Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *	Izik Eidus
  11 *	Andrea Arcangeli
  12 *	Chris Wright
  13 *	Hugh Dickins
 
 
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)		(x)
  47#define DO_NUMA(x)	do { (x); } while (0)
  48#else
  49#define NUMA(x)		(0)
  50#define DO_NUMA(x)	do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same struct stable_node structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121	struct hlist_node link;
 122	struct list_head mm_list;
 123	struct rmap_item *rmap_list;
 124	struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137	struct mm_slot *mm_slot;
 138	unsigned long address;
 139	struct rmap_item **rmap_list;
 140	unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156	union {
 157		struct rb_node node;	/* when node of stable tree */
 158		struct {		/* when listed for migration */
 159			struct list_head *head;
 160			struct {
 161				struct hlist_node hlist_dup;
 162				struct list_head list;
 163			};
 164		};
 165	};
 166	struct hlist_head hlist;
 167	union {
 168		unsigned long kpfn;
 169		unsigned long chain_prune_time;
 170	};
 171	/*
 172	 * STABLE_NODE_CHAIN can be any negative number in
 173	 * rmap_hlist_len negative range, but better not -1 to be able
 174	 * to reliably detect underflows.
 175	 */
 176#define STABLE_NODE_CHAIN -1024
 177	int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179	int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196	struct rmap_item *rmap_list;
 197	union {
 198		struct anon_vma *anon_vma;	/* when stable */
 199#ifdef CONFIG_NUMA
 200		int nid;		/* when node of unstable tree */
 201#endif
 202	};
 203	struct mm_struct *mm;
 204	unsigned long address;		/* + low bits used for flags below */
 205	unsigned int oldchecksum;	/* when unstable */
 206	union {
 207		struct rb_node node;	/* when node of unstable tree */
 208		struct {		/* when listed from stable tree */
 209			struct stable_node *head;
 210			struct hlist_node hlist;
 211		};
 212	};
 213};
 214
 215#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 217#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 218
 219/* The stable and unstable tree heads */
 220static struct rb_root one_stable_tree[1] = { RB_ROOT };
 221static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 222static struct rb_root *root_stable_tree = one_stable_tree;
 223static struct rb_root *root_unstable_tree = one_unstable_tree;
 224
 225/* Recently migrated nodes of stable tree, pending proper placement */
 226static LIST_HEAD(migrate_nodes);
 227#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 228
 229#define MM_SLOTS_HASH_BITS 10
 230static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 
 231
 232static struct mm_slot ksm_mm_head = {
 233	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 234};
 235static struct ksm_scan ksm_scan = {
 236	.mm_slot = &ksm_mm_head,
 237};
 238
 239static struct kmem_cache *rmap_item_cache;
 240static struct kmem_cache *stable_node_cache;
 241static struct kmem_cache *mm_slot_cache;
 242
 243/* The number of nodes in the stable tree */
 244static unsigned long ksm_pages_shared;
 245
 246/* The number of page slots additionally sharing those nodes */
 247static unsigned long ksm_pages_sharing;
 248
 249/* The number of nodes in the unstable tree */
 250static unsigned long ksm_pages_unshared;
 251
 252/* The number of rmap_items in use: to calculate pages_volatile */
 253static unsigned long ksm_rmap_items;
 254
 255/* The number of stable_node chains */
 256static unsigned long ksm_stable_node_chains;
 257
 258/* The number of stable_node dups linked to the stable_node chains */
 259static unsigned long ksm_stable_node_dups;
 260
 261/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 262static int ksm_stable_node_chains_prune_millisecs = 2000;
 263
 264/* Maximum number of page slots sharing a stable node */
 265static int ksm_max_page_sharing = 256;
 266
 267/* Number of pages ksmd should scan in one batch */
 268static unsigned int ksm_thread_pages_to_scan = 100;
 269
 270/* Milliseconds ksmd should sleep between batches */
 271static unsigned int ksm_thread_sleep_millisecs = 20;
 272
 273/* Checksum of an empty (zeroed) page */
 274static unsigned int zero_checksum __read_mostly;
 275
 276/* Whether to merge empty (zeroed) pages with actual zero pages */
 277static bool ksm_use_zero_pages __read_mostly;
 278
 279#ifdef CONFIG_NUMA
 280/* Zeroed when merging across nodes is not allowed */
 281static unsigned int ksm_merge_across_nodes = 1;
 282static int ksm_nr_node_ids = 1;
 283#else
 284#define ksm_merge_across_nodes	1U
 285#define ksm_nr_node_ids		1
 286#endif
 287
 288#define KSM_RUN_STOP	0
 289#define KSM_RUN_MERGE	1
 290#define KSM_RUN_UNMERGE	2
 291#define KSM_RUN_OFFLINE	4
 292static unsigned long ksm_run = KSM_RUN_STOP;
 293static void wait_while_offlining(void);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 296static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 297static DEFINE_MUTEX(ksm_thread_mutex);
 298static DEFINE_SPINLOCK(ksm_mmlist_lock);
 299
 300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 301		sizeof(struct __struct), __alignof__(struct __struct),\
 302		(__flags), NULL)
 303
 304static int __init ksm_slab_init(void)
 305{
 306	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 307	if (!rmap_item_cache)
 308		goto out;
 309
 310	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 311	if (!stable_node_cache)
 312		goto out_free1;
 313
 314	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 315	if (!mm_slot_cache)
 316		goto out_free2;
 317
 318	return 0;
 319
 320out_free2:
 321	kmem_cache_destroy(stable_node_cache);
 322out_free1:
 323	kmem_cache_destroy(rmap_item_cache);
 324out:
 325	return -ENOMEM;
 326}
 327
 328static void __init ksm_slab_free(void)
 329{
 330	kmem_cache_destroy(mm_slot_cache);
 331	kmem_cache_destroy(stable_node_cache);
 332	kmem_cache_destroy(rmap_item_cache);
 333	mm_slot_cache = NULL;
 334}
 335
 336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 337{
 338	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 339}
 340
 341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 342{
 343	return dup->head == STABLE_NODE_DUP_HEAD;
 344}
 345
 346static inline void stable_node_chain_add_dup(struct stable_node *dup,
 347					     struct stable_node *chain)
 348{
 349	VM_BUG_ON(is_stable_node_dup(dup));
 350	dup->head = STABLE_NODE_DUP_HEAD;
 351	VM_BUG_ON(!is_stable_node_chain(chain));
 352	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 353	ksm_stable_node_dups++;
 354}
 355
 356static inline void __stable_node_dup_del(struct stable_node *dup)
 357{
 358	VM_BUG_ON(!is_stable_node_dup(dup));
 359	hlist_del(&dup->hlist_dup);
 360	ksm_stable_node_dups--;
 361}
 362
 363static inline void stable_node_dup_del(struct stable_node *dup)
 364{
 365	VM_BUG_ON(is_stable_node_chain(dup));
 366	if (is_stable_node_dup(dup))
 367		__stable_node_dup_del(dup);
 368	else
 369		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 370#ifdef CONFIG_DEBUG_VM
 371	dup->head = NULL;
 372#endif
 373}
 374
 375static inline struct rmap_item *alloc_rmap_item(void)
 376{
 377	struct rmap_item *rmap_item;
 378
 379	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 380						__GFP_NORETRY | __GFP_NOWARN);
 381	if (rmap_item)
 382		ksm_rmap_items++;
 383	return rmap_item;
 384}
 385
 386static inline void free_rmap_item(struct rmap_item *rmap_item)
 387{
 388	ksm_rmap_items--;
 389	rmap_item->mm = NULL;	/* debug safety */
 390	kmem_cache_free(rmap_item_cache, rmap_item);
 391}
 392
 393static inline struct stable_node *alloc_stable_node(void)
 394{
 395	/*
 396	 * The allocation can take too long with GFP_KERNEL when memory is under
 397	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 398	 * grants access to memory reserves, helping to avoid this problem.
 399	 */
 400	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 401}
 402
 403static inline void free_stable_node(struct stable_node *stable_node)
 404{
 405	VM_BUG_ON(stable_node->rmap_hlist_len &&
 406		  !is_stable_node_chain(stable_node));
 407	kmem_cache_free(stable_node_cache, stable_node);
 408}
 409
 410static inline struct mm_slot *alloc_mm_slot(void)
 411{
 412	if (!mm_slot_cache)	/* initialization failed */
 413		return NULL;
 414	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 415}
 416
 417static inline void free_mm_slot(struct mm_slot *mm_slot)
 418{
 419	kmem_cache_free(mm_slot_cache, mm_slot);
 420}
 421
 422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 423{
 424	struct mm_slot *slot;
 425
 426	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 427		if (slot->mm == mm)
 428			return slot;
 429
 
