Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
 
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
 
  35#include <linux/pagevec.h>
  36#include <linux/timer.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/signal.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 
 
 
 
 
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120struct wb_domain global_wb_domain;
 121
 122/* consolidated parameters for balance_dirty_pages() and its subroutines */
 123struct dirty_throttle_control {
 124#ifdef CONFIG_CGROUP_WRITEBACK
 125	struct wb_domain	*dom;
 126	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 127#endif
 128	struct bdi_writeback	*wb;
 129	struct fprop_local_percpu *wb_completions;
 130
 131	unsigned long		avail;		/* dirtyable */
 132	unsigned long		dirty;		/* file_dirty + write + nfs */
 133	unsigned long		thresh;		/* dirty threshold */
 134	unsigned long		bg_thresh;	/* dirty background threshold */
 135
 136	unsigned long		wb_dirty;	/* per-wb counterparts */
 137	unsigned long		wb_thresh;
 138	unsigned long		wb_bg_thresh;
 139
 140	unsigned long		pos_ratio;
 141};
 142
 143/*
 144 * Length of period for aging writeout fractions of bdis. This is an
 145 * arbitrarily chosen number. The longer the period, the slower fractions will
 146 * reflect changes in current writeout rate.
 
 
 
 
 
 
 
 
 
 
 
 147 */
 148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 149
 150#ifdef CONFIG_CGROUP_WRITEBACK
 151
 152#define GDTC_INIT(__wb)		.wb = (__wb),				\
 153				.dom = &global_wb_domain,		\
 154				.wb_completions = &(__wb)->completions
 155
 156#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 157
 158#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 159				.dom = mem_cgroup_wb_domain(__wb),	\
 160				.wb_completions = &(__wb)->memcg_completions, \
 161				.gdtc = __gdtc
 162
 163static bool mdtc_valid(struct dirty_throttle_control *dtc)
 164{
 165	return dtc->dom;
 166}
 167
 168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 174{
 175	return mdtc->gdtc;
 176}
 177
 178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 179{
 180	return &wb->memcg_completions;
 181}
 182
 183static void wb_min_max_ratio(struct bdi_writeback *wb,
 184			     unsigned long *minp, unsigned long *maxp)
 185{
 186	unsigned long this_bw = wb->avg_write_bandwidth;
 187	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 188	unsigned long long min = wb->bdi->min_ratio;
 189	unsigned long long max = wb->bdi->max_ratio;
 190
 191	/*
 192	 * @wb may already be clean by the time control reaches here and
 193	 * the total may not include its bw.
 194	 */
 195	if (this_bw < tot_bw) {
 196		if (min) {
 197			min *= this_bw;
 198			min = div64_ul(min, tot_bw);
 199		}
 200		if (max < 100) {
 201			max *= this_bw;
 202			max = div64_ul(max, tot_bw);
 203		}
 204	}
 205
 206	*minp = min;
 207	*maxp = max;
 208}
 209
 210#else	/* CONFIG_CGROUP_WRITEBACK */
 211
 212#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 213				.wb_completions = &(__wb)->completions
 214#define GDTC_INIT_NO_WB
 215#define MDTC_INIT(__wb, __gdtc)
 216
 217static bool mdtc_valid(struct dirty_throttle_control *dtc)
 218{
 219	return false;
 220}
 221
 222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 223{
 224	return &global_wb_domain;
 225}
 226
 227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 228{
 229	return NULL;
 230}
 231
 232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 233{
 234	return NULL;
 235}
 236
 237static void wb_min_max_ratio(struct bdi_writeback *wb,
 238			     unsigned long *minp, unsigned long *maxp)
 239{
 240	*minp = wb->bdi->min_ratio;
 241	*maxp = wb->bdi->max_ratio;
 242}
 243
 244#endif	/* CONFIG_CGROUP_WRITEBACK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245
 246/*
 247 * In a memory zone, there is a certain amount of pages we consider
 248 * available for the page cache, which is essentially the number of
 249 * free and reclaimable pages, minus some zone reserves to protect
 250 * lowmem and the ability to uphold the zone's watermarks without
 251 * requiring writeback.
 252 *
 253 * This number of dirtyable pages is the base value of which the
 254 * user-configurable dirty ratio is the effective number of pages that
 255 * are allowed to be actually dirtied.  Per individual zone, or
 256 * globally by using the sum of dirtyable pages over all zones.
 257 *
 258 * Because the user is allowed to specify the dirty limit globally as
 259 * absolute number of bytes, calculating the per-zone dirty limit can
 260 * require translating the configured limit into a percentage of
 261 * global dirtyable memory first.
 262 */
 263
 264/**
 265 * node_dirtyable_memory - number of dirtyable pages in a node
 266 * @pgdat: the node
 267 *
 268 * Return: the node's number of pages potentially available for dirty
 269 * page cache.  This is the base value for the per-node dirty limits.
 270 */
 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 272{
 273	unsigned long nr_pages = 0;
 274	int z;
 275
 276	for (z = 0; z < MAX_NR_ZONES; z++) {
 277		struct zone *zone = pgdat->node_zones + z;
 278
 279		if (!populated_zone(zone))
 280			continue;
 281
 282		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 283	}
 284
 285	/*
 286	 * Pages reserved for the kernel should not be considered
 287	 * dirtyable, to prevent a situation where reclaim has to
 288	 * clean pages in order to balance the zones.
 289	 */
 290	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 291
 292	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 293	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 294
 295	return nr_pages;
 296}
 297
 298static unsigned long highmem_dirtyable_memory(unsigned long total)
 299{
 300#ifdef CONFIG_HIGHMEM
 301	int node;
 302	unsigned long x = 0;
 303	int i;
 304
 305	for_each_node_state(node, N_HIGH_MEMORY) {
 306		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 307			struct zone *z;
 308			unsigned long nr_pages;
 309
 310			if (!is_highmem_idx(i))
 311				continue;
 312
 313			z = &NODE_DATA(node)->node_zones[i];
 314			if (!populated_zone(z))
 315				continue;
 316
 317			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 318			/* watch for underflows */
 319			nr_pages -= min(nr_pages, high_wmark_pages(z));
 320			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 321			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 322			x += nr_pages;
 323		}
 324	}
 325
 326	/*
 327	 * Unreclaimable memory (kernel memory or anonymous memory
 328	 * without swap) can bring down the dirtyable pages below
 329	 * the zone's dirty balance reserve and the above calculation
 330	 * will underflow.  However we still want to add in nodes
 331	 * which are below threshold (negative values) to get a more
 332	 * accurate calculation but make sure that the total never
 333	 * underflows.
 334	 */
 335	if ((long)x < 0)
 336		x = 0;
 337
 338	/*
 339	 * Make sure that the number of highmem pages is never larger
 340	 * than the number of the total dirtyable memory. This can only
 341	 * occur in very strange VM situations but we want to make sure
 342	 * that this does not occur.
 343	 */
 344	return min(x, total);
 345#else
 346	return 0;
 347#endif
 348}
 349
 350/**
 351 * global_dirtyable_memory - number of globally dirtyable pages
 352 *
 353 * Return: the global number of pages potentially available for dirty
 354 * page cache.  This is the base value for the global dirty limits.
 355 */
 356static unsigned long global_dirtyable_memory(void)
 357{
 358	unsigned long x;
 359
 360	x = global_zone_page_state(NR_FREE_PAGES);
 361	/*
 362	 * Pages reserved for the kernel should not be considered
 363	 * dirtyable, to prevent a situation where reclaim has to
 364	 * clean pages in order to balance the zones.
 365	 */
 366	x -= min(x, totalreserve_pages);
 367
 368	x += global_node_page_state(NR_INACTIVE_FILE);
 369	x += global_node_page_state(NR_ACTIVE_FILE);
 370
 371	if (!vm_highmem_is_dirtyable)
 372		x -= highmem_dirtyable_memory(x);
 373
 374	return x + 1;	/* Ensure that we never return 0 */
 375}
 376
 377/**
 378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 379 * @dtc: dirty_throttle_control of interest
 380 *
 381 * Calculate @dtc->thresh and ->bg_thresh considering
 382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 383 * must ensure that @dtc->avail is set before calling this function.  The
 384 * dirty limits will be lifted by 1/4 for real-time tasks.
 385 */
 386static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 387{
 388	const unsigned long available_memory = dtc->avail;
 389	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 390	unsigned long bytes = vm_dirty_bytes;
 391	unsigned long bg_bytes = dirty_background_bytes;
 392	/* convert ratios to per-PAGE_SIZE for higher precision */
 393	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 394	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 395	unsigned long thresh;
 396	unsigned long bg_thresh;
 397	struct task_struct *tsk;
 398
 399	/* gdtc is !NULL iff @dtc is for memcg domain */
 400	if (gdtc) {
 401		unsigned long global_avail = gdtc->avail;
 402
 403		/*
 404		 * The byte settings can't be applied directly to memcg
 405		 * domains.  Convert them to ratios by scaling against
 406		 * globally available memory.  As the ratios are in
 407		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 408		 * number of pages.
 409		 */
 410		if (bytes)
 411			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 412				    PAGE_SIZE);
 413		if (bg_bytes)
 414			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 415				       PAGE_SIZE);
 416		bytes = bg_bytes = 0;
 417	}
 418
 419	if (bytes)
 420		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 421	else
 422		thresh = (ratio * available_memory) / PAGE_SIZE;
 423
 424	if (bg_bytes)
 425		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 426	else
 427		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 428
 429	if (bg_thresh >= thresh)
 430		bg_thresh = thresh / 2;
 431	tsk = current;
 432	if (rt_task(tsk)) {
 433		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 434		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 435	}
 436	dtc->thresh = thresh;
 437	dtc->bg_thresh = bg_thresh;
 438
 439	/* we should eventually report the domain in the TP */
 440	if (!gdtc)
 441		trace_global_dirty_state(bg_thresh, thresh);
 442}
 443
 444/**
 445 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 446 * @pbackground: out parameter for bg_thresh
 447 * @pdirty: out parameter for thresh
 448 *
 449 * Calculate bg_thresh and thresh for global_wb_domain.  See
 450 * domain_dirty_limits() for details.
 451 */
 452void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 453{
 454	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 455
 456	gdtc.avail = global_dirtyable_memory();
 457	domain_dirty_limits(&gdtc);
 458
 459	*pbackground = gdtc.bg_thresh;
 460	*pdirty = gdtc.thresh;
 
 
 
 
 
 461}
 462
 463/**
 464 * node_dirty_limit - maximum number of dirty pages allowed in a node
 465 * @pgdat: the node
 466 *
 467 * Return: the maximum number of dirty pages allowed in a node, based
 468 * on the node's dirtyable memory.
 469 */
 470static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 471{
 472	unsigned long node_memory = node_dirtyable_memory(pgdat);
 473	struct task_struct *tsk = current;
 474	unsigned long dirty;
 475
 476	if (vm_dirty_bytes)
 477		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 478			node_memory / global_dirtyable_memory();
 479	else
 480		dirty = vm_dirty_ratio * node_memory / 100;
 481
 482	if (rt_task(tsk))
 483		dirty += dirty / 4;
 484
 485	return dirty;
 486}
 487
 488/**
 489 * node_dirty_ok - tells whether a node is within its dirty limits
 490 * @pgdat: the node to check
 491 *
 492 * Return: %true when the dirty pages in @pgdat are within the node's
 493 * dirty limit, %false if the limit is exceeded.
 494 */
 495bool node_dirty_ok(struct pglist_data *pgdat)
 496{
 497	unsigned long limit = node_dirty_limit(pgdat);
 498	unsigned long nr_pages = 0;
 499
 500	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 501	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 502
 503	return nr_pages <= limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504}
 505
 506int dirty_background_ratio_handler(struct ctl_table *table, int write,
 507		void *buffer, size_t *lenp, loff_t *ppos)
 
 508{
 509	int ret;
 510
 511	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 512	if (ret == 0 && write)
 513		dirty_background_bytes = 0;
 514	return ret;
 515}
 516
 517int dirty_background_bytes_handler(struct ctl_table *table, int write,
 518		void *buffer, size_t *lenp, loff_t *ppos)
 
 519{
 520	int ret;
 521
 522	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 523	if (ret == 0 && write)
 524		dirty_background_ratio = 0;
 525	return ret;
 526}
 527
 528int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 529		size_t *lenp, loff_t *ppos)
 
 530{
 531	int old_ratio = vm_dirty_ratio;
 532	int ret;
 533
 534	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 535	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 536		writeback_set_ratelimit();
 537		vm_dirty_bytes = 0;
 538	}
 539	return ret;
 540}
 541
 542int dirty_bytes_handler(struct ctl_table *table, int write,
 543		void *buffer, size_t *lenp, loff_t *ppos)
 
 544{
 545	unsigned long old_bytes = vm_dirty_bytes;
 546	int ret;
 547
 548	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 549	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 550		writeback_set_ratelimit();
 551		vm_dirty_ratio = 0;
 552	}
 553	return ret;
 554}
 555
 556static unsigned long wp_next_time(unsigned long cur_time)
 557{
 558	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 559	/* 0 has a special meaning... */
 560	if (!cur_time)
 561		return 1;
 562	return cur_time;
 563}
 564
 565static void wb_domain_writeout_inc(struct wb_domain *dom,
 566				   struct fprop_local_percpu *completions,
 567				   unsigned int max_prop_frac)
 568{
 569	__fprop_inc_percpu_max(&dom->completions, completions,
 570			       max_prop_frac);
 571	/* First event after period switching was turned off? */
 572	if (unlikely(!dom->period_time)) {
 573		/*
 574		 * We can race with other __bdi_writeout_inc calls here but
 575		 * it does not cause any harm since the resulting time when
 576		 * timer will fire and what is in writeout_period_time will be
 577		 * roughly the same.
 578		 */
 579		dom->period_time = wp_next_time(jiffies);
 580		mod_timer(&dom->period_timer, dom->period_time);
 581	}
 582}
 583
 584/*
 585 * Increment @wb's writeout completion count and the global writeout
 586 * completion count. Called from test_clear_page_writeback().
 587 */
 588static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 589{
 590	struct wb_domain *cgdom;
 591
 592	inc_wb_stat(wb, WB_WRITTEN);
 593	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 594			       wb->bdi->max_prop_frac);
 595
 596	cgdom = mem_cgroup_wb_domain(wb);
 597	if (cgdom)
 598		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 599				       wb->bdi->max_prop_frac);
 600}
 601
 602void wb_writeout_inc(struct bdi_writeback *wb)
 603{
 604	unsigned long flags;
 605
 606	local_irq_save(flags);
 607	__wb_writeout_inc(wb);
 608	local_irq_restore(flags);
 609}
 610EXPORT_SYMBOL_GPL(wb_writeout_inc);
 611
 612/*
 613 * On idle system, we can be called long after we scheduled because we use
 614 * deferred timers so count with missed periods.
 615 */
 616static void writeout_period(struct timer_list *t)
 
 617{
 618	struct wb_domain *dom = from_timer(dom, t, period_timer);
 619	int miss_periods = (jiffies - dom->period_time) /
 620						 VM_COMPLETIONS_PERIOD_LEN;
 621
 622	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 623		dom->period_time = wp_next_time(dom->period_time +
 624				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 625		mod_timer(&dom->period_timer, dom->period_time);
 626	} else {
 627		/*
 628		 * Aging has zeroed all fractions. Stop wasting CPU on period
 629		 * updates.
 630		 */
 631		dom->period_time = 0;
 632	}
 633}
 634
 635int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 636{
 637	memset(dom, 0, sizeof(*dom));
 638
 639	spin_lock_init(&dom->lock);
 640
 641	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 642
 643	dom->dirty_limit_tstamp = jiffies;
 644
 645	return fprop_global_init(&dom->completions, gfp);
 646}
 647
 648#ifdef CONFIG_CGROUP_WRITEBACK
 649void wb_domain_exit(struct wb_domain *dom)
 650{
 651	del_timer_sync(&dom->period_timer);
 652	fprop_global_destroy(&dom->completions);
 653}
 654#endif
 655
 656/*
 657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 658 * registered backing devices, which, for obvious reasons, can not
 659 * exceed 100%.
 660 */
 661static unsigned int bdi_min_ratio;
 662
 663int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 664{
 665	int ret = 0;
 666
 667	spin_lock_bh(&bdi_lock);
 668	if (min_ratio > bdi->max_ratio) {
 669		ret = -EINVAL;
 670	} else {
 671		min_ratio -= bdi->min_ratio;
 672		if (bdi_min_ratio + min_ratio < 100) {
 673			bdi_min_ratio += min_ratio;
 674			bdi->min_ratio += min_ratio;
 675		} else {
 676			ret = -EINVAL;
 677		}
 678	}
 679	spin_unlock_bh(&bdi_lock);
 680
 681	return ret;
 682}
 683
 684int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 685{
 686	int ret = 0;
 687
 688	if (max_ratio > 100)
 689		return -EINVAL;
 690
 691	spin_lock_bh(&bdi_lock);
 692	if (bdi->min_ratio > max_ratio) {
 693		ret = -EINVAL;
 694	} else {
 695		bdi->max_ratio = max_ratio;
 696		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 697	}
 698	spin_unlock_bh(&bdi_lock);
 699
 700	return ret;
 701}
 702EXPORT_SYMBOL(bdi_set_max_ratio);
 703
 704static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 705					   unsigned long bg_thresh)
 706{
 707	return (thresh + bg_thresh) / 2;
 708}
 709
 710static unsigned long hard_dirty_limit(struct wb_domain *dom,
 711				      unsigned long thresh)
 712{
 713	return max(thresh, dom->dirty_limit);
 714}
 715
 716/*
 717 * Memory which can be further allocated to a memcg domain is capped by
 718 * system-wide clean memory excluding the amount being used in the domain.
 719 */
 720static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 721			    unsigned long filepages, unsigned long headroom)
 722{
 723	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 724	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 725	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 726	unsigned long other_clean = global_clean - min(global_clean, clean);
 727
 728	mdtc->avail = filepages + min(headroom, other_clean);
 729}
 730
 731/**
 732 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 733 * @dtc: dirty_throttle_context of interest
 
 
 
 
 734 *
 735 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 736 * when sleeping max_pause per page is not enough to keep the dirty pages under
 737 * control. For example, when the device is completely stalled due to some error
 738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 739 * In the other normal situations, it acts more gently by throttling the tasks
 740 * more (rather than completely block them) when the wb dirty pages go high.
 741 *
 742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 743 * - starving fast devices
 744 * - piling up dirty pages (that will take long time to sync) on slow devices
 745 *
 746 * The wb's share of dirty limit will be adapting to its throughput and
 747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 748 *
 749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 750 * dirty balancing includes all PG_dirty and PG_writeback pages.
 751 */
 752static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 753{
 754	struct wb_domain *dom = dtc_dom(dtc);
 755	unsigned long thresh = dtc->thresh;
 756	u64 wb_thresh;
 757	unsigned long numerator, denominator;
 758	unsigned long wb_min_ratio, wb_max_ratio;
 759
 760	/*
 761	 * Calculate this BDI's share of the thresh ratio.
 762	 */
 763	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 764			      &numerator, &denominator);
 765
 766	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 767	wb_thresh *= numerator;
 768	wb_thresh = div64_ul(wb_thresh, denominator);
 769
 770	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 
 
