Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
29#include <linux/debugobjects.h>
30#include <linux/kallsyms.h>
31#include <linux/kfence.h>
32#include <linux/memory.h>
33#include <linux/math64.h>
34#include <linux/fault-inject.h>
35#include <linux/stacktrace.h>
36#include <linux/prefetch.h>
37#include <linux/memcontrol.h>
38#include <linux/random.h>
39#include <kunit/test.h>
40
41#include <linux/debugfs.h>
42#include <trace/events/kmem.h>
43
44#include "internal.h"
45
46/*
47 * Lock order:
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
51 *
52 * slab_mutex
53 *
54 * The role of the slab_mutex is to protect the list of all the slabs
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
58 * have the ability to do a cmpxchg_double. It only protects:
59 * A. page->freelist -> List of object free in a page
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
92 * freed then the slab will show up again on the partial lists.
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
100 * page->frozen The slab is frozen and exempt from list processing.
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
112 * freelist that allows lockless access to
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
115 *
116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
117 * options set. This moves slab handling out of
118 * the fast path and disables lockless freelists.
119 */
120
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
127#endif /* CONFIG_SLUB_DEBUG */
128
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132}
133
134void *fixup_red_left(struct kmem_cache *s, void *p)
135{
136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 p += s->red_left_pad;
138
139 return p;
140}
141
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
151/*
152 * Issues still to be resolved:
153 *
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
156 * - Variable sizing of the per node arrays
157 */
158
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
162/*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166#define MIN_PARTIAL 5
167
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173#define MAX_PARTIAL 10
174
175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186/*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197/* Internal SLUB flags */
198/* Poison object */
199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200/* Use cmpxchg_double */
201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203/*
204 * Tracking user of a slab.
205 */
206#define TRACK_ADDRS_COUNT 16
207struct track {
208 unsigned long addr; /* Called from address */
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219#ifdef CONFIG_SYSFS
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
222#else
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226#endif
227
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
234static inline void stat(const struct kmem_cache *s, enum stat_item si)
235{
236#ifdef CONFIG_SLUB_STATS
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
242#endif
243}
244
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
266 /*
267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
293 object = kasan_reset_tag(object);
294 return freelist_dereference(s, object + s->offset);
295}
296
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
299 prefetch(object + s->offset);
300}
301
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
304 unsigned long freepointer_addr;
305 void *p;
306
307 if (!debug_pagealloc_enabled_static())
308 return get_freepointer(s, object);
309
310 object = kasan_reset_tag(object);
311 freepointer_addr = (unsigned long)object + s->offset;
312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 return freelist_ptr(s, p, freepointer_addr);
314}
315
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326}
327
328/* Loop over all objects in a slab */
329#define for_each_object(__p, __s, __addr, __objects) \
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
333
334static inline unsigned int order_objects(unsigned int order, unsigned int size)
335{
336 return ((unsigned int)PAGE_SIZE << order) / size;
337}
338
339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 unsigned int size)
341{
342 struct kmem_cache_order_objects x = {
343 (order << OO_SHIFT) + order_objects(order, size)
344 };
345
346 return x;
347}
348
349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350{
351 return x.x >> OO_SHIFT;
352}
353
354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355{
356 return x.x & OO_MASK;
357}
358
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
370 VM_BUG_ON_PAGE(PageTail(page), page);
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389#endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 page->counters = counters_new;
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407#endif
408
409 return false;
410}
411
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425#endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 page->counters = counters_new;
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448#endif
449
450 return false;
451}
452
453#ifdef CONFIG_SLUB_DEBUG
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
457#if IS_ENABLED(CONFIG_KUNIT)
458static bool slab_add_kunit_errors(void)
459{
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472}
473#else
474static inline bool slab_add_kunit_errors(void) { return false; }
475#endif
476
477/*
478 * Determine a map of object in use on a page.
479 *
480 * Node listlock must be held to guarantee that the page does
481 * not vanish from under us.
482 */
483static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 __acquires(&object_map_lock)
485{
486 void *p;
487 void *addr = page_address(page);
488
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
495 for (p = page->freelist; p; p = get_freepointer(s, p))
496 set_bit(__obj_to_index(s, addr, p), object_map);
497
498 return object_map;
499}
500
501static void put_map(unsigned long *map) __releases(&object_map_lock)
502{
503 VM_BUG_ON(map != object_map);
504 spin_unlock(&object_map_lock);
505}
506
507static inline unsigned int size_from_object(struct kmem_cache *s)
508{
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513}
514
515static inline void *restore_red_left(struct kmem_cache *s, void *p)
516{
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521}
522
523/*
524 * Debug settings:
525 */
526#if defined(CONFIG_SLUB_DEBUG_ON)
527static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528#else
529static slab_flags_t slub_debug;
530#endif
531
532static char *slub_debug_string;
533static int disable_higher_order_debug;
534
535/*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541static inline void metadata_access_enable(void)
542{
543 kasan_disable_current();
544}
545
546static inline void metadata_access_disable(void)
547{
548 kasan_enable_current();
549}
550
551/*
552 * Object debugging
553 */
554
555/* Verify that a pointer has an address that is valid within a slab page */
556static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558{
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
565 object = kasan_reset_tag(object);
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573}
574
575static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
577{
578 metadata_access_enable();
579 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
580 16, 1, kasan_reset_tag((void *)addr), length, 1);
581 metadata_access_disable();
582}
583
584/*
585 * See comment in calculate_sizes().
586 */
587static inline bool freeptr_outside_object(struct kmem_cache *s)
588{
589 return s->offset >= s->inuse;
590}
591
592/*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596static inline unsigned int get_info_end(struct kmem_cache *s)
597{
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602}
603
604static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606{
607 struct track *p;
608
609 p = object + get_info_end(s);
610
611 return kasan_reset_tag(p + alloc);
612}
613
614static void set_track(struct kmem_cache *s, void *object,
615 enum track_item alloc, unsigned long addr)
616{
617 struct track *p = get_track(s, object, alloc);
618
619 if (addr) {
620#ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
630#endif
631 p->addr = addr;
632 p->cpu = smp_processor_id();
633 p->pid = current->pid;
634 p->when = jiffies;
635 } else {
636 memset(p, 0, sizeof(struct track));
637 }
638}
639
640static void init_tracking(struct kmem_cache *s, void *object)
641{
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
647}
648
649static void print_track(const char *s, struct track *t, unsigned long pr_time)
650{
651 if (!t->addr)
652 return;
653
654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656#ifdef CONFIG_STACKTRACE
657 {
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
664 }
665#endif
666}
667
668void print_tracking(struct kmem_cache *s, void *object)
669{
670 unsigned long pr_time = jiffies;
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676}
677
678static void print_page_info(struct page *page)
679{
680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
683
684}
685
686static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687{
688 struct va_format vaf;
689 va_list args;
690
691 va_start(args, fmt);
692 vaf.fmt = fmt;
693 vaf.va = &args;
694 pr_err("=============================================================================\n");
695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 pr_err("-----------------------------------------------------------------------------\n\n");
697 va_end(args);
698}
699
700__printf(2, 3)
701static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702{
703 struct va_format vaf;
704 va_list args;
705
706 if (slab_add_kunit_errors())
707 return;
708
709 va_start(args, fmt);
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
713 va_end(args);
714}
715
716static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 void **freelist, void *nextfree)
718{
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728}
729
730static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731{
732 unsigned int off; /* Offset of last byte */
733 u8 *addr = page_address(page);
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 p, p - addr, get_freepointer(s, p));
741
742 if (s->flags & SLAB_RED_ZONE)
743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
744 s->red_left_pad);
745 else if (p > addr + 16)
746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747
748 print_section(KERN_ERR, "Object ", p,
749 min_t(unsigned int, s->object_size, PAGE_SIZE));
750 if (s->flags & SLAB_RED_ZONE)
751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
752 s->inuse - s->object_size);
753
754 off = get_info_end(s);
755
756 if (s->flags & SLAB_STORE_USER)
757 off += 2 * sizeof(struct track);
758
759 off += kasan_metadata_size(s);
760
761 if (off != size_from_object(s))
762 /* Beginning of the filler is the free pointer */
763 print_section(KERN_ERR, "Padding ", p + off,
764 size_from_object(s) - off);
765
766 dump_stack();
767}
768
769void object_err(struct kmem_cache *s, struct page *page,
770 u8 *object, char *reason)
771{
772 if (slab_add_kunit_errors())
773 return;
774
775 slab_bug(s, "%s", reason);
776 print_trailer(s, page, object);
777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778}
779
780static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 const char *fmt, ...)
782{
783 va_list args;
784 char buf[100];
785
786 if (slab_add_kunit_errors())
787 return;
788
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
791 va_end(args);
792 slab_bug(s, "%s", buf);
793 print_page_info(page);
794 dump_stack();
795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796}
797
798static void init_object(struct kmem_cache *s, void *object, u8 val)
799{
800 u8 *p = kasan_reset_tag(object);
801
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
805 if (s->flags & __OBJECT_POISON) {
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
811 memset(p + s->object_size, val, s->inuse - s->object_size);
812}
813
814static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816{
817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 memset(from, data, to - from);
819}
820
821static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
823 u8 *start, unsigned int value, unsigned int bytes)
824{
825 u8 *fault;
826 u8 *end;
827 u8 *addr = page_address(page);
828
829 metadata_access_enable();
830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 metadata_access_disable();
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
842 slab_bug(s, "%s overwritten", what);
843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 fault, end - 1, fault - addr,
845 fault[0], value);
846 print_trailer(s, page, object);
847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848
849skip_bug_print:
850 restore_bytes(s, what, value, fault, end);
851 return 0;
852}
853
854/*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
860 * pointer is at the middle of the object.
861 *
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
865 * object + s->object_size
866 * Padding to reach word boundary. This is also used for Redzoning.
867 * Padding is extended by another word if Redzoning is enabled and
868 * object_size == inuse.
869 *
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
874 * Meta data starts here.
875 *
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
878 * C. Padding to reach required alignment boundary or at minimum
879 * one word if debugging is on to be able to detect writes
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
883 *
884 * object + s->size
885 * Nothing is used beyond s->size.
886 *
887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
888 * ignored. And therefore no slab options that rely on these boundaries
889 * may be used with merged slabcaches.
890 */
891
892static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893{
894 unsigned long off = get_info_end(s); /* The end of info */
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
900 off += kasan_metadata_size(s);
901
902 if (size_from_object(s) == off)
903 return 1;
904
905 return check_bytes_and_report(s, page, p, "Object padding",
906 p + off, POISON_INUSE, size_from_object(s) - off);
907}
908
909/* Check the pad bytes at the end of a slab page */
910static int slab_pad_check(struct kmem_cache *s, struct page *page)
911{
912 u8 *start;
913 u8 *fault;
914 u8 *end;
915 u8 *pad;
916 int length;
917 int remainder;
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
922 start = page_address(page);
923 length = page_size(page);
924 end = start + length;
925 remainder = length % s->size;
926 if (!remainder)
927 return 1;
928
929 pad = end - remainder;
930 metadata_access_enable();
931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 metadata_access_disable();
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
940 print_section(KERN_ERR, "Padding ", pad, remainder);
941
942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 return 0;
944}
945
946static int check_object(struct kmem_cache *s, struct page *page,
947 void *object, u8 val)
948{
949 u8 *p = object;
950 u8 *endobject = object + s->object_size;
951
952 if (s->flags & SLAB_RED_ZONE) {
953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 endobject, val, s->inuse - s->object_size))
959 return 0;
960 } else {
961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 check_bytes_and_report(s, page, p, "Alignment padding",
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
965 }
966 }
967
968 if (s->flags & SLAB_POISON) {
969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 (!check_bytes_and_report(s, page, p, "Poison", p,
971 POISON_FREE, s->object_size - 1) ||
972 !check_bytes_and_report(s, page, p, "End Poison",
973 p + s->object_size - 1, POISON_END, 1)))
974 return 0;
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
992 * No choice but to zap it and thus lose the remainder
993 * of the free objects in this slab. May cause
994 * another error because the object count is now wrong.
995 */
996 set_freepointer(s, p, NULL);
997 return 0;
998 }
999 return 1;
1000}
1001
1002static int check_slab(struct kmem_cache *s, struct page *page)
1003{
1004 int maxobj;
1005
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
1009 slab_err(s, page, "Not a valid slab page");
1010 return 0;
1011 }
1012
1013 maxobj = order_objects(compound_order(page), s->size);
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
1016 page->objects, maxobj);
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
1020 slab_err(s, page, "inuse %u > max %u",
1021 page->inuse, page->objects);
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027}
1028
1029/*
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
1032 */
1033static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034{
1035 int nr = 0;
1036 void *fp;
1037 void *object = NULL;
1038 int max_objects;
1039
1040 fp = page->freelist;
1041 while (fp && nr <= page->objects) {
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
1048 set_freepointer(s, object, NULL);
1049 } else {
1050 slab_err(s, page, "Freepointer corrupt");
1051 page->freelist = NULL;
1052 page->inuse = page->objects;
1053 slab_fix(s, "Freelist cleared");
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
1063 max_objects = order_objects(compound_order(page), s->size);
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
1066
1067 if (page->objects != max_objects) {
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
1070 page->objects = max_objects;
1071 slab_fix(s, "Number of objects adjusted");
1072 }
1073 if (page->inuse != page->objects - nr) {
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
1076 page->inuse = page->objects - nr;
1077 slab_fix(s, "Object count adjusted");
1078 }
1079 return search == NULL;
1080}
1081
1082static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
1084{
1085 if (s->flags & SLAB_TRACE) {
1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
1093 print_section(KERN_INFO, "Object ", (void *)object,
1094 s->object_size);
1095
1096 dump_stack();
1097 }
1098}
1099
1100/*
1101 * Tracking of fully allocated slabs for debugging purposes.
1102 */
1103static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
1105{
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
1109 lockdep_assert_held(&n->list_lock);
1110 list_add(&page->slab_list, &n->full);
1111}
1112
1113static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114{
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
1118 lockdep_assert_held(&n->list_lock);
1119 list_del(&page->slab_list);
1120}
1121
1122/* Tracking of the number of slabs for debugging purposes */
1123static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124{
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128}
1129
1130static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131{
1132 return atomic_long_read(&n->nr_slabs);
1133}
1134
1135static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136{
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
1145 if (likely(n)) {
1146 atomic_long_inc(&n->nr_slabs);
1147 atomic_long_add(objects, &n->total_objects);
1148 }
1149}
1150static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151{
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
1155 atomic_long_sub(objects, &n->total_objects);
1156}
1157
1158/* Object debug checks for alloc/free paths */
1159static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161{
1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 return;
1164
1165 init_object(s, object, SLUB_RED_INACTIVE);
1166 init_tracking(s, object);
1167}
1168
1169static
1170void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171{
1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 return;
1174
1175 metadata_access_enable();
1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 metadata_access_disable();
1178}
1179
1180static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object)
1182{
1183 if (!check_slab(s, page))
1184 return 0;
1185
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
1188 return 0;
1189 }
1190
1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 return 0;
1193
1194 return 1;
1195}
1196
1197static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200{
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 if (!alloc_consistency_checks(s, page, object))
1203 goto bad;
1204 }
1205
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
1210 init_object(s, object, SLUB_RED_ACTIVE);
1211 return 1;
1212
1213bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
1218 * as used avoids touching the remaining objects.
1219 */
1220 slab_fix(s, "Marking all objects used");
1221 page->inuse = page->objects;
1222 page->freelist = NULL;
1223 }
1224 return 0;
1225}
1226
1227static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
1229{
1230 if (!check_valid_pointer(s, page, object)) {
1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 return 0;
1233 }
1234
1235 if (on_freelist(s, page, object)) {
1236 object_err(s, page, object, "Object already free");
1237 return 0;
1238 }
1239
1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 return 0;
1242
1243 if (unlikely(s != page->slab_cache)) {
1244 if (!PageSlab(page)) {
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1247 } else if (!page->slab_cache) {
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
1250 dump_stack();
1251 } else
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
1254 return 0;
1255 }
1256 return 1;
1257}
1258
1259/* Supports checking bulk free of a constructed freelist */
1260static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264{
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
1268 unsigned long flags;
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
1285 }
1286
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 init_object(s, object, SLUB_RED_INACTIVE);
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
1298 ret = 1;
1299
1300out:
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
1305 slab_unlock(page);
1306 spin_unlock_irqrestore(&n->list_lock, flags);
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
1310}
1311
1312/*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322static char *
1323parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324{
1325 bool higher_order_disable = false;
1326
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
1336 *flags = DEBUG_DEFAULT_FLAGS;
1337 goto check_slabs;
1338 }
1339 *flags = 0;
1340
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
1343 switch (tolower(*str)) {
1344 case '-':
1345 *flags = 0;
1346 break;
1347 case 'f':
1348 *flags |= SLAB_CONSISTENCY_CHECKS;
1349 break;
1350 case 'z':
1351 *flags |= SLAB_RED_ZONE;
1352 break;
1353 case 'p':
1354 *flags |= SLAB_POISON;
1355 break;
1356 case 'u':
1357 *flags |= SLAB_STORE_USER;
1358 break;
1359 case 't':
1360 *flags |= SLAB_TRACE;
1361 break;
1362 case 'a':
1363 *flags |= SLAB_FAILSLAB;
1364 break;
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
1370 higher_order_disable = true;
1371 break;
1372 default:
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 }
1376 }
1377check_slabs:
1378 if (*str == ',')
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398}
1399
1400static int __init setup_slub_debug(char *str)
1401{
1402 slab_flags_t flags;
1403 slab_flags_t global_flags;
1404 char *saved_str;
1405 char *slab_list;
1406 bool global_slub_debug_changed = false;
1407 bool slab_list_specified = false;
1408
1409 global_flags = DEBUG_DEFAULT_FLAGS;
1410 if (*str++ != '=' || !*str)
1411 /*
1412 * No options specified. Switch on full debugging.
1413 */
1414 goto out;
1415
1416 saved_str = str;
1417 while (str) {
1418 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1419
1420 if (!slab_list) {
1421 global_flags = flags;
1422 global_slub_debug_changed = true;
1423 } else {
1424 slab_list_specified = true;
1425 }
1426 }
1427
1428 /*
1429 * For backwards compatibility, a single list of flags with list of
1430 * slabs means debugging is only changed for those slabs, so the global
1431 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1432 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1433 * long as there is no option specifying flags without a slab list.
1434 */
1435 if (slab_list_specified) {
1436 if (!global_slub_debug_changed)
1437 global_flags = slub_debug;
1438 slub_debug_string = saved_str;
1439 }
1440out:
1441 slub_debug = global_flags;
1442 if (slub_debug != 0 || slub_debug_string)
1443 static_branch_enable(&slub_debug_enabled);
1444 else
1445 static_branch_disable(&slub_debug_enabled);
1446 if ((static_branch_unlikely(&init_on_alloc) ||
1447 static_branch_unlikely(&init_on_free)) &&
1448 (slub_debug & SLAB_POISON))
1449 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1450 return 1;
1451}
1452
1453__setup("slub_debug", setup_slub_debug);
1454
1455/*
1456 * kmem_cache_flags - apply debugging options to the cache
1457 * @object_size: the size of an object without meta data
1458 * @flags: flags to set
1459 * @name: name of the cache
1460 *
1461 * Debug option(s) are applied to @flags. In addition to the debug
1462 * option(s), if a slab name (or multiple) is specified i.e.
1463 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1464 * then only the select slabs will receive the debug option(s).
1465 */
1466slab_flags_t kmem_cache_flags(unsigned int object_size,
1467 slab_flags_t flags, const char *name)
1468{
1469 char *iter;
1470 size_t len;
1471 char *next_block;
1472 slab_flags_t block_flags;
1473 slab_flags_t slub_debug_local = slub_debug;
1474
1475 /*
1476 * If the slab cache is for debugging (e.g. kmemleak) then
1477 * don't store user (stack trace) information by default,
1478 * but let the user enable it via the command line below.
1479 */
1480 if (flags & SLAB_NOLEAKTRACE)
1481 slub_debug_local &= ~SLAB_STORE_USER;
1482
1483 len = strlen(name);
1484 next_block = slub_debug_string;
1485 /* Go through all blocks of debug options, see if any matches our slab's name */
1486 while (next_block) {
1487 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1488 if (!iter)
1489 continue;
1490 /* Found a block that has a slab list, search it */
1491 while (*iter) {
1492 char *end, *glob;
1493 size_t cmplen;
1494
1495 end = strchrnul(iter, ',');
1496 if (next_block && next_block < end)
1497 end = next_block - 1;
1498
1499 glob = strnchr(iter, end - iter, '*');
1500 if (glob)
1501 cmplen = glob - iter;
1502 else
1503 cmplen = max_t(size_t, len, (end - iter));
1504
1505 if (!strncmp(name, iter, cmplen)) {
1506 flags |= block_flags;
1507 return flags;
1508 }
1509
1510 if (!*end || *end == ';')
1511 break;
1512 iter = end + 1;
1513 }
1514 }
1515
1516 return flags | slub_debug_local;
1517}
1518#else /* !CONFIG_SLUB_DEBUG */
1519static inline void setup_object_debug(struct kmem_cache *s,
1520 struct page *page, void *object) {}
1521static inline
1522void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1523
1524static inline int alloc_debug_processing(struct kmem_cache *s,
1525 struct page *page, void *object, unsigned long addr) { return 0; }
1526
1527static inline int free_debug_processing(
1528 struct kmem_cache *s, struct page *page,
1529 void *head, void *tail, int bulk_cnt,
1530 unsigned long addr) { return 0; }
1531
1532static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1533 { return 1; }
1534static inline int check_object(struct kmem_cache *s, struct page *page,
1535 void *object, u8 val) { return 1; }
1536static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1537 struct page *page) {}
1538static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct page *page) {}
1540slab_flags_t kmem_cache_flags(unsigned int object_size,
1541 slab_flags_t flags, const char *name)
1542{
1543 return flags;
1544}
1545#define slub_debug 0
1546
1547#define disable_higher_order_debug 0
1548
1549static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1550 { return 0; }
1551static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1552 { return 0; }
1553static inline void inc_slabs_node(struct kmem_cache *s, int node,
1554 int objects) {}
1555static inline void dec_slabs_node(struct kmem_cache *s, int node,
1556 int objects) {}
1557
1558static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1559 void **freelist, void *nextfree)
1560{
1561 return false;
1562}
1563#endif /* CONFIG_SLUB_DEBUG */
1564
1565/*
1566 * Hooks for other subsystems that check memory allocations. In a typical
1567 * production configuration these hooks all should produce no code at all.
1568 */
1569static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1570{
1571 ptr = kasan_kmalloc_large(ptr, size, flags);
1572 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1573 kmemleak_alloc(ptr, size, 1, flags);
1574 return ptr;
1575}
1576
1577static __always_inline void kfree_hook(void *x)
1578{
1579 kmemleak_free(x);
1580 kasan_kfree_large(x);
1581}
1582
1583static __always_inline bool slab_free_hook(struct kmem_cache *s,
1584 void *x, bool init)
1585{
1586 kmemleak_free_recursive(x, s->flags);
1587
1588 /*
1589 * Trouble is that we may no longer disable interrupts in the fast path
1590 * So in order to make the debug calls that expect irqs to be
1591 * disabled we need to disable interrupts temporarily.
1592 */
1593#ifdef CONFIG_LOCKDEP
1594 {
1595 unsigned long flags;
1596
1597 local_irq_save(flags);
1598 debug_check_no_locks_freed(x, s->object_size);
1599 local_irq_restore(flags);
1600 }
1601#endif
1602 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1603 debug_check_no_obj_freed(x, s->object_size);
1604
1605 /* Use KCSAN to help debug racy use-after-free. */
1606 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1607 __kcsan_check_access(x, s->object_size,
1608 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1609
1610 /*
1611 * As memory initialization might be integrated into KASAN,
1612 * kasan_slab_free and initialization memset's must be
1613 * kept together to avoid discrepancies in behavior.
1614 *
1615 * The initialization memset's clear the object and the metadata,
1616 * but don't touch the SLAB redzone.
1617 */
1618 if (init) {
1619 int rsize;
1620
1621 if (!kasan_has_integrated_init())
1622 memset(kasan_reset_tag(x), 0, s->object_size);
1623 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1624 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1625 s->size - s->inuse - rsize);
1626 }
1627 /* KASAN might put x into memory quarantine, delaying its reuse. */
1628 return kasan_slab_free(s, x, init);
1629}
1630
1631static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1632 void **head, void **tail,
1633 int *cnt)
1634{
1635
1636 void *object;
1637 void *next = *head;
1638 void *old_tail = *tail ? *tail : *head;
1639
1640 if (is_kfence_address(next)) {
1641 slab_free_hook(s, next, false);
1642 return true;
1643 }
1644
1645 /* Head and tail of the reconstructed freelist */
1646 *head = NULL;
1647 *tail = NULL;
1648
1649 do {
1650 object = next;
1651 next = get_freepointer(s, object);
1652
1653 /* If object's reuse doesn't have to be delayed */
1654 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1655 /* Move object to the new freelist */
1656 set_freepointer(s, object, *head);
1657 *head = object;
1658 if (!*tail)
1659 *tail = object;
1660 } else {
1661 /*
1662 * Adjust the reconstructed freelist depth
1663 * accordingly if object's reuse is delayed.
1664 */
1665 --(*cnt);
1666 }
1667 } while (object != old_tail);
1668
1669 if (*head == *tail)
1670 *tail = NULL;
1671
1672 return *head != NULL;
1673}
1674
1675static void *setup_object(struct kmem_cache *s, struct page *page,
1676 void *object)
1677{
1678 setup_object_debug(s, page, object);
1679 object = kasan_init_slab_obj(s, object);
1680 if (unlikely(s->ctor)) {
1681 kasan_unpoison_object_data(s, object);
1682 s->ctor(object);
1683 kasan_poison_object_data(s, object);
1684 }
1685 return object;
1686}
1687
1688/*
1689 * Slab allocation and freeing
1690 */
1691static inline struct page *alloc_slab_page(struct kmem_cache *s,
1692 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1693{
1694 struct page *page;
1695 unsigned int order = oo_order(oo);
1696
1697 if (node == NUMA_NO_NODE)
1698 page = alloc_pages(flags, order);
1699 else
1700 page = __alloc_pages_node(node, flags, order);
1701
1702 return page;
1703}
1704
1705#ifdef CONFIG_SLAB_FREELIST_RANDOM
1706/* Pre-initialize the random sequence cache */
1707static int init_cache_random_seq(struct kmem_cache *s)
1708{
1709 unsigned int count = oo_objects(s->oo);
1710 int err;
1711
1712 /* Bailout if already initialised */
1713 if (s->random_seq)
1714 return 0;
1715
1716 err = cache_random_seq_create(s, count, GFP_KERNEL);
1717 if (err) {
1718 pr_err("SLUB: Unable to initialize free list for %s\n",
1719 s->name);
1720 return err;
1721 }
1722
1723 /* Transform to an offset on the set of pages */
1724 if (s->random_seq) {
1725 unsigned int i;
1726
1727 for (i = 0; i < count; i++)
1728 s->random_seq[i] *= s->size;
1729 }
1730 return 0;
1731}
1732
1733/* Initialize each random sequence freelist per cache */
1734static void __init init_freelist_randomization(void)
1735{
1736 struct kmem_cache *s;
1737
1738 mutex_lock(&slab_mutex);
1739
1740 list_for_each_entry(s, &slab_caches, list)
1741 init_cache_random_seq(s);
1742
1743 mutex_unlock(&slab_mutex);
1744}
1745
1746/* Get the next entry on the pre-computed freelist randomized */
1747static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1748 unsigned long *pos, void *start,
1749 unsigned long page_limit,
1750 unsigned long freelist_count)
1751{
1752 unsigned int idx;
1753
1754 /*
1755 * If the target page allocation failed, the number of objects on the
1756 * page might be smaller than the usual size defined by the cache.
1757 */
1758 do {
1759 idx = s->random_seq[*pos];
1760 *pos += 1;
1761 if (*pos >= freelist_count)
1762 *pos = 0;
1763 } while (unlikely(idx >= page_limit));
1764
1765 return (char *)start + idx;
1766}
1767
1768/* Shuffle the single linked freelist based on a random pre-computed sequence */
1769static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1770{
1771 void *start;
1772 void *cur;
1773 void *next;
1774 unsigned long idx, pos, page_limit, freelist_count;
1775
1776 if (page->objects < 2 || !s->random_seq)
1777 return false;
1778
1779 freelist_count = oo_objects(s->oo);
1780 pos = get_random_int() % freelist_count;
1781
1782 page_limit = page->objects * s->size;
1783 start = fixup_red_left(s, page_address(page));
1784
1785 /* First entry is used as the base of the freelist */
1786 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1787 freelist_count);
1788 cur = setup_object(s, page, cur);
1789 page->freelist = cur;
1790
1791 for (idx = 1; idx < page->objects; idx++) {
1792 next = next_freelist_entry(s, page, &pos, start, page_limit,
1793 freelist_count);
1794 next = setup_object(s, page, next);
1795 set_freepointer(s, cur, next);
1796 cur = next;
1797 }
1798 set_freepointer(s, cur, NULL);
1799
1800 return true;
1801}
1802#else
1803static inline int init_cache_random_seq(struct kmem_cache *s)
1804{
1805 return 0;
1806}
1807static inline void init_freelist_randomization(void) { }
1808static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1809{
1810 return false;
1811}
1812#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1813
1814static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1815{
1816 struct page *page;
1817 struct kmem_cache_order_objects oo = s->oo;
1818 gfp_t alloc_gfp;
1819 void *start, *p, *next;
1820 int idx;
1821 bool shuffle;
1822
1823 flags &= gfp_allowed_mask;
1824
1825 if (gfpflags_allow_blocking(flags))
1826 local_irq_enable();
1827
1828 flags |= s->allocflags;
1829
1830 /*
1831 * Let the initial higher-order allocation fail under memory pressure
1832 * so we fall-back to the minimum order allocation.
1833 */
1834 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1835 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1836 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1837
1838 page = alloc_slab_page(s, alloc_gfp, node, oo);
1839 if (unlikely(!page)) {
1840 oo = s->min;
1841 alloc_gfp = flags;
1842 /*
1843 * Allocation may have failed due to fragmentation.
1844 * Try a lower order alloc if possible
1845 */
1846 page = alloc_slab_page(s, alloc_gfp, node, oo);
1847 if (unlikely(!page))
1848 goto out;
1849 stat(s, ORDER_FALLBACK);
1850 }
1851
1852 page->objects = oo_objects(oo);
1853
1854 account_slab_page(page, oo_order(oo), s, flags);
1855
1856 page->slab_cache = s;
1857 __SetPageSlab(page);
1858 if (page_is_pfmemalloc(page))
1859 SetPageSlabPfmemalloc(page);
1860
1861 kasan_poison_slab(page);
1862
1863 start = page_address(page);
1864
1865 setup_page_debug(s, page, start);
1866
1867 shuffle = shuffle_freelist(s, page);
1868
1869 if (!shuffle) {
1870 start = fixup_red_left(s, start);
1871 start = setup_object(s, page, start);
1872 page->freelist = start;
1873 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1874 next = p + s->size;
1875 next = setup_object(s, page, next);
1876 set_freepointer(s, p, next);
1877 p = next;
1878 }
1879 set_freepointer(s, p, NULL);
1880 }
1881
1882 page->inuse = page->objects;
1883 page->frozen = 1;
1884
1885out:
1886 if (gfpflags_allow_blocking(flags))
1887 local_irq_disable();
1888 if (!page)
1889 return NULL;
1890
1891 inc_slabs_node(s, page_to_nid(page), page->objects);
1892
1893 return page;
1894}
1895
1896static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1897{
1898 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1899 flags = kmalloc_fix_flags(flags);
1900
1901 return allocate_slab(s,
1902 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1903}
1904
1905static void __free_slab(struct kmem_cache *s, struct page *page)
1906{
1907 int order = compound_order(page);
1908 int pages = 1 << order;
1909
1910 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1911 void *p;
1912
1913 slab_pad_check(s, page);
1914 for_each_object(p, s, page_address(page),
1915 page->objects)
1916 check_object(s, page, p, SLUB_RED_INACTIVE);
1917 }
1918
1919 __ClearPageSlabPfmemalloc(page);
1920 __ClearPageSlab(page);
1921 /* In union with page->mapping where page allocator expects NULL */
1922 page->slab_cache = NULL;
1923 if (current->reclaim_state)
1924 current->reclaim_state->reclaimed_slab += pages;
1925 unaccount_slab_page(page, order, s);
1926 __free_pages(page, order);
1927}
1928
1929static void rcu_free_slab(struct rcu_head *h)
1930{
1931 struct page *page = container_of(h, struct page, rcu_head);
1932
1933 __free_slab(page->slab_cache, page);
1934}
1935
1936static void free_slab(struct kmem_cache *s, struct page *page)
1937{
1938 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1939 call_rcu(&page->rcu_head, rcu_free_slab);
1940 } else
1941 __free_slab(s, page);
1942}
1943
1944static void discard_slab(struct kmem_cache *s, struct page *page)
1945{
1946 dec_slabs_node(s, page_to_nid(page), page->objects);
1947 free_slab(s, page);
1948}
1949
1950/*
1951 * Management of partially allocated slabs.
