsigned int object_size,
1794	slab_flags_t flags, const char *name)
 
1795{
1796	return flags;
1797}
1798
1799struct kmem_cache *
1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801		   slab_flags_t flags, void (*ctor)(void *))
1802{
1803	struct kmem_cache *cachep;
1804
1805	cachep = find_mergeable(size, align, flags, name, ctor);
1806	if (cachep) {
1807		cachep->refcount++;
1808
1809		/*
1810		 * Adjust the object sizes so that we clear
1811		 * the complete object on kzalloc.
1812		 */
1813		cachep->object_size = max_t(int, cachep->object_size, size);
1814	}
1815	return cachep;
1816}
1817
1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819			size_t size, slab_flags_t flags)
1820{
1821	size_t left;
1822
1823	cachep->num = 0;
1824
1825	/*
1826	 * If slab auto-initialization on free is enabled, store the freelist
1827	 * off-slab, so that its contents don't end up in one of the allocated
1828	 * objects.
1829	 */
1830	if (unlikely(slab_want_init_on_free(cachep)))
1831		return false;
1832
1833	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834		return false;
1835
1836	left = calculate_slab_order(cachep, size,
1837			flags | CFLGS_OBJFREELIST_SLAB);
1838	if (!cachep->num)
1839		return false;
1840
1841	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842		return false;
1843
1844	cachep->colour = left / cachep->colour_off;
1845
1846	return true;
1847}
1848
1849static bool set_off_slab_cache(struct kmem_cache *cachep,
1850			size_t size, slab_flags_t flags)
1851{
1852	size_t left;
1853
1854	cachep->num = 0;
1855
1856	/*
1857	 * Always use on-slab management when SLAB_NOLEAKTRACE
1858	 * to avoid recursive calls into kmemleak.
1859	 */
1860	if (flags & SLAB_NOLEAKTRACE)
1861		return false;
1862
1863	/*
1864	 * Size is large, assume best to place the slab management obj
1865	 * off-slab (should allow better packing of objs).
1866	 */
1867	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868	if (!cachep->num)
1869		return false;
1870
1871	/*
1872	 * If the slab has been placed off-slab, and we have enough space then
1873	 * move it on-slab. This is at the expense of any extra colouring.
1874	 */
1875	if (left >= cachep->num * sizeof(freelist_idx_t))
1876		return false;
1877
1878	cachep->colour = left / cachep->colour_off;
1879
1880	return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
1884			size_t size, slab_flags_t flags)
1885{
1886	size_t left;
1887
1888	cachep->num = 0;
1889
1890	left = calculate_slab_order(cachep, size, flags);
1891	if (!cachep->num)
1892		return false;
1893
1894	cachep->colour = left / cachep->colour_off;
1895
1896	return true;
1897}
1898
1899/**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline.  This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
1923{
1924	size_t ralign = BYTES_PER_WORD;
1925	gfp_t gfp;
1926	int err;
1927	unsigned int size = cachep->size;
1928
1929#if DEBUG
1930#if FORCED_DEBUG
1931	/*
1932	 * Enable redzoning and last user accounting, except for caches with
1933	 * large objects, if the increased size would increase the object size
1934	 * above the next power of two: caches with object sizes just above a
1935	 * power of two have a significant amount of internal fragmentation.
1936	 */
1937	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938						2 * sizeof(unsigned long long)))
1939		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941		flags |= SLAB_POISON;
1942#endif
1943#endif
1944
1945	/*
1946	 * Check that size is in terms of words.  This is needed to avoid
1947	 * unaligned accesses for some archs when redzoning is used, and makes
1948	 * sure any on-slab bufctl's are also correctly aligned.
1949	 */
1950	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
1951
1952	if (flags & SLAB_RED_ZONE) {
1953		ralign = REDZONE_ALIGN;
1954		/* If redzoning, ensure that the second redzone is suitably
1955		 * aligned, by adjusting the object size accordingly. */
1956		size = ALIGN(size, REDZONE_ALIGN);
 
1957	}
1958
1959	/* 3) caller mandated alignment */
1960	if (ralign < cachep->align) {
1961		ralign = cachep->align;
1962	}
1963	/* disable debug if necessary */
1964	if (ralign > __alignof__(unsigned long long))
1965		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966	/*
1967	 * 4) Store it.
1968	 */
1969	cachep->align = ralign;
1970	cachep->colour_off = cache_line_size();
1971	/* Offset must be a multiple of the alignment. */
1972	if (cachep->colour_off < cachep->align)
1973		cachep->colour_off = cachep->align;
1974
1975	if (slab_is_available())
1976		gfp = GFP_KERNEL;
1977	else
1978		gfp = GFP_NOWAIT;
1979
1980#if DEBUG
1981
1982	/*
1983	 * Both debugging options require word-alignment which is calculated
1984	 * into align above.
1985	 */
1986	if (flags & SLAB_RED_ZONE) {
1987		/* add space for red zone words */
1988		cachep->obj_offset += sizeof(unsigned long long);
1989		size += 2 * sizeof(unsigned long long);
1990	}
1991	if (flags & SLAB_STORE_USER) {
1992		/* user store requires one word storage behind the end of
1993		 * the real object. But if the second red zone needs to be
1994		 * aligned to 64 bits, we must allow that much space.
1995		 */
1996		if (flags & SLAB_RED_ZONE)
1997			size += REDZONE_ALIGN;
1998		else
1999			size += BYTES_PER_WORD;
2000	}
2001#endif
2002
2003	kasan_cache_create(cachep, &size, &flags);
2004
2005	size = ALIGN(size, cachep->align);
2006	/*
2007	 * We should restrict the number of objects in a slab to implement
2008	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009	 */
2010	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
2014	/*
2015	 * To activate debug pagealloc, off-slab management is necessary
2016	 * requirement. In early phase of initialization, small sized slab
2017	 * doesn't get initialized so it would not be possible. So, we need
2018	 * to check size >= 256. It guarantees that all necessary small
2019	 * sized slab is initialized in current slab initialization sequence.
2020	 */
2021	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022		size >= 256 && cachep->object_size > cache_line_size()) {
2023		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027				flags |= CFLGS_OFF_SLAB;
2028				cachep->obj_offset += tmp_size - size;
2029				size = tmp_size;
2030				goto done;
2031			}
2032		}
2033	}
2034#endif
2035
2036	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037		flags |= CFLGS_OBJFREELIST_SLAB;
2038		goto done;
2039	}
2040
2041	if (set_off_slab_cache(cachep, size, flags)) {
2042		flags |= CFLGS_OFF_SLAB;
2043		goto done;
2044	}
2045
2046	if (set_on_slab_cache(cachep, size, flags))
2047		goto done;
2048
2049	return -E2BIG;
2050
2051done:
2052	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053	cachep->flags = flags;
2054	cachep->allocflags = __GFP_COMP;
2055	if (flags & SLAB_CACHE_DMA)
2056		cachep->allocflags |= GFP_DMA;
2057	if (flags & SLAB_CACHE_DMA32)
2058		cachep->allocflags |= GFP_DMA32;
2059	if (flags & SLAB_RECLAIM_ACCOUNT)
2060		cachep->allocflags |= __GFP_RECLAIMABLE;
2061	cachep->size = size;
2062	cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064#if DEBUG
2065	/*
2066	 * If we're going to use the generic kernel_map_pages()
2067	 * poisoning, then it's going to smash the contents of
2068	 * the redzone and userword anyhow, so switch them off.
2069	 */
2070	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071		(cachep->flags & SLAB_POISON) &&
2072		is_debug_pagealloc_cache(cachep))
2073		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076	if (OFF_SLAB(cachep)) {
2077		cachep->freelist_cache =
2078			kmalloc_slab(cachep->freelist_size, 0u);
2079	}
2080
2081	err = setup_cpu_cache(cachep, gfp);
2082	if (err) {
2083		__kmem_cache_release(cachep);
2084		return err;
2085	}
2086
2087	return 0;
2088}
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093	BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098	BUG_ON(irqs_disabled());
2099}
2100
2101static void check_mutex_acquired(void)
2102{
2103	BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
2106static void check_spinlock_acquired(struct kmem_cache *cachep)
2107{
2108#ifdef CONFIG_SMP
2109	check_irq_off();
2110	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111#endif
2112}
2113
2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115{
2116#ifdef CONFIG_SMP
2117	check_irq_off();
2118	assert_spin_locked(&get_node(cachep, node)->list_lock);
2119#endif
2120}
2121
2122#else
2123#define check_irq_off()	do { } while(0)
2124#define check_irq_on()	do { } while(0)
2125#define check_mutex_acquired()	do { } while(0)
2126#define check_spinlock_acquired(x) do { } while(0)
2127#define check_spinlock_acquired_node(x, y) do { } while(0)
2128#endif
2129
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131				int node, bool free_all, struct list_head *list)
2132{
2133	int tofree;
2134
2135	if (!ac || !ac->avail)
2136		return;
2137
2138	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139	if (tofree > ac->avail)
2140		tofree = (ac->avail + 1) / 2;
2141
2142	free_block(cachep, ac->entry, tofree, node, list);
2143	ac->avail -= tofree;
2144	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
2146
2147static void do_drain(void *arg)
2148{
2149	struct kmem_cache *cachep = arg;
2150	struct array_cache *ac;
2151	int node = numa_mem_id();
2152	struct kmem_cache_node *n;
2153	LIST_HEAD(list);
2154
2155	check_irq_off();
2156	ac = cpu_cache_get(cachep);
2157	n = get_node(cachep, node);
2158	spin_lock(&n->list_lock);
2159	free_block(cachep, ac->entry, ac->avail, node, &list);
2160	spin_unlock(&n->list_lock);
2161	ac->avail = 0;
2162	slabs_destroy(cachep, &list);
 
2163}
2164
2165static void drain_cpu_caches(struct kmem_cache *cachep)
2166{
2167	struct kmem_cache_node *n;
2168	int node;
2169	LIST_HEAD(list);
2170
2171	on_each_cpu(do_drain, cachep, 1);
2172	check_irq_on();
2173	for_each_kmem_cache_node(cachep, node, n)
2174		if (n->alien)
2175			drain_alien_cache(cachep, n->alien);
2176
2177	for_each_kmem_cache_node(cachep, node, n) {
2178		spin_lock_irq(&n->list_lock);
2179		drain_array_locked(cachep, n->shared, node, true, &list);
2180		spin_unlock_irq(&n->list_lock);
2181
2182		slabs_destroy(cachep, &list);
2183	}
2184}
2185
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
2193			struct kmem_cache_node *n, int tofree)
2194{
2195	struct list_head *p;
2196	int nr_freed;
2197	struct page *page;
2198
2199	nr_freed = 0;
2200	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202		spin_lock_irq(&n->list_lock);
2203		p = n->slabs_free.prev;
2204		if (p == &n->slabs_free) {
2205			spin_unlock_irq(&n->list_lock);
2206			goto out;
2207		}
2208
2209		page = list_entry(p, struct page, slab_list);
2210		list_del(&page->slab_list);
2211		n->free_slabs--;
2212		n->total_slabs--;
2213		/*
2214		 * Safe to drop the lock. The slab is no longer linked
2215		 * to the cache.
2216		 */
2217		n->free_objects -= cache->num;
2218		spin_unlock_irq(&n->list_lock);
2219		slab_destroy(cache, page);
2220		nr_freed++;
2221	}
2222out:
2223	return nr_freed;
2224}
2225
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228	int node;
2229	struct kmem_cache_node *n;
2230
2231	for_each_kmem_cache_node(s, node, n)
2232		if (!list_empty(&n->slabs_full) ||
2233		    !list_empty(&n->slabs_partial))
2234			return false;
2235	return true;
2236}
2237
2238int __kmem_cache_shrink(struct kmem_cache *cachep)
2239{
2240	int ret = 0;
2241	int node;
2242	struct kmem_cache_node *n;
2243
2244	drain_cpu_caches(cachep);
2245
2246	check_irq_on();
2247	for_each_kmem_cache_node(cachep, node, n) {
2248		drain_freelist(cachep, n, INT_MAX);
2249
2250		ret += !list_empty(&n->slabs_full) ||
2251			!list_empty(&n->slabs_partial);
2252	}
2253	return (ret ? 1 : 0);
2254}
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257{
2258	return __kmem_cache_shrink(cachep);
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
2262{
2263	int i;
2264	struct kmem_cache_node *n;
2265
2266	cache_random_seq_destroy(cachep);
2267
2268	free_percpu(cachep->cpu_cache);
2269
2270	/* NUMA: free the node structures */
2271	for_each_kmem_cache_node(cachep, i, n) {
2272		kfree(n->shared);
2273		free_alien_cache(n->alien);
2274		kfree(n);
2275		cachep->node[i] = NULL;
2276	}
2277}
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294				   struct page *page, int colour_off,
2295				   gfp_t local_flags, int nodeid)
2296{
2297	void *freelist;
2298	void *addr = page_address(page);
2299
2300	page->s_mem = addr + colour_off;
2301	page->active = 0;
2302
2303	if (OBJFREELIST_SLAB(cachep))
2304		freelist = NULL;
2305	else if (OFF_SLAB(cachep)) {
2306		/* Slab management obj is off-slab. */
2307		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308					      local_flags, nodeid);
 
 
2309	} else {
2310		/* We will use last bytes at the slab for freelist */
2311		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312				cachep->freelist_size;
2313	}
2314
2315	return freelist;
2316}
2317
2318static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319{
2320	return ((freelist_idx_t *)page->freelist)[idx];
2321}
2322
2323static inline void set_free_obj(struct page *page,
2324					unsigned int idx, freelist_idx_t val)
2325{
2326	((freelist_idx_t *)(page->freelist))[idx] = val;
2327}
2328
2329static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330{
2331#if DEBUG
2332	int i;
2333
2334	for (i = 0; i < cachep->num; i++) {
2335		void *objp = index_to_obj(cachep, page, i);
2336
2337		if (cachep->flags & SLAB_STORE_USER)
2338			*dbg_userword(cachep, objp) = NULL;
2339
2340		if (cachep->flags & SLAB_RED_ZONE) {
2341			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343		}
2344		/*
2345		 * Constructors are not allowed to allocate memory from the same
2346		 * cache which they are a constructor for.  Otherwise, deadlock.
2347		 * They must also be threaded.
2348		 */
2349		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350			kasan_unpoison_object_data(cachep,
2351						   objp + obj_offset(cachep));
2352			cachep->ctor(objp + obj_offset(cachep));
2353			kasan_poison_object_data(
2354				cachep, objp + obj_offset(cachep));
2355		}
2356
2357		if (cachep->flags & SLAB_RED_ZONE) {
2358			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359				slab_error(cachep, "constructor overwrote the end of an object");
2360			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361				slab_error(cachep, "constructor overwrote the start of an object");
2362		}
2363		/* need to poison the objs? */
2364		if (cachep->flags & SLAB_POISON) {
2365			poison_obj(cachep, objp, POISON_FREE);
2366			slab_kernel_map(cachep, objp, 0);
2367		}
2368	}
2369#endif
2370}
2371
2372#ifdef CONFIG_SLAB_FREELIST_RANDOM
2373/* Hold information during a freelist initialization */
2374union freelist_init_state {
2375	struct {
2376		unsigned int pos;
2377		unsigned int *list;
2378		unsigned int count;
2379	};
2380	struct rnd_state rnd_state;
2381};
2382
2383/*
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
2386 */
2387static bool freelist_state_initialize(union freelist_init_state *state,
2388				struct kmem_cache *cachep,
2389				unsigned int count)
2390{
2391	bool ret;
2392	unsigned int rand;
2393
2394	/* Use best entropy available to define a random shift */
2395	rand = get_random_int();
2396
2397	/* Use a random state if the pre-computed list is not available */
2398	if (!cachep->random_seq) {
2399		prandom_seed_state(&state->rnd_state, rand);
2400		ret = false;
2401	} else {
2402		state->list = cachep->random_seq;
2403		state->count = count;
2404		state->pos = rand % count;
2405		ret = true;
2406	}
2407	return ret;
2408}
2409
2410/* Get the next entry on the list and randomize it using a random shift */
2411static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412{
2413	if (state->pos >= state->count)
2414		state->pos = 0;
2415	return state->list[state->pos++];
2416}
2417
2418/* Swap two freelist entries */
2419static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420{
2421	swap(((freelist_idx_t *)page->freelist)[a],
2422		((freelist_idx_t *)page->freelist)[b]);
2423}
2424
2425/*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
2429static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430{
2431	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432	union freelist_init_state state;
2433	bool precomputed;
2434
2435	if (count < 2)
2436		return false;
2437
2438	precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440	/* Take a random entry as the objfreelist */
2441	if (OBJFREELIST_SLAB(cachep)) {
2442		if (!precomputed)
2443			objfreelist = count - 1;
2444		else
2445			objfreelist = next_random_slot(&state);
2446		page->freelist = index_to_obj(cachep, page, objfreelist) +
2447						obj_offset(cachep);
2448		count--;
2449	}
2450
2451	/*
2452	 * On early boot, generate the list dynamically.
2453	 * Later use a pre-computed list for speed.
2454	 */
2455	if (!precomputed) {
2456		for (i = 0; i < count; i++)
2457			set_free_obj(page, i, i);
2458
2459		/* Fisher-Yates shuffle */
2460		for (i = count - 1; i > 0; i--) {
2461			rand = prandom_u32_state(&state.rnd_state);
2462			rand %= (i + 1);
2463			swap_free_obj(page, i, rand);
2464		}
2465	} else {
2466		for (i = 0; i < count; i++)
2467			set_free_obj(page, i, next_random_slot(&state));
2468	}
2469
2470	if (OBJFREELIST_SLAB(cachep))
2471		set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473	return true;
2474}
2475#else
2476static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477				struct page *page)
2478{
2479	return false;
2480}
2481#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484			    struct page *page)
2485{
2486	int i;
2487	void *objp;
2488	bool shuffled;
2489
2490	cache_init_objs_debug(cachep, page);
2491
2492	/* Try to randomize the freelist if enabled */
2493	shuffled = shuffle_freelist(cachep, page);
2494
2495	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497						obj_offset(cachep);
2498	}
2499
2500	for (i = 0; i < cachep->num; i++) {
2501		objp = index_to_obj(cachep, page, i);
2502		objp = kasan_init_slab_obj(cachep, objp);
2503
2504		/* constructor could break poison info */
2505		if (DEBUG == 0 && cachep->ctor) {
2506			kasan_unpoison_object_data(cachep, objp);
2507			cachep->ctor(objp);
2508			kasan_poison_object_data(cachep, objp);
2509		}
2510
2511		if (!shuffled)
2512			set_free_obj(page, i, i);
2513	}
2514}
2515
2516static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2517{
2518	void *objp;
2519
2520	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521	page->active++;
2522
 
 
 
 
 
2523	return objp;
2524}
2525
2526static void slab_put_obj(struct kmem_cache *cachep,
2527			struct page *page, void *objp)
2528{
2529	unsigned int objnr = obj_to_index(cachep, page, objp);
2530#if DEBUG
2531	unsigned int i;
2532
2533	/* Verify double free bug */
2534	for (i = page->active; i < cachep->num; i++) {
2535		if (get_free_obj(page, i) == objnr) {
2536			pr_err("slab: double free detected in cache '%s', objp %px\n",
2537			       cachep->name, objp);
2538			BUG();
2539		}
2540	}
2541#endif
2542	page->active--;
2543	if (!page->freelist)
2544		page->freelist = objp + obj_offset(cachep);
2545
2546	set_free_obj(page, page->active, objnr);
2547}
2548
2549/*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2553 */
2554static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555			   void *freelist)
2556{
2557	page->slab_cache = cache;
2558	page->freelist = freelist;
2559}
2560
2561/*
2562 * Grow (by 1) the number of slabs within a cache.  This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
2565static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566				gfp_t flags, int nodeid)
2567{
2568	void *freelist;
2569	size_t offset;
2570	gfp_t local_flags;
2571	int page_node;
2572	struct kmem_cache_node *n;
2573	struct page *page;
2574
2575	/*
2576	 * Be lazy and only check for valid flags here,  keeping it out of the
2577	 * critical path in kmem_cache_alloc().
2578	 */
2579	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580		flags = kmalloc_fix_flags(flags);
2581
2582	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
 
 
 
2583	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584
2585	check_irq_off();
2586	if (gfpflags_allow_blocking(local_flags))
2587		local_irq_enable();
2588
2589	/*
2590	 * Get mem for the objs.  Attempt to allocate a physical page from
2591	 * 'nodeid'.
2592	 */
2593	page = kmem_getpages(cachep, local_flags, nodeid);
2594	if (!page)
2595		goto failed;
2596
2597	page_node = page_to_nid(page);
2598	n = get_node(cachep, page_node);
2599
2600	/* Get colour for the slab, and cal the next value. */
2601	n->colour_next++;
2602	if (n->colour_next >= cachep->colour)
2603		n->colour_next = 0;
2604
2605	offset = n->colour_next;
2606	if (offset >= cachep->colour)
2607		offset = 0;
2608
2609	offset *= cachep->colour_off;
2610
2611	/*
2612	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613	 * page_address() in the latter returns a non-tagged pointer,
2614	 * as it should be for slab pages.
2615	 */
2616	kasan_poison_slab(page);
2617
2618	/* Get slab management. */
2619	freelist = alloc_slabmgmt(cachep, page, offset,
2620			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621	if (OFF_SLAB(cachep) && !freelist)
2622		goto opps1;
2623
2624	slab_map_pages(cachep, page, freelist);
2625
 
2626	cache_init_objs(cachep, page);
2627
2628	if (gfpflags_allow_blocking(local_flags))
2629		local_irq_disable();
2630
2631	return page;
2632
2633opps1:
2634	kmem_freepages(cachep, page);
2635failed:
2636	if (gfpflags_allow_blocking(local_flags))
2637		local_irq_disable();
2638	return NULL;
2639}
2640
2641static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642{
2643	struct kmem_cache_node *n;
2644	void *list = NULL;
2645
2646	check_irq_off();
2647
2648	if (!page)
2649		return;
2650
2651	INIT_LIST_HEAD(&page->slab_list);
2652	n = get_node(cachep, page_to_nid(page));
2653
2654	spin_lock(&n->list_lock);
2655	n->total_slabs++;
2656	if (!page->active) {
2657		list_add_tail(&page->slab_list, &n->slabs_free);
2658		n->free_slabs++;
2659	} else
2660		fixup_slab_list(cachep, n, page, &list);
2661
2662	STATS_INC_GROWN(cachep);
2663	n->free_objects += cachep->num - page->active;
2664	spin_unlock(&n->list_lock);
2665
2666	fixup_objfreelist_debug(cachep, &list);
2667}
2668
2669#if DEBUG
2670
2671/*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2675 */
2676static void kfree_debugcheck(const void *objp)
2677{
2678	if (!virt_addr_valid(objp)) {
2679		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680		       (unsigned long)objp);
2681		BUG();
2682	}
2683}
2684
2685static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686{
2687	unsigned long long redzone1, redzone2;
2688
2689	redzone1 = *dbg_redzone1(cache, obj);
2690	redzone2 = *dbg_redzone2(cache, obj);
2691
2692	/*
2693	 * Redzone is ok.
2694	 */
2695	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696		return;
2697
2698	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699		slab_error(cache, "double free detected");
2700	else
2701		slab_error(cache, "memory outside object was overwritten");
2702
2703	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704	       obj, redzone1, redzone2);
2705}
2706
2707static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708				   unsigned long caller)
2709{
2710	unsigned int objnr;
2711	struct page *page;
2712
2713	BUG_ON(virt_to_cache(objp) != cachep);
2714
2715	objp -= obj_offset(cachep);
2716	kfree_debugcheck(objp);
2717	page = virt_to_head_page(objp);
2718
2719	if (cachep->flags & SLAB_RED_ZONE) {
2720		verify_redzone_free(cachep, objp);
2721		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723	}
2724	if (cachep->flags & SLAB_STORE_USER)
 
