Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include <linux/pagewalk.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69static bool __page_handle_poison(struct page *page)
70{
71 int ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret > 0;
80}
81
82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83{
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107}
108
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111u32 hwpoison_filter_enable = 0;
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174#ifdef CONFIG_MEMCG
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
191int hwpoison_filter(struct page *p)
192{
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206}
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243};
244
245/*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251{
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281}
282
283/*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287void shake_page(struct page *p, int access)
288{
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353{
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442{
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561{
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569}
570
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656out:
657 cond_resched();
658 return ret;
659}
660
661#ifdef CONFIG_HUGETLB_PAGE
662static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665{
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672}
673#else
674#define hwpoison_hugetlb_range NULL
675#endif
676
677static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680};
681
682/*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697{
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711}
712
713static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718};
719
720static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744};
745
746/*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752static int delete_from_lru_cache(struct page *p)
753{
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775}
776
777static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779{
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808}
809
810/*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815static int me_kernel(struct page *p, unsigned long pfn)
816{
817 unlock_page(p);
818 return MF_IGNORED;
819}
820
821/*
822 * Page in unknown state. Do nothing.
823 */
824static int me_unknown(struct page *p, unsigned long pfn)
825{
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829}
830
831/*
832 * Clean (or cleaned) page cache page.
833 */
834static int me_pagecache_clean(struct page *p, unsigned long pfn)
835{
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872out:
873 unlock_page(p);
874 return ret;
875}
876
877/*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883{
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927}
928
929/*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949{
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959}
960
961static int me_swapcache_clean(struct page *p, unsigned long pfn)
962{
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970}
971
972/*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978static int me_huge_page(struct page *p, unsigned long pfn)
979{
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008}
1009
1010/*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023#define dirty (1UL << PG_dirty)
1024#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025#define unevict (1UL << PG_unevictable)
1026#define mlock (1UL << PG_mlocked)
1027#define lru (1UL << PG_lru)
1028#define head (1UL << PG_head)
1029#define slab (1UL << PG_slab)
1030#define reserved (1UL << PG_reserved)
1031
1032static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039} error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071};
1072
1073#undef dirty
1074#undef sc
1075#undef unevict
1076#undef mlock
1077#undef lru
1078#undef head
1079#undef slab
1080#undef reserved
1081
1082/*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088{
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093}
1094
1095static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097{
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120}
1121
1122/*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128static inline bool HWPoisonHandlable(struct page *page)
1129{
1130 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1131}
1132
1133static int __get_hwpoison_page(struct page *page)
1134{
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return -EBUSY;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175}
1176
1177static int get_any_page(struct page *p, unsigned long flags)
1178{
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /*
1203 * We raced with (possibly temporary) unhandlable
1204 * page, retry.
1205 */
1206 if (pass++ < 3) {
1207 shake_page(p, 1);
1208 goto try_again;
1209 }
1210 ret = -EIO;
1211 goto out;
1212 }
1213 }
1214
1215 if (PageHuge(p) || HWPoisonHandlable(p)) {
1216 ret = 1;
1217 } else {
1218 /*
1219 * A page we cannot handle. Check whether we can turn
1220 * it into something we can handle.
1221 */
1222 if (pass++ < 3) {
1223 put_page(p);
1224 shake_page(p, 1);
1225 count_increased = false;
1226 goto try_again;
1227 }
1228 put_page(p);
1229 ret = -EIO;
1230 }
1231out:
1232 return ret;
1233}
1234
1235/**
1236 * get_hwpoison_page() - Get refcount for memory error handling
1237 * @p: Raw error page (hit by memory error)
1238 * @flags: Flags controlling behavior of error handling
1239 *
1240 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1241 * error on it, after checking that the error page is in a well-defined state
1242 * (defined as a page-type we can successfully handle the memor error on it,
1243 * such as LRU page and hugetlb page).
1244 *
1245 * Memory error handling could be triggered at any time on any type of page,
1246 * so it's prone to race with typical memory management lifecycle (like
1247 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1248 * extra care for the error page's state (as done in __get_hwpoison_page()),
1249 * and has some retry logic in get_any_page().
1250 *
1251 * Return: 0 on failure,
1252 * 1 on success for in-use pages in a well-defined state,
1253 * -EIO for pages on which we can not handle memory errors,
1254 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1255 * operations like allocation and free.
1256 */
1257static int get_hwpoison_page(struct page *p, unsigned long flags)
1258{
1259 int ret;
1260
1261 zone_pcp_disable(page_zone(p));
1262 ret = get_any_page(p, flags);
1263 zone_pcp_enable(page_zone(p));
1264
1265 return ret;
1266}
1267
1268/*
1269 * Do all that is necessary to remove user space mappings. Unmap
1270 * the pages and send SIGBUS to the processes if the data was dirty.
1271 */
1272static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1273 int flags, struct page **hpagep)
1274{
1275 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1276 struct address_space *mapping;
1277 LIST_HEAD(tokill);
1278 bool unmap_success;
1279 int kill = 1, forcekill;
1280 struct page *hpage = *hpagep;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388}
1389
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392{
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433{
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
1521 const bool unmap_success = true;
1522 unsigned long size = 0;
1523 struct to_kill *tk;
1524 LIST_HEAD(tokill);
1525 int rc = -EBUSY;
1526 loff_t start;
1527 dax_entry_t cookie;
1528
1529 if (flags & MF_COUNT_INCREASED)
1530 /*
1531 * Drop the extra refcount in case we come from madvise().
1532 */
1533 put_page(page);
1534
1535 /* device metadata space is not recoverable */
1536 if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 rc = -ENXIO;
1538 goto out;
1539 }
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 goto out;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = 0;
1554 goto unlock;
1555 }
1556
1557 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 /*
1559 * TODO: Handle HMM pages which may need coordination
1560 * with device-side memory.
1561 */
1562 goto unlock;
1563 }
1564
1565 /*
1566 * Use this flag as an indication that the dax page has been
1567 * remapped UC to prevent speculative consumption of poison.
1568 */
1569 SetPageHWPoison(page);
1570
1571 /*
1572 * Unlike System-RAM there is no possibility to swap in a
1573 * different physical page at a given virtual address, so all
1574 * userspace consumption of ZONE_DEVICE memory necessitates
1575 * SIGBUS (i.e. MF_MUST_KILL)
1576 */
1577 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579
1580 list_for_each_entry(tk, &tokill, nd)
1581 if (tk->size_shift)
1582 size = max(size, 1UL << tk->size_shift);
1583 if (size) {
1584 /*
1585 * Unmap the largest mapping to avoid breaking up
1586 * device-dax mappings which are constant size. The
1587 * actual size of the mapping being torn down is
1588 * communicated in siginfo, see kill_proc()
1589 */
1590 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 unmap_mapping_range(page->mapping, start, size, 0);
1592 }
1593 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1594 rc = 0;
1595unlock:
1596 dax_unlock_page(page, cookie);
1597out:
1598 /* drop pgmap ref acquired in caller */
1599 put_dev_pagemap(pgmap);
1600 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 return rc;
1602}
1603
1604/**
1605 * memory_failure - Handle memory failure of a page.