1952 */
1953static inline void
1954__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1955{
1956 n->nr_partial++;
1957 if (tail == DEACTIVATE_TO_TAIL)
1958 list_add_tail(&page->slab_list, &n->partial);
1959 else
1960 list_add(&page->slab_list, &n->partial);
1961}
1962
1963static inline void add_partial(struct kmem_cache_node *n,
1964 struct page *page, int tail)
1965{
1966 lockdep_assert_held(&n->list_lock);
1967 __add_partial(n, page, tail);
1968}
1969
1970static inline void remove_partial(struct kmem_cache_node *n,
1971 struct page *page)
1972{
1973 lockdep_assert_held(&n->list_lock);
1974 list_del(&page->slab_list);
1975 n->nr_partial--;
1976}
1977
1978/*
1979 * Remove slab from the partial list, freeze it and
1980 * return the pointer to the freelist.
1981 *
1982 * Returns a list of objects or NULL if it fails.
1983 */
1984static inline void *acquire_slab(struct kmem_cache *s,
1985 struct kmem_cache_node *n, struct page *page,
1986 int mode, int *objects)
1987{
1988 void *freelist;
1989 unsigned long counters;
1990 struct page new;
1991
1992 lockdep_assert_held(&n->list_lock);
1993
1994 /*
1995 * Zap the freelist and set the frozen bit.
1996 * The old freelist is the list of objects for the
1997 * per cpu allocation list.
1998 */
1999 freelist = page->freelist;
2000 counters = page->counters;
2001 new.counters = counters;
2002 *objects = new.objects - new.inuse;
2003 if (mode) {
2004 new.inuse = page->objects;
2005 new.freelist = NULL;
2006 } else {
2007 new.freelist = freelist;
2008 }
2009
2010 VM_BUG_ON(new.frozen);
2011 new.frozen = 1;
2012
2013 if (!__cmpxchg_double_slab(s, page,
2014 freelist, counters,
2015 new.freelist, new.counters,
2016 "acquire_slab"))
2017 return NULL;
2018
2019 remove_partial(n, page);
2020 WARN_ON(!freelist);
2021 return freelist;
2022}
2023
2024static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2025static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2026
2027/*
2028 * Try to allocate a partial slab from a specific node.
2029 */
2030static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2031 struct kmem_cache_cpu *c, gfp_t flags)
2032{
2033 struct page *page, *page2;
2034 void *object = NULL;
2035 unsigned int available = 0;
2036 int objects;
2037
2038 /*
2039 * Racy check. If we mistakenly see no partial slabs then we
2040 * just allocate an empty slab. If we mistakenly try to get a
2041 * partial slab and there is none available then get_partial()
2042 * will return NULL.
2043 */
2044 if (!n || !n->nr_partial)
2045 return NULL;
2046
2047 spin_lock(&n->list_lock);
2048 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2049 void *t;
2050
2051 if (!pfmemalloc_match(page, flags))
2052 continue;
2053
2054 t = acquire_slab(s, n, page, object == NULL, &objects);
2055 if (!t)
2056 break;
2057
2058 available += objects;
2059 if (!object) {
2060 c->page = page;
2061 stat(s, ALLOC_FROM_PARTIAL);
2062 object = t;
2063 } else {
2064 put_cpu_partial(s, page, 0);
2065 stat(s, CPU_PARTIAL_NODE);
2066 }
2067 if (!kmem_cache_has_cpu_partial(s)
2068 || available > slub_cpu_partial(s) / 2)
2069 break;
2070
2071 }
2072 spin_unlock(&n->list_lock);
2073 return object;
2074}
2075
2076/*
2077 * Get a page from somewhere. Search in increasing NUMA distances.
2078 */
2079static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2080 struct kmem_cache_cpu *c)
2081{
2082#ifdef CONFIG_NUMA
2083 struct zonelist *zonelist;
2084 struct zoneref *z;
2085 struct zone *zone;
2086 enum zone_type highest_zoneidx = gfp_zone(flags);
2087 void *object;
2088 unsigned int cpuset_mems_cookie;
2089
2090 /*
2091 * The defrag ratio allows a configuration of the tradeoffs between
2092 * inter node defragmentation and node local allocations. A lower
2093 * defrag_ratio increases the tendency to do local allocations
2094 * instead of attempting to obtain partial slabs from other nodes.
2095 *
2096 * If the defrag_ratio is set to 0 then kmalloc() always
2097 * returns node local objects. If the ratio is higher then kmalloc()
2098 * may return off node objects because partial slabs are obtained
2099 * from other nodes and filled up.
2100 *
2101 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2102 * (which makes defrag_ratio = 1000) then every (well almost)
2103 * allocation will first attempt to defrag slab caches on other nodes.
2104 * This means scanning over all nodes to look for partial slabs which
2105 * may be expensive if we do it every time we are trying to find a slab
2106 * with available objects.
2107 */
2108 if (!s->remote_node_defrag_ratio ||
2109 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2110 return NULL;
2111
2112 do {
2113 cpuset_mems_cookie = read_mems_allowed_begin();
2114 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2115 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2116 struct kmem_cache_node *n;
2117
2118 n = get_node(s, zone_to_nid(zone));
2119
2120 if (n && cpuset_zone_allowed(zone, flags) &&
2121 n->nr_partial > s->min_partial) {
2122 object = get_partial_node(s, n, c, flags);
2123 if (object) {
2124 /*
2125 * Don't check read_mems_allowed_retry()
2126 * here - if mems_allowed was updated in
2127 * parallel, that was a harmless race
2128 * between allocation and the cpuset
2129 * update
2130 */
2131 return object;
2132 }
2133 }
2134 }
2135 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2136#endif /* CONFIG_NUMA */
2137 return NULL;
2138}
2139
2140/*
2141 * Get a partial page, lock it and return it.
2142 */
2143static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2144 struct kmem_cache_cpu *c)
2145{
2146 void *object;
2147 int searchnode = node;
2148
2149 if (node == NUMA_NO_NODE)
2150 searchnode = numa_mem_id();
2151
2152 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2153 if (object || node != NUMA_NO_NODE)
2154 return object;
2155
2156 return get_any_partial(s, flags, c);
2157}
2158
2159#ifdef CONFIG_PREEMPTION
2160/*
2161 * Calculate the next globally unique transaction for disambiguation
2162 * during cmpxchg. The transactions start with the cpu number and are then
2163 * incremented by CONFIG_NR_CPUS.
2164 */
2165#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2166#else
2167/*
2168 * No preemption supported therefore also no need to check for
2169 * different cpus.
2170 */
2171#define TID_STEP 1
2172#endif
2173
2174static inline unsigned long next_tid(unsigned long tid)
2175{
2176 return tid + TID_STEP;
2177}
2178
2179#ifdef SLUB_DEBUG_CMPXCHG
2180static inline unsigned int tid_to_cpu(unsigned long tid)
2181{
2182 return tid % TID_STEP;
2183}
2184
2185static inline unsigned long tid_to_event(unsigned long tid)
2186{
2187 return tid / TID_STEP;
2188}
2189#endif
2190
2191static inline unsigned int init_tid(int cpu)
2192{
2193 return cpu;
2194}
2195
2196static inline void note_cmpxchg_failure(const char *n,
2197 const struct kmem_cache *s, unsigned long tid)
2198{
2199#ifdef SLUB_DEBUG_CMPXCHG
2200 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2201
2202 pr_info("%s %s: cmpxchg redo ", n, s->name);
2203
2204#ifdef CONFIG_PREEMPTION
2205 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2206 pr_warn("due to cpu change %d -> %d\n",
2207 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2208 else
2209#endif
2210 if (tid_to_event(tid) != tid_to_event(actual_tid))
2211 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2212 tid_to_event(tid), tid_to_event(actual_tid));
2213 else
2214 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2215 actual_tid, tid, next_tid(tid));
2216#endif
2217 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2218}
2219
2220static void init_kmem_cache_cpus(struct kmem_cache *s)
2221{
2222 int cpu;
2223
2224 for_each_possible_cpu(cpu)
2225 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2226}
2227
2228/*
2229 * Remove the cpu slab
2230 */
2231static void deactivate_slab(struct kmem_cache *s, struct page *page,
2232 void *freelist, struct kmem_cache_cpu *c)
2233{
2234 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2235 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2236 int lock = 0, free_delta = 0;
2237 enum slab_modes l = M_NONE, m = M_NONE;
2238 void *nextfree, *freelist_iter, *freelist_tail;
2239 int tail = DEACTIVATE_TO_HEAD;
2240 struct page new;
2241 struct page old;
2242
2243 if (page->freelist) {
2244 stat(s, DEACTIVATE_REMOTE_FREES);
2245 tail = DEACTIVATE_TO_TAIL;
2246 }
2247
2248 /*
2249 * Stage one: Count the objects on cpu's freelist as free_delta and
2250 * remember the last object in freelist_tail for later splicing.
2251 */
2252 freelist_tail = NULL;
2253 freelist_iter = freelist;
2254 while (freelist_iter) {
2255 nextfree = get_freepointer(s, freelist_iter);
2256
2257 /*
2258 * If 'nextfree' is invalid, it is possible that the object at
2259 * 'freelist_iter' is already corrupted. So isolate all objects
2260 * starting at 'freelist_iter' by skipping them.
2261 */
2262 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2263 break;
2264
2265 freelist_tail = freelist_iter;
2266 free_delta++;
2267
2268 freelist_iter = nextfree;
2269 }
2270
2271 /*
2272 * Stage two: Unfreeze the page while splicing the per-cpu
2273 * freelist to the head of page's freelist.
2274 *
2275 * Ensure that the page is unfrozen while the list presence
2276 * reflects the actual number of objects during unfreeze.
2277 *
2278 * We setup the list membership and then perform a cmpxchg
2279 * with the count. If there is a mismatch then the page
2280 * is not unfrozen but the page is on the wrong list.
2281 *
2282 * Then we restart the process which may have to remove
2283 * the page from the list that we just put it on again
2284 * because the number of objects in the slab may have
2285 * changed.
2286 */
2287redo:
2288
2289 old.freelist = READ_ONCE(page->freelist);
2290 old.counters = READ_ONCE(page->counters);
2291 VM_BUG_ON(!old.frozen);
2292
2293 /* Determine target state of the slab */
2294 new.counters = old.counters;
2295 if (freelist_tail) {
2296 new.inuse -= free_delta;
2297 set_freepointer(s, freelist_tail, old.freelist);
2298 new.freelist = freelist;
2299 } else
2300 new.freelist = old.freelist;
2301
2302 new.frozen = 0;
2303
2304 if (!new.inuse && n->nr_partial >= s->min_partial)
2305 m = M_FREE;
2306 else if (new.freelist) {
2307 m = M_PARTIAL;
2308 if (!lock) {
2309 lock = 1;
2310 /*
2311 * Taking the spinlock removes the possibility
2312 * that acquire_slab() will see a slab page that
2313 * is frozen
2314 */
2315 spin_lock(&n->list_lock);
2316 }
2317 } else {
2318 m = M_FULL;
2319 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2320 lock = 1;
2321 /*
2322 * This also ensures that the scanning of full
2323 * slabs from diagnostic functions will not see
2324 * any frozen slabs.
2325 */
2326 spin_lock(&n->list_lock);
2327 }
2328 }
2329
2330 if (l != m) {
2331 if (l == M_PARTIAL)
2332 remove_partial(n, page);
2333 else if (l == M_FULL)
2334 remove_full(s, n, page);
2335
2336 if (m == M_PARTIAL)
2337 add_partial(n, page, tail);
2338 else if (m == M_FULL)
2339 add_full(s, n, page);
2340 }
2341
2342 l = m;
2343 if (!__cmpxchg_double_slab(s, page,
2344 old.freelist, old.counters,
2345 new.freelist, new.counters,
2346 "unfreezing slab"))
2347 goto redo;
2348
2349 if (lock)
2350 spin_unlock(&n->list_lock);
2351
2352 if (m == M_PARTIAL)
2353 stat(s, tail);
2354 else if (m == M_FULL)
2355 stat(s, DEACTIVATE_FULL);
2356 else if (m == M_FREE) {
2357 stat(s, DEACTIVATE_EMPTY);
2358 discard_slab(s, page);
2359 stat(s, FREE_SLAB);
2360 }
2361
2362 c->page = NULL;
2363 c->freelist = NULL;
2364}
2365
2366/*
2367 * Unfreeze all the cpu partial slabs.
2368 *
2369 * This function must be called with interrupts disabled
2370 * for the cpu using c (or some other guarantee must be there
2371 * to guarantee no concurrent accesses).
2372 */
2373static void unfreeze_partials(struct kmem_cache *s,
2374 struct kmem_cache_cpu *c)
2375{
2376#ifdef CONFIG_SLUB_CPU_PARTIAL
2377 struct kmem_cache_node *n = NULL, *n2 = NULL;
2378 struct page *page, *discard_page = NULL;
2379
2380 while ((page = slub_percpu_partial(c))) {
2381 struct page new;
2382 struct page old;
2383
2384 slub_set_percpu_partial(c, page);
2385
2386 n2 = get_node(s, page_to_nid(page));
2387 if (n != n2) {
2388 if (n)
2389 spin_unlock(&n->list_lock);
2390
2391 n = n2;
2392 spin_lock(&n->list_lock);
2393 }
2394
2395 do {
2396
2397 old.freelist = page->freelist;
2398 old.counters = page->counters;
2399 VM_BUG_ON(!old.frozen);
2400
2401 new.counters = old.counters;
2402 new.freelist = old.freelist;
2403
2404 new.frozen = 0;
2405
2406 } while (!__cmpxchg_double_slab(s, page,
2407 old.freelist, old.counters,
2408 new.freelist, new.counters,
2409 "unfreezing slab"));
2410
2411 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2412 page->next = discard_page;
2413 discard_page = page;
2414 } else {
2415 add_partial(n, page, DEACTIVATE_TO_TAIL);
2416 stat(s, FREE_ADD_PARTIAL);
2417 }
2418 }
2419
2420 if (n)
2421 spin_unlock(&n->list_lock);
2422
2423 while (discard_page) {
2424 page = discard_page;
2425 discard_page = discard_page->next;
2426
2427 stat(s, DEACTIVATE_EMPTY);
2428 discard_slab(s, page);
2429 stat(s, FREE_SLAB);
2430 }
2431#endif /* CONFIG_SLUB_CPU_PARTIAL */
2432}
2433
2434/*
2435 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2436 * partial page slot if available.
2437 *
2438 * If we did not find a slot then simply move all the partials to the
2439 * per node partial list.
2440 */
2441static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2442{
2443#ifdef CONFIG_SLUB_CPU_PARTIAL
2444 struct page *oldpage;
2445 int pages;
2446 int pobjects;
2447
2448 preempt_disable();
2449 do {
2450 pages = 0;
2451 pobjects = 0;
2452 oldpage = this_cpu_read(s->cpu_slab->partial);
2453
2454 if (oldpage) {
2455 pobjects = oldpage->pobjects;
2456 pages = oldpage->pages;
2457 if (drain && pobjects > slub_cpu_partial(s)) {
2458 unsigned long flags;
2459 /*
2460 * partial array is full. Move the existing
2461 * set to the per node partial list.
2462 */
2463 local_irq_save(flags);
2464 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2465 local_irq_restore(flags);
2466 oldpage = NULL;
2467 pobjects = 0;
2468 pages = 0;
2469 stat(s, CPU_PARTIAL_DRAIN);
2470 }
2471 }
2472
2473 pages++;
2474 pobjects += page->objects - page->inuse;
2475
2476 page->pages = pages;
2477 page->pobjects = pobjects;
2478 page->next = oldpage;
2479
2480 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2481 != oldpage);
2482 if (unlikely(!slub_cpu_partial(s))) {
2483 unsigned long flags;
2484
2485 local_irq_save(flags);
2486 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2487 local_irq_restore(flags);
2488 }
2489 preempt_enable();
2490#endif /* CONFIG_SLUB_CPU_PARTIAL */
2491}
2492
2493static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2494{
2495 stat(s, CPUSLAB_FLUSH);
2496 deactivate_slab(s, c->page, c->freelist, c);
2497
2498 c->tid = next_tid(c->tid);
2499}
2500
2501/*
2502 * Flush cpu slab.
2503 *
2504 * Called from IPI handler with interrupts disabled.
2505 */
2506static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2507{
2508 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2509
2510 if (c->page)
2511 flush_slab(s, c);
2512
2513 unfreeze_partials(s, c);
2514}
2515
2516static void flush_cpu_slab(void *d)
2517{
2518 struct kmem_cache *s = d;
2519
2520 __flush_cpu_slab(s, smp_processor_id());
2521}
2522
2523static bool has_cpu_slab(int cpu, void *info)
2524{
2525 struct kmem_cache *s = info;
2526 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2527
2528 return c->page || slub_percpu_partial(c);
2529}
2530
2531static void flush_all(struct kmem_cache *s)
2532{
2533 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2534}
2535
2536/*
2537 * Use the cpu notifier to insure that the cpu slabs are flushed when
2538 * necessary.
2539 */
2540static int slub_cpu_dead(unsigned int cpu)
2541{
2542 struct kmem_cache *s;
2543 unsigned long flags;
2544
2545 mutex_lock(&slab_mutex);
2546 list_for_each_entry(s, &slab_caches, list) {
2547 local_irq_save(flags);
2548 __flush_cpu_slab(s, cpu);
2549 local_irq_restore(flags);
2550 }
2551 mutex_unlock(&slab_mutex);
2552 return 0;
2553}
2554
2555/*
2556 * Check if the objects in a per cpu structure fit numa
2557 * locality expectations.
2558 */
2559static inline int node_match(struct page *page, int node)
2560{
2561#ifdef CONFIG_NUMA
2562 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2563 return 0;
2564#endif
2565 return 1;
2566}
2567
2568#ifdef CONFIG_SLUB_DEBUG
2569static int count_free(struct page *page)
2570{
2571 return page->objects - page->inuse;
2572}
2573
2574static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2575{
2576 return atomic_long_read(&n->total_objects);
2577}
2578#endif /* CONFIG_SLUB_DEBUG */
2579
2580#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2581static unsigned long count_partial(struct kmem_cache_node *n,
2582 int (*get_count)(struct page *))
2583{
2584 unsigned long flags;
2585 unsigned long x = 0;
2586 struct page *page;
2587
2588 spin_lock_irqsave(&n->list_lock, flags);
2589 list_for_each_entry(page, &n->partial, slab_list)
2590 x += get_count(page);
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 return x;
2593}
2594#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2595
2596static noinline void
2597slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2598{
2599#ifdef CONFIG_SLUB_DEBUG
2600 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2601 DEFAULT_RATELIMIT_BURST);
2602 int node;
2603 struct kmem_cache_node *n;
2604
2605 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2606 return;
2607
2608 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2609 nid, gfpflags, &gfpflags);
2610 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2611 s->name, s->object_size, s->size, oo_order(s->oo),
2612 oo_order(s->min));
2613
2614 if (oo_order(s->min) > get_order(s->object_size))
2615 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2616 s->name);
2617
2618 for_each_kmem_cache_node(s, node, n) {
2619 unsigned long nr_slabs;
2620 unsigned long nr_objs;
2621 unsigned long nr_free;
2622
2623 nr_free = count_partial(n, count_free);
2624 nr_slabs = node_nr_slabs(n);
2625 nr_objs = node_nr_objs(n);
2626
2627 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2628 node, nr_slabs, nr_objs, nr_free);
2629 }
2630#endif
2631}
2632
2633static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2634 int node, struct kmem_cache_cpu **pc)
2635{
2636 void *freelist;
2637 struct kmem_cache_cpu *c = *pc;
2638 struct page *page;
2639
2640 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2641
2642 freelist = get_partial(s, flags, node, c);
2643
2644 if (freelist)
2645 return freelist;
2646
2647 page = new_slab(s, flags, node);
2648 if (page) {
2649 c = raw_cpu_ptr(s->cpu_slab);
2650 if (c->page)
2651 flush_slab(s, c);
2652
2653 /*
2654 * No other reference to the page yet so we can
2655 * muck around with it freely without cmpxchg
2656 */
2657 freelist = page->freelist;
2658 page->freelist = NULL;
2659
2660 stat(s, ALLOC_SLAB);
2661 c->page = page;
2662 *pc = c;
2663 }
2664
2665 return freelist;
2666}
2667
2668static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2669{
2670 if (unlikely(PageSlabPfmemalloc(page)))
2671 return gfp_pfmemalloc_allowed(gfpflags);
2672
2673 return true;
2674}
2675
2676/*
2677 * Check the page->freelist of a page and either transfer the freelist to the
2678 * per cpu freelist or deactivate the page.
2679 *
2680 * The page is still frozen if the return value is not NULL.
2681 *
2682 * If this function returns NULL then the page has been unfrozen.
2683 *
2684 * This function must be called with interrupt disabled.
2685 */
2686static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2687{
2688 struct page new;
2689 unsigned long counters;
2690 void *freelist;
2691
2692 do {
2693 freelist = page->freelist;
2694 counters = page->counters;
2695
2696 new.counters = counters;
2697 VM_BUG_ON(!new.frozen);
2698
2699 new.inuse = page->objects;
2700 new.frozen = freelist != NULL;
2701
2702 } while (!__cmpxchg_double_slab(s, page,
2703 freelist, counters,
2704 NULL, new.counters,
2705 "get_freelist"));
2706
2707 return freelist;
2708}
2709
2710/*
2711 * Slow path. The lockless freelist is empty or we need to perform
2712 * debugging duties.
2713 *
2714 * Processing is still very fast if new objects have been freed to the
2715 * regular freelist. In that case we simply take over the regular freelist
2716 * as the lockless freelist and zap the regular freelist.
2717 *
2718 * If that is not working then we fall back to the partial lists. We take the
2719 * first element of the freelist as the object to allocate now and move the
2720 * rest of the freelist to the lockless freelist.
2721 *
2722 * And if we were unable to get a new slab from the partial slab lists then
2723 * we need to allocate a new slab. This is the slowest path since it involves
2724 * a call to the page allocator and the setup of a new slab.
2725 *
2726 * Version of __slab_alloc to use when we know that interrupts are
2727 * already disabled (which is the case for bulk allocation).
2728 */
2729static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2730 unsigned long addr, struct kmem_cache_cpu *c)
2731{
2732 void *freelist;
2733 struct page *page;
2734
2735 stat(s, ALLOC_SLOWPATH);
2736
2737 page = c->page;
2738 if (!page) {
2739 /*
2740 * if the node is not online or has no normal memory, just
2741 * ignore the node constraint
2742 */
2743 if (unlikely(node != NUMA_NO_NODE &&
2744 !node_isset(node, slab_nodes)))
2745 node = NUMA_NO_NODE;
2746 goto new_slab;
2747 }
2748redo:
2749
2750 if (unlikely(!node_match(page, node))) {
2751 /*
2752 * same as above but node_match() being false already
2753 * implies node != NUMA_NO_NODE
2754 */
2755 if (!node_isset(node, slab_nodes)) {
2756 node = NUMA_NO_NODE;
2757 goto redo;
2758 } else {
2759 stat(s, ALLOC_NODE_MISMATCH);
2760 deactivate_slab(s, page, c->freelist, c);
2761 goto new_slab;
2762 }
2763 }
2764
2765 /*
2766 * By rights, we should be searching for a slab page that was
2767 * PFMEMALLOC but right now, we are losing the pfmemalloc
2768 * information when the page leaves the per-cpu allocator
2769 */
2770 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2771 deactivate_slab(s, page, c->freelist, c);
2772 goto new_slab;
2773 }
2774
2775 /* must check again c->freelist in case of cpu migration or IRQ */
2776 freelist = c->freelist;
2777 if (freelist)
2778 goto load_freelist;
2779
2780 freelist = get_freelist(s, page);
2781
2782 if (!freelist) {
2783 c->page = NULL;
2784 stat(s, DEACTIVATE_BYPASS);
2785 goto new_slab;
2786 }
2787
2788 stat(s, ALLOC_REFILL);
2789
2790load_freelist:
2791 /*
2792 * freelist is pointing to the list of objects to be used.
2793 * page is pointing to the page from which the objects are obtained.
2794 * That page must be frozen for per cpu allocations to work.
2795 */
2796 VM_BUG_ON(!c->page->frozen);
2797 c->freelist = get_freepointer(s, freelist);
2798 c->tid = next_tid(c->tid);
2799 return freelist;
2800
2801new_slab:
2802
2803 if (slub_percpu_partial(c)) {
2804 page = c->page = slub_percpu_partial(c);
2805 slub_set_percpu_partial(c, page);
2806 stat(s, CPU_PARTIAL_ALLOC);
2807 goto redo;
2808 }
2809
2810 freelist = new_slab_objects(s, gfpflags, node, &c);
2811
2812 if (unlikely(!freelist)) {
2813 slab_out_of_memory(s, gfpflags, node);
2814 return NULL;
2815 }
2816
2817 page = c->page;
2818 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2819 goto load_freelist;
2820
2821 /* Only entered in the debug case */
2822 if (kmem_cache_debug(s) &&
2823 !alloc_debug_processing(s, page, freelist, addr))
2824 goto new_slab; /* Slab failed checks. Next slab needed */
2825
2826 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2827 return freelist;
2828}
2829
2830/*
2831 * Another one that disabled interrupt and compensates for possible
2832 * cpu changes by refetching the per cpu area pointer.
2833 */
2834static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2835 unsigned long addr, struct kmem_cache_cpu *c)
2836{
2837 void *p;
2838 unsigned long flags;
2839
2840 local_irq_save(flags);
2841#ifdef CONFIG_PREEMPTION
2842 /*
2843 * We may have been preempted and rescheduled on a different
2844 * cpu before disabling interrupts. Need to reload cpu area
2845 * pointer.
2846 */
2847 c = this_cpu_ptr(s->cpu_slab);
2848#endif
2849
2850 p = ___slab_alloc(s, gfpflags, node, addr, c);
2851 local_irq_restore(flags);
2852 return p;
2853}
2854
2855/*
2856 * If the object has been wiped upon free, make sure it's fully initialized by
2857 * zeroing out freelist pointer.
2858 */
2859static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2860 void *obj)
2861{
2862 if (unlikely(slab_want_init_on_free(s)) && obj)
2863 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2864 0, sizeof(void *));
2865}
2866
2867/*
2868 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2869 * have the fastpath folded into their functions. So no function call
2870 * overhead for requests that can be satisfied on the fastpath.
2871 *
2872 * The fastpath works by first checking if the lockless freelist can be used.
2873 * If not then __slab_alloc is called for slow processing.
2874 *
2875 * Otherwise we can simply pick the next object from the lockless free list.
2876 */
2877static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2878 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2879{
2880 void *object;
2881 struct kmem_cache_cpu *c;
2882 struct page *page;
2883 unsigned long tid;
2884 struct obj_cgroup *objcg = NULL;
2885 bool init = false;
2886
2887 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2888 if (!s)
2889 return NULL;
2890
2891 object = kfence_alloc(s, orig_size, gfpflags);
2892 if (unlikely(object))
2893 goto out;
2894
2895redo:
2896 /*
2897 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2898 * enabled. We may switch back and forth between cpus while
2899 * reading from one cpu area. That does not matter as long
2900 * as we end up on the original cpu again when doing the cmpxchg.
2901 *
2902 * We should guarantee that tid and kmem_cache are retrieved on
2903 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2904 * to check if it is matched or not.
2905 */
2906 do {
2907 tid = this_cpu_read(s->cpu_slab->tid);
2908 c = raw_cpu_ptr(s->cpu_slab);
2909 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2910 unlikely(tid != READ_ONCE(c->tid)));
2911
2912 /*
2913 * Irqless object alloc/free algorithm used here depends on sequence
2914 * of fetching cpu_slab's data. tid should be fetched before anything
2915 * on c to guarantee that object and page associated with previous tid
2916 * won't be used with current tid. If we fetch tid first, object and
2917 * page could be one associated with next tid and our alloc/free
2918 * request will be failed. In this case, we will retry. So, no problem.
2919 */
2920 barrier();
2921
2922 /*
2923 * The transaction ids are globally unique per cpu and per operation on
2924 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2925 * occurs on the right processor and that there was no operation on the
2926 * linked list in between.
2927 */
2928
2929 object = c->freelist;
2930 page = c->page;
2931 if (unlikely(!object || !page || !node_match(page, node))) {
2932 object = __slab_alloc(s, gfpflags, node, addr, c);
2933 } else {
2934 void *next_object = get_freepointer_safe(s, object);
2935
2936 /*
2937 * The cmpxchg will only match if there was no additional
2938 * operation and if we are on the right processor.
2939 *
2940 * The cmpxchg does the following atomically (without lock
2941 * semantics!)
2942 * 1. Relocate first pointer to the current per cpu area.
2943 * 2. Verify that tid and freelist have not been changed
2944 * 3. If they were not changed replace tid and freelist
2945 *
2946 * Since this is without lock semantics the protection is only
2947 * against code executing on this cpu *not* from access by
2948 * other cpus.
2949 */
2950 if (unlikely(!this_cpu_cmpxchg_double(
2951 s->cpu_slab->freelist, s->cpu_slab->tid,
2952 object, tid,
2953 next_object, next_tid(tid)))) {
2954
2955 note_cmpxchg_failure("slab_alloc", s, tid);
2956 goto redo;
2957 }
2958 prefetch_freepointer(s, next_object);
2959 stat(s, ALLOC_FASTPATH);
2960 }
2961
2962 maybe_wipe_obj_freeptr(s, object);
2963 init = slab_want_init_on_alloc(gfpflags, s);
2964
2965out:
2966 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2967
2968 return object;
2969}
2970
2971static __always_inline void *slab_alloc(struct kmem_cache *s,
2972 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2973{
2974 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2975}
2976
2977void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2978{
2979 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2980
2981 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2982 s->size, gfpflags);
2983
2984 return ret;
2985}
2986EXPORT_SYMBOL(kmem_cache_alloc);
2987
2988#ifdef CONFIG_TRACING
2989void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2990{
2991 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2992 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2993 ret = kasan_kmalloc(s, ret, size, gfpflags);
2994 return ret;
2995}
2996EXPORT_SYMBOL(kmem_cache_alloc_trace);
2997#endif
2998
2999#ifdef CONFIG_NUMA
3000void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3001{
3002 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3003
3004 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3005 s->object_size, s->size, gfpflags, node);
3006
3007 return ret;
3008}
3009EXPORT_SYMBOL(kmem_cache_alloc_node);
3010
3011#ifdef CONFIG_TRACING
3012void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3013 gfp_t gfpflags,
3014 int node, size_t size)
3015{
3016 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3017
3018 trace_kmalloc_node(_RET_IP_, ret,
3019 size, s->size, gfpflags, node);
3020
3021 ret = kasan_kmalloc(s, ret, size, gfpflags);
3022 return ret;
3023}
3024EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3025#endif
3026#endif /* CONFIG_NUMA */
3027
3028/*
3029 * Slow path handling. This may still be called frequently since objects
3030 * have a longer lifetime than the cpu slabs in most processing loads.