2725		*dbg_userword(cachep, objp) = (void *)caller;
 
2726
2727	objnr = obj_to_index(cachep, page, objp);
2728
2729	BUG_ON(objnr >= cachep->num);
2730	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731
2732	if (cachep->flags & SLAB_POISON) {
2733		poison_obj(cachep, objp, POISON_FREE);
2734		slab_kernel_map(cachep, objp, 0);
2735	}
2736	return objp;
2737}
2738
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x, objp, z) (objp)
2742#endif
2743
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745						void **list)
2746{
2747#if DEBUG
2748	void *next = *list;
2749	void *objp;
2750
2751	while (next) {
2752		objp = next - obj_offset(cachep);
2753		next = *(void **)next;
2754		poison_obj(cachep, objp, POISON_FREE);
2755	}
2756#endif
2757}
2758
2759static inline void fixup_slab_list(struct kmem_cache *cachep,
2760				struct kmem_cache_node *n, struct page *page,
2761				void **list)
2762{
2763	/* move slabp to correct slabp list: */
2764	list_del(&page->slab_list);
2765	if (page->active == cachep->num) {
2766		list_add(&page->slab_list, &n->slabs_full);
2767		if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769			/* Poisoning will be done without holding the lock */
2770			if (cachep->flags & SLAB_POISON) {
2771				void **objp = page->freelist;
2772
2773				*objp = *list;
2774				*list = objp;
2775			}
2776#endif
2777			page->freelist = NULL;
2778		}
2779	} else
2780		list_add(&page->slab_list, &n->slabs_partial);
2781}
2782
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785					struct page *page, bool pfmemalloc)
2786{
2787	if (!page)
2788		return NULL;
2789
2790	if (pfmemalloc)
2791		return page;
2792
2793	if (!PageSlabPfmemalloc(page))
2794		return page;
2795
2796	/* No need to keep pfmemalloc slab if we have enough free objects */
2797	if (n->free_objects > n->free_limit) {
2798		ClearPageSlabPfmemalloc(page);
2799		return page;
2800	}
2801
2802	/* Move pfmemalloc slab to the end of list to speed up next search */
2803	list_del(&page->slab_list);
2804	if (!page->active) {
2805		list_add_tail(&page->slab_list, &n->slabs_free);
2806		n->free_slabs++;
2807	} else
2808		list_add_tail(&page->slab_list, &n->slabs_partial);
2809
2810	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811		if (!PageSlabPfmemalloc(page))
2812			return page;
2813	}
2814
2815	n->free_touched = 1;
2816	list_for_each_entry(page, &n->slabs_free, slab_list) {
2817		if (!PageSlabPfmemalloc(page)) {
2818			n->free_slabs--;
2819			return page;
2820		}
2821	}
2822
2823	return NULL;
2824}
2825
2826static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827{
2828	struct page *page;
2829
2830	assert_spin_locked(&n->list_lock);
2831	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832					slab_list);
2833	if (!page) {
2834		n->free_touched = 1;
2835		page = list_first_entry_or_null(&n->slabs_free, struct page,
2836						slab_list);
2837		if (page)
2838			n->free_slabs--;
2839	}
2840
2841	if (sk_memalloc_socks())
2842		page = get_valid_first_slab(n, page, pfmemalloc);
2843
2844	return page;
2845}
2846
2847static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848				struct kmem_cache_node *n, gfp_t flags)
2849{
2850	struct page *page;
2851	void *obj;
2852	void *list = NULL;
2853
2854	if (!gfp_pfmemalloc_allowed(flags))
2855		return NULL;
2856
2857	spin_lock(&n->list_lock);
2858	page = get_first_slab(n, true);
2859	if (!page) {
2860		spin_unlock(&n->list_lock);
2861		return NULL;
2862	}
2863
2864	obj = slab_get_obj(cachep, page);
2865	n->free_objects--;
2866
2867	fixup_slab_list(cachep, n, page, &list);
2868
2869	spin_unlock(&n->list_lock);
2870	fixup_objfreelist_debug(cachep, &list);
2871
2872	return obj;
2873}
2874
2875/*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
2879static __always_inline int alloc_block(struct kmem_cache *cachep,
2880		struct array_cache *ac, struct page *page, int batchcount)
2881{
2882	/*
2883	 * There must be at least one object available for
2884	 * allocation.
2885	 */
2886	BUG_ON(page->active >= cachep->num);
2887
2888	while (page->active < cachep->num && batchcount--) {
2889		STATS_INC_ALLOCED(cachep);
2890		STATS_INC_ACTIVE(cachep);
2891		STATS_SET_HIGH(cachep);
2892
2893		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894	}
2895
2896	return batchcount;
2897}
2898
2899static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900{
2901	int batchcount;
2902	struct kmem_cache_node *n;
2903	struct array_cache *ac, *shared;
2904	int node;
2905	void *list = NULL;
2906	struct page *page;
2907
2908	check_irq_off();
2909	node = numa_mem_id();
2910
2911	ac = cpu_cache_get(cachep);
2912	batchcount = ac->batchcount;
2913	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914		/*
2915		 * If there was little recent activity on this cache, then
2916		 * perform only a partial refill.  Otherwise we could generate
2917		 * refill bouncing.
2918		 */
2919		batchcount = BATCHREFILL_LIMIT;
2920	}
2921	n = get_node(cachep, node);
2922
2923	BUG_ON(ac->avail > 0 || !n);
2924	shared = READ_ONCE(n->shared);
2925	if (!n->free_objects && (!shared || !shared->avail))
2926		goto direct_grow;
2927
2928	spin_lock(&n->list_lock);
2929	shared = READ_ONCE(n->shared);
2930
2931	/* See if we can refill from the shared array */
2932	if (shared && transfer_objects(ac, shared, batchcount)) {
2933		shared->touched = 1;
2934		goto alloc_done;
2935	}
2936
2937	while (batchcount > 0) {
2938		/* Get slab alloc is to come from. */
2939		page = get_first_slab(n, false);
2940		if (!page)
2941			goto must_grow;
2942
2943		check_spinlock_acquired(cachep);
2944
2945		batchcount = alloc_block(cachep, ac, page, batchcount);
2946		fixup_slab_list(cachep, n, page, &list);
2947	}
2948
2949must_grow:
2950	n->free_objects -= ac->avail;
2951alloc_done:
2952	spin_unlock(&n->list_lock);
2953	fixup_objfreelist_debug(cachep, &list);
2954
2955direct_grow:
2956	if (unlikely(!ac->avail)) {
2957		/* Check if we can use obj in pfmemalloc slab */
2958		if (sk_memalloc_socks()) {
2959			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961			if (obj)
2962				return obj;
2963		}
2964
2965		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966
2967		/*
2968		 * cache_grow_begin() can reenable interrupts,
2969		 * then ac could change.
2970		 */
2971		ac = cpu_cache_get(cachep);
2972		if (!ac->avail && page)
2973			alloc_block(cachep, ac, page, batchcount);
2974		cache_grow_end(cachep, page);
2975
2976		if (!ac->avail)
2977			return NULL;
2978	}
2979	ac->touched = 1;
2980
2981	return ac->entry[--ac->avail];
2982}
2983
2984static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985						gfp_t flags)
2986{
2987	might_sleep_if(gfpflags_allow_blocking(flags));
2988}
2989
2990#if DEBUG
2991static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992				gfp_t flags, void *objp, unsigned long caller)
2993{
2994	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995	if (!objp || is_kfence_address(objp))
2996		return objp;
2997	if (cachep->flags & SLAB_POISON) {
2998		check_poison_obj(cachep, objp);
2999		slab_kernel_map(cachep, objp, 1);
3000		poison_obj(cachep, objp, POISON_INUSE);
3001	}
3002	if (cachep->flags & SLAB_STORE_USER)
3003		*dbg_userword(cachep, objp) = (void *)caller;
3004
3005	if (cachep->flags & SLAB_RED_ZONE) {
3006		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008			slab_error(cachep, "double free, or memory outside object was overwritten");
3009			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010			       objp, *dbg_redzone1(cachep, objp),
3011			       *dbg_redzone2(cachep, objp));
3012		}
3013		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015	}
3016
3017	objp += obj_offset(cachep);
3018	if (cachep->ctor && cachep->flags & SLAB_POISON)
3019		cachep->ctor(objp);
3020	if (ARCH_SLAB_MINALIGN &&
3021	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023		       objp, (int)ARCH_SLAB_MINALIGN);
3024	}
3025	return objp;
3026}
3027#else
3028#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3029#endif
3030
3031static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3032{
3033	void *objp;
3034	struct array_cache *ac;
3035
3036	check_irq_off();
3037
3038	ac = cpu_cache_get(cachep);
3039	if (likely(ac->avail)) {
3040		ac->touched = 1;
3041		objp = ac->entry[--ac->avail];
3042
3043		STATS_INC_ALLOCHIT(cachep);
3044		goto out;
3045	}
3046
3047	STATS_INC_ALLOCMISS(cachep);
3048	objp = cache_alloc_refill(cachep, flags);
3049	/*
3050	 * the 'ac' may be updated by cache_alloc_refill(),
3051	 * and kmemleak_erase() requires its correct value.
3052	 */
3053	ac = cpu_cache_get(cachep);
3054
3055out:
3056	/*
3057	 * To avoid a false negative, if an object that is in one of the
3058	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059	 * treat the array pointers as a reference to the object.
3060	 */
3061	if (objp)
3062		kmemleak_erase(&ac->entry[ac->avail]);
3063	return objp;
3064}
3065
3066#ifdef CONFIG_NUMA
3067/*
3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3069 *
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3072 */
3073static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074{
3075	int nid_alloc, nid_here;
3076
3077	if (in_interrupt() || (flags & __GFP_THISNODE))
3078		return NULL;
3079	nid_alloc = nid_here = numa_mem_id();
3080	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081		nid_alloc = cpuset_slab_spread_node();
3082	else if (current->mempolicy)
3083		nid_alloc = mempolicy_slab_node();
3084	if (nid_alloc != nid_here)
3085		return ____cache_alloc_node(cachep, flags, nid_alloc);
3086	return NULL;
3087}
3088
3089/*
3090 * Fallback function if there was no memory available and no objects on a
3091 * certain node and fall back is permitted. First we scan all the
3092 * available node for available objects. If that fails then we
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
3096 */
3097static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3098{
3099	struct zonelist *zonelist;
3100	struct zoneref *z;
3101	struct zone *zone;
3102	enum zone_type highest_zoneidx = gfp_zone(flags);
3103	void *obj = NULL;
3104	struct page *page;
3105	int nid;
3106	unsigned int cpuset_mems_cookie;
3107
3108	if (flags & __GFP_THISNODE)
3109		return NULL;
3110
3111retry_cpuset:
3112	cpuset_mems_cookie = read_mems_allowed_begin();
3113	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114
3115retry:
3116	/*
3117	 * Look through allowed nodes for objects available
3118	 * from existing per node queues.
3119	 */
3120	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121		nid = zone_to_nid(zone);
3122
3123		if (cpuset_zone_allowed(zone, flags) &&
3124			get_node(cache, nid) &&
3125			get_node(cache, nid)->free_objects) {
3126				obj = ____cache_alloc_node(cache,
3127					gfp_exact_node(flags), nid);
3128				if (obj)
3129					break;
3130		}
3131	}
3132
3133	if (!obj) {
3134		/*
3135		 * This allocation will be performed within the constraints
3136		 * of the current cpuset / memory policy requirements.
3137		 * We may trigger various forms of reclaim on the allowed
3138		 * set and go into memory reserves if necessary.
3139		 */
3140		page = cache_grow_begin(cache, flags, numa_mem_id());
3141		cache_grow_end(cache, page);
3142		if (page) {
3143			nid = page_to_nid(page);
3144			obj = ____cache_alloc_node(cache,
3145				gfp_exact_node(flags), nid);
3146
3147			/*
3148			 * Another processor may allocate the objects in
3149			 * the slab since we are not holding any locks.
3150			 */
3151			if (!obj)
3152				goto retry;
3153		}
3154	}
3155
3156	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157		goto retry_cpuset;
3158	return obj;
3159}
3160
3161/*
3162 * A interface to enable slab creation on nodeid
3163 */
3164static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165				int nodeid)
3166{
3167	struct page *page;
3168	struct kmem_cache_node *n;
3169	void *obj = NULL;
3170	void *list = NULL;
3171
3172	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173	n = get_node(cachep, nodeid);
3174	BUG_ON(!n);
3175
3176	check_irq_off();
3177	spin_lock(&n->list_lock);
3178	page = get_first_slab(n, false);
3179	if (!page)
3180		goto must_grow;
3181
3182	check_spinlock_acquired_node(cachep, nodeid);
3183
3184	STATS_INC_NODEALLOCS(cachep);
3185	STATS_INC_ACTIVE(cachep);
3186	STATS_SET_HIGH(cachep);
3187
3188	BUG_ON(page->active == cachep->num);
3189
3190	obj = slab_get_obj(cachep, page);
3191	n->free_objects--;
3192
3193	fixup_slab_list(cachep, n, page, &list);
3194
3195	spin_unlock(&n->list_lock);
3196	fixup_objfreelist_debug(cachep, &list);
3197	return obj;
3198
3199must_grow:
3200	spin_unlock(&n->list_lock);
3201	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202	if (page) {
3203		/* This slab isn't counted yet so don't update free_objects */
3204		obj = slab_get_obj(cachep, page);
3205	}
3206	cache_grow_end(cachep, page);
3207
3208	return obj ? obj : fallback_alloc(cachep, flags);
3209}
3210
3211static __always_inline void *
3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3213		   unsigned long caller)
3214{
3215	unsigned long save_flags;
3216	void *ptr;
3217	int slab_node = numa_mem_id();
3218	struct obj_cgroup *objcg = NULL;
3219	bool init = false;
3220
3221	flags &= gfp_allowed_mask;
3222	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3223	if (unlikely(!cachep))
3224		return NULL;
3225
3226	ptr = kfence_alloc(cachep, orig_size, flags);
3227	if (unlikely(ptr))
3228		goto out_hooks;
3229
3230	cache_alloc_debugcheck_before(cachep, flags);
3231	local_irq_save(save_flags);
3232
3233	if (nodeid == NUMA_NO_NODE)
3234		nodeid = slab_node;
3235
3236	if (unlikely(!get_node(cachep, nodeid))) {
3237		/* Node not bootstrapped yet */
3238		ptr = fallback_alloc(cachep, flags);
3239		goto out;
3240	}
3241
3242	if (nodeid == slab_node) {
3243		/*
3244		 * Use the locally cached objects if possible.
3245		 * However ____cache_alloc does not allow fallback
3246		 * to other nodes. It may fail while we still have
3247		 * objects on other nodes available.
3248		 */
3249		ptr = ____cache_alloc(cachep, flags);
3250		if (ptr)
3251			goto out;
3252	}
3253	/* ___cache_alloc_node can fall back to other nodes */
3254	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255  out:
3256	local_irq_restore(save_flags);
3257	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258	init = slab_want_init_on_alloc(flags, cachep);
3259
3260out_hooks:
3261	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
 
 
3262	return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268	void *objp;
3269
3270	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3271		objp = alternate_node_alloc(cache, flags);
3272		if (objp)
3273			goto out;
3274	}
3275	objp = ____cache_alloc(cache, flags);
3276
3277	/*
3278	 * We may just have run out of memory on the local node.
3279	 * ____cache_alloc_node() knows how to locate memory on other nodes
3280	 */
3281	if (!objp)
3282		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3283
3284  out:
3285	return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292	return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
3299{
3300	unsigned long save_flags;
3301	void *objp;
3302	struct obj_cgroup *objcg = NULL;
3303	bool init = false;
3304
3305	flags &= gfp_allowed_mask;
3306	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3307	if (unlikely(!cachep))
3308		return NULL;
3309
3310	objp = kfence_alloc(cachep, orig_size, flags);
3311	if (unlikely(objp))
3312		goto out;
3313
3314	cache_alloc_debugcheck_before(cachep, flags);
3315	local_irq_save(save_flags);
3316	objp = __do_cache_alloc(cachep, flags);
3317	local_irq_restore(save_flags);
3318	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3319	prefetchw(objp);
3320	init = slab_want_init_on_alloc(flags, cachep);
3321
3322out:
3323	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
 
 
3324	return objp;
3325}
3326
3327/*
3328 * Caller needs to acquire correct kmem_cache_node's list_lock
3329 * @list: List of detached free slabs should be freed by caller
3330 */
3331static void free_block(struct kmem_cache *cachep, void **objpp,
3332			int nr_objects, int node, struct list_head *list)
3333{
3334	int i;
3335	struct kmem_cache_node *n = get_node(cachep, node);
3336	struct page *page;
3337
3338	n->free_objects += nr_objects;
3339
3340	for (i = 0; i < nr_objects; i++) {
3341		void *objp;
3342		struct page *page;
3343
3344		objp = objpp[i];
3345
3346		page = virt_to_head_page(objp);
3347		list_del(&page->slab_list);
3348		check_spinlock_acquired_node(cachep, node);
3349		slab_put_obj(cachep, page, objp);
3350		STATS_DEC_ACTIVE(cachep);
3351
3352		/* fixup slab chains */
3353		if (page->active == 0) {
3354			list_add(&page->slab_list, &n->slabs_free);
3355			n->free_slabs++;
3356		} else {
3357			/* Unconditionally move a slab to the end of the
3358			 * partial list on free - maximum time for the
3359			 * other objects to be freed, too.
3360			 */
3361			list_add_tail(&page->slab_list, &n->slabs_partial);
3362		}
3363	}
3364
3365	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3366		n->free_objects -= cachep->num;
3367
3368		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3369		list_move(&page->slab_list, list);
3370		n->free_slabs--;
3371		n->total_slabs--;
3372	}
3373}
3374
3375static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3376{
3377	int batchcount;
3378	struct kmem_cache_node *n;
3379	int node = numa_mem_id();
3380	LIST_HEAD(list);
3381
3382	batchcount = ac->batchcount;
3383
3384	check_irq_off();
3385	n = get_node(cachep, node);
3386	spin_lock(&n->list_lock);
3387	if (n->shared) {
3388		struct array_cache *shared_array = n->shared;
3389		int max = shared_array->limit - shared_array->avail;
3390		if (max) {
3391			if (batchcount > max)
3392				batchcount = max;
3393			memcpy(&(shared_array->entry[shared_array->avail]),
3394			       ac->entry, sizeof(void *) * batchcount);
3395			shared_array->avail += batchcount;
3396			goto free_done;
3397		}
3398	}
3399
3400	free_block(cachep, ac->entry, batchcount, node, &list);
3401free_done:
3402#if STATS
3403	{
3404		int i = 0;
3405		struct page *page;
3406
3407		list_for_each_entry(page, &n->slabs_free, slab_list) {
3408			BUG_ON(page->active);
3409
3410			i++;
3411		}
3412		STATS_SET_FREEABLE(cachep, i);
3413	}
3414#endif
3415	spin_unlock(&n->list_lock);
 
3416	ac->avail -= batchcount;
3417	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3418	slabs_destroy(cachep, &list);
3419}
3420
3421/*
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released.  Called with disabled ints.
3424 */
3425static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426					 unsigned long caller)
3427{
3428	bool init;
3429
3430	if (is_kfence_address(objp)) {
3431		kmemleak_free_recursive(objp, cachep->flags);
3432		__kfence_free(objp);
3433		return;
3434	}
3435
3436	/*
3437	 * As memory initialization might be integrated into KASAN,
3438	 * kasan_slab_free and initialization memset must be
3439	 * kept together to avoid discrepancies in behavior.
3440	 */
3441	init = slab_want_init_on_free(cachep);
3442	if (init && !kasan_has_integrated_init())
3443		memset(objp, 0, cachep->object_size);
3444	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3445	if (kasan_slab_free(cachep, objp, init))
3446		return;
3447
3448	/* Use KCSAN to help debug racy use-after-free. */
3449	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3450		__kcsan_check_access(objp, cachep->object_size,
3451				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3452
3453	___cache_free(cachep, objp, caller);
3454}
3455
3456void ___cache_free(struct kmem_cache *cachep, void *objp,
3457		unsigned long caller)
3458{
3459	struct array_cache *ac = cpu_cache_get(cachep);
3460
3461	check_irq_off();
3462	kmemleak_free_recursive(objp, cachep->flags);
3463	objp = cache_free_debugcheck(cachep, objp, caller);
3464	memcg_slab_free_hook(cachep, &objp, 1);
 
3465
3466	/*
3467	 * Skip calling cache_free_alien() when the platform is not numa.
3468	 * This will avoid cache misses that happen while accessing slabp (which
3469	 * is per page memory  reference) to get nodeid. Instead use a global
3470	 * variable to skip the call, which is mostly likely to be present in
3471	 * the cache.
3472	 */
3473	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3474		return;
3475
3476	if (ac->avail < ac->limit) {
3477		STATS_INC_FREEHIT(cachep);
3478	} else {
3479		STATS_INC_FREEMISS(cachep);
3480		cache_flusharray(cachep, ac);
3481	}
3482
3483	if (sk_memalloc_socks()) {
3484		struct page *page = virt_to_head_page(objp);
3485
3486		if (unlikely(PageSlabPfmemalloc(page))) {
3487			cache_free_pfmemalloc(cachep, page, objp);
3488			return;
3489		}
3490	}
3491
3492	__free_one(ac, objp);
3493}
3494
3495/**
3496 * kmem_cache_alloc - Allocate an object
3497 * @cachep: The cache to allocate from.
3498 * @flags: See kmalloc().
3499 *
3500 * Allocate an object from this cache.  The flags are only relevant
3501 * if the cache has no available objects.
3502 *
3503 * Return: pointer to the new object or %NULL in case of error
3504 */
3505void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3506{
3507	void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
3508
 
3509	trace_kmem_cache_alloc(_RET_IP_, ret,
3510			       cachep->object_size, cachep->size, flags);
3511
3512	return ret;
3513}
3514EXPORT_SYMBOL(kmem_cache_alloc);
3515
3516static __always_inline void
3517cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3518				  size_t size, void **p, unsigned long caller)
3519{
3520	size_t i;
3521
3522	for (i = 0; i < size; i++)
3523		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3524}
3525
3526int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3527			  void **p)
3528{
3529	size_t i;
3530	struct obj_cgroup *objcg = NULL;
3531
3532	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3533	if (!s)
3534		return 0;
3535
3536	cache_alloc_debugcheck_before(s, flags);
3537
3538	local_irq_disable();
3539	for (i = 0; i < size; i++) {
3540		void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3541
3542		if (unlikely(!objp))
3543			goto error;
3544		p[i] = objp;
3545	}
3546	local_irq_enable();
3547
3548	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3549
3550	/*
3551	 * memcg and kmem_cache debug support and memory initialization.
3552	 * Done outside of the IRQ disabled section.
3553	 */
3554	slab_post_alloc_hook(s, objcg, flags, size, p,
3555				slab_want_init_on_alloc(flags, s));
3556	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3557	return size;
3558error:
3559	local_irq_enable();
3560	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3561	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3562	__kmem_cache_free_bulk(s, i, p);
3563	return 0;
3564}
3565EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3566
3567#ifdef CONFIG_TRACING
3568void *
3569kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3570{
3571	void *ret;
3572
3573	ret = slab_alloc(cachep, flags, size, _RET_IP_);
3574
3575	ret = kasan_kmalloc(cachep, ret, size, flags);
3576	trace_kmalloc(_RET_IP_, ret,
3577		      size, cachep->size, flags);
3578	return ret;
3579}
3580EXPORT_SYMBOL(kmem_cache_alloc_trace);
3581#endif
3582
3583#ifdef CONFIG_NUMA
3584/**
3585 * kmem_cache_alloc_node - Allocate an object on the specified node
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 * @nodeid: node number of the target node.
3589 *
3590 * Identical to kmem_cache_alloc but it will allocate memory on the given
3591 * node, which can improve the performance for cpu bound structures.
3592 *
3593 * Fallback to other node is possible if __GFP_THISNODE is not set.
3594 *
3595 * Return: pointer to the new object or %NULL in case of error
3596 */
3597void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3598{
3599	void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3600
 