 
 
 
 
 430	return NULL;
 431}
 432
 433static void insert_to_mm_slots_hash(struct mm_struct *mm,
 434				    struct mm_slot *mm_slot)
 435{
 
 
 
 436	mm_slot->mm = mm;
 437	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 
 
 
 
 
 438}
 439
 440/*
 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 442 * page tables after it has passed through ksm_exit() - which, if necessary,
 443 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 444 * a special flag: they can just back out as soon as mm_users goes to zero.
 445 * ksm_test_exit() is used throughout to make this test for exit: in some
 446 * places for correctness, in some places just to avoid unnecessary work.
 447 */
 448static inline bool ksm_test_exit(struct mm_struct *mm)
 449{
 450	return atomic_read(&mm->mm_users) == 0;
 451}
 452
 453/*
 454 * We use break_ksm to break COW on a ksm page: it's a stripped down
 455 *
 456 *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
 457 *		put_page(page);
 458 *
 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 460 * in case the application has unmapped and remapped mm,addr meanwhile.
 461 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 462 * mmap of /dev/mem, where we would not want to touch it.
 463 *
 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 465 * of the process that owns 'vma'.  We also do not want to enforce
 466 * protection keys here anyway.
 467 */
 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 469{
 470	struct page *page;
 471	vm_fault_t ret = 0;
 472
 473	do {
 474		cond_resched();
 475		page = follow_page(vma, addr,
 476				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 477		if (IS_ERR_OR_NULL(page))
 478			break;
 479		if (PageKsm(page))
 480			ret = handle_mm_fault(vma, addr,
 481					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
 482					      NULL);
 483		else
 484			ret = VM_FAULT_WRITE;
 485		put_page(page);
 486	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 487	/*
 488	 * We must loop because handle_mm_fault() may back out if there's
 489	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 490	 *
 491	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 492	 * COW has been broken, even if the vma does not permit VM_WRITE;
 493	 * but note that a concurrent fault might break PageKsm for us.
 494	 *
 495	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 496	 * backing file, which also invalidates anonymous pages: that's
 497	 * okay, that truncation will have unmapped the PageKsm for us.
 498	 *
 499	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 500	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 501	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 502	 * to user; and ksmd, having no mm, would never be chosen for that.
 503	 *
 504	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 505	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 506	 * even ksmd can fail in this way - though it's usually breaking ksm
 507	 * just to undo a merge it made a moment before, so unlikely to oom.
 508	 *
 509	 * That's a pity: we might therefore have more kernel pages allocated
 510	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 511	 * will retry to break_cow on each pass, so should recover the page
 512	 * in due course.  The important thing is to not let VM_MERGEABLE
 513	 * be cleared while any such pages might remain in the area.
 514	 */
 515	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 516}
 517
 518static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 519		unsigned long addr)
 520{
 521	struct vm_area_struct *vma;
 522	if (ksm_test_exit(mm))
 523		return NULL;
 524	vma = vma_lookup(mm, addr);
 525	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 
 