1606 * @pfn: Page Number of the corrupted page
1607 * @flags: fine tune action taken
1608 *
1609 * This function is called by the low level machine check code
1610 * of an architecture when it detects hardware memory corruption
1611 * of a page. It tries its best to recover, which includes
1612 * dropping pages, killing processes etc.
1613 *
1614 * The function is primarily of use for corruptions that
1615 * happen outside the current execution context (e.g. when
1616 * detected by a background scrubber)
1617 *
1618 * Must run in process context (e.g. a work queue) with interrupts
1619 * enabled and no spinlocks hold.
1620 */
1621int memory_failure(unsigned long pfn, int flags)
1622{
1623 struct page *p;
1624 struct page *hpage;
1625 struct page *orig_head;
1626 struct dev_pagemap *pgmap;
1627 int res = 0;
1628 unsigned long page_flags;
1629 bool retry = true;
1630 static DEFINE_MUTEX(mf_mutex);
1631
1632 if (!sysctl_memory_failure_recovery)
1633 panic("Memory failure on page %lx", pfn);
1634
1635 p = pfn_to_online_page(pfn);
1636 if (!p) {
1637 if (pfn_valid(pfn)) {
1638 pgmap = get_dev_pagemap(pfn, NULL);
1639 if (pgmap)
1640 return memory_failure_dev_pagemap(pfn, flags,
1641 pgmap);
1642 }
1643 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 pfn);
1645 return -ENXIO;
1646 }
1647
1648 mutex_lock(&mf_mutex);
1649
1650try_again:
1651 if (PageHuge(p)) {
1652 res = memory_failure_hugetlb(pfn, flags);
1653 goto unlock_mutex;
1654 }
1655
1656 if (TestSetPageHWPoison(p)) {
1657 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 pfn);
1659 res = -EHWPOISON;
1660 if (flags & MF_ACTION_REQUIRED)
1661 res = kill_accessing_process(current, pfn, flags);
1662 goto unlock_mutex;
1663 }
1664
1665 orig_head = hpage = compound_head(p);
1666 num_poisoned_pages_inc();
1667
1668 /*
1669 * We need/can do nothing about count=0 pages.
1670 * 1) it's a free page, and therefore in safe hand:
1671 * prep_new_page() will be the gate keeper.
1672 * 2) it's part of a non-compound high order page.
1673 * Implies some kernel user: cannot stop them from
1674 * R/W the page; let's pray that the page has been
1675 * used and will be freed some time later.
1676 * In fact it's dangerous to directly bump up page count from 0,
1677 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 */
1679 if (!(flags & MF_COUNT_INCREASED)) {
1680 res = get_hwpoison_page(p, flags);
1681 if (!res) {
1682 if (is_free_buddy_page(p)) {
1683 if (take_page_off_buddy(p)) {
1684 page_ref_inc(p);
1685 res = MF_RECOVERED;
1686 } else {
1687 /* We lost the race, try again */
1688 if (retry) {
1689 ClearPageHWPoison(p);
1690 num_poisoned_pages_dec();
1691 retry = false;
1692 goto try_again;
1693 }
1694 res = MF_FAILED;
1695 }
1696 action_result(pfn, MF_MSG_BUDDY, res);
1697 res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 } else {
1699 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 res = -EBUSY;
1701 }
1702 goto unlock_mutex;
1703 } else if (res < 0) {
1704 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 res = -EBUSY;
1706 goto unlock_mutex;
1707 }
1708 }
1709
1710 if (PageTransHuge(hpage)) {
1711 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 res = -EBUSY;
1714 goto unlock_mutex;
1715 }
1716 VM_BUG_ON_PAGE(!page_count(p), p);
1717 }
1718
1719 /*
1720 * We ignore non-LRU pages for good reasons.
1721 * - PG_locked is only well defined for LRU pages and a few others
1722 * - to avoid races with __SetPageLocked()
1723 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 * The check (unnecessarily) ignores LRU pages being isolated and
1725 * walked by the page reclaim code, however that's not a big loss.
1726 */
1727 shake_page(p, 0);
1728
1729 lock_page(p);
1730
1731 /*
1732 * The page could have changed compound pages during the locking.
1733 * If this happens just bail out.
1734 */
1735 if (PageCompound(p) && compound_head(p) != orig_head) {
1736 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 res = -EBUSY;
1738 goto unlock_page;
1739 }
1740
1741 /*
1742 * We use page flags to determine what action should be taken, but
1743 * the flags can be modified by the error containment action. One
1744 * example is an mlocked page, where PG_mlocked is cleared by
1745 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 * correctly, we save a copy of the page flags at this time.
1747 */
1748 page_flags = p->flags;
1749
1750 /*
1751 * unpoison always clear PG_hwpoison inside page lock
1752 */
1753 if (!PageHWPoison(p)) {
1754 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 num_poisoned_pages_dec();
1756 unlock_page(p);
1757 put_page(p);
1758 goto unlock_mutex;
1759 }
1760 if (hwpoison_filter(p)) {
1761 if (TestClearPageHWPoison(p))
1762 num_poisoned_pages_dec();
1763 unlock_page(p);
1764 put_page(p);
1765 goto unlock_mutex;
1766 }
1767
1768 /*
1769 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 * page_lock. We need wait writeback completion for this page or it
1771 * may trigger vfs BUG while evict inode.
1772 */
1773 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 goto identify_page_state;
1775
1776 /*
1777 * It's very difficult to mess with pages currently under IO
1778 * and in many cases impossible, so we just avoid it here.
1779 */
1780 wait_on_page_writeback(p);
1781
1782 /*
1783 * Now take care of user space mappings.
1784 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 */
1786 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1787 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 res = -EBUSY;
1789 goto unlock_page;
1790 }
1791
1792 /*
1793 * Torn down by someone else?
1794 */
1795 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 res = -EBUSY;
1798 goto unlock_page;
1799 }
1800
1801identify_page_state:
1802 res = identify_page_state(pfn, p, page_flags);
1803 mutex_unlock(&mf_mutex);
1804 return res;
1805unlock_page:
1806 unlock_page(p);
1807unlock_mutex:
1808 mutex_unlock(&mf_mutex);
1809 return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER 4
1814#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817 unsigned long pfn;
1818 int flags;
1819};
1820
1821struct memory_failure_cpu {
1822 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 MEMORY_FAILURE_FIFO_SIZE);
1824 spinlock_t lock;
1825 struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848 struct memory_failure_cpu *mf_cpu;
1849 unsigned long proc_flags;
1850 struct memory_failure_entry entry = {
1851 .pfn = pfn,
1852 .flags = flags,
1853 };
1854
1855 mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 if (kfifo_put(&mf_cpu->fifo, entry))
1858 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 else
1860 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 pfn);
1862 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869 struct memory_failure_cpu *mf_cpu;
1870 struct memory_failure_entry entry = { 0, };
1871 unsigned long proc_flags;
1872 int gotten;
1873
1874 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 for (;;) {
1876 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 if (!gotten)
1880 break;
1881 if (entry.flags & MF_SOFT_OFFLINE)
1882 soft_offline_page(entry.pfn, entry.flags);
1883 else
1884 memory_failure(entry.pfn, entry.flags);
1885 }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894 struct memory_failure_cpu *mf_cpu;
1895
1896 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 cancel_work_sync(&mf_cpu->work);
1898 memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903 struct memory_failure_cpu *mf_cpu;
1904 int cpu;
1905
1906 for_each_possible_cpu(cpu) {
1907 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 spin_lock_init(&mf_cpu->lock);
1909 INIT_KFIFO(mf_cpu->fifo);
1910 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 }
1912
1913 return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs) \
1918({ \
1919 if (__ratelimit(rs)) \
1920 pr_info(fmt, pfn); \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937 struct page *page;
1938 struct page *p;
1939 int freeit = 0;
1940 unsigned long flags = 0;
1941 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 if (!pfn_valid(pfn))
1945 return -ENXIO;
1946
1947 p = pfn_to_page(pfn);
1948 page = compound_head(p);
1949
1950 if (!PageHWPoison(p)) {
1951 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_count(page) > 1) {
1957 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapped(page)) {
1963 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 if (page_mapping(page)) {
1969 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 pfn, &unpoison_rs);
1971 return 0;
1972 }
1973
1974 /*
1975 * unpoison_memory() can encounter thp only when the thp is being
1976 * worked by memory_failure() and the page lock is not held yet.