 771
 772	wb_thresh += (thresh * wb_min_ratio) / 100;
 773	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 774		wb_thresh = thresh * wb_max_ratio / 100;
 775
 776	return wb_thresh;
 777}
 778
 779unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 780{
 781	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 782					       .thresh = thresh };
 783	return __wb_calc_thresh(&gdtc);
 784}
 785
 786/*
 787 *                           setpoint - dirty 3
 788 *        f(dirty) := 1.0 + (----------------)
 789 *                           limit - setpoint
 790 *
 791 * it's a 3rd order polynomial that subjects to
 792 *
 793 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 794 * (2) f(setpoint) = 1.0 => the balance point
 795 * (3) f(limit)    = 0   => the hard limit
 796 * (4) df/dx      <= 0	 => negative feedback control
 797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 798 *     => fast response on large errors; small oscillation near setpoint
 799 */
 800static long long pos_ratio_polynom(unsigned long setpoint,
 801					  unsigned long dirty,
 802					  unsigned long limit)
 803{
 804	long long pos_ratio;
 805	long x;
 806
 807	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 808		      (limit - setpoint) | 1);
 809	pos_ratio = x;
 810	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 811	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 812	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 813
 814	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 815}
 816
 817/*
 818 * Dirty position control.
 819 *
 820 * (o) global/bdi setpoints
 821 *
 822 * We want the dirty pages be balanced around the global/wb setpoints.
 823 * When the number of dirty pages is higher/lower than the setpoint, the
 824 * dirty position control ratio (and hence task dirty ratelimit) will be
 825 * decreased/increased to bring the dirty pages back to the setpoint.
 826 *
 827 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 828 *
 829 *     if (dirty < setpoint) scale up   pos_ratio
 830 *     if (dirty > setpoint) scale down pos_ratio
 831 *
 832 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 833 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 834 *
 835 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 836 *
 837 * (o) global control line
 838 *
 839 *     ^ pos_ratio
 840 *     |
 841 *     |            |<===== global dirty control scope ======>|
 842 * 2.0  * * * * * * *
 843 *     |            .*
 844 *     |            . *
 845 *     |            .   *
 846 *     |            .     *
 847 *     |            .        *
 848 *     |            .            *
 849 * 1.0 ................................*
 850 *     |            .                  .     *
 851 *     |            .                  .          *
 852 *     |            .                  .              *
 853 *     |            .                  .                 *
 854 *     |            .                  .                    *
 855 *   0 +------------.------------------.----------------------*------------->
 856 *           freerun^          setpoint^                 limit^   dirty pages
 857 *
 858 * (o) wb control line
 859 *
 860 *     ^ pos_ratio
 861 *     |
 862 *     |            *
 863 *     |              *
 864 *     |                *
 865 *     |                  *
 866 *     |                    * |<=========== span ============>|
 867 * 1.0 .......................*
 868 *     |                      . *
 869 *     |                      .   *
 870 *     |                      .     *
 871 *     |                      .       *
 872 *     |                      .         *
 873 *     |                      .           *
 874 *     |                      .             *
 875 *     |                      .               *
 876 *     |                      .                 *
 877 *     |                      .                   *
 878 *     |                      .                     *
 879 * 1/4 ...............................................* * * * * * * * * * * *
 880 *     |                      .                         .
 881 *     |                      .                           .
 882 *     |                      .                             .
 883 *   0 +----------------------.-------------------------------.------------->
 884 *                wb_setpoint^                    x_intercept^
 885 *
 886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 887 * be smoothly throttled down to normal if it starts high in situations like
 888 * - start writing to a slow SD card and a fast disk at the same time. The SD
 889 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 890 * - the wb dirty thresh drops quickly due to change of JBOD workload
 891 */
 892static void wb_position_ratio(struct dirty_throttle_control *dtc)
 893{
 894	struct bdi_writeback *wb = dtc->wb;
 895	unsigned long write_bw = wb->avg_write_bandwidth;
 896	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 897	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 898	unsigned long wb_thresh = dtc->wb_thresh;
 
 
 
 899	unsigned long x_intercept;
 900	unsigned long setpoint;		/* dirty pages' target balance point */
 901	unsigned long wb_setpoint;
 902	unsigned long span;
 903	long long pos_ratio;		/* for scaling up/down the rate limit */
 904	long x;
 905
 906	dtc->pos_ratio = 0;
 907
 908	if (unlikely(dtc->dirty >= limit))
 909		return;
 910
 911	/*
 912	 * global setpoint
 913	 *
 914	 * See comment for pos_ratio_polynom().
 
 
 
 
 
 
 
 
 
 
 
 915	 */
 916	setpoint = (freerun + limit) / 2;
 917	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 918
 919	/*
 920	 * The strictlimit feature is a tool preventing mistrusted filesystems
 921	 * from growing a large number of dirty pages before throttling. For
 922	 * such filesystems balance_dirty_pages always checks wb counters
 923	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 924	 * This is especially important for fuse which sets bdi->max_ratio to
 925	 * 1% by default. Without strictlimit feature, fuse writeback may
 926	 * consume arbitrary amount of RAM because it is accounted in
 927	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 928	 *
 929	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 930	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 931	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 932	 * limits are set by default to 10% and 20% (background and throttle).
 933	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 934	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 935	 * about ~6K pages (as the average of background and throttle wb
 936	 * limits). The 3rd order polynomial will provide positive feedback if
 937	 * wb_dirty is under wb_setpoint and vice versa.
 938	 *
 939	 * Note, that we cannot use global counters in these calculations
 940	 * because we want to throttle process writing to a strictlimit wb
 941	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 942	 * in the example above).
 943	 */
 944	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 945		long long wb_pos_ratio;
 946
 947		if (dtc->wb_dirty < 8) {
 948			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 949					   2 << RATELIMIT_CALC_SHIFT);
 950			return;
 951		}
 952
 953		if (dtc->wb_dirty >= wb_thresh)
 954			return;
 955
 956		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 957						    dtc->wb_bg_thresh);
 958
 959		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 960			return;
 961
 962		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 963						 wb_thresh);
 964
 965		/*
 966		 * Typically, for strictlimit case, wb_setpoint << setpoint
 967		 * and pos_ratio >> wb_pos_ratio. In the other words global
 968		 * state ("dirty") is not limiting factor and we have to
 969		 * make decision based on wb counters. But there is an
 970		 * important case when global pos_ratio should get precedence:
 971		 * global limits are exceeded (e.g. due to activities on other
 972		 * wb's) while given strictlimit wb is below limit.
 973		 *
 974		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 975		 * but it would look too non-natural for the case of all
 976		 * activity in the system coming from a single strictlimit wb
 977		 * with bdi->max_ratio == 100%.
 978		 *
 979		 * Note that min() below somewhat changes the dynamics of the
 980		 * control system. Normally, pos_ratio value can be well over 3
 981		 * (when globally we are at freerun and wb is well below wb
 982		 * setpoint). Now the maximum pos_ratio in the same situation
 983		 * is 2. We might want to tweak this if we observe the control
 984		 * system is too slow to adapt.
 985		 */
 986		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 987		return;
 988	}
 989
 990	/*
 991	 * We have computed basic pos_ratio above based on global situation. If
 992	 * the wb is over/under its share of dirty pages, we want to scale
 993	 * pos_ratio further down/up. That is done by the following mechanism.
 994	 */
 995
 996	/*
 997	 * wb setpoint
 998	 *
 999	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1000	 *
1001	 *                        x_intercept - wb_dirty
1002	 *                     := --------------------------
1003	 *                        x_intercept - wb_setpoint
1004	 *
1005	 * The main wb control line is a linear function that subjects to
1006	 *
1007	 * (1) f(wb_setpoint) = 1.0
1008	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1009	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1010	 *
1011	 * For single wb case, the dirty pages are observed to fluctuate
1012	 * regularly within range
1013	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1014	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1015	 * fluctuation range for pos_ratio.
1016	 *
1017	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1018	 * own size, so move the slope over accordingly and choose a slope that
1019	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1020	 */
1021	if (unlikely(wb_thresh > dtc->thresh))
1022		wb_thresh = dtc->thresh;
1023	/*
1024	 * It's very possible that wb_thresh is close to 0 not because the
1025	 * device is slow, but that it has remained inactive for long time.
1026	 * Honour such devices a reasonable good (hopefully IO efficient)
1027	 * threshold, so that the occasional writes won't be blocked and active
1028	 * writes can rampup the threshold quickly.
1029	 */
1030	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1031	/*
1032	 * scale global setpoint to wb's:
1033	 *	wb_setpoint = setpoint * wb_thresh / thresh
1034	 */
1035	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1036	wb_setpoint = setpoint * (u64)x >> 16;
1037	/*
1038	 * Use span=(8*write_bw) in single wb case as indicated by
1039	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1040	 *
1041	 *        wb_thresh                    thresh - wb_thresh
1042	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1043	 *         thresh                           thresh
1044	 */
1045	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1046	x_intercept = wb_setpoint + span;
1047
1048	if (dtc->wb_dirty < x_intercept - span / 4) {
1049		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1050				      (x_intercept - wb_setpoint) | 1);
1051	} else
1052		pos_ratio /= 4;
1053
1054	/*
1055	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1056	 * It may push the desired control point of global dirty pages higher
1057	 * than setpoint.
1058	 */
1059	x_intercept = wb_thresh / 2;
1060	if (dtc->wb_dirty < x_intercept) {
1061		if (dtc->wb_dirty > x_intercept / 8)
1062			pos_ratio = div_u64(pos_ratio * x_intercept,
1063					    dtc->wb_dirty);
1064		else
1065			pos_ratio *= 8;
1066	}
1067
1068	dtc->pos_ratio = pos_ratio;
1069}
1070
1071static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1072				      unsigned long elapsed,
1073				      unsigned long written)
1074{
1075	const unsigned long period = roundup_pow_of_two(3 * HZ);
1076	unsigned long avg = wb->avg_write_bandwidth;
1077	unsigned long old = wb->write_bandwidth;
1078	u64 bw;
1079
1080	/*
1081	 * bw = written * HZ / elapsed
1082	 *
1083	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1084	 * write_bandwidth = ---------------------------------------------------
1085	 *                                          period
1086	 *
1087	 * @written may have decreased due to account_page_redirty().
1088	 * Avoid underflowing @bw calculation.
1089	 */
1090	bw = written - min(written, wb->written_stamp);
1091	bw *= HZ;
1092	if (unlikely(elapsed > period)) {
1093		bw = div64_ul(bw, elapsed);
1094		avg = bw;
1095		goto out;
1096	}
1097	bw += (u64)wb->write_bandwidth * (period - elapsed);
1098	bw >>= ilog2(period);
1099
1100	/*
1101	 * one more level of smoothing, for filtering out sudden spikes
1102	 */
1103	if (avg > old && old >= (unsigned long)bw)
1104		avg -= (avg - old) >> 3;
1105
1106	if (avg < old && old <= (unsigned long)bw)
1107		avg += (old - avg) >> 3;
1108
1109out:
1110	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1111	avg = max(avg, 1LU);
1112	if (wb_has_dirty_io(wb)) {
1113		long delta = avg - wb->avg_write_bandwidth;
1114		WARN_ON_ONCE(atomic_long_add_return(delta,
1115					&wb->bdi->tot_write_bandwidth) <= 0);
1116	}
1117	wb->write_bandwidth = bw;
1118	wb->avg_write_bandwidth = avg;
1119}
1120
1121static void update_dirty_limit(struct dirty_throttle_control *dtc)
1122{
1123	struct wb_domain *dom = dtc_dom(dtc);
1124	unsigned long thresh = dtc->thresh;
1125	unsigned long limit = dom->dirty_limit;
1126
1127	/*
1128	 * Follow up in one step.
1129	 */
1130	if (limit < thresh) {
1131		limit = thresh;
1132		goto update;
1133	}
1134
1135	/*
1136	 * Follow down slowly. Use the higher one as the target, because thresh
1137	 * may drop below dirty. This is exactly the reason to introduce
1138	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1139	 */
1140	thresh = max(thresh, dtc->dirty);
1141	if (limit > thresh) {
1142		limit -= (limit - thresh) >> 5;
1143		goto update;
1144	}
1145	return;
1146update:
1147	dom->dirty_limit = limit;
1148}
1149
1150static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
 
1151				    unsigned long now)
1152{
1153	struct wb_domain *dom = dtc_dom(dtc);
 
1154
1155	/*
1156	 * check locklessly first to optimize away locking for the most time
1157	 */
1158	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1159		return;
1160
1161	spin_lock(&dom->lock);
1162	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1163		update_dirty_limit(dtc);
1164		dom->dirty_limit_tstamp = now;
1165	}
1166	spin_unlock(&dom->lock);
1167}
1168
1169/*
1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1171 *
1172 * Normal wb tasks will be curbed at or below it in long term.
1173 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1174 */
1175static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1176				      unsigned long dirtied,
1177				      unsigned long elapsed)
1178{
1179	struct bdi_writeback *wb = dtc->wb;
1180	unsigned long dirty = dtc->dirty;
1181	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1182	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 
 
 
1183	unsigned long setpoint = (freerun + limit) / 2;
1184	unsigned long write_bw = wb->avg_write_bandwidth;
1185	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1186	unsigned long dirty_rate;
1187	unsigned long task_ratelimit;
1188	unsigned long balanced_dirty_ratelimit;
 
1189	unsigned long step;
1190	unsigned long x;
1191	unsigned long shift;
1192
1193	/*
1194	 * The dirty rate will match the writeout rate in long term, except
1195	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1196	 */
1197	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1198
 
 
1199	/*
1200	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1201	 */
1202	task_ratelimit = (u64)dirty_ratelimit *
1203					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1204	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1205
1206	/*
1207	 * A linear estimation of the "balanced" throttle rate. The theory is,
1208	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1209	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1210	 * formula will yield the balanced rate limit (write_bw / N).
1211	 *
1212	 * Note that the expanded form is not a pure rate feedback:
1213	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1214	 * but also takes pos_ratio into account:
1215	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1216	 *
1217	 * (1) is not realistic because pos_ratio also takes part in balancing
1218	 * the dirty rate.  Consider the state
1219	 *	pos_ratio = 0.5						     (3)
1220	 *	rate = 2 * (write_bw / N)				     (4)
1221	 * If (1) is used, it will stuck in that state! Because each dd will
1222	 * be throttled at
1223	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1224	 * yielding
1225	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1226	 * put (6) into (1) we get
1227	 *	rate_(i+1) = rate_(i)					     (7)
1228	 *
1229	 * So we end up using (2) to always keep
1230	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1231	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1232	 * pos_ratio is able to drive itself to 1.0, which is not only where
1233	 * the dirty count meet the setpoint, but also where the slope of
1234	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1235	 */
1236	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1237					   dirty_rate | 1);
1238	/*
1239	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1240	 */
1241	if (unlikely(balanced_dirty_ratelimit > write_bw))
1242		balanced_dirty_ratelimit = write_bw;
1243
1244	/*
1245	 * We could safely do this and return immediately:
1246	 *
1247	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1248	 *
1249	 * However to get a more stable dirty_ratelimit, the below elaborated
1250	 * code makes use of task_ratelimit to filter out singular points and
1251	 * limit the step size.
1252	 *
1253	 * The below code essentially only uses the relative value of
1254	 *
1255	 *	task_ratelimit - dirty_ratelimit
1256	 *	= (pos_ratio - 1) * dirty_ratelimit
1257	 *
1258	 * which reflects the direction and size of dirty position error.
1259	 */
1260
1261	/*
1262	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1263	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1264	 * For example, when
1265	 * - dirty_ratelimit > balanced_dirty_ratelimit
1266	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1267	 * lowering dirty_ratelimit will help meet both the position and rate
1268	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1269	 * only help meet the rate target. After all, what the users ultimately
1270	 * feel and care are stable dirty rate and small position error.
1271	 *
1272	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1273	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1274	 * keeps jumping around randomly and can even leap far away at times
1275	 * due to the small 200ms estimation period of dirty_rate (we want to
1276	 * keep that period small to reduce time lags).
1277	 */
1278	step = 0;
1279
1280	/*
1281	 * For strictlimit case, calculations above were based on wb counters
1282	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1283	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1284	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1285	 * "dirty" and wb_setpoint as "setpoint".
1286	 *
1287	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1288	 * it's possible that wb_thresh is close to zero due to inactivity
1289	 * of backing device.
1290	 */
1291	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1292		dirty = dtc->wb_dirty;
1293		if (dtc->wb_dirty < 8)
1294			setpoint = dtc->wb_dirty + 1;
1295		else
1296			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1297	}
1298
1299	if (dirty < setpoint) {
1300		x = min3(wb->balanced_dirty_ratelimit,
1301			 balanced_dirty_ratelimit, task_ratelimit);
1302		if (dirty_ratelimit < x)
1303			step = x - dirty_ratelimit;
1304	} else {
1305		x = max3(wb->balanced_dirty_ratelimit,
1306			 balanced_dirty_ratelimit, task_ratelimit);
1307		if (dirty_ratelimit > x)
1308			step = dirty_ratelimit - x;
1309	}
1310
1311	/*
1312	 * Don't pursue 100% rate matching. It's impossible since the balanced
1313	 * rate itself is constantly fluctuating. So decrease the track speed
1314	 * when it gets close to the target. Helps eliminate pointless tremors.
1315	 */
1316	shift = dirty_ratelimit / (2 * step + 1);
1317	if (shift < BITS_PER_LONG)
1318		step = DIV_ROUND_UP(step >> shift, 8);
1319	else
1320		step = 0;
1321
1322	if (dirty_ratelimit < balanced_dirty_ratelimit)
1323		dirty_ratelimit += step;
1324	else
1325		dirty_ratelimit -= step;
1326
1327	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1328	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1329
1330	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1331}
1332
1333static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1334				  struct dirty_throttle_control *mdtc,
1335				  unsigned long start_time,
1336				  bool update_ratelimit)
 
 
 
1337{
1338	struct bdi_writeback *wb = gdtc->wb;
1339	unsigned long now = jiffies;
1340	unsigned long elapsed = now - wb->bw_time_stamp;
1341	unsigned long dirtied;
1342	unsigned long written;
1343
1344	lockdep_assert_held(&wb->list_lock);
1345
1346	/*
1347	 * rate-limit, only update once every 200ms.
1348	 */
1349	if (elapsed < BANDWIDTH_INTERVAL)
1350		return;
1351
1352	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1353	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1354
1355	/*
1356	 * Skip quiet periods when disk bandwidth is under-utilized.
1357	 * (at least 1s idle time between two flusher runs)
1358	 */
1359	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1360		goto snapshot;
1361
1362	if (update_ratelimit) {
1363		domain_update_bandwidth(gdtc, now);
1364		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1365
1366		/*
1367		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1368		 * compiler has no way to figure that out.  Help it.
1369		 */
1370		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1371			domain_update_bandwidth(mdtc, now);
1372			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1373		}
1374	}
1375	wb_update_write_bandwidth(wb, elapsed, written);
1376
1377snapshot:
1378	wb->dirtied_stamp = dirtied;
1379	wb->written_stamp = written;
1380	wb->bw_time_stamp = now;
1381}
1382
1383void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
 
 
 
 
 
 
1384{
1385	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1386
1387	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
 
 
 