 526		return NULL;
 527	return vma;
 528}
 529
 530static void break_cow(struct rmap_item *rmap_item)
 531{
 532	struct mm_struct *mm = rmap_item->mm;
 533	unsigned long addr = rmap_item->address;
 534	struct vm_area_struct *vma;
 535
 536	/*
 537	 * It is not an accident that whenever we want to break COW
 538	 * to undo, we also need to drop a reference to the anon_vma.
 539	 */
 540	put_anon_vma(rmap_item->anon_vma);
 541
 542	mmap_read_lock(mm);
 543	vma = find_mergeable_vma(mm, addr);
 544	if (vma)
 545		break_ksm(vma, addr);
 546	mmap_read_unlock(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547}
 548
 549static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 550{
 551	struct mm_struct *mm = rmap_item->mm;
 552	unsigned long addr = rmap_item->address;
 553	struct vm_area_struct *vma;
 554	struct page *page;
 555
 556	mmap_read_lock(mm);
 557	vma = find_mergeable_vma(mm, addr);
 558	if (!vma)
 559		goto out;
 560
 561	page = follow_page(vma, addr, FOLL_GET);
 562	if (IS_ERR_OR_NULL(page))
 563		goto out;
 564	if (PageAnon(page)) {
 565		flush_anon_page(vma, page, addr);
 566		flush_dcache_page(page);
 567	} else {
 568		put_page(page);
 569out:
 570		page = NULL;
 571	}
 572	mmap_read_unlock(mm);
 573	return page;
 574}
 575
 576/*
 577 * This helper is used for getting right index into array of tree roots.
 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 580 * every node has its own stable and unstable tree.
 581 */
 582static inline int get_kpfn_nid(unsigned long kpfn)
 583{
 584	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 585}
 586
 587static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 588						   struct rb_root *root)
 589{
 590	struct stable_node *chain = alloc_stable_node();
 591	VM_BUG_ON(is_stable_node_chain(dup));
 592	if (likely(chain)) {
 593		INIT_HLIST_HEAD(&chain->hlist);
 594		chain->chain_prune_time = jiffies;
 595		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 597		chain->nid = NUMA_NO_NODE; /* debug */
 598#endif
 599		ksm_stable_node_chains++;
 600
 601		/*
 602		 * Put the stable node chain in the first dimension of
 603		 * the stable tree and at the same time remove the old
 604		 * stable node.
 605		 */
 606		rb_replace_node(&dup->node, &chain->node, root);
 607
 608		/*
 609		 * Move the old stable node to the second dimension
 610		 * queued in the hlist_dup. The invariant is that all
 611		 * dup stable_nodes in the chain->hlist point to pages
 612		 * that are write protected and have the exact same
 613		 * content.
 614		 */
 615		stable_node_chain_add_dup(dup, chain);
 616	}
 617	return chain;
 618}
 619
 620static inline void free_stable_node_chain(struct stable_node *chain,
 621					  struct rb_root *root)
 622{
 623	rb_erase(&chain->node, root);
 624	free_stable_node(chain);
 625	ksm_stable_node_chains--;
 626}
 627
 628static void remove_node_from_stable_tree(struct stable_node *stable_node)
 629{
 630	struct rmap_item *rmap_item;
 
 631
 632	/* check it's not STABLE_NODE_CHAIN or negative */
 633	BUG_ON(stable_node->rmap_hlist_len < 0);
 634
 635	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 636		if (rmap_item->hlist.next)
 637			ksm_pages_sharing--;
 638		else
 639			ksm_pages_shared--;
 640		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 641		stable_node->rmap_hlist_len--;
 642		put_anon_vma(rmap_item->anon_vma);
 643		rmap_item->address &= PAGE_MASK;
 644		cond_resched();
 645	}
 646
 647	/*
 648	 * We need the second aligned pointer of the migrate_nodes
 649	 * list_head to stay clear from the rb_parent_color union
 650	 * (aligned and different than any node) and also different
 651	 * from &migrate_nodes. This will verify that future list.h changes
 652	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 653	 */
 654#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 655	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 656	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 657#endif
 658
 659	if (stable_node->head == &migrate_nodes)
 660		list_del(&stable_node->list);
 661	else
 662		stable_node_dup_del(stable_node);
 663	free_stable_node(stable_node);
 664}
 665
 666enum get_ksm_page_flags {
 667	GET_KSM_PAGE_NOLOCK,
 668	GET_KSM_PAGE_LOCK,
 669	GET_KSM_PAGE_TRYLOCK
 670};
 671
 672/*
 673 * get_ksm_page: checks if the page indicated by the stable node
 674 * is still its ksm page, despite having held no reference to it.
 675 * In which case we can trust the content of the page, and it
 676 * returns the gotten page; but if the page has now been zapped,
 677 * remove the stale node from the stable tree and return NULL.
 678 * But beware, the stable node's page might be being migrated.
 679 *
 680 * You would expect the stable_node to hold a reference to the ksm page.
 681 * But if it increments the page's count, swapping out has to wait for
 682 * ksmd to come around again before it can free the page, which may take
 683 * seconds or even minutes: much too unresponsive.  So instead we use a
 684 * "keyhole reference": access to the ksm page from the stable node peeps
 685 * out through its keyhole to see if that page still holds the right key,
 686 * pointing back to this stable node.  This relies on freeing a PageAnon
 687 * page to reset its page->mapping to NULL, and relies on no other use of
 688 * a page to put something that might look like our key in page->mapping.
 
 
 
 
 
 
 
 
 
 
 
 689 * is on its way to being freed; but it is an anomaly to bear in mind.
 690 */
 691static struct page *get_ksm_page(struct stable_node *stable_node,
 692				 enum get_ksm_page_flags flags)
 693{
 694	struct page *page;
 695	void *expected_mapping;
 696	unsigned long kpfn;
 697
 698	expected_mapping = (void *)((unsigned long)stable_node |
 699					PAGE_MAPPING_KSM);
 700again:
 701	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 702	page = pfn_to_page(kpfn);
 703	if (READ_ONCE(page->mapping) != expected_mapping)
 704		goto stale;
 705
 706	/*
 707	 * We cannot do anything with the page while its refcount is 0.
 708	 * Usually 0 means free, or tail of a higher-order page: in which
 709	 * case this node is no longer referenced, and should be freed;
 710	 * however, it might mean that the page is under page_ref_freeze().
 711	 * The __remove_mapping() case is easy, again the node is now stale;
 712	 * the same is in reuse_ksm_page() case; but if page is swapcache
 713	 * in migrate_page_move_mapping(), it might still be our page,
 714	 * in which case it's essential to keep the node.
 715	 */
 716	while (!get_page_unless_zero(page)) {
 717		/*
 718		 * Another check for page->mapping != expected_mapping would
 719		 * work here too.  We have chosen the !PageSwapCache test to
 720		 * optimize the common case, when the page is or is about to
 721		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 722		 * in the ref_freeze section of __remove_mapping(); but Anon
 723		 * page->mapping reset to NULL later, in free_pages_prepare().
 724		 */
 725		if (!PageSwapCache(page))
 726			goto stale;
 727		cpu_relax();
 728	}
 729
 730	if (READ_ONCE(page->mapping) != expected_mapping) {
 731		put_page(page);
 732		goto stale;
 733	}
 734
 735	if (flags == GET_KSM_PAGE_TRYLOCK) {
 736		if (!trylock_page(page)) {
 737			put_page(page);
 738			return ERR_PTR(-EBUSY);
 739		}
 740	} else if (flags == GET_KSM_PAGE_LOCK)
 741		lock_page(page);
 742
 743	if (flags != GET_KSM_PAGE_NOLOCK) {
 744		if (READ_ONCE(page->mapping) != expected_mapping) {
 745			unlock_page(page);
 746			put_page(page);
 747			goto stale;
 748		}
 749	}
 750	return page;
 751
 752stale:
 753	/*
 754	 * We come here from above when page->mapping or !PageSwapCache
 755	 * suggests that the node is stale; but it might be under migration.
 756	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 757	 * before checking whether node->kpfn has been changed.
 758	 */
 759	smp_rmb();
 760	if (READ_ONCE(stable_node->kpfn) != kpfn)
 761		goto again;
 762	remove_node_from_stable_tree(stable_node);
 763	return NULL;
 764}
 765
 766/*
 767 * Removing rmap_item from stable or unstable tree.
 768 * This function will clean the information from the stable/unstable tree.
 769 */
 770static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 771{
 772	if (rmap_item->address & STABLE_FLAG) {
 773		struct stable_node *stable_node;
 774		struct page *page;
 775
 776		stable_node = rmap_item->head;
 777		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 778		if (!page)
 779			goto out;
 780
 