1977 * In such case, we yield to memory_failure() and make unpoison fail.
1978 */
1979 if (!PageHuge(page) && PageTransHuge(page)) {
1980 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 pfn, &unpoison_rs);
1982 return 0;
1983 }
1984
1985 if (!get_hwpoison_page(p, flags)) {
1986 if (TestClearPageHWPoison(p))
1987 num_poisoned_pages_dec();
1988 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 pfn, &unpoison_rs);
1990 return 0;
1991 }
1992
1993 lock_page(page);
1994 /*
1995 * This test is racy because PG_hwpoison is set outside of page lock.
1996 * That's acceptable because that won't trigger kernel panic. Instead,
1997 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 * the free buddy page pool.
1999 */
2000 if (TestClearPageHWPoison(page)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 pfn, &unpoison_rs);
2003 num_poisoned_pages_dec();
2004 freeit = 1;
2005 }
2006 unlock_page(page);
2007
2008 put_page(page);
2009 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 put_page(page);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018 bool isolated = false;
2019 bool lru = PageLRU(page);
2020
2021 if (PageHuge(page)) {
2022 isolated = isolate_huge_page(page, pagelist);
2023 } else {
2024 if (lru)
2025 isolated = !isolate_lru_page(page);
2026 else
2027 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029 if (isolated)
2030 list_add(&page->lru, pagelist);
2031 }
2032
2033 if (isolated && lru)
2034 inc_node_page_state(page, NR_ISOLATED_ANON +
2035 page_is_file_lru(page));
2036
2037 /*
2038 * If we succeed to isolate the page, we grabbed another refcount on
2039 * the page, so we can safely drop the one we got from get_any_pages().
2040 * If we failed to isolate the page, it means that we cannot go further
2041 * and we will return an error, so drop the reference we got from
2042 * get_any_pages() as well.
2043 */
2044 put_page(page);
2045 return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055 int ret = 0;
2056 unsigned long pfn = page_to_pfn(page);
2057 struct page *hpage = compound_head(page);
2058 char const *msg_page[] = {"page", "hugepage"};
2059 bool huge = PageHuge(page);
2060 LIST_HEAD(pagelist);
2061 struct migration_target_control mtc = {
2062 .nid = NUMA_NO_NODE,
2063 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 };
2065
2066 /*
2067 * Check PageHWPoison again inside page lock because PageHWPoison
2068 * is set by memory_failure() outside page lock. Note that
2069 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 * so there's no race between soft_offline_page() and memory_failure().
2071 */
2072 lock_page(page);
2073 if (!PageHuge(page))
2074 wait_on_page_writeback(page);
2075 if (PageHWPoison(page)) {
2076 unlock_page(page);
2077 put_page(page);
2078 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 return 0;
2080 }
2081
2082 if (!PageHuge(page))
2083 /*
2084 * Try to invalidate first. This should work for
2085 * non dirty unmapped page cache pages.
2086 */
2087 ret = invalidate_inode_page(page);
2088 unlock_page(page);
2089
2090 /*
2091 * RED-PEN would be better to keep it isolated here, but we
2092 * would need to fix isolation locking first.
2093 */
2094 if (ret) {
2095 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 page_handle_poison(page, false, true);
2097 return 0;
2098 }
2099
2100 if (isolate_page(hpage, &pagelist)) {
2101 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2103 if (!ret) {
2104 bool release = !huge;
2105
2106 if (!page_handle_poison(page, huge, release))
2107 ret = -EBUSY;
2108 } else {
2109 if (!list_empty(&pagelist))
2110 putback_movable_pages(&pagelist);
2111
2112 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 if (ret > 0)
2115 ret = -EBUSY;
2116 }
2117 } else {
2118 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 ret = -EBUSY;
2121 }
2122 return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127 struct page *hpage = compound_head(page);
2128
2129 if (!PageHuge(page) && PageTransHuge(hpage))
2130 if (try_to_split_thp_page(page, "soft offline") < 0)
2131 return -EBUSY;
2132 return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137 int rc = 0;
2138
2139 if (!page_handle_poison(page, true, false))
2140 rc = -EBUSY;
2141
2142 return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147 if (page)
2148 put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175 int ret;
2176 bool try_again = true;
2177 struct page *page, *ref_page = NULL;
2178
2179 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181 if (!pfn_valid(pfn))
2182 return -ENXIO;
2183 if (flags & MF_COUNT_INCREASED)
2184 ref_page = pfn_to_page(pfn);
2185
2186 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 page = pfn_to_online_page(pfn);
2188 if (!page) {
2189 put_ref_page(ref_page);
2190 return -EIO;
2191 }
2192
2193 if (PageHWPoison(page)) {
2194 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 put_ref_page(ref_page);
2196 return 0;
2197 }
2198
2199retry:
2200 get_online_mems();
2201 ret = get_hwpoison_page(page, flags);
2202 put_online_mems();
2203
2204 if (ret > 0) {
2205 ret = soft_offline_in_use_page(page);
2206 } else if (ret == 0) {
2207 if (soft_offline_free_page(page) && try_again) {
2208 try_again = false;
2209 goto retry;
2210 }
2211 } else if (ret == -EIO) {
2212 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2213 __func__, pfn, page->flags, &page->flags);
2214 }
2215
2216 return ret;
2217}
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/kfifo.h>
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68u32 hwpoison_filter_enable = 0;
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
164int hwpoison_filter(struct page *p)
165{
166 if (!hwpoison_filter_enable)
167 return 0;
168
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
178 return 0;
179}
180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
189/*
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
193 */
194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210
211 if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, t);
214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
230/*
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
234void shake_page(struct page *p, int access)
235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
244
245 /*
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
248 */
249 if (access) {
250 int nr;
251 do {
252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
254 };
255
256 nr = shrink_slab(&shrink, 1000, 1000);
257 if (page_count(p) == 1)
258 break;
259 } while (nr > 10);
260 }
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
264/*
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
290 char addr_valid;
291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307{
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
331 pr_info("MCE: Unable to find user space address %lx in %s\n",
332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 int fail, struct page *page, unsigned long pfn,
350 int flags)
351{
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
355 if (forcekill) {
356 /*
357 * In case something went wrong with munmapping
358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383}
384
385static int task_early_kill(struct task_struct *tsk)
386{
387 if (!tsk->mm)
388 return 0;
389 if (tsk->flags & PF_MCE_PROCESS)
390 return !!(tsk->flags & PF_MCE_EARLY);
391 return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 struct to_kill **tkc)
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk;
402 struct anon_vma *av;
403
404 av = page_lock_anon_vma(page);
405 if (av == NULL) /* Not actually mapped anymore */
406 return;
407
408 read_lock(&tasklist_lock);
409 for_each_process (tsk) {
410 struct anon_vma_chain *vmac;
411
412 if (!task_early_kill(tsk))
413 continue;
414 list_for_each_entry(vmac, &av->head, same_anon_vma) {
415 vma = vmac->vma;
416 if (!page_mapped_in_vma(page, vma))
417 continue;
418 if (vma->vm_mm == tsk->mm)
419 add_to_kill(tsk, page, vma, to_kill, tkc);
420 }
421 }
422 read_unlock(&tasklist_lock);
423 page_unlock_anon_vma(av);
424}
425
426/*
427 * Collect processes when the error hit a file mapped page.