3601	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3602				    cachep->object_size, cachep->size,
3603				    flags, nodeid);
3604
3605	return ret;
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc_node);
3608
3609#ifdef CONFIG_TRACING
3610void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3611				  gfp_t flags,
3612				  int nodeid,
3613				  size_t size)
3614{
3615	void *ret;
3616
3617	ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3618
3619	ret = kasan_kmalloc(cachep, ret, size, flags);
3620	trace_kmalloc_node(_RET_IP_, ret,
3621			   size, cachep->size,
3622			   flags, nodeid);
3623	return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3626#endif
3627
3628static __always_inline void *
3629__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3630{
3631	struct kmem_cache *cachep;
3632	void *ret;
3633
3634	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3635		return NULL;
3636	cachep = kmalloc_slab(size, flags);
3637	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3638		return cachep;
3639	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3640	ret = kasan_kmalloc(cachep, ret, size, flags);
3641
3642	return ret;
3643}
3644
3645void *__kmalloc_node(size_t size, gfp_t flags, int node)
3646{
3647	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3648}
3649EXPORT_SYMBOL(__kmalloc_node);
3650
3651void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3652		int node, unsigned long caller)
3653{
3654	return __do_kmalloc_node(size, flags, node, caller);
3655}
3656EXPORT_SYMBOL(__kmalloc_node_track_caller);
3657#endif /* CONFIG_NUMA */
3658
3659#ifdef CONFIG_PRINTK
3660void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3661{
3662	struct kmem_cache *cachep;
3663	unsigned int objnr;
3664	void *objp;
3665
3666	kpp->kp_ptr = object;
3667	kpp->kp_page = page;
3668	cachep = page->slab_cache;
3669	kpp->kp_slab_cache = cachep;
3670	objp = object - obj_offset(cachep);
3671	kpp->kp_data_offset = obj_offset(cachep);
3672	page = virt_to_head_page(objp);
3673	objnr = obj_to_index(cachep, page, objp);
3674	objp = index_to_obj(cachep, page, objnr);
3675	kpp->kp_objp = objp;
3676	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3677		kpp->kp_ret = *dbg_userword(cachep, objp);
3678}
3679#endif
3680
3681/**
3682 * __do_kmalloc - allocate memory
3683 * @size: how many bytes of memory are required.
3684 * @flags: the type of memory to allocate (see kmalloc).
3685 * @caller: function caller for debug tracking of the caller
3686 *
3687 * Return: pointer to the allocated memory or %NULL in case of error
3688 */
3689static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690					  unsigned long caller)
3691{
3692	struct kmem_cache *cachep;
3693	void *ret;
3694
3695	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3696		return NULL;
3697	cachep = kmalloc_slab(size, flags);
3698	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699		return cachep;
3700	ret = slab_alloc(cachep, flags, size, caller);
3701
3702	ret = kasan_kmalloc(cachep, ret, size, flags);
3703	trace_kmalloc(caller, ret,
3704		      size, cachep->size, flags);
3705
3706	return ret;
3707}
3708
3709void *__kmalloc(size_t size, gfp_t flags)
3710{
3711	return __do_kmalloc(size, flags, _RET_IP_);
3712}
3713EXPORT_SYMBOL(__kmalloc);
3714
3715void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3716{
3717	return __do_kmalloc(size, flags, caller);
3718}
3719EXPORT_SYMBOL(__kmalloc_track_caller);
3720
3721/**
3722 * kmem_cache_free - Deallocate an object
3723 * @cachep: The cache the allocation was from.
3724 * @objp: The previously allocated object.
3725 *
3726 * Free an object which was previously allocated from this
3727 * cache.
3728 */
3729void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3730{
3731	unsigned long flags;
3732	cachep = cache_from_obj(cachep, objp);
3733	if (!cachep)
3734		return;
3735
3736	local_irq_save(flags);
3737	debug_check_no_locks_freed(objp, cachep->object_size);
3738	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3739		debug_check_no_obj_freed(objp, cachep->object_size);
3740	__cache_free(cachep, objp, _RET_IP_);
3741	local_irq_restore(flags);
3742
3743	trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3744}
3745EXPORT_SYMBOL(kmem_cache_free);
3746
3747void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3748{
3749	struct kmem_cache *s;
3750	size_t i;
3751
3752	local_irq_disable();
3753	for (i = 0; i < size; i++) {
3754		void *objp = p[i];
3755
3756		if (!orig_s) /* called via kfree_bulk */
3757			s = virt_to_cache(objp);
3758		else
3759			s = cache_from_obj(orig_s, objp);
3760		if (!s)
3761			continue;
3762
3763		debug_check_no_locks_freed(objp, s->object_size);
3764		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3765			debug_check_no_obj_freed(objp, s->object_size);
3766
3767		__cache_free(s, objp, _RET_IP_);
3768	}
3769	local_irq_enable();
3770
3771	/* FIXME: add tracing */
3772}
3773EXPORT_SYMBOL(kmem_cache_free_bulk);
3774
3775/**
3776 * kfree - free previously allocated memory
3777 * @objp: pointer returned by kmalloc.
3778 *
3779 * If @objp is NULL, no operation is performed.
3780 *
3781 * Don't free memory not originally allocated by kmalloc()
3782 * or you will run into trouble.
3783 */
3784void kfree(const void *objp)
3785{
3786	struct kmem_cache *c;
3787	unsigned long flags;
3788
3789	trace_kfree(_RET_IP_, objp);
3790
3791	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3792		return;
3793	local_irq_save(flags);
3794	kfree_debugcheck(objp);
3795	c = virt_to_cache(objp);
3796	if (!c) {
3797		local_irq_restore(flags);
3798		return;
3799	}
3800	debug_check_no_locks_freed(objp, c->object_size);
3801
3802	debug_check_no_obj_freed(objp, c->object_size);
3803	__cache_free(c, (void *)objp, _RET_IP_);
3804	local_irq_restore(flags);
3805}
3806EXPORT_SYMBOL(kfree);
3807
3808/*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
3811static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812{
3813	int ret;
3814	int node;
3815	struct kmem_cache_node *n;
3816
3817	for_each_online_node(node) {
3818		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819		if (ret)
3820			goto fail;
3821
3822	}
3823
3824	return 0;
3825
3826fail:
3827	if (!cachep->list.next) {
3828		/* Cache is not active yet. Roll back what we did */
3829		node--;
3830		while (node >= 0) {
3831			n = get_node(cachep, node);
3832			if (n) {
3833				kfree(n->shared);
3834				free_alien_cache(n->alien);
3835				kfree(n);
3836				cachep->node[node] = NULL;
3837			}
3838			node--;
3839		}
3840	}
3841	return -ENOMEM;
3842}
3843
3844/* Always called with the slab_mutex held */
3845static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846			    int batchcount, int shared, gfp_t gfp)
3847{
3848	struct array_cache __percpu *cpu_cache, *prev;
3849	int cpu;
3850
3851	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852	if (!cpu_cache)
3853		return -ENOMEM;
3854
3855	prev = cachep->cpu_cache;
3856	cachep->cpu_cache = cpu_cache;
3857	/*
3858	 * Without a previous cpu_cache there's no need to synchronize remote
3859	 * cpus, so skip the IPIs.
3860	 */
3861	if (prev)
3862		kick_all_cpus_sync();
3863
3864	check_irq_on();
3865	cachep->batchcount = batchcount;
3866	cachep->limit = limit;
3867	cachep->shared = shared;
3868
3869	if (!prev)
3870		goto setup_node;
3871
3872	for_each_online_cpu(cpu) {
3873		LIST_HEAD(list);
3874		int node;
3875		struct kmem_cache_node *n;
3876		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878		node = cpu_to_mem(cpu);
3879		n = get_node(cachep, node);
3880		spin_lock_irq(&n->list_lock);
3881		free_block(cachep, ac->entry, ac->avail, node, &list);
3882		spin_unlock_irq(&n->list_lock);
3883		slabs_destroy(cachep, &list);
3884	}
3885	free_percpu(prev);
3886
3887setup_node:
3888	return setup_kmem_cache_nodes(cachep, gfp);
3889}
3890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3891/* Called with slab_mutex held always */
3892static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3893{
3894	int err;
3895	int limit = 0;
3896	int shared = 0;
3897	int batchcount = 0;
3898
3899	err = cache_random_seq_create(cachep, cachep->num, gfp);
3900	if (err)
3901		goto end;
3902
 
 
 
 
 
 
 
3903	if (limit && shared && batchcount)
3904		goto skip_setup;
3905	/*
3906	 * The head array serves three purposes:
3907	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3908	 * - reduce the number of spinlock operations.
3909	 * - reduce the number of linked list operations on the slab and
3910	 *   bufctl chains: array operations are cheaper.
3911	 * The numbers are guessed, we should auto-tune as described by
3912	 * Bonwick.
3913	 */
3914	if (cachep->size > 131072)
3915		limit = 1;
3916	else if (cachep->size > PAGE_SIZE)
3917		limit = 8;
3918	else if (cachep->size > 1024)
3919		limit = 24;
3920	else if (cachep->size > 256)
3921		limit = 54;
3922	else
3923		limit = 120;
3924
3925	/*
3926	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927	 * allocation behaviour: Most allocs on one cpu, most free operations
3928	 * on another cpu. For these cases, an efficient object passing between
3929	 * cpus is necessary. This is provided by a shared array. The array
3930	 * replaces Bonwick's magazine layer.
3931	 * On uniprocessor, it's functionally equivalent (but less efficient)
3932	 * to a larger limit. Thus disabled by default.
3933	 */
3934	shared = 0;
3935	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936		shared = 8;
3937
3938#if DEBUG
3939	/*
3940	 * With debugging enabled, large batchcount lead to excessively long
3941	 * periods with disabled local interrupts. Limit the batchcount
3942	 */
3943	if (limit > 32)
3944		limit = 32;
3945#endif
3946	batchcount = (limit + 1) / 2;
3947skip_setup:
3948	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949end:
3950	if (err)
3951		pr_err("enable_cpucache failed for %s, error %d\n",
3952		       cachep->name, -err);
3953	return err;
3954}
3955
3956/*
3957 * Drain an array if it contains any elements taking the node lock only if
3958 * necessary. Note that the node listlock also protects the array_cache
3959 * if drain_array() is used on the shared array.
3960 */
3961static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3962			 struct array_cache *ac, int node)
3963{
3964	LIST_HEAD(list);
3965
3966	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3967	check_mutex_acquired();
3968
3969	if (!ac || !ac->avail)
3970		return;
3971
3972	if (ac->touched) {
3973		ac->touched = 0;
3974		return;
3975	}
3976
3977	spin_lock_irq(&n->list_lock);
3978	drain_array_locked(cachep, ac, node, false, &list);
3979	spin_unlock_irq(&n->list_lock);
3980
3981	slabs_destroy(cachep, &list);
3982}
3983
3984/**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
3996static void cache_reap(struct work_struct *w)
3997{
3998	struct kmem_cache *searchp;
3999	struct kmem_cache_node *n;
4000	int node = numa_mem_id();
4001	struct delayed_work *work = to_delayed_work(w);
4002
4003	if (!mutex_trylock(&slab_mutex))
4004		/* Give up. Setup the next iteration. */
4005		goto out;
4006
4007	list_for_each_entry(searchp, &slab_caches, list) {
4008		check_irq_on();
4009
4010		/*
4011		 * We only take the node lock if absolutely necessary and we
4012		 * have established with reasonable certainty that
4013		 * we can do some work if the lock was obtained.
4014		 */
4015		n = get_node(searchp, node);
4016
4017		reap_alien(searchp, n);
4018
4019		drain_array(searchp, n, cpu_cache_get(searchp), node);
4020
4021		/*
4022		 * These are racy checks but it does not matter
4023		 * if we skip one check or scan twice.
4024		 */
4025		if (time_after(n->next_reap, jiffies))
4026			goto next;
4027
4028		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4029
4030		drain_array(searchp, n, n->shared, node);
4031
4032		if (n->free_touched)
4033			n->free_touched = 0;
4034		else {
4035			int freed;
4036
4037			freed = drain_freelist(searchp, n, (n->free_limit +
4038				5 * searchp->num - 1) / (5 * searchp->num));
4039			STATS_ADD_REAPED(searchp, freed);
4040		}
4041next:
4042		cond_resched();
4043	}
4044	check_irq_on();
4045	mutex_unlock(&slab_mutex);
4046	next_reap_node();
4047out:
4048	/* Set up the next iteration */
4049	schedule_delayed_work_on(smp_processor_id(), work,
4050				round_jiffies_relative(REAPTIMEOUT_AC));
4051}
4052
 
4053void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4054{
4055	unsigned long active_objs, num_objs, active_slabs;
4056	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4057	unsigned long free_slabs = 0;
4058	int node;
4059	struct kmem_cache_node *n;
4060
4061	for_each_kmem_cache_node(cachep, node, n) {
4062		check_irq_on();
4063		spin_lock_irq(&n->list_lock);
4064
4065		total_slabs += n->total_slabs;
4066		free_slabs += n->free_slabs;
4067		free_objs += n->free_objects;
4068
4069		if (n->shared)
4070			shared_avail += n->shared->avail;
4071
4072		spin_unlock_irq(&n->list_lock);
4073	}
4074	num_objs = total_slabs * cachep->num;
4075	active_slabs = total_slabs - free_slabs;
4076	active_objs = num_objs - free_objs;
4077
4078	sinfo->active_objs = active_objs;
4079	sinfo->num_objs = num_objs;
4080	sinfo->active_slabs = active_slabs;
4081	sinfo->num_slabs = total_slabs;
4082	sinfo->shared_avail = shared_avail;
4083	sinfo->limit = cachep->limit;
4084	sinfo->batchcount = cachep->batchcount;
4085	sinfo->shared = cachep->shared;
4086	sinfo->objects_per_slab = cachep->num;
4087	sinfo->cache_order = cachep->gfporder;
4088}
4089
4090void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4091{
4092#if STATS
4093	{			/* node stats */
4094		unsigned long high = cachep->high_mark;
4095		unsigned long allocs = cachep->num_allocations;
4096		unsigned long grown = cachep->grown;
4097		unsigned long reaped = cachep->reaped;
4098		unsigned long errors = cachep->errors;
4099		unsigned long max_freeable = cachep->max_freeable;
4100		unsigned long node_allocs = cachep->node_allocs;
4101		unsigned long node_frees = cachep->node_frees;
4102		unsigned long overflows = cachep->node_overflow;
4103
4104		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4105			   allocs, high, grown,
4106			   reaped, errors, max_freeable, node_allocs,
4107			   node_frees, overflows);
4108	}
4109	/* cpu stats */
4110	{
4111		unsigned long allochit = atomic_read(&cachep->allochit);
4112		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4113		unsigned long freehit = atomic_read(&cachep->freehit);
4114		unsigned long freemiss = atomic_read(&cachep->freemiss);
4115
4116		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4117			   allochit, allocmiss, freehit, freemiss);
4118	}
4119#endif
4120}
4121
4122#define MAX_SLABINFO_WRITE 128
4123/**
4124 * slabinfo_write - Tuning for the slab allocator
4125 * @file: unused
4126 * @buffer: user buffer
4127 * @count: data length
4128 * @ppos: unused
4129 *
4130 * Return: %0 on success, negative error code otherwise.
4131 */
4132ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4133		       size_t count, loff_t *ppos)
4134{
4135	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4136	int limit, batchcount, shared, res;
4137	struct kmem_cache *cachep;
4138
4139	if (count > MAX_SLABINFO_WRITE)
4140		return -EINVAL;
4141	if (copy_from_user(&kbuf, buffer, count))
4142		return -EFAULT;
4143	kbuf[MAX_SLABINFO_WRITE] = '\0';
4144
4145	tmp = strchr(kbuf, ' ');
4146	if (!tmp)
4147		return -EINVAL;
4148	*tmp = '\0';
4149	tmp++;
4150	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4151		return -EINVAL;
4152
4153	/* Find the cache in the chain of caches. */
4154	mutex_lock(&slab_mutex);
4155	res = -EINVAL;
4156	list_for_each_entry(cachep, &slab_caches, list) {
4157		if (!strcmp(cachep->name, kbuf)) {
4158			if (limit < 1 || batchcount < 1 ||
4159					batchcount > limit || shared < 0) {
4160				res = 0;
4161			} else {
4162				res = do_tune_cpucache(cachep, limit,
4163						       batchcount, shared,
4164						       GFP_KERNEL);
4165			}
4166			break;
4167		}
4168	}
4169	mutex_unlock(&slab_mutex);
4170	if (res >= 0)
4171		res = count;
4172	return res;
4173}
4174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175#ifdef CONFIG_HARDENED_USERCOPY
4176/*
4177 * Rejects incorrectly sized objects and objects that are to be copied
4178 * to/from userspace but do not fall entirely within the containing slab
4179 * cache's usercopy region.
4180 *
4181 * Returns NULL if check passes, otherwise const char * to name of cache
4182 * to indicate an error.
4183 */
4184void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4185			 bool to_user)
4186{
4187	struct kmem_cache *cachep;
4188	unsigned int objnr;
4189	unsigned long offset;
4190
4191	ptr = kasan_reset_tag(ptr);
4192
4193	/* Find and validate object. */
4194	cachep = page->slab_cache;
4195	objnr = obj_to_index(cachep, page, (void *)ptr);
4196	BUG_ON(objnr >= cachep->num);
4197
4198	/* Find offset within object. */
4199	if (is_kfence_address(ptr))
4200		offset = ptr - kfence_object_start(ptr);
4201	else
4202		offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4203
4204	/* Allow address range falling entirely within usercopy region. */
4205	if (offset >= cachep->useroffset &&
4206	    offset - cachep->useroffset <= cachep->usersize &&
4207	    n <= cachep->useroffset - offset + cachep->usersize)
4208		return;
4209
4210	/*
4211	 * If the copy is still within the allocated object, produce
4212	 * a warning instead of rejecting the copy. This is intended
4213	 * to be a temporary method to find any missing usercopy
4214	 * whitelists.
4215	 */
4216	if (usercopy_fallback &&
4217	    offset <= cachep->object_size &&
4218	    n <= cachep->object_size - offset) {
4219		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4220		return;
4221	}
4222
4223	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4224}
4225#endif /* CONFIG_HARDENED_USERCOPY */
4226
4227/**
4228 * __ksize -- Uninstrumented ksize.
4229 * @objp: pointer to the object
4230 *
4231 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4232 * safety checks as ksize() with KASAN instrumentation enabled.
4233 *
4234 * Return: size of the actual memory used by @objp in bytes
 
 
 
4235 */
4236size_t __ksize(const void *objp)
4237{
4238	struct kmem_cache *c;
4239	size_t size;
4240
4241	BUG_ON(!objp);
4242	if (unlikely(objp == ZERO_SIZE_PTR))
4243		return 0;
4244
4245	c = virt_to_cache(objp);
4246	size = c ? c->object_size : 0;
 
 
 