3031 *
3032 * So we still attempt to reduce cache line usage. Just take the slab
3033 * lock and free the item. If there is no additional partial page
3034 * handling required then we can return immediately.
3035 */
3036static void __slab_free(struct kmem_cache *s, struct page *page,
3037 void *head, void *tail, int cnt,
3038 unsigned long addr)
3039
3040{
3041 void *prior;
3042 int was_frozen;
3043 struct page new;
3044 unsigned long counters;
3045 struct kmem_cache_node *n = NULL;
3046 unsigned long flags;
3047
3048 stat(s, FREE_SLOWPATH);
3049
3050 if (kfence_free(head))
3051 return;
3052
3053 if (kmem_cache_debug(s) &&
3054 !free_debug_processing(s, page, head, tail, cnt, addr))
3055 return;
3056
3057 do {
3058 if (unlikely(n)) {
3059 spin_unlock_irqrestore(&n->list_lock, flags);
3060 n = NULL;
3061 }
3062 prior = page->freelist;
3063 counters = page->counters;
3064 set_freepointer(s, tail, prior);
3065 new.counters = counters;
3066 was_frozen = new.frozen;
3067 new.inuse -= cnt;
3068 if ((!new.inuse || !prior) && !was_frozen) {
3069
3070 if (kmem_cache_has_cpu_partial(s) && !prior) {
3071
3072 /*
3073 * Slab was on no list before and will be
3074 * partially empty
3075 * We can defer the list move and instead
3076 * freeze it.
3077 */
3078 new.frozen = 1;
3079
3080 } else { /* Needs to be taken off a list */
3081
3082 n = get_node(s, page_to_nid(page));
3083 /*
3084 * Speculatively acquire the list_lock.
3085 * If the cmpxchg does not succeed then we may
3086 * drop the list_lock without any processing.
3087 *
3088 * Otherwise the list_lock will synchronize with
3089 * other processors updating the list of slabs.
3090 */
3091 spin_lock_irqsave(&n->list_lock, flags);
3092
3093 }
3094 }
3095
3096 } while (!cmpxchg_double_slab(s, page,
3097 prior, counters,
3098 head, new.counters,
3099 "__slab_free"));
3100
3101 if (likely(!n)) {
3102
3103 if (likely(was_frozen)) {
3104 /*
3105 * The list lock was not taken therefore no list
3106 * activity can be necessary.
3107 */
3108 stat(s, FREE_FROZEN);
3109 } else if (new.frozen) {
3110 /*
3111 * If we just froze the page then put it onto the
3112 * per cpu partial list.
3113 */
3114 put_cpu_partial(s, page, 1);
3115 stat(s, CPU_PARTIAL_FREE);
3116 }
3117
3118 return;
3119 }
3120
3121 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3122 goto slab_empty;
3123
3124 /*
3125 * Objects left in the slab. If it was not on the partial list before
3126 * then add it.
3127 */
3128 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3129 remove_full(s, n, page);
3130 add_partial(n, page, DEACTIVATE_TO_TAIL);
3131 stat(s, FREE_ADD_PARTIAL);
3132 }
3133 spin_unlock_irqrestore(&n->list_lock, flags);
3134 return;
3135
3136slab_empty:
3137 if (prior) {
3138 /*
3139 * Slab on the partial list.
3140 */
3141 remove_partial(n, page);
3142 stat(s, FREE_REMOVE_PARTIAL);
3143 } else {
3144 /* Slab must be on the full list */
3145 remove_full(s, n, page);
3146 }
3147
3148 spin_unlock_irqrestore(&n->list_lock, flags);
3149 stat(s, FREE_SLAB);
3150 discard_slab(s, page);
3151}
3152
3153/*
3154 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3155 * can perform fastpath freeing without additional function calls.
3156 *
3157 * The fastpath is only possible if we are freeing to the current cpu slab
3158 * of this processor. This typically the case if we have just allocated
3159 * the item before.
3160 *
3161 * If fastpath is not possible then fall back to __slab_free where we deal
3162 * with all sorts of special processing.
3163 *
3164 * Bulk free of a freelist with several objects (all pointing to the
3165 * same page) possible by specifying head and tail ptr, plus objects
3166 * count (cnt). Bulk free indicated by tail pointer being set.
3167 */
3168static __always_inline void do_slab_free(struct kmem_cache *s,
3169 struct page *page, void *head, void *tail,
3170 int cnt, unsigned long addr)
3171{
3172 void *tail_obj = tail ? : head;
3173 struct kmem_cache_cpu *c;
3174 unsigned long tid;
3175
3176 /* memcg_slab_free_hook() is already called for bulk free. */
3177 if (!tail)
3178 memcg_slab_free_hook(s, &head, 1);
3179redo:
3180 /*
3181 * Determine the currently cpus per cpu slab.
3182 * The cpu may change afterward. However that does not matter since
3183 * data is retrieved via this pointer. If we are on the same cpu
3184 * during the cmpxchg then the free will succeed.
3185 */
3186 do {
3187 tid = this_cpu_read(s->cpu_slab->tid);
3188 c = raw_cpu_ptr(s->cpu_slab);
3189 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3190 unlikely(tid != READ_ONCE(c->tid)));
3191
3192 /* Same with comment on barrier() in slab_alloc_node() */
3193 barrier();
3194
3195 if (likely(page == c->page)) {
3196 void **freelist = READ_ONCE(c->freelist);
3197
3198 set_freepointer(s, tail_obj, freelist);
3199
3200 if (unlikely(!this_cpu_cmpxchg_double(
3201 s->cpu_slab->freelist, s->cpu_slab->tid,
3202 freelist, tid,
3203 head, next_tid(tid)))) {
3204
3205 note_cmpxchg_failure("slab_free", s, tid);
3206 goto redo;
3207 }
3208 stat(s, FREE_FASTPATH);
3209 } else
3210 __slab_free(s, page, head, tail_obj, cnt, addr);
3211
3212}
3213
3214static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3215 void *head, void *tail, int cnt,
3216 unsigned long addr)
3217{
3218 /*
3219 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3220 * to remove objects, whose reuse must be delayed.
3221 */
3222 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3223 do_slab_free(s, page, head, tail, cnt, addr);
3224}
3225
3226#ifdef CONFIG_KASAN_GENERIC
3227void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3228{
3229 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3230}
3231#endif
3232
3233void kmem_cache_free(struct kmem_cache *s, void *x)
3234{
3235 s = cache_from_obj(s, x);
3236 if (!s)
3237 return;
3238 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3239 trace_kmem_cache_free(_RET_IP_, x, s->name);
3240}
3241EXPORT_SYMBOL(kmem_cache_free);
3242
3243struct detached_freelist {
3244 struct page *page;
3245 void *tail;
3246 void *freelist;
3247 int cnt;
3248 struct kmem_cache *s;
3249};
3250
3251static inline void free_nonslab_page(struct page *page, void *object)
3252{
3253 unsigned int order = compound_order(page);
3254
3255 VM_BUG_ON_PAGE(!PageCompound(page), page);
3256 kfree_hook(object);
3257 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3258 __free_pages(page, order);
3259}
3260
3261/*
3262 * This function progressively scans the array with free objects (with
3263 * a limited look ahead) and extract objects belonging to the same
3264 * page. It builds a detached freelist directly within the given
3265 * page/objects. This can happen without any need for
3266 * synchronization, because the objects are owned by running process.
3267 * The freelist is build up as a single linked list in the objects.
3268 * The idea is, that this detached freelist can then be bulk
3269 * transferred to the real freelist(s), but only requiring a single
3270 * synchronization primitive. Look ahead in the array is limited due
3271 * to performance reasons.
3272 */
3273static inline
3274int build_detached_freelist(struct kmem_cache *s, size_t size,
3275 void **p, struct detached_freelist *df)
3276{
3277 size_t first_skipped_index = 0;
3278 int lookahead = 3;
3279 void *object;
3280 struct page *page;
3281
3282 /* Always re-init detached_freelist */
3283 df->page = NULL;
3284
3285 do {
3286 object = p[--size];
3287 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3288 } while (!object && size);
3289
3290 if (!object)
3291 return 0;
3292
3293 page = virt_to_head_page(object);
3294 if (!s) {
3295 /* Handle kalloc'ed objects */
3296 if (unlikely(!PageSlab(page))) {
3297 free_nonslab_page(page, object);
3298 p[size] = NULL; /* mark object processed */
3299 return size;
3300 }
3301 /* Derive kmem_cache from object */
3302 df->s = page->slab_cache;
3303 } else {
3304 df->s = cache_from_obj(s, object); /* Support for memcg */
3305 }
3306
3307 if (is_kfence_address(object)) {
3308 slab_free_hook(df->s, object, false);
3309 __kfence_free(object);
3310 p[size] = NULL; /* mark object processed */
3311 return size;
3312 }
3313
3314 /* Start new detached freelist */
3315 df->page = page;
3316 set_freepointer(df->s, object, NULL);
3317 df->tail = object;
3318 df->freelist = object;
3319 p[size] = NULL; /* mark object processed */
3320 df->cnt = 1;
3321
3322 while (size) {
3323 object = p[--size];
3324 if (!object)
3325 continue; /* Skip processed objects */
3326
3327 /* df->page is always set at this point */
3328 if (df->page == virt_to_head_page(object)) {
3329 /* Opportunity build freelist */
3330 set_freepointer(df->s, object, df->freelist);
3331 df->freelist = object;
3332 df->cnt++;
3333 p[size] = NULL; /* mark object processed */
3334
3335 continue;
3336 }
3337
3338 /* Limit look ahead search */
3339 if (!--lookahead)
3340 break;
3341
3342 if (!first_skipped_index)
3343 first_skipped_index = size + 1;
3344 }
3345
3346 return first_skipped_index;
3347}
3348
3349/* Note that interrupts must be enabled when calling this function. */
3350void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3351{
3352 if (WARN_ON(!size))
3353 return;
3354
3355 memcg_slab_free_hook(s, p, size);
3356 do {
3357 struct detached_freelist df;
3358
3359 size = build_detached_freelist(s, size, p, &df);
3360 if (!df.page)
3361 continue;
3362
3363 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3364 } while (likely(size));
3365}
3366EXPORT_SYMBOL(kmem_cache_free_bulk);
3367
3368/* Note that interrupts must be enabled when calling this function. */
3369int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3370 void **p)
3371{
3372 struct kmem_cache_cpu *c;
3373 int i;
3374 struct obj_cgroup *objcg = NULL;
3375
3376 /* memcg and kmem_cache debug support */
3377 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3378 if (unlikely(!s))
3379 return false;
3380 /*
3381 * Drain objects in the per cpu slab, while disabling local
3382 * IRQs, which protects against PREEMPT and interrupts
3383 * handlers invoking normal fastpath.
3384 */
3385 local_irq_disable();
3386 c = this_cpu_ptr(s->cpu_slab);
3387
3388 for (i = 0; i < size; i++) {
3389 void *object = kfence_alloc(s, s->object_size, flags);
3390
3391 if (unlikely(object)) {
3392 p[i] = object;
3393 continue;
3394 }
3395
3396 object = c->freelist;
3397 if (unlikely(!object)) {
3398 /*
3399 * We may have removed an object from c->freelist using
3400 * the fastpath in the previous iteration; in that case,
3401 * c->tid has not been bumped yet.
3402 * Since ___slab_alloc() may reenable interrupts while
3403 * allocating memory, we should bump c->tid now.
3404 */
3405 c->tid = next_tid(c->tid);
3406
3407 /*
3408 * Invoking slow path likely have side-effect
3409 * of re-populating per CPU c->freelist
3410 */
3411 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3412 _RET_IP_, c);
3413 if (unlikely(!p[i]))
3414 goto error;
3415
3416 c = this_cpu_ptr(s->cpu_slab);
3417 maybe_wipe_obj_freeptr(s, p[i]);
3418
3419 continue; /* goto for-loop */
3420 }
3421 c->freelist = get_freepointer(s, object);
3422 p[i] = object;
3423 maybe_wipe_obj_freeptr(s, p[i]);
3424 }
3425 c->tid = next_tid(c->tid);
3426 local_irq_enable();
3427
3428 /*
3429 * memcg and kmem_cache debug support and memory initialization.
3430 * Done outside of the IRQ disabled fastpath loop.
3431 */
3432 slab_post_alloc_hook(s, objcg, flags, size, p,
3433 slab_want_init_on_alloc(flags, s));
3434 return i;
3435error:
3436 local_irq_enable();
3437 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3438 __kmem_cache_free_bulk(s, i, p);
3439 return 0;
3440}
3441EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3442
3443
3444/*
3445 * Object placement in a slab is made very easy because we always start at
3446 * offset 0. If we tune the size of the object to the alignment then we can
3447 * get the required alignment by putting one properly sized object after
3448 * another.
3449 *
3450 * Notice that the allocation order determines the sizes of the per cpu
3451 * caches. Each processor has always one slab available for allocations.
3452 * Increasing the allocation order reduces the number of times that slabs
3453 * must be moved on and off the partial lists and is therefore a factor in
3454 * locking overhead.
3455 */
3456
3457/*
3458 * Minimum / Maximum order of slab pages. This influences locking overhead
3459 * and slab fragmentation. A higher order reduces the number of partial slabs
3460 * and increases the number of allocations possible without having to
3461 * take the list_lock.
3462 */
3463static unsigned int slub_min_order;
3464static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3465static unsigned int slub_min_objects;
3466
3467/*
3468 * Calculate the order of allocation given an slab object size.
3469 *
3470 * The order of allocation has significant impact on performance and other
3471 * system components. Generally order 0 allocations should be preferred since
3472 * order 0 does not cause fragmentation in the page allocator. Larger objects
3473 * be problematic to put into order 0 slabs because there may be too much
3474 * unused space left. We go to a higher order if more than 1/16th of the slab
3475 * would be wasted.
3476 *
3477 * In order to reach satisfactory performance we must ensure that a minimum
3478 * number of objects is in one slab. Otherwise we may generate too much
3479 * activity on the partial lists which requires taking the list_lock. This is
3480 * less a concern for large slabs though which are rarely used.
3481 *
3482 * slub_max_order specifies the order where we begin to stop considering the
3483 * number of objects in a slab as critical. If we reach slub_max_order then
3484 * we try to keep the page order as low as possible. So we accept more waste
3485 * of space in favor of a small page order.
3486 *
3487 * Higher order allocations also allow the placement of more objects in a
3488 * slab and thereby reduce object handling overhead. If the user has
3489 * requested a higher minimum order then we start with that one instead of
3490 * the smallest order which will fit the object.
3491 */
3492static inline unsigned int slab_order(unsigned int size,
3493 unsigned int min_objects, unsigned int max_order,
3494 unsigned int fract_leftover)
3495{
3496 unsigned int min_order = slub_min_order;
3497 unsigned int order;
3498
3499 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3500 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3501
3502 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3503 order <= max_order; order++) {
3504
3505 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3506 unsigned int rem;
3507
3508 rem = slab_size % size;
3509
3510 if (rem <= slab_size / fract_leftover)
3511 break;
3512 }
3513
3514 return order;
3515}
3516
3517static inline int calculate_order(unsigned int size)
3518{
3519 unsigned int order;
3520 unsigned int min_objects;
3521 unsigned int max_objects;
3522 unsigned int nr_cpus;
3523
3524 /*
3525 * Attempt to find best configuration for a slab. This
3526 * works by first attempting to generate a layout with
3527 * the best configuration and backing off gradually.
3528 *
3529 * First we increase the acceptable waste in a slab. Then
3530 * we reduce the minimum objects required in a slab.
3531 */
3532 min_objects = slub_min_objects;
3533 if (!min_objects) {
3534 /*
3535 * Some architectures will only update present cpus when
3536 * onlining them, so don't trust the number if it's just 1. But
3537 * we also don't want to use nr_cpu_ids always, as on some other
3538 * architectures, there can be many possible cpus, but never
3539 * onlined. Here we compromise between trying to avoid too high
3540 * order on systems that appear larger than they are, and too
3541 * low order on systems that appear smaller than they are.
3542 */
3543 nr_cpus = num_present_cpus();
3544 if (nr_cpus <= 1)
3545 nr_cpus = nr_cpu_ids;
3546 min_objects = 4 * (fls(nr_cpus) + 1);
3547 }
3548 max_objects = order_objects(slub_max_order, size);
3549 min_objects = min(min_objects, max_objects);
3550
3551 while (min_objects > 1) {
3552 unsigned int fraction;
3553
3554 fraction = 16;
3555 while (fraction >= 4) {
3556 order = slab_order(size, min_objects,
3557 slub_max_order, fraction);
3558 if (order <= slub_max_order)
3559 return order;
3560 fraction /= 2;
3561 }
3562 min_objects--;
3563 }
3564
3565 /*
3566 * We were unable to place multiple objects in a slab. Now
3567 * lets see if we can place a single object there.
3568 */
3569 order = slab_order(size, 1, slub_max_order, 1);
3570 if (order <= slub_max_order)
3571 return order;
3572
3573 /*
3574 * Doh this slab cannot be placed using slub_max_order.
3575 */
3576 order = slab_order(size, 1, MAX_ORDER, 1);
3577 if (order < MAX_ORDER)
3578 return order;
3579 return -ENOSYS;
3580}
3581
3582static void
3583init_kmem_cache_node(struct kmem_cache_node *n)
3584{
3585 n->nr_partial = 0;
3586 spin_lock_init(&n->list_lock);
3587 INIT_LIST_HEAD(&n->partial);
3588#ifdef CONFIG_SLUB_DEBUG
3589 atomic_long_set(&n->nr_slabs, 0);
3590 atomic_long_set(&n->total_objects, 0);
3591 INIT_LIST_HEAD(&n->full);
3592#endif
3593}
3594
3595static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3596{
3597 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3598 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3599
3600 /*
3601 * Must align to double word boundary for the double cmpxchg
3602 * instructions to work; see __pcpu_double_call_return_bool().
3603 */
3604 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3605 2 * sizeof(void *));
3606
3607 if (!s->cpu_slab)
3608 return 0;
3609
3610 init_kmem_cache_cpus(s);
3611
3612 return 1;
3613}
3614
3615static struct kmem_cache *kmem_cache_node;
3616
3617/*
3618 * No kmalloc_node yet so do it by hand. We know that this is the first
3619 * slab on the node for this slabcache. There are no concurrent accesses
3620 * possible.
3621 *
3622 * Note that this function only works on the kmem_cache_node
3623 * when allocating for the kmem_cache_node. This is used for bootstrapping
3624 * memory on a fresh node that has no slab structures yet.
3625 */
3626static void early_kmem_cache_node_alloc(int node)
3627{
3628 struct page *page;
3629 struct kmem_cache_node *n;
3630
3631 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3632
3633 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3634
3635 BUG_ON(!page);
3636 if (page_to_nid(page) != node) {
3637 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3638 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3639 }
3640
3641 n = page->freelist;
3642 BUG_ON(!n);
3643#ifdef CONFIG_SLUB_DEBUG
3644 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3645 init_tracking(kmem_cache_node, n);
3646#endif
3647 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3648 page->freelist = get_freepointer(kmem_cache_node, n);
3649 page->inuse = 1;
3650 page->frozen = 0;
3651 kmem_cache_node->node[node] = n;
3652 init_kmem_cache_node(n);
3653 inc_slabs_node(kmem_cache_node, node, page->objects);
3654
3655 /*
3656 * No locks need to be taken here as it has just been
3657 * initialized and there is no concurrent access.
3658 */
3659 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3660}
3661
3662static void free_kmem_cache_nodes(struct kmem_cache *s)
3663{
3664 int node;
3665 struct kmem_cache_node *n;
3666
3667 for_each_kmem_cache_node(s, node, n) {
3668 s->node[node] = NULL;
3669 kmem_cache_free(kmem_cache_node, n);
3670 }
3671}
3672
3673void __kmem_cache_release(struct kmem_cache *s)
3674{
3675 cache_random_seq_destroy(s);
3676 free_percpu(s->cpu_slab);
3677 free_kmem_cache_nodes(s);
3678}
3679
3680static int init_kmem_cache_nodes(struct kmem_cache *s)
3681{
3682 int node;
3683
3684 for_each_node_mask(node, slab_nodes) {
3685 struct kmem_cache_node *n;
3686
3687 if (slab_state == DOWN) {
3688 early_kmem_cache_node_alloc(node);
3689 continue;
3690 }
3691 n = kmem_cache_alloc_node(kmem_cache_node,
3692 GFP_KERNEL, node);
3693
3694 if (!n) {
3695 free_kmem_cache_nodes(s);
3696 return 0;
3697 }
3698
3699 init_kmem_cache_node(n);
3700 s->node[node] = n;
3701 }
3702 return 1;
3703}
3704
3705static void set_min_partial(struct kmem_cache *s, unsigned long min)
3706{
3707 if (min < MIN_PARTIAL)
3708 min = MIN_PARTIAL;
3709 else if (min > MAX_PARTIAL)
3710 min = MAX_PARTIAL;
3711 s->min_partial = min;
3712}
3713
3714static void set_cpu_partial(struct kmem_cache *s)
3715{
3716#ifdef CONFIG_SLUB_CPU_PARTIAL
3717 /*
3718 * cpu_partial determined the maximum number of objects kept in the
3719 * per cpu partial lists of a processor.
3720 *
3721 * Per cpu partial lists mainly contain slabs that just have one
3722 * object freed. If they are used for allocation then they can be
3723 * filled up again with minimal effort. The slab will never hit the
3724 * per node partial lists and therefore no locking will be required.
3725 *
3726 * This setting also determines
3727 *
3728 * A) The number of objects from per cpu partial slabs dumped to the
3729 * per node list when we reach the limit.
3730 * B) The number of objects in cpu partial slabs to extract from the
3731 * per node list when we run out of per cpu objects. We only fetch
3732 * 50% to keep some capacity around for frees.
3733 */
3734 if (!kmem_cache_has_cpu_partial(s))
3735 slub_set_cpu_partial(s, 0);
3736 else if (s->size >= PAGE_SIZE)
3737 slub_set_cpu_partial(s, 2);
3738 else if (s->size >= 1024)
3739 slub_set_cpu_partial(s, 6);
3740 else if (s->size >= 256)
3741 slub_set_cpu_partial(s, 13);
3742 else
3743 slub_set_cpu_partial(s, 30);
3744#endif
3745}
3746
3747/*
3748 * calculate_sizes() determines the order and the distribution of data within
3749 * a slab object.
3750 */
3751static int calculate_sizes(struct kmem_cache *s, int forced_order)
3752{
3753 slab_flags_t flags = s->flags;
3754 unsigned int size = s->object_size;
3755 unsigned int order;
3756
3757 /*
3758 * Round up object size to the next word boundary. We can only
3759 * place the free pointer at word boundaries and this determines
3760 * the possible location of the free pointer.
3761 */
3762 size = ALIGN(size, sizeof(void *));
3763
3764#ifdef CONFIG_SLUB_DEBUG
3765 /*
3766 * Determine if we can poison the object itself. If the user of
3767 * the slab may touch the object after free or before allocation
3768 * then we should never poison the object itself.
3769 */
3770 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3771 !s->ctor)
3772 s->flags |= __OBJECT_POISON;
3773 else
3774 s->flags &= ~__OBJECT_POISON;
3775
3776
3777 /*
3778 * If we are Redzoning then check if there is some space between the
3779 * end of the object and the free pointer. If not then add an
3780 * additional word to have some bytes to store Redzone information.
3781 */
3782 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3783 size += sizeof(void *);
3784#endif
3785
3786 /*
3787 * With that we have determined the number of bytes in actual use
3788 * by the object and redzoning.
3789 */
3790 s->inuse = size;
3791
3792 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3793 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3794 s->ctor) {
3795 /*
3796 * Relocate free pointer after the object if it is not
3797 * permitted to overwrite the first word of the object on
3798 * kmem_cache_free.
3799 *
3800 * This is the case if we do RCU, have a constructor or
3801 * destructor, are poisoning the objects, or are
3802 * redzoning an object smaller than sizeof(void *).
3803 *
3804 * The assumption that s->offset >= s->inuse means free
3805 * pointer is outside of the object is used in the
3806 * freeptr_outside_object() function. If that is no
3807 * longer true, the function needs to be modified.
3808 */
3809 s->offset = size;
3810 size += sizeof(void *);
3811 } else {
3812 /*
3813 * Store freelist pointer near middle of object to keep
3814 * it away from the edges of the object to avoid small
3815 * sized over/underflows from neighboring allocations.
3816 */
3817 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3818 }
3819
3820#ifdef CONFIG_SLUB_DEBUG
3821 if (flags & SLAB_STORE_USER)
3822 /*
3823 * Need to store information about allocs and frees after
3824 * the object.
3825 */
3826 size += 2 * sizeof(struct track);
3827#endif
3828
3829 kasan_cache_create(s, &size, &s->flags);
3830#ifdef CONFIG_SLUB_DEBUG
3831 if (flags & SLAB_RED_ZONE) {
3832 /*
3833 * Add some empty padding so that we can catch
3834 * overwrites from earlier objects rather than let
3835 * tracking information or the free pointer be
3836 * corrupted if a user writes before the start
3837 * of the object.
3838 */
3839 size += sizeof(void *);
3840
3841 s->red_left_pad = sizeof(void *);
3842 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3843 size += s->red_left_pad;
3844 }
3845#endif
3846
3847 /*
3848 * SLUB stores one object immediately after another beginning from
3849 * offset 0. In order to align the objects we have to simply size
3850 * each object to conform to the alignment.
3851 */
3852 size = ALIGN(size, s->align);
3853 s->size = size;
3854 s->reciprocal_size = reciprocal_value(size);
3855 if (forced_order >= 0)
3856 order = forced_order;
3857 else
3858 order = calculate_order(size);
3859
3860 if ((int)order < 0)
3861 return 0;
3862
3863 s->allocflags = 0;
3864 if (order)
3865 s->allocflags |= __GFP_COMP;
3866
3867 if (s->flags & SLAB_CACHE_DMA)
3868 s->allocflags |= GFP_DMA;
3869
3870 if (s->flags & SLAB_CACHE_DMA32)
3871 s->allocflags |= GFP_DMA32;
3872
3873 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3874 s->allocflags |= __GFP_RECLAIMABLE;
3875
3876 /*
3877 * Determine the number of objects per slab
3878 */
3879 s->oo = oo_make(order, size);
3880 s->min = oo_make(get_order(size), size);
3881 if (oo_objects(s->oo) > oo_objects(s->max))
3882 s->max = s->oo;
3883
3884 return !!oo_objects(s->oo);
3885}
3886
3887static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3888{
3889 s->flags = kmem_cache_flags(s->size, flags, s->name);
3890#ifdef CONFIG_SLAB_FREELIST_HARDENED
3891 s->random = get_random_long();
3892#endif
3893
3894 if (!calculate_sizes(s, -1))
3895 goto error;
3896 if (disable_higher_order_debug) {
3897 /*
3898 * Disable debugging flags that store metadata if the min slab
3899 * order increased.
3900 */
3901 if (get_order(s->size) > get_order(s->object_size)) {
3902 s->flags &= ~DEBUG_METADATA_FLAGS;
3903 s->offset = 0;
3904 if (!calculate_sizes(s, -1))
3905 goto error;
3906 }
3907 }
3908
3909#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3910 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3911 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3912 /* Enable fast mode */
3913 s->flags |= __CMPXCHG_DOUBLE;
3914#endif
3915
3916 /*
3917 * The larger the object size is, the more pages we want on the partial
3918 * list to avoid pounding the page allocator excessively.
3919 */
3920 set_min_partial(s, ilog2(s->size) / 2);
3921
3922 set_cpu_partial(s);
3923
3924#ifdef CONFIG_NUMA
3925 s->remote_node_defrag_ratio = 1000;
3926#endif
3927
3928 /* Initialize the pre-computed randomized freelist if slab is up */
3929 if (slab_state >= UP) {
3930 if (init_cache_random_seq(s))
3931 goto error;
3932 }
3933
3934 if (!init_kmem_cache_nodes(s))
3935 goto error;
3936
3937 if (alloc_kmem_cache_cpus(s))
3938 return 0;
3939
3940error:
3941 __kmem_cache_release(s);
3942 return -EINVAL;
3943}
3944
3945static void list_slab_objects(struct kmem_cache *s, struct page *page,
3946 const char *text)
3947{
3948#ifdef CONFIG_SLUB_DEBUG
3949 void *addr = page_address(page);
3950 unsigned long *map;
3951 void *p;
3952
3953 slab_err(s, page, text, s->name);
3954 slab_lock(page);
3955
3956 map = get_map(s, page);
3957 for_each_object(p, s, addr, page->objects) {
3958
3959 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3960 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3961 print_tracking(s, p);
3962 }
3963 }
3964 put_map(map);
3965 slab_unlock(page);
3966#endif
3967}
3968
3969/*
3970 * Attempt to free all partial slabs on a node.
3971 * This is called from __kmem_cache_shutdown(). We must take list_lock
3972 * because sysfs file might still access partial list after the shutdowning.
3973 */
3974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3975{
3976 LIST_HEAD(discard);
3977 struct page *page, *h;
3978
3979 BUG_ON(irqs_disabled());
3980 spin_lock_irq(&n->list_lock);
3981 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3982 if (!page->inuse) {
3983 remove_partial(n, page);
3984 list_add(&page->slab_list, &discard);
3985 } else {
3986 list_slab_objects(s, page,
3987 "Objects remaining in %s on __kmem_cache_shutdown()");
3988 }
3989 }
3990 spin_unlock_irq(&n->list_lock);
3991
3992 list_for_each_entry_safe(page, h, &discard, slab_list)
3993 discard_slab(s, page);
3994}
3995
3996bool __kmem_cache_empty(struct kmem_cache *s)
3997{
3998 int node;
3999 struct kmem_cache_node *n;
4000
4001 for_each_kmem_cache_node(s, node, n)
4002 if (n->nr_partial || slabs_node(s, node))
4003 return false;
4004 return true;
4005}
4006
4007/*
4008 * Release all resources used by a slab cache.