428 */
429static void collect_procs_file(struct page *page, struct list_head *to_kill,
430 struct to_kill **tkc)
431{
432 struct vm_area_struct *vma;
433 struct task_struct *tsk;
434 struct prio_tree_iter iter;
435 struct address_space *mapping = page->mapping;
436
437 mutex_lock(&mapping->i_mmap_mutex);
438 read_lock(&tasklist_lock);
439 for_each_process(tsk) {
440 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441
442 if (!task_early_kill(tsk))
443 continue;
444
445 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
446 pgoff) {
447 /*
448 * Send early kill signal to tasks where a vma covers
449 * the page but the corrupted page is not necessarily
450 * mapped it in its pte.
451 * Assume applications who requested early kill want
452 * to be informed of all such data corruptions.
453 */
454 if (vma->vm_mm == tsk->mm)
455 add_to_kill(tsk, page, vma, to_kill, tkc);
456 }
457 }
458 read_unlock(&tasklist_lock);
459 mutex_unlock(&mapping->i_mmap_mutex);
460}
461
462/*
463 * Collect the processes who have the corrupted page mapped to kill.
464 * This is done in two steps for locking reasons.
465 * First preallocate one tokill structure outside the spin locks,
466 * so that we can kill at least one process reasonably reliable.
467 */
468static void collect_procs(struct page *page, struct list_head *tokill)
469{
470 struct to_kill *tk;
471
472 if (!page->mapping)
473 return;
474
475 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 if (!tk)
477 return;
478 if (PageAnon(page))
479 collect_procs_anon(page, tokill, &tk);
480 else
481 collect_procs_file(page, tokill, &tk);
482 kfree(tk);
483}
484
485/*
486 * Error handlers for various types of pages.
487 */
488
489enum outcome {
490 IGNORED, /* Error: cannot be handled */
491 FAILED, /* Error: handling failed */
492 DELAYED, /* Will be handled later */
493 RECOVERED, /* Successfully recovered */
494};
495
496static const char *action_name[] = {
497 [IGNORED] = "Ignored",
498 [FAILED] = "Failed",
499 [DELAYED] = "Delayed",
500 [RECOVERED] = "Recovered",
501};
502
503/*
504 * XXX: It is possible that a page is isolated from LRU cache,
505 * and then kept in swap cache or failed to remove from page cache.
506 * The page count will stop it from being freed by unpoison.
507 * Stress tests should be aware of this memory leak problem.
508 */
509static int delete_from_lru_cache(struct page *p)
510{
511 if (!isolate_lru_page(p)) {
512 /*
513 * Clear sensible page flags, so that the buddy system won't
514 * complain when the page is unpoison-and-freed.
515 */
516 ClearPageActive(p);
517 ClearPageUnevictable(p);
518 /*
519 * drop the page count elevated by isolate_lru_page()
520 */
521 page_cache_release(p);
522 return 0;
523 }
524 return -EIO;
525}
526
527/*
528 * Error hit kernel page.
529 * Do nothing, try to be lucky and not touch this instead. For a few cases we
530 * could be more sophisticated.
531 */
532static int me_kernel(struct page *p, unsigned long pfn)
533{
534 return IGNORED;
535}
536
537/*
538 * Page in unknown state. Do nothing.
539 */
540static int me_unknown(struct page *p, unsigned long pfn)
541{
542 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 return FAILED;
544}
545
546/*
547 * Clean (or cleaned) page cache page.
548 */
549static int me_pagecache_clean(struct page *p, unsigned long pfn)
550{
551 int err;
552 int ret = FAILED;
553 struct address_space *mapping;
554
555 delete_from_lru_cache(p);
556
557 /*
558 * For anonymous pages we're done the only reference left
559 * should be the one m_f() holds.
560 */
561 if (PageAnon(p))
562 return RECOVERED;
563
564 /*
565 * Now truncate the page in the page cache. This is really
566 * more like a "temporary hole punch"
567 * Don't do this for block devices when someone else
568 * has a reference, because it could be file system metadata
569 * and that's not safe to truncate.
570 */
571 mapping = page_mapping(p);
572 if (!mapping) {
573 /*
574 * Page has been teared down in the meanwhile
575 */
576 return FAILED;
577 }
578
579 /*
580 * Truncation is a bit tricky. Enable it per file system for now.
581 *
582 * Open: to take i_mutex or not for this? Right now we don't.
583 */
584 if (mapping->a_ops->error_remove_page) {
585 err = mapping->a_ops->error_remove_page(mapping, p);
586 if (err != 0) {
587 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 pfn, err);
589 } else if (page_has_private(p) &&
590 !try_to_release_page(p, GFP_NOIO)) {
591 pr_info("MCE %#lx: failed to release buffers\n", pfn);
592 } else {
593 ret = RECOVERED;
594 }
595 } else {
596 /*
597 * If the file system doesn't support it just invalidate
598 * This fails on dirty or anything with private pages
599 */
600 if (invalidate_inode_page(p))
601 ret = RECOVERED;
602 else
603 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 pfn);
605 }
606 return ret;
607}
608
609/*
610 * Dirty cache page page
611 * Issues: when the error hit a hole page the error is not properly
612 * propagated.
613 */
614static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615{
616 struct address_space *mapping = page_mapping(p);
617
618 SetPageError(p);
619 /* TBD: print more information about the file. */
620 if (mapping) {
621 /*
622 * IO error will be reported by write(), fsync(), etc.
623 * who check the mapping.
624 * This way the application knows that something went
625 * wrong with its dirty file data.
626 *
627 * There's one open issue:
628 *
629 * The EIO will be only reported on the next IO
630 * operation and then cleared through the IO map.
631 * Normally Linux has two mechanisms to pass IO error
632 * first through the AS_EIO flag in the address space
633 * and then through the PageError flag in the page.
634 * Since we drop pages on memory failure handling the
635 * only mechanism open to use is through AS_AIO.