4247
4248	return size;
4249}
4250EXPORT_SYMBOL(__ksize);
v4.10.11
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 119
 120#include	<net/__KEEPIDENTS__CF.h>
 121
 122#include	<asm/cacheflush.h>
 123#include	<asm/tlbflush.h>
 124#include	<asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include	"internal.h"
 129
 130#include	"slab.h"
 131
 132/*
 133 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *		  0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS	- 1 to collect stats for /proc/slabinfo.
 137 *		  0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define	DEBUG		1
 144#define	STATS		1
 145#define	FORCED_DEBUG	1
 146#else
 147#define	DEBUG		0
 148#define	STATS		0
 149#define	FORCED_DEBUG	0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define	BYTES_PER_WORD		sizeof(void *)
 154#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184	unsigned int avail;
 185	unsigned int limit;
 186	unsigned int batchcount;
 187	unsigned int touched;
 188	void *entry[];	/*
 189			 * Must have this definition in here for the proper
 190			 * alignment of array_cache. Also simplifies accessing
 191			 * the entries.
 192			 */
 193};
 194
 195struct alien_cache {
 196	spinlock_t lock;
 197	struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define	CACHE_CACHE 0
 206#define	SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209			struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211			int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 217						void **list);
 218static inline void fixup_slab_list(struct kmem_cache *cachep,
 219				struct kmem_cache_node *n, struct page *page,
 220				void **list);
 221static int slab_early_init = 1;
 222
 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 224
 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
 226{
 227	INIT_LIST_HEAD(&parent->slabs_full);
 228	INIT_LIST_HEAD(&parent->slabs_partial);
 229	INIT_LIST_HEAD(&parent->slabs_free);
 230	parent->total_slabs = 0;
 231	parent->free_slabs = 0;
 232	parent->shared = NULL;
 233	parent->alien = NULL;
 234	parent->colour_next = 0;
 235	spin_lock_init(&parent->list_lock);
 236	parent->free_objects = 0;
 237	parent->free_touched = 0;
 238}
 239
 240#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 241	do {								\
 242		INIT_LIST_HEAD(listp);					\
 243		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 244	} while (0)
 245
 246#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 247	do {								\
 248	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 249	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 250	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 251	} while (0)
 252
 253#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
 254#define CFLGS_OFF_SLAB		(0x80000000UL)
 255#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 256#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 257
 258#define BATCHREFILL_LIMIT	16
 259/*
 260 * Optimization question: fewer reaps means less probability for unnessary
 261 * cpucache drain/refill cycles.
 262 *
 263 * OTOH the cpuarrays can contain lots of objects,
 264 * which could lock up otherwise freeable slabs.
 265 */
 266#define REAPTIMEOUT_AC		(2*HZ)
 267#define REAPTIMEOUT_NODE	(4*HZ)
 268
 269#if STATS
 270#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 271#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 272#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 273#define	STATS_INC_GROWN(x)	((x)->grown++)
 274#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 275#define	STATS_SET_HIGH(x)						\
 276	do {								\
 277		if ((x)->num_active > (x)->high_mark)			\
 278			(x)->high_mark = (x)->num_active;		\
 279	} while (0)
 280#define	STATS_INC_ERR(x)	((x)->errors++)
 281#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 282#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 283#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 284#define	STATS_SET_FREEABLE(x, i)					\
 285	do {								\
 286		if ((x)->max_freeable < i)				\
 287			(x)->max_freeable = i;				\
 288	} while (0)
 289#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 290#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 291#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 292#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 293#else
 294#define	STATS_INC_ACTIVE(x)	do { } while (0)
 295#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 296#define	STATS_INC_ALLOCED(x)	do { } while (0)
 297#define	STATS_INC_GROWN(x)	do { } while (0)
 298#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 299#define	STATS_SET_HIGH(x)	do { } while (0)
 300#define	STATS_INC_ERR(x)	do { } while (0)
 301#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 302#define	STATS_INC_NODEFREES(x)	do { } while (0)
 303#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 304#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 305#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 306#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 307#define STATS_INC_FREEHIT(x)	do { } while (0)
 308#define STATS_INC_FREEMISS(x)	do { } while (0)
 309#endif
 310
 311#if DEBUG
 312
 313/*
 314 * memory layout of objects:
 315 * 0		: objp
 316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 317 * 		the end of an object is aligned with the end of the real
 318 * 		allocation. Catches writes behind the end of the allocation.
 319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 320 * 		redzone word.
 321 * cachep->obj_offset: The real object.
 322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 323 * cachep->size - 1* BYTES_PER_WORD: last caller address
 324 *					[BYTES_PER_WORD long]
 325 */
 326static int obj_offset(struct kmem_cache *cachep)
 327{
 328	return cachep->obj_offset;
 329}
 330
 331static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 332{
 333	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 334	return (unsigned long long*) (objp + obj_offset(cachep) -
 335				      sizeof(unsigned long long));
 336}
 337
 338static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 339{
 340	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 341	if (cachep->flags & SLAB_STORE_USER)
 342		return (unsigned long long *)(objp + cachep->size -
 343					      sizeof(unsigned long long) -
 344					      REDZONE_ALIGN);
 345	return (unsigned long long *) (objp + cachep->size -
 346				       sizeof(unsigned long long));
 347}
 348
 349static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 350{
 351	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 352	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 353}
 354
 355#else
 356
 357#define obj_offset(x)			0
 358#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 359#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 360#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 361
 362#endif
 363
 364#ifdef CONFIG_DEBUG_SLAB_LEAK
 365
 366static inline bool is_store_user_clean(struct kmem_cache *cachep)
 367{
 368	return atomic_read(&cachep->store_user_clean) == 1;
 369}
 370
 371static inline void set_store_user_clean(struct kmem_cache *cachep)
 372{
 373	atomic_set(&cachep->store_user_clean, 1);
 374}
 375
 376static inline void set_store_user_dirty(struct kmem_cache *cachep)
 377{
 378	if (is_store_user_clean(cachep))
 379		atomic_set(&cachep->store_user_clean, 0);
 380}
 381
 382#else
 383static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 384
 385#endif
 386
 387/*
 388 * Do not go above this order unless 0 objects fit into the slab or
 389 * overridden on the command line.
 390 */
 391#define	SLAB_MAX_ORDER_HI	1
 392#define	SLAB_MAX_ORDER_LO	0
 393static int slab_max_order = SLAB_MAX_ORDER_LO;
 394static bool slab_max_order_set __initdata;
 395
 396static inline struct kmem_cache *virt_to_cache(const void *obj)
 397{
 398	struct page *page = virt_to_head_page(obj);
 399	return page->slab_cache;
 400}
 401
 402static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 403				 unsigned int idx)
 404{
 405	return page->s_mem + cache->size * idx;
 406}
 407
 408/*
 409 * We want to avoid an expensive divide : (offset / cache->size)
 410 *   Using the fact that size is a constant for a particular cache,
 411 *   we can replace (offset / cache->size) by
 412 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 413 */
 414static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 415					const struct page *page, void *obj)
 416{
 417	u32 offset = (obj - page->s_mem);
 418	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 419}
 420
 421#define BOOT_CPUCACHE_ENTRIES	1
 422/* internal cache of cache description objs */
 423static struct kmem_cache kmem_cache_boot = {
 424	.batchcount = 1,
 425	.limit = BOOT_CPUCACHE_ENTRIES,
 426	.shared = 1,
 427	.size = sizeof(struct kmem_cache),
 428	.name = "kmem_cache",
 429};
 430
 431static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 432
 433static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 434{
 435	return this_cpu_ptr(cachep->cpu_cache);
 436}
 437
 438/*
 439 * Calculate the number of objects and left-over bytes for a given buffer size.
 440 */
 441static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 442		unsigned long flags, size_t *left_over)
 443{
 444	unsigned int num;
 445	size_t slab_size = PAGE_SIZE << gfporder;
 446
 447	/*
 448	 * The slab management structure can be either off the slab or
 449	 * on it. For the latter case, the memory allocated for a
 450	 * slab is used for:
 451	 *
 452	 * - @buffer_size bytes for each object
 453	 * - One freelist_idx_t for each object
 454	 *
 455	 * We don't need to consider alignment of freelist because
 456	 * freelist will be at the end of slab page. The objects will be
 457	 * at the correct alignment.
 458	 *
 459	 * If the slab management structure is off the slab, then the
 460	 * alignment will already be calculated into the size. Because
 461	 * the slabs are all pages aligned, the objects will be at the
 462	 * correct alignment when allocated.
 463	 */
 464	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 465		num = slab_size / buffer_size;
 466		*left_over = slab_size % buffer_size;
 467	} else {
 468		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 469		*left_over = slab_size %
 470			(buffer_size + sizeof(freelist_idx_t));
 471	}
 472
 473	return num;
 474}
 475
 476#if DEBUG
 477#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 478
 479static void __slab_error(const char *function, struct kmem_cache *cachep,
 480			char *msg)
 481{
 482	pr_err("slab error in %s(): cache `%s': %s\n",
 483	       function, cachep->name, msg);
 484	dump_stack();
 485	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 486}
 487#endif
 488
 489/*
 490 * By default on NUMA we use alien caches to stage the freeing of
 491 * objects allocated from other nodes. This causes massive memory
 492 * inefficiencies when using fake NUMA setup to split memory into a
 493 * large number of small nodes, so it can be disabled on the command
 494 * line
 495  */
 496
 497static int use_alien_caches __read_mostly = 1;
 498static int __init noaliencache_setup(char *s)
 499{
 500	use_alien_caches = 0;
 501	return 1;
 502}
 503__setup("noaliencache", noaliencache_setup);
 504
 505static int __init slab_max_order_setup(char *str)
 506{
 507	get_option(&str, &slab_max_order);
 508	slab_max_order = slab_max_order < 0 ? 0 :
 509				min(slab_max_order, MAX_ORDER - 1);
 510	slab_max_order_set = true;
 511
 512	return 1;
 513}
 514__setup("slab_max_order=", slab_max_order_setup);
 515
 516#ifdef CONFIG_NUMA
 517/*
 518 * Special reaping functions for NUMA systems called from cache_reap().
 519 * These take care of doing round robin flushing of alien caches (containing
 520 * objects freed on different nodes from which they were allocated) and the
 521 * flushing of remote pcps by calling drain_node_pages.
 522 */
 523static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 524
 525static void init_reap_node(int cpu)
 526{
 527	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 528						    node_online_map);
 529}
 530
 531static void next_reap_node(void)
 532{
 533	int node = __this_cpu_read(slab_reap_node);
 534
 535	node = next_node_in(node, node_online_map);
 536	__this_cpu_write(slab_reap_node, node);
 537}
 538
 539#else
 540#define init_reap_node(cpu) do { } while (0)
 541#define next_reap_node(void) do { } while (0)
 542#endif
 543
 544/*
 545 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 546 * via the workqueue/eventd.
 547 * Add the CPU number into the expiration time to minimize the possibility of
 548 * the CPUs getting into lockstep and contending for the global cache chain
 549 * lock.
 550 */
 551static void start_cpu_timer(int cpu)
 552{
 553	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 554
 555	if (reap_work->work.func == NULL) {
 556		init_reap_node(cpu);
 557		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 558		schedule_delayed_work_on(cpu, reap_work,
 559					__round_jiffies_relative(HZ, cpu));
 560	}
 561}
 562
 563static void init_arraycache(struct array_cache *ac, int limit, int batch)
 564{
 565	/*
 566	 * The array_cache structures contain pointers to free object.
 567	 * However, when such objects are allocated or transferred to another
 568	 * cache the pointers are not cleared and they could be counted as
 569	 * valid references during a kmemleak scan. Therefore, kmemleak must
 570	 * not scan such objects.
 571	 */
 572	kmemleak_no_scan(ac);
 573	if (ac) {
 574		ac->avail = 0;
 575		ac->limit = limit;
 576		ac->batchcount = batch;
 577		ac->touched = 0;
 578	}
 579}
 580
 581static struct array_cache *alloc_arraycache(int node, int entries,
 582					    int batchcount, gfp_t gfp)
 583{
 584	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 585	struct array_cache *ac = NULL;
 586
 587	ac = kmalloc_node(memsize, gfp, node);
 
 
 
 
 
 
 
 
 588	init_arraycache(ac, entries, batchcount);
 589	return ac;
 590}
 591
 592static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 593					struct page *page, void *objp)
 594{
 595	struct kmem_cache_node *n;
 596	int page_node;
 597	LIST_HEAD(list);
 598
 599	page_node = page_to_nid(page);
 600	n = get_node(cachep, page_node);
 601
 602	spin_lock(&n->list_lock);
 603	free_block(cachep, &objp, 1, page_node, &list);
 604	spin_unlock(&n->list_lock);
 605
 606	slabs_destroy(cachep, &list);
 607}
 608
 609/*
 610 * Transfer objects in one arraycache to another.
 611 * Locking must be handled by the caller.
 612 *
 613 * Return the number of entries transferred.
 614 */
 615static int transfer_objects(struct array_cache *to,
 616		struct array_cache *from, unsigned int max)
 617{
 618	/* Figure out how many entries to transfer */
 619	int nr = min3(from->avail, max, to->limit - to->avail);
 620
 621	if (!nr)
 622		return 0;
 623
 624	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 625			sizeof(void *) *nr);
 626
 627	from->avail -= nr;
 628	to->avail += nr;
 629	return nr;
 630}
 631
 
 
 
 
 
 
 
 
 
 
 632#ifndef CONFIG_NUMA
 633
 634#define drain_alien_cache(cachep, alien) do { } while (0)
 635#define reap_alien(cachep, n) do { } while (0)
 636
 637static inline struct alien_cache **alloc_alien_cache(int node,
 638						int limit, gfp_t gfp)
 639{
 640	return NULL;
 641}
 642
 643static inline void free_alien_cache(struct alien_cache **ac_ptr)
 644{
 645}
 646
 647static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 648{
 649	return 0;
 650}
 651
 652static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 653		gfp_t flags)
 654{
 655	return NULL;
 656}
 657
 658static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 659		 gfp_t flags, int nodeid)
 660{
 661	return NULL;
 662}
 663
 664static inline gfp_t gfp_exact_node(gfp_t flags)
 665{
 666	return flags & ~__GFP_NOFAIL;
 667}
 668
 669#else	/* CONFIG_NUMA */
 670
 671static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 672static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 673
 674static struct alien_cache *__alloc_alien_cache(int node, int entries,
 675						int batch, gfp_t gfp)
 676{
 677	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 678	struct alien_cache *alc = NULL;
 679
 680	alc = kmalloc_node(memsize, gfp, node);
 681	init_arraycache(&alc->ac, entries, batch);
 682	spin_lock_init(&alc->lock);
 
 
 
 683	return alc;
 684}
 685
 686static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 687{
 688	struct alien_cache **alc_ptr;
 689	size_t memsize = sizeof(void *) * nr_node_ids;
 690	int i;
 691
 692	if (limit > 1)
 693		limit = 12;
 694	alc_ptr = kzalloc_node(memsize, gfp, node);
 695	if (!alc_ptr)
 696		return NULL;
 697
 698	for_each_node(i) {
 699		if (i == node || !node_online(i))
 700			continue;
 701		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 702		if (!alc_ptr[i]) {
 703			for (i--; i >= 0; i--)
 704				kfree(alc_ptr[i]);
 705			kfree(alc_ptr);
 706			return NULL;
 707		}
 708	}
 709	return alc_ptr;
 710}
 711
 712static void free_alien_cache(struct alien_cache **alc_ptr)
 713{
 714	int i;
 715
 716	if (!alc_ptr)
 717		return;
 718	for_each_node(i)
 719	    kfree(alc_ptr[i]);
 720	kfree(alc_ptr);
 721}
 722
 723static void __drain_alien_cache(struct kmem_cache *cachep,
 724				struct array_cache *ac, int node,
 725				struct list_head *list)
 726{
 727	struct kmem_cache_node *n = get_node(cachep, node);
 728
 729	if (ac->avail) {
 730		spin_lock(&n->list_lock);
 731		/*
 732		 * Stuff objects into the remote nodes shared array first.
 733		 * That way we could avoid the overhead of putting the objects
 734		 * into the free lists and getting them back later.
 735		 */
 736		if (n->shared)
 737			transfer_objects(n->shared, ac, ac->limit);
 738
 739		free_block(cachep, ac->entry, ac->avail, node, list);
 740		ac->avail = 0;
 741		spin_unlock(&n->list_lock);
 742	}
 743}
 744
 745/*
 746 * Called from cache_reap() to regularly drain alien caches round robin.
 747 */
 748static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 749{
 750	int node = __this_cpu_read(slab_reap_node);
 751
 752	if (n->alien) {
 753		struct alien_cache *alc = n->alien[node];
 754		struct array_cache *ac;
 755
 756		if (alc) {
 757			ac = &alc->ac;
 758			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 759				LIST_HEAD(list);
 760
 761				__drain_alien_cache(cachep, ac, node, &list);
 762				spin_unlock_irq(&alc->lock);
 763				slabs_destroy(cachep, &list);
 764			}
 765		}
 766	}
 767}
 768
 769static void drain_alien_cache(struct kmem_cache *cachep,
 770				struct alien_cache **alien)
 771{
 772	int i = 0;
 773	struct alien_cache *alc;
 774	struct array_cache *ac;
 775	unsigned long flags;
 776
 777	for_each_online_node(i) {
 778		alc = alien[i];
 779		if (alc) {
 780			LIST_HEAD(list);
 781
 782			ac = &alc->ac;
 783			spin_lock_irqsave(&alc->lock, flags);
 784			__drain_alien_cache(cachep, ac, i, &list);
 785			spin_unlock_irqrestore(&alc->lock, flags);
 786			slabs_destroy(cachep, &list);
 787		}
 788	}
 789}
 790
 791static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 792				int node, int page_node)
 793{
 794	struct kmem_cache_node *n;
 795	struct alien_cache *alien = NULL;
 796	struct array_cache *ac;
 797	LIST_HEAD(list);
 798
 799	n = get_node(cachep, node);
 800	STATS_INC_NODEFREES(cachep);
 801	if (n->alien && n->alien[page_node]) {
 802		alien = n->alien[page_node];
 803		ac = &alien->ac;
 804		spin_lock(&alien->lock);
 805		if (unlikely(ac->avail == ac->limit)) {
 806			STATS_INC_ACOVERFLOW(cachep);
 807			__drain_alien_cache(cachep, ac, page_node, &list);
 808		}
 809		ac->entry[ac->avail++] = objp;
 810		spin_unlock(&alien->lock);
 811		slabs_destroy(cachep, &list);
 812	} else {
 813		n = get_node(cachep, page_node);
 814		spin_lock(&n->list_lock);
 815		free_block(cachep, &objp, 1, page_node, &list);
 816		spin_unlock(&n->list_lock);
 817		slabs_destroy(cachep, &list);
 818	}
 819	return 1;
 820}
 821
 822static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 823{
 824	int page_node = page_to_nid(virt_to_page(objp));
 825	int node = numa_mem_id();
 826	/*
 827	 * Make sure we are not freeing a object from another node to the array
 828	 * cache on this cpu.
 829	 */
 830	if (likely(node == page_node))
 831		return 0;
 832
 833	return __cache_free_alien(cachep, objp, node, page_node);
 834}
 835
 836/*
 837 * Construct gfp mask to allocate from a specific node but do not reclaim or
 838 * warn about failures.
 839 */
 840static inline gfp_t gfp_exact_node(gfp_t flags)
 841{
 842	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 843}
 844#endif
 845
 846static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 847{
 848	struct kmem_cache_node *n;
 849
 850	/*
 851	 * Set up the kmem_cache_node for cpu before we can
 852	 * begin anything. Make sure some other cpu on this
 853	 * node has not already allocated this
 854	 */
 855	n = get_node(cachep, node);
 856	if (n) {
 857		spin_lock_irq(&n->list_lock);
 858		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 859				cachep->num;
 860		spin_unlock_irq(&n->list_lock);
 861
 862		return 0;
 863	}
 864
 865	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 866	if (!n)
 867		return -ENOMEM;
 868
 869	kmem_cache_node_init(n);
 870	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 871		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 872
 873	n->free_limit =
 874		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 875
 876	/*
 877	 * The kmem_cache_nodes don't come and go as CPUs
 878	 * come and go.  slab_mutex is sufficient
 879	 * protection here.
 880	 */
 881	cachep->node[node] = n;
 882
 883	return 0;
 884}
 885
 886#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 887/*
 888 * Allocates and initializes node for a node on each slab cache, used for
 889 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 890 * will be allocated off-node since memory is not yet online for the new node.
 891 * When hotplugging memory or a cpu, existing node are not replaced if
 892 * already in use.
 893 *
 894 * Must hold slab_mutex.
 895 */
 896static int init_cache_node_node(int node)
 897{
 898	int ret;
 899	struct kmem_cache *cachep;
 900
 901	list_for_each_entry(cachep, &slab_caches, list) {
 902		ret = init_cache_node(cachep, node, GFP_KERNEL);
 903		if (ret)
 904			return ret;
 905	}
 906
 907	return 0;
 908}
 909#endif
 910
 911static int setup_kmem_cache_node(struct kmem_cache *cachep,
 912				int node, gfp_t gfp, bool force_change)
 913{
 914	int ret = -ENOMEM;
 915	struct kmem_cache_node *n;
 916	struct array_cache *old_shared = NULL;
 917	struct array_cache *new_shared = NULL;
 918	struct alien_cache **new_alien = NULL;
 919	LIST_HEAD(list);
 920
 921	if (use_alien_caches) {
 922		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 923		if (!new_alien)
 924			goto fail;
 925	}
 926
 927	if (cachep->shared) {
 928		new_shared = alloc_arraycache(node,
 929			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 930		if (!new_shared)
 931			goto fail;
 932	}
 933
 934	ret = init_cache_node(cachep, node, gfp);
 935	if (ret)
 936		goto fail;
 937
 938	n = get_node(cachep, node);
 939	spin_lock_irq(&n->list_lock);
 940	if (n->shared && force_change) {
 941		free_block(cachep, n->shared->entry,
 942				n->shared->avail, node, &list);
 943		n->shared->avail = 0;
 944	}
 945
 946	if (!n->shared || force_change) {
 947		old_shared = n->shared;
 948		n->shared = new_shared;
 949		new_shared = NULL;
 950	}
 951
 952	if (!n->alien) {
 953		n->alien = new_alien;
 954		new_alien = NULL;
 955	}
 956
 957	spin_unlock_irq(&n->list_lock);
 958	slabs_destroy(cachep, &list);
 959
 960	/*
 961	 * To protect lockless access to n->shared during irq disabled context.
 962	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 963	 * guaranteed to be valid until irq is re-enabled, because it will be
 964	 * freed after synchronize_sched().
 965	 */
 966	if (old_shared && force_change)
 967		synchronize_sched();
 968
 969fail:
 970	kfree(old_shared);
 971	kfree(new_shared);
 972	free_alien_cache(new_alien);
 973
 974	return ret;
 975}
 976
 977#ifdef CONFIG_SMP
 978
 979static void cpuup_canceled(long cpu)
 980{
 981	struct kmem_cache *cachep;
 982	struct kmem_cache_node *n = NULL;
 983	int node = cpu_to_mem(cpu);
 984	const struct cpumask *mask = cpumask_of_node(node);
 985
 986	list_for_each_entry(cachep, &slab_caches, list) {
 987		struct array_cache *nc;
 988		struct array_cache *shared;
 989		struct alien_cache **alien;
 990		LIST_HEAD(list);
 991
 992		n = get_node(cachep, node);
 993		if (!n)
 994			continue;
 995
 996		spin_lock_irq(&n->list_lock);
 997
 998		/* Free limit for this kmem_cache_node */
 999		n->free_limit -= cachep->batchcount;
1000
1001		/* cpu is dead; no one can alloc from it. */
1002		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003		if (nc) {
1004			free_block(cachep, nc->entry, nc->avail, node, &list);
1005			nc->avail = 0;
1006		}
1007
1008		if (!cpumask_empty(mask)) {
1009			spin_unlock_irq(&n->list_lock);
1010			goto free_slab;
1011		}
1012
1013		shared = n->shared;
1014		if (shared) {
1015			free_block(cachep, shared->entry,
1016				   shared->avail, node, &list);
1017			n->shared = NULL;
1018		}
1019
1020		alien = n->alien;
1021		n->alien = NULL;
1022
1023		spin_unlock_irq(&n->list_lock);
1024
1025		kfree(shared);
1026		if (alien) {
1027			drain_alien_cache(cachep, alien);
1028			free_alien_cache(alien);
1029		}
1030
1031free_slab:
1032		slabs_destroy(cachep, &list);
1033	}
1034	/*
1035	 * In the previous loop, all the objects were freed to
1036	 * the respective cache's slabs,  now we can go ahead and
1037	 * shrink each nodelist to its limit.
1038	 */
1039	list_for_each_entry(cachep, &slab_caches, list) {
1040		n = get_node(cachep, node);
1041		if (!n)
1042			continue;
1043		drain_freelist(cachep, n, INT_MAX);
1044	}
1045}
1046
1047static int cpuup_prepare(long cpu)
1048{
1049	struct kmem_cache *cachep;
1050	int node = cpu_to_mem(cpu);
1051	int err;
1052
1053	/*
1054	 * We need to do this right in the beginning since
1055	 * alloc_arraycache's are going to use this list.
1056	 * kmalloc_node allows us to add the slab to the right
1057	 * kmem_cache_node and not this cpu's kmem_cache_node
1058	 */
1059	err = init_cache_node_node(node);
1060	if (err < 0)
1061		goto bad;
1062
1063	/*
1064	 * Now we can go ahead with allocating the shared arrays and
1065	 * array caches
1066	 */
1067	list_for_each_entry(cachep, &slab_caches, list) {
1068		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069		if (err)
1070			goto bad;
1071	}
1072
1073	return 0;
1074bad:
1075	cpuup_canceled(cpu);
1076	return -ENOMEM;
1077}
1078
1079int slab_prepare_cpu(unsigned int cpu)
1080{
1081	int err;
1082
1083	mutex_lock(&slab_mutex);
1084	err = cpuup_prepare(cpu);
1085	mutex_unlock(&slab_mutex);
1086	return err;
1087}
1088
1089/*
1090 * This is called for a failed online attempt and for a successful
1091 * offline.
1092 *
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down.  The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098 */
1099int slab_dead_cpu(unsigned int cpu)
1100{
1101	mutex_lock(&slab_mutex);
1102	cpuup_canceled(cpu);
1103	mutex_unlock(&slab_mutex);
1104	return 0;
1105}
1106#endif
1107
1108static int slab_online_cpu(unsigned int cpu)
1109{
1110	start_cpu_timer(cpu);
1111	return 0;
1112}
1113
1114static int slab_offline_cpu(unsigned int cpu)
1115{
1116	/*
1117	 * Shutdown cache reaper. Note that the slab_mutex is held so
1118	 * that if cache_reap() is invoked it cannot do anything
1119	 * expensive but will only modify reap_work and reschedule the
1120	 * timer.
1121	 */
1122	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123	/* Now the cache_reaper is guaranteed to be not running. */
1124	per_cpu(slab_reap_work, cpu).work.func = NULL;
1125	return 0;
1126}
1127
1128#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129/*
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1132 * removed.
1133 *
1134 * Must hold slab_mutex.
1135 */
1136static int __meminit drain_cache_node_node(int node)
1137{
1138	struct kmem_cache *cachep;
1139	int ret = 0;
1140
1141	list_for_each_entry(cachep, &slab_caches, list) {
1142		struct kmem_cache_node *n;
1143
1144		n = get_node(cachep, node);
1145		if (!n)
1146			continue;
1147
1148		drain_freelist(cachep, n, INT_MAX);
1149
1150		if (!list_empty(&n->slabs_full) ||
1151		    !list_empty(&n->slabs_partial)) {
1152			ret = -EBUSY;
1153			break;
1154		}
1155	}
1156	return ret;
1157}
1158
1159static int __meminit slab_memory_callback(struct notifier_block *self,
1160					unsigned long action, void *arg)
1161{
1162	struct memory_notify *mnb = arg;
1163	int ret = 0;
1164	int nid;
1165
1166	nid = mnb->status_change_nid;
1167	if (nid < 0)
1168		goto out;
1169
1170	switch (action) {
1171	case MEM_GOING_ONLINE:
1172		mutex_lock(&slab_mutex);
1173		ret = init_cache_node_node(nid);
1174		mutex_unlock(&slab_mutex);
1175		break;
1176	case MEM_GOING_OFFLINE:
1177		mutex_lock(&slab_mutex);
1178		ret = drain_cache_node_node(nid);
1179		mutex_unlock(&slab_mutex);
1180		break;
1181	case MEM_ONLINE:
1182	case MEM_OFFLINE:
1183	case MEM_CANCEL_ONLINE:
1184	case MEM_CANCEL_OFFLINE:
1185		break;
1186	}
1187out:
1188	return notifier_from_errno(ret);
1189}
1190#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191
1192/*
1193 * swap the static kmem_cache_node with kmalloced memory
1194 */
1195static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196				int nodeid)
1197{
1198	struct kmem_cache_node *ptr;
1199
1200	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201	BUG_ON(!ptr);
1202
1203	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204	/*
1205	 * Do not assume that spinlocks can be initialized via memcpy:
1206	 */
1207	spin_lock_init(&ptr->list_lock);
1208
1209	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210	cachep->node[nodeid] = ptr;
1211}
1212
1213/*
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1216 */
1217static void __init set_up_node(struct kmem_cache *cachep, int index)
1218{
1219	int node;
1220
1221	for_each_online_node(node) {
1222		cachep->node[node] = &init_kmem_cache_node[index + node];
1223		cachep->node[node]->next_reap = jiffies +
1224		    REAPTIMEOUT_NODE +
1225		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226	}
1227}
1228
1229/*
1230 * Initialisation.  Called after the page allocator have been initialised and
1231 * before smp_init().
1232 */
1233void __init kmem_cache_init(void)
1234{
1235	int i;
1236
1237	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238					sizeof(struct rcu_head));
1239	kmem_cache = &kmem_cache_boot;
1240
1241	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242		use_alien_caches = 0;
1243
1244	for (i = 0; i < NUM_INIT_LISTS; i++)
1245		kmem_cache_node_init(&init_kmem_cache_node[i]);
1246
1247	/*
1248	 * Fragmentation resistance on low memory - only use bigger
1249	 * page orders on machines with more than 32MB of memory if
1250	 * not overridden on the command line.
1251	 */
1252	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253		slab_max_order = SLAB_MAX_ORDER_HI;
1254
1255	/* Bootstrap is tricky, because several objects are allocated
1256	 * from caches that do not exist yet:
1257	 * 1) initialize the kmem_cache cache: it contains the struct
1258	 *    kmem_cache structures of all caches, except kmem_cache itself:
1259	 *    kmem_cache is statically allocated.
1260	 *    Initially an __init data area is used for the head array and the
1261	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1262	 *    array at the end of the bootstrap.
1263	 * 2) Create the first kmalloc cache.
1264	 *    The struct kmem_cache for the new cache is allocated normally.
1265	 *    An __init data area is used for the head array.
1266	 * 3) Create the remaining kmalloc caches, with minimally sized
1267	 *    head arrays.
1268	 * 4) Replace the __init data head arrays for kmem_cache and the first
1269	 *    kmalloc cache with kmalloc allocated arrays.
1270	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271	 *    the other cache's with kmalloc allocated memory.
1272	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273	 */
1274
1275	/* 1) create the kmem_cache */
1276
1277	/*
1278	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279	 */
1280	create_boot_cache(kmem_cache, "kmem_cache",
1281		offsetof(struct kmem_cache, node) +
1282				  nr_node_ids * sizeof(struct kmem_cache_node *),
1283				  SLAB_HWCACHE_ALIGN);
1284	list_add(&kmem_cache->list, &slab_caches);
1285	slab_state = PARTIAL;
1286
1287	/*
1288	 * Initialize the caches that provide memory for the  kmem_cache_node
1289	 * structures first.  Without this, further allocations will bug.
1290	 */
1291	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
 