4009 */
4010int __kmem_cache_shutdown(struct kmem_cache *s)
4011{
4012 int node;
4013 struct kmem_cache_node *n;
4014
4015 flush_all(s);
4016 /* Attempt to free all objects */
4017 for_each_kmem_cache_node(s, node, n) {
4018 free_partial(s, n);
4019 if (n->nr_partial || slabs_node(s, node))
4020 return 1;
4021 }
4022 return 0;
4023}
4024
4025#ifdef CONFIG_PRINTK
4026void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4027{
4028 void *base;
4029 int __maybe_unused i;
4030 unsigned int objnr;
4031 void *objp;
4032 void *objp0;
4033 struct kmem_cache *s = page->slab_cache;
4034 struct track __maybe_unused *trackp;
4035
4036 kpp->kp_ptr = object;
4037 kpp->kp_page = page;
4038 kpp->kp_slab_cache = s;
4039 base = page_address(page);
4040 objp0 = kasan_reset_tag(object);
4041#ifdef CONFIG_SLUB_DEBUG
4042 objp = restore_red_left(s, objp0);
4043#else
4044 objp = objp0;
4045#endif
4046 objnr = obj_to_index(s, page, objp);
4047 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4048 objp = base + s->size * objnr;
4049 kpp->kp_objp = objp;
4050 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4051 !(s->flags & SLAB_STORE_USER))
4052 return;
4053#ifdef CONFIG_SLUB_DEBUG
4054 objp = fixup_red_left(s, objp);
4055 trackp = get_track(s, objp, TRACK_ALLOC);
4056 kpp->kp_ret = (void *)trackp->addr;
4057#ifdef CONFIG_STACKTRACE
4058 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4059 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4060 if (!kpp->kp_stack[i])
4061 break;
4062 }
4063
4064 trackp = get_track(s, objp, TRACK_FREE);
4065 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4066 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4067 if (!kpp->kp_free_stack[i])
4068 break;
4069 }
4070#endif
4071#endif
4072}
4073#endif
4074
4075/********************************************************************
4076 * Kmalloc subsystem
4077 *******************************************************************/
4078
4079static int __init setup_slub_min_order(char *str)
4080{
4081 get_option(&str, (int *)&slub_min_order);
4082
4083 return 1;
4084}
4085
4086__setup("slub_min_order=", setup_slub_min_order);
4087
4088static int __init setup_slub_max_order(char *str)
4089{
4090 get_option(&str, (int *)&slub_max_order);
4091 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4092
4093 return 1;
4094}
4095
4096__setup("slub_max_order=", setup_slub_max_order);
4097
4098static int __init setup_slub_min_objects(char *str)
4099{
4100 get_option(&str, (int *)&slub_min_objects);
4101
4102 return 1;
4103}
4104
4105__setup("slub_min_objects=", setup_slub_min_objects);
4106
4107void *__kmalloc(size_t size, gfp_t flags)
4108{
4109 struct kmem_cache *s;
4110 void *ret;
4111
4112 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4113 return kmalloc_large(size, flags);
4114
4115 s = kmalloc_slab(size, flags);
4116
4117 if (unlikely(ZERO_OR_NULL_PTR(s)))
4118 return s;
4119
4120 ret = slab_alloc(s, flags, _RET_IP_, size);
4121
4122 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4123
4124 ret = kasan_kmalloc(s, ret, size, flags);
4125
4126 return ret;
4127}
4128EXPORT_SYMBOL(__kmalloc);
4129
4130#ifdef CONFIG_NUMA
4131static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4132{
4133 struct page *page;
4134 void *ptr = NULL;
4135 unsigned int order = get_order(size);
4136
4137 flags |= __GFP_COMP;
4138 page = alloc_pages_node(node, flags, order);
4139 if (page) {
4140 ptr = page_address(page);
4141 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4142 PAGE_SIZE << order);
4143 }
4144
4145 return kmalloc_large_node_hook(ptr, size, flags);
4146}
4147
4148void *__kmalloc_node(size_t size, gfp_t flags, int node)
4149{
4150 struct kmem_cache *s;
4151 void *ret;
4152
4153 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4154 ret = kmalloc_large_node(size, flags, node);
4155
4156 trace_kmalloc_node(_RET_IP_, ret,
4157 size, PAGE_SIZE << get_order(size),
4158 flags, node);
4159
4160 return ret;
4161 }
4162
4163 s = kmalloc_slab(size, flags);
4164
4165 if (unlikely(ZERO_OR_NULL_PTR(s)))
4166 return s;
4167
4168 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4169
4170 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4171
4172 ret = kasan_kmalloc(s, ret, size, flags);
4173
4174 return ret;
4175}
4176EXPORT_SYMBOL(__kmalloc_node);
4177#endif /* CONFIG_NUMA */
4178
4179#ifdef CONFIG_HARDENED_USERCOPY
4180/*
4181 * Rejects incorrectly sized objects and objects that are to be copied
4182 * to/from userspace but do not fall entirely within the containing slab
4183 * cache's usercopy region.
4184 *
4185 * Returns NULL if check passes, otherwise const char * to name of cache
4186 * to indicate an error.
4187 */
4188void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4189 bool to_user)
4190{
4191 struct kmem_cache *s;
4192 unsigned int offset;
4193 size_t object_size;
4194 bool is_kfence = is_kfence_address(ptr);
4195
4196 ptr = kasan_reset_tag(ptr);
4197
4198 /* Find object and usable object size. */
4199 s = page->slab_cache;
4200
4201 /* Reject impossible pointers. */
4202 if (ptr < page_address(page))
4203 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4204 to_user, 0, n);
4205
4206 /* Find offset within object. */
4207 if (is_kfence)
4208 offset = ptr - kfence_object_start(ptr);
4209 else
4210 offset = (ptr - page_address(page)) % s->size;
4211
4212 /* Adjust for redzone and reject if within the redzone. */
4213 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4214 if (offset < s->red_left_pad)
4215 usercopy_abort("SLUB object in left red zone",
4216 s->name, to_user, offset, n);
4217 offset -= s->red_left_pad;
4218 }
4219
4220 /* Allow address range falling entirely within usercopy region. */
4221 if (offset >= s->useroffset &&
4222 offset - s->useroffset <= s->usersize &&
4223 n <= s->useroffset - offset + s->usersize)
4224 return;
4225
4226 /*
4227 * If the copy is still within the allocated object, produce
4228 * a warning instead of rejecting the copy. This is intended
4229 * to be a temporary method to find any missing usercopy
4230 * whitelists.
4231 */
4232 object_size = slab_ksize(s);
4233 if (usercopy_fallback &&
4234 offset <= object_size && n <= object_size - offset) {
4235 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4236 return;
4237 }
4238
4239 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4240}
4241#endif /* CONFIG_HARDENED_USERCOPY */
4242
4243size_t __ksize(const void *object)
4244{
4245 struct page *page;
4246
4247 if (unlikely(object == ZERO_SIZE_PTR))
4248 return 0;
4249
4250 page = virt_to_head_page(object);
4251
4252 if (unlikely(!PageSlab(page))) {
4253 WARN_ON(!PageCompound(page));
4254 return page_size(page);
4255 }
4256
4257 return slab_ksize(page->slab_cache);
4258}
4259EXPORT_SYMBOL(__ksize);
4260
4261void kfree(const void *x)
4262{
4263 struct page *page;
4264 void *object = (void *)x;
4265
4266 trace_kfree(_RET_IP_, x);
4267
4268 if (unlikely(ZERO_OR_NULL_PTR(x)))
4269 return;
4270
4271 page = virt_to_head_page(x);
4272 if (unlikely(!PageSlab(page))) {
4273 free_nonslab_page(page, object);
4274 return;
4275 }
4276 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4277}
4278EXPORT_SYMBOL(kfree);
4279
4280#define SHRINK_PROMOTE_MAX 32
4281
4282/*
4283 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4284 * up most to the head of the partial lists. New allocations will then
4285 * fill those up and thus they can be removed from the partial lists.
4286 *
4287 * The slabs with the least items are placed last. This results in them
4288 * being allocated from last increasing the chance that the last objects
4289 * are freed in them.
4290 */
4291int __kmem_cache_shrink(struct kmem_cache *s)
4292{
4293 int node;
4294 int i;
4295 struct kmem_cache_node *n;
4296 struct page *page;
4297 struct page *t;
4298 struct list_head discard;
4299 struct list_head promote[SHRINK_PROMOTE_MAX];
4300 unsigned long flags;
4301 int ret = 0;
4302
4303 flush_all(s);
4304 for_each_kmem_cache_node(s, node, n) {
4305 INIT_LIST_HEAD(&discard);
4306 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4307 INIT_LIST_HEAD(promote + i);
4308
4309 spin_lock_irqsave(&n->list_lock, flags);
4310
4311 /*
4312 * Build lists of slabs to discard or promote.
4313 *
4314 * Note that concurrent frees may occur while we hold the
4315 * list_lock. page->inuse here is the upper limit.
4316 */
4317 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4318 int free = page->objects - page->inuse;
4319
4320 /* Do not reread page->inuse */
4321 barrier();
4322
4323 /* We do not keep full slabs on the list */
4324 BUG_ON(free <= 0);
4325
4326 if (free == page->objects) {
4327 list_move(&page->slab_list, &discard);
4328 n->nr_partial--;
4329 } else if (free <= SHRINK_PROMOTE_MAX)
4330 list_move(&page->slab_list, promote + free - 1);
4331 }
4332
4333 /*
4334 * Promote the slabs filled up most to the head of the
4335 * partial list.
4336 */
4337 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4338 list_splice(promote + i, &n->partial);
4339
4340 spin_unlock_irqrestore(&n->list_lock, flags);
4341
4342 /* Release empty slabs */
4343 list_for_each_entry_safe(page, t, &discard, slab_list)
4344 discard_slab(s, page);
4345
4346 if (slabs_node(s, node))
4347 ret = 1;
4348 }
4349
4350 return ret;
4351}
4352
4353static int slab_mem_going_offline_callback(void *arg)
4354{
4355 struct kmem_cache *s;
4356
4357 mutex_lock(&slab_mutex);
4358 list_for_each_entry(s, &slab_caches, list)
4359 __kmem_cache_shrink(s);
4360 mutex_unlock(&slab_mutex);
4361
4362 return 0;
4363}
4364
4365static void slab_mem_offline_callback(void *arg)
4366{
4367 struct memory_notify *marg = arg;
4368 int offline_node;
4369
4370 offline_node = marg->status_change_nid_normal;
4371
4372 /*
4373 * If the node still has available memory. we need kmem_cache_node
4374 * for it yet.
4375 */
4376 if (offline_node < 0)
4377 return;
4378
4379 mutex_lock(&slab_mutex);
4380 node_clear(offline_node, slab_nodes);
4381 /*
4382 * We no longer free kmem_cache_node structures here, as it would be
4383 * racy with all get_node() users, and infeasible to protect them with
4384 * slab_mutex.
4385 */
4386 mutex_unlock(&slab_mutex);
4387}
4388
4389static int slab_mem_going_online_callback(void *arg)
4390{
4391 struct kmem_cache_node *n;
4392 struct kmem_cache *s;
4393 struct memory_notify *marg = arg;
4394 int nid = marg->status_change_nid_normal;
4395 int ret = 0;
4396
4397 /*
4398 * If the node's memory is already available, then kmem_cache_node is
4399 * already created. Nothing to do.
4400 */
4401 if (nid < 0)
4402 return 0;
4403
4404 /*
4405 * We are bringing a node online. No memory is available yet. We must
4406 * allocate a kmem_cache_node structure in order to bring the node
4407 * online.
4408 */
4409 mutex_lock(&slab_mutex);
4410 list_for_each_entry(s, &slab_caches, list) {
4411 /*
4412 * The structure may already exist if the node was previously
4413 * onlined and offlined.
4414 */
4415 if (get_node(s, nid))
4416 continue;
4417 /*
4418 * XXX: kmem_cache_alloc_node will fallback to other nodes
4419 * since memory is not yet available from the node that
4420 * is brought up.
4421 */
4422 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4423 if (!n) {
4424 ret = -ENOMEM;
4425 goto out;
4426 }
4427 init_kmem_cache_node(n);
4428 s->node[nid] = n;
4429 }
4430 /*
4431 * Any cache created after this point will also have kmem_cache_node
4432 * initialized for the new node.
4433 */
4434 node_set(nid, slab_nodes);
4435out:
4436 mutex_unlock(&slab_mutex);
4437 return ret;
4438}
4439
4440static int slab_memory_callback(struct notifier_block *self,
4441 unsigned long action, void *arg)
4442{
4443 int ret = 0;
4444
4445 switch (action) {
4446 case MEM_GOING_ONLINE:
4447 ret = slab_mem_going_online_callback(arg);
4448 break;
4449 case MEM_GOING_OFFLINE:
4450 ret = slab_mem_going_offline_callback(arg);
4451 break;
4452 case MEM_OFFLINE:
4453 case MEM_CANCEL_ONLINE:
4454 slab_mem_offline_callback(arg);
4455 break;
4456 case MEM_ONLINE:
4457 case MEM_CANCEL_OFFLINE:
4458 break;
4459 }
4460 if (ret)
4461 ret = notifier_from_errno(ret);
4462 else
4463 ret = NOTIFY_OK;
4464 return ret;
4465}
4466
4467static struct notifier_block slab_memory_callback_nb = {
4468 .notifier_call = slab_memory_callback,
4469 .priority = SLAB_CALLBACK_PRI,
4470};
4471
4472/********************************************************************
4473 * Basic setup of slabs
4474 *******************************************************************/
4475
4476/*
4477 * Used for early kmem_cache structures that were allocated using
4478 * the page allocator. Allocate them properly then fix up the pointers
4479 * that may be pointing to the wrong kmem_cache structure.
4480 */
4481
4482static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4483{
4484 int node;
4485 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4486 struct kmem_cache_node *n;
4487
4488 memcpy(s, static_cache, kmem_cache->object_size);
4489
4490 /*
4491 * This runs very early, and only the boot processor is supposed to be
4492 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4493 * IPIs around.
4494 */
4495 __flush_cpu_slab(s, smp_processor_id());
4496 for_each_kmem_cache_node(s, node, n) {
4497 struct page *p;
4498
4499 list_for_each_entry(p, &n->partial, slab_list)
4500 p->slab_cache = s;
4501
4502#ifdef CONFIG_SLUB_DEBUG
4503 list_for_each_entry(p, &n->full, slab_list)
4504 p->slab_cache = s;
4505#endif
4506 }
4507 list_add(&s->list, &slab_caches);
4508 return s;
4509}
4510
4511void __init kmem_cache_init(void)
4512{
4513 static __initdata struct kmem_cache boot_kmem_cache,
4514 boot_kmem_cache_node;
4515 int node;
4516
4517 if (debug_guardpage_minorder())
4518 slub_max_order = 0;
4519
4520 /* Print slub debugging pointers without hashing */
4521 if (__slub_debug_enabled())
4522 no_hash_pointers_enable(NULL);
4523
4524 kmem_cache_node = &boot_kmem_cache_node;
4525 kmem_cache = &boot_kmem_cache;
4526
4527 /*
4528 * Initialize the nodemask for which we will allocate per node
4529 * structures. Here we don't need taking slab_mutex yet.
4530 */
4531 for_each_node_state(node, N_NORMAL_MEMORY)
4532 node_set(node, slab_nodes);
4533
4534 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4535 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4536
4537 register_hotmemory_notifier(&slab_memory_callback_nb);
4538
4539 /* Able to allocate the per node structures */
4540 slab_state = PARTIAL;
4541
4542 create_boot_cache(kmem_cache, "kmem_cache",
4543 offsetof(struct kmem_cache, node) +
4544 nr_node_ids * sizeof(struct kmem_cache_node *),
4545 SLAB_HWCACHE_ALIGN, 0, 0);
4546
4547 kmem_cache = bootstrap(&boot_kmem_cache);
4548 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4549
4550 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4551 setup_kmalloc_cache_index_table();
4552 create_kmalloc_caches(0);
4553
4554 /* Setup random freelists for each cache */
4555 init_freelist_randomization();
4556
4557 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4558 slub_cpu_dead);
4559
4560 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4561 cache_line_size(),
4562 slub_min_order, slub_max_order, slub_min_objects,
4563 nr_cpu_ids, nr_node_ids);
4564}
4565
4566void __init kmem_cache_init_late(void)
4567{
4568}
4569
4570struct kmem_cache *
4571__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4572 slab_flags_t flags, void (*ctor)(void *))
4573{
4574 struct kmem_cache *s;
4575
4576 s = find_mergeable(size, align, flags, name, ctor);
4577 if (s) {
4578 s->refcount++;
4579
4580 /*
4581 * Adjust the object sizes so that we clear
4582 * the complete object on kzalloc.
4583 */
4584 s->object_size = max(s->object_size, size);
4585 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4586
4587 if (sysfs_slab_alias(s, name)) {
4588 s->refcount--;
4589 s = NULL;
4590 }
4591 }
4592
4593 return s;
4594}
4595
4596int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4597{
4598 int err;
4599
4600 err = kmem_cache_open(s, flags);
4601 if (err)
4602 return err;
4603
4604 /* Mutex is not taken during early boot */
4605 if (slab_state <= UP)
4606 return 0;
4607
4608 err = sysfs_slab_add(s);
4609 if (err) {
4610 __kmem_cache_release(s);
4611 return err;
4612 }
4613
4614 if (s->flags & SLAB_STORE_USER)
4615 debugfs_slab_add(s);
4616
4617 return 0;
4618}
4619
4620void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4621{
4622 struct kmem_cache *s;
4623 void *ret;
4624
4625 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4626 return kmalloc_large(size, gfpflags);
4627
4628 s = kmalloc_slab(size, gfpflags);
4629
4630 if (unlikely(ZERO_OR_NULL_PTR(s)))
4631 return s;
4632
4633 ret = slab_alloc(s, gfpflags, caller, size);
4634
4635 /* Honor the call site pointer we received. */
4636 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4637
4638 return ret;
4639}
4640EXPORT_SYMBOL(__kmalloc_track_caller);
4641
4642#ifdef CONFIG_NUMA
4643void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4644 int node, unsigned long caller)
4645{
4646 struct kmem_cache *s;
4647 void *ret;
4648
4649 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4650 ret = kmalloc_large_node(size, gfpflags, node);
4651
4652 trace_kmalloc_node(caller, ret,
4653 size, PAGE_SIZE << get_order(size),
4654 gfpflags, node);
4655
4656 return ret;
4657 }
4658
4659 s = kmalloc_slab(size, gfpflags);
4660
4661 if (unlikely(ZERO_OR_NULL_PTR(s)))
4662 return s;
4663
4664 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4665
4666 /* Honor the call site pointer we received. */
4667 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4668
4669 return ret;
4670}
4671EXPORT_SYMBOL(__kmalloc_node_track_caller);
4672#endif
4673
4674#ifdef CONFIG_SYSFS
4675static int count_inuse(struct page *page)
4676{
4677 return page->inuse;
4678}
4679
4680static int count_total(struct page *page)
4681{
4682 return page->objects;
4683}
4684#endif
4685
4686#ifdef CONFIG_SLUB_DEBUG
4687static void validate_slab(struct kmem_cache *s, struct page *page)
4688{
4689 void *p;
4690 void *addr = page_address(page);
4691 unsigned long *map;
4692
4693 slab_lock(page);
4694
4695 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4696 goto unlock;
4697
4698 /* Now we know that a valid freelist exists */
4699 map = get_map(s, page);
4700 for_each_object(p, s, addr, page->objects) {
4701 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4702 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4703
4704 if (!check_object(s, page, p, val))
4705 break;
4706 }
4707 put_map(map);
4708unlock:
4709 slab_unlock(page);
4710}
4711
4712static int validate_slab_node(struct kmem_cache *s,
4713 struct kmem_cache_node *n)
4714{
4715 unsigned long count = 0;
4716 struct page *page;
4717 unsigned long flags;
4718
4719 spin_lock_irqsave(&n->list_lock, flags);
4720
4721 list_for_each_entry(page, &n->partial, slab_list) {
4722 validate_slab(s, page);
4723 count++;
4724 }
4725 if (count != n->nr_partial) {
4726 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4727 s->name, count, n->nr_partial);
4728 slab_add_kunit_errors();
4729 }
4730
4731 if (!(s->flags & SLAB_STORE_USER))
4732 goto out;
4733
4734 list_for_each_entry(page, &n->full, slab_list) {
4735 validate_slab(s, page);
4736 count++;
4737 }
4738 if (count != atomic_long_read(&n->nr_slabs)) {
4739 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4740 s->name, count, atomic_long_read(&n->nr_slabs));
4741 slab_add_kunit_errors();
4742 }
4743
4744out:
4745 spin_unlock_irqrestore(&n->list_lock, flags);
4746 return count;
4747}
4748
4749long validate_slab_cache(struct kmem_cache *s)
4750{
4751 int node;
4752 unsigned long count = 0;
4753 struct kmem_cache_node *n;
4754
4755 flush_all(s);
4756 for_each_kmem_cache_node(s, node, n)
4757 count += validate_slab_node(s, n);
4758
4759 return count;
4760}
4761EXPORT_SYMBOL(validate_slab_cache);
4762
4763#ifdef CONFIG_DEBUG_FS
4764/*
4765 * Generate lists of code addresses where slabcache objects are allocated
4766 * and freed.
4767 */
4768
4769struct location {
4770 unsigned long count;
4771 unsigned long addr;
4772 long long sum_time;
4773 long min_time;
4774 long max_time;
4775 long min_pid;
4776 long max_pid;
4777 DECLARE_BITMAP(cpus, NR_CPUS);
4778 nodemask_t nodes;
4779};
4780
4781struct loc_track {
4782 unsigned long max;
4783 unsigned long count;
4784 struct location *loc;
4785};
4786
4787static struct dentry *slab_debugfs_root;
4788
4789static void free_loc_track(struct loc_track *t)
4790{
4791 if (t->max)
4792 free_pages((unsigned long)t->loc,
4793 get_order(sizeof(struct location) * t->max));
4794}
4795
4796static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4797{
4798 struct location *l;
4799 int order;
4800
4801 order = get_order(sizeof(struct location) * max);
4802
4803 l = (void *)__get_free_pages(flags, order);
4804 if (!l)
4805 return 0;
4806
4807 if (t->count) {
4808 memcpy(l, t->loc, sizeof(struct location) * t->count);
4809 free_loc_track(t);
4810 }
4811 t->max = max;
4812 t->loc = l;
4813 return 1;
4814}
4815
4816static int add_location(struct loc_track *t, struct kmem_cache *s,
4817 const struct track *track)
4818{
4819 long start, end, pos;
4820 struct location *l;
4821 unsigned long caddr;
4822 unsigned long age = jiffies - track->when;
4823
4824 start = -1;
4825 end = t->count;
4826
4827 for ( ; ; ) {
4828 pos = start + (end - start + 1) / 2;
4829
4830 /*
4831 * There is nothing at "end". If we end up there
4832 * we need to add something to before end.
4833 */
4834 if (pos == end)
4835 break;
4836
4837 caddr = t->loc[pos].addr;
4838 if (track->addr == caddr) {
4839
4840 l = &t->loc[pos];
4841 l->count++;
4842 if (track->when) {
4843 l->sum_time += age;
4844 if (age < l->min_time)
4845 l->min_time = age;
4846 if (age > l->max_time)
4847 l->max_time = age;
4848
4849 if (track->pid < l->min_pid)
4850 l->min_pid = track->pid;
4851 if (track->pid > l->max_pid)
4852 l->max_pid = track->pid;
4853
4854 cpumask_set_cpu(track->cpu,
4855 to_cpumask(l->cpus));
4856 }
4857 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4858 return 1;
4859 }
4860
4861 if (track->addr < caddr)
4862 end = pos;
4863 else
4864 start = pos;
4865 }
4866
4867 /*
4868 * Not found. Insert new tracking element.
4869 */
4870 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4871 return 0;
4872
4873 l = t->loc + pos;
4874 if (pos < t->count)
4875 memmove(l + 1, l,
4876 (t->count - pos) * sizeof(struct location));
4877 t->count++;
4878 l->count = 1;
4879 l->addr = track->addr;
4880 l->sum_time = age;
4881 l->min_time = age;
4882 l->max_time = age;
4883 l->min_pid = track->pid;
4884 l->max_pid = track->pid;
4885 cpumask_clear(to_cpumask(l->cpus));
4886 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4887 nodes_clear(l->nodes);
4888 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4889 return 1;
4890}
4891
4892static void process_slab(struct loc_track *t, struct kmem_cache *s,
4893 struct page *page, enum track_item alloc)
4894{
4895 void *addr = page_address(page);
4896 void *p;
4897 unsigned long *map;
4898
4899 map = get_map(s, page);
4900 for_each_object(p, s, addr, page->objects)
4901 if (!test_bit(__obj_to_index(s, addr, p), map))
4902 add_location(t, s, get_track(s, p, alloc));
4903 put_map(map);
4904}
4905#endif /* CONFIG_DEBUG_FS */
4906#endif /* CONFIG_SLUB_DEBUG */
4907
4908#ifdef CONFIG_SYSFS
4909enum slab_stat_type {
4910 SL_ALL, /* All slabs */
4911 SL_PARTIAL, /* Only partially allocated slabs */
4912 SL_CPU, /* Only slabs used for cpu caches */
4913 SL_OBJECTS, /* Determine allocated objects not slabs */
4914 SL_TOTAL /* Determine object capacity not slabs */
4915};
4916
4917#define SO_ALL (1 << SL_ALL)
4918#define SO_PARTIAL (1 << SL_PARTIAL)
4919#define SO_CPU (1 << SL_CPU)
4920#define SO_OBJECTS (1 << SL_OBJECTS)
4921#define SO_TOTAL (1 << SL_TOTAL)
4922
4923static ssize_t show_slab_objects(struct kmem_cache *s,
4924 char *buf, unsigned long flags)
4925{
4926 unsigned long total = 0;
4927 int node;
4928 int x;
4929 unsigned long *nodes;
4930 int len = 0;
4931
4932 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4933 if (!nodes)
4934 return -ENOMEM;
4935
4936 if (flags & SO_CPU) {
4937 int cpu;
4938
4939 for_each_possible_cpu(cpu) {
4940 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4941 cpu);
4942 int node;
4943 struct page *page;
4944
4945 page = READ_ONCE(c->page);
4946 if (!page)
4947 continue;
4948
4949 node = page_to_nid(page);
4950 if (flags & SO_TOTAL)
4951 x = page->objects;
4952 else if (flags & SO_OBJECTS)
4953 x = page->inuse;
4954 else
4955 x = 1;
4956
4957 total += x;
4958 nodes[node] += x;
4959
4960 page = slub_percpu_partial_read_once(c);
4961 if (page) {
4962 node = page_to_nid(page);
4963 if (flags & SO_TOTAL)
4964 WARN_ON_ONCE(1);
4965 else if (flags & SO_OBJECTS)
4966 WARN_ON_ONCE(1);
4967 else
4968 x = page->pages;
4969 total += x;
4970 nodes[node] += x;
4971 }
4972 }
4973 }
4974
4975 /*
4976 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4977 * already held which will conflict with an existing lock order:
4978 *
4979 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4980 *
4981 * We don't really need mem_hotplug_lock (to hold off
4982 * slab_mem_going_offline_callback) here because slab's memory hot
4983 * unplug code doesn't destroy the kmem_cache->node[] data.