636 *
637 * This has the disadvantage that it gets cleared on
638 * the first operation that returns an error, while
639 * the PageError bit is more sticky and only cleared
640 * when the page is reread or dropped. If an
641 * application assumes it will always get error on
642 * fsync, but does other operations on the fd before
643 * and the page is dropped between then the error
644 * will not be properly reported.
645 *
646 * This can already happen even without hwpoisoned
647 * pages: first on metadata IO errors (which only
648 * report through AS_EIO) or when the page is dropped
649 * at the wrong time.
650 *
651 * So right now we assume that the application DTRT on
652 * the first EIO, but we're not worse than other parts
653 * of the kernel.
654 */
655 mapping_set_error(mapping, EIO);
656 }
657
658 return me_pagecache_clean(p, pfn);
659}
660
661/*
662 * Clean and dirty swap cache.
663 *
664 * Dirty swap cache page is tricky to handle. The page could live both in page
665 * cache and swap cache(ie. page is freshly swapped in). So it could be
666 * referenced concurrently by 2 types of PTEs:
667 * normal PTEs and swap PTEs. We try to handle them consistently by calling
668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669 * and then
670 * - clear dirty bit to prevent IO
671 * - remove from LRU
672 * - but keep in the swap cache, so that when we return to it on
673 * a later page fault, we know the application is accessing
674 * corrupted data and shall be killed (we installed simple
675 * interception code in do_swap_page to catch it).
676 *
677 * Clean swap cache pages can be directly isolated. A later page fault will
678 * bring in the known good data from disk.
679 */
680static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681{
682 ClearPageDirty(p);
683 /* Trigger EIO in shmem: */
684 ClearPageUptodate(p);
685
686 if (!delete_from_lru_cache(p))
687 return DELAYED;
688 else
689 return FAILED;
690}
691
692static int me_swapcache_clean(struct page *p, unsigned long pfn)
693{
694 delete_from_swap_cache(p);
695
696 if (!delete_from_lru_cache(p))
697 return RECOVERED;
698 else
699 return FAILED;
700}
701
702/*
703 * Huge pages. Needs work.
704 * Issues:
705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706 * To narrow down kill region to one page, we need to break up pmd.
707 */
708static int me_huge_page(struct page *p, unsigned long pfn)
709{
710 int res = 0;
711 struct page *hpage = compound_head(p);
712 /*
713 * We can safely recover from error on free or reserved (i.e.
714 * not in-use) hugepage by dequeuing it from freelist.
715 * To check whether a hugepage is in-use or not, we can't use
716 * page->lru because it can be used in other hugepage operations,
717 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 * So instead we use page_mapping() and PageAnon().
719 * We assume that this function is called with page lock held,
720 * so there is no race between isolation and mapping/unmapping.
721 */
722 if (!(page_mapping(hpage) || PageAnon(hpage))) {
723 res = dequeue_hwpoisoned_huge_page(hpage);
724 if (!res)
725 return RECOVERED;
726 }
727 return DELAYED;
728}
729
730/*
731 * Various page states we can handle.
732 *
733 * A page state is defined by its current page->flags bits.
734 * The table matches them in order and calls the right handler.
735 *
736 * This is quite tricky because we can access page at any time
737 * in its live cycle, so all accesses have to be extremely careful.
738 *
739 * This is not complete. More states could be added.
740 * For any missing state don't attempt recovery.
741 */
742
743#define dirty (1UL << PG_dirty)
744#define sc (1UL << PG_swapcache)
745#define unevict (1UL << PG_unevictable)
746#define mlock (1UL << PG_mlocked)
747#define writeback (1UL << PG_writeback)
748#define lru (1UL << PG_lru)
749#define swapbacked (1UL << PG_swapbacked)
750#define head (1UL << PG_head)
751#define tail (1UL << PG_tail)
752#define compound (1UL << PG_compound)
753#define slab (1UL << PG_slab)
754#define reserved (1UL << PG_reserved)
755
756static struct page_state {
757 unsigned long mask;
758 unsigned long res;
759 char *msg;
760 int (*action)(struct page *p, unsigned long pfn);
761} error_states[] = {
762 { reserved, reserved, "reserved kernel", me_kernel },
763 /*
764 * free pages are specially detected outside this table:
765 * PG_buddy pages only make a small fraction of all free pages.
766 */
767
768 /*
769 * Could in theory check if slab page is free or if we can drop
770 * currently unused objects without touching them. But just
771 * treat it as standard kernel for now.
772 */
773 { slab, slab, "kernel slab", me_kernel },
774
775#ifdef CONFIG_PAGEFLAGS_EXTENDED
776 { head, head, "huge", me_huge_page },
777 { tail, tail, "huge", me_huge_page },
778#else
779 { compound, compound, "huge", me_huge_page },
780#endif
781
782 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
783 { sc|dirty, sc, "swapcache", me_swapcache_clean },
784
785 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
786 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
787
788 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
789 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
790
791 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
792 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
793
794 /*
795 * Catchall entry: must be at end.
796 */
797 { 0, 0, "unknown page state", me_unknown },
798};
799
800#undef dirty
801#undef sc
802#undef unevict
803#undef mlock
804#undef writeback
805#undef lru
806#undef swapbacked
807#undef head
808#undef tail
809#undef compound
810#undef slab
811#undef reserved
812
813static void action_result(unsigned long pfn, char *msg, int result)
814{
815 struct page *page = pfn_to_page(pfn);
816
817 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
818 pfn,
819 PageDirty(page) ? "dirty " : "",
820 msg, action_name[result]);
821}
822
823static int page_action(struct page_state *ps, struct page *p,
824 unsigned long pfn)
825{
826 int result;
827 int count;
828
829 result = ps->action(p, pfn);
830 action_result(pfn, ps->msg, result);
831
832 count = page_count(p) - 1;
833 if (ps->action == me_swapcache_dirty && result == DELAYED)
834 count--;
835 if (count != 0) {
836 printk(KERN_ERR
837 "MCE %#lx: %s page still referenced by %d users\n",
838 pfn, ps->msg, count);
839 result = FAILED;
840 }
841
842 /* Could do more checks here if page looks ok */
843 /*
844 * Could adjust zone counters here to correct for the missing page.
845 */
846
847 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848}
849
850/*
851 * Do all that is necessary to remove user space mappings. Unmap
852 * the pages and send SIGBUS to the processes if the data was dirty.
853 */
854static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855 int trapno, int flags)
856{
857 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 struct address_space *mapping;
859 LIST_HEAD(tokill);
860 int ret;
861 int kill = 1, forcekill;
862 struct page *hpage = compound_head(p);
863 struct page *ppage;
864
865 if (PageReserved(p) || PageSlab(p))
866 return SWAP_SUCCESS;
867
868 /*
869 * This check implies we don't kill processes if their pages
870 * are in the swap cache early. Those are always late kills.
871 */
872 if (!page_mapped(hpage))
873 return SWAP_SUCCESS;
874
875 if (PageKsm(p))
876 return SWAP_FAIL;
877
878 if (PageSwapCache(p)) {
879 printk(KERN_ERR
880 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 ttu |= TTU_IGNORE_HWPOISON;
882 }
883
884 /*
885 * Propagate the dirty bit from PTEs to struct page first, because we
886 * need this to decide if we should kill or just drop the page.