1388}
1389
1390/*
1391 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1392 * will look to see if it needs to start dirty throttling.
1393 *
1394 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1395 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1396 * (the number of pages we may dirty without exceeding the dirty limits).
1397 */
1398static unsigned long dirty_poll_interval(unsigned long dirty,
1399					 unsigned long thresh)
1400{
1401	if (thresh > dirty)
1402		return 1UL << (ilog2(thresh - dirty) >> 1);
1403
1404	return 1;
1405}
1406
1407static unsigned long wb_max_pause(struct bdi_writeback *wb,
1408				  unsigned long wb_dirty)
1409{
1410	unsigned long bw = wb->avg_write_bandwidth;
1411	unsigned long t;
1412
1413	/*
1414	 * Limit pause time for small memory systems. If sleeping for too long
1415	 * time, a small pool of dirty/writeback pages may go empty and disk go
1416	 * idle.
1417	 *
1418	 * 8 serves as the safety ratio.
1419	 */
1420	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1421	t++;
1422
1423	return min_t(unsigned long, t, MAX_PAUSE);
1424}
1425
1426static long wb_min_pause(struct bdi_writeback *wb,
1427			 long max_pause,
1428			 unsigned long task_ratelimit,
1429			 unsigned long dirty_ratelimit,
1430			 int *nr_dirtied_pause)
1431{
1432	long hi = ilog2(wb->avg_write_bandwidth);
1433	long lo = ilog2(wb->dirty_ratelimit);
1434	long t;		/* target pause */
1435	long pause;	/* estimated next pause */
1436	int pages;	/* target nr_dirtied_pause */
1437
1438	/* target for 10ms pause on 1-dd case */
1439	t = max(1, HZ / 100);
1440
1441	/*
1442	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1443	 * overheads.
1444	 *
1445	 * (N * 10ms) on 2^N concurrent tasks.
1446	 */
1447	if (hi > lo)
1448		t += (hi - lo) * (10 * HZ) / 1024;
1449
1450	/*
1451	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1452	 * on the much more stable dirty_ratelimit. However the next pause time
1453	 * will be computed based on task_ratelimit and the two rate limits may
1454	 * depart considerably at some time. Especially if task_ratelimit goes
1455	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1456	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1457	 * result task_ratelimit won't be executed faithfully, which could
1458	 * eventually bring down dirty_ratelimit.
1459	 *
1460	 * We apply two rules to fix it up:
1461	 * 1) try to estimate the next pause time and if necessary, use a lower
1462	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1463	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1464	 * 2) limit the target pause time to max_pause/2, so that the normal
1465	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1466	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1467	 */
1468	t = min(t, 1 + max_pause / 2);
1469	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1470
1471	/*
1472	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1473	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1474	 * When the 16 consecutive reads are often interrupted by some dirty
1475	 * throttling pause during the async writes, cfq will go into idles
1476	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1477	 * until reaches DIRTY_POLL_THRESH=32 pages.
1478	 */
1479	if (pages < DIRTY_POLL_THRESH) {
1480		t = max_pause;
1481		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482		if (pages > DIRTY_POLL_THRESH) {
1483			pages = DIRTY_POLL_THRESH;
1484			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1485		}
1486	}
1487
1488	pause = HZ * pages / (task_ratelimit + 1);
1489	if (pause > max_pause) {
1490		t = max_pause;
1491		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1492	}
1493
1494	*nr_dirtied_pause = pages;
1495	/*
1496	 * The minimal pause time will normally be half the target pause time.
1497	 */
1498	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1499}
1500
1501static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1502{
1503	struct bdi_writeback *wb = dtc->wb;
1504	unsigned long wb_reclaimable;
1505
1506	/*
1507	 * wb_thresh is not treated as some limiting factor as
1508	 * dirty_thresh, due to reasons
1509	 * - in JBOD setup, wb_thresh can fluctuate a lot
1510	 * - in a system with HDD and USB key, the USB key may somehow
1511	 *   go into state (wb_dirty >> wb_thresh) either because
1512	 *   wb_dirty starts high, or because wb_thresh drops low.
1513	 *   In this case we don't want to hard throttle the USB key
1514	 *   dirtiers for 100 seconds until wb_dirty drops under
1515	 *   wb_thresh. Instead the auxiliary wb control line in
1516	 *   wb_position_ratio() will let the dirtier task progress
1517	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1518	 */
1519	dtc->wb_thresh = __wb_calc_thresh(dtc);
1520	dtc->wb_bg_thresh = dtc->thresh ?
1521		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1522
1523	/*
1524	 * In order to avoid the stacked BDI deadlock we need
1525	 * to ensure we accurately count the 'dirty' pages when
1526	 * the threshold is low.
1527	 *
1528	 * Otherwise it would be possible to get thresh+n pages
1529	 * reported dirty, even though there are thresh-m pages
1530	 * actually dirty; with m+n sitting in the percpu
1531	 * deltas.
1532	 */
1533	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1534		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1535		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1536	} else {
1537		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1538		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1539	}
1540}
1541
1542/*
1543 * balance_dirty_pages() must be called by processes which are generating dirty
1544 * data.  It looks at the number of dirty pages in the machine and will force
1545 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1546 * If we're over `background_thresh' then the writeback threads are woken to
1547 * perform some writeout.
1548 */
1549static void balance_dirty_pages(struct bdi_writeback *wb,
1550				unsigned long pages_dirtied)
1551{
1552	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1553	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1554	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1555	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1556						     &mdtc_stor : NULL;
1557	struct dirty_throttle_control *sdtc;
1558	unsigned long nr_reclaimable;	/* = file_dirty */
 
1559	long period;
1560	long pause;
1561	long max_pause;
1562	long min_pause;
1563	int nr_dirtied_pause;
1564	bool dirty_exceeded = false;
1565	unsigned long task_ratelimit;
1566	unsigned long dirty_ratelimit;
1567	struct backing_dev_info *bdi = wb->bdi;
1568	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1569	unsigned long start_time = jiffies;
1570
1571	for (;;) {
1572		unsigned long now = jiffies;
1573		unsigned long dirty, thresh, bg_thresh;
1574		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1575		unsigned long m_thresh = 0;
1576		unsigned long m_bg_thresh = 0;
1577
1578		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1579		gdtc->avail = global_dirtyable_memory();
1580		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1581
1582		domain_dirty_limits(gdtc);
1583
1584		if (unlikely(strictlimit)) {
1585			wb_dirty_limits(gdtc);
1586
1587			dirty = gdtc->wb_dirty;
1588			thresh = gdtc->wb_thresh;
1589			bg_thresh = gdtc->wb_bg_thresh;
1590		} else {
1591			dirty = gdtc->dirty;
1592			thresh = gdtc->thresh;
1593			bg_thresh = gdtc->bg_thresh;
1594		}
1595
1596		if (mdtc) {
1597			unsigned long filepages, headroom, writeback;
 
 
 
 
 
 
 
1598
1599			/*
1600			 * If @wb belongs to !root memcg, repeat the same
1601			 * basic calculations for the memcg domain.
1602			 */
1603			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1604					    &mdtc->dirty, &writeback);
1605			mdtc->dirty += writeback;
1606			mdtc_calc_avail(mdtc, filepages, headroom);
1607
1608			domain_dirty_limits(mdtc);
1609
1610			if (unlikely(strictlimit)) {
1611				wb_dirty_limits(mdtc);
1612				m_dirty = mdtc->wb_dirty;
1613				m_thresh = mdtc->wb_thresh;
1614				m_bg_thresh = mdtc->wb_bg_thresh;
1615			} else {
1616				m_dirty = mdtc->dirty;
1617				m_thresh = mdtc->thresh;
1618				m_bg_thresh = mdtc->bg_thresh;
1619			}
1620		}
1621
1622		/*
1623		 * Throttle it only when the background writeback cannot
1624		 * catch-up. This avoids (excessively) small writeouts
1625		 * when the wb limits are ramping up in case of !strictlimit.
1626		 *
1627		 * In strictlimit case make decision based on the wb counters
1628		 * and limits. Small writeouts when the wb limits are ramping
1629		 * up are the price we consciously pay for strictlimit-ing.
1630		 *
1631		 * If memcg domain is in effect, @dirty should be under
1632		 * both global and memcg freerun ceilings.
1633		 */
1634		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1635		    (!mdtc ||
1636		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1637			unsigned long intv;
1638			unsigned long m_intv;
1639
1640free_running:
1641			intv = dirty_poll_interval(dirty, thresh);
1642			m_intv = ULONG_MAX;
1643
1644			current->dirty_paused_when = now;
1645			current->nr_dirtied = 0;
1646			if (mdtc)
1647				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1648			current->nr_dirtied_pause = min(intv, m_intv);
1649			break;
1650		}
1651
1652		if (unlikely(!writeback_in_progress(wb)))
1653			wb_start_background_writeback(wb);
1654
1655		mem_cgroup_flush_foreign(wb);
1656
1657		/*
1658		 * Calculate global domain's pos_ratio and select the
1659		 * global dtc by default.
 
 
 
 
 
 
 
 
 
1660		 */
1661		if (!strictlimit) {
1662			wb_dirty_limits(gdtc);
1663
1664			if ((current->flags & PF_LOCAL_THROTTLE) &&
1665			    gdtc->wb_dirty <
1666			    dirty_freerun_ceiling(gdtc->wb_thresh,
1667						  gdtc->wb_bg_thresh))
1668				/*
1669				 * LOCAL_THROTTLE tasks must not be throttled
1670				 * when below the per-wb freerun ceiling.
1671				 */
1672				goto free_running;
1673		}
1674
1675		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1676			((gdtc->dirty > gdtc->thresh) || strictlimit);
1677
1678		wb_position_ratio(gdtc);
1679		sdtc = gdtc;
1680
1681		if (mdtc) {
1682			/*
1683			 * If memcg domain is in effect, calculate its
1684			 * pos_ratio.  @wb should satisfy constraints from
1685			 * both global and memcg domains.  Choose the one
1686			 * w/ lower pos_ratio.
1687			 */
1688			if (!strictlimit) {
1689				wb_dirty_limits(mdtc);
1690
1691				if ((current->flags & PF_LOCAL_THROTTLE) &&
1692				    mdtc->wb_dirty <
1693				    dirty_freerun_ceiling(mdtc->wb_thresh,
1694							  mdtc->wb_bg_thresh))
1695					/*
1696					 * LOCAL_THROTTLE tasks must not be
1697					 * throttled when below the per-wb
1698					 * freerun ceiling.
1699					 */
1700					goto free_running;
1701			}
1702			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1703				((mdtc->dirty > mdtc->thresh) || strictlimit);
1704
1705			wb_position_ratio(mdtc);
1706			if (mdtc->pos_ratio < gdtc->pos_ratio)
1707				sdtc = mdtc;
1708		}
1709
1710		if (dirty_exceeded && !wb->dirty_exceeded)
1711			wb->dirty_exceeded = 1;
1712
1713		if (time_is_before_jiffies(wb->bw_time_stamp +
1714					   BANDWIDTH_INTERVAL)) {
1715			spin_lock(&wb->list_lock);
1716			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1717			spin_unlock(&wb->list_lock);
1718		}
1719
1720		/* throttle according to the chosen dtc */
1721		dirty_ratelimit = wb->dirty_ratelimit;
1722		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1723							RATELIMIT_CALC_SHIFT;
1724		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1725		min_pause = wb_min_pause(wb, max_pause,
1726					 task_ratelimit, dirty_ratelimit,
1727					 &nr_dirtied_pause);
1728
1729		if (unlikely(task_ratelimit == 0)) {
1730			period = max_pause;
1731			pause = max_pause;
1732			goto pause;
1733		}
1734		period = HZ * pages_dirtied / task_ratelimit;
1735		pause = period;
1736		if (current->dirty_paused_when)
1737			pause -= now - current->dirty_paused_when;
1738		/*
1739		 * For less than 1s think time (ext3/4 may block the dirtier
1740		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1741		 * however at much less frequency), try to compensate it in
1742		 * future periods by updating the virtual time; otherwise just
1743		 * do a reset, as it may be a light dirtier.
1744		 */
1745		if (pause < min_pause) {
1746			trace_balance_dirty_pages(wb,
1747						  sdtc->thresh,
1748						  sdtc->bg_thresh,
1749						  sdtc->dirty,
1750						  sdtc->wb_thresh,
1751						  sdtc->wb_dirty,
1752						  dirty_ratelimit,
1753						  task_ratelimit,
1754						  pages_dirtied,
1755						  period,
1756						  min(pause, 0L),
1757						  start_time);
1758			if (pause < -HZ) {
1759				current->dirty_paused_when = now;
1760				current->nr_dirtied = 0;
1761			} else if (period) {
1762				current->dirty_paused_when += period;
1763				current->nr_dirtied = 0;
1764			} else if (current->nr_dirtied_pause <= pages_dirtied)
1765				current->nr_dirtied_pause += pages_dirtied;
1766			break;
1767		}
1768		if (unlikely(pause > max_pause)) {
1769			/* for occasional dropped task_ratelimit */
1770			now += min(pause - max_pause, max_pause);
1771			pause = max_pause;
1772		}
1773
1774pause:
1775		trace_balance_dirty_pages(wb,
1776					  sdtc->thresh,
1777					  sdtc->bg_thresh,
1778					  sdtc->dirty,
1779					  sdtc->wb_thresh,
1780					  sdtc->wb_dirty,
1781					  dirty_ratelimit,
1782					  task_ratelimit,
1783					  pages_dirtied,
1784					  period,
1785					  pause,
1786					  start_time);
1787		__set_current_state(TASK_KILLABLE);
1788		wb->dirty_sleep = now;
1789		io_schedule_timeout(pause);
1790
1791		current->dirty_paused_when = now + pause;
1792		current->nr_dirtied = 0;
1793		current->nr_dirtied_pause = nr_dirtied_pause;
1794
1795		/*
1796		 * This is typically equal to (dirty < thresh) and can also
1797		 * keep "1000+ dd on a slow USB stick" under control.
1798		 */
1799		if (task_ratelimit)
1800			break;
1801
1802		/*
1803		 * In the case of an unresponsive NFS server and the NFS dirty
1804		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1805		 * to go through, so that tasks on them still remain responsive.
1806		 *
1807		 * In theory 1 page is enough to keep the consumer-producer
1808		 * pipe going: the flusher cleans 1 page => the task dirties 1
1809		 * more page. However wb_dirty has accounting errors.  So use
1810		 * the larger and more IO friendly wb_stat_error.
1811		 */
1812		if (sdtc->wb_dirty <= wb_stat_error())
1813			break;
1814
1815		if (fatal_signal_pending(current))
1816			break;
1817	}
1818
1819	if (!dirty_exceeded && wb->dirty_exceeded)
1820		wb->dirty_exceeded = 0;
1821
1822	if (writeback_in_progress(wb))
1823		return;
1824
1825	/*
1826	 * In laptop mode, we wait until hitting the higher threshold before
1827	 * starting background writeout, and then write out all the way down
1828	 * to the lower threshold.  So slow writers cause minimal disk activity.
1829	 *
1830	 * In normal mode, we start background writeout at the lower
1831	 * background_thresh, to keep the amount of dirty memory low.
1832	 */
1833	if (laptop_mode)
1834		return;
1835
1836	if (nr_reclaimable > gdtc->bg_thresh)
1837		wb_start_background_writeback(wb);
 
 
 
 
 
 
 
 
 
 
1838}
1839
1840static DEFINE_PER_CPU(int, bdp_ratelimits);
1841
1842/*
1843 * Normal tasks are throttled by
1844 *	loop {
1845 *		dirty tsk->nr_dirtied_pause pages;
1846 *		take a snap in balance_dirty_pages();
1847 *	}
1848 * However there is a worst case. If every task exit immediately when dirtied
1849 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1850 * called to throttle the page dirties. The solution is to save the not yet
1851 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1852 * randomly into the running tasks. This works well for the above worst case,
1853 * as the new task will pick up and accumulate the old task's leaked dirty
1854 * count and eventually get throttled.
1855 */
1856DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1857
1858/**
1859 * balance_dirty_pages_ratelimited - balance dirty memory state
1860 * @mapping: address_space which was dirtied
 
1861 *
1862 * Processes which are dirtying memory should call in here once for each page
1863 * which was newly dirtied.  The function will periodically check the system's
1864 * dirty state and will initiate writeback if needed.
1865 *
1866 * Once we're over the dirty memory limit we decrease the ratelimiting
1867 * by a lot, to prevent individual processes from overshooting the limit
1868 * by (ratelimit_pages) each.
1869 */
1870void balance_dirty_pages_ratelimited(struct address_space *mapping)
1871{
1872	struct inode *inode = mapping->host;
1873	struct backing_dev_info *bdi = inode_to_bdi(inode);
1874	struct bdi_writeback *wb = NULL;
1875	int ratelimit;
1876	int *p;
1877
1878	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1879		return;
1880
1881	if (inode_cgwb_enabled(inode))
1882		wb = wb_get_create_current(bdi, GFP_KERNEL);
1883	if (!wb)
1884		wb = &bdi->wb;
1885
1886	ratelimit = current->nr_dirtied_pause;
1887	if (wb->dirty_exceeded)
1888		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1889
1890	preempt_disable();
1891	/*
1892	 * This prevents one CPU to accumulate too many dirtied pages without
1893	 * calling into balance_dirty_pages(), which can happen when there are
1894	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1895	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1896	 */
1897	p =  this_cpu_ptr(&bdp_ratelimits);
1898	if (unlikely(current->nr_dirtied >= ratelimit))
1899		*p = 0;
1900	else if (unlikely(*p >= ratelimit_pages)) {
1901		*p = 0;
1902		ratelimit = 0;
1903	}
1904	/*
1905	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1906	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1907	 * the dirty throttling and livelock other long-run dirtiers.
1908	 */
1909	p = this_cpu_ptr(&dirty_throttle_leaks);
1910	if (*p > 0 && current->nr_dirtied < ratelimit) {
1911		unsigned long nr_pages_dirtied;
1912		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1913		*p -= nr_pages_dirtied;
1914		current->nr_dirtied += nr_pages_dirtied;
1915	}
1916	preempt_enable();
1917
1918	if (unlikely(current->nr_dirtied >= ratelimit))
1919		balance_dirty_pages(wb, current->nr_dirtied);
1920
1921	wb_put(wb);
1922}
1923EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1924
1925/**
1926 * wb_over_bg_thresh - does @wb need to be written back?
1927 * @wb: bdi_writeback of interest
1928 *
1929 * Determines whether background writeback should keep writing @wb or it's
1930 * clean enough.
1931 *
1932 * Return: %true if writeback should continue.
1933 */
1934bool wb_over_bg_thresh(struct bdi_writeback *wb)
1935{
1936	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1937	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1938	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1939	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1940						     &mdtc_stor : NULL;
1941	unsigned long reclaimable;
1942	unsigned long thresh;
1943
1944	/*
1945	 * Similar to balance_dirty_pages() but ignores pages being written
1946	 * as we're trying to decide whether to put more under writeback.
1947	 */
1948	gdtc->avail = global_dirtyable_memory();
1949	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1950	domain_dirty_limits(gdtc);
1951
1952	if (gdtc->dirty > gdtc->bg_thresh)
1953		return true;
1954
1955	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1956	if (thresh < 2 * wb_stat_error())
1957		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1958	else
1959		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1960
1961	if (reclaimable > thresh)
1962		return true;
1963
1964	if (mdtc) {
1965		unsigned long filepages, headroom, writeback;
1966
1967		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968				    &writeback);
1969		mdtc_calc_avail(mdtc, filepages, headroom);
1970		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1971
1972		if (mdtc->dirty > mdtc->bg_thresh)
1973			return true;
1974
1975		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1976		if (thresh < 2 * wb_stat_error())
1977			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1978		else
1979			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1980
1981		if (reclaimable > thresh)
1982			return true;
1983	}
 
 
 
 
 
 
 
 
 
 
 
1984
1985	return false;
 
 
 
 
 
 
 
1986}
1987
1988/*
1989 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1990 */
1991int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1992		void *buffer, size_t *length, loff_t *ppos)
1993{
1994	unsigned int old_interval = dirty_writeback_interval;
1995	int ret;
1996
1997	ret = proc_dointvec(table, write, buffer, length, ppos);
1998
1999	/*
2000	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2001	 * and a different non-zero value will wakeup the writeback threads.
2002	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2003	 * iterate over all bdis and wbs.
2004	 * The reason we do this is to make the change take effect immediately.
2005	 */
2006	if (!ret && write && dirty_writeback_interval &&
2007		dirty_writeback_interval != old_interval)
2008		wakeup_flusher_threads(WB_REASON_PERIODIC);
2009
2010	return ret;
2011}
2012
2013#ifdef CONFIG_BLOCK
2014void laptop_mode_timer_fn(struct timer_list *t)
2015{
2016	struct backing_dev_info *backing_dev_info =
2017		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
 
2018
2019	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
 
 
 
 
 
 
2020}
2021
2022/*
2023 * We've spun up the disk and we're in laptop mode: schedule writeback
2024 * of all dirty data a few seconds from now.  If the flush is already scheduled
2025 * then push it back - the user is still using the disk.
2026 */
2027void laptop_io_completion(struct backing_dev_info *info)
2028{
2029	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2030}
2031
2032/*
2033 * We're in laptop mode and we've just synced. The sync's writes will have
2034 * caused another writeback to be scheduled by laptop_io_completion.
2035 * Nothing needs to be written back anymore, so we unschedule the writeback.
2036 */
2037void laptop_sync_completion(void)
2038{
2039	struct backing_dev_info *bdi;
2040
2041	rcu_read_lock();
2042
2043	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2044		del_timer(&bdi->laptop_mode_wb_timer);
2045
2046	rcu_read_unlock();
2047}
2048#endif
2049
2050/*
2051 * If ratelimit_pages is too high then we can get into dirty-data overload
2052 * if a large number of processes all perform writes at the same time.
 