 
 
1293	slab_state = PARTIAL_NODE;
1294	setup_kmalloc_cache_index_table();
1295
1296	slab_early_init = 0;
1297
1298	/* 5) Replace the bootstrap kmem_cache_node */
1299	{
1300		int nid;
1301
1302		for_each_online_node(nid) {
1303			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304
1305			init_list(kmalloc_caches[INDEX_NODE],
1306					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307		}
1308	}
1309
1310	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311}
1312
1313void __init kmem_cache_init_late(void)
1314{
1315	struct kmem_cache *cachep;
1316
1317	slab_state = UP;
1318
1319	/* 6) resize the head arrays to their final sizes */
1320	mutex_lock(&slab_mutex);
1321	list_for_each_entry(cachep, &slab_caches, list)
1322		if (enable_cpucache(cachep, GFP_NOWAIT))
1323			BUG();
1324	mutex_unlock(&slab_mutex);
1325
1326	/* Done! */
1327	slab_state = FULL;
1328
1329#ifdef CONFIG_NUMA
1330	/*
1331	 * Register a memory hotplug callback that initializes and frees
1332	 * node.
1333	 */
1334	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335#endif
1336
1337	/*
1338	 * The reap timers are started later, with a module init call: That part
1339	 * of the kernel is not yet operational.
1340	 */
1341}
1342
1343static int __init cpucache_init(void)
1344{
1345	int ret;
1346
1347	/*
1348	 * Register the timers that return unneeded pages to the page allocator
1349	 */
1350	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351				slab_online_cpu, slab_offline_cpu);
1352	WARN_ON(ret < 0);
1353
1354	/* Done! */
1355	slab_state = FULL;
1356	return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364	struct kmem_cache_node *n;
1365	unsigned long flags;
1366	int node;
1367	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368				      DEFAULT_RATELIMIT_BURST);
1369
1370	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371		return;
1372
1373	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374		nodeid, gfpflags, &gfpflags);
1375	pr_warn("  cache: %s, object size: %d, order: %d\n",
1376		cachep->name, cachep->size, cachep->gfporder);
1377
1378	for_each_kmem_cache_node(cachep, node, n) {
1379		unsigned long total_slabs, free_slabs, free_objs;
1380
1381		spin_lock_irqsave(&n->list_lock, flags);
1382		total_slabs = n->total_slabs;
1383		free_slabs = n->free_slabs;
1384		free_objs = n->free_objects;
1385		spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388			node, total_slabs - free_slabs, total_slabs,
1389			(total_slabs * cachep->num) - free_objs,
1390			total_slabs * cachep->num);
1391	}
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404								int nodeid)
1405{
1406	struct page *page;
1407	int nr_pages;
1408
1409	flags |= cachep->allocflags;
1410	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411		flags |= __GFP_RECLAIMABLE;
1412
1413	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414	if (!page) {
1415		slab_out_of_memory(cachep, flags, nodeid);
1416		return NULL;
1417	}
1418
1419	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420		__free_pages(page, cachep->gfporder);
1421		return NULL;
1422	}
1423
1424	nr_pages = (1 << cachep->gfporder);
1425	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426		add_zone_page_state(page_zone(page),
1427			NR_SLAB_RECLAIMABLE, nr_pages);
1428	else
1429		add_zone_page_state(page_zone(page),
1430			NR_SLAB_UNRECLAIMABLE, nr_pages);
1431
1432	__SetPageSlab(page);
1433	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435		SetPageSlabPfmemalloc(page);
1436
1437	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440		if (cachep->ctor)
1441			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442		else
1443			kmemcheck_mark_unallocated_pages(page, nr_pages);
1444	}
1445
1446	return page;
1447}
1448
1449/*
1450 * Interface to system's page release.
1451 */
1452static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453{
1454	int order = cachep->gfporder;
1455	unsigned long nr_freed = (1 << order);
1456
1457	kmemcheck_free_shadow(page, order);
1458
1459	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460		sub_zone_page_state(page_zone(page),
1461				NR_SLAB_RECLAIMABLE, nr_freed);
1462	else
1463		sub_zone_page_state(page_zone(page),
1464				NR_SLAB_UNRECLAIMABLE, nr_freed);
1465
1466	BUG_ON(!PageSlab(page));
1467	__ClearPageSlabPfmemalloc(page);
1468	__ClearPageSlab(page);
1469	page_mapcount_reset(page);
1470	page->mapping = NULL;
 
1471
1472	if (current->reclaim_state)
1473		current->reclaim_state->reclaimed_slab += nr_freed;
1474	memcg_uncharge_slab(page, order, cachep);
1475	__free_pages(page, order);
1476}
1477
1478static void kmem_rcu_free(struct rcu_head *head)
1479{
1480	struct kmem_cache *cachep;
1481	struct page *page;
1482
1483	page = container_of(head, struct page, rcu_head);
1484	cachep = page->slab_cache;
1485
1486	kmem_freepages(cachep, page);
1487}
1488
1489#if DEBUG
1490static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491{
1492	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1493		(cachep->size % PAGE_SIZE) == 0)
1494		return true;
1495
1496	return false;
1497}
1498
1499#ifdef CONFIG_DEBUG_PAGEALLOC
1500static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501			    unsigned long caller)
1502{
1503	int size = cachep->object_size;
1504
1505	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506
1507	if (size < 5 * sizeof(unsigned long))
1508		return;
1509
1510	*addr++ = 0x12345678;
1511	*addr++ = caller;
1512	*addr++ = smp_processor_id();
1513	size -= 3 * sizeof(unsigned long);
1514	{
1515		unsigned long *sptr = &caller;
1516		unsigned long svalue;
1517
1518		while (!kstack_end(sptr)) {
1519			svalue = *sptr++;
1520			if (kernel_text_address(svalue)) {
1521				*addr++ = svalue;
1522				size -= sizeof(unsigned long);
1523				if (size <= sizeof(unsigned long))
1524					break;
1525			}
1526		}
1527
1528	}
1529	*addr++ = 0x87654321;
1530}
1531
1532static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1533				int map, unsigned long caller)
1534{
1535	if (!is_debug_pagealloc_cache(cachep))
1536		return;
1537
1538	if (caller)
1539		store_stackinfo(cachep, objp, caller);
1540
1541	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1542}
1543
1544#else
1545static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1546				int map, unsigned long caller) {}
1547
1548#endif
1549
1550static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551{
1552	int size = cachep->object_size;
1553	addr = &((char *)addr)[obj_offset(cachep)];
1554
1555	memset(addr, val, size);
1556	*(unsigned char *)(addr + size - 1) = POISON_END;
1557}
1558
1559static void dump_line(char *data, int offset, int limit)
1560{
1561	int i;
1562	unsigned char error = 0;
1563	int bad_count = 0;
1564
1565	pr_err("%03x: ", offset);
1566	for (i = 0; i < limit; i++) {
1567		if (data[offset + i] != POISON_FREE) {
1568			error = data[offset + i];
1569			bad_count++;
1570		}
1571	}
1572	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1573			&data[offset], limit, 1);
1574
1575	if (bad_count == 1) {
1576		error ^= POISON_FREE;
1577		if (!(error & (error - 1))) {
1578			pr_err("Single bit error detected. Probably bad RAM.\n");
1579#ifdef CONFIG_X86
1580			pr_err("Run memtest86+ or a similar memory test tool.\n");
1581#else
1582			pr_err("Run a memory test tool.\n");
1583#endif
1584		}
1585	}
1586}
1587#endif
1588
1589#if DEBUG
1590
1591static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592{
1593	int i, size;
1594	char *realobj;
1595
1596	if (cachep->flags & SLAB_RED_ZONE) {
1597		pr_err("Redzone: 0x%llx/0x%llx\n",
1598		       *dbg_redzone1(cachep, objp),
1599		       *dbg_redzone2(cachep, objp));
1600	}
1601
1602	if (cachep->flags & SLAB_STORE_USER) {
1603		pr_err("Last user: [<%p>](%pSR)\n",
1604		       *dbg_userword(cachep, objp),
1605		       *dbg_userword(cachep, objp));
1606	}
1607	realobj = (char *)objp + obj_offset(cachep);
1608	size = cachep->object_size;
1609	for (i = 0; i < size && lines; i += 16, lines--) {
1610		int limit;
1611		limit = 16;
1612		if (i + limit > size)
1613			limit = size - i;
1614		dump_line(realobj, i, limit);
1615	}
1616}
1617
1618static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619{
1620	char *realobj;
1621	int size, i;
1622	int lines = 0;
1623
1624	if (is_debug_pagealloc_cache(cachep))
1625		return;
1626
1627	realobj = (char *)objp + obj_offset(cachep);
1628	size = cachep->object_size;
1629
1630	for (i = 0; i < size; i++) {
1631		char exp = POISON_FREE;
1632		if (i == size - 1)
1633			exp = POISON_END;
1634		if (realobj[i] != exp) {
1635			int limit;
1636			/* Mismatch ! */
1637			/* Print header */
1638			if (lines == 0) {
1639				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640				       print_tainted(), cachep->name,
1641				       realobj, size);
1642				print_objinfo(cachep, objp, 0);
1643			}
1644			/* Hexdump the affected line */
1645			i = (i / 16) * 16;
1646			limit = 16;
1647			if (i + limit > size)
1648				limit = size - i;
1649			dump_line(realobj, i, limit);
1650			i += 16;
1651			lines++;
1652			/* Limit to 5 lines */
1653			if (lines > 5)
1654				break;
1655		}
1656	}
1657	if (lines != 0) {
1658		/* Print some data about the neighboring objects, if they
1659		 * exist:
1660		 */
1661		struct page *page = virt_to_head_page(objp);
1662		unsigned int objnr;
1663
1664		objnr = obj_to_index(cachep, page, objp);
1665		if (objnr) {
1666			objp = index_to_obj(cachep, page, objnr - 1);
1667			realobj = (char *)objp + obj_offset(cachep);
1668			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1669			print_objinfo(cachep, objp, 2);
1670		}
1671		if (objnr + 1 < cachep->num) {
1672			objp = index_to_obj(cachep, page, objnr + 1);
1673			realobj = (char *)objp + obj_offset(cachep);
1674			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1675			print_objinfo(cachep, objp, 2);
1676		}
1677	}
1678}
1679#endif
1680
1681#if DEBUG
1682static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1683						struct page *page)
1684{
1685	int i;
1686
1687	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1688		poison_obj(cachep, page->freelist - obj_offset(cachep),
1689			POISON_FREE);
1690	}
1691
1692	for (i = 0; i < cachep->num; i++) {
1693		void *objp = index_to_obj(cachep, page, i);
1694
1695		if (cachep->flags & SLAB_POISON) {
1696			check_poison_obj(cachep, objp);
1697			slab_kernel_map(cachep, objp, 1, 0);
1698		}
1699		if (cachep->flags & SLAB_RED_ZONE) {
1700			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1701				slab_error(cachep, "start of a freed object was overwritten");
1702			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703				slab_error(cachep, "end of a freed object was overwritten");
1704		}
1705	}
1706}
1707#else
1708static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1709						struct page *page)
1710{
1711}
1712#endif
1713
1714/**
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @page: page pointer being destroyed
1718 *
1719 * Destroy all the objs in a slab page, and release the mem back to the system.
1720 * Before calling the slab page must have been unlinked from the cache. The
1721 * kmem_cache_node ->list_lock is not held/needed.
1722 */
1723static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724{
1725	void *freelist;
1726
1727	freelist = page->freelist;
1728	slab_destroy_debugcheck(cachep, page);
1729	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1730		call_rcu(&page->rcu_head, kmem_rcu_free);
1731	else
1732		kmem_freepages(cachep, page);
1733
1734	/*
1735	 * From now on, we don't use freelist
1736	 * although actual page can be freed in rcu context
1737	 */
1738	if (OFF_SLAB(cachep))
1739		kmem_cache_free(cachep->freelist_cache, freelist);
1740}
1741
 
 
 
 
1742static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743{
1744	struct page *page, *n;
1745
1746	list_for_each_entry_safe(page, n, list, lru) {
1747		list_del(&page->lru);
1748		slab_destroy(cachep, page);
1749	}
1750}
1751
1752/**
1753 * calculate_slab_order - calculate size (page order) of slabs
1754 * @cachep: pointer to the cache that is being created
1755 * @size: size of objects to be created in this cache.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
1759 *
1760 * This could be made much more intelligent.  For now, try to avoid using
1761 * high order pages for slabs.  When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
 
 
1763 */
1764static size_t calculate_slab_order(struct kmem_cache *cachep,
1765				size_t size, unsigned long flags)
1766{
1767	size_t left_over = 0;
1768	int gfporder;
1769
1770	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771		unsigned int num;
1772		size_t remainder;
1773
1774		num = cache_estimate(gfporder, size, flags, &remainder);
1775		if (!num)
1776			continue;
1777
1778		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779		if (num > SLAB_OBJ_MAX_NUM)
1780			break;
1781
1782		if (flags & CFLGS_OFF_SLAB) {
1783			struct kmem_cache *freelist_cache;
1784			size_t freelist_size;
1785
1786			freelist_size = num * sizeof(freelist_idx_t);
1787			freelist_cache = kmalloc_slab(freelist_size, 0u);
1788			if (!freelist_cache)
1789				continue;
1790
1791			/*
1792			 * Needed to avoid possible looping condition
1793			 * in cache_grow_begin()
1794			 */
1795			if (OFF_SLAB(freelist_cache))
1796				continue;
1797
1798			/* check if off slab has enough benefit */
1799			if (freelist_cache->size > cachep->size / 2)
1800				continue;
1801		}
1802
1803		/* Found something acceptable - save it away */
1804		cachep->num = num;
1805		cachep->gfporder = gfporder;
1806		left_over = remainder;
1807
1808		/*
1809		 * A VFS-reclaimable slab tends to have most allocations
1810		 * as GFP_NOFS and we really don't want to have to be allocating
1811		 * higher-order pages when we are unable to shrink dcache.
1812		 */
1813		if (flags & SLAB_RECLAIM_ACCOUNT)
1814			break;
1815
1816		/*
1817		 * Large number of objects is good, but very large slabs are
1818		 * currently bad for the gfp()s.
1819		 */
1820		if (gfporder >= slab_max_order)
1821			break;
1822
1823		/*
1824		 * Acceptable internal fragmentation?
1825		 */
1826		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827			break;
1828	}
1829	return left_over;
1830}
1831
1832static struct array_cache __percpu *alloc_kmem_cache_cpus(
1833		struct kmem_cache *cachep, int entries, int batchcount)
1834{
1835	int cpu;
1836	size_t size;
1837	struct array_cache __percpu *cpu_cache;
1838
1839	size = sizeof(void *) * entries + sizeof(struct array_cache);
1840	cpu_cache = __alloc_percpu(size, sizeof(void *));
1841
1842	if (!cpu_cache)
1843		return NULL;
1844
1845	for_each_possible_cpu(cpu) {
1846		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1847				entries, batchcount);
1848	}
1849
1850	return cpu_cache;
1851}
1852
1853static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854{
1855	if (slab_state >= FULL)
1856		return enable_cpucache(cachep, gfp);
1857
1858	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1859	if (!cachep->cpu_cache)
1860		return 1;
1861
1862	if (slab_state == DOWN) {
1863		/* Creation of first cache (kmem_cache). */
1864		set_up_node(kmem_cache, CACHE_CACHE);
1865	} else if (slab_state == PARTIAL) {
1866		/* For kmem_cache_node */
1867		set_up_node(cachep, SIZE_NODE);
1868	} else {
1869		int node;
1870
1871		for_each_online_node(node) {
1872			cachep->node[node] = kmalloc_node(
1873				sizeof(struct kmem_cache_node), gfp, node);
1874			BUG_ON(!cachep->node[node]);
1875			kmem_cache_node_init(cachep->node[node]);
1876		}
1877	}
1878
1879	cachep->node[numa_mem_id()]->next_reap =
1880			jiffies + REAPTIMEOUT_NODE +
1881			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882
1883	cpu_cache_get(cachep)->avail = 0;
1884	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1885	cpu_cache_get(cachep)->batchcount = 1;
1886	cpu_cache_get(cachep)->touched = 0;
1887	cachep->batchcount = 1;
1888	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889	return 0;
1890}
1891
1892unsigned long kmem_cache_flags(unsigned long object_size,
1893	unsigned long flags, const char *name,
1894	void (*ctor)(void *))
1895{
1896	return flags;
1897}
1898
1899struct kmem_cache *
1900__kmem_cache_alias(const char *name, size_t size, size_t align,
1901		   unsigned long flags, void (*ctor)(void *))
1902{
1903	struct kmem_cache *cachep;
1904
1905	cachep = find_mergeable(size, align, flags, name, ctor);
1906	if (cachep) {
1907		cachep->refcount++;
1908
1909		/*
1910		 * Adjust the object sizes so that we clear
1911		 * the complete object on kzalloc.
1912		 */
1913		cachep->object_size = max_t(int, cachep->object_size, size);
1914	}
1915	return cachep;
1916}
1917
1918static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1919			size_t size, unsigned long flags)
1920{
1921	size_t left;
1922
1923	cachep->num = 0;
1924
1925	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
 
 
 
 
 
 
 
 
1926		return false;
1927
1928	left = calculate_slab_order(cachep, size,
1929			flags | CFLGS_OBJFREELIST_SLAB);
1930	if (!cachep->num)
1931		return false;
1932
1933	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1934		return false;
1935
1936	cachep->colour = left / cachep->colour_off;
1937
1938	return true;
1939}
1940
1941static bool set_off_slab_cache(struct kmem_cache *cachep,
1942			size_t size, unsigned long flags)
1943{
1944	size_t left;
1945
1946	cachep->num = 0;
1947
1948	/*
1949	 * Always use on-slab management when SLAB_NOLEAKTRACE
1950	 * to avoid recursive calls into kmemleak.
1951	 */
1952	if (flags & SLAB_NOLEAKTRACE)
1953		return false;
1954
1955	/*
1956	 * Size is large, assume best to place the slab management obj
1957	 * off-slab (should allow better packing of objs).
1958	 */
1959	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1960	if (!cachep->num)
1961		return false;
1962
1963	/*
1964	 * If the slab has been placed off-slab, and we have enough space then
1965	 * move it on-slab. This is at the expense of any extra colouring.
1966	 */
1967	if (left >= cachep->num * sizeof(freelist_idx_t))
1968		return false;
1969
1970	cachep->colour = left / cachep->colour_off;
1971
1972	return true;
1973}
1974
1975static bool set_on_slab_cache(struct kmem_cache *cachep,
1976			size_t size, unsigned long flags)
1977{
1978	size_t left;
1979
1980	cachep->num = 0;
1981
1982	left = calculate_slab_order(cachep, size, flags);
1983	if (!cachep->num)
1984		return false;
1985
1986	cachep->colour = left / cachep->colour_off;
1987
1988	return true;
1989}
1990
1991/**
1992 * __kmem_cache_create - Create a cache.
1993 * @cachep: cache management descriptor
1994 * @flags: SLAB flags
1995 *
1996 * Returns a ptr to the cache on success, NULL on failure.
1997 * Cannot be called within a int, but can be interrupted.
1998 * The @ctor is run when new pages are allocated by the cache.
1999 *
2000 * The flags are
2001 *
2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003 * to catch references to uninitialised memory.
2004 *
2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006 * for buffer overruns.
2007 *
2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009 * cacheline.  This can be beneficial if you're counting cycles as closely
2010 * as davem.
 