887 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 * be called inside page lock (it's recommended but not enforced).
889 */
890 mapping = page_mapping(hpage);
891 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
892 mapping_cap_writeback_dirty(mapping)) {
893 if (page_mkclean(hpage)) {
894 SetPageDirty(hpage);
895 } else {
896 kill = 0;
897 ttu |= TTU_IGNORE_HWPOISON;
898 printk(KERN_INFO
899 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 pfn);
901 }
902 }
903
904 /*
905 * ppage: poisoned page
906 * if p is regular page(4k page)
907 * ppage == real poisoned page;
908 * else p is hugetlb or THP, ppage == head page.
909 */
910 ppage = hpage;
911
912 if (PageTransHuge(hpage)) {
913 /*
914 * Verify that this isn't a hugetlbfs head page, the check for
915 * PageAnon is just for avoid tripping a split_huge_page
916 * internal debug check, as split_huge_page refuses to deal with
917 * anything that isn't an anon page. PageAnon can't go away fro
918 * under us because we hold a refcount on the hpage, without a
919 * refcount on the hpage. split_huge_page can't be safely called
920 * in the first place, having a refcount on the tail isn't
921 * enough * to be safe.
922 */
923 if (!PageHuge(hpage) && PageAnon(hpage)) {
924 if (unlikely(split_huge_page(hpage))) {
925 /*
926 * FIXME: if splitting THP is failed, it is
927 * better to stop the following operation rather
928 * than causing panic by unmapping. System might
929 * survive if the page is freed later.
930 */
931 printk(KERN_INFO
932 "MCE %#lx: failed to split THP\n", pfn);
933
934 BUG_ON(!PageHWPoison(p));
935 return SWAP_FAIL;
936 }
937 /* THP is split, so ppage should be the real poisoned page. */
938 ppage = p;
939 }
940 }
941
942 /*
943 * First collect all the processes that have the page
944 * mapped in dirty form. This has to be done before try_to_unmap,
945 * because ttu takes the rmap data structures down.
946 *
947 * Error handling: We ignore errors here because
948 * there's nothing that can be done.
949 */
950 if (kill)
951 collect_procs(ppage, &tokill);
952
953 if (hpage != ppage)
954 lock_page(ppage);
955
956 ret = try_to_unmap(ppage, ttu);
957 if (ret != SWAP_SUCCESS)
958 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
959 pfn, page_mapcount(ppage));
960
961 if (hpage != ppage)
962 unlock_page(ppage);
963
964 /*
965 * Now that the dirty bit has been propagated to the
966 * struct page and all unmaps done we can decide if
967 * killing is needed or not. Only kill when the page
968 * was dirty or the process is not restartable,
969 * otherwise the tokill list is merely
970 * freed. When there was a problem unmapping earlier
971 * use a more force-full uncatchable kill to prevent
972 * any accesses to the poisoned memory.
973 */
974 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
975 kill_procs(&tokill, forcekill, trapno,
976 ret != SWAP_SUCCESS, p, pfn, flags);
977
978 return ret;
979}
980
981static void set_page_hwpoison_huge_page(struct page *hpage)
982{
983 int i;
984 int nr_pages = 1 << compound_trans_order(hpage);
985 for (i = 0; i < nr_pages; i++)
986 SetPageHWPoison(hpage + i);
987}
988
989static void clear_page_hwpoison_huge_page(struct page *hpage)
990{
991 int i;
992 int nr_pages = 1 << compound_trans_order(hpage);
993 for (i = 0; i < nr_pages; i++)
994 ClearPageHWPoison(hpage + i);
995}
996
997/**
998 * memory_failure - Handle memory failure of a page.
999 * @pfn: Page Number of the corrupted page
1000 * @trapno: Trap number reported in the signal to user space.
1001 * @flags: fine tune action taken
1002 *
1003 * This function is called by the low level machine check code
1004 * of an architecture when it detects hardware memory corruption
1005 * of a page. It tries its best to recover, which includes
1006 * dropping pages, killing processes etc.
1007 *
1008 * The function is primarily of use for corruptions that
1009 * happen outside the current execution context (e.g. when
1010 * detected by a background scrubber)
1011 *
1012 * Must run in process context (e.g. a work queue) with interrupts
1013 * enabled and no spinlocks hold.
1014 */
1015int memory_failure(unsigned long pfn, int trapno, int flags)
1016{
1017 struct page_state *ps;
1018 struct page *p;
1019 struct page *hpage;
1020 int res;
1021 unsigned int nr_pages;
1022
1023 if (!sysctl_memory_failure_recovery)
1024 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1025
1026 if (!pfn_valid(pfn)) {
1027 printk(KERN_ERR
1028 "MCE %#lx: memory outside kernel control\n",
1029 pfn);
1030 return -ENXIO;
1031 }
1032
1033 p = pfn_to_page(pfn);
1034 hpage = compound_head(p);
1035 if (TestSetPageHWPoison(p)) {
1036 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1037 return 0;
1038 }
1039
1040 nr_pages = 1 << compound_trans_order(hpage);
1041 atomic_long_add(nr_pages, &mce_bad_pages);
1042
1043 /*
1044 * We need/can do nothing about count=0 pages.
1045 * 1) it's a free page, and therefore in safe hand:
1046 * prep_new_page() will be the gate keeper.
1047 * 2) it's a free hugepage, which is also safe:
1048 * an affected hugepage will be dequeued from hugepage freelist,
1049 * so there's no concern about reusing it ever after.
1050 * 3) it's part of a non-compound high order page.
1051 * Implies some kernel user: cannot stop them from
1052 * R/W the page; let's pray that the page has been
1053 * used and will be freed some time later.
1054 * In fact it's dangerous to directly bump up page count from 0,
1055 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1056 */
1057 if (!(flags & MF_COUNT_INCREASED) &&
1058 !get_page_unless_zero(hpage)) {
1059 if (is_free_buddy_page(p)) {
1060 action_result(pfn, "free buddy", DELAYED);
1061 return 0;
1062 } else if (PageHuge(hpage)) {
1063 /*
1064 * Check "just unpoisoned", "filter hit", and
1065 * "race with other subpage."
1066 */
1067 lock_page(hpage);
1068 if (!PageHWPoison(hpage)
1069 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1070 || (p != hpage && TestSetPageHWPoison(hpage))) {
1071 atomic_long_sub(nr_pages, &mce_bad_pages);
1072 return 0;
1073 }
1074 set_page_hwpoison_huge_page(hpage);
1075 res = dequeue_hwpoisoned_huge_page(hpage);
1076 action_result(pfn, "free huge",
1077 res ? IGNORED : DELAYED);
1078 unlock_page(hpage);
1079 return res;
1080 } else {
1081 action_result(pfn, "high order kernel", IGNORED);
1082 return -EBUSY;
1083 }
1084 }
1085
1086 /*
1087 * We ignore non-LRU pages for good reasons.
1088 * - PG_locked is only well defined for LRU pages and a few others
1089 * - to avoid races with __set_page_locked()
1090 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1091 * The check (unnecessarily) ignores LRU pages being isolated and
1092 * walked by the page reclaim code, however that's not a big loss.