4984 */
4985
4986#ifdef CONFIG_SLUB_DEBUG
4987 if (flags & SO_ALL) {
4988 struct kmem_cache_node *n;
4989
4990 for_each_kmem_cache_node(s, node, n) {
4991
4992 if (flags & SO_TOTAL)
4993 x = atomic_long_read(&n->total_objects);
4994 else if (flags & SO_OBJECTS)
4995 x = atomic_long_read(&n->total_objects) -
4996 count_partial(n, count_free);
4997 else
4998 x = atomic_long_read(&n->nr_slabs);
4999 total += x;
5000 nodes[node] += x;
5001 }
5002
5003 } else
5004#endif
5005 if (flags & SO_PARTIAL) {
5006 struct kmem_cache_node *n;
5007
5008 for_each_kmem_cache_node(s, node, n) {
5009 if (flags & SO_TOTAL)
5010 x = count_partial(n, count_total);
5011 else if (flags & SO_OBJECTS)
5012 x = count_partial(n, count_inuse);
5013 else
5014 x = n->nr_partial;
5015 total += x;
5016 nodes[node] += x;
5017 }
5018 }
5019
5020 len += sysfs_emit_at(buf, len, "%lu", total);
5021#ifdef CONFIG_NUMA
5022 for (node = 0; node < nr_node_ids; node++) {
5023 if (nodes[node])
5024 len += sysfs_emit_at(buf, len, " N%d=%lu",
5025 node, nodes[node]);
5026 }
5027#endif
5028 len += sysfs_emit_at(buf, len, "\n");
5029 kfree(nodes);
5030
5031 return len;
5032}
5033
5034#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5035#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5036
5037struct slab_attribute {
5038 struct attribute attr;
5039 ssize_t (*show)(struct kmem_cache *s, char *buf);
5040 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5041};
5042
5043#define SLAB_ATTR_RO(_name) \
5044 static struct slab_attribute _name##_attr = \
5045 __ATTR(_name, 0400, _name##_show, NULL)
5046
5047#define SLAB_ATTR(_name) \
5048 static struct slab_attribute _name##_attr = \
5049 __ATTR(_name, 0600, _name##_show, _name##_store)
5050
5051static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5052{
5053 return sysfs_emit(buf, "%u\n", s->size);
5054}
5055SLAB_ATTR_RO(slab_size);
5056
5057static ssize_t align_show(struct kmem_cache *s, char *buf)
5058{
5059 return sysfs_emit(buf, "%u\n", s->align);
5060}
5061SLAB_ATTR_RO(align);
5062
5063static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5064{
5065 return sysfs_emit(buf, "%u\n", s->object_size);
5066}
5067SLAB_ATTR_RO(object_size);
5068
5069static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5070{
5071 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5072}
5073SLAB_ATTR_RO(objs_per_slab);
5074
5075static ssize_t order_show(struct kmem_cache *s, char *buf)
5076{
5077 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5078}
5079SLAB_ATTR_RO(order);
5080
5081static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5082{
5083 return sysfs_emit(buf, "%lu\n", s->min_partial);
5084}
5085
5086static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5087 size_t length)
5088{
5089 unsigned long min;
5090 int err;
5091
5092 err = kstrtoul(buf, 10, &min);
5093 if (err)
5094 return err;
5095
5096 set_min_partial(s, min);
5097 return length;
5098}
5099SLAB_ATTR(min_partial);
5100
5101static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5102{
5103 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5104}
5105
5106static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5107 size_t length)
5108{
5109 unsigned int objects;
5110 int err;
5111
5112 err = kstrtouint(buf, 10, &objects);
5113 if (err)
5114 return err;
5115 if (objects && !kmem_cache_has_cpu_partial(s))
5116 return -EINVAL;
5117
5118 slub_set_cpu_partial(s, objects);
5119 flush_all(s);
5120 return length;
5121}
5122SLAB_ATTR(cpu_partial);
5123
5124static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5125{
5126 if (!s->ctor)
5127 return 0;
5128 return sysfs_emit(buf, "%pS\n", s->ctor);
5129}
5130SLAB_ATTR_RO(ctor);
5131
5132static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5133{
5134 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5135}
5136SLAB_ATTR_RO(aliases);
5137
5138static ssize_t partial_show(struct kmem_cache *s, char *buf)
5139{
5140 return show_slab_objects(s, buf, SO_PARTIAL);
5141}
5142SLAB_ATTR_RO(partial);
5143
5144static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5145{
5146 return show_slab_objects(s, buf, SO_CPU);
5147}
5148SLAB_ATTR_RO(cpu_slabs);
5149
5150static ssize_t objects_show(struct kmem_cache *s, char *buf)
5151{
5152 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5153}
5154SLAB_ATTR_RO(objects);
5155
5156static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5157{
5158 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5159}
5160SLAB_ATTR_RO(objects_partial);
5161
5162static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5163{
5164 int objects = 0;
5165 int pages = 0;
5166 int cpu;
5167 int len = 0;
5168
5169 for_each_online_cpu(cpu) {
5170 struct page *page;
5171
5172 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5173
5174 if (page) {
5175 pages += page->pages;
5176 objects += page->pobjects;
5177 }
5178 }
5179
5180 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5181
5182#ifdef CONFIG_SMP
5183 for_each_online_cpu(cpu) {
5184 struct page *page;
5185
5186 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5187 if (page)
5188 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5189 cpu, page->pobjects, page->pages);
5190 }
5191#endif
5192 len += sysfs_emit_at(buf, len, "\n");
5193
5194 return len;
5195}
5196SLAB_ATTR_RO(slabs_cpu_partial);
5197
5198static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5199{
5200 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5201}
5202SLAB_ATTR_RO(reclaim_account);
5203
5204static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5205{
5206 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5207}
5208SLAB_ATTR_RO(hwcache_align);
5209
5210#ifdef CONFIG_ZONE_DMA
5211static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5212{
5213 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5214}
5215SLAB_ATTR_RO(cache_dma);
5216#endif
5217
5218static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5219{
5220 return sysfs_emit(buf, "%u\n", s->usersize);
5221}
5222SLAB_ATTR_RO(usersize);
5223
5224static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5225{
5226 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5227}
5228SLAB_ATTR_RO(destroy_by_rcu);
5229
5230#ifdef CONFIG_SLUB_DEBUG
5231static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5232{
5233 return show_slab_objects(s, buf, SO_ALL);
5234}
5235SLAB_ATTR_RO(slabs);
5236
5237static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5238{
5239 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5240}
5241SLAB_ATTR_RO(total_objects);
5242
5243static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5244{
5245 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5246}
5247SLAB_ATTR_RO(sanity_checks);
5248
5249static ssize_t trace_show(struct kmem_cache *s, char *buf)
5250{
5251 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5252}
5253SLAB_ATTR_RO(trace);
5254
5255static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5256{
5257 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5258}
5259
5260SLAB_ATTR_RO(red_zone);
5261
5262static ssize_t poison_show(struct kmem_cache *s, char *buf)
5263{
5264 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5265}
5266
5267SLAB_ATTR_RO(poison);
5268
5269static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5270{
5271 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5272}
5273
5274SLAB_ATTR_RO(store_user);
5275
5276static ssize_t validate_show(struct kmem_cache *s, char *buf)
5277{
5278 return 0;
5279}
5280
5281static ssize_t validate_store(struct kmem_cache *s,
5282 const char *buf, size_t length)
5283{
5284 int ret = -EINVAL;
5285
5286 if (buf[0] == '1') {
5287 ret = validate_slab_cache(s);
5288 if (ret >= 0)
5289 ret = length;
5290 }
5291 return ret;
5292}
5293SLAB_ATTR(validate);
5294
5295#endif /* CONFIG_SLUB_DEBUG */
5296
5297#ifdef CONFIG_FAILSLAB
5298static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5299{
5300 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5301}
5302SLAB_ATTR_RO(failslab);
5303#endif
5304
5305static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5306{
5307 return 0;
5308}
5309
5310static ssize_t shrink_store(struct kmem_cache *s,
5311 const char *buf, size_t length)
5312{
5313 if (buf[0] == '1')
5314 kmem_cache_shrink(s);
5315 else
5316 return -EINVAL;
5317 return length;
5318}
5319SLAB_ATTR(shrink);
5320
5321#ifdef CONFIG_NUMA
5322static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5323{
5324 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5325}
5326
5327static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5328 const char *buf, size_t length)
5329{
5330 unsigned int ratio;
5331 int err;
5332
5333 err = kstrtouint(buf, 10, &ratio);
5334 if (err)
5335 return err;
5336 if (ratio > 100)
5337 return -ERANGE;
5338
5339 s->remote_node_defrag_ratio = ratio * 10;
5340
5341 return length;
5342}
5343SLAB_ATTR(remote_node_defrag_ratio);
5344#endif
5345
5346#ifdef CONFIG_SLUB_STATS
5347static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5348{
5349 unsigned long sum = 0;
5350 int cpu;
5351 int len = 0;
5352 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5353
5354 if (!data)
5355 return -ENOMEM;
5356
5357 for_each_online_cpu(cpu) {
5358 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5359
5360 data[cpu] = x;
5361 sum += x;
5362 }
5363
5364 len += sysfs_emit_at(buf, len, "%lu", sum);
5365
5366#ifdef CONFIG_SMP
5367 for_each_online_cpu(cpu) {
5368 if (data[cpu])
5369 len += sysfs_emit_at(buf, len, " C%d=%u",
5370 cpu, data[cpu]);
5371 }
5372#endif
5373 kfree(data);
5374 len += sysfs_emit_at(buf, len, "\n");
5375
5376 return len;
5377}
5378
5379static void clear_stat(struct kmem_cache *s, enum stat_item si)
5380{
5381 int cpu;
5382
5383 for_each_online_cpu(cpu)
5384 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5385}
5386
5387#define STAT_ATTR(si, text) \
5388static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5389{ \
5390 return show_stat(s, buf, si); \
5391} \
5392static ssize_t text##_store(struct kmem_cache *s, \
5393 const char *buf, size_t length) \
5394{ \
5395 if (buf[0] != '0') \
5396 return -EINVAL; \
5397 clear_stat(s, si); \
5398 return length; \
5399} \
5400SLAB_ATTR(text); \
5401
5402STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5403STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5404STAT_ATTR(FREE_FASTPATH, free_fastpath);
5405STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5406STAT_ATTR(FREE_FROZEN, free_frozen);
5407STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5408STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5409STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5410STAT_ATTR(ALLOC_SLAB, alloc_slab);
5411STAT_ATTR(ALLOC_REFILL, alloc_refill);
5412STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5413STAT_ATTR(FREE_SLAB, free_slab);
5414STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5415STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5416STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5417STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5418STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5419STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5420STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5421STAT_ATTR(ORDER_FALLBACK, order_fallback);
5422STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5423STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5424STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5425STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5426STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5427STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5428#endif /* CONFIG_SLUB_STATS */
5429
5430static struct attribute *slab_attrs[] = {
5431 &slab_size_attr.attr,
5432 &object_size_attr.attr,
5433 &objs_per_slab_attr.attr,
5434 &order_attr.attr,
5435 &min_partial_attr.attr,
5436 &cpu_partial_attr.attr,
5437 &objects_attr.attr,
5438 &objects_partial_attr.attr,
5439 &partial_attr.attr,
5440 &cpu_slabs_attr.attr,
5441 &ctor_attr.attr,
5442 &aliases_attr.attr,
5443 &align_attr.attr,
5444 &hwcache_align_attr.attr,
5445 &reclaim_account_attr.attr,
5446 &destroy_by_rcu_attr.attr,
5447 &shrink_attr.attr,
5448 &slabs_cpu_partial_attr.attr,
5449#ifdef CONFIG_SLUB_DEBUG
5450 &total_objects_attr.attr,
5451 &slabs_attr.attr,
5452 &sanity_checks_attr.attr,
5453 &trace_attr.attr,
5454 &red_zone_attr.attr,
5455 &poison_attr.attr,
5456 &store_user_attr.attr,
5457 &validate_attr.attr,
5458#endif
5459#ifdef CONFIG_ZONE_DMA
5460 &cache_dma_attr.attr,
5461#endif
5462#ifdef CONFIG_NUMA
5463 &remote_node_defrag_ratio_attr.attr,
5464#endif
5465#ifdef CONFIG_SLUB_STATS
5466 &alloc_fastpath_attr.attr,
5467 &alloc_slowpath_attr.attr,
5468 &free_fastpath_attr.attr,
5469 &free_slowpath_attr.attr,
5470 &free_frozen_attr.attr,
5471 &free_add_partial_attr.attr,
5472 &free_remove_partial_attr.attr,
5473 &alloc_from_partial_attr.attr,
5474 &alloc_slab_attr.attr,
5475 &alloc_refill_attr.attr,
5476 &alloc_node_mismatch_attr.attr,
5477 &free_slab_attr.attr,
5478 &cpuslab_flush_attr.attr,
5479 &deactivate_full_attr.attr,
5480 &deactivate_empty_attr.attr,
5481 &deactivate_to_head_attr.attr,
5482 &deactivate_to_tail_attr.attr,
5483 &deactivate_remote_frees_attr.attr,
5484 &deactivate_bypass_attr.attr,
5485 &order_fallback_attr.attr,
5486 &cmpxchg_double_fail_attr.attr,
5487 &cmpxchg_double_cpu_fail_attr.attr,
5488 &cpu_partial_alloc_attr.attr,
5489 &cpu_partial_free_attr.attr,
5490 &cpu_partial_node_attr.attr,
5491 &cpu_partial_drain_attr.attr,
5492#endif
5493#ifdef CONFIG_FAILSLAB
5494 &failslab_attr.attr,
5495#endif
5496 &usersize_attr.attr,
5497
5498 NULL
5499};
5500
5501static const struct attribute_group slab_attr_group = {
5502 .attrs = slab_attrs,
5503};
5504
5505static ssize_t slab_attr_show(struct kobject *kobj,
5506 struct attribute *attr,
5507 char *buf)
5508{
5509 struct slab_attribute *attribute;
5510 struct kmem_cache *s;
5511 int err;
5512
5513 attribute = to_slab_attr(attr);
5514 s = to_slab(kobj);
5515
5516 if (!attribute->show)
5517 return -EIO;
5518
5519 err = attribute->show(s, buf);
5520
5521 return err;
5522}
5523
5524static ssize_t slab_attr_store(struct kobject *kobj,
5525 struct attribute *attr,
5526 const char *buf, size_t len)
5527{
5528 struct slab_attribute *attribute;
5529 struct kmem_cache *s;
5530 int err;
5531
5532 attribute = to_slab_attr(attr);
5533 s = to_slab(kobj);
5534
5535 if (!attribute->store)
5536 return -EIO;
5537
5538 err = attribute->store(s, buf, len);
5539 return err;
5540}
5541
5542static void kmem_cache_release(struct kobject *k)
5543{
5544 slab_kmem_cache_release(to_slab(k));
5545}
5546
5547static const struct sysfs_ops slab_sysfs_ops = {
5548 .show = slab_attr_show,
5549 .store = slab_attr_store,
5550};
5551
5552static struct kobj_type slab_ktype = {
5553 .sysfs_ops = &slab_sysfs_ops,
5554 .release = kmem_cache_release,
5555};
5556
5557static struct kset *slab_kset;
5558
5559static inline struct kset *cache_kset(struct kmem_cache *s)
5560{
5561 return slab_kset;
5562}
5563
5564#define ID_STR_LENGTH 64
5565
5566/* Create a unique string id for a slab cache:
5567 *
5568 * Format :[flags-]size
5569 */
5570static char *create_unique_id(struct kmem_cache *s)
5571{
5572 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5573 char *p = name;
5574
5575 BUG_ON(!name);
5576
5577 *p++ = ':';
5578 /*
5579 * First flags affecting slabcache operations. We will only
5580 * get here for aliasable slabs so we do not need to support
5581 * too many flags. The flags here must cover all flags that
5582 * are matched during merging to guarantee that the id is
5583 * unique.
5584 */
5585 if (s->flags & SLAB_CACHE_DMA)
5586 *p++ = 'd';
5587 if (s->flags & SLAB_CACHE_DMA32)
5588 *p++ = 'D';
5589 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5590 *p++ = 'a';
5591 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5592 *p++ = 'F';
5593 if (s->flags & SLAB_ACCOUNT)
5594 *p++ = 'A';
5595 if (p != name + 1)
5596 *p++ = '-';
5597 p += sprintf(p, "%07u", s->size);
5598
5599 BUG_ON(p > name + ID_STR_LENGTH - 1);
5600 return name;
5601}
5602
5603static int sysfs_slab_add(struct kmem_cache *s)
5604{
5605 int err;
5606 const char *name;
5607 struct kset *kset = cache_kset(s);
5608 int unmergeable = slab_unmergeable(s);
5609
5610 if (!kset) {
5611 kobject_init(&s->kobj, &slab_ktype);
5612 return 0;
5613 }
5614
5615 if (!unmergeable && disable_higher_order_debug &&
5616 (slub_debug & DEBUG_METADATA_FLAGS))
5617 unmergeable = 1;
5618
5619 if (unmergeable) {
5620 /*
5621 * Slabcache can never be merged so we can use the name proper.
5622 * This is typically the case for debug situations. In that
5623 * case we can catch duplicate names easily.
5624 */
5625 sysfs_remove_link(&slab_kset->kobj, s->name);
5626 name = s->name;
5627 } else {
5628 /*
5629 * Create a unique name for the slab as a target
5630 * for the symlinks.
5631 */
5632 name = create_unique_id(s);
5633 }
5634
5635 s->kobj.kset = kset;
5636 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5637 if (err)
5638 goto out;
5639
5640 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5641 if (err)
5642 goto out_del_kobj;
5643
5644 if (!unmergeable) {
5645 /* Setup first alias */
5646 sysfs_slab_alias(s, s->name);
5647 }
5648out:
5649 if (!unmergeable)
5650 kfree(name);
5651 return err;
5652out_del_kobj:
5653 kobject_del(&s->kobj);
5654 goto out;
5655}
5656
5657void sysfs_slab_unlink(struct kmem_cache *s)
5658{
5659 if (slab_state >= FULL)
5660 kobject_del(&s->kobj);
5661}
5662
5663void sysfs_slab_release(struct kmem_cache *s)
5664{
5665 if (slab_state >= FULL)
5666 kobject_put(&s->kobj);
5667}
5668
5669/*
5670 * Need to buffer aliases during bootup until sysfs becomes
5671 * available lest we lose that information.
5672 */
5673struct saved_alias {
5674 struct kmem_cache *s;
5675 const char *name;
5676 struct saved_alias *next;
5677};
5678
5679static struct saved_alias *alias_list;
5680
5681static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5682{
5683 struct saved_alias *al;
5684
5685 if (slab_state == FULL) {
5686 /*
5687 * If we have a leftover link then remove it.
5688 */
5689 sysfs_remove_link(&slab_kset->kobj, name);
5690 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5691 }
5692
5693 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5694 if (!al)
5695 return -ENOMEM;
5696
5697 al->s = s;
5698 al->name = name;
5699 al->next = alias_list;
5700 alias_list = al;
5701 return 0;
5702}
5703
5704static int __init slab_sysfs_init(void)
5705{
5706 struct kmem_cache *s;
5707 int err;
5708
5709 mutex_lock(&slab_mutex);
5710
5711 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5712 if (!slab_kset) {
5713 mutex_unlock(&slab_mutex);
5714 pr_err("Cannot register slab subsystem.\n");
5715 return -ENOSYS;
5716 }
5717
5718 slab_state = FULL;
5719
5720 list_for_each_entry(s, &slab_caches, list) {
5721 err = sysfs_slab_add(s);
5722 if (err)
5723 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5724 s->name);
5725 }
5726
5727 while (alias_list) {
5728 struct saved_alias *al = alias_list;
5729
5730 alias_list = alias_list->next;
5731 err = sysfs_slab_alias(al->s, al->name);
5732 if (err)
5733 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5734 al->name);
5735 kfree(al);
5736 }
5737
5738 mutex_unlock(&slab_mutex);
5739 return 0;
5740}
5741
5742__initcall(slab_sysfs_init);
5743#endif /* CONFIG_SYSFS */
5744
5745#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5746static int slab_debugfs_show(struct seq_file *seq, void *v)
5747{
5748
5749 struct location *l;
5750 unsigned int idx = *(unsigned int *)v;
5751 struct loc_track *t = seq->private;
5752
5753 if (idx < t->count) {
5754 l = &t->loc[idx];
5755
5756 seq_printf(seq, "%7ld ", l->count);
5757
5758 if (l->addr)
5759 seq_printf(seq, "%pS", (void *)l->addr);
5760 else
5761 seq_puts(seq, "<not-available>");
5762
5763 if (l->sum_time != l->min_time) {
5764 seq_printf(seq, " age=%ld/%llu/%ld",
5765 l->min_time, div_u64(l->sum_time, l->count),
5766 l->max_time);
5767 } else
5768 seq_printf(seq, " age=%ld", l->min_time);
5769
5770 if (l->min_pid != l->max_pid)
5771 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5772 else
5773 seq_printf(seq, " pid=%ld",
5774 l->min_pid);
5775
5776 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5777 seq_printf(seq, " cpus=%*pbl",
5778 cpumask_pr_args(to_cpumask(l->cpus)));
5779
5780 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5781 seq_printf(seq, " nodes=%*pbl",
5782 nodemask_pr_args(&l->nodes));
5783
5784 seq_puts(seq, "\n");
5785 }
5786
5787 if (!idx && !t->count)
5788 seq_puts(seq, "No data\n");
5789
5790 return 0;
5791}
5792
5793static void slab_debugfs_stop(struct seq_file *seq, void *v)
5794{
5795}
5796
5797static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5798{
5799 struct loc_track *t = seq->private;
5800
5801 v = ppos;
5802 ++*ppos;
5803 if (*ppos <= t->count)
5804 return v;
5805
5806 return NULL;
5807}
5808
5809static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5810{
5811 return ppos;
5812}
5813
5814static const struct seq_operations slab_debugfs_sops = {
5815 .start = slab_debugfs_start,
5816 .next = slab_debugfs_next,
5817 .stop = slab_debugfs_stop,
5818 .show = slab_debugfs_show,
5819};
5820
5821static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5822{
5823
5824 struct kmem_cache_node *n;
5825 enum track_item alloc;
5826 int node;
5827 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5828 sizeof(struct loc_track));
5829 struct kmem_cache *s = file_inode(filep)->i_private;
5830
5831 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5832 alloc = TRACK_ALLOC;
5833 else
5834 alloc = TRACK_FREE;
5835
5836 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5837 return -ENOMEM;
5838
5839 /* Push back cpu slabs */
5840 flush_all(s);
5841
5842 for_each_kmem_cache_node(s, node, n) {
5843 unsigned long flags;
5844 struct page *page;
5845
5846 if (!atomic_long_read(&n->nr_slabs))
5847 continue;
5848
5849 spin_lock_irqsave(&n->list_lock, flags);
5850 list_for_each_entry(page, &n->partial, slab_list)
5851 process_slab(t, s, page, alloc);
5852 list_for_each_entry(page, &n->full, slab_list)
5853 process_slab(t, s, page, alloc);
5854 spin_unlock_irqrestore(&n->list_lock, flags);
5855 }
5856
5857 return 0;
5858}
5859
5860static int slab_debug_trace_release(struct inode *inode, struct file *file)
5861{
5862 struct seq_file *seq = file->private_data;
5863 struct loc_track *t = seq->private;
5864
5865 free_loc_track(t);
5866 return seq_release_private(inode, file);
5867}
5868
5869static const struct file_operations slab_debugfs_fops = {
5870 .open = slab_debug_trace_open,
5871 .read = seq_read,
5872 .llseek = seq_lseek,
5873 .release = slab_debug_trace_release,
5874};
5875
5876static void debugfs_slab_add(struct kmem_cache *s)
5877{
5878 struct dentry *slab_cache_dir;
5879
5880 if (unlikely(!slab_debugfs_root))
5881 return;
5882
5883 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5884
5885 debugfs_create_file("alloc_traces", 0400,
5886 slab_cache_dir, s, &slab_debugfs_fops);
5887
5888 debugfs_create_file("free_traces", 0400,
5889 slab_cache_dir, s, &slab_debugfs_fops);
5890}
5891
5892void debugfs_slab_release(struct kmem_cache *s)
5893{
5894 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5895}
5896
5897static int __init slab_debugfs_init(void)
5898{
5899 struct kmem_cache *s;
5900
5901 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5902
5903 list_for_each_entry(s, &slab_caches, list)
5904 if (s->flags & SLAB_STORE_USER)
5905 debugfs_slab_add(s);
5906
5907 return 0;
5908
5909}
5910__initcall(slab_debugfs_init);
5911#endif
5912/*
5913 * The /proc/slabinfo ABI
5914 */
5915#ifdef CONFIG_SLUB_DEBUG
5916void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5917{
5918 unsigned long nr_slabs = 0;
5919 unsigned long nr_objs = 0;
5920 unsigned long nr_free = 0;
5921 int node;
5922 struct kmem_cache_node *n;
5923
5924 for_each_kmem_cache_node(s, node, n) {
5925 nr_slabs += node_nr_slabs(n);
5926 nr_objs += node_nr_objs(n);
5927 nr_free += count_partial(n, count_free);
5928 }
5929
5930 sinfo->active_objs = nr_objs - nr_free;
5931 sinfo->num_objs = nr_objs;
5932 sinfo->active_slabs = nr_slabs;
5933 sinfo->num_slabs = nr_slabs;
5934 sinfo->objects_per_slab = oo_objects(s->oo);
5935 sinfo->cache_order = oo_order(s->oo);
5936}
5937
5938void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5939{
5940}
5941
5942ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5943 size_t count, loff_t *ppos)
5944{
5945 return -EIO;
5946}
5947#endif /* CONFIG_SLUB_DEBUG */
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31#include <linux/stacktrace.h>
32#include <linux/prefetch.h>
33
34#include <trace/events/kmem.h>
35
36/*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
117#ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119#else
120 return 0;
121#endif
122}
123
124/*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142#define MIN_PARTIAL 5
143
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154/*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175/* Internal SLUB flags */
176#define __OBJECT_POISON 0x80000000UL /* Poison object */
177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
194static LIST_HEAD(slab_caches);
195
196/*
197 * Tracking user of a slab.
198 */
199#define TRACK_ADDRS_COUNT 16
200struct track {
201 unsigned long addr; /* Called from address */
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212#ifdef CONFIG_SYSFS
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
216
217#else
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
223 kfree(s->name);
224 kfree(s);
225}
226
227#endif
228
229static inline void stat(const struct kmem_cache *s, enum stat_item si)
230{
231#ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233#endif
234}
235
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
247 return s->node[node];
248}
249
250/* Verify that a pointer has an address that is valid within a slab page */
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
335static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337{
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
347 return x.x >> OO_SHIFT;
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
352 return x.x & OO_MASK;
353}
354
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
445#ifdef CONFIG_SLUB_DEBUG
446/*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
461/*
462 * Debug settings:
463 */
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
467static int slub_debug;
468#endif
469
470static char *slub_debug_slabs;
471static int disable_higher_order_debug;
472
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480}
481
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497{
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
527static void init_tracking(struct kmem_cache *s, void *object)
528{
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584}
585
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598{
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638}
639
640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641{
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651}
652
653static void init_object(struct kmem_cache *s, void *object, u8 val)
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
664}
665
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676{
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695}
696
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752}
753
754/* Check the pad bytes at the end of a slab page */
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788{
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916}
917
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
930
931 dump_stack();
932 }
933}
934
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
972 }
973#endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
976}
977
978/*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985{
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990}
991
992/*
993 * list_lock must be held.
994 */
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001}
1002
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030}
1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037}
1038
1039/* Object debug checks for alloc/free paths */
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048}
1049
1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083}
1084
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087{
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138}
1139
1140static int __init setup_slub_debug(char *str)
1141{
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204out:
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213{
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222}
1223#else
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243{
1244 return flags;
1245}
1246#define slub_debug 0
1247
1248#define disable_higher_order_debug 0
1249
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267#endif /* CONFIG_SLUB_DEBUG */
1268
1269/*
1270 * Slab allocation and freeing
1271 */
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283}
1284
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 __SetPageSlab(page);
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391out:
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421}
1422
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465}
1466
1467/*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474{
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480}
1481
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
1492/*
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock.
1499 */
1500static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503{
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
1517 if (mode) {
1518 new.inuse = page->objects;
1519 new.freelist = NULL;
1520 } else {
1521 new.freelist = freelist;
1522 }
1523
1524 VM_BUG_ON(new.frozen);
1525 new.frozen = 1;
1526
1527 } while (!__cmpxchg_double_slab(s, page,
1528 freelist, counters,
1529 new.freelist, new.counters,
1530 "lock and freeze"));
1531
1532 remove_partial(n, page);
1533 return freelist;
1534}
1535
1536static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1537
1538/*
1539 * Try to allocate a partial slab from a specific node.
1540 */
1541static void *get_partial_node(struct kmem_cache *s,
1542 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1543{
1544 struct page *page, *page2;
1545 void *object = NULL;
1546
1547 /*
1548 * Racy check. If we mistakenly see no partial slabs then we
1549 * just allocate an empty slab. If we mistakenly try to get a
1550 * partial slab and there is none available then get_partials()
1551 * will return NULL.
1552 */
1553 if (!n || !n->nr_partial)
1554 return NULL;
1555
1556 spin_lock(&n->list_lock);
1557 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1558 void *t = acquire_slab(s, n, page, object == NULL);
1559 int available;
1560
1561 if (!t)
1562 break;
1563
1564 if (!object) {
1565 c->page = page;
1566 c->node = page_to_nid(page);
1567 stat(s, ALLOC_FROM_PARTIAL);
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
1571 available = put_cpu_partial(s, page, 0);
1572 stat(s, CPU_PARTIAL_NODE);
1573 }
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1576
1577 }
1578 spin_unlock(&n->list_lock);
1579 return object;
1580}
1581
1582/*
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1584 */
1585static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1586 struct kmem_cache_cpu *c)
1587{
1588#ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
1590 struct zoneref *z;
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
1593 void *object;
1594 unsigned int cpuset_mems_cookie;
1595
1596 /*
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
1601 *
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
1606 *
1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
1613 */
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616 return NULL;
1617
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
1620 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1623
1624 n = get_node(s, zone_to_nid(zone));
1625
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c);
1629 if (object) {
1630 /*
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1637 */
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1640 }
1641 }
1642 }
1643 } while (!put_mems_allowed(cpuset_mems_cookie));
1644#endif
1645 return NULL;
1646}
1647
1648/*
1649 * Get a partial page, lock it and return it.
1650 */
1651static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1652 struct kmem_cache_cpu *c)
1653{
1654 void *object;
1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1656
1657 object = get_partial_node(s, get_node(s, searchnode), c);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
1660
1661 return get_any_partial(s, flags, c);
1662}
1663
1664#ifdef CONFIG_PREEMPT
1665/*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671#else
1672/*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676#define TID_STEP 1
1677#endif
1678
1679static inline unsigned long next_tid(unsigned long tid)
1680{
1681 return tid + TID_STEP;
1682}
1683
1684static inline unsigned int tid_to_cpu(unsigned long tid)
1685{
1686 return tid % TID_STEP;
1687}
1688
1689static inline unsigned long tid_to_event(unsigned long tid)
1690{
1691 return tid / TID_STEP;
1692}
1693
1694static inline unsigned int init_tid(int cpu)
1695{
1696 return cpu;
1697}
1698
1699static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1701{
1702#ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707#ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712#endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719#endif
1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1721}
1722
1723void init_kmem_cache_cpus(struct kmem_cache *s)
1724{
1725 int cpu;
1726
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1729}
1730
1731/*
1732 * Remove the cpu slab
1733 */
1734static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1735{
1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737 struct page *page = c->page;
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
1741 void *freelist;
1742 void *nextfree;
1743 int tail = DEACTIVATE_TO_HEAD;
1744 struct page new;
1745 struct page old;
1746
1747 if (page->freelist) {
1748 stat(s, DEACTIVATE_REMOTE_FREES);
1749 tail = DEACTIVATE_TO_TAIL;
1750 }
1751
1752 c->tid = next_tid(c->tid);
1753 c->page = NULL;
1754 freelist = c->freelist;
1755 c->freelist = NULL;
1756
1757 /*
1758 * Stage one: Free all available per cpu objects back
1759 * to the page freelist while it is still frozen. Leave the
1760 * last one.
1761 *
1762 * There is no need to take the list->lock because the page
1763 * is still frozen.
1764 */
1765 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1766 void *prior;
1767 unsigned long counters;
1768
1769 do {
1770 prior = page->freelist;
1771 counters = page->counters;
1772 set_freepointer(s, freelist, prior);
1773 new.counters = counters;
1774 new.inuse--;
1775 VM_BUG_ON(!new.frozen);
1776
1777 } while (!__cmpxchg_double_slab(s, page,
1778 prior, counters,
1779 freelist, new.counters,
1780 "drain percpu freelist"));
1781
1782 freelist = nextfree;
1783 }
1784
1785 /*
1786 * Stage two: Ensure that the page is unfrozen while the
1787 * list presence reflects the actual number of objects
1788 * during unfreeze.
1789 *
1790 * We setup the list membership and then perform a cmpxchg
1791 * with the count. If there is a mismatch then the page
1792 * is not unfrozen but the page is on the wrong list.
1793 *
1794 * Then we restart the process which may have to remove
1795 * the page from the list that we just put it on again
1796 * because the number of objects in the slab may have
1797 * changed.
1798 */
1799redo:
1800
1801 old.freelist = page->freelist;
1802 old.counters = page->counters;
1803 VM_BUG_ON(!old.frozen);
1804
1805 /* Determine target state of the slab */
1806 new.counters = old.counters;
1807 if (freelist) {
1808 new.inuse--;
1809 set_freepointer(s, freelist, old.freelist);
1810 new.freelist = freelist;
1811 } else
1812 new.freelist = old.freelist;
1813
1814 new.frozen = 0;
1815
1816 if (!new.inuse && n->nr_partial > s->min_partial)
1817 m = M_FREE;
1818 else if (new.freelist) {
1819 m = M_PARTIAL;
1820 if (!lock) {
1821 lock = 1;
1822 /*
1823 * Taking the spinlock removes the possiblity
1824 * that acquire_slab() will see a slab page that
1825 * is frozen
1826 */
1827 spin_lock(&n->list_lock);
1828 }
1829 } else {
1830 m = M_FULL;
1831 if (kmem_cache_debug(s) && !lock) {
1832 lock = 1;
1833 /*
1834 * This also ensures that the scanning of full
1835 * slabs from diagnostic functions will not see
1836 * any frozen slabs.
1837 */
1838 spin_lock(&n->list_lock);
1839 }
1840 }
1841
1842 if (l != m) {
1843
1844 if (l == M_PARTIAL)
1845
1846 remove_partial(n, page);
1847
1848 else if (l == M_FULL)
1849
1850 remove_full(s, page);
1851
1852 if (m == M_PARTIAL) {
1853
1854 add_partial(n, page, tail);
1855 stat(s, tail);
1856
1857 } else if (m == M_FULL) {
1858
1859 stat(s, DEACTIVATE_FULL);
1860 add_full(s, n, page);
1861
1862 }
1863 }
1864
1865 l = m;
1866 if (!__cmpxchg_double_slab(s, page,
1867 old.freelist, old.counters,
1868 new.freelist, new.counters,
1869 "unfreezing slab"))
1870 goto redo;
1871
1872 if (lock)
1873 spin_unlock(&n->list_lock);
1874
1875 if (m == M_FREE) {
1876 stat(s, DEACTIVATE_EMPTY);
1877 discard_slab(s, page);
1878 stat(s, FREE_SLAB);
1879 }
1880}
1881
1882/* Unfreeze all the cpu partial slabs */
1883static void unfreeze_partials(struct kmem_cache *s)
1884{
1885 struct kmem_cache_node *n = NULL;
1886 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1887 struct page *page, *discard_page = NULL;
1888
1889 while ((page = c->partial)) {
1890 enum slab_modes { M_PARTIAL, M_FREE };
1891 enum slab_modes l, m;
1892 struct page new;
1893 struct page old;
1894
1895 c->partial = page->next;
1896 l = M_FREE;
1897
1898 do {
1899
1900 old.freelist = page->freelist;
1901 old.counters = page->counters;
1902 VM_BUG_ON(!old.frozen);
1903
1904 new.counters = old.counters;
1905 new.freelist = old.freelist;
1906
1907 new.frozen = 0;
1908
1909 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1910 m = M_FREE;
1911 else {
1912 struct kmem_cache_node *n2 = get_node(s,
1913 page_to_nid(page));
1914
1915 m = M_PARTIAL;
1916 if (n != n2) {
1917 if (n)
1918 spin_unlock(&n->list_lock);
1919
1920 n = n2;
1921 spin_lock(&n->list_lock);
1922 }
1923 }
1924
1925 if (l != m) {
1926 if (l == M_PARTIAL) {
1927 remove_partial(n, page);
1928 stat(s, FREE_REMOVE_PARTIAL);
1929 } else {
1930 add_partial(n, page,
1931 DEACTIVATE_TO_TAIL);
1932 stat(s, FREE_ADD_PARTIAL);
1933 }
1934
1935 l = m;
1936 }
1937
1938 } while (!cmpxchg_double_slab(s, page,
1939 old.freelist, old.counters,
1940 new.freelist, new.counters,
1941 "unfreezing slab"));
1942
1943 if (m == M_FREE) {
1944 page->next = discard_page;
1945 discard_page = page;
1946 }
1947 }
1948
1949 if (n)
1950 spin_unlock(&n->list_lock);
1951
1952 while (discard_page) {
1953 page = discard_page;
1954 discard_page = discard_page->next;
1955
1956 stat(s, DEACTIVATE_EMPTY);
1957 discard_slab(s, page);
1958 stat(s, FREE_SLAB);
1959 }
1960}
1961
1962/*
1963 * Put a page that was just frozen (in __slab_free) into a partial page
1964 * slot if available. This is done without interrupts disabled and without
1965 * preemption disabled. The cmpxchg is racy and may put the partial page
1966 * onto a random cpus partial slot.