 781		hlist_del(&rmap_item->hlist);
 782		unlock_page(page);
 783		put_page(page);
 784
 785		if (!hlist_empty(&stable_node->hlist))
 786			ksm_pages_sharing--;
 787		else
 788			ksm_pages_shared--;
 789		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 790		stable_node->rmap_hlist_len--;
 791
 792		put_anon_vma(rmap_item->anon_vma);
 793		rmap_item->head = NULL;
 794		rmap_item->address &= PAGE_MASK;
 795
 796	} else if (rmap_item->address & UNSTABLE_FLAG) {
 797		unsigned char age;
 798		/*
 799		 * Usually ksmd can and must skip the rb_erase, because
 800		 * root_unstable_tree was already reset to RB_ROOT.
 801		 * But be careful when an mm is exiting: do the rb_erase
 802		 * if this rmap_item was inserted by this scan, rather
 803		 * than left over from before.
 804		 */
 805		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 806		BUG_ON(age > 1);
 807		if (!age)
 808			rb_erase(&rmap_item->node,
 809				 root_unstable_tree + NUMA(rmap_item->nid));
 810		ksm_pages_unshared--;
 811		rmap_item->address &= PAGE_MASK;
 812	}
 813out:
 814	cond_resched();		/* we're called from many long loops */
 815}
 816
 817static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
 
 818{
 819	while (*rmap_list) {
 820		struct rmap_item *rmap_item = *rmap_list;
 821		*rmap_list = rmap_item->rmap_list;
 822		remove_rmap_item_from_tree(rmap_item);
 823		free_rmap_item(rmap_item);
 824	}
 825}
 826
 827/*
 828 * Though it's very tempting to unmerge rmap_items from stable tree rather
 829 * than check every pte of a given vma, the locking doesn't quite work for
 830 * that - an rmap_item is assigned to the stable tree after inserting ksm
 831 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
 832 * rmap_items from parent to child at fork time (so as not to waste time
 833 * if exit comes before the next scan reaches it).
 834 *
 835 * Similarly, although we'd like to remove rmap_items (so updating counts
 836 * and freeing memory) when unmerging an area, it's easier to leave that
 837 * to the next pass of ksmd - consider, for example, how ksmd might be
 838 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 839 */
 840static int unmerge_ksm_pages(struct vm_area_struct *vma,
 841			     unsigned long start, unsigned long end)
 842{
 843	unsigned long addr;
 844	int err = 0;
 845
 846	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 847		if (ksm_test_exit(vma->vm_mm))
 848			break;
 849		if (signal_pending(current))
 850			err = -ERESTARTSYS;
 851		else
 852			err = break_ksm(vma, addr);
 853	}
 854	return err;
 855}
 856
 857static inline struct stable_node *page_stable_node(struct page *page)
 858{
 859	return PageKsm(page) ? page_rmapping(page) : NULL;
 860}
 861
 862static inline void set_page_stable_node(struct page *page,
 863					struct stable_node *stable_node)
 864{
 865	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 866}
 867
 868#ifdef CONFIG_SYSFS
 869/*
 870 * Only called through the sysfs control interface:
 871 */
 872static int remove_stable_node(struct stable_node *stable_node)
 873{
 874	struct page *page;
 875	int err;
 876
 877	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 878	if (!page) {
 879		/*
 880		 * get_ksm_page did remove_node_from_stable_tree itself.
 881		 */
 882		return 0;
 883	}
 884
 885	/*
 886	 * Page could be still mapped if this races with __mmput() running in
 887	 * between ksm_exit() and exit_mmap(). Just refuse to let
 888	 * merge_across_nodes/max_page_sharing be switched.
 889	 */
 890	err = -EBUSY;
 891	if (!page_mapped(page)) {
 892		/*
 893		 * The stable node did not yet appear stale to get_ksm_page(),
 894		 * since that allows for an unmapped ksm page to be recognized
 895		 * right up until it is freed; but the node is safe to remove.
 896		 * This page might be in a pagevec waiting to be freed,
 897		 * or it might be PageSwapCache (perhaps under writeback),
 898		 * or it might have been removed from swapcache a moment ago.
 899		 */
 900		set_page_stable_node(page, NULL);
 901		remove_node_from_stable_tree(stable_node);
 902		err = 0;
 903	}
 904
 905	unlock_page(page);
 906	put_page(page);
 907	return err;
 908}
 909
 910static int remove_stable_node_chain(struct stable_node *stable_node,
 911				    struct rb_root *root)
 912{
 913	struct stable_node *dup;
 914	struct hlist_node *hlist_safe;
 915
 916	if (!is_stable_node_chain(stable_node)) {
 917		VM_BUG_ON(is_stable_node_dup(stable_node));
 918		if (remove_stable_node(stable_node))
 919			return true;
 920		else
 921			return false;
 922	}
 923
 924	hlist_for_each_entry_safe(dup, hlist_safe,
 925				  &stable_node->hlist, hlist_dup) {
 926		VM_BUG_ON(!is_stable_node_dup(dup));
 927		if (remove_stable_node(dup))
 928			return true;
 929	}
 930	BUG_ON(!hlist_empty(&stable_node->hlist));
 931	free_stable_node_chain(stable_node, root);
 932	return false;
 933}
 934
 935static int remove_all_stable_nodes(void)
 936{
 937	struct stable_node *stable_node, *next;
 938	int nid;
 939	int err = 0;
 940
 941	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 942		while (root_stable_tree[nid].rb_node) {
 943			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 944						struct stable_node, node);
 945			if (remove_stable_node_chain(stable_node,
 946						     root_stable_tree + nid)) {
 947				err = -EBUSY;
 948				break;	/* proceed to next nid */
 949			}
 950			cond_resched();
 951		}
 952	}
 953	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 954		if (remove_stable_node(stable_node))
 955			err = -EBUSY;
 956		cond_resched();
 957	}
 958	return err;
 959}
 960
 961static int unmerge_and_remove_all_rmap_items(void)
 962{
 963	struct mm_slot *mm_slot;
 964	struct mm_struct *mm;
 965	struct vm_area_struct *vma;
 966	int err = 0;
 967
 968	spin_lock(&ksm_mmlist_lock);
 969	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 970						struct mm_slot, mm_list);
 971	spin_unlock(&ksm_mmlist_lock);
 972
 973	for (mm_slot = ksm_scan.mm_slot;
 974			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 975		mm = mm_slot->mm;
 976		mmap_read_lock(mm);
 977		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 978			if (ksm_test_exit(mm))
 979				break;
 980			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 981				continue;
 982			err = unmerge_ksm_pages(vma,
 983						vma->vm_start, vma->vm_end);
 984			if (err)
 985				goto error;
 986		}
 987
 988		remove_trailing_rmap_items(&mm_slot->rmap_list);
 989		mmap_read_unlock(mm);
 990
 991		spin_lock(&ksm_mmlist_lock);
 992		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 993						struct mm_slot, mm_list);
 994		if (ksm_test_exit(mm)) {
 995			hash_del(&mm_slot->link);
 996			list_del(&mm_slot->mm_list);
 997			spin_unlock(&ksm_mmlist_lock);
 998
 999			free_mm_slot(mm_slot);
1000			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 
1001			mmdrop(mm);
1002		} else
1003			spin_unlock(&ksm_mmlist_lock);
 