 
2011 */
2012int
2013__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014{
2015	size_t ralign = BYTES_PER_WORD;
2016	gfp_t gfp;
2017	int err;
2018	size_t size = cachep->size;
2019
2020#if DEBUG
2021#if FORCED_DEBUG
2022	/*
2023	 * Enable redzoning and last user accounting, except for caches with
2024	 * large objects, if the increased size would increase the object size
2025	 * above the next power of two: caches with object sizes just above a
2026	 * power of two have a significant amount of internal fragmentation.
2027	 */
2028	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2029						2 * sizeof(unsigned long long)))
2030		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2031	if (!(flags & SLAB_DESTROY_BY_RCU))
2032		flags |= SLAB_POISON;
2033#endif
2034#endif
2035
2036	/*
2037	 * Check that size is in terms of words.  This is needed to avoid
2038	 * unaligned accesses for some archs when redzoning is used, and makes
2039	 * sure any on-slab bufctl's are also correctly aligned.
2040	 */
2041	if (size & (BYTES_PER_WORD - 1)) {
2042		size += (BYTES_PER_WORD - 1);
2043		size &= ~(BYTES_PER_WORD - 1);
2044	}
2045
2046	if (flags & SLAB_RED_ZONE) {
2047		ralign = REDZONE_ALIGN;
2048		/* If redzoning, ensure that the second redzone is suitably
2049		 * aligned, by adjusting the object size accordingly. */
2050		size += REDZONE_ALIGN - 1;
2051		size &= ~(REDZONE_ALIGN - 1);
2052	}
2053
2054	/* 3) caller mandated alignment */
2055	if (ralign < cachep->align) {
2056		ralign = cachep->align;
2057	}
2058	/* disable debug if necessary */
2059	if (ralign > __alignof__(unsigned long long))
2060		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2061	/*
2062	 * 4) Store it.
2063	 */
2064	cachep->align = ralign;
2065	cachep->colour_off = cache_line_size();
2066	/* Offset must be a multiple of the alignment. */
2067	if (cachep->colour_off < cachep->align)
2068		cachep->colour_off = cachep->align;
2069
2070	if (slab_is_available())
2071		gfp = GFP_KERNEL;
2072	else
2073		gfp = GFP_NOWAIT;
2074
2075#if DEBUG
2076
2077	/*
2078	 * Both debugging options require word-alignment which is calculated
2079	 * into align above.
2080	 */
2081	if (flags & SLAB_RED_ZONE) {
2082		/* add space for red zone words */
2083		cachep->obj_offset += sizeof(unsigned long long);
2084		size += 2 * sizeof(unsigned long long);
2085	}
2086	if (flags & SLAB_STORE_USER) {
2087		/* user store requires one word storage behind the end of
2088		 * the real object. But if the second red zone needs to be
2089		 * aligned to 64 bits, we must allow that much space.
2090		 */
2091		if (flags & SLAB_RED_ZONE)
2092			size += REDZONE_ALIGN;
2093		else
2094			size += BYTES_PER_WORD;
2095	}
2096#endif
2097
2098	kasan_cache_create(cachep, &size, &flags);
2099
2100	size = ALIGN(size, cachep->align);
2101	/*
2102	 * We should restrict the number of objects in a slab to implement
2103	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2104	 */
2105	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2106		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107
2108#if DEBUG
2109	/*
2110	 * To activate debug pagealloc, off-slab management is necessary
2111	 * requirement. In early phase of initialization, small sized slab
2112	 * doesn't get initialized so it would not be possible. So, we need
2113	 * to check size >= 256. It guarantees that all necessary small
2114	 * sized slab is initialized in current slab initialization sequence.
2115	 */
2116	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117		size >= 256 && cachep->object_size > cache_line_size()) {
2118		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2119			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2120
2121			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2122				flags |= CFLGS_OFF_SLAB;
2123				cachep->obj_offset += tmp_size - size;
2124				size = tmp_size;
2125				goto done;
2126			}
2127		}
2128	}
2129#endif
2130
2131	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2132		flags |= CFLGS_OBJFREELIST_SLAB;
2133		goto done;
2134	}
2135
2136	if (set_off_slab_cache(cachep, size, flags)) {
2137		flags |= CFLGS_OFF_SLAB;
2138		goto done;
2139	}
2140
2141	if (set_on_slab_cache(cachep, size, flags))
2142		goto done;
2143
2144	return -E2BIG;
2145
2146done:
2147	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2148	cachep->flags = flags;
2149	cachep->allocflags = __GFP_COMP;
2150	if (flags & SLAB_CACHE_DMA)
2151		cachep->allocflags |= GFP_DMA;
 
 
 
 
2152	cachep->size = size;
2153	cachep->reciprocal_buffer_size = reciprocal_value(size);
2154
2155#if DEBUG
2156	/*
2157	 * If we're going to use the generic kernel_map_pages()
2158	 * poisoning, then it's going to smash the contents of
2159	 * the redzone and userword anyhow, so switch them off.
2160	 */
2161	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2162		(cachep->flags & SLAB_POISON) &&
2163		is_debug_pagealloc_cache(cachep))
2164		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165#endif
2166
2167	if (OFF_SLAB(cachep)) {
2168		cachep->freelist_cache =
2169			kmalloc_slab(cachep->freelist_size, 0u);
2170	}
2171
2172	err = setup_cpu_cache(cachep, gfp);
2173	if (err) {
2174		__kmem_cache_release(cachep);
2175		return err;
2176	}
2177
2178	return 0;
2179}
2180
2181#if DEBUG
2182static void check_irq_off(void)
2183{
2184	BUG_ON(!irqs_disabled());
2185}
2186
2187static void check_irq_on(void)
2188{
2189	BUG_ON(irqs_disabled());
2190}
2191
2192static void check_mutex_acquired(void)
2193{
2194	BUG_ON(!mutex_is_locked(&slab_mutex));
2195}
2196
2197static void check_spinlock_acquired(struct kmem_cache *cachep)
2198{
2199#ifdef CONFIG_SMP
2200	check_irq_off();
2201	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2202#endif
2203}
2204
2205static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206{
2207#ifdef CONFIG_SMP
2208	check_irq_off();
2209	assert_spin_locked(&get_node(cachep, node)->list_lock);
2210#endif
2211}
2212
2213#else
2214#define check_irq_off()	do { } while(0)
2215#define check_irq_on()	do { } while(0)
2216#define check_mutex_acquired()	do { } while(0)
2217#define check_spinlock_acquired(x) do { } while(0)
2218#define check_spinlock_acquired_node(x, y) do { } while(0)
2219#endif
2220
2221static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2222				int node, bool free_all, struct list_head *list)
2223{
2224	int tofree;
2225
2226	if (!ac || !ac->avail)
2227		return;
2228
2229	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2230	if (tofree > ac->avail)
2231		tofree = (ac->avail + 1) / 2;
2232
2233	free_block(cachep, ac->entry, tofree, node, list);
2234	ac->avail -= tofree;
2235	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2236}
2237
2238static void do_drain(void *arg)
2239{
2240	struct kmem_cache *cachep = arg;
2241	struct array_cache *ac;
2242	int node = numa_mem_id();
2243	struct kmem_cache_node *n;
2244	LIST_HEAD(list);
2245
2246	check_irq_off();
2247	ac = cpu_cache_get(cachep);
2248	n = get_node(cachep, node);
2249	spin_lock(&n->list_lock);
2250	free_block(cachep, ac->entry, ac->avail, node, &list);
2251	spin_unlock(&n->list_lock);
 
2252	slabs_destroy(cachep, &list);
2253	ac->avail = 0;
2254}
2255
2256static void drain_cpu_caches(struct kmem_cache *cachep)
2257{
2258	struct kmem_cache_node *n;
2259	int node;
2260	LIST_HEAD(list);
2261
2262	on_each_cpu(do_drain, cachep, 1);
2263	check_irq_on();
2264	for_each_kmem_cache_node(cachep, node, n)
2265		if (n->alien)
2266			drain_alien_cache(cachep, n->alien);
2267
2268	for_each_kmem_cache_node(cachep, node, n) {
2269		spin_lock_irq(&n->list_lock);
2270		drain_array_locked(cachep, n->shared, node, true, &list);
2271		spin_unlock_irq(&n->list_lock);
2272
2273		slabs_destroy(cachep, &list);
2274	}
2275}
2276
2277/*
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2280 *
2281 * Returns the actual number of slabs released.
2282 */
2283static int drain_freelist(struct kmem_cache *cache,
2284			struct kmem_cache_node *n, int tofree)
2285{
2286	struct list_head *p;
2287	int nr_freed;
2288	struct page *page;
2289
2290	nr_freed = 0;
2291	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2292
2293		spin_lock_irq(&n->list_lock);
2294		p = n->slabs_free.prev;
2295		if (p == &n->slabs_free) {
2296			spin_unlock_irq(&n->list_lock);
2297			goto out;
2298		}
2299
2300		page = list_entry(p, struct page, lru);
2301		list_del(&page->lru);
2302		n->free_slabs--;
2303		n->total_slabs--;
2304		/*
2305		 * Safe to drop the lock. The slab is no longer linked
2306		 * to the cache.
2307		 */
2308		n->free_objects -= cache->num;
2309		spin_unlock_irq(&n->list_lock);
2310		slab_destroy(cache, page);
2311		nr_freed++;
2312	}
2313out:
2314	return nr_freed;
2315}
2316
 
 
 
 
 
 
 
 
 
 
 
 
2317int __kmem_cache_shrink(struct kmem_cache *cachep)
2318{
2319	int ret = 0;
2320	int node;
2321	struct kmem_cache_node *n;
2322
2323	drain_cpu_caches(cachep);
2324
2325	check_irq_on();
2326	for_each_kmem_cache_node(cachep, node, n) {
2327		drain_freelist(cachep, n, INT_MAX);
2328
2329		ret += !list_empty(&n->slabs_full) ||
2330			!list_empty(&n->slabs_partial);
2331	}
2332	return (ret ? 1 : 0);
2333}
2334
2335int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336{
2337	return __kmem_cache_shrink(cachep);
2338}
2339
2340void __kmem_cache_release(struct kmem_cache *cachep)
2341{
2342	int i;
2343	struct kmem_cache_node *n;
2344
2345	cache_random_seq_destroy(cachep);
2346
2347	free_percpu(cachep->cpu_cache);
2348
2349	/* NUMA: free the node structures */
2350	for_each_kmem_cache_node(cachep, i, n) {
2351		kfree(n->shared);
2352		free_alien_cache(n->alien);
2353		kfree(n);
2354		cachep->node[i] = NULL;
2355	}
2356}
2357
2358/*
2359 * Get the memory for a slab management obj.
2360 *
2361 * For a slab cache when the slab descriptor is off-slab, the
2362 * slab descriptor can't come from the same cache which is being created,
2363 * Because if it is the case, that means we defer the creation of
2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365 * And we eventually call down to __kmem_cache_create(), which
2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367 * This is a "chicken-and-egg" problem.
2368 *
2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370 * which are all initialized during kmem_cache_init().
2371 */
2372static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373				   struct page *page, int colour_off,
2374				   gfp_t local_flags, int nodeid)
2375{
2376	void *freelist;
2377	void *addr = page_address(page);
2378
2379	page->s_mem = addr + colour_off;
2380	page->active = 0;
2381
2382	if (OBJFREELIST_SLAB(cachep))
2383		freelist = NULL;
2384	else if (OFF_SLAB(cachep)) {
2385		/* Slab management obj is off-slab. */
2386		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387					      local_flags, nodeid);
2388		if (!freelist)
2389			return NULL;
2390	} else {
2391		/* We will use last bytes at the slab for freelist */
2392		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2393				cachep->freelist_size;
2394	}
2395
2396	return freelist;
2397}
2398
2399static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2400{
2401	return ((freelist_idx_t *)page->freelist)[idx];
2402}
2403
2404static inline void set_free_obj(struct page *page,
2405					unsigned int idx, freelist_idx_t val)
2406{
2407	((freelist_idx_t *)(page->freelist))[idx] = val;
2408}
2409
2410static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2411{
2412#if DEBUG
2413	int i;
2414
2415	for (i = 0; i < cachep->num; i++) {
2416		void *objp = index_to_obj(cachep, page, i);
2417
2418		if (cachep->flags & SLAB_STORE_USER)
2419			*dbg_userword(cachep, objp) = NULL;
2420
2421		if (cachep->flags & SLAB_RED_ZONE) {
2422			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424		}
2425		/*
2426		 * Constructors are not allowed to allocate memory from the same
2427		 * cache which they are a constructor for.  Otherwise, deadlock.
2428		 * They must also be threaded.
2429		 */
2430		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2431			kasan_unpoison_object_data(cachep,
2432						   objp + obj_offset(cachep));
2433			cachep->ctor(objp + obj_offset(cachep));
2434			kasan_poison_object_data(
2435				cachep, objp + obj_offset(cachep));
2436		}
2437
2438		if (cachep->flags & SLAB_RED_ZONE) {
2439			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2440				slab_error(cachep, "constructor overwrote the end of an object");
2441			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2442				slab_error(cachep, "constructor overwrote the start of an object");
2443		}
2444		/* need to poison the objs? */
2445		if (cachep->flags & SLAB_POISON) {
2446			poison_obj(cachep, objp, POISON_FREE);
2447			slab_kernel_map(cachep, objp, 0, 0);
2448		}
2449	}
2450#endif
2451}
2452
2453#ifdef CONFIG_SLAB_FREELIST_RANDOM
2454/* Hold information during a freelist initialization */
2455union freelist_init_state {
2456	struct {
2457		unsigned int pos;
2458		unsigned int *list;
2459		unsigned int count;
2460	};
2461	struct rnd_state rnd_state;
2462};
2463
2464/*
2465 * Initialize the state based on the randomization methode available.
2466 * return true if the pre-computed list is available, false otherwize.
2467 */
2468static bool freelist_state_initialize(union freelist_init_state *state,
2469				struct kmem_cache *cachep,
2470				unsigned int count)
2471{
2472	bool ret;
2473	unsigned int rand;
2474
2475	/* Use best entropy available to define a random shift */
2476	rand = get_random_int();
2477
2478	/* Use a random state if the pre-computed list is not available */
2479	if (!cachep->random_seq) {
2480		prandom_seed_state(&state->rnd_state, rand);
2481		ret = false;
2482	} else {
2483		state->list = cachep->random_seq;
2484		state->count = count;
2485		state->pos = rand % count;
2486		ret = true;
2487	}
2488	return ret;
2489}
2490
2491/* Get the next entry on the list and randomize it using a random shift */
2492static freelist_idx_t next_random_slot(union freelist_init_state *state)
2493{
2494	if (state->pos >= state->count)
2495		state->pos = 0;
2496	return state->list[state->pos++];
2497}
2498
2499/* Swap two freelist entries */
2500static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2501{
2502	swap(((freelist_idx_t *)page->freelist)[a],
2503		((freelist_idx_t *)page->freelist)[b]);
2504}
2505
2506/*
2507 * Shuffle the freelist initialization state based on pre-computed lists.
2508 * return true if the list was successfully shuffled, false otherwise.
2509 */
2510static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2511{
2512	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513	union freelist_init_state state;
2514	bool precomputed;
2515
2516	if (count < 2)
2517		return false;
2518
2519	precomputed = freelist_state_initialize(&state, cachep, count);
2520
2521	/* Take a random entry as the objfreelist */
2522	if (OBJFREELIST_SLAB(cachep)) {
2523		if (!precomputed)
2524			objfreelist = count - 1;
2525		else
2526			objfreelist = next_random_slot(&state);
2527		page->freelist = index_to_obj(cachep, page, objfreelist) +
2528						obj_offset(cachep);
2529		count--;
2530	}
2531
2532	/*
2533	 * On early boot, generate the list dynamically.
2534	 * Later use a pre-computed list for speed.
2535	 */
2536	if (!precomputed) {
2537		for (i = 0; i < count; i++)
2538			set_free_obj(page, i, i);
2539
2540		/* Fisher-Yates shuffle */
2541		for (i = count - 1; i > 0; i--) {
2542			rand = prandom_u32_state(&state.rnd_state);
2543			rand %= (i + 1);
2544			swap_free_obj(page, i, rand);
2545		}
2546	} else {
2547		for (i = 0; i < count; i++)
2548			set_free_obj(page, i, next_random_slot(&state));
2549	}
2550
2551	if (OBJFREELIST_SLAB(cachep))
2552		set_free_obj(page, cachep->num - 1, objfreelist);
2553
2554	return true;
2555}
2556#else
2557static inline bool shuffle_freelist(struct kmem_cache *cachep,
2558				struct page *page)
2559{
2560	return false;
2561}
2562#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2563
2564static void cache_init_objs(struct kmem_cache *cachep,
2565			    struct page *page)
2566{
2567	int i;
2568	void *objp;
2569	bool shuffled;
2570
2571	cache_init_objs_debug(cachep, page);
2572
2573	/* Try to randomize the freelist if enabled */
2574	shuffled = shuffle_freelist(cachep, page);
2575
2576	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2578						obj_offset(cachep);
2579	}
2580
2581	for (i = 0; i < cachep->num; i++) {
2582		objp = index_to_obj(cachep, page, i);
2583		kasan_init_slab_obj(cachep, objp);
2584
2585		/* constructor could break poison info */
2586		if (DEBUG == 0 && cachep->ctor) {
2587			kasan_unpoison_object_data(cachep, objp);
2588			cachep->ctor(objp);
2589			kasan_poison_object_data(cachep, objp);
2590		}
2591
2592		if (!shuffled)
2593			set_free_obj(page, i, i);
2594	}
2595}
2596
2597static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598{
2599	void *objp;
2600
2601	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602	page->active++;
2603
2604#if DEBUG
2605	if (cachep->flags & SLAB_STORE_USER)
2606		set_store_user_dirty(cachep);
2607#endif
2608
2609	return objp;
2610}
2611
2612static void slab_put_obj(struct kmem_cache *cachep,
2613			struct page *page, void *objp)
2614{
2615	unsigned int objnr = obj_to_index(cachep, page, objp);
2616#if DEBUG
2617	unsigned int i;
2618
2619	/* Verify double free bug */
2620	for (i = page->active; i < cachep->num; i++) {
2621		if (get_free_obj(page, i) == objnr) {
2622			pr_err("slab: double free detected in cache '%s', objp %p\n",
2623			       cachep->name, objp);
2624			BUG();
2625		}
2626	}
2627#endif
2628	page->active--;
2629	if (!page->freelist)
2630		page->freelist = objp + obj_offset(cachep);
2631
2632	set_free_obj(page, page->active, objnr);
2633}
2634
2635/*
2636 * Map pages beginning at addr to the given cache and slab. This is required
2637 * for the slab allocator to be able to lookup the cache and slab of a
2638 * virtual address for kfree, ksize, and slab debugging.
2639 */
2640static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641			   void *freelist)
2642{
2643	page->slab_cache = cache;
2644	page->freelist = freelist;
2645}
2646
2647/*
2648 * Grow (by 1) the number of slabs within a cache.  This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2650 */
2651static struct page *cache_grow_begin(struct kmem_cache *cachep,
2652				gfp_t flags, int nodeid)
2653{
2654	void *freelist;
2655	size_t offset;
2656	gfp_t local_flags;
2657	int page_node;
2658	struct kmem_cache_node *n;
2659	struct page *page;
2660
2661	/*
2662	 * Be lazy and only check for valid flags here,  keeping it out of the
2663	 * critical path in kmem_cache_alloc().
2664	 */
2665	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667		flags &= ~GFP_SLAB_BUG_MASK;
2668		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669				invalid_mask, &invalid_mask, flags, &flags);
2670		dump_stack();
2671	}
2672	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673
2674	check_irq_off();
2675	if (gfpflags_allow_blocking(local_flags))
2676		local_irq_enable();
2677
2678	/*
2679	 * Get mem for the objs.  Attempt to allocate a physical page from
2680	 * 'nodeid'.
2681	 */
2682	page = kmem_getpages(cachep, local_flags, nodeid);
2683	if (!page)
2684		goto failed;
2685
2686	page_node = page_to_nid(page);
2687	n = get_node(cachep, page_node);
2688
2689	/* Get colour for the slab, and cal the next value. */
2690	n->colour_next++;
2691	if (n->colour_next >= cachep->colour)
2692		n->colour_next = 0;
2693
2694	offset = n->colour_next;
2695	if (offset >= cachep->colour)
2696		offset = 0;
2697
2698	offset *= cachep->colour_off;
2699
 
 
 
 
 
 
 