1967 *
1968 * If we did not find a slot then simply move all the partials to the
1969 * per node partial list.
1970 */
1971int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1972{
1973 struct page *oldpage;
1974 int pages;
1975 int pobjects;
1976
1977 do {
1978 pages = 0;
1979 pobjects = 0;
1980 oldpage = this_cpu_read(s->cpu_slab->partial);
1981
1982 if (oldpage) {
1983 pobjects = oldpage->pobjects;
1984 pages = oldpage->pages;
1985 if (drain && pobjects > s->cpu_partial) {
1986 unsigned long flags;
1987 /*
1988 * partial array is full. Move the existing
1989 * set to the per node partial list.
1990 */
1991 local_irq_save(flags);
1992 unfreeze_partials(s);
1993 local_irq_restore(flags);
1994 pobjects = 0;
1995 pages = 0;
1996 stat(s, CPU_PARTIAL_DRAIN);
1997 }
1998 }
1999
2000 pages++;
2001 pobjects += page->objects - page->inuse;
2002
2003 page->pages = pages;
2004 page->pobjects = pobjects;
2005 page->next = oldpage;
2006
2007 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2008 return pobjects;
2009}
2010
2011static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2012{
2013 stat(s, CPUSLAB_FLUSH);
2014 deactivate_slab(s, c);
2015}
2016
2017/*
2018 * Flush cpu slab.
2019 *
2020 * Called from IPI handler with interrupts disabled.
2021 */
2022static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2023{
2024 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2025
2026 if (likely(c)) {
2027 if (c->page)
2028 flush_slab(s, c);
2029
2030 unfreeze_partials(s);
2031 }
2032}
2033
2034static void flush_cpu_slab(void *d)
2035{
2036 struct kmem_cache *s = d;
2037
2038 __flush_cpu_slab(s, smp_processor_id());
2039}
2040
2041static bool has_cpu_slab(int cpu, void *info)
2042{
2043 struct kmem_cache *s = info;
2044 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2045
2046 return c->page || c->partial;
2047}
2048
2049static void flush_all(struct kmem_cache *s)
2050{
2051 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2052}
2053
2054/*
2055 * Check if the objects in a per cpu structure fit numa
2056 * locality expectations.
2057 */
2058static inline int node_match(struct kmem_cache_cpu *c, int node)
2059{
2060#ifdef CONFIG_NUMA
2061 if (node != NUMA_NO_NODE && c->node != node)
2062 return 0;
2063#endif
2064 return 1;
2065}
2066
2067static int count_free(struct page *page)
2068{
2069 return page->objects - page->inuse;
2070}
2071
2072static unsigned long count_partial(struct kmem_cache_node *n,
2073 int (*get_count)(struct page *))
2074{
2075 unsigned long flags;
2076 unsigned long x = 0;
2077 struct page *page;
2078
2079 spin_lock_irqsave(&n->list_lock, flags);
2080 list_for_each_entry(page, &n->partial, lru)
2081 x += get_count(page);
2082 spin_unlock_irqrestore(&n->list_lock, flags);
2083 return x;
2084}
2085
2086static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2087{
2088#ifdef CONFIG_SLUB_DEBUG
2089 return atomic_long_read(&n->total_objects);
2090#else
2091 return 0;
2092#endif
2093}
2094
2095static noinline void
2096slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2097{
2098 int node;
2099
2100 printk(KERN_WARNING
2101 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2102 nid, gfpflags);
2103 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2104 "default order: %d, min order: %d\n", s->name, s->objsize,
2105 s->size, oo_order(s->oo), oo_order(s->min));
2106
2107 if (oo_order(s->min) > get_order(s->objsize))
2108 printk(KERN_WARNING " %s debugging increased min order, use "
2109 "slub_debug=O to disable.\n", s->name);
2110
2111 for_each_online_node(node) {
2112 struct kmem_cache_node *n = get_node(s, node);
2113 unsigned long nr_slabs;
2114 unsigned long nr_objs;
2115 unsigned long nr_free;
2116
2117 if (!n)
2118 continue;
2119
2120 nr_free = count_partial(n, count_free);
2121 nr_slabs = node_nr_slabs(n);
2122 nr_objs = node_nr_objs(n);
2123
2124 printk(KERN_WARNING
2125 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2126 node, nr_slabs, nr_objs, nr_free);
2127 }
2128}
2129
2130static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2131 int node, struct kmem_cache_cpu **pc)
2132{
2133 void *object;
2134 struct kmem_cache_cpu *c;
2135 struct page *page = new_slab(s, flags, node);
2136
2137 if (page) {
2138 c = __this_cpu_ptr(s->cpu_slab);
2139 if (c->page)
2140 flush_slab(s, c);
2141
2142 /*
2143 * No other reference to the page yet so we can
2144 * muck around with it freely without cmpxchg
2145 */
2146 object = page->freelist;
2147 page->freelist = NULL;
2148
2149 stat(s, ALLOC_SLAB);
2150 c->node = page_to_nid(page);
2151 c->page = page;
2152 *pc = c;
2153 } else
2154 object = NULL;
2155
2156 return object;
2157}
2158
2159/*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 */
2167static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168{
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2172
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2178
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2181
2182 } while (!cmpxchg_double_slab(s, page,
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2186
2187 return freelist;
2188}
2189
2190/*
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2197 *
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2201 *
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
2205 */
2206static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
2208{
2209 void **object;
2210 unsigned long flags;
2211
2212 local_irq_save(flags);
2213#ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
2220#endif
2221
2222 if (!c->page)
2223 goto new_slab;
2224redo:
2225 if (unlikely(!node_match(c, node))) {
2226 stat(s, ALLOC_NODE_MISMATCH);
2227 deactivate_slab(s, c);
2228 goto new_slab;
2229 }
2230
2231 /* must check again c->freelist in case of cpu migration or IRQ */
2232 object = c->freelist;
2233 if (object)
2234 goto load_freelist;
2235
2236 stat(s, ALLOC_SLOWPATH);
2237
2238 object = get_freelist(s, c->page);
2239
2240 if (!object) {
2241 c->page = NULL;
2242 stat(s, DEACTIVATE_BYPASS);
2243 goto new_slab;
2244 }
2245
2246 stat(s, ALLOC_REFILL);
2247
2248load_freelist:
2249 c->freelist = get_freepointer(s, object);
2250 c->tid = next_tid(c->tid);
2251 local_irq_restore(flags);
2252 return object;
2253
2254new_slab:
2255
2256 if (c->partial) {
2257 c->page = c->partial;
2258 c->partial = c->page->next;
2259 c->node = page_to_nid(c->page);
2260 stat(s, CPU_PARTIAL_ALLOC);
2261 c->freelist = NULL;
2262 goto redo;
2263 }
2264
2265 /* Then do expensive stuff like retrieving pages from the partial lists */
2266 object = get_partial(s, gfpflags, node, c);
2267
2268 if (unlikely(!object)) {
2269
2270 object = new_slab_objects(s, gfpflags, node, &c);
2271
2272 if (unlikely(!object)) {
2273 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2274 slab_out_of_memory(s, gfpflags, node);
2275
2276 local_irq_restore(flags);
2277 return NULL;
2278 }
2279 }
2280
2281 if (likely(!kmem_cache_debug(s)))
2282 goto load_freelist;
2283
2284 /* Only entered in the debug case */
2285 if (!alloc_debug_processing(s, c->page, object, addr))
2286 goto new_slab; /* Slab failed checks. Next slab needed */
2287
2288 c->freelist = get_freepointer(s, object);
2289 deactivate_slab(s, c);
2290 c->node = NUMA_NO_NODE;
2291 local_irq_restore(flags);
2292 return object;
2293}
2294
2295/*
2296 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2297 * have the fastpath folded into their functions. So no function call
2298 * overhead for requests that can be satisfied on the fastpath.
2299 *
2300 * The fastpath works by first checking if the lockless freelist can be used.
2301 * If not then __slab_alloc is called for slow processing.
2302 *
2303 * Otherwise we can simply pick the next object from the lockless free list.
2304 */
2305static __always_inline void *slab_alloc(struct kmem_cache *s,
2306 gfp_t gfpflags, int node, unsigned long addr)
2307{
2308 void **object;
2309 struct kmem_cache_cpu *c;
2310 unsigned long tid;
2311
2312 if (slab_pre_alloc_hook(s, gfpflags))
2313 return NULL;
2314
2315redo:
2316
2317 /*
2318 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2319 * enabled. We may switch back and forth between cpus while
2320 * reading from one cpu area. That does not matter as long
2321 * as we end up on the original cpu again when doing the cmpxchg.
2322 */
2323 c = __this_cpu_ptr(s->cpu_slab);
2324
2325 /*
2326 * The transaction ids are globally unique per cpu and per operation on
2327 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2328 * occurs on the right processor and that there was no operation on the
2329 * linked list in between.
2330 */
2331 tid = c->tid;
2332 barrier();
2333
2334 object = c->freelist;
2335 if (unlikely(!object || !node_match(c, node)))
2336
2337 object = __slab_alloc(s, gfpflags, node, addr, c);
2338
2339 else {
2340 void *next_object = get_freepointer_safe(s, object);
2341
2342 /*
2343 * The cmpxchg will only match if there was no additional
2344 * operation and if we are on the right processor.
2345 *
2346 * The cmpxchg does the following atomically (without lock semantics!)
2347 * 1. Relocate first pointer to the current per cpu area.
2348 * 2. Verify that tid and freelist have not been changed
2349 * 3. If they were not changed replace tid and freelist
2350 *
2351 * Since this is without lock semantics the protection is only against
2352 * code executing on this cpu *not* from access by other cpus.
2353 */
2354 if (unlikely(!this_cpu_cmpxchg_double(
2355 s->cpu_slab->freelist, s->cpu_slab->tid,
2356 object, tid,
2357 next_object, next_tid(tid)))) {
2358
2359 note_cmpxchg_failure("slab_alloc", s, tid);
2360 goto redo;
2361 }
2362 prefetch_freepointer(s, next_object);
2363 stat(s, ALLOC_FASTPATH);
2364 }
2365
2366 if (unlikely(gfpflags & __GFP_ZERO) && object)
2367 memset(object, 0, s->objsize);
2368
2369 slab_post_alloc_hook(s, gfpflags, object);
2370
2371 return object;
2372}
2373
2374void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2375{
2376 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2377
2378 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2379
2380 return ret;
2381}
2382EXPORT_SYMBOL(kmem_cache_alloc);
2383
2384#ifdef CONFIG_TRACING
2385void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2386{
2387 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2388 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2389 return ret;
2390}
2391EXPORT_SYMBOL(kmem_cache_alloc_trace);
2392
2393void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2394{
2395 void *ret = kmalloc_order(size, flags, order);
2396 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2397 return ret;
2398}
2399EXPORT_SYMBOL(kmalloc_order_trace);
2400#endif
2401
2402#ifdef CONFIG_NUMA
2403void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2404{
2405 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2406
2407 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2408 s->objsize, s->size, gfpflags, node);
2409
2410 return ret;
2411}
2412EXPORT_SYMBOL(kmem_cache_alloc_node);
2413
2414#ifdef CONFIG_TRACING
2415void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2416 gfp_t gfpflags,
2417 int node, size_t size)
2418{
2419 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2420
2421 trace_kmalloc_node(_RET_IP_, ret,
2422 size, s->size, gfpflags, node);
2423 return ret;
2424}
2425EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2426#endif
2427#endif
2428
2429/*
2430 * Slow patch handling. This may still be called frequently since objects
2431 * have a longer lifetime than the cpu slabs in most processing loads.
2432 *
2433 * So we still attempt to reduce cache line usage. Just take the slab
2434 * lock and free the item. If there is no additional partial page
2435 * handling required then we can return immediately.
2436 */
2437static void __slab_free(struct kmem_cache *s, struct page *page,
2438 void *x, unsigned long addr)
2439{
2440 void *prior;
2441 void **object = (void *)x;
2442 int was_frozen;
2443 int inuse;
2444 struct page new;
2445 unsigned long counters;
2446 struct kmem_cache_node *n = NULL;
2447 unsigned long uninitialized_var(flags);
2448
2449 stat(s, FREE_SLOWPATH);
2450
2451 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2452 return;
2453
2454 do {
2455 prior = page->freelist;
2456 counters = page->counters;
2457 set_freepointer(s, object, prior);
2458 new.counters = counters;
2459 was_frozen = new.frozen;
2460 new.inuse--;
2461 if ((!new.inuse || !prior) && !was_frozen && !n) {
2462
2463 if (!kmem_cache_debug(s) && !prior)
2464
2465 /*
2466 * Slab was on no list before and will be partially empty
2467 * We can defer the list move and instead freeze it.
2468 */
2469 new.frozen = 1;
2470
2471 else { /* Needs to be taken off a list */
2472
2473 n = get_node(s, page_to_nid(page));
2474 /*
2475 * Speculatively acquire the list_lock.
2476 * If the cmpxchg does not succeed then we may
2477 * drop the list_lock without any processing.
2478 *
2479 * Otherwise the list_lock will synchronize with
2480 * other processors updating the list of slabs.
2481 */
2482 spin_lock_irqsave(&n->list_lock, flags);
2483
2484 }
2485 }
2486 inuse = new.inuse;
2487
2488 } while (!cmpxchg_double_slab(s, page,
2489 prior, counters,
2490 object, new.counters,
2491 "__slab_free"));
2492
2493 if (likely(!n)) {
2494
2495 /*
2496 * If we just froze the page then put it onto the
2497 * per cpu partial list.
2498 */
2499 if (new.frozen && !was_frozen) {
2500 put_cpu_partial(s, page, 1);
2501 stat(s, CPU_PARTIAL_FREE);
2502 }
2503 /*
2504 * The list lock was not taken therefore no list
2505 * activity can be necessary.
2506 */
2507 if (was_frozen)
2508 stat(s, FREE_FROZEN);
2509 return;
2510 }
2511
2512 /*
2513 * was_frozen may have been set after we acquired the list_lock in
2514 * an earlier loop. So we need to check it here again.
2515 */
2516 if (was_frozen)
2517 stat(s, FREE_FROZEN);
2518 else {
2519 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2520 goto slab_empty;
2521
2522 /*
2523 * Objects left in the slab. If it was not on the partial list before
2524 * then add it.
2525 */
2526 if (unlikely(!prior)) {
2527 remove_full(s, page);
2528 add_partial(n, page, DEACTIVATE_TO_TAIL);
2529 stat(s, FREE_ADD_PARTIAL);
2530 }
2531 }
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 return;
2534
2535slab_empty:
2536 if (prior) {
2537 /*
2538 * Slab on the partial list.
2539 */
2540 remove_partial(n, page);
2541 stat(s, FREE_REMOVE_PARTIAL);
2542 } else
2543 /* Slab must be on the full list */
2544 remove_full(s, page);
2545
2546 spin_unlock_irqrestore(&n->list_lock, flags);
2547 stat(s, FREE_SLAB);
2548 discard_slab(s, page);
2549}
2550
2551/*
2552 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2553 * can perform fastpath freeing without additional function calls.
2554 *
2555 * The fastpath is only possible if we are freeing to the current cpu slab
2556 * of this processor. This typically the case if we have just allocated
2557 * the item before.
2558 *
2559 * If fastpath is not possible then fall back to __slab_free where we deal
2560 * with all sorts of special processing.
2561 */
2562static __always_inline void slab_free(struct kmem_cache *s,
2563 struct page *page, void *x, unsigned long addr)
2564{
2565 void **object = (void *)x;
2566 struct kmem_cache_cpu *c;
2567 unsigned long tid;
2568
2569 slab_free_hook(s, x);
2570
2571redo:
2572 /*
2573 * Determine the currently cpus per cpu slab.
2574 * The cpu may change afterward. However that does not matter since
2575 * data is retrieved via this pointer. If we are on the same cpu
2576 * during the cmpxchg then the free will succedd.
2577 */
2578 c = __this_cpu_ptr(s->cpu_slab);
2579
2580 tid = c->tid;
2581 barrier();
2582
2583 if (likely(page == c->page)) {
2584 set_freepointer(s, object, c->freelist);
2585
2586 if (unlikely(!this_cpu_cmpxchg_double(
2587 s->cpu_slab->freelist, s->cpu_slab->tid,
2588 c->freelist, tid,
2589 object, next_tid(tid)))) {
2590
2591 note_cmpxchg_failure("slab_free", s, tid);
2592 goto redo;
2593 }
2594 stat(s, FREE_FASTPATH);
2595 } else
2596 __slab_free(s, page, x, addr);
2597
2598}
2599
2600void kmem_cache_free(struct kmem_cache *s, void *x)
2601{
2602 struct page *page;
2603
2604 page = virt_to_head_page(x);
2605
2606 slab_free(s, page, x, _RET_IP_);
2607
2608 trace_kmem_cache_free(_RET_IP_, x);
2609}
2610EXPORT_SYMBOL(kmem_cache_free);
2611
2612/*
2613 * Object placement in a slab is made very easy because we always start at
2614 * offset 0. If we tune the size of the object to the alignment then we can
2615 * get the required alignment by putting one properly sized object after
2616 * another.
2617 *
2618 * Notice that the allocation order determines the sizes of the per cpu
2619 * caches. Each processor has always one slab available for allocations.
2620 * Increasing the allocation order reduces the number of times that slabs
2621 * must be moved on and off the partial lists and is therefore a factor in
2622 * locking overhead.
2623 */
2624
2625/*
2626 * Mininum / Maximum order of slab pages. This influences locking overhead
2627 * and slab fragmentation. A higher order reduces the number of partial slabs
2628 * and increases the number of allocations possible without having to
2629 * take the list_lock.
2630 */
2631static int slub_min_order;
2632static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2633static int slub_min_objects;
2634
2635/*
2636 * Merge control. If this is set then no merging of slab caches will occur.
2637 * (Could be removed. This was introduced to pacify the merge skeptics.)
2638 */
2639static int slub_nomerge;
2640
2641/*
2642 * Calculate the order of allocation given an slab object size.
2643 *
2644 * The order of allocation has significant impact on performance and other
2645 * system components. Generally order 0 allocations should be preferred since
2646 * order 0 does not cause fragmentation in the page allocator. Larger objects
2647 * be problematic to put into order 0 slabs because there may be too much
2648 * unused space left. We go to a higher order if more than 1/16th of the slab
2649 * would be wasted.
2650 *
2651 * In order to reach satisfactory performance we must ensure that a minimum
2652 * number of objects is in one slab. Otherwise we may generate too much
2653 * activity on the partial lists which requires taking the list_lock. This is
2654 * less a concern for large slabs though which are rarely used.
2655 *
2656 * slub_max_order specifies the order where we begin to stop considering the
2657 * number of objects in a slab as critical. If we reach slub_max_order then
2658 * we try to keep the page order as low as possible. So we accept more waste
2659 * of space in favor of a small page order.
2660 *
2661 * Higher order allocations also allow the placement of more objects in a
2662 * slab and thereby reduce object handling overhead. If the user has
2663 * requested a higher mininum order then we start with that one instead of
2664 * the smallest order which will fit the object.
2665 */
2666static inline int slab_order(int size, int min_objects,
2667 int max_order, int fract_leftover, int reserved)
2668{
2669 int order;
2670 int rem;
2671 int min_order = slub_min_order;
2672
2673 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2674 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2675
2676 for (order = max(min_order,
2677 fls(min_objects * size - 1) - PAGE_SHIFT);
2678 order <= max_order; order++) {
2679
2680 unsigned long slab_size = PAGE_SIZE << order;
2681
2682 if (slab_size < min_objects * size + reserved)
2683 continue;
2684
2685 rem = (slab_size - reserved) % size;
2686
2687 if (rem <= slab_size / fract_leftover)
2688 break;
2689
2690 }
2691
2692 return order;
2693}
2694
2695static inline int calculate_order(int size, int reserved)
2696{
2697 int order;
2698 int min_objects;
2699 int fraction;
2700 int max_objects;
2701
2702 /*
2703 * Attempt to find best configuration for a slab. This
2704 * works by first attempting to generate a layout with
2705 * the best configuration and backing off gradually.
2706 *
2707 * First we reduce the acceptable waste in a slab. Then
2708 * we reduce the minimum objects required in a slab.
2709 */
2710 min_objects = slub_min_objects;
2711 if (!min_objects)
2712 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2713 max_objects = order_objects(slub_max_order, size, reserved);
2714 min_objects = min(min_objects, max_objects);
2715
2716 while (min_objects > 1) {
2717 fraction = 16;
2718 while (fraction >= 4) {
2719 order = slab_order(size, min_objects,
2720 slub_max_order, fraction, reserved);
2721 if (order <= slub_max_order)
2722 return order;
2723 fraction /= 2;
2724 }
2725 min_objects--;
2726 }
2727
2728 /*
2729 * We were unable to place multiple objects in a slab. Now
2730 * lets see if we can place a single object there.
2731 */
2732 order = slab_order(size, 1, slub_max_order, 1, reserved);
2733 if (order <= slub_max_order)
2734 return order;
2735
2736 /*
2737 * Doh this slab cannot be placed using slub_max_order.
2738 */
2739 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2740 if (order < MAX_ORDER)
2741 return order;
2742 return -ENOSYS;
2743}
2744
2745/*
2746 * Figure out what the alignment of the objects will be.
2747 */
2748static unsigned long calculate_alignment(unsigned long flags,
2749 unsigned long align, unsigned long size)
2750{
2751 /*
2752 * If the user wants hardware cache aligned objects then follow that
2753 * suggestion if the object is sufficiently large.
2754 *
2755 * The hardware cache alignment cannot override the specified
2756 * alignment though. If that is greater then use it.
2757 */
2758 if (flags & SLAB_HWCACHE_ALIGN) {
2759 unsigned long ralign = cache_line_size();
2760 while (size <= ralign / 2)
2761 ralign /= 2;
2762 align = max(align, ralign);
2763 }
2764
2765 if (align < ARCH_SLAB_MINALIGN)
2766 align = ARCH_SLAB_MINALIGN;
2767
2768 return ALIGN(align, sizeof(void *));
2769}
2770
2771static void
2772init_kmem_cache_node(struct kmem_cache_node *n)
2773{
2774 n->nr_partial = 0;
2775 spin_lock_init(&n->list_lock);
2776 INIT_LIST_HEAD(&n->partial);
2777#ifdef CONFIG_SLUB_DEBUG
2778 atomic_long_set(&n->nr_slabs, 0);
2779 atomic_long_set(&n->total_objects, 0);
2780 INIT_LIST_HEAD(&n->full);
2781#endif
2782}
2783
2784static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2785{
2786 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2787 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2788
2789 /*
2790 * Must align to double word boundary for the double cmpxchg
2791 * instructions to work; see __pcpu_double_call_return_bool().
2792 */
2793 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2794 2 * sizeof(void *));
2795
2796 if (!s->cpu_slab)
2797 return 0;
2798
2799 init_kmem_cache_cpus(s);
2800
2801 return 1;
2802}
2803
2804static struct kmem_cache *kmem_cache_node;
2805
2806/*
2807 * No kmalloc_node yet so do it by hand. We know that this is the first
2808 * slab on the node for this slabcache. There are no concurrent accesses
2809 * possible.
2810 *
2811 * Note that this function only works on the kmalloc_node_cache
2812 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2813 * memory on a fresh node that has no slab structures yet.
2814 */
2815static void early_kmem_cache_node_alloc(int node)
2816{
2817 struct page *page;
2818 struct kmem_cache_node *n;
2819
2820 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2821
2822 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2823
2824 BUG_ON(!page);
2825 if (page_to_nid(page) != node) {
2826 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2827 "node %d\n", node);
2828 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2829 "in order to be able to continue\n");
2830 }
2831
2832 n = page->freelist;
2833 BUG_ON(!n);
2834 page->freelist = get_freepointer(kmem_cache_node, n);
2835 page->inuse = 1;
2836 page->frozen = 0;
2837 kmem_cache_node->node[node] = n;
2838#ifdef CONFIG_SLUB_DEBUG
2839 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2840 init_tracking(kmem_cache_node, n);
2841#endif
2842 init_kmem_cache_node(n);
2843 inc_slabs_node(kmem_cache_node, node, page->objects);
2844
2845 add_partial(n, page, DEACTIVATE_TO_HEAD);
2846}
2847
2848static void free_kmem_cache_nodes(struct kmem_cache *s)
2849{
2850 int node;
2851
2852 for_each_node_state(node, N_NORMAL_MEMORY) {
2853 struct kmem_cache_node *n = s->node[node];
2854
2855 if (n)
2856 kmem_cache_free(kmem_cache_node, n);
2857
2858 s->node[node] = NULL;
2859 }
2860}
2861
2862static int init_kmem_cache_nodes(struct kmem_cache *s)
2863{
2864 int node;
2865
2866 for_each_node_state(node, N_NORMAL_MEMORY) {
2867 struct kmem_cache_node *n;
2868
2869 if (slab_state == DOWN) {
2870 early_kmem_cache_node_alloc(node);
2871 continue;
2872 }
2873 n = kmem_cache_alloc_node(kmem_cache_node,
2874 GFP_KERNEL, node);
2875
2876 if (!n) {
2877 free_kmem_cache_nodes(s);
2878 return 0;
2879 }
2880
2881 s->node[node] = n;
2882 init_kmem_cache_node(n);
2883 }
2884 return 1;
2885}
2886
2887static void set_min_partial(struct kmem_cache *s, unsigned long min)
2888{
2889 if (min < MIN_PARTIAL)
2890 min = MIN_PARTIAL;
2891 else if (min > MAX_PARTIAL)
2892 min = MAX_PARTIAL;
2893 s->min_partial = min;
2894}
2895
2896/*
2897 * calculate_sizes() determines the order and the distribution of data within
2898 * a slab object.
2899 */
2900static int calculate_sizes(struct kmem_cache *s, int forced_order)
2901{
2902 unsigned long flags = s->flags;
2903 unsigned long size = s->objsize;
2904 unsigned long align = s->align;
2905 int order;
2906
2907 /*
2908 * Round up object size to the next word boundary. We can only
2909 * place the free pointer at word boundaries and this determines
2910 * the possible location of the free pointer.
2911 */
2912 size = ALIGN(size, sizeof(void *));
2913
2914#ifdef CONFIG_SLUB_DEBUG
2915 /*
2916 * Determine if we can poison the object itself. If the user of
2917 * the slab may touch the object after free or before allocation
2918 * then we should never poison the object itself.
2919 */
2920 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2921 !s->ctor)
2922 s->flags |= __OBJECT_POISON;
2923 else
2924 s->flags &= ~__OBJECT_POISON;
2925
2926
2927 /*
2928 * If we are Redzoning then check if there is some space between the
2929 * end of the object and the free pointer. If not then add an
2930 * additional word to have some bytes to store Redzone information.
2931 */
2932 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2933 size += sizeof(void *);
2934#endif
2935
2936 /*
2937 * With that we have determined the number of bytes in actual use
2938 * by the object. This is the potential offset to the free pointer.
2939 */
2940 s->inuse = size;
2941
2942 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2943 s->ctor)) {
2944 /*
2945 * Relocate free pointer after the object if it is not
2946 * permitted to overwrite the first word of the object on
2947 * kmem_cache_free.
2948 *
2949 * This is the case if we do RCU, have a constructor or
2950 * destructor or are poisoning the objects.
2951 */
2952 s->offset = size;
2953 size += sizeof(void *);
2954 }
2955
2956#ifdef CONFIG_SLUB_DEBUG
2957 if (flags & SLAB_STORE_USER)
2958 /*
2959 * Need to store information about allocs and frees after
2960 * the object.
2961 */
2962 size += 2 * sizeof(struct track);
2963
2964 if (flags & SLAB_RED_ZONE)
2965 /*
2966 * Add some empty padding so that we can catch
2967 * overwrites from earlier objects rather than let
2968 * tracking information or the free pointer be
2969 * corrupted if a user writes before the start
2970 * of the object.
2971 */
2972 size += sizeof(void *);
2973#endif
2974
2975 /*
2976 * Determine the alignment based on various parameters that the
2977 * user specified and the dynamic determination of cache line size
2978 * on bootup.
2979 */
2980 align = calculate_alignment(flags, align, s->objsize);
2981 s->align = align;
2982
2983 /*
2984 * SLUB stores one object immediately after another beginning from
2985 * offset 0. In order to align the objects we have to simply size
2986 * each object to conform to the alignment.
2987 */
2988 size = ALIGN(size, align);
2989 s->size = size;
2990 if (forced_order >= 0)
2991 order = forced_order;
2992 else
2993 order = calculate_order(size, s->reserved);
2994
2995 if (order < 0)
2996 return 0;
2997
2998 s->allocflags = 0;
2999 if (order)
3000 s->allocflags |= __GFP_COMP;
3001
3002 if (s->flags & SLAB_CACHE_DMA)
3003 s->allocflags |= SLUB_DMA;
3004
3005 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3006 s->allocflags |= __GFP_RECLAIMABLE;
3007
3008 /*
3009 * Determine the number of objects per slab
3010 */
3011 s->oo = oo_make(order, size, s->reserved);
3012 s->min = oo_make(get_order(size), size, s->reserved);
3013 if (oo_objects(s->oo) > oo_objects(s->max))
3014 s->max = s->oo;
3015
3016 return !!oo_objects(s->oo);
3017
3018}
3019
3020static int kmem_cache_open(struct kmem_cache *s,
3021 const char *name, size_t size,
3022 size_t align, unsigned long flags,
3023 void (*ctor)(void *))
3024{
3025 memset(s, 0, kmem_size);
3026 s->name = name;
3027 s->ctor = ctor;
3028 s->objsize = size;
3029 s->align = align;
3030 s->flags = kmem_cache_flags(size, flags, name, ctor);
3031 s->reserved = 0;
3032
3033 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3034 s->reserved = sizeof(struct rcu_head);
3035
3036 if (!calculate_sizes(s, -1))
3037 goto error;
3038 if (disable_higher_order_debug) {
3039 /*
3040 * Disable debugging flags that store metadata if the min slab
3041 * order increased.
3042 */
3043 if (get_order(s->size) > get_order(s->objsize)) {
3044 s->flags &= ~DEBUG_METADATA_FLAGS;
3045 s->offset = 0;
3046 if (!calculate_sizes(s, -1))
3047 goto error;
3048 }
3049 }
3050
3051#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3052 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3053 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3054 /* Enable fast mode */
3055 s->flags |= __CMPXCHG_DOUBLE;
3056#endif
3057
3058 /*
3059 * The larger the object size is, the more pages we want on the partial
3060 * list to avoid pounding the page allocator excessively.
3061 */
3062 set_min_partial(s, ilog2(s->size) / 2);
3063
3064 /*
3065 * cpu_partial determined the maximum number of objects kept in the
3066 * per cpu partial lists of a processor.
3067 *
3068 * Per cpu partial lists mainly contain slabs that just have one
3069 * object freed. If they are used for allocation then they can be
3070 * filled up again with minimal effort. The slab will never hit the
3071 * per node partial lists and therefore no locking will be required.
3072 *
3073 * This setting also determines
3074 *
3075 * A) The number of objects from per cpu partial slabs dumped to the
3076 * per node list when we reach the limit.
3077 * B) The number of objects in cpu partial slabs to extract from the
3078 * per node list when we run out of per cpu objects. We only fetch 50%
3079 * to keep some capacity around for frees.