 
2053 *
2054 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2055 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2056 * thresholds.
2057 */
2058
2059void writeback_set_ratelimit(void)
2060{
2061	struct wb_domain *dom = &global_wb_domain;
2062	unsigned long background_thresh;
2063	unsigned long dirty_thresh;
2064
2065	global_dirty_limits(&background_thresh, &dirty_thresh);
2066	dom->dirty_limit = dirty_thresh;
2067	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2068	if (ratelimit_pages < 16)
2069		ratelimit_pages = 16;
2070}
2071
2072static int page_writeback_cpu_online(unsigned int cpu)
 
2073{
2074	writeback_set_ratelimit();
2075	return 0;
2076}
2077
 
 
 
 
 
2078/*
2079 * Called early on to tune the page writeback dirty limits.
2080 *
2081 * We used to scale dirty pages according to how total memory
2082 * related to pages that could be allocated for buffers.
 
2083 *
2084 * However, that was when we used "dirty_ratio" to scale with
2085 * all memory, and we don't do that any more. "dirty_ratio"
2086 * is now applied to total non-HIGHPAGE memory, and as such we can't
 
2087 * get into the old insane situation any more where we had
2088 * large amounts of dirty pages compared to a small amount of
2089 * non-HIGHMEM memory.
2090 *
2091 * But we might still want to scale the dirty_ratio by how
2092 * much memory the box has..
2093 */
2094void __init page_writeback_init(void)
2095{
2096	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
 
 
 
2097
2098	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2099			  page_writeback_cpu_online, NULL);
2100	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2101			  page_writeback_cpu_online);
2102}
2103
2104/**
2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2106 * @mapping: address space structure to write
2107 * @start: starting page index
2108 * @end: ending page index (inclusive)
2109 *
2110 * This function scans the page range from @start to @end (inclusive) and tags
2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2112 * that write_cache_pages (or whoever calls this function) will then use
2113 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2114 * used to avoid livelocking of writeback by a process steadily creating new
2115 * dirty pages in the file (thus it is important for this function to be quick
2116 * so that it can tag pages faster than a dirtying process can create them).
2117 */
 
 
 
2118void tag_pages_for_writeback(struct address_space *mapping,
2119			     pgoff_t start, pgoff_t end)
2120{
2121	XA_STATE(xas, &mapping->i_pages, start);
2122	unsigned int tagged = 0;
2123	void *page;
2124
2125	xas_lock_irq(&xas);
2126	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2127		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2128		if (++tagged % XA_CHECK_SCHED)
2129			continue;
2130
2131		xas_pause(&xas);
2132		xas_unlock_irq(&xas);
 
 
 
 
 
2133		cond_resched();
2134		xas_lock_irq(&xas);
2135	}
2136	xas_unlock_irq(&xas);
2137}
2138EXPORT_SYMBOL(tag_pages_for_writeback);
2139
2140/**
2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142 * @mapping: address space structure to write
2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144 * @writepage: function called for each page
2145 * @data: data passed to writepage function
2146 *
2147 * If a page is already under I/O, write_cache_pages() skips it, even
2148 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2149 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2150 * and msync() need to guarantee that all the data which was dirty at the time
2151 * the call was made get new I/O started against them.  If wbc->sync_mode is
2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2153 * existing IO to complete.
2154 *
2155 * To avoid livelocks (when other process dirties new pages), we first tag
2156 * pages which should be written back with TOWRITE tag and only then start
2157 * writing them. For data-integrity sync we have to be careful so that we do
2158 * not miss some pages (e.g., because some other process has cleared TOWRITE
2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2160 * by the process clearing the DIRTY tag (and submitting the page for IO).
2161 *
2162 * To avoid deadlocks between range_cyclic writeback and callers that hold
2163 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2164 * we do not loop back to the start of the file. Doing so causes a page
2165 * lock/page writeback access order inversion - we should only ever lock
2166 * multiple pages in ascending page->index order, and looping back to the start
2167 * of the file violates that rule and causes deadlocks.
2168 *
2169 * Return: %0 on success, negative error code otherwise
2170 */
2171int write_cache_pages(struct address_space *mapping,
2172		      struct writeback_control *wbc, writepage_t writepage,
2173		      void *data)
2174{
2175	int ret = 0;
2176	int done = 0;
2177	int error;
2178	struct pagevec pvec;
2179	int nr_pages;
 
2180	pgoff_t index;
2181	pgoff_t end;		/* Inclusive */
2182	pgoff_t done_index;
 
2183	int range_whole = 0;
2184	xa_mark_t tag;
2185
2186	pagevec_init(&pvec);
2187	if (wbc->range_cyclic) {
2188		index = mapping->writeback_index; /* prev offset */
 
 
 
 
 
2189		end = -1;
2190	} else {
2191		index = wbc->range_start >> PAGE_SHIFT;
2192		end = wbc->range_end >> PAGE_SHIFT;
2193		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2194			range_whole = 1;
 
2195	}
2196	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2197		tag_pages_for_writeback(mapping, index, end);
2198		tag = PAGECACHE_TAG_TOWRITE;
2199	} else {
2200		tag = PAGECACHE_TAG_DIRTY;
2201	}
 
 
2202	done_index = index;
2203	while (!done && (index <= end)) {
2204		int i;
2205
2206		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2207				tag);
2208		if (nr_pages == 0)
2209			break;
2210
2211		for (i = 0; i < nr_pages; i++) {
2212			struct page *page = pvec.pages[i];
2213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2214			done_index = page->index;
2215
2216			lock_page(page);
2217
2218			/*
2219			 * Page truncated or invalidated. We can freely skip it
2220			 * then, even for data integrity operations: the page
2221			 * has disappeared concurrently, so there could be no
2222			 * real expectation of this data integrity operation
2223			 * even if there is now a new, dirty page at the same
2224			 * pagecache address.
2225			 */
2226			if (unlikely(page->mapping != mapping)) {
2227continue_unlock:
2228				unlock_page(page);
2229				continue;
2230			}
2231
2232			if (!PageDirty(page)) {
2233				/* someone wrote it for us */
2234				goto continue_unlock;
2235			}
2236
2237			if (PageWriteback(page)) {
2238				if (wbc->sync_mode != WB_SYNC_NONE)
2239					wait_on_page_writeback(page);
2240				else
2241					goto continue_unlock;
2242			}
2243
2244			BUG_ON(PageWriteback(page));
2245			if (!clear_page_dirty_for_io(page))
2246				goto continue_unlock;
2247
2248			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2249			error = (*writepage)(page, wbc, data);
2250			if (unlikely(error)) {
2251				/*
2252				 * Handle errors according to the type of
2253				 * writeback. There's no need to continue for
2254				 * background writeback. Just push done_index
2255				 * past this page so media errors won't choke
2256				 * writeout for the entire file. For integrity
2257				 * writeback, we must process the entire dirty
2258				 * set regardless of errors because the fs may
2259				 * still have state to clear for each page. In
2260				 * that case we continue processing and return
2261				 * the first error.
2262				 */
2263				if (error == AOP_WRITEPAGE_ACTIVATE) {
2264					unlock_page(page);
2265					error = 0;
2266				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2267					ret = error;
 
 
 
 
 
 
 
 
2268					done_index = page->index + 1;
2269					done = 1;
2270					break;
2271				}
2272				if (!ret)
2273					ret = error;
2274			}
2275
2276			/*
2277			 * We stop writing back only if we are not doing
2278			 * integrity sync. In case of integrity sync we have to
2279			 * keep going until we have written all the pages
2280			 * we tagged for writeback prior to entering this loop.
2281			 */
2282			if (--wbc->nr_to_write <= 0 &&
2283			    wbc->sync_mode == WB_SYNC_NONE) {
2284				done = 1;
2285				break;
2286			}
2287		}
2288		pagevec_release(&pvec);
2289		cond_resched();
2290	}
2291
2292	/*
2293	 * If we hit the last page and there is more work to be done: wrap
2294	 * back the index back to the start of the file for the next
2295	 * time we are called.
2296	 */
2297	if (wbc->range_cyclic && !done)
2298		done_index = 0;
 
 
 
2299	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2300		mapping->writeback_index = done_index;
2301
2302	return ret;
2303}
2304EXPORT_SYMBOL(write_cache_pages);
2305
2306/*
2307 * Function used by generic_writepages to call the real writepage
2308 * function and set the mapping flags on error
2309 */
2310static int __writepage(struct page *page, struct writeback_control *wbc,
2311		       void *data)
2312{
2313	struct address_space *mapping = data;
2314	int ret = mapping->a_ops->writepage(page, wbc);
2315	mapping_set_error(mapping, ret);
2316	return ret;
2317}
2318
2319/**
2320 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2321 * @mapping: address space structure to write
2322 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2323 *
2324 * This is a library function, which implements the writepages()
2325 * address_space_operation.
2326 *
2327 * Return: %0 on success, negative error code otherwise
2328 */
2329int generic_writepages(struct address_space *mapping,
2330		       struct writeback_control *wbc)
2331{
2332	struct blk_plug plug;
2333	int ret;
2334
2335	/* deal with chardevs and other special file */
2336	if (!mapping->a_ops->writepage)
2337		return 0;
2338
2339	blk_start_plug(&plug);
2340	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341	blk_finish_plug(&plug);
2342	return ret;
2343}
2344
2345EXPORT_SYMBOL(generic_writepages);
2346
2347int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2348{
2349	int ret;
2350
2351	if (wbc->nr_to_write <= 0)
2352		return 0;
2353	while (1) {
2354		if (mapping->a_ops->writepages)
2355			ret = mapping->a_ops->writepages(mapping, wbc);
2356		else
2357			ret = generic_writepages(mapping, wbc);
2358		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2359			break;
2360		cond_resched();
2361		congestion_wait(BLK_RW_ASYNC, HZ/50);
2362	}
2363	return ret;
2364}
2365
2366/**
2367 * write_one_page - write out a single page and wait on I/O
2368 * @page: the page to write
 
2369 *
2370 * The page must be locked by the caller and will be unlocked upon return.
2371 *
2372 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2373 * function returns.
2374 *
2375 * Return: %0 on success, negative error code otherwise
2376 */
2377int write_one_page(struct page *page)
2378{
2379	struct address_space *mapping = page->mapping;
2380	int ret = 0;
2381	struct writeback_control wbc = {
2382		.sync_mode = WB_SYNC_ALL,
2383		.nr_to_write = 1,
2384	};
2385
2386	BUG_ON(!PageLocked(page));
2387
2388	wait_on_page_writeback(page);
 
2389
2390	if (clear_page_dirty_for_io(page)) {
2391		get_page(page);
2392		ret = mapping->a_ops->writepage(page, &wbc);
2393		if (ret == 0)
2394			wait_on_page_writeback(page);
2395		put_page(page);
 
 
 
2396	} else {
2397		unlock_page(page);
2398	}
2399
2400	if (!ret)
2401		ret = filemap_check_errors(mapping);
2402	return ret;
2403}
2404EXPORT_SYMBOL(write_one_page);
2405
2406/*
2407 * For address_spaces which do not use buffers nor write back.
2408 */
2409int __set_page_dirty_no_writeback(struct page *page)
2410{
2411	if (!PageDirty(page))
2412		return !TestSetPageDirty(page);
2413	return 0;
2414}
2415EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2416
2417/*
2418 * Helper function for set_page_dirty family.
2419 *
2420 * Caller must hold lock_page_memcg().
2421 *
2422 * NOTE: This relies on being atomic wrt interrupts.
2423 */
2424static void account_page_dirtied(struct page *page,
2425		struct address_space *mapping)
2426{
2427	struct inode *inode = mapping->host;
2428
2429	trace_writeback_dirty_page(page, mapping);
2430
2431	if (mapping_can_writeback(mapping)) {
2432		struct bdi_writeback *wb;
2433
2434		inode_attach_wb(inode, page);
2435		wb = inode_to_wb(inode);
2436
2437		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2438		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2439		__inc_node_page_state(page, NR_DIRTIED);
2440		inc_wb_stat(wb, WB_RECLAIMABLE);
2441		inc_wb_stat(wb, WB_DIRTIED);
2442		task_io_account_write(PAGE_SIZE);
2443		current->nr_dirtied++;
2444		__this_cpu_inc(bdp_ratelimits);
2445
2446		mem_cgroup_track_foreign_dirty(page, wb);
2447	}
2448}
 
2449
2450/*
2451 * Helper function for deaccounting dirty page without writeback.
2452 *
2453 * Caller must hold lock_page_memcg().
2454 */
2455void account_page_cleaned(struct page *page, struct address_space *mapping,
2456			  struct bdi_writeback *wb)
2457{
2458	if (mapping_can_writeback(mapping)) {
2459		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2460		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2461		dec_wb_stat(wb, WB_RECLAIMABLE);
2462		task_io_account_cancelled_write(PAGE_SIZE);
2463	}
2464}
2465
2466/*
2467 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2468 * dirty.
2469 *
2470 * If warn is true, then emit a warning if the page is not uptodate and has
2471 * not been truncated.
2472 *
2473 * The caller must hold lock_page_memcg().
2474 */
2475void __set_page_dirty(struct page *page, struct address_space *mapping,
2476			     int warn)
2477{
2478	unsigned long flags;
2479
2480	xa_lock_irqsave(&mapping->i_pages, flags);
2481	if (page->mapping) {	/* Race with truncate? */
2482		WARN_ON_ONCE(warn && !PageUptodate(page));
2483		account_page_dirtied(page, mapping);
2484		__xa_set_mark(&mapping->i_pages, page_index(page),
2485				PAGECACHE_TAG_DIRTY);
2486	}
2487	xa_unlock_irqrestore(&mapping->i_pages, flags);
2488}
 
2489
2490/*
2491 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2492 * the xarray.
2493 *
2494 * This is also used when a single buffer is being dirtied: we want to set the
2495 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2496 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2497 *
2498 * The caller must ensure this doesn't race with truncation.  Most will simply
2499 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2500 * the pte lock held, which also locks out truncation.
 
 
 
2501 */
2502int __set_page_dirty_nobuffers(struct page *page)
2503{
2504	lock_page_memcg(page);
2505	if (!TestSetPageDirty(page)) {
2506		struct address_space *mapping = page_mapping(page);
 
2507
2508		if (!mapping) {
2509			unlock_page_memcg(page);
2510			return 1;
2511		}
2512		__set_page_dirty(page, mapping, !PagePrivate(page));
2513		unlock_page_memcg(page);
2514
 
 
 
 
 
 
 
 
 
 
2515		if (mapping->host) {
2516			/* !PageAnon && !swapper_space */
2517			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2518		}
2519		return 1;
2520	}
2521	unlock_page_memcg(page);
2522	return 0;
2523}
2524EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2525
2526/*
2527 * Call this whenever redirtying a page, to de-account the dirty counters
2528 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2529 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2530 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2531 * control.
2532 */
2533void account_page_redirty(struct page *page)
2534{
2535	struct address_space *mapping = page->mapping;
2536
2537	if (mapping && mapping_can_writeback(mapping)) {
2538		struct inode *inode = mapping->host;
2539		struct bdi_writeback *wb;
2540		struct wb_lock_cookie cookie = {};
2541
2542		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2543		current->nr_dirtied--;
2544		dec_node_page_state(page, NR_DIRTIED);
2545		dec_wb_stat(wb, WB_DIRTIED);
2546		unlocked_inode_to_wb_end(inode, &cookie);
2547	}
2548}
2549EXPORT_SYMBOL(account_page_redirty);
2550
2551/*
2552 * When a writepage implementation decides that it doesn't want to write this
2553 * page for some reason, it should redirty the locked page via
2554 * redirty_page_for_writepage() and it should then unlock the page and return 0
2555 */
2556int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2557{
2558	int ret;
2559
2560	wbc->pages_skipped++;
2561	ret = __set_page_dirty_nobuffers(page);
2562	account_page_redirty(page);
2563	return ret;
2564}
2565EXPORT_SYMBOL(redirty_page_for_writepage);
2566
2567/*
2568 * Dirty a page.
2569 *
2570 * For pages with a mapping this should be done under the page lock for the
2571 * benefit of asynchronous memory errors who prefer a consistent dirty state.
2572 * This rule can be broken in some special cases, but should be better not to.
 