 
1004	}
1005
1006	/* Clean up stable nodes, but don't worry if some are still busy */
1007	remove_all_stable_nodes();
1008	ksm_scan.seqnr = 0;
1009	return 0;
1010
1011error:
1012	mmap_read_unlock(mm);
1013	spin_lock(&ksm_mmlist_lock);
1014	ksm_scan.mm_slot = &ksm_mm_head;
1015	spin_unlock(&ksm_mmlist_lock);
1016	return err;
1017}
1018#endif /* CONFIG_SYSFS */
1019
1020static u32 calc_checksum(struct page *page)
1021{
1022	u32 checksum;
1023	void *addr = kmap_atomic(page);
1024	checksum = xxhash(addr, PAGE_SIZE, 0);
1025	kunmap_atomic(addr);
1026	return checksum;
1027}
1028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1030			      pte_t *orig_pte)
1031{
1032	struct mm_struct *mm = vma->vm_mm;
1033	struct page_vma_mapped_walk pvmw = {
1034		.page = page,
1035		.vma = vma,
1036	};
1037	int swapped;
1038	int err = -EFAULT;
1039	struct mmu_notifier_range range;
1040
1041	pvmw.address = page_address_in_vma(page, vma);
1042	if (pvmw.address == -EFAULT)
1043		goto out;
1044
1045	BUG_ON(PageTransCompound(page));
 
 
 
1046
1047	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048				pvmw.address,
1049				pvmw.address + PAGE_SIZE);
1050	mmu_notifier_invalidate_range_start(&range);
1051
1052	if (!page_vma_mapped_walk(&pvmw))
1053		goto out_mn;
1054	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1055		goto out_unlock;
1056
1057	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1058	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1059						mm_tlb_flush_pending(mm)) {
1060		pte_t entry;
1061
1062		swapped = PageSwapCache(page);
1063		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064		/*
1065		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1066		 * take any lock, therefore the check that we are going to make
1067		 * with the pagecount against the mapcount is racy and
1068		 * O_DIRECT can happen right after the check.
1069		 * So we clear the pte and flush the tlb before the check
1070		 * this assure us that no O_DIRECT can happen after the check
1071		 * or in the middle of the check.
1072		 *
1073		 * No need to notify as we are downgrading page table to read
1074		 * only not changing it to point to a new page.
1075		 *
1076		 * See Documentation/vm/mmu_notifier.rst
1077		 */
1078		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079		/*
1080		 * Check that no O_DIRECT or similar I/O is in progress on the
1081		 * page
1082		 */
1083		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1084			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1085			goto out_unlock;
1086		}
1087		if (pte_dirty(entry))
1088			set_page_dirty(page);
1089
1090		if (pte_protnone(entry))
1091			entry = pte_mkclean(pte_clear_savedwrite(entry));
1092		else
1093			entry = pte_mkclean(pte_wrprotect(entry));
1094		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095	}
1096	*orig_pte = *pvmw.pte;
1097	err = 0;
1098
1099out_unlock:
1100	page_vma_mapped_walk_done(&pvmw);
1101out_mn:
1102	mmu_notifier_invalidate_range_end(&range);
1103out:
1104	return err;
1105}
1106
1107/**
1108 * replace_page - replace page in vma by new ksm page
1109 * @vma:      vma that holds the pte pointing to page
1110 * @page:     the page we are replacing by kpage
1111 * @kpage:    the ksm page we replace page by
1112 * @orig_pte: the original value of the pte
1113 *
1114 * Returns 0 on success, -EFAULT on failure.
1115 */
1116static int replace_page(struct vm_area_struct *vma, struct page *page,
1117			struct page *kpage, pte_t orig_pte)
1118{
1119	struct mm_struct *mm = vma->vm_mm;
 