3080 */
3081 if (kmem_cache_debug(s))
3082 s->cpu_partial = 0;
3083 else if (s->size >= PAGE_SIZE)
3084 s->cpu_partial = 2;
3085 else if (s->size >= 1024)
3086 s->cpu_partial = 6;
3087 else if (s->size >= 256)
3088 s->cpu_partial = 13;
3089 else
3090 s->cpu_partial = 30;
3091
3092 s->refcount = 1;
3093#ifdef CONFIG_NUMA
3094 s->remote_node_defrag_ratio = 1000;
3095#endif
3096 if (!init_kmem_cache_nodes(s))
3097 goto error;
3098
3099 if (alloc_kmem_cache_cpus(s))
3100 return 1;
3101
3102 free_kmem_cache_nodes(s);
3103error:
3104 if (flags & SLAB_PANIC)
3105 panic("Cannot create slab %s size=%lu realsize=%u "
3106 "order=%u offset=%u flags=%lx\n",
3107 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3108 s->offset, flags);
3109 return 0;
3110}
3111
3112/*
3113 * Determine the size of a slab object
3114 */
3115unsigned int kmem_cache_size(struct kmem_cache *s)
3116{
3117 return s->objsize;
3118}
3119EXPORT_SYMBOL(kmem_cache_size);
3120
3121static void list_slab_objects(struct kmem_cache *s, struct page *page,
3122 const char *text)
3123{
3124#ifdef CONFIG_SLUB_DEBUG
3125 void *addr = page_address(page);
3126 void *p;
3127 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3128 sizeof(long), GFP_ATOMIC);
3129 if (!map)
3130 return;
3131 slab_err(s, page, "%s", text);
3132 slab_lock(page);
3133
3134 get_map(s, page, map);
3135 for_each_object(p, s, addr, page->objects) {
3136
3137 if (!test_bit(slab_index(p, s, addr), map)) {
3138 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3139 p, p - addr);
3140 print_tracking(s, p);
3141 }
3142 }
3143 slab_unlock(page);
3144 kfree(map);
3145#endif
3146}
3147
3148/*
3149 * Attempt to free all partial slabs on a node.
3150 * This is called from kmem_cache_close(). We must be the last thread
3151 * using the cache and therefore we do not need to lock anymore.
3152 */
3153static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3154{
3155 struct page *page, *h;
3156
3157 list_for_each_entry_safe(page, h, &n->partial, lru) {
3158 if (!page->inuse) {
3159 remove_partial(n, page);
3160 discard_slab(s, page);
3161 } else {
3162 list_slab_objects(s, page,
3163 "Objects remaining on kmem_cache_close()");
3164 }
3165 }
3166}
3167
3168/*
3169 * Release all resources used by a slab cache.
3170 */
3171static inline int kmem_cache_close(struct kmem_cache *s)
3172{
3173 int node;
3174
3175 flush_all(s);
3176 free_percpu(s->cpu_slab);
3177 /* Attempt to free all objects */
3178 for_each_node_state(node, N_NORMAL_MEMORY) {
3179 struct kmem_cache_node *n = get_node(s, node);
3180
3181 free_partial(s, n);
3182 if (n->nr_partial || slabs_node(s, node))
3183 return 1;
3184 }
3185 free_kmem_cache_nodes(s);
3186 return 0;
3187}
3188
3189/*
3190 * Close a cache and release the kmem_cache structure
3191 * (must be used for caches created using kmem_cache_create)
3192 */
3193void kmem_cache_destroy(struct kmem_cache *s)
3194{
3195 down_write(&slub_lock);
3196 s->refcount--;
3197 if (!s->refcount) {
3198 list_del(&s->list);
3199 up_write(&slub_lock);
3200 if (kmem_cache_close(s)) {
3201 printk(KERN_ERR "SLUB %s: %s called for cache that "
3202 "still has objects.\n", s->name, __func__);
3203 dump_stack();
3204 }
3205 if (s->flags & SLAB_DESTROY_BY_RCU)
3206 rcu_barrier();
3207 sysfs_slab_remove(s);
3208 } else
3209 up_write(&slub_lock);
3210}
3211EXPORT_SYMBOL(kmem_cache_destroy);
3212
3213/********************************************************************
3214 * Kmalloc subsystem
3215 *******************************************************************/
3216
3217struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3218EXPORT_SYMBOL(kmalloc_caches);
3219
3220static struct kmem_cache *kmem_cache;
3221
3222#ifdef CONFIG_ZONE_DMA
3223static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3224#endif
3225
3226static int __init setup_slub_min_order(char *str)
3227{
3228 get_option(&str, &slub_min_order);
3229
3230 return 1;
3231}
3232
3233__setup("slub_min_order=", setup_slub_min_order);
3234
3235static int __init setup_slub_max_order(char *str)
3236{
3237 get_option(&str, &slub_max_order);
3238 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3239
3240 return 1;
3241}
3242
3243__setup("slub_max_order=", setup_slub_max_order);
3244
3245static int __init setup_slub_min_objects(char *str)
3246{
3247 get_option(&str, &slub_min_objects);
3248
3249 return 1;
3250}
3251
3252__setup("slub_min_objects=", setup_slub_min_objects);
3253
3254static int __init setup_slub_nomerge(char *str)
3255{
3256 slub_nomerge = 1;
3257 return 1;
3258}
3259
3260__setup("slub_nomerge", setup_slub_nomerge);
3261
3262static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3263 int size, unsigned int flags)
3264{
3265 struct kmem_cache *s;
3266
3267 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3268
3269 /*
3270 * This function is called with IRQs disabled during early-boot on
3271 * single CPU so there's no need to take slub_lock here.
3272 */
3273 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3274 flags, NULL))
3275 goto panic;
3276
3277 list_add(&s->list, &slab_caches);
3278 return s;
3279
3280panic:
3281 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3282 return NULL;
3283}
3284
3285/*
3286 * Conversion table for small slabs sizes / 8 to the index in the
3287 * kmalloc array. This is necessary for slabs < 192 since we have non power
3288 * of two cache sizes there. The size of larger slabs can be determined using
3289 * fls.
3290 */
3291static s8 size_index[24] = {
3292 3, /* 8 */
3293 4, /* 16 */
3294 5, /* 24 */
3295 5, /* 32 */
3296 6, /* 40 */
3297 6, /* 48 */
3298 6, /* 56 */
3299 6, /* 64 */
3300 1, /* 72 */
3301 1, /* 80 */
3302 1, /* 88 */
3303 1, /* 96 */
3304 7, /* 104 */
3305 7, /* 112 */
3306 7, /* 120 */
3307 7, /* 128 */
3308 2, /* 136 */
3309 2, /* 144 */
3310 2, /* 152 */
3311 2, /* 160 */
3312 2, /* 168 */
3313 2, /* 176 */
3314 2, /* 184 */
3315 2 /* 192 */
3316};
3317
3318static inline int size_index_elem(size_t bytes)
3319{
3320 return (bytes - 1) / 8;
3321}
3322
3323static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3324{
3325 int index;
3326
3327 if (size <= 192) {
3328 if (!size)
3329 return ZERO_SIZE_PTR;
3330
3331 index = size_index[size_index_elem(size)];
3332 } else
3333 index = fls(size - 1);
3334
3335#ifdef CONFIG_ZONE_DMA
3336 if (unlikely((flags & SLUB_DMA)))
3337 return kmalloc_dma_caches[index];
3338
3339#endif
3340 return kmalloc_caches[index];
3341}
3342
3343void *__kmalloc(size_t size, gfp_t flags)
3344{
3345 struct kmem_cache *s;
3346 void *ret;
3347
3348 if (unlikely(size > SLUB_MAX_SIZE))
3349 return kmalloc_large(size, flags);
3350
3351 s = get_slab(size, flags);
3352
3353 if (unlikely(ZERO_OR_NULL_PTR(s)))
3354 return s;
3355
3356 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3357
3358 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3359
3360 return ret;
3361}
3362EXPORT_SYMBOL(__kmalloc);
3363
3364#ifdef CONFIG_NUMA
3365static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3366{
3367 struct page *page;
3368 void *ptr = NULL;
3369
3370 flags |= __GFP_COMP | __GFP_NOTRACK;
3371 page = alloc_pages_node(node, flags, get_order(size));
3372 if (page)
3373 ptr = page_address(page);
3374
3375 kmemleak_alloc(ptr, size, 1, flags);
3376 return ptr;
3377}
3378
3379void *__kmalloc_node(size_t size, gfp_t flags, int node)
3380{
3381 struct kmem_cache *s;
3382 void *ret;
3383
3384 if (unlikely(size > SLUB_MAX_SIZE)) {
3385 ret = kmalloc_large_node(size, flags, node);
3386
3387 trace_kmalloc_node(_RET_IP_, ret,
3388 size, PAGE_SIZE << get_order(size),
3389 flags, node);
3390
3391 return ret;
3392 }
3393
3394 s = get_slab(size, flags);
3395
3396 if (unlikely(ZERO_OR_NULL_PTR(s)))
3397 return s;
3398
3399 ret = slab_alloc(s, flags, node, _RET_IP_);
3400
3401 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3402
3403 return ret;
3404}
3405EXPORT_SYMBOL(__kmalloc_node);
3406#endif
3407
3408size_t ksize(const void *object)
3409{
3410 struct page *page;
3411
3412 if (unlikely(object == ZERO_SIZE_PTR))
3413 return 0;
3414
3415 page = virt_to_head_page(object);
3416
3417 if (unlikely(!PageSlab(page))) {
3418 WARN_ON(!PageCompound(page));
3419 return PAGE_SIZE << compound_order(page);
3420 }
3421
3422 return slab_ksize(page->slab);
3423}
3424EXPORT_SYMBOL(ksize);
3425
3426#ifdef CONFIG_SLUB_DEBUG
3427bool verify_mem_not_deleted(const void *x)
3428{
3429 struct page *page;
3430 void *object = (void *)x;
3431 unsigned long flags;
3432 bool rv;
3433
3434 if (unlikely(ZERO_OR_NULL_PTR(x)))
3435 return false;
3436
3437 local_irq_save(flags);
3438
3439 page = virt_to_head_page(x);
3440 if (unlikely(!PageSlab(page))) {
3441 /* maybe it was from stack? */
3442 rv = true;
3443 goto out_unlock;
3444 }
3445
3446 slab_lock(page);
3447 if (on_freelist(page->slab, page, object)) {
3448 object_err(page->slab, page, object, "Object is on free-list");
3449 rv = false;
3450 } else {
3451 rv = true;
3452 }
3453 slab_unlock(page);
3454
3455out_unlock:
3456 local_irq_restore(flags);
3457 return rv;
3458}
3459EXPORT_SYMBOL(verify_mem_not_deleted);
3460#endif
3461
3462void kfree(const void *x)
3463{
3464 struct page *page;
3465 void *object = (void *)x;
3466
3467 trace_kfree(_RET_IP_, x);
3468
3469 if (unlikely(ZERO_OR_NULL_PTR(x)))
3470 return;
3471
3472 page = virt_to_head_page(x);
3473 if (unlikely(!PageSlab(page))) {
3474 BUG_ON(!PageCompound(page));
3475 kmemleak_free(x);
3476 put_page(page);
3477 return;
3478 }
3479 slab_free(page->slab, page, object, _RET_IP_);
3480}
3481EXPORT_SYMBOL(kfree);
3482
3483/*
3484 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3485 * the remaining slabs by the number of items in use. The slabs with the
3486 * most items in use come first. New allocations will then fill those up
3487 * and thus they can be removed from the partial lists.
3488 *
3489 * The slabs with the least items are placed last. This results in them
3490 * being allocated from last increasing the chance that the last objects
3491 * are freed in them.
3492 */
3493int kmem_cache_shrink(struct kmem_cache *s)
3494{
3495 int node;
3496 int i;
3497 struct kmem_cache_node *n;
3498 struct page *page;
3499 struct page *t;
3500 int objects = oo_objects(s->max);
3501 struct list_head *slabs_by_inuse =
3502 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3503 unsigned long flags;
3504
3505 if (!slabs_by_inuse)
3506 return -ENOMEM;
3507
3508 flush_all(s);
3509 for_each_node_state(node, N_NORMAL_MEMORY) {
3510 n = get_node(s, node);
3511
3512 if (!n->nr_partial)
3513 continue;
3514
3515 for (i = 0; i < objects; i++)
3516 INIT_LIST_HEAD(slabs_by_inuse + i);
3517
3518 spin_lock_irqsave(&n->list_lock, flags);
3519
3520 /*
3521 * Build lists indexed by the items in use in each slab.
3522 *
3523 * Note that concurrent frees may occur while we hold the
3524 * list_lock. page->inuse here is the upper limit.
3525 */
3526 list_for_each_entry_safe(page, t, &n->partial, lru) {
3527 list_move(&page->lru, slabs_by_inuse + page->inuse);
3528 if (!page->inuse)
3529 n->nr_partial--;
3530 }
3531
3532 /*
3533 * Rebuild the partial list with the slabs filled up most
3534 * first and the least used slabs at the end.
3535 */
3536 for (i = objects - 1; i > 0; i--)
3537 list_splice(slabs_by_inuse + i, n->partial.prev);
3538
3539 spin_unlock_irqrestore(&n->list_lock, flags);
3540
3541 /* Release empty slabs */
3542 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3543 discard_slab(s, page);
3544 }
3545
3546 kfree(slabs_by_inuse);
3547 return 0;
3548}
3549EXPORT_SYMBOL(kmem_cache_shrink);
3550
3551#if defined(CONFIG_MEMORY_HOTPLUG)
3552static int slab_mem_going_offline_callback(void *arg)
3553{
3554 struct kmem_cache *s;
3555
3556 down_read(&slub_lock);
3557 list_for_each_entry(s, &slab_caches, list)
3558 kmem_cache_shrink(s);
3559 up_read(&slub_lock);
3560
3561 return 0;
3562}
3563
3564static void slab_mem_offline_callback(void *arg)
3565{
3566 struct kmem_cache_node *n;
3567 struct kmem_cache *s;
3568 struct memory_notify *marg = arg;
3569 int offline_node;
3570
3571 offline_node = marg->status_change_nid;
3572
3573 /*
3574 * If the node still has available memory. we need kmem_cache_node
3575 * for it yet.
3576 */
3577 if (offline_node < 0)
3578 return;
3579
3580 down_read(&slub_lock);
3581 list_for_each_entry(s, &slab_caches, list) {
3582 n = get_node(s, offline_node);
3583 if (n) {
3584 /*
3585 * if n->nr_slabs > 0, slabs still exist on the node
3586 * that is going down. We were unable to free them,
3587 * and offline_pages() function shouldn't call this
3588 * callback. So, we must fail.
3589 */
3590 BUG_ON(slabs_node(s, offline_node));
3591
3592 s->node[offline_node] = NULL;
3593 kmem_cache_free(kmem_cache_node, n);
3594 }
3595 }
3596 up_read(&slub_lock);
3597}
3598
3599static int slab_mem_going_online_callback(void *arg)
3600{
3601 struct kmem_cache_node *n;
3602 struct kmem_cache *s;
3603 struct memory_notify *marg = arg;
3604 int nid = marg->status_change_nid;
3605 int ret = 0;
3606
3607 /*
3608 * If the node's memory is already available, then kmem_cache_node is
3609 * already created. Nothing to do.
3610 */
3611 if (nid < 0)
3612 return 0;
3613
3614 /*
3615 * We are bringing a node online. No memory is available yet. We must
3616 * allocate a kmem_cache_node structure in order to bring the node
3617 * online.
3618 */
3619 down_read(&slub_lock);
3620 list_for_each_entry(s, &slab_caches, list) {
3621 /*
3622 * XXX: kmem_cache_alloc_node will fallback to other nodes
3623 * since memory is not yet available from the node that
3624 * is brought up.
3625 */
3626 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3627 if (!n) {
3628 ret = -ENOMEM;
3629 goto out;
3630 }
3631 init_kmem_cache_node(n);
3632 s->node[nid] = n;
3633 }
3634out:
3635 up_read(&slub_lock);
3636 return ret;
3637}
3638
3639static int slab_memory_callback(struct notifier_block *self,
3640 unsigned long action, void *arg)
3641{
3642 int ret = 0;
3643
3644 switch (action) {
3645 case MEM_GOING_ONLINE:
3646 ret = slab_mem_going_online_callback(arg);
3647 break;
3648 case MEM_GOING_OFFLINE:
3649 ret = slab_mem_going_offline_callback(arg);
3650 break;
3651 case MEM_OFFLINE:
3652 case MEM_CANCEL_ONLINE:
3653 slab_mem_offline_callback(arg);
3654 break;
3655 case MEM_ONLINE:
3656 case MEM_CANCEL_OFFLINE:
3657 break;
3658 }
3659 if (ret)
3660 ret = notifier_from_errno(ret);
3661 else
3662 ret = NOTIFY_OK;
3663 return ret;
3664}
3665
3666#endif /* CONFIG_MEMORY_HOTPLUG */
3667
3668/********************************************************************
3669 * Basic setup of slabs
3670 *******************************************************************/
3671
3672/*
3673 * Used for early kmem_cache structures that were allocated using
3674 * the page allocator
3675 */
3676
3677static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3678{
3679 int node;
3680
3681 list_add(&s->list, &slab_caches);
3682 s->refcount = -1;
3683
3684 for_each_node_state(node, N_NORMAL_MEMORY) {
3685 struct kmem_cache_node *n = get_node(s, node);
3686 struct page *p;
3687
3688 if (n) {
3689 list_for_each_entry(p, &n->partial, lru)
3690 p->slab = s;
3691
3692#ifdef CONFIG_SLUB_DEBUG
3693 list_for_each_entry(p, &n->full, lru)
3694 p->slab = s;
3695#endif
3696 }
3697 }
3698}
3699
3700void __init kmem_cache_init(void)
3701{
3702 int i;
3703 int caches = 0;
3704 struct kmem_cache *temp_kmem_cache;
3705 int order;
3706 struct kmem_cache *temp_kmem_cache_node;
3707 unsigned long kmalloc_size;
3708
3709 if (debug_guardpage_minorder())
3710 slub_max_order = 0;
3711
3712 kmem_size = offsetof(struct kmem_cache, node) +
3713 nr_node_ids * sizeof(struct kmem_cache_node *);
3714
3715 /* Allocate two kmem_caches from the page allocator */
3716 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3717 order = get_order(2 * kmalloc_size);
3718 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3719
3720 /*
3721 * Must first have the slab cache available for the allocations of the
3722 * struct kmem_cache_node's. There is special bootstrap code in
3723 * kmem_cache_open for slab_state == DOWN.
3724 */
3725 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3726
3727 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3728 sizeof(struct kmem_cache_node),
3729 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3730
3731 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3732
3733 /* Able to allocate the per node structures */
3734 slab_state = PARTIAL;
3735
3736 temp_kmem_cache = kmem_cache;
3737 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3738 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3739 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3740 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3741
3742 /*
3743 * Allocate kmem_cache_node properly from the kmem_cache slab.
3744 * kmem_cache_node is separately allocated so no need to
3745 * update any list pointers.
3746 */
3747 temp_kmem_cache_node = kmem_cache_node;
3748
3749 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3750 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3751
3752 kmem_cache_bootstrap_fixup(kmem_cache_node);
3753
3754 caches++;
3755 kmem_cache_bootstrap_fixup(kmem_cache);
3756 caches++;
3757 /* Free temporary boot structure */
3758 free_pages((unsigned long)temp_kmem_cache, order);
3759
3760 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3761
3762 /*
3763 * Patch up the size_index table if we have strange large alignment
3764 * requirements for the kmalloc array. This is only the case for
3765 * MIPS it seems. The standard arches will not generate any code here.
3766 *
3767 * Largest permitted alignment is 256 bytes due to the way we
3768 * handle the index determination for the smaller caches.
3769 *
3770 * Make sure that nothing crazy happens if someone starts tinkering
3771 * around with ARCH_KMALLOC_MINALIGN
3772 */
3773 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3774 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3775
3776 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3777 int elem = size_index_elem(i);
3778 if (elem >= ARRAY_SIZE(size_index))
3779 break;
3780 size_index[elem] = KMALLOC_SHIFT_LOW;
3781 }
3782
3783 if (KMALLOC_MIN_SIZE == 64) {
3784 /*
3785 * The 96 byte size cache is not used if the alignment
3786 * is 64 byte.
3787 */
3788 for (i = 64 + 8; i <= 96; i += 8)
3789 size_index[size_index_elem(i)] = 7;
3790 } else if (KMALLOC_MIN_SIZE == 128) {
3791 /*
3792 * The 192 byte sized cache is not used if the alignment
3793 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3794 * instead.
3795 */
3796 for (i = 128 + 8; i <= 192; i += 8)
3797 size_index[size_index_elem(i)] = 8;
3798 }
3799
3800 /* Caches that are not of the two-to-the-power-of size */
3801 if (KMALLOC_MIN_SIZE <= 32) {
3802 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3803 caches++;
3804 }
3805
3806 if (KMALLOC_MIN_SIZE <= 64) {
3807 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3808 caches++;
3809 }
3810
3811 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3812 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3813 caches++;
3814 }
3815
3816 slab_state = UP;
3817
3818 /* Provide the correct kmalloc names now that the caches are up */
3819 if (KMALLOC_MIN_SIZE <= 32) {
3820 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3821 BUG_ON(!kmalloc_caches[1]->name);
3822 }
3823
3824 if (KMALLOC_MIN_SIZE <= 64) {
3825 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3826 BUG_ON(!kmalloc_caches[2]->name);
3827 }
3828
3829 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3830 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3831
3832 BUG_ON(!s);
3833 kmalloc_caches[i]->name = s;
3834 }
3835
3836#ifdef CONFIG_SMP
3837 register_cpu_notifier(&slab_notifier);
3838#endif
3839
3840#ifdef CONFIG_ZONE_DMA
3841 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3842 struct kmem_cache *s = kmalloc_caches[i];
3843
3844 if (s && s->size) {
3845 char *name = kasprintf(GFP_NOWAIT,
3846 "dma-kmalloc-%d", s->objsize);
3847
3848 BUG_ON(!name);
3849 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3850 s->objsize, SLAB_CACHE_DMA);
3851 }
3852 }
3853#endif
3854 printk(KERN_INFO
3855 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3856 " CPUs=%d, Nodes=%d\n",
3857 caches, cache_line_size(),
3858 slub_min_order, slub_max_order, slub_min_objects,
3859 nr_cpu_ids, nr_node_ids);
3860}
3861
3862void __init kmem_cache_init_late(void)
3863{
3864}
3865
3866/*
3867 * Find a mergeable slab cache
3868 */
3869static int slab_unmergeable(struct kmem_cache *s)
3870{
3871 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3872 return 1;
3873
3874 if (s->ctor)
3875 return 1;
3876
3877 /*
3878 * We may have set a slab to be unmergeable during bootstrap.
3879 */
3880 if (s->refcount < 0)
3881 return 1;
3882
3883 return 0;
3884}
3885
3886static struct kmem_cache *find_mergeable(size_t size,
3887 size_t align, unsigned long flags, const char *name,
3888 void (*ctor)(void *))
3889{
3890 struct kmem_cache *s;
3891
3892 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3893 return NULL;
3894
3895 if (ctor)
3896 return NULL;
3897
3898 size = ALIGN(size, sizeof(void *));
3899 align = calculate_alignment(flags, align, size);
3900 size = ALIGN(size, align);
3901 flags = kmem_cache_flags(size, flags, name, NULL);
3902
3903 list_for_each_entry(s, &slab_caches, list) {
3904 if (slab_unmergeable(s))
3905 continue;
3906
3907 if (size > s->size)
3908 continue;
3909
3910 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3911 continue;
3912 /*
3913 * Check if alignment is compatible.
3914 * Courtesy of Adrian Drzewiecki
3915 */
3916 if ((s->size & ~(align - 1)) != s->size)
3917 continue;
3918
3919 if (s->size - size >= sizeof(void *))
3920 continue;
3921
3922 return s;
3923 }
3924 return NULL;
3925}
3926
3927struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3928 size_t align, unsigned long flags, void (*ctor)(void *))
3929{
3930 struct kmem_cache *s;
3931 char *n;
3932
3933 if (WARN_ON(!name))
3934 return NULL;
3935
3936 down_write(&slub_lock);
3937 s = find_mergeable(size, align, flags, name, ctor);
3938 if (s) {
3939 s->refcount++;
3940 /*
3941 * Adjust the object sizes so that we clear
3942 * the complete object on kzalloc.
3943 */
3944 s->objsize = max(s->objsize, (int)size);
3945 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3946
3947 if (sysfs_slab_alias(s, name)) {
3948 s->refcount--;
3949 goto err;
3950 }
3951 up_write(&slub_lock);
3952 return s;
3953 }
3954
3955 n = kstrdup(name, GFP_KERNEL);
3956 if (!n)
3957 goto err;
3958
3959 s = kmalloc(kmem_size, GFP_KERNEL);
3960 if (s) {
3961 if (kmem_cache_open(s, n,
3962 size, align, flags, ctor)) {
3963 list_add(&s->list, &slab_caches);
3964 up_write(&slub_lock);
3965 if (sysfs_slab_add(s)) {
3966 down_write(&slub_lock);
3967 list_del(&s->list);
3968 kfree(n);
3969 kfree(s);
3970 goto err;
3971 }
3972 return s;
3973 }
3974 kfree(s);
3975 }
3976 kfree(n);
3977err:
3978 up_write(&slub_lock);
3979
3980 if (flags & SLAB_PANIC)
3981 panic("Cannot create slabcache %s\n", name);
3982 else
3983 s = NULL;
3984 return s;
3985}
3986EXPORT_SYMBOL(kmem_cache_create);
3987
3988#ifdef CONFIG_SMP
3989/*
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
3992 */
3993static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3994 unsigned long action, void *hcpu)
3995{
3996 long cpu = (long)hcpu;
3997 struct kmem_cache *s;
3998 unsigned long flags;
3999
4000 switch (action) {
4001 case CPU_UP_CANCELED:
4002 case CPU_UP_CANCELED_FROZEN:
4003 case CPU_DEAD:
4004 case CPU_DEAD_FROZEN:
4005 down_read(&slub_lock);
4006 list_for_each_entry(s, &slab_caches, list) {
4007 local_irq_save(flags);
4008 __flush_cpu_slab(s, cpu);
4009 local_irq_restore(flags);
4010 }
4011 up_read(&slub_lock);
4012 break;
4013 default:
4014 break;
4015 }
4016 return NOTIFY_OK;
4017}
4018
4019static struct notifier_block __cpuinitdata slab_notifier = {
4020 .notifier_call = slab_cpuup_callback
4021};
4022
4023#endif
4024
4025void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4026{
4027 struct kmem_cache *s;
4028 void *ret;
4029
4030 if (unlikely(size > SLUB_MAX_SIZE))
4031 return kmalloc_large(size, gfpflags);
4032
4033 s = get_slab(size, gfpflags);
4034
4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 return s;
4037
4038 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4039
4040 /* Honor the call site pointer we received. */
4041 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042
4043 return ret;
4044}
4045
4046#ifdef CONFIG_NUMA
4047void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048 int node, unsigned long caller)
4049{
4050 struct kmem_cache *s;
4051 void *ret;
4052
4053 if (unlikely(size > SLUB_MAX_SIZE)) {
4054 ret = kmalloc_large_node(size, gfpflags, node);
4055
4056 trace_kmalloc_node(caller, ret,
4057 size, PAGE_SIZE << get_order(size),
4058 gfpflags, node);
4059
4060 return ret;
4061 }
4062
4063 s = get_slab(size, gfpflags);
4064
4065 if (unlikely(ZERO_OR_NULL_PTR(s)))
4066 return s;
4067
4068 ret = slab_alloc(s, gfpflags, node, caller);
4069
4070 /* Honor the call site pointer we received. */
4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072
4073 return ret;
4074}
4075#endif
4076
4077#ifdef CONFIG_SYSFS
4078static int count_inuse(struct page *page)
4079{
4080 return page->inuse;
4081}
4082
4083static int count_total(struct page *page)
4084{
4085 return page->objects;
4086}
4087#endif
4088
4089#ifdef CONFIG_SLUB_DEBUG
4090static int validate_slab(struct kmem_cache *s, struct page *page,
4091 unsigned long *map)
4092{
4093 void *p;
4094 void *addr = page_address(page);
4095
4096 if (!check_slab(s, page) ||
4097 !on_freelist(s, page, NULL))
4098 return 0;
4099
4100 /* Now we know that a valid freelist exists */
4101 bitmap_zero(map, page->objects);
4102
4103 get_map(s, page, map);
4104 for_each_object(p, s, addr, page->objects) {
4105 if (test_bit(slab_index(p, s, addr), map))
4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 return 0;
4108 }
4109
4110 for_each_object(p, s, addr, page->objects)
4111 if (!test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113 return 0;
4114 return 1;
4115}
4116
4117static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 unsigned long *map)
4119{
4120 slab_lock(page);
4121 validate_slab(s, page, map);
4122 slab_unlock(page);
4123}
4124
4125static int validate_slab_node(struct kmem_cache *s,
4126 struct kmem_cache_node *n, unsigned long *map)
4127{
4128 unsigned long count = 0;
4129 struct page *page;
4130 unsigned long flags;
4131
4132 spin_lock_irqsave(&n->list_lock, flags);
4133
4134 list_for_each_entry(page, &n->partial, lru) {
4135 validate_slab_slab(s, page, map);
4136 count++;
4137 }
4138 if (count != n->nr_partial)
4139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4140 "counter=%ld\n", s->name, count, n->nr_partial);
4141
4142 if (!(s->flags & SLAB_STORE_USER))
4143 goto out;
4144
4145 list_for_each_entry(page, &n->full, lru) {
4146 validate_slab_slab(s, page, map);
4147 count++;
4148 }
4149 if (count != atomic_long_read(&n->nr_slabs))
4150 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4151 "counter=%ld\n", s->name, count,
4152 atomic_long_read(&n->nr_slabs));
4153
4154out:
4155 spin_unlock_irqrestore(&n->list_lock, flags);
4156 return count;
4157}
4158
4159static long validate_slab_cache(struct kmem_cache *s)
4160{
4161 int node;
4162 unsigned long count = 0;
4163 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4164 sizeof(unsigned long), GFP_KERNEL);
4165
4166 if (!map)
4167 return -ENOMEM;
4168
4169 flush_all(s);
4170 for_each_node_state(node, N_NORMAL_MEMORY) {
4171 struct kmem_cache_node *n = get_node(s, node);
4172
4173 count += validate_slab_node(s, n, map);
4174 }
4175 kfree(map);
4176 return count;
4177}
4178/*
4179 * Generate lists of code addresses where slabcache objects are allocated
4180 * and freed.
4181 */
4182
4183struct location {
4184 unsigned long count;
4185 unsigned long addr;
4186 long long sum_time;
4187 long min_time;
4188 long max_time;
4189 long min_pid;
4190 long max_pid;
4191 DECLARE_BITMAP(cpus, NR_CPUS);
4192 nodemask_t nodes;
4193};
4194
4195struct loc_track {
4196 unsigned long max;
4197 unsigned long count;
4198 struct location *loc;
4199};
4200
4201static void free_loc_track(struct loc_track *t)
4202{
4203 if (t->max)
4204 free_pages((unsigned long)t->loc,
4205 get_order(sizeof(struct location) * t->max));
4206}
4207
4208static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4209{
4210 struct location *l;
4211 int order;
4212
4213 order = get_order(sizeof(struct location) * max);
4214
4215 l = (void *)__get_free_pages(flags, order);
4216 if (!l)
4217 return 0;
4218
4219 if (t->count) {
4220 memcpy(l, t->loc, sizeof(struct location) * t->count);
4221 free_loc_track(t);
4222 }
4223 t->max = max;
4224 t->loc = l;
4225 return 1;
4226}
4227
4228static int add_location(struct loc_track *t, struct kmem_cache *s,
4229 const struct track *track)
4230{
4231 long start, end, pos;
4232 struct location *l;
4233 unsigned long caddr;
4234 unsigned long age = jiffies - track->when;
4235
4236 start = -1;
4237 end = t->count;
4238
4239 for ( ; ; ) {
4240 pos = start + (end - start + 1) / 2;
4241
4242 /*
4243 * There is nothing at "end". If we end up there
4244 * we need to add something to before end.