 
 
 
2573 */
2574int set_page_dirty(struct page *page)
2575{
2576	struct address_space *mapping = page_mapping(page);
2577
2578	page = compound_head(page);
2579	if (likely(mapping)) {
 
2580		/*
2581		 * readahead/lru_deactivate_page could remain
2582		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2583		 * About readahead, if the page is written, the flags would be
2584		 * reset. So no problem.
2585		 * About lru_deactivate_page, if the page is redirty, the flag
2586		 * will be reset. So no problem. but if the page is used by readahead
2587		 * it will confuse readahead and make it restart the size rampup
2588		 * process. But it's a trivial problem.
2589		 */
2590		if (PageReclaim(page))
2591			ClearPageReclaim(page);
2592		return mapping->a_ops->set_page_dirty(page);
 
 
 
2593	}
2594	if (!PageDirty(page)) {
2595		if (!TestSetPageDirty(page))
2596			return 1;
2597	}
2598	return 0;
2599}
2600EXPORT_SYMBOL(set_page_dirty);
2601
2602/*
2603 * set_page_dirty() is racy if the caller has no reference against
2604 * page->mapping->host, and if the page is unlocked.  This is because another
2605 * CPU could truncate the page off the mapping and then free the mapping.
2606 *
2607 * Usually, the page _is_ locked, or the caller is a user-space process which
2608 * holds a reference on the inode by having an open file.
2609 *
2610 * In other cases, the page should be locked before running set_page_dirty().
2611 */
2612int set_page_dirty_lock(struct page *page)
2613{
2614	int ret;
2615
2616	lock_page(page);
2617	ret = set_page_dirty(page);
2618	unlock_page(page);
2619	return ret;
2620}
2621EXPORT_SYMBOL(set_page_dirty_lock);
2622
2623/*
2624 * This cancels just the dirty bit on the kernel page itself, it does NOT
2625 * actually remove dirty bits on any mmap's that may be around. It also
2626 * leaves the page tagged dirty, so any sync activity will still find it on
2627 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2628 * look at the dirty bits in the VM.
2629 *
2630 * Doing this should *normally* only ever be done when a page is truncated,
2631 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2632 * this when it notices that somebody has cleaned out all the buffers on a
2633 * page without actually doing it through the VM. Can you say "ext3 is
2634 * horribly ugly"? Thought you could.
2635 */
2636void __cancel_dirty_page(struct page *page)
2637{
2638	struct address_space *mapping = page_mapping(page);
2639
2640	if (mapping_can_writeback(mapping)) {
2641		struct inode *inode = mapping->host;
2642		struct bdi_writeback *wb;
2643		struct wb_lock_cookie cookie = {};
2644
2645		lock_page_memcg(page);
2646		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2647
2648		if (TestClearPageDirty(page))
2649			account_page_cleaned(page, mapping, wb);
2650
2651		unlocked_inode_to_wb_end(inode, &cookie);
2652		unlock_page_memcg(page);
2653	} else {
2654		ClearPageDirty(page);
2655	}
2656}
2657EXPORT_SYMBOL(__cancel_dirty_page);
2658
2659/*
2660 * Clear a page's dirty flag, while caring for dirty memory accounting.
2661 * Returns true if the page was previously dirty.
2662 *
2663 * This is for preparing to put the page under writeout.  We leave the page
2664 * tagged as dirty in the xarray so that a concurrent write-for-sync
2665 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2666 * implementation will run either set_page_writeback() or set_page_dirty(),
2667 * at which stage we bring the page's dirty flag and xarray dirty tag
2668 * back into sync.
2669 *
2670 * This incoherency between the page's dirty flag and xarray tag is
2671 * unfortunate, but it only exists while the page is locked.
2672 */
2673int clear_page_dirty_for_io(struct page *page)
2674{
2675	struct address_space *mapping = page_mapping(page);
2676	int ret = 0;
2677
2678	VM_BUG_ON_PAGE(!PageLocked(page), page);
2679
2680	if (mapping && mapping_can_writeback(mapping)) {
2681		struct inode *inode = mapping->host;
2682		struct bdi_writeback *wb;
2683		struct wb_lock_cookie cookie = {};
2684
 
2685		/*
2686		 * Yes, Virginia, this is indeed insane.
2687		 *
2688		 * We use this sequence to make sure that
2689		 *  (a) we account for dirty stats properly
2690		 *  (b) we tell the low-level filesystem to
2691		 *      mark the whole page dirty if it was
2692		 *      dirty in a pagetable. Only to then
2693		 *  (c) clean the page again and return 1 to
2694		 *      cause the writeback.
2695		 *
2696		 * This way we avoid all nasty races with the
2697		 * dirty bit in multiple places and clearing
2698		 * them concurrently from different threads.
2699		 *
2700		 * Note! Normally the "set_page_dirty(page)"
2701		 * has no effect on the actual dirty bit - since
2702		 * that will already usually be set. But we
2703		 * need the side effects, and it can help us
2704		 * avoid races.
2705		 *
2706		 * We basically use the page "master dirty bit"
2707		 * as a serialization point for all the different
2708		 * threads doing their things.
2709		 */
2710		if (page_mkclean(page))
2711			set_page_dirty(page);
2712		/*
2713		 * We carefully synchronise fault handlers against
2714		 * installing a dirty pte and marking the page dirty
2715		 * at this point.  We do this by having them hold the
2716		 * page lock while dirtying the page, and pages are
2717		 * always locked coming in here, so we get the desired
2718		 * exclusion.
 
 
2719		 */
2720		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2721		if (TestClearPageDirty(page)) {
2722			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2723			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2724			dec_wb_stat(wb, WB_RECLAIMABLE);
2725			ret = 1;
2726		}
2727		unlocked_inode_to_wb_end(inode, &cookie);
2728		return ret;
2729	}
2730	return TestClearPageDirty(page);
2731}
2732EXPORT_SYMBOL(clear_page_dirty_for_io);
2733
2734int test_clear_page_writeback(struct page *page)
2735{
2736	struct address_space *mapping = page_mapping(page);
2737	int ret;
2738
2739	lock_page_memcg(page);
2740	if (mapping && mapping_use_writeback_tags(mapping)) {
2741		struct inode *inode = mapping->host;
2742		struct backing_dev_info *bdi = inode_to_bdi(inode);
2743		unsigned long flags;
2744
2745		xa_lock_irqsave(&mapping->i_pages, flags);
2746		ret = TestClearPageWriteback(page);
2747		if (ret) {
2748			__xa_clear_mark(&mapping->i_pages, page_index(page),
 
2749						PAGECACHE_TAG_WRITEBACK);
2750			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2751				struct bdi_writeback *wb = inode_to_wb(inode);
2752
2753				dec_wb_stat(wb, WB_WRITEBACK);
2754				__wb_writeout_inc(wb);
2755			}
2756		}
2757
2758		if (mapping->host && !mapping_tagged(mapping,
2759						     PAGECACHE_TAG_WRITEBACK))
2760			sb_clear_inode_writeback(mapping->host);
2761
2762		xa_unlock_irqrestore(&mapping->i_pages, flags);
2763	} else {
2764		ret = TestClearPageWriteback(page);
2765	}
2766	if (ret) {
2767		dec_lruvec_page_state(page, NR_WRITEBACK);
2768		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2769		inc_node_page_state(page, NR_WRITTEN);
2770	}
2771	unlock_page_memcg(page);
2772	return ret;
2773}
2774
2775int __test_set_page_writeback(struct page *page, bool keep_write)
2776{
2777	struct address_space *mapping = page_mapping(page);
2778	int ret, access_ret;
2779
2780	lock_page_memcg(page);
2781	if (mapping && mapping_use_writeback_tags(mapping)) {
2782		XA_STATE(xas, &mapping->i_pages, page_index(page));
2783		struct inode *inode = mapping->host;
2784		struct backing_dev_info *bdi = inode_to_bdi(inode);
2785		unsigned long flags;
2786
2787		xas_lock_irqsave(&xas, flags);
2788		xas_load(&xas);
2789		ret = TestSetPageWriteback(page);
2790		if (!ret) {
2791			bool on_wblist;
2792
2793			on_wblist = mapping_tagged(mapping,
2794						   PAGECACHE_TAG_WRITEBACK);
2795
2796			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2797			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2798				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2799
2800			/*
2801			 * We can come through here when swapping anonymous
2802			 * pages, so we don't necessarily have an inode to track
2803			 * for sync.
2804			 */
2805			if (mapping->host && !on_wblist)
2806				sb_mark_inode_writeback(mapping->host);
2807		}
2808		if (!PageDirty(page))
2809			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2810		if (!keep_write)
2811			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2812		xas_unlock_irqrestore(&xas, flags);
 
 
 
2813	} else {
2814		ret = TestSetPageWriteback(page);
2815	}
2816	if (!ret) {
2817		inc_lruvec_page_state(page, NR_WRITEBACK);
2818		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2819	}
2820	unlock_page_memcg(page);
2821	access_ret = arch_make_page_accessible(page);
2822	/*
2823	 * If writeback has been triggered on a page that cannot be made
2824	 * accessible, it is too late to recover here.
2825	 */
2826	VM_BUG_ON_PAGE(access_ret != 0, page);
2827
2828	return ret;
2829
2830}
2831EXPORT_SYMBOL(__test_set_page_writeback);
2832
2833/*
2834 * Wait for a page to complete writeback
 
2835 */
2836void wait_on_page_writeback(struct page *page)
2837{
2838	while (PageWriteback(page)) {
2839		trace_wait_on_page_writeback(page, page_mapping(page));
2840		wait_on_page_bit(page, PG_writeback);
2841	}
2842}
2843EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2844
2845/*
2846 * Wait for a page to complete writeback.  Returns -EINTR if we get a
2847 * fatal signal while waiting.
2848 */
2849int wait_on_page_writeback_killable(struct page *page)
2850{
2851	while (PageWriteback(page)) {
2852		trace_wait_on_page_writeback(page, page_mapping(page));
2853		if (wait_on_page_bit_killable(page, PG_writeback))
2854			return -EINTR;
2855	}
2856
2857	return 0;
2858}
2859EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2860
2861/**
2862 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2863 * @page:	The page to wait on.
2864 *
2865 * This function determines if the given page is related to a backing device
2866 * that requires page contents to be held stable during writeback.  If so, then
2867 * it will wait for any pending writeback to complete.
2868 */
2869void wait_for_stable_page(struct page *page)
2870{
2871	page = thp_head(page);
2872	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2873		wait_on_page_writeback(page);
2874}
2875EXPORT_SYMBOL_GPL(wait_for_stable_page);
v3.5.6
 
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
 
 
 
 
  37#include <trace/events/writeback.h>
  38
 
 
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE		max(HZ/5, 1)
  43
  44/*
  45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  46 * by raising pause time to max_pause when falls below it.
  47 */
  48#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  49
  50/*
  51 * Estimate write bandwidth at 200ms intervals.
  52 */
  53#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  54
  55#define RATELIMIT_CALC_SHIFT	10
  56
  57/*
  58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  59 * will look to see if it needs to force writeback or throttling.
  60 */
  61static long ratelimit_pages = 32;
  62
  63/* The following parameters are exported via /proc/sys/vm */
  64
  65/*
  66 * Start background writeback (via writeback threads) at this percentage
  67 */
  68int dirty_background_ratio = 10;
  69
  70/*
  71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  72 * dirty_background_ratio * the amount of dirtyable memory
  73 */
  74unsigned long dirty_background_bytes;
  75
  76/*
  77 * free highmem will not be subtracted from the total free memory
  78 * for calculating free ratios if vm_highmem_is_dirtyable is true
  79 */
  80int vm_highmem_is_dirtyable;
  81
  82/*
  83 * The generator of dirty data starts writeback at this percentage
  84 */
  85int vm_dirty_ratio = 20;
  86
  87/*
  88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  89 * vm_dirty_ratio * the amount of dirtyable memory
  90 */
  91unsigned long vm_dirty_bytes;
  92
  93/*
  94 * The interval between `kupdate'-style writebacks
  95 */
  96unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  97
  98EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  99
 100/*
 101 * The longest time for which data is allowed to remain dirty
 102 */
 103unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 104
 105/*
 106 * Flag that makes the machine dump writes/reads and block dirtyings.
 107 */
 108int block_dump;
 109
 110/*
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120unsigned long global_dirty_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122/*
 123 * Scale the writeback cache size proportional to the relative writeout speeds.
 124 *
 125 * We do this by keeping a floating proportion between BDIs, based on page
 126 * writeback completions [end_page_writeback()]. Those devices that write out
 127 * pages fastest will get the larger share, while the slower will get a smaller
 128 * share.
 129 *
 130 * We use page writeout completions because we are interested in getting rid of
 131 * dirty pages. Having them written out is the primary goal.
 132 *
 133 * We introduce a concept of time, a period over which we measure these events,
 134 * because demand can/will vary over time. The length of this period itself is
 135 * measured in page writeback completions.
 136 *
 137 */
 138static struct prop_descriptor vm_completions;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140/*
 141 * Work out the current dirty-memory clamping and background writeout
 142 * thresholds.
 143 *
 144 * The main aim here is to lower them aggressively if there is a lot of mapped
 145 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 146 * pages.  It is better to clamp down on writers than to start swapping, and
 147 * performing lots of scanning.
 148 *
 149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 150 *
 151 * We don't permit the clamping level to fall below 5% - that is getting rather
 152 * excessive.
 153 *
 154 * We make sure that the background writeout level is below the adjusted
 155 * clamping level.
 156 */
 157
 158/*
 159 * In a memory zone, there is a certain amount of pages we consider
 160 * available for the page cache, which is essentially the number of
 161 * free and reclaimable pages, minus some zone reserves to protect
 162 * lowmem and the ability to uphold the zone's watermarks without
 163 * requiring writeback.
 164 *
 165 * This number of dirtyable pages is the base value of which the
 166 * user-configurable dirty ratio is the effictive number of pages that
 167 * are allowed to be actually dirtied.  Per individual zone, or
 168 * globally by using the sum of dirtyable pages over all zones.
 169 *
 170 * Because the user is allowed to specify the dirty limit globally as
 171 * absolute number of bytes, calculating the per-zone dirty limit can
 172 * require translating the configured limit into a percentage of
 173 * global dirtyable memory first.
 174 */
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176static unsigned long highmem_dirtyable_memory(unsigned long total)
 177{
 178#ifdef CONFIG_HIGHMEM
 179	int node;
 180	unsigned long x = 0;
 
 181
 182	for_each_node_state(node, N_HIGH_MEMORY) {
 183		struct zone *z =
 184			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 
 
 
 
 
 
 
 
 185
 186		x += zone_page_state(z, NR_FREE_PAGES) +
 187		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
 
 
 
 
 
 188	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 189	/*
 190	 * Make sure that the number of highmem pages is never larger
 191	 * than the number of the total dirtyable memory. This can only
 192	 * occur in very strange VM situations but we want to make sure
 193	 * that this does not occur.
 194	 */
 195	return min(x, total);
 196#else
 197	return 0;
 198#endif
 199}
 200
 201/**
 202 * global_dirtyable_memory - number of globally dirtyable pages
 203 *
 204 * Returns the global number of pages potentially available for dirty
 205 * page cache.  This is the base value for the global dirty limits.
 206 */
 207static unsigned long global_dirtyable_memory(void)
 208{
 209	unsigned long x;
 210
 211	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
 212	    dirty_balance_reserve;
 
 
 
 
 
 
 
 
 213
 214	if (!vm_highmem_is_dirtyable)
 215		x -= highmem_dirtyable_memory(x);
 216
 217	return x + 1;	/* Ensure that we never return 0 */
 218}
 219
 220/*
 221 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 
 222 *
 223 * Calculate the dirty thresholds based on sysctl parameters
 224 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 225 * - vm.dirty_ratio             or  vm.dirty_bytes
 226 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 227 * real-time tasks.
 228 */
 229void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 230{
 231	unsigned long background;
 232	unsigned long dirty;
 233	unsigned long uninitialized_var(available_memory);
 
 
 
 
 
 234	struct task_struct *tsk;
 235
 236	if (!vm_dirty_bytes || !dirty_background_bytes)
 237		available_memory = global_dirtyable_memory();
 
 238
 239	if (vm_dirty_bytes)
 240		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241	else
 242		dirty = (vm_dirty_ratio * available_memory) / 100;
 243
 244	if (dirty_background_bytes)
 245		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 246	else
 247		background = (dirty_background_ratio * available_memory) / 100;
 248
 249	if (background >= dirty)
 250		background = dirty / 2;
 251	tsk = current;
 252	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 253		background += background / 4;
 254		dirty += dirty / 4;
 255	}
 256	*pbackground = background;
 257	*pdirty = dirty;
 258	trace_global_dirty_state(background, dirty);
 
 
 
 259}
 260
 261/**
 262 * zone_dirtyable_memory - number of dirtyable pages in a zone
 263 * @zone: the zone
 
 264 *
 265 * Returns the zone's number of pages potentially available for dirty
 266 * page cache.  This is the base value for the per-zone dirty limits.
 267 */
 268static unsigned long zone_dirtyable_memory(struct zone *zone)
 269{
 270	/*
 271	 * The effective global number of dirtyable pages may exclude
 272	 * highmem as a big-picture measure to keep the ratio between
 273	 * dirty memory and lowmem reasonable.
 274	 *
 275	 * But this function is purely about the individual zone and a
 276	 * highmem zone can hold its share of dirty pages, so we don't
 277	 * care about vm_highmem_is_dirtyable here.
 278	 */
 279	return zone_page_state(zone, NR_FREE_PAGES) +
 280	       zone_reclaimable_pages(zone) -
 281	       zone->dirty_balance_reserve;
 282}
 283
 284/**
 285 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 286 * @zone: the zone
 287 *
 288 * Returns the maximum number of dirty pages allowed in a zone, based
 289 * on the zone's dirtyable memory.
 290 */
 291static unsigned long zone_dirty_limit(struct zone *zone)
 292{
 293	unsigned long zone_memory = zone_dirtyable_memory(zone);
 294	struct task_struct *tsk = current;
 295	unsigned long dirty;
 296
 297	if (vm_dirty_bytes)
 298		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 299			zone_memory / global_dirtyable_memory();
 300	else
 301		dirty = vm_dirty_ratio * zone_memory / 100;
 302
 303	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 304		dirty += dirty / 4;
 305
 306	return dirty;
 307}
 308
 309/**
 310 * zone_dirty_ok - tells whether a zone is within its dirty limits
 311 * @zone: the zone to check
 312 *
 313 * Returns %true when the dirty pages in @zone are within the zone's
 314 * dirty limit, %false if the limit is exceeded.
 315 */
 316bool zone_dirty_ok(struct zone *zone)
 317{
 318	unsigned long limit = zone_dirty_limit(zone);
 
 319
 320	return zone_page_state(zone, NR_FILE_DIRTY) +
 321	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 322	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 323}
 324
 325/*
 326 * couple the period to the dirty_ratio:
 327 *
 328 *   period/2 ~ roundup_pow_of_two(dirty limit)
 329 */
 330static int calc_period_shift(void)
 331{
 332	unsigned long dirty_total;
 333
 334	if (vm_dirty_bytes)
 335		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 336	else
 337		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
 338				100;
 339	return 2 + ilog2(dirty_total - 1);
 340}
 341
 342/*
 343 * update the period when the dirty threshold changes.
 344 */
 345static void update_completion_period(void)
 346{
 347	int shift = calc_period_shift();
 348	prop_change_shift(&vm_completions, shift);
 349
 350	writeback_set_ratelimit();
 351}
 352
 353int dirty_background_ratio_handler(struct ctl_table *table, int write,
 354		void __user *buffer, size_t *lenp,
 355		loff_t *ppos)
 356{
 357	int ret;
 358
 359	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 360	if (ret == 0 && write)
 361		dirty_background_bytes = 0;
 362	return ret;
 363}
 364
 365int dirty_background_bytes_handler(struct ctl_table *table, int write,
 366		void __user *buffer, size_t *lenp,
 367		loff_t *ppos)
 368{
 369	int ret;
 370
 371	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 372	if (ret == 0 && write)
 373		dirty_background_ratio = 0;
 374	return ret;
 375}
 376
 377int dirty_ratio_handler(struct ctl_table *table, int write,
 378		void __user *buffer, size_t *lenp,
 379		loff_t *ppos)
 380{
 381	int old_ratio = vm_dirty_ratio;
 382	int ret;
 383
 384	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 385	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 386		update_completion_period();
 387		vm_dirty_bytes = 0;
 388	}
 389	return ret;
 390}
 391
 392int dirty_bytes_handler(struct ctl_table *table, int write,
 393		void __user *buffer, size_t *lenp,
 394		loff_t *ppos)
 395{
 396	unsigned long old_bytes = vm_dirty_bytes;
 397	int ret;
 398
 399	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 400	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 401		update_completion_period();
 402		vm_dirty_ratio = 0;
 403	}
 404	return ret;
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407/*
 408 * Increment the BDI's writeout completion count and the global writeout
 409 * completion count. Called from test_clear_page_writeback().
 410 */
 411static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 412{
 413	__inc_bdi_stat(bdi, BDI_WRITTEN);
 414	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 415			      bdi->max_prop_frac);
 
 
 
 
 
 
 
 416}
 417
 418void bdi_writeout_inc(struct backing_dev_info *bdi)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__bdi_writeout_inc(bdi);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 427
 428/*
 429 * Obtain an accurate fraction of the BDI's portion.
 