2700	/* Get slab management. */
2701	freelist = alloc_slabmgmt(cachep, page, offset,
2702			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703	if (OFF_SLAB(cachep) && !freelist)
2704		goto opps1;
2705
2706	slab_map_pages(cachep, page, freelist);
2707
2708	kasan_poison_slab(page);
2709	cache_init_objs(cachep, page);
2710
2711	if (gfpflags_allow_blocking(local_flags))
2712		local_irq_disable();
2713
2714	return page;
2715
2716opps1:
2717	kmem_freepages(cachep, page);
2718failed:
2719	if (gfpflags_allow_blocking(local_flags))
2720		local_irq_disable();
2721	return NULL;
2722}
2723
2724static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725{
2726	struct kmem_cache_node *n;
2727	void *list = NULL;
2728
2729	check_irq_off();
2730
2731	if (!page)
2732		return;
2733
2734	INIT_LIST_HEAD(&page->lru);
2735	n = get_node(cachep, page_to_nid(page));
2736
2737	spin_lock(&n->list_lock);
2738	n->total_slabs++;
2739	if (!page->active) {
2740		list_add_tail(&page->lru, &(n->slabs_free));
2741		n->free_slabs++;
2742	} else
2743		fixup_slab_list(cachep, n, page, &list);
2744
2745	STATS_INC_GROWN(cachep);
2746	n->free_objects += cachep->num - page->active;
2747	spin_unlock(&n->list_lock);
2748
2749	fixup_objfreelist_debug(cachep, &list);
2750}
2751
2752#if DEBUG
2753
2754/*
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2758 */
2759static void kfree_debugcheck(const void *objp)
2760{
2761	if (!virt_addr_valid(objp)) {
2762		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763		       (unsigned long)objp);
2764		BUG();
2765	}
2766}
2767
2768static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769{
2770	unsigned long long redzone1, redzone2;
2771
2772	redzone1 = *dbg_redzone1(cache, obj);
2773	redzone2 = *dbg_redzone2(cache, obj);
2774
2775	/*
2776	 * Redzone is ok.
2777	 */
2778	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779		return;
2780
2781	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782		slab_error(cache, "double free detected");
2783	else
2784		slab_error(cache, "memory outside object was overwritten");
2785
2786	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787	       obj, redzone1, redzone2);
2788}
2789
2790static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791				   unsigned long caller)
2792{
2793	unsigned int objnr;
2794	struct page *page;
2795
2796	BUG_ON(virt_to_cache(objp) != cachep);
2797
2798	objp -= obj_offset(cachep);
2799	kfree_debugcheck(objp);
2800	page = virt_to_head_page(objp);
2801
2802	if (cachep->flags & SLAB_RED_ZONE) {
2803		verify_redzone_free(cachep, objp);
2804		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806	}
2807	if (cachep->flags & SLAB_STORE_USER) {
2808		set_store_user_dirty(cachep);
2809		*dbg_userword(cachep, objp) = (void *)caller;
2810	}
2811
2812	objnr = obj_to_index(cachep, page, objp);
2813
2814	BUG_ON(objnr >= cachep->num);
2815	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816
2817	if (cachep->flags & SLAB_POISON) {
2818		poison_obj(cachep, objp, POISON_FREE);
2819		slab_kernel_map(cachep, objp, 0, caller);
2820	}
2821	return objp;
2822}
2823
2824#else
2825#define kfree_debugcheck(x) do { } while(0)
2826#define cache_free_debugcheck(x,objp,z) (objp)
2827#endif
2828
2829static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830						void **list)
2831{
2832#if DEBUG
2833	void *next = *list;
2834	void *objp;
2835
2836	while (next) {
2837		objp = next - obj_offset(cachep);
2838		next = *(void **)next;
2839		poison_obj(cachep, objp, POISON_FREE);
2840	}
2841#endif
2842}
2843
2844static inline void fixup_slab_list(struct kmem_cache *cachep,
2845				struct kmem_cache_node *n, struct page *page,
2846				void **list)
2847{
2848	/* move slabp to correct slabp list: */
2849	list_del(&page->lru);
2850	if (page->active == cachep->num) {
2851		list_add(&page->lru, &n->slabs_full);
2852		if (OBJFREELIST_SLAB(cachep)) {
2853#if DEBUG
2854			/* Poisoning will be done without holding the lock */
2855			if (cachep->flags & SLAB_POISON) {
2856				void **objp = page->freelist;
2857
2858				*objp = *list;
2859				*list = objp;
2860			}
2861#endif
2862			page->freelist = NULL;
2863		}
2864	} else
2865		list_add(&page->lru, &n->slabs_partial);
2866}
2867
2868/* Try to find non-pfmemalloc slab if needed */
2869static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870					struct page *page, bool pfmemalloc)
2871{
2872	if (!page)
2873		return NULL;
2874
2875	if (pfmemalloc)
2876		return page;
2877
2878	if (!PageSlabPfmemalloc(page))
2879		return page;
2880
2881	/* No need to keep pfmemalloc slab if we have enough free objects */
2882	if (n->free_objects > n->free_limit) {
2883		ClearPageSlabPfmemalloc(page);
2884		return page;
2885	}
2886
2887	/* Move pfmemalloc slab to the end of list to speed up next search */
2888	list_del(&page->lru);
2889	if (!page->active) {
2890		list_add_tail(&page->lru, &n->slabs_free);
2891		n->free_slabs++;
2892	} else
2893		list_add_tail(&page->lru, &n->slabs_partial);
2894
2895	list_for_each_entry(page, &n->slabs_partial, lru) {
2896		if (!PageSlabPfmemalloc(page))
2897			return page;
2898	}
2899
2900	n->free_touched = 1;
2901	list_for_each_entry(page, &n->slabs_free, lru) {
2902		if (!PageSlabPfmemalloc(page)) {
2903			n->free_slabs--;
2904			return page;
2905		}
2906	}
2907
2908	return NULL;
2909}
2910
2911static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912{
2913	struct page *page;
2914
2915	assert_spin_locked(&n->list_lock);
2916	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
 
2917	if (!page) {
2918		n->free_touched = 1;
2919		page = list_first_entry_or_null(&n->slabs_free, struct page,
2920						lru);
2921		if (page)
2922			n->free_slabs--;
2923	}
2924
2925	if (sk_memalloc_socks())
2926		page = get_valid_first_slab(n, page, pfmemalloc);
2927
2928	return page;
2929}
2930
2931static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932				struct kmem_cache_node *n, gfp_t flags)
2933{
2934	struct page *page;
2935	void *obj;
2936	void *list = NULL;
2937
2938	if (!gfp_pfmemalloc_allowed(flags))
2939		return NULL;
2940
2941	spin_lock(&n->list_lock);
2942	page = get_first_slab(n, true);
2943	if (!page) {
2944		spin_unlock(&n->list_lock);
2945		return NULL;
2946	}
2947
2948	obj = slab_get_obj(cachep, page);
2949	n->free_objects--;
2950
2951	fixup_slab_list(cachep, n, page, &list);
2952
2953	spin_unlock(&n->list_lock);
2954	fixup_objfreelist_debug(cachep, &list);
2955
2956	return obj;
2957}
2958
2959/*
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2962 */
2963static __always_inline int alloc_block(struct kmem_cache *cachep,
2964		struct array_cache *ac, struct page *page, int batchcount)
2965{
2966	/*
2967	 * There must be at least one object available for
2968	 * allocation.
2969	 */
2970	BUG_ON(page->active >= cachep->num);
2971
2972	while (page->active < cachep->num && batchcount--) {
2973		STATS_INC_ALLOCED(cachep);
2974		STATS_INC_ACTIVE(cachep);
2975		STATS_SET_HIGH(cachep);
2976
2977		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978	}
2979
2980	return batchcount;
2981}
2982
2983static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984{
2985	int batchcount;
2986	struct kmem_cache_node *n;
2987	struct array_cache *ac, *shared;
2988	int node;
2989	void *list = NULL;
2990	struct page *page;
2991
2992	check_irq_off();
2993	node = numa_mem_id();
2994
2995	ac = cpu_cache_get(cachep);
2996	batchcount = ac->batchcount;
2997	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998		/*
2999		 * If there was little recent activity on this cache, then
3000		 * perform only a partial refill.  Otherwise we could generate
3001		 * refill bouncing.
3002		 */
3003		batchcount = BATCHREFILL_LIMIT;
3004	}
3005	n = get_node(cachep, node);
3006
3007	BUG_ON(ac->avail > 0 || !n);
3008	shared = READ_ONCE(n->shared);
3009	if (!n->free_objects && (!shared || !shared->avail))
3010		goto direct_grow;
3011
3012	spin_lock(&n->list_lock);
3013	shared = READ_ONCE(n->shared);
3014
3015	/* See if we can refill from the shared array */
3016	if (shared && transfer_objects(ac, shared, batchcount)) {
3017		shared->touched = 1;
3018		goto alloc_done;
3019	}
3020
3021	while (batchcount > 0) {
3022		/* Get slab alloc is to come from. */
3023		page = get_first_slab(n, false);
3024		if (!page)
3025			goto must_grow;
3026
3027		check_spinlock_acquired(cachep);
3028
3029		batchcount = alloc_block(cachep, ac, page, batchcount);
3030		fixup_slab_list(cachep, n, page, &list);
3031	}
3032
3033must_grow:
3034	n->free_objects -= ac->avail;
3035alloc_done:
3036	spin_unlock(&n->list_lock);
3037	fixup_objfreelist_debug(cachep, &list);
3038
3039direct_grow:
3040	if (unlikely(!ac->avail)) {
3041		/* Check if we can use obj in pfmemalloc slab */
3042		if (sk_memalloc_socks()) {
3043			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044
3045			if (obj)
3046				return obj;
3047		}
3048
3049		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050
3051		/*
3052		 * cache_grow_begin() can reenable interrupts,
3053		 * then ac could change.
3054		 */
3055		ac = cpu_cache_get(cachep);
3056		if (!ac->avail && page)
3057			alloc_block(cachep, ac, page, batchcount);
3058		cache_grow_end(cachep, page);
3059
3060		if (!ac->avail)
3061			return NULL;
3062	}
3063	ac->touched = 1;
3064
3065	return ac->entry[--ac->avail];
3066}
3067
3068static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069						gfp_t flags)
3070{
3071	might_sleep_if(gfpflags_allow_blocking(flags));
3072}
3073
3074#if DEBUG
3075static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076				gfp_t flags, void *objp, unsigned long caller)
3077{
3078	if (!objp)
 
3079		return objp;
3080	if (cachep->flags & SLAB_POISON) {
3081		check_poison_obj(cachep, objp);
3082		slab_kernel_map(cachep, objp, 1, 0);
3083		poison_obj(cachep, objp, POISON_INUSE);
3084	}
3085	if (cachep->flags & SLAB_STORE_USER)
3086		*dbg_userword(cachep, objp) = (void *)caller;
3087
3088	if (cachep->flags & SLAB_RED_ZONE) {
3089		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3090				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3091			slab_error(cachep, "double free, or memory outside object was overwritten");
3092			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093			       objp, *dbg_redzone1(cachep, objp),
3094			       *dbg_redzone2(cachep, objp));
3095		}
3096		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3097		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3098	}
3099
3100	objp += obj_offset(cachep);
3101	if (cachep->ctor && cachep->flags & SLAB_POISON)
3102		cachep->ctor(objp);
3103	if (ARCH_SLAB_MINALIGN &&
3104	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106		       objp, (int)ARCH_SLAB_MINALIGN);
3107	}
3108	return objp;
3109}
3110#else
3111#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112#endif
3113
3114static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3115{
3116	void *objp;
3117	struct array_cache *ac;
3118
3119	check_irq_off();
3120
3121	ac = cpu_cache_get(cachep);
3122	if (likely(ac->avail)) {
3123		ac->touched = 1;
3124		objp = ac->entry[--ac->avail];
3125
3126		STATS_INC_ALLOCHIT(cachep);
3127		goto out;
3128	}
3129
3130	STATS_INC_ALLOCMISS(cachep);
3131	objp = cache_alloc_refill(cachep, flags);
3132	/*
3133	 * the 'ac' may be updated by cache_alloc_refill(),
3134	 * and kmemleak_erase() requires its correct value.
3135	 */
3136	ac = cpu_cache_get(cachep);
3137
3138out:
3139	/*
3140	 * To avoid a false negative, if an object that is in one of the
3141	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142	 * treat the array pointers as a reference to the object.
3143	 */
3144	if (objp)
3145		kmemleak_erase(&ac->entry[ac->avail]);
3146	return objp;
3147}
3148
3149#ifdef CONFIG_NUMA
3150/*
3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152 *
3153 * If we are in_interrupt, then process context, including cpusets and
3154 * mempolicy, may not apply and should not be used for allocation policy.
3155 */
3156static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3157{
3158	int nid_alloc, nid_here;
3159
3160	if (in_interrupt() || (flags & __GFP_THISNODE))
3161		return NULL;
3162	nid_alloc = nid_here = numa_mem_id();
3163	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164		nid_alloc = cpuset_slab_spread_node();
3165	else if (current->mempolicy)
3166		nid_alloc = mempolicy_slab_node();
3167	if (nid_alloc != nid_here)
3168		return ____cache_alloc_node(cachep, flags, nid_alloc);
3169	return NULL;
3170}
3171
3172/*
3173 * Fallback function if there was no memory available and no objects on a
3174 * certain node and fall back is permitted. First we scan all the
3175 * available node for available objects. If that fails then we
3176 * perform an allocation without specifying a node. This allows the page
3177 * allocator to do its reclaim / fallback magic. We then insert the
3178 * slab into the proper nodelist and then allocate from it.
3179 */
3180static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182	struct zonelist *zonelist;
3183	struct zoneref *z;
3184	struct zone *zone;
3185	enum zone_type high_zoneidx = gfp_zone(flags);
3186	void *obj = NULL;
3187	struct page *page;
3188	int nid;
3189	unsigned int cpuset_mems_cookie;
3190
3191	if (flags & __GFP_THISNODE)
3192		return NULL;
3193
3194retry_cpuset:
3195	cpuset_mems_cookie = read_mems_allowed_begin();
3196	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197
3198retry:
3199	/*
3200	 * Look through allowed nodes for objects available
3201	 * from existing per node queues.
3202	 */
3203	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3204		nid = zone_to_nid(zone);
3205
3206		if (cpuset_zone_allowed(zone, flags) &&
3207			get_node(cache, nid) &&
3208			get_node(cache, nid)->free_objects) {
3209				obj = ____cache_alloc_node(cache,
3210					gfp_exact_node(flags), nid);
3211				if (obj)
3212					break;
3213		}
3214	}
3215
3216	if (!obj) {
3217		/*
3218		 * This allocation will be performed within the constraints
3219		 * of the current cpuset / memory policy requirements.
3220		 * We may trigger various forms of reclaim on the allowed
3221		 * set and go into memory reserves if necessary.
3222		 */
3223		page = cache_grow_begin(cache, flags, numa_mem_id());
3224		cache_grow_end(cache, page);
3225		if (page) {
3226			nid = page_to_nid(page);
3227			obj = ____cache_alloc_node(cache,
3228				gfp_exact_node(flags), nid);
3229
3230			/*
3231			 * Another processor may allocate the objects in
3232			 * the slab since we are not holding any locks.
3233			 */
3234			if (!obj)
3235				goto retry;
3236		}
3237	}
3238
3239	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240		goto retry_cpuset;
3241	return obj;
3242}
3243
3244/*
3245 * A interface to enable slab creation on nodeid
3246 */
3247static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3248				int nodeid)
3249{
3250	struct page *page;
3251	struct kmem_cache_node *n;
3252	void *obj = NULL;
3253	void *list = NULL;
3254
3255	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256	n = get_node(cachep, nodeid);
3257	BUG_ON(!n);
3258
3259	check_irq_off();
3260	spin_lock(&n->list_lock);
3261	page = get_first_slab(n, false);
3262	if (!page)
3263		goto must_grow;
3264
3265	check_spinlock_acquired_node(cachep, nodeid);
3266
3267	STATS_INC_NODEALLOCS(cachep);
3268	STATS_INC_ACTIVE(cachep);
3269	STATS_SET_HIGH(cachep);
3270
3271	BUG_ON(page->active == cachep->num);
3272
3273	obj = slab_get_obj(cachep, page);
3274	n->free_objects--;
3275
3276	fixup_slab_list(cachep, n, page, &list);
3277
3278	spin_unlock(&n->list_lock);
3279	fixup_objfreelist_debug(cachep, &list);
3280	return obj;
3281
3282must_grow:
3283	spin_unlock(&n->list_lock);
3284	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285	if (page) {
3286		/* This slab isn't counted yet so don't update free_objects */
3287		obj = slab_get_obj(cachep, page);
3288	}
3289	cache_grow_end(cachep, page);
3290
3291	return obj ? obj : fallback_alloc(cachep, flags);
3292}
3293
3294static __always_inline void *
3295slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296		   unsigned long caller)
3297{
3298	unsigned long save_flags;
3299	void *ptr;
3300	int slab_node = numa_mem_id();
 
 
3301
3302	flags &= gfp_allowed_mask;
3303	cachep = slab_pre_alloc_hook(cachep, flags);
3304	if (unlikely(!cachep))
3305		return NULL;
3306
 
 
 
 
3307	cache_alloc_debugcheck_before(cachep, flags);
3308	local_irq_save(save_flags);
3309
3310	if (nodeid == NUMA_NO_NODE)
3311		nodeid = slab_node;
3312
3313	if (unlikely(!get_node(cachep, nodeid))) {
3314		/* Node not bootstrapped yet */
3315		ptr = fallback_alloc(cachep, flags);
3316		goto out;
3317	}
3318
3319	if (nodeid == slab_node) {
3320		/*
3321		 * Use the locally cached objects if possible.
3322		 * However ____cache_alloc does not allow fallback
3323		 * to other nodes. It may fail while we still have
3324		 * objects on other nodes available.
3325		 */
3326		ptr = ____cache_alloc(cachep, flags);
3327		if (ptr)
3328			goto out;
3329	}
3330	/* ___cache_alloc_node can fall back to other nodes */
3331	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3332  out:
3333	local_irq_restore(save_flags);
3334	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
 
3335
3336	if (unlikely(flags & __GFP_ZERO) && ptr)
3337		memset(ptr, 0, cachep->object_size);
3338
3339	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340	return ptr;
3341}
3342
3343static __always_inline void *
3344__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3345{
3346	void *objp;
3347
3348	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349		objp = alternate_node_alloc(cache, flags);
3350		if (objp)
3351			goto out;
3352	}
3353	objp = ____cache_alloc(cache, flags);
3354
3355	/*
3356	 * We may just have run out of memory on the local node.
3357	 * ____cache_alloc_node() knows how to locate memory on other nodes
3358	 */
3359	if (!objp)
3360		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361
3362  out:
3363	return objp;
3364}
3365#else
3366
3367static __always_inline void *
3368__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3369{
3370	return ____cache_alloc(cachep, flags);
3371}
3372
3373#endif /* CONFIG_NUMA */
3374
3375static __always_inline void *
3376slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3377{
3378	unsigned long save_flags;
3379	void *objp;
 
 
3380
3381	flags &= gfp_allowed_mask;
3382	cachep = slab_pre_alloc_hook(cachep, flags);
3383	if (unlikely(!cachep))
3384		return NULL;
3385
 
 
 
 
3386	cache_alloc_debugcheck_before(cachep, flags);
3387	local_irq_save(save_flags);
3388	objp = __do_cache_alloc(cachep, flags);
3389	local_irq_restore(save_flags);
3390	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3391	prefetchw(objp);
 
3392
3393	if (unlikely(flags & __GFP_ZERO) && objp)
3394		memset(objp, 0, cachep->object_size);
3395
3396	slab_post_alloc_hook(cachep, flags, 1, &objp);
3397	return objp;
3398}
3399
3400/*
3401 * Caller needs to acquire correct kmem_cache_node's list_lock
3402 * @list: List of detached free slabs should be freed by caller
3403 */
3404static void free_block(struct kmem_cache *cachep, void **objpp,
3405			int nr_objects, int node, struct list_head *list)
3406{
3407	int i;
3408	struct kmem_cache_node *n = get_node(cachep, node);
3409	struct page *page;
3410
3411	n->free_objects += nr_objects;
3412
3413	for (i = 0; i < nr_objects; i++) {
3414		void *objp;
3415		struct page *page;
3416
3417		objp = objpp[i];
3418
3419		page = virt_to_head_page(objp);
3420		list_del(&page->lru);
3421		check_spinlock_acquired_node(cachep, node);
3422		slab_put_obj(cachep, page, objp);
3423		STATS_DEC_ACTIVE(cachep);
3424
3425		/* fixup slab chains */
3426		if (page->active == 0) {
3427			list_add(&page->lru, &n->slabs_free);
3428			n->free_slabs++;
3429		} else {
3430			/* Unconditionally move a slab to the end of the
3431			 * partial list on free - maximum time for the
3432			 * other objects to be freed, too.
3433			 */
3434			list_add_tail(&page->lru, &n->slabs_partial);
3435		}
3436	}
3437
3438	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3439		n->free_objects -= cachep->num;
3440
3441		page = list_last_entry(&n->slabs_free, struct page, lru);
3442		list_move(&page->lru, list);
3443		n->free_slabs--;
3444		n->total_slabs--;
3445	}
3446}
3447
3448static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3449{
3450	int batchcount;
3451	struct kmem_cache_node *n;
3452	int node = numa_mem_id();
3453	LIST_HEAD(list);
3454
3455	batchcount = ac->batchcount;
3456
3457	check_irq_off();
3458	n = get_node(cachep, node);
3459	spin_lock(&n->list_lock);
3460	if (n->shared) {
3461		struct array_cache *shared_array = n->shared;
3462		int max = shared_array->limit - shared_array->avail;
3463		if (max) {
3464			if (batchcount > max)
3465				batchcount = max;
3466			memcpy(&(shared_array->entry[shared_array->avail]),
3467			       ac->entry, sizeof(void *) * batchcount);
3468			shared_array->avail += batchcount;
3469			goto free_done;
3470		}
3471	}
3472
3473	free_block(cachep, ac->entry, batchcount, node, &list);
3474free_done:
3475#if STATS
3476	{
3477		int i = 0;
3478		struct page *page;
3479
3480		list_for_each_entry(page, &n->slabs_free, lru) {
3481			BUG_ON(page->active);
3482
3483			i++;
3484		}
3485		STATS_SET_FREEABLE(cachep, i);
3486	}
3487#endif
3488	spin_unlock(&n->list_lock);
3489	slabs_destroy(cachep, &list);
3490	ac->avail -= batchcount;
3491	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3492}
3493
3494/*
3495 * Release an obj back to its cache. If the obj has a constructed state, it must
3496 * be in this state _before_ it is released.  Called with disabled ints.
3497 */
3498static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499				unsigned long caller)
3500{
3501	/* Put the object into the quarantine, don't touch it for now. */
3502	if (kasan_slab_free(cachep, objp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3503		return;
3504
 
 
 
 
 
3505	___cache_free(cachep, objp, caller);
3506}
3507
3508void ___cache_free(struct kmem_cache *cachep, void *objp,
3509		unsigned long caller)
3510{
3511	struct array_cache *ac = cpu_cache_get(cachep);
3512
3513	check_irq_off();
3514	kmemleak_free_recursive(objp, cachep->flags);
3515	objp = cache_free_debugcheck(cachep, objp, caller);
3516
3517	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3518
3519	/*
3520	 * Skip calling cache_free_alien() when the platform is not numa.
3521	 * This will avoid cache misses that happen while accessing slabp (which
3522	 * is per page memory  reference) to get nodeid. Instead use a global
3523	 * variable to skip the call, which is mostly likely to be present in
3524	 * the cache.
3525	 */
3526	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527		return;
3528
3529	if (ac->avail < ac->limit) {
3530		STATS_INC_FREEHIT(cachep);
3531	} else {
3532		STATS_INC_FREEMISS(cachep);
3533		cache_flusharray(cachep, ac);
3534	}
3535
3536	if (sk_memalloc_socks()) {
3537		struct page *page = virt_to_head_page(objp);
3538
3539		if (unlikely(PageSlabPfmemalloc(page))) {
3540			cache_free_pfmemalloc(cachep, page, objp);
3541			return;
3542		}
3543	}
3544
3545	ac->entry[ac->avail++] = objp;
3546}
3547
3548/**
3549 * kmem_cache_alloc - Allocate an object
3550 * @cachep: The cache to allocate from.
3551 * @flags: See kmalloc().
3552 *
3553 * Allocate an object from this cache.  The flags are only relevant
3554 * if the cache has no available objects.
 