1093 */
1094 if (!PageHuge(p) && !PageTransTail(p)) {
1095 if (!PageLRU(p))
1096 shake_page(p, 0);
1097 if (!PageLRU(p)) {
1098 /*
1099 * shake_page could have turned it free.
1100 */
1101 if (is_free_buddy_page(p)) {
1102 action_result(pfn, "free buddy, 2nd try",
1103 DELAYED);
1104 return 0;
1105 }
1106 action_result(pfn, "non LRU", IGNORED);
1107 put_page(p);
1108 return -EBUSY;
1109 }
1110 }
1111
1112 /*
1113 * Lock the page and wait for writeback to finish.
1114 * It's very difficult to mess with pages currently under IO
1115 * and in many cases impossible, so we just avoid it here.
1116 */
1117 lock_page(hpage);
1118
1119 /*
1120 * unpoison always clear PG_hwpoison inside page lock
1121 */
1122 if (!PageHWPoison(p)) {
1123 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1124 res = 0;
1125 goto out;
1126 }
1127 if (hwpoison_filter(p)) {
1128 if (TestClearPageHWPoison(p))
1129 atomic_long_sub(nr_pages, &mce_bad_pages);
1130 unlock_page(hpage);
1131 put_page(hpage);
1132 return 0;
1133 }
1134
1135 /*
1136 * For error on the tail page, we should set PG_hwpoison
1137 * on the head page to show that the hugepage is hwpoisoned
1138 */
1139 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1140 action_result(pfn, "hugepage already hardware poisoned",
1141 IGNORED);
1142 unlock_page(hpage);
1143 put_page(hpage);
1144 return 0;
1145 }
1146 /*
1147 * Set PG_hwpoison on all pages in an error hugepage,
1148 * because containment is done in hugepage unit for now.
1149 * Since we have done TestSetPageHWPoison() for the head page with
1150 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1151 */
1152 if (PageHuge(p))
1153 set_page_hwpoison_huge_page(hpage);
1154
1155 wait_on_page_writeback(p);
1156
1157 /*
1158 * Now take care of user space mappings.
1159 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1160 */
1161 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1162 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1163 res = -EBUSY;
1164 goto out;
1165 }
1166
1167 /*
1168 * Torn down by someone else?
1169 */
1170 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1171 action_result(pfn, "already truncated LRU", IGNORED);
1172 res = -EBUSY;
1173 goto out;
1174 }
1175
1176 res = -EBUSY;
1177 for (ps = error_states;; ps++) {
1178 if ((p->flags & ps->mask) == ps->res) {
1179 res = page_action(ps, p, pfn);
1180 break;
1181 }
1182 }
1183out:
1184 unlock_page(hpage);
1185 return res;
1186}
1187EXPORT_SYMBOL_GPL(memory_failure);
1188
1189#define MEMORY_FAILURE_FIFO_ORDER 4
1190#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1191
1192struct memory_failure_entry {
1193 unsigned long pfn;
1194 int trapno;
1195 int flags;
1196};
1197
1198struct memory_failure_cpu {
1199 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1200 MEMORY_FAILURE_FIFO_SIZE);
1201 spinlock_t lock;
1202 struct work_struct work;
1203};
1204
1205static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1206
1207/**
1208 * memory_failure_queue - Schedule handling memory failure of a page.
1209 * @pfn: Page Number of the corrupted page
1210 * @trapno: Trap number reported in the signal to user space.
1211 * @flags: Flags for memory failure handling
1212 *
1213 * This function is called by the low level hardware error handler
1214 * when it detects hardware memory corruption of a page. It schedules
1215 * the recovering of error page, including dropping pages, killing
1216 * processes etc.
1217 *
1218 * The function is primarily of use for corruptions that
1219 * happen outside the current execution context (e.g. when
1220 * detected by a background scrubber)
1221 *
1222 * Can run in IRQ context.
1223 */
1224void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1225{
1226 struct memory_failure_cpu *mf_cpu;
1227 unsigned long proc_flags;
1228 struct memory_failure_entry entry = {
1229 .pfn = pfn,
1230 .trapno = trapno,
1231 .flags = flags,
1232 };
1233
1234 mf_cpu = &get_cpu_var(memory_failure_cpu);
1235 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1236 if (kfifo_put(&mf_cpu->fifo, &entry))
1237 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1238 else
1239 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1240 pfn);
1241 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1242 put_cpu_var(memory_failure_cpu);
1243}
1244EXPORT_SYMBOL_GPL(memory_failure_queue);
1245
1246static void memory_failure_work_func(struct work_struct *work)
1247{
1248 struct memory_failure_cpu *mf_cpu;
1249 struct memory_failure_entry entry = { 0, };
1250 unsigned long proc_flags;
1251 int gotten;
1252
1253 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1254 for (;;) {
1255 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1256 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1257 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1258 if (!gotten)
1259 break;
1260 memory_failure(entry.pfn, entry.trapno, entry.flags);
1261 }
1262}
1263
1264static int __init memory_failure_init(void)
1265{
1266 struct memory_failure_cpu *mf_cpu;
1267 int cpu;
1268
1269 for_each_possible_cpu(cpu) {
1270 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1271 spin_lock_init(&mf_cpu->lock);
1272 INIT_KFIFO(mf_cpu->fifo);
1273 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1274 }
1275
1276 return 0;
1277}
1278core_initcall(memory_failure_init);
1279
1280/**
1281 * unpoison_memory - Unpoison a previously poisoned page
1282 * @pfn: Page number of the to be unpoisoned page
1283 *
1284 * Software-unpoison a page that has been poisoned by
1285 * memory_failure() earlier.
1286 *
1287 * This is only done on the software-level, so it only works
1288 * for linux injected failures, not real hardware failures
1289 *
1290 * Returns 0 for success, otherwise -errno.
1291 */
1292int unpoison_memory(unsigned long pfn)
1293{
1294 struct page *page;
1295 struct page *p;
1296 int freeit = 0;
1297 unsigned int nr_pages;
1298
1299 if (!pfn_valid(pfn))
1300 return -ENXIO;
1301
1302 p = pfn_to_page(pfn);
1303 page = compound_head(p);
1304
1305 if (!PageHWPoison(p)) {
1306 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1307 return 0;
1308 }
1309
1310 nr_pages = 1 << compound_trans_order(page);
1311
1312 if (!get_page_unless_zero(page)) {
1313 /*
1314 * Since HWPoisoned hugepage should have non-zero refcount,
1315 * race between memory failure and unpoison seems to happen.
1316 * In such case unpoison fails and memory failure runs
1317 * to the end.
1318 */
1319 if (PageHuge(page)) {
1320 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1321 return 0;
1322 }
1323 if (TestClearPageHWPoison(p))
1324 atomic_long_sub(nr_pages, &mce_bad_pages);
1325 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1326 return 0;
1327 }
1328
1329 lock_page(page);
1330 /*
1331 * This test is racy because PG_hwpoison is set outside of page lock.
1332 * That's acceptable because that won't trigger kernel panic. Instead,
1333 * the PG_hwpoison page will be caught and isolated on the entrance to
1334 * the free buddy page pool.