 430 */
 431static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 432		long *numerator, long *denominator)
 433{
 434	prop_fraction_percpu(&vm_completions, &bdi->completions,
 435				numerator, denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438/*
 439 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 440 * registered backing devices, which, for obvious reasons, can not
 441 * exceed 100%.
 442 */
 443static unsigned int bdi_min_ratio;
 444
 445int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 446{
 447	int ret = 0;
 448
 449	spin_lock_bh(&bdi_lock);
 450	if (min_ratio > bdi->max_ratio) {
 451		ret = -EINVAL;
 452	} else {
 453		min_ratio -= bdi->min_ratio;
 454		if (bdi_min_ratio + min_ratio < 100) {
 455			bdi_min_ratio += min_ratio;
 456			bdi->min_ratio += min_ratio;
 457		} else {
 458			ret = -EINVAL;
 459		}
 460	}
 461	spin_unlock_bh(&bdi_lock);
 462
 463	return ret;
 464}
 465
 466int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 467{
 468	int ret = 0;
 469
 470	if (max_ratio > 100)
 471		return -EINVAL;
 472
 473	spin_lock_bh(&bdi_lock);
 474	if (bdi->min_ratio > max_ratio) {
 475		ret = -EINVAL;
 476	} else {
 477		bdi->max_ratio = max_ratio;
 478		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 479	}
 480	spin_unlock_bh(&bdi_lock);
 481
 482	return ret;
 483}
 484EXPORT_SYMBOL(bdi_set_max_ratio);
 485
 486static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 487					   unsigned long bg_thresh)
 488{
 489	return (thresh + bg_thresh) / 2;
 490}
 491
 492static unsigned long hard_dirty_limit(unsigned long thresh)
 
 493{
 494	return max(thresh, global_dirty_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496
 497/**
 498 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 499 * @bdi: the backing_dev_info to query
 500 * @dirty: global dirty limit in pages
 501 *
 502 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 503 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 504 *
 505 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 506 * when sleeping max_pause per page is not enough to keep the dirty pages under
 507 * control. For example, when the device is completely stalled due to some error
 508 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 509 * In the other normal situations, it acts more gently by throttling the tasks
 510 * more (rather than completely block them) when the bdi dirty pages go high.
 511 *
 512 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 513 * - starving fast devices
 514 * - piling up dirty pages (that will take long time to sync) on slow devices
 515 *
 516 * The bdi's share of dirty limit will be adapting to its throughput and
 517 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 
 
 
 518 */
 519unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 520{
 521	u64 bdi_dirty;
 522	long numerator, denominator;
 
 
 
 523
 524	/*
 525	 * Calculate this BDI's share of the dirty ratio.
 526	 */
 527	bdi_writeout_fraction(bdi, &numerator, &denominator);
 
 528
 529	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 530	bdi_dirty *= numerator;
 531	do_div(bdi_dirty, denominator);
 532
 533	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 534	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 535		bdi_dirty = dirty * bdi->max_ratio / 100;
 536
 537	return bdi_dirty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538}
 539
 540/*
 541 * Dirty position control.
 542 *
 543 * (o) global/bdi setpoints
 544 *
 545 * We want the dirty pages be balanced around the global/bdi setpoints.
 546 * When the number of dirty pages is higher/lower than the setpoint, the
 547 * dirty position control ratio (and hence task dirty ratelimit) will be
 548 * decreased/increased to bring the dirty pages back to the setpoint.
 549 *
 550 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 551 *
 552 *     if (dirty < setpoint) scale up   pos_ratio
 553 *     if (dirty > setpoint) scale down pos_ratio
 554 *
 555 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 556 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 557 *
 558 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 559 *
 560 * (o) global control line
 561 *
 562 *     ^ pos_ratio
 563 *     |
 564 *     |            |<===== global dirty control scope ======>|
 565 * 2.0 .............*
 566 *     |            .*
 567 *     |            . *
 568 *     |            .   *
 569 *     |            .     *
 570 *     |            .        *
 571 *     |            .            *
 572 * 1.0 ................................*
 573 *     |            .                  .     *
 574 *     |            .                  .          *
 575 *     |            .                  .              *
 576 *     |            .                  .                 *
 577 *     |            .                  .                    *
 578 *   0 +------------.------------------.----------------------*------------->
 579 *           freerun^          setpoint^                 limit^   dirty pages
 580 *
 581 * (o) bdi control line
 582 *
 583 *     ^ pos_ratio
 584 *     |
 585 *     |            *
 586 *     |              *
 587 *     |                *
 588 *     |                  *
 589 *     |                    * |<=========== span ============>|
 590 * 1.0 .......................*
 591 *     |                      . *
 592 *     |                      .   *
 593 *     |                      .     *
 594 *     |                      .       *
 595 *     |                      .         *
 596 *     |                      .           *
 597 *     |                      .             *
 598 *     |                      .               *
 599 *     |                      .                 *
 600 *     |                      .                   *
 601 *     |                      .                     *
 602 * 1/4 ...............................................* * * * * * * * * * * *
 603 *     |                      .                         .
 604 *     |                      .                           .
 605 *     |                      .                             .
 606 *   0 +----------------------.-------------------------------.------------->
 607 *                bdi_setpoint^                    x_intercept^
 608 *
 609 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 610 * be smoothly throttled down to normal if it starts high in situations like
 611 * - start writing to a slow SD card and a fast disk at the same time. The SD
 612 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 613 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 614 */
 615static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 616					unsigned long thresh,
 617					unsigned long bg_thresh,
 618					unsigned long dirty,
 619					unsigned long bdi_thresh,
 620					unsigned long bdi_dirty)
 621{
 622	unsigned long write_bw = bdi->avg_write_bandwidth;
 623	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 624	unsigned long limit = hard_dirty_limit(thresh);
 625	unsigned long x_intercept;
 626	unsigned long setpoint;		/* dirty pages' target balance point */
 627	unsigned long bdi_setpoint;
 628	unsigned long span;
 629	long long pos_ratio;		/* for scaling up/down the rate limit */
 630	long x;
 631
 632	if (unlikely(dirty >= limit))
 633		return 0;
 
 
 634
 635	/*
 636	 * global setpoint
 637	 *
 638	 *                           setpoint - dirty 3
 639	 *        f(dirty) := 1.0 + (----------------)
 640	 *                           limit - setpoint
 641	 *
 642	 * it's a 3rd order polynomial that subjects to
 643	 *
 644	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 645	 * (2) f(setpoint) = 1.0 => the balance point
 646	 * (3) f(limit)    = 0   => the hard limit
 647	 * (4) df/dx      <= 0	 => negative feedback control
 648	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 649	 *     => fast response on large errors; small oscillation near setpoint
 650	 */
 651	setpoint = (freerun + limit) / 2;
 652	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
 653		    limit - setpoint + 1);
 654	pos_ratio = x;
 655	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 656	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 657	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659	/*
 660	 * We have computed basic pos_ratio above based on global situation. If
 661	 * the bdi is over/under its share of dirty pages, we want to scale
 662	 * pos_ratio further down/up. That is done by the following mechanism.
 663	 */
 664
 665	/*
 666	 * bdi setpoint
 667	 *
 668	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 669	 *
 670	 *                        x_intercept - bdi_dirty
 671	 *                     := --------------------------
 672	 *                        x_intercept - bdi_setpoint
 673	 *
 674	 * The main bdi control line is a linear function that subjects to
 675	 *
 676	 * (1) f(bdi_setpoint) = 1.0
 677	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 678	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 679	 *
 680	 * For single bdi case, the dirty pages are observed to fluctuate
 681	 * regularly within range
 682	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 683	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 684	 * fluctuation range for pos_ratio.
 685	 *
 686	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 687	 * own size, so move the slope over accordingly and choose a slope that
 688	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 689	 */
 690	if (unlikely(bdi_thresh > thresh))
 691		bdi_thresh = thresh;
 692	/*
 693	 * It's very possible that bdi_thresh is close to 0 not because the
 694	 * device is slow, but that it has remained inactive for long time.
 695	 * Honour such devices a reasonable good (hopefully IO efficient)
 696	 * threshold, so that the occasional writes won't be blocked and active
 697	 * writes can rampup the threshold quickly.
 698	 */
 699	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 700	/*
 701	 * scale global setpoint to bdi's:
 702	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
 703	 */
 704	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
 705	bdi_setpoint = setpoint * (u64)x >> 16;
 706	/*
 707	 * Use span=(8*write_bw) in single bdi case as indicated by
 708	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 709	 *
 710	 *        bdi_thresh                    thresh - bdi_thresh
 711	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 712	 *          thresh                            thresh
 713	 */
 714	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 715	x_intercept = bdi_setpoint + span;
 716
 717	if (bdi_dirty < x_intercept - span / 4) {
 718		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
 719				    x_intercept - bdi_setpoint + 1);
 720	} else
 721		pos_ratio /= 4;
 722
 723	/*
 724	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
 725	 * It may push the desired control point of global dirty pages higher
 726	 * than setpoint.
 727	 */
 728	x_intercept = bdi_thresh / 2;
 729	if (bdi_dirty < x_intercept) {
 730		if (bdi_dirty > x_intercept / 8)
 731			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 
 732		else
 733			pos_ratio *= 8;
 734	}
 735
 736	return pos_ratio;
 737}
 738
 739static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 740				       unsigned long elapsed,
 741				       unsigned long written)
 742{
 743	const unsigned long period = roundup_pow_of_two(3 * HZ);
 744	unsigned long avg = bdi->avg_write_bandwidth;
 745	unsigned long old = bdi->write_bandwidth;
 746	u64 bw;
 747
 748	/*
 749	 * bw = written * HZ / elapsed
 750	 *
 751	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 752	 * write_bandwidth = ---------------------------------------------------
 753	 *                                          period
 
 
 
 754	 */
 755	bw = written - bdi->written_stamp;
 756	bw *= HZ;
 757	if (unlikely(elapsed > period)) {
 758		do_div(bw, elapsed);
 759		avg = bw;
 760		goto out;
 761	}
 762	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 763	bw >>= ilog2(period);
 764
 765	/*
 766	 * one more level of smoothing, for filtering out sudden spikes
 767	 */
 768	if (avg > old && old >= (unsigned long)bw)
 769		avg -= (avg - old) >> 3;
 770
 771	if (avg < old && old <= (unsigned long)bw)
 772		avg += (old - avg) >> 3;
 773
 774out:
 775	bdi->write_bandwidth = bw;
 776	bdi->avg_write_bandwidth = avg;
 777}
 778
 779/*
 780 * The global dirtyable memory and dirty threshold could be suddenly knocked
 781 * down by a large amount (eg. on the startup of KVM in a swapless system).
 782 * This may throw the system into deep dirty exceeded state and throttle
 783 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 784 * global_dirty_limit for tracking slowly down to the knocked down dirty
 785 * threshold.
 786 */
 787static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 788{
 789	unsigned long limit = global_dirty_limit;
 
 790
 791	/*
 792	 * Follow up in one step.
 793	 */
 794	if (limit < thresh) {
 795		limit = thresh;
 796		goto update;
 797	}
 798
 799	/*
 800	 * Follow down slowly. Use the higher one as the target, because thresh
 801	 * may drop below dirty. This is exactly the reason to introduce
 802	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 803	 */
 804	thresh = max(thresh, dirty);
 805	if (limit > thresh) {
 806		limit -= (limit - thresh) >> 5;
 807		goto update;
 808	}
 809	return;
 810update:
 811	global_dirty_limit = limit;
 812}
 813
 814static void global_update_bandwidth(unsigned long thresh,
 815				    unsigned long dirty,
 816				    unsigned long now)
 817{
 818	static DEFINE_SPINLOCK(dirty_lock);
 819	static unsigned long update_time;
 820
 821	/*
 822	 * check locklessly first to optimize away locking for the most time
 823	 */
 824	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 825		return;
 826
 827	spin_lock(&dirty_lock);
 828	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 829		update_dirty_limit(thresh, dirty);
 830		update_time = now;
 831	}
 832	spin_unlock(&dirty_lock);
 833}
 834
 835/*
 836 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 837 *
 838 * Normal bdi tasks will be curbed at or below it in long term.
 839 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 840 */
 841static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 842				       unsigned long thresh,
 843				       unsigned long bg_thresh,
 844				       unsigned long dirty,
 845				       unsigned long bdi_thresh,
 846				       unsigned long bdi_dirty,
 847				       unsigned long dirtied,
 848				       unsigned long elapsed)
 849{
 850	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 851	unsigned long limit = hard_dirty_limit(thresh);
 852	unsigned long setpoint = (freerun + limit) / 2;
 853	unsigned long write_bw = bdi->avg_write_bandwidth;
 854	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 855	unsigned long dirty_rate;
 856	unsigned long task_ratelimit;
 857	unsigned long balanced_dirty_ratelimit;
 858	unsigned long pos_ratio;
 859	unsigned long step;
 860	unsigned long x;
 
 861
 862	/*
 863	 * The dirty rate will match the writeout rate in long term, except
 864	 * when dirty pages are truncated by userspace or re-dirtied by FS.
 865	 */
 866	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 867
 868	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 869				       bdi_thresh, bdi_dirty);
 870	/*
 871	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 872	 */
 873	task_ratelimit = (u64)dirty_ratelimit *
 874					pos_ratio >> RATELIMIT_CALC_SHIFT;
 875	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 876
 877	/*
 878	 * A linear estimation of the "balanced" throttle rate. The theory is,
 879	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
 880	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
 881	 * formula will yield the balanced rate limit (write_bw / N).
 882	 *
 883	 * Note that the expanded form is not a pure rate feedback:
 884	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
 885	 * but also takes pos_ratio into account:
 886	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 887	 *
 888	 * (1) is not realistic because pos_ratio also takes part in balancing
 889	 * the dirty rate.  Consider the state
 890	 *	pos_ratio = 0.5						     (3)
 891	 *	rate = 2 * (write_bw / N)				     (4)
 892	 * If (1) is used, it will stuck in that state! Because each dd will
 893	 * be throttled at
 894	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
 895	 * yielding
 896	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
 897	 * put (6) into (1) we get
 898	 *	rate_(i+1) = rate_(i)					     (7)
 899	 *
 900	 * So we end up using (2) to always keep
 901	 *	rate_(i+1) ~= (write_bw / N)				     (8)
 902	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
 903	 * pos_ratio is able to drive itself to 1.0, which is not only where
 904	 * the dirty count meet the setpoint, but also where the slope of
 905	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
 906	 */
 907	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
 908					   dirty_rate | 1);
 909	/*
 910	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
 911	 */
 912	if (unlikely(balanced_dirty_ratelimit > write_bw))
 913		balanced_dirty_ratelimit = write_bw;
 914
 915	/*
 916	 * We could safely do this and return immediately:
 917	 *
 918	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
 919	 *
 920	 * However to get a more stable dirty_ratelimit, the below elaborated
 921	 * code makes use of task_ratelimit to filter out sigular points and
 922	 * limit the step size.
 923	 *
 924	 * The below code essentially only uses the relative value of
 925	 *
 926	 *	task_ratelimit - dirty_ratelimit
 927	 *	= (pos_ratio - 1) * dirty_ratelimit
 928	 *
 929	 * which reflects the direction and size of dirty position error.
 930	 */
 931
 932	/*
 933	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
 934	 * task_ratelimit is on the same side of dirty_ratelimit, too.
 935	 * For example, when
 936	 * - dirty_ratelimit > balanced_dirty_ratelimit
 937	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
 938	 * lowering dirty_ratelimit will help meet both the position and rate
 939	 * control targets. Otherwise, don't update dirty_ratelimit if it will
 940	 * only help meet the rate target. After all, what the users ultimately
 941	 * feel and care are stable dirty rate and small position error.
 942	 *
 943	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
 944	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
 945	 * keeps jumping around randomly and can even leap far away at times
 946	 * due to the small 200ms estimation period of dirty_rate (we want to
 947	 * keep that period small to reduce time lags).
 948	 */
 949	step = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950	if (dirty < setpoint) {
 951		x = min(bdi->balanced_dirty_ratelimit,
 952			 min(balanced_dirty_ratelimit, task_ratelimit));
 953		if (dirty_ratelimit < x)
 954			step = x - dirty_ratelimit;
 955	} else {
 956		x = max(bdi->balanced_dirty_ratelimit,
 957			 max(balanced_dirty_ratelimit, task_ratelimit));
 958		if (dirty_ratelimit > x)
 959			step = dirty_ratelimit - x;
 960	}
 961
 962	/*
 963	 * Don't pursue 100% rate matching. It's impossible since the balanced
 964	 * rate itself is constantly fluctuating. So decrease the track speed
 965	 * when it gets close to the target. Helps eliminate pointless tremors.
 966	 */
 967	step >>= dirty_ratelimit / (2 * step + 1);
 968	/*
 969	 * Limit the tracking speed to avoid overshooting.
 970	 */
 971	step = (step + 7) / 8;
 972
 973	if (dirty_ratelimit < balanced_dirty_ratelimit)
 974		dirty_ratelimit += step;
 975	else
 976		dirty_ratelimit -= step;
 977
 978	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
 979	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 980
 981	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
 982}
 983
 984void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 985			    unsigned long thresh,
 986			    unsigned long bg_thresh,
 987			    unsigned long dirty,
 988			    unsigned long bdi_thresh,
 989			    unsigned long bdi_dirty,
 990			    unsigned long start_time)
 991{
 
 992	unsigned long now = jiffies;
 993	unsigned long elapsed = now - bdi->bw_time_stamp;
 994	unsigned long dirtied;
 995	unsigned long written;
 996
 
 
 997	/*
 998	 * rate-limit, only update once every 200ms.
 999	 */
1000	if (elapsed < BANDWIDTH_INTERVAL)
1001		return;
1002
1003	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1004	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1005
1006	/*
1007	 * Skip quiet periods when disk bandwidth is under-utilized.
1008	 * (at least 1s idle time between two flusher runs)
1009	 */
1010	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1011		goto snapshot;
1012
1013	if (thresh) {
1014		global_update_bandwidth(thresh, dirty, now);
1015		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1016					   bdi_thresh, bdi_dirty,
1017					   dirtied, elapsed);
 
 
 
 
 
 
 