 
3555 */
3556void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3557{
3558	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559
3560	kasan_slab_alloc(cachep, ret, flags);
3561	trace_kmem_cache_alloc(_RET_IP_, ret,
3562			       cachep->object_size, cachep->size, flags);
3563
3564	return ret;
3565}
3566EXPORT_SYMBOL(kmem_cache_alloc);
3567
3568static __always_inline void
3569cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3570				  size_t size, void **p, unsigned long caller)
3571{
3572	size_t i;
3573
3574	for (i = 0; i < size; i++)
3575		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3576}
3577
3578int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579			  void **p)
3580{
3581	size_t i;
 
3582
3583	s = slab_pre_alloc_hook(s, flags);
3584	if (!s)
3585		return 0;
3586
3587	cache_alloc_debugcheck_before(s, flags);
3588
3589	local_irq_disable();
3590	for (i = 0; i < size; i++) {
3591		void *objp = __do_cache_alloc(s, flags);
3592
3593		if (unlikely(!objp))
3594			goto error;
3595		p[i] = objp;
3596	}
3597	local_irq_enable();
3598
3599	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3600
3601	/* Clear memory outside IRQ disabled section */
3602	if (unlikely(flags & __GFP_ZERO))
3603		for (i = 0; i < size; i++)
3604			memset(p[i], 0, s->object_size);
3605
3606	slab_post_alloc_hook(s, flags, size, p);
3607	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3608	return size;
3609error:
3610	local_irq_enable();
3611	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612	slab_post_alloc_hook(s, flags, i, p);
3613	__kmem_cache_free_bulk(s, i, p);
3614	return 0;
3615}
3616EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3617
3618#ifdef CONFIG_TRACING
3619void *
3620kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621{
3622	void *ret;
3623
3624	ret = slab_alloc(cachep, flags, _RET_IP_);
3625
3626	kasan_kmalloc(cachep, ret, size, flags);
3627	trace_kmalloc(_RET_IP_, ret,
3628		      size, cachep->size, flags);
3629	return ret;
3630}
3631EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632#endif
3633
3634#ifdef CONFIG_NUMA
3635/**
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3640 *
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3643 *
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
 
 
3645 */
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
3648	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650	kasan_slab_alloc(cachep, ret, flags);
3651	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652				    cachep->object_size, cachep->size,
3653				    flags, nodeid);
3654
3655	return ret;
3656}
3657EXPORT_SYMBOL(kmem_cache_alloc_node);
3658
3659#ifdef CONFIG_TRACING
3660void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661				  gfp_t flags,
3662				  int nodeid,
3663				  size_t size)
3664{
3665	void *ret;
3666
3667	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668
3669	kasan_kmalloc(cachep, ret, size, flags);
3670	trace_kmalloc_node(_RET_IP_, ret,
3671			   size, cachep->size,
3672			   flags, nodeid);
3673	return ret;
3674}
3675EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676#endif
3677
3678static __always_inline void *
3679__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680{
3681	struct kmem_cache *cachep;
3682	void *ret;
3683
 
 
3684	cachep = kmalloc_slab(size, flags);
3685	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686		return cachep;
3687	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688	kasan_kmalloc(cachep, ret, size, flags);
3689
3690	return ret;
3691}
3692
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694{
3695	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696}
3697EXPORT_SYMBOL(__kmalloc_node);
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700		int node, unsigned long caller)
3701{
3702	return __do_kmalloc_node(size, flags, node, caller);
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#endif /* CONFIG_NUMA */
3706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707/**
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
 
 
3712 */
3713static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714					  unsigned long caller)
3715{
3716	struct kmem_cache *cachep;
3717	void *ret;
3718
 
 
3719	cachep = kmalloc_slab(size, flags);
3720	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721		return cachep;
3722	ret = slab_alloc(cachep, flags, caller);
3723
3724	kasan_kmalloc(cachep, ret, size, flags);
3725	trace_kmalloc(caller, ret,
3726		      size, cachep->size, flags);
3727
3728	return ret;
3729}
3730
3731void *__kmalloc(size_t size, gfp_t flags)
3732{
3733	return __do_kmalloc(size, flags, _RET_IP_);
3734}
3735EXPORT_SYMBOL(__kmalloc);
3736
3737void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738{
3739	return __do_kmalloc(size, flags, caller);
3740}
3741EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743/**
3744 * kmem_cache_free - Deallocate an object
3745 * @cachep: The cache the allocation was from.
3746 * @objp: The previously allocated object.
3747 *
3748 * Free an object which was previously allocated from this
3749 * cache.
3750 */
3751void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3752{
3753	unsigned long flags;
3754	cachep = cache_from_obj(cachep, objp);
3755	if (!cachep)
3756		return;
3757
3758	local_irq_save(flags);
3759	debug_check_no_locks_freed(objp, cachep->object_size);
3760	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761		debug_check_no_obj_freed(objp, cachep->object_size);
3762	__cache_free(cachep, objp, _RET_IP_);
3763	local_irq_restore(flags);
3764
3765	trace_kmem_cache_free(_RET_IP_, objp);
3766}
3767EXPORT_SYMBOL(kmem_cache_free);
3768
3769void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3770{
3771	struct kmem_cache *s;
3772	size_t i;
3773
3774	local_irq_disable();
3775	for (i = 0; i < size; i++) {
3776		void *objp = p[i];
3777
3778		if (!orig_s) /* called via kfree_bulk */
3779			s = virt_to_cache(objp);
3780		else
3781			s = cache_from_obj(orig_s, objp);
 
 
3782
3783		debug_check_no_locks_freed(objp, s->object_size);
3784		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3785			debug_check_no_obj_freed(objp, s->object_size);
3786
3787		__cache_free(s, objp, _RET_IP_);
3788	}
3789	local_irq_enable();
3790
3791	/* FIXME: add tracing */
3792}
3793EXPORT_SYMBOL(kmem_cache_free_bulk);
3794
3795/**
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3798 *
3799 * If @objp is NULL, no operation is performed.
3800 *
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3803 */
3804void kfree(const void *objp)
3805{
3806	struct kmem_cache *c;
3807	unsigned long flags;
3808
3809	trace_kfree(_RET_IP_, objp);
3810
3811	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812		return;
3813	local_irq_save(flags);
3814	kfree_debugcheck(objp);
3815	c = virt_to_cache(objp);
 
 
 
 
3816	debug_check_no_locks_freed(objp, c->object_size);
3817
3818	debug_check_no_obj_freed(objp, c->object_size);
3819	__cache_free(c, (void *)objp, _RET_IP_);
3820	local_irq_restore(flags);
3821}
3822EXPORT_SYMBOL(kfree);
3823
3824/*
3825 * This initializes kmem_cache_node or resizes various caches for all nodes.
3826 */
3827static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828{
3829	int ret;
3830	int node;
3831	struct kmem_cache_node *n;
3832
3833	for_each_online_node(node) {
3834		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3835		if (ret)
3836			goto fail;
3837
3838	}
3839
3840	return 0;
3841
3842fail:
3843	if (!cachep->list.next) {
3844		/* Cache is not active yet. Roll back what we did */
3845		node--;
3846		while (node >= 0) {
3847			n = get_node(cachep, node);
3848			if (n) {
3849				kfree(n->shared);
3850				free_alien_cache(n->alien);
3851				kfree(n);
3852				cachep->node[node] = NULL;
3853			}
3854			node--;
3855		}
3856	}
3857	return -ENOMEM;
3858}
3859
3860/* Always called with the slab_mutex held */
3861static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862				int batchcount, int shared, gfp_t gfp)
3863{
3864	struct array_cache __percpu *cpu_cache, *prev;
3865	int cpu;
3866
3867	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3868	if (!cpu_cache)
3869		return -ENOMEM;
3870
3871	prev = cachep->cpu_cache;
3872	cachep->cpu_cache = cpu_cache;
3873	kick_all_cpus_sync();
 
 
 
 
 
3874
3875	check_irq_on();
3876	cachep->batchcount = batchcount;
3877	cachep->limit = limit;
3878	cachep->shared = shared;
3879
3880	if (!prev)
3881		goto setup_node;
3882
3883	for_each_online_cpu(cpu) {
3884		LIST_HEAD(list);
3885		int node;
3886		struct kmem_cache_node *n;
3887		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888
3889		node = cpu_to_mem(cpu);
3890		n = get_node(cachep, node);
3891		spin_lock_irq(&n->list_lock);
3892		free_block(cachep, ac->entry, ac->avail, node, &list);
3893		spin_unlock_irq(&n->list_lock);
3894		slabs_destroy(cachep, &list);
3895	}
3896	free_percpu(prev);
3897
3898setup_node:
3899	return setup_kmem_cache_nodes(cachep, gfp);
3900}
3901
3902static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903				int batchcount, int shared, gfp_t gfp)
3904{
3905	int ret;
3906	struct kmem_cache *c;
3907
3908	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909
3910	if (slab_state < FULL)
3911		return ret;
3912
3913	if ((ret < 0) || !is_root_cache(cachep))
3914		return ret;
3915
3916	lockdep_assert_held(&slab_mutex);
3917	for_each_memcg_cache(c, cachep) {
3918		/* return value determined by the root cache only */
3919		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920	}
3921
3922	return ret;
3923}
3924
3925/* Called with slab_mutex held always */
3926static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927{
3928	int err;
3929	int limit = 0;
3930	int shared = 0;
3931	int batchcount = 0;
3932
3933	err = cache_random_seq_create(cachep, cachep->num, gfp);
3934	if (err)
3935		goto end;
3936
3937	if (!is_root_cache(cachep)) {
3938		struct kmem_cache *root = memcg_root_cache(cachep);
3939		limit = root->limit;
3940		shared = root->shared;
3941		batchcount = root->batchcount;
3942	}
3943
3944	if (limit && shared && batchcount)
3945		goto skip_setup;
3946	/*
3947	 * The head array serves three purposes:
3948	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949	 * - reduce the number of spinlock operations.
3950	 * - reduce the number of linked list operations on the slab and
3951	 *   bufctl chains: array operations are cheaper.
3952	 * The numbers are guessed, we should auto-tune as described by
3953	 * Bonwick.
3954	 */
3955	if (cachep->size > 131072)
3956		limit = 1;
3957	else if (cachep->size > PAGE_SIZE)
3958		limit = 8;
3959	else if (cachep->size > 1024)
3960		limit = 24;
3961	else if (cachep->size > 256)
3962		limit = 54;
3963	else
3964		limit = 120;
3965
3966	/*
3967	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968	 * allocation behaviour: Most allocs on one cpu, most free operations
3969	 * on another cpu. For these cases, an efficient object passing between
3970	 * cpus is necessary. This is provided by a shared array. The array
3971	 * replaces Bonwick's magazine layer.
3972	 * On uniprocessor, it's functionally equivalent (but less efficient)
3973	 * to a larger limit. Thus disabled by default.
3974	 */
3975	shared = 0;
3976	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3977		shared = 8;
3978
3979#if DEBUG
3980	/*
3981	 * With debugging enabled, large batchcount lead to excessively long
3982	 * periods with disabled local interrupts. Limit the batchcount
3983	 */
3984	if (limit > 32)
3985		limit = 32;
3986#endif
3987	batchcount = (limit + 1) / 2;
3988skip_setup:
3989	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990end:
3991	if (err)
3992		pr_err("enable_cpucache failed for %s, error %d\n",
3993		       cachep->name, -err);
3994	return err;
3995}
3996
3997/*
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4001 */
4002static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003			 struct array_cache *ac, int node)
4004{
4005	LIST_HEAD(list);
4006
4007	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008	check_mutex_acquired();
4009
4010	if (!ac || !ac->avail)
4011		return;
4012
4013	if (ac->touched) {
4014		ac->touched = 0;
4015		return;
4016	}
4017
4018	spin_lock_irq(&n->list_lock);
4019	drain_array_locked(cachep, ac, node, false, &list);
4020	spin_unlock_irq(&n->list_lock);
4021
4022	slabs_destroy(cachep, &list);
4023}
4024
4025/**
4026 * cache_reap - Reclaim memory from caches.
4027 * @w: work descriptor
4028 *
4029 * Called from workqueue/eventd every few seconds.
4030 * Purpose:
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4033 *
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
4036 */
4037static void cache_reap(struct work_struct *w)
4038{
4039	struct kmem_cache *searchp;
4040	struct kmem_cache_node *n;
4041	int node = numa_mem_id();
4042	struct delayed_work *work = to_delayed_work(w);
4043
4044	if (!mutex_trylock(&slab_mutex))
4045		/* Give up. Setup the next iteration. */
4046		goto out;
4047
4048	list_for_each_entry(searchp, &slab_caches, list) {
4049		check_irq_on();
4050
4051		/*
4052		 * We only take the node lock if absolutely necessary and we
4053		 * have established with reasonable certainty that
4054		 * we can do some work if the lock was obtained.
4055		 */
4056		n = get_node(searchp, node);
4057
4058		reap_alien(searchp, n);
4059
4060		drain_array(searchp, n, cpu_cache_get(searchp), node);
4061
4062		/*
4063		 * These are racy checks but it does not matter
4064		 * if we skip one check or scan twice.
4065		 */
4066		if (time_after(n->next_reap, jiffies))
4067			goto next;
4068
4069		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4070
4071		drain_array(searchp, n, n->shared, node);
4072
4073		if (n->free_touched)
4074			n->free_touched = 0;
4075		else {
4076			int freed;
4077
4078			freed = drain_freelist(searchp, n, (n->free_limit +
4079				5 * searchp->num - 1) / (5 * searchp->num));
4080			STATS_ADD_REAPED(searchp, freed);
4081		}
4082next:
4083		cond_resched();
4084	}
4085	check_irq_on();
4086	mutex_unlock(&slab_mutex);
4087	next_reap_node();
4088out:
4089	/* Set up the next iteration */
4090	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
 
4091}
4092
4093#ifdef CONFIG_SLABINFO
4094void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4095{
4096	unsigned long active_objs, num_objs, active_slabs;
4097	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4098	unsigned long free_slabs = 0;
4099	int node;
4100	struct kmem_cache_node *n;
4101
4102	for_each_kmem_cache_node(cachep, node, n) {
4103		check_irq_on();
4104		spin_lock_irq(&n->list_lock);
4105
4106		total_slabs += n->total_slabs;
4107		free_slabs += n->free_slabs;
4108		free_objs += n->free_objects;
4109
4110		if (n->shared)
4111			shared_avail += n->shared->avail;
4112
4113		spin_unlock_irq(&n->list_lock);
4114	}
4115	num_objs = total_slabs * cachep->num;
4116	active_slabs = total_slabs - free_slabs;
4117	active_objs = num_objs - free_objs;
4118
4119	sinfo->active_objs = active_objs;
4120	sinfo->num_objs = num_objs;
4121	sinfo->active_slabs = active_slabs;
4122	sinfo->num_slabs = total_slabs;
4123	sinfo->shared_avail = shared_avail;
4124	sinfo->limit = cachep->limit;
4125	sinfo->batchcount = cachep->batchcount;
4126	sinfo->shared = cachep->shared;
4127	sinfo->objects_per_slab = cachep->num;
4128	sinfo->cache_order = cachep->gfporder;
4129}
4130
4131void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4132{
4133#if STATS
4134	{			/* node stats */
4135		unsigned long high = cachep->high_mark;
4136		unsigned long allocs = cachep->num_allocations;
4137		unsigned long grown = cachep->grown;
4138		unsigned long reaped = cachep->reaped;
4139		unsigned long errors = cachep->errors;
4140		unsigned long max_freeable = cachep->max_freeable;
4141		unsigned long node_allocs = cachep->node_allocs;
4142		unsigned long node_frees = cachep->node_frees;
4143		unsigned long overflows = cachep->node_overflow;
4144
4145		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146			   allocs, high, grown,
4147			   reaped, errors, max_freeable, node_allocs,
4148			   node_frees, overflows);
4149	}
4150	/* cpu stats */
4151	{
4152		unsigned long allochit = atomic_read(&cachep->allochit);
4153		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4154		unsigned long freehit = atomic_read(&cachep->freehit);
4155		unsigned long freemiss = atomic_read(&cachep->freemiss);
4156
4157		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158			   allochit, allocmiss, freehit, freemiss);
4159	}
4160#endif
4161}
4162
4163#define MAX_SLABINFO_WRITE 128
4164/**
4165 * slabinfo_write - Tuning for the slab allocator
4166 * @file: unused
4167 * @buffer: user buffer
4168 * @count: data length
4169 * @ppos: unused
 
 
4170 */
4171ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172		       size_t count, loff_t *ppos)
4173{
4174	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4175	int limit, batchcount, shared, res;
4176	struct kmem_cache *cachep;
4177
4178	if (count > MAX_SLABINFO_WRITE)
4179		return -EINVAL;
4180	if (copy_from_user(&kbuf, buffer, count))
4181		return -EFAULT;
4182	kbuf[MAX_SLABINFO_WRITE] = '\0';
4183
4184	tmp = strchr(kbuf, ' ');
4185	if (!tmp)
4186		return -EINVAL;
4187	*tmp = '\0';
4188	tmp++;
4189	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4190		return -EINVAL;
4191
4192	/* Find the cache in the chain of caches. */
4193	mutex_lock(&slab_mutex);
4194	res = -EINVAL;
4195	list_for_each_entry(cachep, &slab_caches, list) {
4196		if (!strcmp(cachep->name, kbuf)) {
4197			if (limit < 1 || batchcount < 1 ||
4198					batchcount > limit || shared < 0) {
4199				res = 0;
4200			} else {
4201				res = do_tune_cpucache(cachep, limit,
4202						       batchcount, shared,
4203						       GFP_KERNEL);
4204			}
4205			break;
4206		}
4207	}
4208	mutex_unlock(&slab_mutex);
4209	if (res >= 0)
4210		res = count;
4211	return res;
4212}
4213
4214#ifdef CONFIG_DEBUG_SLAB_LEAK
4215
4216static inline int add_caller(unsigned long *n, unsigned long v)
4217{
4218	unsigned long *p;
4219	int l;
4220	if (!v)
4221		return 1;
4222	l = n[1];
4223	p = n + 2;
4224	while (l) {
4225		int i = l/2;
4226		unsigned long *q = p + 2 * i;
4227		if (*q == v) {
4228			q[1]++;
4229			return 1;
4230		}
4231		if (*q > v) {
4232			l = i;
4233		} else {
4234			p = q + 2;
4235			l -= i + 1;
4236		}
4237	}
4238	if (++n[1] == n[0])
4239		return 0;
4240	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4241	p[0] = v;
4242	p[1] = 1;
4243	return 1;
4244}
4245
4246static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247						struct page *page)
4248{
4249	void *p;
4250	int i, j;
4251	unsigned long v;
4252
4253	if (n[0] == n[1])
4254		return;
4255	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256		bool active = true;
4257
4258		for (j = page->active; j < c->num; j++) {
4259			if (get_free_obj(page, j) == i) {
4260				active = false;
4261				break;
4262			}
4263		}
4264
4265		if (!active)
4266			continue;
4267
4268		/*
4269		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270		 * mapping is established when actual object allocation and
4271		 * we could mistakenly access the unmapped object in the cpu
4272		 * cache.
4273		 */
4274		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4275			continue;
4276
4277		if (!add_caller(n, v))
4278			return;
4279	}
4280}
4281
4282static void show_symbol(struct seq_file *m, unsigned long address)
4283{
4284#ifdef CONFIG_KALLSYMS
4285	unsigned long offset, size;
4286	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287
4288	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290		if (modname[0])
4291			seq_printf(m, " [%s]", modname);
4292		return;
4293	}
4294#endif
4295	seq_printf(m, "%p", (void *)address);
4296}
4297
4298static int leaks_show(struct seq_file *m, void *p)
4299{
4300	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301	struct page *page;
4302	struct kmem_cache_node *n;
4303	const char *name;
4304	unsigned long *x = m->private;
4305	int node;
4306	int i;
4307
4308	if (!(cachep->flags & SLAB_STORE_USER))
4309		return 0;
4310	if (!(cachep->flags & SLAB_RED_ZONE))
4311		return 0;
4312
4313	/*
4314	 * Set store_user_clean and start to grab stored user information
4315	 * for all objects on this cache. If some alloc/free requests comes
4316	 * during the processing, information would be wrong so restart
4317	 * whole processing.
4318	 */
4319	do {
4320		set_store_user_clean(cachep);
4321		drain_cpu_caches(cachep);
4322
4323		x[1] = 0;
4324
4325		for_each_kmem_cache_node(cachep, node, n) {
4326
4327			check_irq_on();
4328			spin_lock_irq(&n->list_lock);
4329
4330			list_for_each_entry(page, &n->slabs_full, lru)
4331				handle_slab(x, cachep, page);
4332			list_for_each_entry(page, &n->slabs_partial, lru)
4333				handle_slab(x, cachep, page);
4334			spin_unlock_irq(&n->list_lock);
4335		}
4336	} while (!is_store_user_clean(cachep));
4337
4338	name = cachep->name;
4339	if (x[0] == x[1]) {
4340		/* Increase the buffer size */
4341		mutex_unlock(&slab_mutex);
4342		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343		if (!m->private) {
4344			/* Too bad, we are really out */
4345			m->private = x;
4346			mutex_lock(&slab_mutex);
4347			return -ENOMEM;
4348		}
4349		*(unsigned long *)m->private = x[0] * 2;
4350		kfree(x);
4351		mutex_lock(&slab_mutex);
4352		/* Now make sure this entry will be retried */
4353		m->count = m->size;
4354		return 0;
4355	}
4356	for (i = 0; i < x[1]; i++) {
4357		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358		show_symbol(m, x[2*i+2]);
4359		seq_putc(m, '\n');
4360	}
4361
4362	return 0;
4363}
4364
4365static const struct seq_operations slabstats_op = {
4366	.start = slab_start,
4367	.next = slab_next,
4368	.stop = slab_stop,
4369	.show = leaks_show,
4370};
4371
4372static int slabstats_open(struct inode *inode, struct file *file)
4373{
4374	unsigned long *n;
4375
4376	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377	if (!n)
4378		return -ENOMEM;
4379
4380	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381
4382	return 0;
4383}
4384
4385static const struct file_operations proc_slabstats_operations = {
4386	.open		= slabstats_open,
4387	.read		= seq_read,
4388	.llseek		= seq_lseek,
4389	.release	= seq_release_private,
4390};
4391#endif
4392
4393static int __init slab_proc_init(void)
4394{
4395#ifdef CONFIG_DEBUG_SLAB_LEAK
4396	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397#endif
4398	return 0;
4399}
4400module_init(slab_proc_init);
4401#endif
4402
4403#ifdef CONFIG_HARDENED_USERCOPY
4404/*
4405 * Rejects objects that are incorrectly sized.
 
 
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410const char *__check_heap_object(const void *ptr, unsigned long n,
4411				struct page *page)
4412{
4413	struct kmem_cache *cachep;
4414	unsigned int objnr;
4415	unsigned long offset;
4416
 
 
4417	/* Find and validate object. */
4418	cachep = page->slab_cache;
4419	objnr = obj_to_index(cachep, page, (void *)ptr);
4420	BUG_ON(objnr >= cachep->num);
4421
4422	/* Find offset within object. */
4423	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
 
 
 
 
 
 
 
 
 
4424
4425	/* Allow address range falling entirely within object size. */
4426	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4427		return NULL;
 
 
 
 
 
 
 
 
 
4428
4429	return cachep->name;
4430}
4431#endif /* CONFIG_HARDENED_USERCOPY */
4432
4433/**
4434 * ksize - get the actual amount of memory allocated for a given object
4435 * @objp: Pointer to the object
4436 *
4437 * kmalloc may internally round up allocations and return more memory
4438 * than requested. ksize() can be used to determine the actual amount of
4439 * memory allocated. The caller may use this additional memory, even though
4440 * a smaller amount of memory was initially specified with the kmalloc call.
4441 * The caller must guarantee that objp points to a valid object previously
4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443 * must not be freed during the duration of the call.
4444 */
4445size_t ksize(const void *objp)
4446{
 
4447	size_t size;
4448
4449	BUG_ON(!objp);
4450	if (unlikely(objp == ZERO_SIZE_PTR))
4451		return 0;
4452
4453	size = virt_to_cache(objp)->object_size;
4454	/* We assume that ksize callers could use the whole allocated area,
4455	 * so we need to unpoison this area.
4456	 */
4457	kasan_unpoison_shadow(objp, size);
4458
4459	return size;
4460}
4461EXPORT_SYMBOL(ksize);