1335 */
1336 if (TestClearPageHWPoison(page)) {
1337 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1338 atomic_long_sub(nr_pages, &mce_bad_pages);
1339 freeit = 1;
1340 if (PageHuge(page))
1341 clear_page_hwpoison_huge_page(page);
1342 }
1343 unlock_page(page);
1344
1345 put_page(page);
1346 if (freeit)
1347 put_page(page);
1348
1349 return 0;
1350}
1351EXPORT_SYMBOL(unpoison_memory);
1352
1353static struct page *new_page(struct page *p, unsigned long private, int **x)
1354{
1355 int nid = page_to_nid(p);
1356 if (PageHuge(p))
1357 return alloc_huge_page_node(page_hstate(compound_head(p)),
1358 nid);
1359 else
1360 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1361}
1362
1363/*
1364 * Safely get reference count of an arbitrary page.
1365 * Returns 0 for a free page, -EIO for a zero refcount page
1366 * that is not free, and 1 for any other page type.
1367 * For 1 the page is returned with increased page count, otherwise not.
1368 */
1369static int get_any_page(struct page *p, unsigned long pfn, int flags)
1370{
1371 int ret;
1372
1373 if (flags & MF_COUNT_INCREASED)
1374 return 1;
1375
1376 /*
1377 * The lock_memory_hotplug prevents a race with memory hotplug.
1378 * This is a big hammer, a better would be nicer.
1379 */
1380 lock_memory_hotplug();
1381
1382 /*
1383 * Isolate the page, so that it doesn't get reallocated if it
1384 * was free.
1385 */
1386 set_migratetype_isolate(p);
1387 /*
1388 * When the target page is a free hugepage, just remove it
1389 * from free hugepage list.
1390 */
1391 if (!get_page_unless_zero(compound_head(p))) {
1392 if (PageHuge(p)) {
1393 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1394 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1395 } else if (is_free_buddy_page(p)) {
1396 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1397 /* Set hwpoison bit while page is still isolated */
1398 SetPageHWPoison(p);
1399 ret = 0;
1400 } else {
1401 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1402 __func__, pfn, p->flags);
1403 ret = -EIO;
1404 }
1405 } else {
1406 /* Not a free page */
1407 ret = 1;
1408 }
1409 unset_migratetype_isolate(p, MIGRATE_MOVABLE);
1410 unlock_memory_hotplug();
1411 return ret;
1412}
1413
1414static int soft_offline_huge_page(struct page *page, int flags)
1415{
1416 int ret;
1417 unsigned long pfn = page_to_pfn(page);
1418 struct page *hpage = compound_head(page);
1419 LIST_HEAD(pagelist);
1420
1421 ret = get_any_page(page, pfn, flags);
1422 if (ret < 0)
1423 return ret;
1424 if (ret == 0)
1425 goto done;
1426
1427 if (PageHWPoison(hpage)) {
1428 put_page(hpage);
1429 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1430 return -EBUSY;
1431 }
1432
1433 /* Keep page count to indicate a given hugepage is isolated. */
1434
1435 list_add(&hpage->lru, &pagelist);
1436 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
1437 MIGRATE_SYNC);
1438 if (ret) {
1439 struct page *page1, *page2;
1440 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1441 put_page(page1);
1442
1443 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1444 pfn, ret, page->flags);
1445 if (ret > 0)
1446 ret = -EIO;
1447 return ret;
1448 }
1449done:
1450 if (!PageHWPoison(hpage))
1451 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1452 set_page_hwpoison_huge_page(hpage);
1453 dequeue_hwpoisoned_huge_page(hpage);
1454 /* keep elevated page count for bad page */
1455 return ret;
1456}
1457
1458/**
1459 * soft_offline_page - Soft offline a page.
1460 * @page: page to offline
1461 * @flags: flags. Same as memory_failure().
1462 *
1463 * Returns 0 on success, otherwise negated errno.
1464 *
1465 * Soft offline a page, by migration or invalidation,
1466 * without killing anything. This is for the case when
1467 * a page is not corrupted yet (so it's still valid to access),
1468 * but has had a number of corrected errors and is better taken
1469 * out.
1470 *
1471 * The actual policy on when to do that is maintained by
1472 * user space.
1473 *
1474 * This should never impact any application or cause data loss,
1475 * however it might take some time.
1476 *
1477 * This is not a 100% solution for all memory, but tries to be
1478 * ``good enough'' for the majority of memory.
1479 */
1480int soft_offline_page(struct page *page, int flags)
1481{
1482 int ret;
1483 unsigned long pfn = page_to_pfn(page);
1484
1485 if (PageHuge(page))
1486 return soft_offline_huge_page(page, flags);
1487
1488 ret = get_any_page(page, pfn, flags);
1489 if (ret < 0)
1490 return ret;
1491 if (ret == 0)
1492 goto done;
1493
1494 /*
1495 * Page cache page we can handle?
1496 */
1497 if (!PageLRU(page)) {
1498 /*
1499 * Try to free it.
1500 */
1501 put_page(page);
1502 shake_page(page, 1);
1503
1504 /*
1505 * Did it turn free?
1506 */
1507 ret = get_any_page(page, pfn, 0);
1508 if (ret < 0)
1509 return ret;
1510 if (ret == 0)
1511 goto done;
1512 }
1513 if (!PageLRU(page)) {
1514 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1515 pfn, page->flags);
1516 return -EIO;
1517 }
1518
1519 lock_page(page);
1520 wait_on_page_writeback(page);
1521
1522 /*
1523 * Synchronized using the page lock with memory_failure()
1524 */
1525 if (PageHWPoison(page)) {
1526 unlock_page(page);
1527 put_page(page);
1528 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1529 return -EBUSY;
1530 }
1531
1532 /*
1533 * Try to invalidate first. This should work for
1534 * non dirty unmapped page cache pages.
1535 */
1536 ret = invalidate_inode_page(page);
1537 unlock_page(page);
1538 /*
1539 * RED-PEN would be better to keep it isolated here, but we
1540 * would need to fix isolation locking first.
1541 */
1542 if (ret == 1) {
1543 put_page(page);
1544 ret = 0;
1545 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1546 goto done;
1547 }
1548
1549 /*
1550 * Simple invalidation didn't work.
1551 * Try to migrate to a new page instead. migrate.c
1552 * handles a large number of cases for us.
1553 */
1554 ret = isolate_lru_page(page);
1555 /*
1556 * Drop page reference which is came from get_any_page()
1557 * successful isolate_lru_page() already took another one.
1558 */
1559 put_page(page);
1560 if (!ret) {
1561 LIST_HEAD(pagelist);
1562 inc_zone_page_state(page, NR_ISOLATED_ANON +
1563 page_is_file_cache(page));
1564 list_add(&page->lru, &pagelist);
1565 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1566 false, MIGRATE_SYNC);
1567 if (ret) {
1568 putback_lru_pages(&pagelist);
1569 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1570 pfn, ret, page->flags);
1571 if (ret > 0)
1572 ret = -EIO;
1573 }
1574 } else {
1575 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1576 pfn, ret, page_count(page), page->flags);
1577 }
1578 if (ret)
1579 return ret;
1580
1581done:
1582 atomic_long_add(1, &mce_bad_pages);
1583 SetPageHWPoison(page);
1584 /* keep elevated page count for bad page */
1585 return ret;
1586}