1018	}
1019	bdi_update_write_bandwidth(bdi, elapsed, written);
1020
1021snapshot:
1022	bdi->dirtied_stamp = dirtied;
1023	bdi->written_stamp = written;
1024	bdi->bw_time_stamp = now;
1025}
1026
1027static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1028				 unsigned long thresh,
1029				 unsigned long bg_thresh,
1030				 unsigned long dirty,
1031				 unsigned long bdi_thresh,
1032				 unsigned long bdi_dirty,
1033				 unsigned long start_time)
1034{
1035	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1036		return;
1037	spin_lock(&bdi->wb.list_lock);
1038	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1039			       bdi_thresh, bdi_dirty, start_time);
1040	spin_unlock(&bdi->wb.list_lock);
1041}
1042
1043/*
1044 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1045 * will look to see if it needs to start dirty throttling.
1046 *
1047 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1048 * global_page_state() too often. So scale it near-sqrt to the safety margin
1049 * (the number of pages we may dirty without exceeding the dirty limits).
1050 */
1051static unsigned long dirty_poll_interval(unsigned long dirty,
1052					 unsigned long thresh)
1053{
1054	if (thresh > dirty)
1055		return 1UL << (ilog2(thresh - dirty) >> 1);
1056
1057	return 1;
1058}
1059
1060static long bdi_max_pause(struct backing_dev_info *bdi,
1061			  unsigned long bdi_dirty)
1062{
1063	long bw = bdi->avg_write_bandwidth;
1064	long t;
1065
1066	/*
1067	 * Limit pause time for small memory systems. If sleeping for too long
1068	 * time, a small pool of dirty/writeback pages may go empty and disk go
1069	 * idle.
1070	 *
1071	 * 8 serves as the safety ratio.
1072	 */
1073	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1074	t++;
1075
1076	return min_t(long, t, MAX_PAUSE);
1077}
1078
1079static long bdi_min_pause(struct backing_dev_info *bdi,
1080			  long max_pause,
1081			  unsigned long task_ratelimit,
1082			  unsigned long dirty_ratelimit,
1083			  int *nr_dirtied_pause)
1084{
1085	long hi = ilog2(bdi->avg_write_bandwidth);
1086	long lo = ilog2(bdi->dirty_ratelimit);
1087	long t;		/* target pause */
1088	long pause;	/* estimated next pause */
1089	int pages;	/* target nr_dirtied_pause */
1090
1091	/* target for 10ms pause on 1-dd case */
1092	t = max(1, HZ / 100);
1093
1094	/*
1095	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1096	 * overheads.
1097	 *
1098	 * (N * 10ms) on 2^N concurrent tasks.
1099	 */
1100	if (hi > lo)
1101		t += (hi - lo) * (10 * HZ) / 1024;
1102
1103	/*
1104	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1105	 * on the much more stable dirty_ratelimit. However the next pause time
1106	 * will be computed based on task_ratelimit and the two rate limits may
1107	 * depart considerably at some time. Especially if task_ratelimit goes
1108	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1109	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1110	 * result task_ratelimit won't be executed faithfully, which could
1111	 * eventually bring down dirty_ratelimit.
1112	 *
1113	 * We apply two rules to fix it up:
1114	 * 1) try to estimate the next pause time and if necessary, use a lower
1115	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1116	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1117	 * 2) limit the target pause time to max_pause/2, so that the normal
1118	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1119	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1120	 */
1121	t = min(t, 1 + max_pause / 2);
1122	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1123
1124	/*
1125	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1126	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1127	 * When the 16 consecutive reads are often interrupted by some dirty
1128	 * throttling pause during the async writes, cfq will go into idles
1129	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1130	 * until reaches DIRTY_POLL_THRESH=32 pages.
1131	 */
1132	if (pages < DIRTY_POLL_THRESH) {
1133		t = max_pause;
1134		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1135		if (pages > DIRTY_POLL_THRESH) {
1136			pages = DIRTY_POLL_THRESH;
1137			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1138		}
1139	}
1140
1141	pause = HZ * pages / (task_ratelimit + 1);
1142	if (pause > max_pause) {
1143		t = max_pause;
1144		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1145	}
1146
1147	*nr_dirtied_pause = pages;
1148	/*
1149	 * The minimal pause time will normally be half the target pause time.
1150	 */
1151	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1152}
1153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154/*
1155 * balance_dirty_pages() must be called by processes which are generating dirty
1156 * data.  It looks at the number of dirty pages in the machine and will force
1157 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1158 * If we're over `background_thresh' then the writeback threads are woken to
1159 * perform some writeout.
1160 */
1161static void balance_dirty_pages(struct address_space *mapping,
1162				unsigned long pages_dirtied)
1163{
1164	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1165	unsigned long bdi_reclaimable;
1166	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1167	unsigned long bdi_dirty;
1168	unsigned long freerun;
1169	unsigned long background_thresh;
1170	unsigned long dirty_thresh;
1171	unsigned long bdi_thresh;
1172	long period;
1173	long pause;
1174	long max_pause;
1175	long min_pause;
1176	int nr_dirtied_pause;
1177	bool dirty_exceeded = false;
1178	unsigned long task_ratelimit;
1179	unsigned long dirty_ratelimit;
1180	unsigned long pos_ratio;
1181	struct backing_dev_info *bdi = mapping->backing_dev_info;
1182	unsigned long start_time = jiffies;
1183
1184	for (;;) {
1185		unsigned long now = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187		/*
1188		 * Unstable writes are a feature of certain networked
1189		 * filesystems (i.e. NFS) in which data may have been
1190		 * written to the server's write cache, but has not yet
1191		 * been flushed to permanent storage.
1192		 */
1193		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1194					global_page_state(NR_UNSTABLE_NFS);
1195		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1196
1197		global_dirty_limits(&background_thresh, &dirty_thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199		/*
1200		 * Throttle it only when the background writeback cannot
1201		 * catch-up. This avoids (excessively) small writeouts
1202		 * when the bdi limits are ramping up.
 
 
 
 
 
 
 
1203		 */
1204		freerun = dirty_freerun_ceiling(dirty_thresh,
1205						background_thresh);
1206		if (nr_dirty <= freerun) {
 
 
 
 
 
 
 
1207			current->dirty_paused_when = now;
1208			current->nr_dirtied = 0;
1209			current->nr_dirtied_pause =
1210				dirty_poll_interval(nr_dirty, dirty_thresh);
 
1211			break;
1212		}
1213
1214		if (unlikely(!writeback_in_progress(bdi)))
1215			bdi_start_background_writeback(bdi);
 
 
1216
1217		/*
1218		 * bdi_thresh is not treated as some limiting factor as
1219		 * dirty_thresh, due to reasons
1220		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1221		 * - in a system with HDD and USB key, the USB key may somehow
1222		 *   go into state (bdi_dirty >> bdi_thresh) either because
1223		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1224		 *   In this case we don't want to hard throttle the USB key
1225		 *   dirtiers for 100 seconds until bdi_dirty drops under
1226		 *   bdi_thresh. Instead the auxiliary bdi control line in
1227		 *   bdi_position_ratio() will let the dirtier task progress
1228		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1229		 */
1230		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232		/*
1233		 * In order to avoid the stacked BDI deadlock we need
1234		 * to ensure we accurately count the 'dirty' pages when
1235		 * the threshold is low.
1236		 *
1237		 * Otherwise it would be possible to get thresh+n pages
1238		 * reported dirty, even though there are thresh-m pages
1239		 * actually dirty; with m+n sitting in the percpu
1240		 * deltas.
1241		 */
1242		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1243			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1244			bdi_dirty = bdi_reclaimable +
1245				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1246		} else {
1247			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1248			bdi_dirty = bdi_reclaimable +
1249				    bdi_stat(bdi, BDI_WRITEBACK);
1250		}
1251
1252		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1253				  (nr_dirty > dirty_thresh);
1254		if (dirty_exceeded && !bdi->dirty_exceeded)
1255			bdi->dirty_exceeded = 1;
1256
1257		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1258				     nr_dirty, bdi_thresh, bdi_dirty,
1259				     start_time);
1260
1261		dirty_ratelimit = bdi->dirty_ratelimit;
1262		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1263					       background_thresh, nr_dirty,
1264					       bdi_thresh, bdi_dirty);
1265		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
 
 
 
 
 
 
 
 
 
 
 
1266							RATELIMIT_CALC_SHIFT;
1267		max_pause = bdi_max_pause(bdi, bdi_dirty);
1268		min_pause = bdi_min_pause(bdi, max_pause,
1269					  task_ratelimit, dirty_ratelimit,
1270					  &nr_dirtied_pause);
1271
1272		if (unlikely(task_ratelimit == 0)) {
1273			period = max_pause;
1274			pause = max_pause;
1275			goto pause;
1276		}
1277		period = HZ * pages_dirtied / task_ratelimit;
1278		pause = period;
1279		if (current->dirty_paused_when)
1280			pause -= now - current->dirty_paused_when;
1281		/*
1282		 * For less than 1s think time (ext3/4 may block the dirtier
1283		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1284		 * however at much less frequency), try to compensate it in
1285		 * future periods by updating the virtual time; otherwise just
1286		 * do a reset, as it may be a light dirtier.
1287		 */
1288		if (pause < min_pause) {
1289			trace_balance_dirty_pages(bdi,
1290						  dirty_thresh,
1291						  background_thresh,
1292						  nr_dirty,
1293						  bdi_thresh,
1294						  bdi_dirty,
1295						  dirty_ratelimit,
1296						  task_ratelimit,
1297						  pages_dirtied,
1298						  period,
1299						  min(pause, 0L),
1300						  start_time);
1301			if (pause < -HZ) {
1302				current->dirty_paused_when = now;
1303				current->nr_dirtied = 0;
1304			} else if (period) {
1305				current->dirty_paused_when += period;
1306				current->nr_dirtied = 0;
1307			} else if (current->nr_dirtied_pause <= pages_dirtied)
1308				current->nr_dirtied_pause += pages_dirtied;
1309			break;
1310		}
1311		if (unlikely(pause > max_pause)) {
1312			/* for occasional dropped task_ratelimit */
1313			now += min(pause - max_pause, max_pause);
1314			pause = max_pause;
1315		}
1316
1317pause:
1318		trace_balance_dirty_pages(bdi,
1319					  dirty_thresh,
1320					  background_thresh,
1321					  nr_dirty,
1322					  bdi_thresh,
1323					  bdi_dirty,
1324					  dirty_ratelimit,
1325					  task_ratelimit,
1326					  pages_dirtied,
1327					  period,
1328					  pause,
1329					  start_time);
1330		__set_current_state(TASK_KILLABLE);
 
1331		io_schedule_timeout(pause);
1332
1333		current->dirty_paused_when = now + pause;
1334		current->nr_dirtied = 0;
1335		current->nr_dirtied_pause = nr_dirtied_pause;
1336
1337		/*
1338		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1339		 * also keep "1000+ dd on a slow USB stick" under control.
1340		 */
1341		if (task_ratelimit)
1342			break;
1343
1344		/*
1345		 * In the case of an unresponding NFS server and the NFS dirty
1346		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1347		 * to go through, so that tasks on them still remain responsive.
1348		 *
1349		 * In theory 1 page is enough to keep the comsumer-producer
1350		 * pipe going: the flusher cleans 1 page => the task dirties 1
1351		 * more page. However bdi_dirty has accounting errors.  So use
1352		 * the larger and more IO friendly bdi_stat_error.
1353		 */
1354		if (bdi_dirty <= bdi_stat_error(bdi))
1355			break;
1356
1357		if (fatal_signal_pending(current))
1358			break;
1359	}
1360
1361	if (!dirty_exceeded && bdi->dirty_exceeded)
1362		bdi->dirty_exceeded = 0;
1363
1364	if (writeback_in_progress(bdi))
1365		return;
1366
1367	/*
1368	 * In laptop mode, we wait until hitting the higher threshold before
1369	 * starting background writeout, and then write out all the way down
1370	 * to the lower threshold.  So slow writers cause minimal disk activity.
1371	 *
1372	 * In normal mode, we start background writeout at the lower
1373	 * background_thresh, to keep the amount of dirty memory low.
1374	 */
1375	if (laptop_mode)
1376		return;
1377
1378	if (nr_reclaimable > background_thresh)
1379		bdi_start_background_writeback(bdi);
1380}
1381
1382void set_page_dirty_balance(struct page *page, int page_mkwrite)
1383{
1384	if (set_page_dirty(page) || page_mkwrite) {
1385		struct address_space *mapping = page_mapping(page);
1386
1387		if (mapping)
1388			balance_dirty_pages_ratelimited(mapping);
1389	}
1390}
1391
1392static DEFINE_PER_CPU(int, bdp_ratelimits);
1393
1394/*
1395 * Normal tasks are throttled by
1396 *	loop {
1397 *		dirty tsk->nr_dirtied_pause pages;
1398 *		take a snap in balance_dirty_pages();
1399 *	}
1400 * However there is a worst case. If every task exit immediately when dirtied
1401 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1402 * called to throttle the page dirties. The solution is to save the not yet
1403 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1404 * randomly into the running tasks. This works well for the above worst case,
1405 * as the new task will pick up and accumulate the old task's leaked dirty
1406 * count and eventually get throttled.
1407 */
1408DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1409
1410/**
1411 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1412 * @mapping: address_space which was dirtied
1413 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1414 *
1415 * Processes which are dirtying memory should call in here once for each page
1416 * which was newly dirtied.  The function will periodically check the system's
1417 * dirty state and will initiate writeback if needed.
1418 *
1419 * On really big machines, get_writeback_state is expensive, so try to avoid
1420 * calling it too often (ratelimiting).  But once we're over the dirty memory
1421 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1422 * from overshooting the limit by (ratelimit_pages) each.
1423 */
1424void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1425					unsigned long nr_pages_dirtied)
1426{
1427	struct backing_dev_info *bdi = mapping->backing_dev_info;
1428	int ratelimit;
1429	int *p;
1430
1431	if (!bdi_cap_account_dirty(bdi))
1432		return;
1433
 
 
 
 
 
1434	ratelimit = current->nr_dirtied_pause;
1435	if (bdi->dirty_exceeded)
1436		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1437
1438	preempt_disable();
1439	/*
1440	 * This prevents one CPU to accumulate too many dirtied pages without
1441	 * calling into balance_dirty_pages(), which can happen when there are
1442	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1443	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1444	 */
1445	p =  &__get_cpu_var(bdp_ratelimits);
1446	if (unlikely(current->nr_dirtied >= ratelimit))
1447		*p = 0;
1448	else if (unlikely(*p >= ratelimit_pages)) {
1449		*p = 0;
1450		ratelimit = 0;
1451	}
1452	/*
1453	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1454	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1455	 * the dirty throttling and livelock other long-run dirtiers.
1456	 */
1457	p = &__get_cpu_var(dirty_throttle_leaks);
1458	if (*p > 0 && current->nr_dirtied < ratelimit) {
 
1459		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1460		*p -= nr_pages_dirtied;
1461		current->nr_dirtied += nr_pages_dirtied;
1462	}
1463	preempt_enable();
1464
1465	if (unlikely(current->nr_dirtied >= ratelimit))
1466		balance_dirty_pages(mapping, current->nr_dirtied);
 
 
1467}
1468EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1469
1470void throttle_vm_writeout(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
1471{
1472	unsigned long background_thresh;
1473	unsigned long dirty_thresh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474
1475        for ( ; ; ) {
1476		global_dirty_limits(&background_thresh, &dirty_thresh);
1477		dirty_thresh = hard_dirty_limit(dirty_thresh);
1478
1479                /*
1480                 * Boost the allowable dirty threshold a bit for page
1481                 * allocators so they don't get DoS'ed by heavy writers
1482                 */
1483                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1484
1485                if (global_page_state(NR_UNSTABLE_NFS) +
1486			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1487                        	break;
1488                congestion_wait(BLK_RW_ASYNC, HZ/10);
1489
1490		/*
1491		 * The caller might hold locks which can prevent IO completion
1492		 * or progress in the filesystem.  So we cannot just sit here
1493		 * waiting for IO to complete.
1494		 */
1495		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1496			break;
1497        }
1498}
1499
1500/*
1501 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1502 */
1503int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1504	void __user *buffer, size_t *length, loff_t *ppos)
1505{
1506	proc_dointvec(table, write, buffer, length, ppos);
1507	bdi_arm_supers_timer();
1508	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511#ifdef CONFIG_BLOCK
1512void laptop_mode_timer_fn(unsigned long data)
1513{
1514	struct request_queue *q = (struct request_queue *)data;
1515	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1516		global_page_state(NR_UNSTABLE_NFS);
1517
1518	/*
1519	 * We want to write everything out, not just down to the dirty
1520	 * threshold
1521	 */
1522	if (bdi_has_dirty_io(&q->backing_dev_info))
1523		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1524					WB_REASON_LAPTOP_TIMER);
1525}
1526
1527/*
1528 * We've spun up the disk and we're in laptop mode: schedule writeback
1529 * of all dirty data a few seconds from now.  If the flush is already scheduled
1530 * then push it back - the user is still using the disk.
1531 */
1532void laptop_io_completion(struct backing_dev_info *info)
1533{
1534	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1535}
1536
1537/*
1538 * We're in laptop mode and we've just synced. The sync's writes will have
1539 * caused another writeback to be scheduled by laptop_io_completion.
1540 * Nothing needs to be written back anymore, so we unschedule the writeback.
1541 */
1542void laptop_sync_completion(void)
1543{
1544	struct backing_dev_info *bdi;
1545
1546	rcu_read_lock();
1547
1548	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1549		del_timer(&bdi->laptop_mode_wb_timer);
1550
1551	rcu_read_unlock();
1552}
1553#endif
1554
1555/*
1556 * If ratelimit_pages is too high then we can get into dirty-data overload
1557 * if a large number of processes all perform writes at the same time.
1558 * If it is too low then SMP machines will call the (expensive)
1559 * get_writeback_state too often.
1560 *
1561 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1562 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1563 * thresholds.
1564 */
1565
1566void writeback_set_ratelimit(void)
1567{
 
1568	unsigned long background_thresh;
1569	unsigned long dirty_thresh;
 
1570	global_dirty_limits(&background_thresh, &dirty_thresh);
1571	global_dirty_limit = dirty_thresh;
1572	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1573	if (ratelimit_pages < 16)
1574		ratelimit_pages = 16;
1575}
1576
1577static int __cpuinit
1578ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1579{
1580	writeback_set_ratelimit();
1581	return NOTIFY_DONE;
1582}
1583
1584static struct notifier_block __cpuinitdata ratelimit_nb = {
1585	.notifier_call	= ratelimit_handler,
1586	.next		= NULL,
1587};
1588
1589/*
1590 * Called early on to tune the page writeback dirty limits.
1591 *
1592 * We used to scale dirty pages according to how total memory
1593 * related to pages that could be allocated for buffers (by
1594 * comparing nr_free_buffer_pages() to vm_total_pages.
1595 *
1596 * However, that was when we used "dirty_ratio" to scale with
1597 * all memory, and we don't do that any more. "dirty_ratio"
1598 * is now applied to total non-HIGHPAGE memory (by subtracting
1599 * totalhigh_pages from vm_total_pages), and as such we can't
1600 * get into the old insane situation any more where we had
1601 * large amounts of dirty pages compared to a small amount of
1602 * non-HIGHMEM memory.
1603 *
1604 * But we might still want to scale the dirty_ratio by how
1605 * much memory the box has..
1606 */
1607void __init page_writeback_init(void)
1608{
1609	int shift;
1610
1611	writeback_set_ratelimit();
1612	register_cpu_notifier(&ratelimit_nb);
1613
1614	shift = calc_period_shift();
1615	prop_descriptor_init(&vm_completions, shift);
 
 
1616}
1617
1618/**
1619 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1620 * @mapping: address space structure to write
1621 * @start: starting page index
1622 * @end: ending page index (inclusive)
1623 *
1624 * This function scans the page range from @start to @end (inclusive) and tags
1625 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1626 * that write_cache_pages (or whoever calls this function) will then use
1627 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1628 * used to avoid livelocking of writeback by a process steadily creating new
1629 * dirty pages in the file (thus it is important for this function to be quick
1630 * so that it can tag pages faster than a dirtying process can create them).
1631 */
1632/*
1633 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1634 */
1635void tag_pages_for_writeback(struct address_space *mapping,
1636			     pgoff_t start, pgoff_t end)
1637{
1638#define WRITEBACK_TAG_BATCH 4096
1639	unsigned long tagged;
 
 
 
 
 
 
 
1640
1641	do {
1642		spin_lock_irq(&mapping->tree_lock);
1643		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1644				&start, end, WRITEBACK_TAG_BATCH,
1645				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1646		spin_unlock_irq(&mapping->tree_lock);
1647		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1648		cond_resched();
1649		/* We check 'start' to handle wrapping when end == ~0UL */
1650	} while (tagged >= WRITEBACK_TAG_BATCH && start);
 
1651}
1652EXPORT_SYMBOL(tag_pages_for_writeback);
1653
1654/**
1655 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1656 * @mapping: address space structure to write
1657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1658 * @writepage: function called for each page
1659 * @data: data passed to writepage function
1660 *
1661 * If a page is already under I/O, write_cache_pages() skips it, even
1662 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1663 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1664 * and msync() need to guarantee that all the data which was dirty at the time
1665 * the call was made get new I/O started against them.  If wbc->sync_mode is
1666 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1667 * existing IO to complete.
1668 *
1669 * To avoid livelocks (when other process dirties new pages), we first tag
1670 * pages which should be written back with TOWRITE tag and only then start
1671 * writing them. For data-integrity sync we have to be careful so that we do
1672 * not miss some pages (e.g., because some other process has cleared TOWRITE
1673 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1674 * by the process clearing the DIRTY tag (and submitting the page for IO).
 