4245 */
4246 if (pos == end)
4247 break;
4248
4249 caddr = t->loc[pos].addr;
4250 if (track->addr == caddr) {
4251
4252 l = &t->loc[pos];
4253 l->count++;
4254 if (track->when) {
4255 l->sum_time += age;
4256 if (age < l->min_time)
4257 l->min_time = age;
4258 if (age > l->max_time)
4259 l->max_time = age;
4260
4261 if (track->pid < l->min_pid)
4262 l->min_pid = track->pid;
4263 if (track->pid > l->max_pid)
4264 l->max_pid = track->pid;
4265
4266 cpumask_set_cpu(track->cpu,
4267 to_cpumask(l->cpus));
4268 }
4269 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4270 return 1;
4271 }
4272
4273 if (track->addr < caddr)
4274 end = pos;
4275 else
4276 start = pos;
4277 }
4278
4279 /*
4280 * Not found. Insert new tracking element.
4281 */
4282 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4283 return 0;
4284
4285 l = t->loc + pos;
4286 if (pos < t->count)
4287 memmove(l + 1, l,
4288 (t->count - pos) * sizeof(struct location));
4289 t->count++;
4290 l->count = 1;
4291 l->addr = track->addr;
4292 l->sum_time = age;
4293 l->min_time = age;
4294 l->max_time = age;
4295 l->min_pid = track->pid;
4296 l->max_pid = track->pid;
4297 cpumask_clear(to_cpumask(l->cpus));
4298 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4299 nodes_clear(l->nodes);
4300 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4301 return 1;
4302}
4303
4304static void process_slab(struct loc_track *t, struct kmem_cache *s,
4305 struct page *page, enum track_item alloc,
4306 unsigned long *map)
4307{
4308 void *addr = page_address(page);
4309 void *p;
4310
4311 bitmap_zero(map, page->objects);
4312 get_map(s, page, map);
4313
4314 for_each_object(p, s, addr, page->objects)
4315 if (!test_bit(slab_index(p, s, addr), map))
4316 add_location(t, s, get_track(s, p, alloc));
4317}
4318
4319static int list_locations(struct kmem_cache *s, char *buf,
4320 enum track_item alloc)
4321{
4322 int len = 0;
4323 unsigned long i;
4324 struct loc_track t = { 0, 0, NULL };
4325 int node;
4326 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4327 sizeof(unsigned long), GFP_KERNEL);
4328
4329 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4330 GFP_TEMPORARY)) {
4331 kfree(map);
4332 return sprintf(buf, "Out of memory\n");
4333 }
4334 /* Push back cpu slabs */
4335 flush_all(s);
4336
4337 for_each_node_state(node, N_NORMAL_MEMORY) {
4338 struct kmem_cache_node *n = get_node(s, node);
4339 unsigned long flags;
4340 struct page *page;
4341
4342 if (!atomic_long_read(&n->nr_slabs))
4343 continue;
4344
4345 spin_lock_irqsave(&n->list_lock, flags);
4346 list_for_each_entry(page, &n->partial, lru)
4347 process_slab(&t, s, page, alloc, map);
4348 list_for_each_entry(page, &n->full, lru)
4349 process_slab(&t, s, page, alloc, map);
4350 spin_unlock_irqrestore(&n->list_lock, flags);
4351 }
4352
4353 for (i = 0; i < t.count; i++) {
4354 struct location *l = &t.loc[i];
4355
4356 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4357 break;
4358 len += sprintf(buf + len, "%7ld ", l->count);
4359
4360 if (l->addr)
4361 len += sprintf(buf + len, "%pS", (void *)l->addr);
4362 else
4363 len += sprintf(buf + len, "<not-available>");
4364
4365 if (l->sum_time != l->min_time) {
4366 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4367 l->min_time,
4368 (long)div_u64(l->sum_time, l->count),
4369 l->max_time);
4370 } else
4371 len += sprintf(buf + len, " age=%ld",
4372 l->min_time);
4373
4374 if (l->min_pid != l->max_pid)
4375 len += sprintf(buf + len, " pid=%ld-%ld",
4376 l->min_pid, l->max_pid);
4377 else
4378 len += sprintf(buf + len, " pid=%ld",
4379 l->min_pid);
4380
4381 if (num_online_cpus() > 1 &&
4382 !cpumask_empty(to_cpumask(l->cpus)) &&
4383 len < PAGE_SIZE - 60) {
4384 len += sprintf(buf + len, " cpus=");
4385 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 to_cpumask(l->cpus));
4387 }
4388
4389 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4390 len < PAGE_SIZE - 60) {
4391 len += sprintf(buf + len, " nodes=");
4392 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4393 l->nodes);
4394 }
4395
4396 len += sprintf(buf + len, "\n");
4397 }
4398
4399 free_loc_track(&t);
4400 kfree(map);
4401 if (!t.count)
4402 len += sprintf(buf, "No data\n");
4403 return len;
4404}
4405#endif
4406
4407#ifdef SLUB_RESILIENCY_TEST
4408static void resiliency_test(void)
4409{
4410 u8 *p;
4411
4412 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4413
4414 printk(KERN_ERR "SLUB resiliency testing\n");
4415 printk(KERN_ERR "-----------------------\n");
4416 printk(KERN_ERR "A. Corruption after allocation\n");
4417
4418 p = kzalloc(16, GFP_KERNEL);
4419 p[16] = 0x12;
4420 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4421 " 0x12->0x%p\n\n", p + 16);
4422
4423 validate_slab_cache(kmalloc_caches[4]);
4424
4425 /* Hmmm... The next two are dangerous */
4426 p = kzalloc(32, GFP_KERNEL);
4427 p[32 + sizeof(void *)] = 0x34;
4428 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4429 " 0x34 -> -0x%p\n", p);
4430 printk(KERN_ERR
4431 "If allocated object is overwritten then not detectable\n\n");
4432
4433 validate_slab_cache(kmalloc_caches[5]);
4434 p = kzalloc(64, GFP_KERNEL);
4435 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4436 *p = 0x56;
4437 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4438 p);
4439 printk(KERN_ERR
4440 "If allocated object is overwritten then not detectable\n\n");
4441 validate_slab_cache(kmalloc_caches[6]);
4442
4443 printk(KERN_ERR "\nB. Corruption after free\n");
4444 p = kzalloc(128, GFP_KERNEL);
4445 kfree(p);
4446 *p = 0x78;
4447 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4448 validate_slab_cache(kmalloc_caches[7]);
4449
4450 p = kzalloc(256, GFP_KERNEL);
4451 kfree(p);
4452 p[50] = 0x9a;
4453 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4454 p);
4455 validate_slab_cache(kmalloc_caches[8]);
4456
4457 p = kzalloc(512, GFP_KERNEL);
4458 kfree(p);
4459 p[512] = 0xab;
4460 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4461 validate_slab_cache(kmalloc_caches[9]);
4462}
4463#else
4464#ifdef CONFIG_SYSFS
4465static void resiliency_test(void) {};
4466#endif
4467#endif
4468
4469#ifdef CONFIG_SYSFS
4470enum slab_stat_type {
4471 SL_ALL, /* All slabs */
4472 SL_PARTIAL, /* Only partially allocated slabs */
4473 SL_CPU, /* Only slabs used for cpu caches */
4474 SL_OBJECTS, /* Determine allocated objects not slabs */
4475 SL_TOTAL /* Determine object capacity not slabs */
4476};
4477
4478#define SO_ALL (1 << SL_ALL)
4479#define SO_PARTIAL (1 << SL_PARTIAL)
4480#define SO_CPU (1 << SL_CPU)
4481#define SO_OBJECTS (1 << SL_OBJECTS)
4482#define SO_TOTAL (1 << SL_TOTAL)
4483
4484static ssize_t show_slab_objects(struct kmem_cache *s,
4485 char *buf, unsigned long flags)
4486{
4487 unsigned long total = 0;
4488 int node;
4489 int x;
4490 unsigned long *nodes;
4491 unsigned long *per_cpu;
4492
4493 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4494 if (!nodes)
4495 return -ENOMEM;
4496 per_cpu = nodes + nr_node_ids;
4497
4498 if (flags & SO_CPU) {
4499 int cpu;
4500
4501 for_each_possible_cpu(cpu) {
4502 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4503 int node = ACCESS_ONCE(c->node);
4504 struct page *page;
4505
4506 if (node < 0)
4507 continue;
4508 page = ACCESS_ONCE(c->page);
4509 if (page) {
4510 if (flags & SO_TOTAL)
4511 x = page->objects;
4512 else if (flags & SO_OBJECTS)
4513 x = page->inuse;
4514 else
4515 x = 1;
4516
4517 total += x;
4518 nodes[node] += x;
4519 }
4520 page = c->partial;
4521
4522 if (page) {
4523 x = page->pobjects;
4524 total += x;
4525 nodes[node] += x;
4526 }
4527 per_cpu[node]++;
4528 }
4529 }
4530
4531 lock_memory_hotplug();
4532#ifdef CONFIG_SLUB_DEBUG
4533 if (flags & SO_ALL) {
4534 for_each_node_state(node, N_NORMAL_MEMORY) {
4535 struct kmem_cache_node *n = get_node(s, node);
4536
4537 if (flags & SO_TOTAL)
4538 x = atomic_long_read(&n->total_objects);
4539 else if (flags & SO_OBJECTS)
4540 x = atomic_long_read(&n->total_objects) -
4541 count_partial(n, count_free);
4542
4543 else
4544 x = atomic_long_read(&n->nr_slabs);
4545 total += x;
4546 nodes[node] += x;
4547 }
4548
4549 } else
4550#endif
4551 if (flags & SO_PARTIAL) {
4552 for_each_node_state(node, N_NORMAL_MEMORY) {
4553 struct kmem_cache_node *n = get_node(s, node);
4554
4555 if (flags & SO_TOTAL)
4556 x = count_partial(n, count_total);
4557 else if (flags & SO_OBJECTS)
4558 x = count_partial(n, count_inuse);
4559 else
4560 x = n->nr_partial;
4561 total += x;
4562 nodes[node] += x;
4563 }
4564 }
4565 x = sprintf(buf, "%lu", total);
4566#ifdef CONFIG_NUMA
4567 for_each_node_state(node, N_NORMAL_MEMORY)
4568 if (nodes[node])
4569 x += sprintf(buf + x, " N%d=%lu",
4570 node, nodes[node]);
4571#endif
4572 unlock_memory_hotplug();
4573 kfree(nodes);
4574 return x + sprintf(buf + x, "\n");
4575}
4576
4577#ifdef CONFIG_SLUB_DEBUG
4578static int any_slab_objects(struct kmem_cache *s)
4579{
4580 int node;
4581
4582 for_each_online_node(node) {
4583 struct kmem_cache_node *n = get_node(s, node);
4584
4585 if (!n)
4586 continue;
4587
4588 if (atomic_long_read(&n->total_objects))
4589 return 1;
4590 }
4591 return 0;
4592}
4593#endif
4594
4595#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4596#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4597
4598struct slab_attribute {
4599 struct attribute attr;
4600 ssize_t (*show)(struct kmem_cache *s, char *buf);
4601 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4602};
4603
4604#define SLAB_ATTR_RO(_name) \
4605 static struct slab_attribute _name##_attr = \
4606 __ATTR(_name, 0400, _name##_show, NULL)
4607
4608#define SLAB_ATTR(_name) \
4609 static struct slab_attribute _name##_attr = \
4610 __ATTR(_name, 0600, _name##_show, _name##_store)
4611
4612static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4613{
4614 return sprintf(buf, "%d\n", s->size);
4615}
4616SLAB_ATTR_RO(slab_size);
4617
4618static ssize_t align_show(struct kmem_cache *s, char *buf)
4619{
4620 return sprintf(buf, "%d\n", s->align);
4621}
4622SLAB_ATTR_RO(align);
4623
4624static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4625{
4626 return sprintf(buf, "%d\n", s->objsize);
4627}
4628SLAB_ATTR_RO(object_size);
4629
4630static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", oo_objects(s->oo));
4633}
4634SLAB_ATTR_RO(objs_per_slab);
4635
4636static ssize_t order_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4638{
4639 unsigned long order;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &order);
4643 if (err)
4644 return err;
4645
4646 if (order > slub_max_order || order < slub_min_order)
4647 return -EINVAL;
4648
4649 calculate_sizes(s, order);
4650 return length;
4651}
4652
4653static ssize_t order_show(struct kmem_cache *s, char *buf)
4654{
4655 return sprintf(buf, "%d\n", oo_order(s->oo));
4656}
4657SLAB_ATTR(order);
4658
4659static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4660{
4661 return sprintf(buf, "%lu\n", s->min_partial);
4662}
4663
4664static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4665 size_t length)
4666{
4667 unsigned long min;
4668 int err;
4669
4670 err = strict_strtoul(buf, 10, &min);
4671 if (err)
4672 return err;
4673
4674 set_min_partial(s, min);
4675 return length;
4676}
4677SLAB_ATTR(min_partial);
4678
4679static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4680{
4681 return sprintf(buf, "%u\n", s->cpu_partial);
4682}
4683
4684static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4685 size_t length)
4686{
4687 unsigned long objects;
4688 int err;
4689
4690 err = strict_strtoul(buf, 10, &objects);
4691 if (err)
4692 return err;
4693 if (objects && kmem_cache_debug(s))
4694 return -EINVAL;
4695
4696 s->cpu_partial = objects;
4697 flush_all(s);
4698 return length;
4699}
4700SLAB_ATTR(cpu_partial);
4701
4702static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4703{
4704 if (!s->ctor)
4705 return 0;
4706 return sprintf(buf, "%pS\n", s->ctor);
4707}
4708SLAB_ATTR_RO(ctor);
4709
4710static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4711{
4712 return sprintf(buf, "%d\n", s->refcount - 1);
4713}
4714SLAB_ATTR_RO(aliases);
4715
4716static ssize_t partial_show(struct kmem_cache *s, char *buf)
4717{
4718 return show_slab_objects(s, buf, SO_PARTIAL);
4719}
4720SLAB_ATTR_RO(partial);
4721
4722static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4723{
4724 return show_slab_objects(s, buf, SO_CPU);
4725}
4726SLAB_ATTR_RO(cpu_slabs);
4727
4728static ssize_t objects_show(struct kmem_cache *s, char *buf)
4729{
4730 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4731}
4732SLAB_ATTR_RO(objects);
4733
4734static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4735{
4736 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4737}
4738SLAB_ATTR_RO(objects_partial);
4739
4740static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4741{
4742 int objects = 0;
4743 int pages = 0;
4744 int cpu;
4745 int len;
4746
4747 for_each_online_cpu(cpu) {
4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4749
4750 if (page) {
4751 pages += page->pages;
4752 objects += page->pobjects;
4753 }
4754 }
4755
4756 len = sprintf(buf, "%d(%d)", objects, pages);
4757
4758#ifdef CONFIG_SMP
4759 for_each_online_cpu(cpu) {
4760 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4761
4762 if (page && len < PAGE_SIZE - 20)
4763 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4764 page->pobjects, page->pages);
4765 }
4766#endif
4767 return len + sprintf(buf + len, "\n");
4768}
4769SLAB_ATTR_RO(slabs_cpu_partial);
4770
4771static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4772{
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4774}
4775
4776static ssize_t reclaim_account_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
4779 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4780 if (buf[0] == '1')
4781 s->flags |= SLAB_RECLAIM_ACCOUNT;
4782 return length;
4783}
4784SLAB_ATTR(reclaim_account);
4785
4786static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4787{
4788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4789}
4790SLAB_ATTR_RO(hwcache_align);
4791
4792#ifdef CONFIG_ZONE_DMA
4793static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4794{
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4796}
4797SLAB_ATTR_RO(cache_dma);
4798#endif
4799
4800static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4801{
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4803}
4804SLAB_ATTR_RO(destroy_by_rcu);
4805
4806static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4807{
4808 return sprintf(buf, "%d\n", s->reserved);
4809}
4810SLAB_ATTR_RO(reserved);
4811
4812#ifdef CONFIG_SLUB_DEBUG
4813static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4814{
4815 return show_slab_objects(s, buf, SO_ALL);
4816}
4817SLAB_ATTR_RO(slabs);
4818
4819static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4820{
4821 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4822}
4823SLAB_ATTR_RO(total_objects);
4824
4825static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4826{
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4828}
4829
4830static ssize_t sanity_checks_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832{
4833 s->flags &= ~SLAB_DEBUG_FREE;
4834 if (buf[0] == '1') {
4835 s->flags &= ~__CMPXCHG_DOUBLE;
4836 s->flags |= SLAB_DEBUG_FREE;
4837 }
4838 return length;
4839}
4840SLAB_ATTR(sanity_checks);
4841
4842static ssize_t trace_show(struct kmem_cache *s, char *buf)
4843{
4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4845}
4846
4847static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4848 size_t length)
4849{
4850 s->flags &= ~SLAB_TRACE;
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
4853 s->flags |= SLAB_TRACE;
4854 }
4855 return length;
4856}
4857SLAB_ATTR(trace);
4858
4859static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860{
4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862}
4863
4864static ssize_t red_zone_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866{
4867 if (any_slab_objects(s))
4868 return -EBUSY;
4869
4870 s->flags &= ~SLAB_RED_ZONE;
4871 if (buf[0] == '1') {
4872 s->flags &= ~__CMPXCHG_DOUBLE;
4873 s->flags |= SLAB_RED_ZONE;
4874 }
4875 calculate_sizes(s, -1);
4876 return length;
4877}
4878SLAB_ATTR(red_zone);
4879
4880static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881{
4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883}
4884
4885static ssize_t poison_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887{
4888 if (any_slab_objects(s))
4889 return -EBUSY;
4890
4891 s->flags &= ~SLAB_POISON;
4892 if (buf[0] == '1') {
4893 s->flags &= ~__CMPXCHG_DOUBLE;
4894 s->flags |= SLAB_POISON;
4895 }
4896 calculate_sizes(s, -1);
4897 return length;
4898}
4899SLAB_ATTR(poison);
4900
4901static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902{
4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904}
4905
4906static ssize_t store_user_store(struct kmem_cache *s,
4907 const char *buf, size_t length)
4908{
4909 if (any_slab_objects(s))
4910 return -EBUSY;
4911
4912 s->flags &= ~SLAB_STORE_USER;
4913 if (buf[0] == '1') {
4914 s->flags &= ~__CMPXCHG_DOUBLE;
4915 s->flags |= SLAB_STORE_USER;
4916 }
4917 calculate_sizes(s, -1);
4918 return length;
4919}
4920SLAB_ATTR(store_user);
4921
4922static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923{
4924 return 0;
4925}
4926
4927static ssize_t validate_store(struct kmem_cache *s,
4928 const char *buf, size_t length)
4929{
4930 int ret = -EINVAL;
4931
4932 if (buf[0] == '1') {
4933 ret = validate_slab_cache(s);
4934 if (ret >= 0)
4935 ret = length;
4936 }
4937 return ret;
4938}
4939SLAB_ATTR(validate);
4940
4941static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942{
4943 if (!(s->flags & SLAB_STORE_USER))
4944 return -ENOSYS;
4945 return list_locations(s, buf, TRACK_ALLOC);
4946}
4947SLAB_ATTR_RO(alloc_calls);
4948
4949static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950{
4951 if (!(s->flags & SLAB_STORE_USER))
4952 return -ENOSYS;
4953 return list_locations(s, buf, TRACK_FREE);
4954}
4955SLAB_ATTR_RO(free_calls);
4956#endif /* CONFIG_SLUB_DEBUG */
4957
4958#ifdef CONFIG_FAILSLAB
4959static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962}
4963
4964static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
4967 s->flags &= ~SLAB_FAILSLAB;
4968 if (buf[0] == '1')
4969 s->flags |= SLAB_FAILSLAB;
4970 return length;
4971}
4972SLAB_ATTR(failslab);
4973#endif
4974
4975static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4976{
4977 return 0;
4978}
4979
4980static ssize_t shrink_store(struct kmem_cache *s,
4981 const char *buf, size_t length)
4982{
4983 if (buf[0] == '1') {
4984 int rc = kmem_cache_shrink(s);
4985
4986 if (rc)
4987 return rc;
4988 } else
4989 return -EINVAL;
4990 return length;
4991}
4992SLAB_ATTR(shrink);
4993
4994#ifdef CONFIG_NUMA
4995static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996{
4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998}
4999
5000static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001 const char *buf, size_t length)
5002{
5003 unsigned long ratio;
5004 int err;
5005
5006 err = strict_strtoul(buf, 10, &ratio);
5007 if (err)
5008 return err;
5009
5010 if (ratio <= 100)
5011 s->remote_node_defrag_ratio = ratio * 10;
5012
5013 return length;
5014}
5015SLAB_ATTR(remote_node_defrag_ratio);
5016#endif
5017
5018#ifdef CONFIG_SLUB_STATS
5019static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020{
5021 unsigned long sum = 0;
5022 int cpu;
5023 int len;
5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026 if (!data)
5027 return -ENOMEM;
5028
5029 for_each_online_cpu(cpu) {
5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031
5032 data[cpu] = x;
5033 sum += x;
5034 }
5035
5036 len = sprintf(buf, "%lu", sum);
5037
5038#ifdef CONFIG_SMP
5039 for_each_online_cpu(cpu) {
5040 if (data[cpu] && len < PAGE_SIZE - 20)
5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042 }
5043#endif
5044 kfree(data);
5045 return len + sprintf(buf + len, "\n");
5046}
5047
5048static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049{
5050 int cpu;
5051
5052 for_each_online_cpu(cpu)
5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054}
5055
5056#define STAT_ATTR(si, text) \
5057static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5058{ \
5059 return show_stat(s, buf, si); \
5060} \
5061static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5063{ \
5064 if (buf[0] != '0') \
5065 return -EINVAL; \
5066 clear_stat(s, si); \
5067 return length; \
5068} \
5069SLAB_ATTR(text); \
5070
5071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075STAT_ATTR(FREE_FROZEN, free_frozen);
5076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082STAT_ATTR(FREE_SLAB, free_slab);
5083STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097#endif
5098
5099static struct attribute *slab_attrs[] = {
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
5104 &min_partial_attr.attr,
5105 &cpu_partial_attr.attr,
5106 &objects_attr.attr,
5107 &objects_partial_attr.attr,
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
5111 &aliases_attr.attr,
5112 &align_attr.attr,
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
5116 &shrink_attr.attr,
5117 &reserved_attr.attr,
5118 &slabs_cpu_partial_attr.attr,
5119#ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
5127 &validate_attr.attr,
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
5130#endif
5131#ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133#endif
5134#ifdef CONFIG_NUMA
5135 &remote_node_defrag_ratio_attr.attr,
5136#endif
5137#ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
5148 &alloc_node_mismatch_attr.attr,
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
5156 &deactivate_bypass_attr.attr,
5157 &order_fallback_attr.attr,
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
5162 &cpu_partial_node_attr.attr,
5163 &cpu_partial_drain_attr.attr,
5164#endif
5165#ifdef CONFIG_FAILSLAB
5166 &failslab_attr.attr,
5167#endif
5168
5169 NULL
5170};
5171
5172static struct attribute_group slab_attr_group = {
5173 .attrs = slab_attrs,
5174};
5175
5176static ssize_t slab_attr_show(struct kobject *kobj,
5177 struct attribute *attr,
5178 char *buf)
5179{
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->show)
5188 return -EIO;
5189
5190 err = attribute->show(s, buf);
5191
5192 return err;
5193}
5194
5195static ssize_t slab_attr_store(struct kobject *kobj,
5196 struct attribute *attr,
5197 const char *buf, size_t len)
5198{
5199 struct slab_attribute *attribute;
5200 struct kmem_cache *s;
5201 int err;
5202
5203 attribute = to_slab_attr(attr);
5204 s = to_slab(kobj);
5205
5206 if (!attribute->store)
5207 return -EIO;
5208
5209 err = attribute->store(s, buf, len);
5210
5211 return err;
5212}
5213
5214static void kmem_cache_release(struct kobject *kobj)
5215{
5216 struct kmem_cache *s = to_slab(kobj);
5217
5218 kfree(s->name);
5219 kfree(s);
5220}
5221
5222static const struct sysfs_ops slab_sysfs_ops = {
5223 .show = slab_attr_show,
5224 .store = slab_attr_store,
5225};
5226
5227static struct kobj_type slab_ktype = {
5228 .sysfs_ops = &slab_sysfs_ops,
5229 .release = kmem_cache_release
5230};
5231
5232static int uevent_filter(struct kset *kset, struct kobject *kobj)
5233{
5234 struct kobj_type *ktype = get_ktype(kobj);
5235
5236 if (ktype == &slab_ktype)
5237 return 1;
5238 return 0;
5239}
5240
5241static const struct kset_uevent_ops slab_uevent_ops = {
5242 .filter = uevent_filter,
5243};
5244
5245static struct kset *slab_kset;
5246
5247#define ID_STR_LENGTH 64
5248
5249/* Create a unique string id for a slab cache:
5250 *
5251 * Format :[flags-]size
5252 */
5253static char *create_unique_id(struct kmem_cache *s)
5254{
5255 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5256 char *p = name;
5257
5258 BUG_ON(!name);
5259
5260 *p++ = ':';
5261 /*
5262 * First flags affecting slabcache operations. We will only
5263 * get here for aliasable slabs so we do not need to support
5264 * too many flags. The flags here must cover all flags that
5265 * are matched during merging to guarantee that the id is
5266 * unique.
5267 */
5268 if (s->flags & SLAB_CACHE_DMA)
5269 *p++ = 'd';
5270 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5271 *p++ = 'a';
5272 if (s->flags & SLAB_DEBUG_FREE)
5273 *p++ = 'F';
5274 if (!(s->flags & SLAB_NOTRACK))
5275 *p++ = 't';
5276 if (p != name + 1)
5277 *p++ = '-';
5278 p += sprintf(p, "%07d", s->size);
5279 BUG_ON(p > name + ID_STR_LENGTH - 1);
5280 return name;
5281}
5282
5283static int sysfs_slab_add(struct kmem_cache *s)
5284{
5285 int err;
5286 const char *name;
5287 int unmergeable;
5288
5289 if (slab_state < SYSFS)
5290 /* Defer until later */
5291 return 0;
5292
5293 unmergeable = slab_unmergeable(s);
5294 if (unmergeable) {
5295 /*
5296 * Slabcache can never be merged so we can use the name proper.
5297 * This is typically the case for debug situations. In that
5298 * case we can catch duplicate names easily.
5299 */
5300 sysfs_remove_link(&slab_kset->kobj, s->name);
5301 name = s->name;
5302 } else {
5303 /*
5304 * Create a unique name for the slab as a target
5305 * for the symlinks.
5306 */
5307 name = create_unique_id(s);
5308 }
5309
5310 s->kobj.kset = slab_kset;
5311 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5312 if (err) {
5313 kobject_put(&s->kobj);
5314 return err;
5315 }
5316
5317 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5318 if (err) {
5319 kobject_del(&s->kobj);
5320 kobject_put(&s->kobj);
5321 return err;
5322 }
5323 kobject_uevent(&s->kobj, KOBJ_ADD);
5324 if (!unmergeable) {
5325 /* Setup first alias */
5326 sysfs_slab_alias(s, s->name);
5327 kfree(name);
5328 }
5329 return 0;
5330}
5331
5332static void sysfs_slab_remove(struct kmem_cache *s)
5333{
5334 if (slab_state < SYSFS)
5335 /*
5336 * Sysfs has not been setup yet so no need to remove the
5337 * cache from sysfs.
5338 */
5339 return;
5340
5341 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5342 kobject_del(&s->kobj);
5343 kobject_put(&s->kobj);
5344}
5345
5346/*
5347 * Need to buffer aliases during bootup until sysfs becomes
5348 * available lest we lose that information.
5349 */
5350struct saved_alias {
5351 struct kmem_cache *s;
5352 const char *name;
5353 struct saved_alias *next;
5354};
5355
5356static struct saved_alias *alias_list;
5357
5358static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5359{
5360 struct saved_alias *al;
5361
5362 if (slab_state == SYSFS) {
5363 /*
5364 * If we have a leftover link then remove it.
5365 */
5366 sysfs_remove_link(&slab_kset->kobj, name);
5367 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5368 }
5369
5370 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5371 if (!al)
5372 return -ENOMEM;
5373
5374 al->s = s;
5375 al->name = name;
5376 al->next = alias_list;
5377 alias_list = al;
5378 return 0;
5379}
5380
5381static int __init slab_sysfs_init(void)
5382{
5383 struct kmem_cache *s;
5384 int err;
5385
5386 down_write(&slub_lock);
5387
5388 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5389 if (!slab_kset) {
5390 up_write(&slub_lock);
5391 printk(KERN_ERR "Cannot register slab subsystem.\n");
5392 return -ENOSYS;
5393 }
5394
5395 slab_state = SYSFS;
5396
5397 list_for_each_entry(s, &slab_caches, list) {
5398 err = sysfs_slab_add(s);
5399 if (err)
5400 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5401 " to sysfs\n", s->name);
5402 }
5403
5404 while (alias_list) {
5405 struct saved_alias *al = alias_list;
5406
5407 alias_list = alias_list->next;
5408 err = sysfs_slab_alias(al->s, al->name);
5409 if (err)
5410 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5411 " %s to sysfs\n", s->name);
5412 kfree(al);
5413 }
5414
5415 up_write(&slub_lock);
5416 resiliency_test();
5417 return 0;
5418}
5419
5420__initcall(slab_sysfs_init);
5421#endif /* CONFIG_SYSFS */
5422
5423/*
5424 * The /proc/slabinfo ABI
5425 */
5426#ifdef CONFIG_SLABINFO
5427static void print_slabinfo_header(struct seq_file *m)
5428{
5429 seq_puts(m, "slabinfo - version: 2.1\n");
5430 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5431 "<objperslab> <pagesperslab>");
5432 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5433 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5434 seq_putc(m, '\n');
5435}
5436
5437static void *s_start(struct seq_file *m, loff_t *pos)
5438{
5439 loff_t n = *pos;
5440
5441 down_read(&slub_lock);
5442 if (!n)
5443 print_slabinfo_header(m);
5444
5445 return seq_list_start(&slab_caches, *pos);
5446}
5447
5448static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5449{
5450 return seq_list_next(p, &slab_caches, pos);
5451}
5452
5453static void s_stop(struct seq_file *m, void *p)
5454{
5455 up_read(&slub_lock);
5456}
5457
5458static int s_show(struct seq_file *m, void *p)
5459{
5460 unsigned long nr_partials = 0;
5461 unsigned long nr_slabs = 0;
5462 unsigned long nr_inuse = 0;
5463 unsigned long nr_objs = 0;
5464 unsigned long nr_free = 0;
5465 struct kmem_cache *s;
5466 int node;
5467
5468 s = list_entry(p, struct kmem_cache, list);
5469
5470 for_each_online_node(node) {
5471 struct kmem_cache_node *n = get_node(s, node);
5472
5473 if (!n)
5474 continue;
5475
5476 nr_partials += n->nr_partial;
5477 nr_slabs += atomic_long_read(&n->nr_slabs);
5478 nr_objs += atomic_long_read(&n->total_objects);
5479 nr_free += count_partial(n, count_free);
5480 }
5481
5482 nr_inuse = nr_objs - nr_free;
5483
5484 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5485 nr_objs, s->size, oo_objects(s->oo),
5486 (1 << oo_order(s->oo)));
5487 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5488 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5489 0UL);
5490 seq_putc(m, '\n');
5491 return 0;
5492}
5493
5494static const struct seq_operations slabinfo_op = {
5495 .start = s_start,
5496 .next = s_next,
5497 .stop = s_stop,
5498 .show = s_show,
5499};
5500
5501static int slabinfo_open(struct inode *inode, struct file *file)
5502{
5503 return seq_open(file, &slabinfo_op);
5504}
5505
5506static const struct file_operations proc_slabinfo_operations = {
5507 .open = slabinfo_open,
5508 .read = seq_read,
5509 .llseek = seq_lseek,
5510 .release = seq_release,
5511};
5512
5513static int __init slab_proc_init(void)
5514{
5515 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5516 return 0;
5517}
5518module_init(slab_proc_init);
5519#endif /* CONFIG_SLABINFO */