 
1120	pmd_t *pmd;
1121	pte_t *ptep;
1122	pte_t newpte;
1123	spinlock_t *ptl;
1124	unsigned long addr;
1125	int err = -EFAULT;
1126	struct mmu_notifier_range range;
1127
1128	addr = page_address_in_vma(page, vma);
1129	if (addr == -EFAULT)
1130		goto out;
1131
1132	pmd = mm_find_pmd(mm, addr);
1133	if (!pmd)
1134		goto out;
1135
1136	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137				addr + PAGE_SIZE);
1138	mmu_notifier_invalidate_range_start(&range);
 
 
 
 
 
1139
1140	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141	if (!pte_same(*ptep, orig_pte)) {
1142		pte_unmap_unlock(ptep, ptl);
1143		goto out_mn;
1144	}
1145
1146	/*
1147	 * No need to check ksm_use_zero_pages here: we can only have a
1148	 * zero_page here if ksm_use_zero_pages was enabled already.
1149	 */
1150	if (!is_zero_pfn(page_to_pfn(kpage))) {
1151		get_page(kpage);
1152		page_add_anon_rmap(kpage, vma, addr, false);
1153		newpte = mk_pte(kpage, vma->vm_page_prot);
1154	} else {
1155		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1156					       vma->vm_page_prot));
1157		/*
1158		 * We're replacing an anonymous page with a zero page, which is
1159		 * not anonymous. We need to do proper accounting otherwise we
1160		 * will get wrong values in /proc, and a BUG message in dmesg
1161		 * when tearing down the mm.
1162		 */
1163		dec_mm_counter(mm, MM_ANONPAGES);
1164	}
1165
1166	flush_cache_page(vma, addr, pte_pfn(*ptep));
1167	/*
1168	 * No need to notify as we are replacing a read only page with another
1169	 * read only page with the same content.
1170	 *
1171	 * See Documentation/vm/mmu_notifier.rst
1172	 */
1173	ptep_clear_flush(vma, addr, ptep);
1174	set_pte_at_notify(mm, addr, ptep, newpte);
1175
1176	page_remove_rmap(page, false);
1177	if (!page_mapped(page))
1178		try_to_free_swap(page);
1179	put_page(page);
1180
1181	pte_unmap_unlock(ptep, ptl);
1182	err = 0;
1183out_mn:
1184	mmu_notifier_invalidate_range_end(&range);
1185out:
1186	return err;
1187}
1188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189/*
1190 * try_to_merge_one_page - take two pages and merge them into one
1191 * @vma: the vma that holds the pte pointing to page
1192 * @page: the PageAnon page that we want to replace with kpage
1193 * @kpage: the PageKsm page that we want to map instead of page,
1194 *         or NULL the first time when we want to use page as kpage.
1195 *
1196 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197 */
1198static int try_to_merge_one_page(struct vm_area_struct *vma,
1199				 struct page *page, struct page *kpage)
1200{
1201	pte_t orig_pte = __pte(0);
1202	int err = -EFAULT;
1203
1204	if (page == kpage)			/* ksm page forked */
1205		return 0;
1206
 
 
 
 
 
1207	if (!PageAnon(page))
1208		goto out;
1209
1210	/*
1211	 * We need the page lock to read a stable PageSwapCache in
1212	 * write_protect_page().  We use trylock_page() instead of
1213	 * lock_page() because we don't want to wait here - we
1214	 * prefer to continue scanning and merging different pages,
1215	 * then come back to this page when it is unlocked.
1216	 */
1217	if (!trylock_page(page))
1218		goto out;
1219
1220	if (PageTransCompound(page)) {
1221		if (split_huge_page(page))
1222			goto out_unlock;
1223	}
1224
1225	/*
1226	 * If this anonymous page is mapped only here, its pte may need
1227	 * to be write-protected.  If it's mapped elsewhere, all of its
1228	 * ptes are necessarily already write-protected.  But in either
1229	 * case, we need to lock and check page_count is not raised.
1230	 */
1231	if (write_protect_page(vma, page, &orig_pte) == 0) {
1232		if (!kpage) {
1233			/*
1234			 * While we hold page lock, upgrade page from
1235			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1236			 * stable_tree_insert() will update stable_node.
1237			 */
1238			set_page_stable_node(page, NULL);
1239			mark_page_accessed(page);
1240			/*
1241			 * Page reclaim just frees a clean page with no dirty
1242			 * ptes: make sure that the ksm page would be swapped.
1243			 */
1244			if (!PageDirty(page))
1245				SetPageDirty(page);
1246			err = 0;
1247		} else if (pages_identical(page, kpage))
1248			err = replace_page(vma, page, kpage, orig_pte);
1249	}
1250
1251	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1252		munlock_vma_page(page);
1253		if (!PageMlocked(kpage)) {
1254			unlock_page(page);
1255			lock_page(kpage);
1256			mlock_vma_page(kpage);
1257			page = kpage;		/* for final unlock */
1258		}
1259	}
1260
1261out_unlock:
1262	unlock_page(page);
1263out:
1264	return err;
1265}
1266
1267/*
1268 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1269 * but no new kernel page is allocated: kpage must already be a ksm page.
1270 *
1271 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272 */
1273static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1274				      struct page *page, struct page *kpage)
1275{
1276	struct mm_struct *mm = rmap_item->mm;
1277	struct vm_area_struct *vma;
1278	int err = -EFAULT;
1279
1280	mmap_read_lock(mm);
1281	vma = find_mergeable_vma(mm, rmap_item->address);
1282	if (!vma)
 