 
 
 
 
 
 
 
 
1675 */
1676int write_cache_pages(struct address_space *mapping,
1677		      struct writeback_control *wbc, writepage_t writepage,
1678		      void *data)
1679{
1680	int ret = 0;
1681	int done = 0;
 
1682	struct pagevec pvec;
1683	int nr_pages;
1684	pgoff_t uninitialized_var(writeback_index);
1685	pgoff_t index;
1686	pgoff_t end;		/* Inclusive */
1687	pgoff_t done_index;
1688	int cycled;
1689	int range_whole = 0;
1690	int tag;
1691
1692	pagevec_init(&pvec, 0);
1693	if (wbc->range_cyclic) {
1694		writeback_index = mapping->writeback_index; /* prev offset */
1695		index = writeback_index;
1696		if (index == 0)
1697			cycled = 1;
1698		else
1699			cycled = 0;
1700		end = -1;
1701	} else {
1702		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1703		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1704		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1705			range_whole = 1;
1706		cycled = 1; /* ignore range_cyclic tests */
1707	}
1708	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 
1709		tag = PAGECACHE_TAG_TOWRITE;
1710	else
1711		tag = PAGECACHE_TAG_DIRTY;
1712retry:
1713	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1714		tag_pages_for_writeback(mapping, index, end);
1715	done_index = index;
1716	while (!done && (index <= end)) {
1717		int i;
1718
1719		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1720			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1721		if (nr_pages == 0)
1722			break;
1723
1724		for (i = 0; i < nr_pages; i++) {
1725			struct page *page = pvec.pages[i];
1726
1727			/*
1728			 * At this point, the page may be truncated or
1729			 * invalidated (changing page->mapping to NULL), or
1730			 * even swizzled back from swapper_space to tmpfs file
1731			 * mapping. However, page->index will not change
1732			 * because we have a reference on the page.
1733			 */
1734			if (page->index > end) {
1735				/*
1736				 * can't be range_cyclic (1st pass) because
1737				 * end == -1 in that case.
1738				 */
1739				done = 1;
1740				break;
1741			}
1742
1743			done_index = page->index;
1744
1745			lock_page(page);
1746
1747			/*
1748			 * Page truncated or invalidated. We can freely skip it
1749			 * then, even for data integrity operations: the page
1750			 * has disappeared concurrently, so there could be no
1751			 * real expectation of this data interity operation
1752			 * even if there is now a new, dirty page at the same
1753			 * pagecache address.
1754			 */
1755			if (unlikely(page->mapping != mapping)) {
1756continue_unlock:
1757				unlock_page(page);
1758				continue;
1759			}
1760
1761			if (!PageDirty(page)) {
1762				/* someone wrote it for us */
1763				goto continue_unlock;
1764			}
1765
1766			if (PageWriteback(page)) {
1767				if (wbc->sync_mode != WB_SYNC_NONE)
1768					wait_on_page_writeback(page);
1769				else
1770					goto continue_unlock;
1771			}
1772
1773			BUG_ON(PageWriteback(page));
1774			if (!clear_page_dirty_for_io(page))
1775				goto continue_unlock;
1776
1777			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1778			ret = (*writepage)(page, wbc, data);
1779			if (unlikely(ret)) {
1780				if (ret == AOP_WRITEPAGE_ACTIVATE) {
 
 
 
 
 
 
 
 
 
 
 
 
1781					unlock_page(page);
1782					ret = 0;
1783				} else {
1784					/*
1785					 * done_index is set past this page,
1786					 * so media errors will not choke
1787					 * background writeout for the entire
1788					 * file. This has consequences for
1789					 * range_cyclic semantics (ie. it may
1790					 * not be suitable for data integrity
1791					 * writeout).
1792					 */
1793					done_index = page->index + 1;
1794					done = 1;
1795					break;
1796				}
 
 
1797			}
1798
1799			/*
1800			 * We stop writing back only if we are not doing
1801			 * integrity sync. In case of integrity sync we have to
1802			 * keep going until we have written all the pages
1803			 * we tagged for writeback prior to entering this loop.
1804			 */
1805			if (--wbc->nr_to_write <= 0 &&
1806			    wbc->sync_mode == WB_SYNC_NONE) {
1807				done = 1;
1808				break;
1809			}
1810		}
1811		pagevec_release(&pvec);
1812		cond_resched();
1813	}
1814	if (!cycled && !done) {
1815		/*
1816		 * range_cyclic:
1817		 * We hit the last page and there is more work to be done: wrap
1818		 * back to the start of the file
1819		 */
1820		cycled = 1;
1821		index = 0;
1822		end = writeback_index - 1;
1823		goto retry;
1824	}
1825	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1826		mapping->writeback_index = done_index;
1827
1828	return ret;
1829}
1830EXPORT_SYMBOL(write_cache_pages);
1831
1832/*
1833 * Function used by generic_writepages to call the real writepage
1834 * function and set the mapping flags on error
1835 */
1836static int __writepage(struct page *page, struct writeback_control *wbc,
1837		       void *data)
1838{
1839	struct address_space *mapping = data;
1840	int ret = mapping->a_ops->writepage(page, wbc);
1841	mapping_set_error(mapping, ret);
1842	return ret;
1843}
1844
1845/**
1846 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849 *
1850 * This is a library function, which implements the writepages()
1851 * address_space_operation.
 
 
1852 */
1853int generic_writepages(struct address_space *mapping,
1854		       struct writeback_control *wbc)
1855{
1856	struct blk_plug plug;
1857	int ret;
1858
1859	/* deal with chardevs and other special file */
1860	if (!mapping->a_ops->writepage)
1861		return 0;
1862
1863	blk_start_plug(&plug);
1864	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1865	blk_finish_plug(&plug);
1866	return ret;
1867}
1868
1869EXPORT_SYMBOL(generic_writepages);
1870
1871int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1872{
1873	int ret;
1874
1875	if (wbc->nr_to_write <= 0)
1876		return 0;
1877	if (mapping->a_ops->writepages)
1878		ret = mapping->a_ops->writepages(mapping, wbc);
1879	else
1880		ret = generic_writepages(mapping, wbc);
 
 
 
 
 
 
1881	return ret;
1882}
1883
1884/**
1885 * write_one_page - write out a single page and optionally wait on I/O
1886 * @page: the page to write
1887 * @wait: if true, wait on writeout
1888 *
1889 * The page must be locked by the caller and will be unlocked upon return.
1890 *
1891 * write_one_page() returns a negative error code if I/O failed.
 
 
 
1892 */
1893int write_one_page(struct page *page, int wait)
1894{
1895	struct address_space *mapping = page->mapping;
1896	int ret = 0;
1897	struct writeback_control wbc = {
1898		.sync_mode = WB_SYNC_ALL,
1899		.nr_to_write = 1,
1900	};
1901
1902	BUG_ON(!PageLocked(page));
1903
1904	if (wait)
1905		wait_on_page_writeback(page);
1906
1907	if (clear_page_dirty_for_io(page)) {
1908		page_cache_get(page);
1909		ret = mapping->a_ops->writepage(page, &wbc);
1910		if (ret == 0 && wait) {
1911			wait_on_page_writeback(page);
1912			if (PageError(page))
1913				ret = -EIO;
1914		}
1915		page_cache_release(page);
1916	} else {
1917		unlock_page(page);
1918	}
 
 
 
1919	return ret;
1920}
1921EXPORT_SYMBOL(write_one_page);
1922
1923/*
1924 * For address_spaces which do not use buffers nor write back.
1925 */
1926int __set_page_dirty_no_writeback(struct page *page)
1927{
1928	if (!PageDirty(page))
1929		return !TestSetPageDirty(page);
1930	return 0;
1931}
 
1932
1933/*
1934 * Helper function for set_page_dirty family.
 
 
 
1935 * NOTE: This relies on being atomic wrt interrupts.
1936 */
1937void account_page_dirtied(struct page *page, struct address_space *mapping)
 
1938{
1939	if (mapping_cap_account_dirty(mapping)) {
1940		__inc_zone_page_state(page, NR_FILE_DIRTY);
1941		__inc_zone_page_state(page, NR_DIRTIED);
1942		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1943		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1944		task_io_account_write(PAGE_CACHE_SIZE);
 
 
 
 
 
 
 
 
 
 
1945		current->nr_dirtied++;
1946		this_cpu_inc(bdp_ratelimits);
 
 
1947	}
1948}
1949EXPORT_SYMBOL(account_page_dirtied);
1950
1951/*
1952 * Helper function for set_page_writeback family.
1953 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1954 * wrt interrupts.
1955 */
1956void account_page_writeback(struct page *page)
 
1957{
1958	inc_zone_page_state(page, NR_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959}
1960EXPORT_SYMBOL(account_page_writeback);
1961
1962/*
1963 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1964 * its radix tree.
1965 *
1966 * This is also used when a single buffer is being dirtied: we want to set the
1967 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1968 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1969 *
1970 * Most callers have locked the page, which pins the address_space in memory.
1971 * But zap_pte_range() does not lock the page, however in that case the
1972 * mapping is pinned by the vma's ->vm_file reference.
1973 *
1974 * We take care to handle the case where the page was truncated from the
1975 * mapping by re-checking page_mapping() inside tree_lock.
1976 */
1977int __set_page_dirty_nobuffers(struct page *page)
1978{
 
1979	if (!TestSetPageDirty(page)) {
1980		struct address_space *mapping = page_mapping(page);
1981		struct address_space *mapping2;
1982
1983		if (!mapping)
 
1984			return 1;
 
 
 
1985
1986		spin_lock_irq(&mapping->tree_lock);
1987		mapping2 = page_mapping(page);
1988		if (mapping2) { /* Race with truncate? */
1989			BUG_ON(mapping2 != mapping);
1990			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1991			account_page_dirtied(page, mapping);
1992			radix_tree_tag_set(&mapping->page_tree,
1993				page_index(page), PAGECACHE_TAG_DIRTY);
1994		}
1995		spin_unlock_irq(&mapping->tree_lock);
1996		if (mapping->host) {
1997			/* !PageAnon && !swapper_space */
1998			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1999		}
2000		return 1;
2001	}
 
2002	return 0;
2003}
2004EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2005
2006/*
2007 * Call this whenever redirtying a page, to de-account the dirty counters
2008 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2009 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2010 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2011 * control.
2012 */
2013void account_page_redirty(struct page *page)
2014{
2015	struct address_space *mapping = page->mapping;
2016	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
 
 
2017		current->nr_dirtied--;
2018		dec_zone_page_state(page, NR_DIRTIED);
2019		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
 
2020	}
2021}
2022EXPORT_SYMBOL(account_page_redirty);
2023
2024/*
2025 * When a writepage implementation decides that it doesn't want to write this
2026 * page for some reason, it should redirty the locked page via
2027 * redirty_page_for_writepage() and it should then unlock the page and return 0
2028 */
2029int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2030{
 
 
2031	wbc->pages_skipped++;
 
2032	account_page_redirty(page);
2033	return __set_page_dirty_nobuffers(page);
2034}
2035EXPORT_SYMBOL(redirty_page_for_writepage);
2036
2037/*
2038 * Dirty a page.
2039 *
2040 * For pages with a mapping this should be done under the page lock
2041 * for the benefit of asynchronous memory errors who prefer a consistent
2042 * dirty state. This rule can be broken in some special cases,
2043 * but should be better not to.
2044 *
2045 * If the mapping doesn't provide a set_page_dirty a_op, then
2046 * just fall through and assume that it wants buffer_heads.
2047 */
2048int set_page_dirty(struct page *page)
2049{
2050	struct address_space *mapping = page_mapping(page);
2051
 
2052	if (likely(mapping)) {
2053		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2054		/*
2055		 * readahead/lru_deactivate_page could remain
2056		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2057		 * About readahead, if the page is written, the flags would be
2058		 * reset. So no problem.
2059		 * About lru_deactivate_page, if the page is redirty, the flag
2060		 * will be reset. So no problem. but if the page is used by readahead
2061		 * it will confuse readahead and make it restart the size rampup
2062		 * process. But it's a trivial problem.
2063		 */
2064		ClearPageReclaim(page);
2065#ifdef CONFIG_BLOCK
2066		if (!spd)
2067			spd = __set_page_dirty_buffers;
2068#endif
2069		return (*spd)(page);
2070	}
2071	if (!PageDirty(page)) {
2072		if (!TestSetPageDirty(page))
2073			return 1;
2074	}
2075	return 0;
2076}
2077EXPORT_SYMBOL(set_page_dirty);
2078
2079/*
2080 * set_page_dirty() is racy if the caller has no reference against
2081 * page->mapping->host, and if the page is unlocked.  This is because another
2082 * CPU could truncate the page off the mapping and then free the mapping.
2083 *
2084 * Usually, the page _is_ locked, or the caller is a user-space process which
2085 * holds a reference on the inode by having an open file.
2086 *
2087 * In other cases, the page should be locked before running set_page_dirty().
2088 */
2089int set_page_dirty_lock(struct page *page)
2090{
2091	int ret;
2092
2093	lock_page(page);
2094	ret = set_page_dirty(page);
2095	unlock_page(page);
2096	return ret;
2097}
2098EXPORT_SYMBOL(set_page_dirty_lock);
2099
2100/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101 * Clear a page's dirty flag, while caring for dirty memory accounting.
2102 * Returns true if the page was previously dirty.
2103 *
2104 * This is for preparing to put the page under writeout.  We leave the page
2105 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2106 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2107 * implementation will run either set_page_writeback() or set_page_dirty(),
2108 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2109 * back into sync.
2110 *
2111 * This incoherency between the page's dirty flag and radix-tree tag is
2112 * unfortunate, but it only exists while the page is locked.
2113 */
2114int clear_page_dirty_for_io(struct page *page)
2115{
2116	struct address_space *mapping = page_mapping(page);
 
 
 
2117
2118	BUG_ON(!PageLocked(page));
 
 
 
2119
2120	if (mapping && mapping_cap_account_dirty(mapping)) {
2121		/*
2122		 * Yes, Virginia, this is indeed insane.
2123		 *
2124		 * We use this sequence to make sure that
2125		 *  (a) we account for dirty stats properly
2126		 *  (b) we tell the low-level filesystem to
2127		 *      mark the whole page dirty if it was
2128		 *      dirty in a pagetable. Only to then
2129		 *  (c) clean the page again and return 1 to
2130		 *      cause the writeback.
2131		 *
2132		 * This way we avoid all nasty races with the
2133		 * dirty bit in multiple places and clearing
2134		 * them concurrently from different threads.
2135		 *
2136		 * Note! Normally the "set_page_dirty(page)"
2137		 * has no effect on the actual dirty bit - since
2138		 * that will already usually be set. But we
2139		 * need the side effects, and it can help us
2140		 * avoid races.
2141		 *
2142		 * We basically use the page "master dirty bit"
2143		 * as a serialization point for all the different
2144		 * threads doing their things.
2145		 */
2146		if (page_mkclean(page))
2147			set_page_dirty(page);
2148		/*
2149		 * We carefully synchronise fault handlers against
2150		 * installing a dirty pte and marking the page dirty
2151		 * at this point. We do this by having them hold the
2152		 * page lock at some point after installing their
2153		 * pte, but before marking the page dirty.
2154		 * Pages are always locked coming in here, so we get
2155		 * the desired exclusion. See mm/memory.c:do_wp_page()
2156		 * for more comments.
2157		 */
 
2158		if (TestClearPageDirty(page)) {
2159			dec_zone_page_state(page, NR_FILE_DIRTY);
2160			dec_bdi_stat(mapping->backing_dev_info,
2161					BDI_RECLAIMABLE);
2162			return 1;
2163		}
2164		return 0;
 
2165	}
2166	return TestClearPageDirty(page);
2167}
2168EXPORT_SYMBOL(clear_page_dirty_for_io);
2169
2170int test_clear_page_writeback(struct page *page)
2171{
2172	struct address_space *mapping = page_mapping(page);
2173	int ret;
2174
2175	if (mapping) {
2176		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
2177		unsigned long flags;
2178
2179		spin_lock_irqsave(&mapping->tree_lock, flags);
2180		ret = TestClearPageWriteback(page);
2181		if (ret) {
2182			radix_tree_tag_clear(&mapping->page_tree,
2183						page_index(page),
2184						PAGECACHE_TAG_WRITEBACK);
2185			if (bdi_cap_account_writeback(bdi)) {
2186				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2187				__bdi_writeout_inc(bdi);
 
 
2188			}
2189		}
2190		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
2191	} else {
2192		ret = TestClearPageWriteback(page);
2193	}
2194	if (ret) {
2195		dec_zone_page_state(page, NR_WRITEBACK);
2196		inc_zone_page_state(page, NR_WRITTEN);
 
2197	}
 
2198	return ret;
2199}
2200
2201int test_set_page_writeback(struct page *page)
2202{
2203	struct address_space *mapping = page_mapping(page);
2204	int ret;
2205
2206	if (mapping) {
2207		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 
2208		unsigned long flags;
2209
2210		spin_lock_irqsave(&mapping->tree_lock, flags);
 
2211		ret = TestSetPageWriteback(page);
2212		if (!ret) {
2213			radix_tree_tag_set(&mapping->page_tree,
2214						page_index(page),
2215						PAGECACHE_TAG_WRITEBACK);
2216			if (bdi_cap_account_writeback(bdi))
2217				__inc_bdi_stat(bdi, BDI_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
2218		}
2219		if (!PageDirty(page))
2220			radix_tree_tag_clear(&mapping->page_tree,
2221						page_index(page),
2222						PAGECACHE_TAG_DIRTY);
2223		radix_tree_tag_clear(&mapping->page_tree,
2224				     page_index(page),
2225				     PAGECACHE_TAG_TOWRITE);
2226		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2227	} else {
2228		ret = TestSetPageWriteback(page);
2229	}
2230	if (!ret)
2231		account_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
2232	return ret;
2233
2234}
2235EXPORT_SYMBOL(test_set_page_writeback);
2236
2237/*
2238 * Return true if any of the pages in the mapping are marked with the
2239 * passed tag.
2240 */
2241int mapping_tagged(struct address_space *mapping, int tag)
2242{
2243	return radix_tree_tagged(&mapping->page_tree, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244}
2245EXPORT_SYMBOL(mapping_tagged);