 
1283		goto out;
1284
1285	err = try_to_merge_one_page(vma, page, kpage);
1286	if (err)
1287		goto out;
1288
1289	/* Unstable nid is in union with stable anon_vma: remove first */
1290	remove_rmap_item_from_tree(rmap_item);
1291
1292	/* Must get reference to anon_vma while still holding mmap_lock */
1293	rmap_item->anon_vma = vma->anon_vma;
1294	get_anon_vma(vma->anon_vma);
1295out:
1296	mmap_read_unlock(mm);
1297	return err;
1298}
1299
1300/*
1301 * try_to_merge_two_pages - take two identical pages and prepare them
1302 * to be merged into one page.
1303 *
1304 * This function returns the kpage if we successfully merged two identical
1305 * pages into one ksm page, NULL otherwise.
1306 *
1307 * Note that this function upgrades page to ksm page: if one of the pages
1308 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309 */
1310static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311					   struct page *page,
1312					   struct rmap_item *tree_rmap_item,
1313					   struct page *tree_page)
1314{
1315	int err;
1316
1317	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318	if (!err) {
1319		err = try_to_merge_with_ksm_page(tree_rmap_item,
1320							tree_page, page);
1321		/*
1322		 * If that fails, we have a ksm page with only one pte
1323		 * pointing to it: so break it.
1324		 */
1325		if (err)
1326			break_cow(rmap_item);
1327	}
1328	return err ? NULL : page;
1329}
1330
1331static __always_inline
1332bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333{
1334	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335	/*
1336	 * Check that at least one mapping still exists, otherwise
1337	 * there's no much point to merge and share with this
1338	 * stable_node, as the underlying tree_page of the other
1339	 * sharer is going to be freed soon.
1340	 */
1341	return stable_node->rmap_hlist_len &&
1342		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1343}
1344
1345static __always_inline
1346bool is_page_sharing_candidate(struct stable_node *stable_node)
1347{
1348	return __is_page_sharing_candidate(stable_node, 0);
1349}
1350
1351static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1352				    struct stable_node **_stable_node,
1353				    struct rb_root *root,
1354				    bool prune_stale_stable_nodes)
1355{
1356	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1357	struct hlist_node *hlist_safe;
1358	struct page *_tree_page, *tree_page = NULL;
1359	int nr = 0;
1360	int found_rmap_hlist_len;
1361
1362	if (!prune_stale_stable_nodes ||
1363	    time_before(jiffies, stable_node->chain_prune_time +
1364			msecs_to_jiffies(
1365				ksm_stable_node_chains_prune_millisecs)))
1366		prune_stale_stable_nodes = false;
1367	else
1368		stable_node->chain_prune_time = jiffies;
1369
1370	hlist_for_each_entry_safe(dup, hlist_safe,
1371				  &stable_node->hlist, hlist_dup) {
1372		cond_resched();
1373		/*
1374		 * We must walk all stable_node_dup to prune the stale
1375		 * stable nodes during lookup.
1376		 *
1377		 * get_ksm_page can drop the nodes from the
1378		 * stable_node->hlist if they point to freed pages
1379		 * (that's why we do a _safe walk). The "dup"
1380		 * stable_node parameter itself will be freed from
1381		 * under us if it returns NULL.
1382		 */
1383		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1384		if (!_tree_page)
1385			continue;
1386		nr += 1;
1387		if (is_page_sharing_candidate(dup)) {
1388			if (!found ||
1389			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1390				if (found)
1391					put_page(tree_page);
1392				found = dup;
1393				found_rmap_hlist_len = found->rmap_hlist_len;
1394				tree_page = _tree_page;
1395
1396				/* skip put_page for found dup */
1397				if (!prune_stale_stable_nodes)
1398					break;
1399				continue;
1400			}
1401		}
1402		put_page(_tree_page);
1403	}
1404
1405	if (found) {
1406		/*
1407		 * nr is counting all dups in the chain only if
1408		 * prune_stale_stable_nodes is true, otherwise we may
1409		 * break the loop at nr == 1 even if there are
1410		 * multiple entries.
1411		 */
1412		if (prune_stale_stable_nodes && nr == 1) {
1413			/*
1414			 * If there's not just one entry it would
1415			 * corrupt memory, better BUG_ON. In KSM
1416			 * context with no lock held it's not even
1417			 * fatal.
1418			 */
1419			BUG_ON(stable_node->hlist.first->next);
1420
1421			/*
1422			 * There's just one entry and it is below the
1423			 * deduplication limit so drop the chain.
1424			 */
1425			rb_replace_node(&stable_node->node, &found->node,
1426					root);
1427			free_stable_node(stable_node);
1428			ksm_stable_node_chains--;
1429			ksm_stable_node_dups--;
1430			/*
1431			 * NOTE: the caller depends on the stable_node
1432			 * to be equal to stable_node_dup if the chain
1433			 * was collapsed.
1434			 */
1435			*_stable_node = found;
1436			/*
1437			 * Just for robustness, as stable_node is
1438			 * otherwise left as a stable pointer, the
1439			 * compiler shall optimize it away at build
1440			 * time.
1441			 */
1442			stable_node = NULL;
1443		} else if (stable_node->hlist.first != &found->hlist_dup &&
1444			   __is_page_sharing_candidate(found, 1)) {
1445			/*
1446			 * If the found stable_node dup can accept one
1447			 * more future merge (in addition to the one
1448			 * that is underway) and is not at the head of
1449			 * the chain, put it there so next search will
1450			 * be quicker in the !prune_stale_stable_nodes
1451			 * case.
1452			 *
1453			 * NOTE: it would be inaccurate to use nr > 1
1454			 * instead of checking the hlist.first pointer
1455			 * directly, because in the
1456			 * prune_stale_stable_nodes case "nr" isn't
1457			 * the position of the found dup in the chain,
1458			 * but the total number of dups in the chain.
1459			 */
1460			hlist_del(&found->hlist_dup);
1461			hlist_add_head(&found->hlist_dup,
1462				       &stable_node->hlist);
1463		}
1464	}
1465
1466	*_stable_node_dup = found;
1467	return tree_page;
1468}
1469
1470static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1471					       struct rb_root *root)
1472{
1473	if (!is_stable_node_chain(stable_node))
1474		return stable_node;
1475	if (hlist_empty(&stable_node->hlist)) {
1476		free_stable_node_chain(stable_node, root);
1477		return NULL;
1478	}
1479	return hlist_entry(stable_node->hlist.first,
1480			   typeof(*stable_node), hlist_dup);
1481}
1482
1483/*
1484 * Like for get_ksm_page, this function can free the *_stable_node and
1485 * *_stable_node_dup if the returned tree_page is NULL.
1486 *
1487 * It can also free and overwrite *_stable_node with the found
1488 * stable_node_dup if the chain is collapsed (in which case
1489 * *_stable_node will be equal to *_stable_node_dup like if the chain
1490 * never existed). It's up to the caller to verify tree_page is not
1491 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492 *
1493 * *_stable_node_dup is really a second output parameter of this
1494 * function and will be overwritten in all cases, the caller doesn't
1495 * need to initialize it.
1496 */
1497static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1498					struct stable_node **_stable_node,
1499					struct rb_root *root,
1500					bool prune_stale_stable_nodes)
1501{
1502	struct stable_node *stable_node = *_stable_node;
1503	if (!is_stable_node_chain(stable_node)) {
1504		if (is_page_sharing_candidate(stable_node)) {
1505			*_stable_node_dup = stable_node;
1506			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1507		}
1508		/*
1509		 * _stable_node_dup set to NULL means the stable_node
1510		 * reached the ksm_max_page_sharing limit.
1511		 */
1512		*_stable_node_dup = NULL;
1513		return NULL;
1514	}
1515	return stable_node_dup(_stable_node_dup, _stable_node, root,
1516			       prune_stale_stable_nodes);
1517}
1518
1519static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1520						struct stable_node **s_n,
1521						struct rb_root *root)
1522{
1523	return __stable_node_chain(s_n_d, s_n, root, true);
1524}
1525
1526static __always_inline struct page *chain(struct stable_node **s_n_d,
1527					  struct stable_node *s_n,
1528					  struct rb_root *root)
1529{
1530	struct stable_node *old_stable_node = s_n;
1531	struct page *tree_page;
1532
1533	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1534	/* not pruning dups so s_n cannot have changed */
1535	VM_BUG_ON(s_n != old_stable_node);
1536	return tree_page;
1537}
1538
1539/*
1540 * stable_tree_search - search for page inside the stable tree
1541 *
1542 * This function checks if there is a page inside the stable tree
1543 * with identical content to the page that we are scanning right now.
1544 *
1545 * This function returns the stable tree node of identical content if found,
1546 * NULL otherwise.
1547 */
1548static struct page *stable_tree_search(struct page *page)
1549{
1550	int nid;
1551	struct rb_root *root;
1552	struct rb_node **new;
1553	struct rb_node *parent;
1554	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1555	struct stable_node *page_node;
1556
1557	page_node = page_stable_node(page);
1558	if (page_node && page_node->head != &migrate_nodes) {
1559		/* ksm page forked */
1560		get_page(page);
1561		return page;
1562	}
1563
1564	nid = get_kpfn_nid(page_to_pfn(page));
1565	root = root_stable_tree + nid;
1566again:
1567	new = &root->rb_node;
1568	parent = NULL;
1569
1570	while (*new) {
1571		struct page *tree_page;
1572		int ret;
1573
1574		cond_resched();
1575		stable_node = rb_entry(*new, struct stable_node, node);
1576		stable_node_any = NULL;
1577		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1578		/*
1579		 * NOTE: stable_node may have been freed by
1580		 * chain_prune() if the returned stable_node_dup is
1581		 * not NULL. stable_node_dup may have been inserted in
1582		 * the rbtree instead as a regular stable_node (in
1583		 * order to collapse the stable_node chain if a single
1584		 * stable_node dup was found in it). In such case the
1585		 * stable_node is overwritten by the calleee to point
1586		 * to the stable_node_dup that was collapsed in the
1587		 * stable rbtree and stable_node will be equal to
1588		 * stable_node_dup like if the chain never existed.
1589		 */
1590		if (!stable_node_dup) {
1591			/*
1592			 * Either all stable_node dups were full in
1593			 * this stable_node chain, or this chain was
1594			 * empty and should be rb_erased.
1595			 */
1596			stable_node_any = stable_node_dup_any(stable_node,
1597							      root);
1598			if (!stable_node_any) {
1599				/* rb_erase just run */
1600				goto again;
1601			}
1602			/*
1603			 * Take any of the stable_node dups page of
1604			 * this stable_node chain to let the tree walk
1605			 * continue. All KSM pages belonging to the
1606			 * stable_node dups in a stable_node chain
1607			 * have the same content and they're
1608			 * write protected at all times. Any will work
1609			 * fine to continue the walk.
1610			 */
1611			tree_page = get_ksm_page(stable_node_any,
1612						 GET_KSM_PAGE_NOLOCK);
1613		}
1614		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1615		if (!tree_page) {
1616			/*
1617			 * If we walked over a stale stable_node,
1618			 * get_ksm_page() will call rb_erase() and it
1619			 * may rebalance the tree from under us. So
1620			 * restart the search from scratch. Returning
1621			 * NULL would be safe too, but we'd generate
1622			 * false negative insertions just because some
1623			 * stable_node was stale.
1624			 */
1625			goto again;
1626		}
1627
1628		ret = memcmp_pages(page, tree_page);
1629		put_page(tree_page);
1630
1631		parent = *new;
1632		if (ret < 0)
1633			new = &parent->rb_left;
1634		else if (ret > 0)
1635			new = &parent->rb_right;
1636		else {
1637			if (page_node) {
1638				VM_BUG_ON(page_node->head != &migrate_nodes);
1639				/*
1640				 * Test if the migrated page should be merged
1641				 * into a stable node dup. If the mapcount is
1642				 * 1 we can migrate it with another KSM page
1643				 * without adding it to the chain.
1644				 */
1645				if (page_mapcount(page) > 1)
1646					goto chain_append;
1647			}
1648
1649			if (!stable_node_dup) {
1650				/*
1651				 * If the stable_node is a chain and
1652				 * we got a payload match in memcmp
1653				 * but we cannot merge the scanned
1654				 * page in any of the existing
1655				 * stable_node dups because they're
1656				 * all full, we need to wait the
1657				 * scanned page to find itself a match
1658				 * in the unstable tree to create a
1659				 * brand new KSM page to add later to
1660				 * the dups of this stable_node.
1661				 */
1662				return NULL;
1663			}
1664
1665			/*
1666			 * Lock and unlock the stable_node's page (which
1667			 * might already have been migrated) so that page
1668			 * migration is sure to notice its raised count.
1669			 * It would be more elegant to return stable_node
1670			 * than kpage, but that involves more changes.
1671			 */
1672			tree_page = get_ksm_page(stable_node_dup,
1673						 GET_KSM_PAGE_TRYLOCK);
1674
1675			if (PTR_ERR(tree_page) == -EBUSY)
1676				return ERR_PTR(-EBUSY);
1677
1678			if (unlikely(!tree_page))
1679				/*
1680				 * The tree may have been rebalanced,
1681				 * so re-evaluate parent and new.
1682				 */
1683				goto again;
1684			unlock_page(tree_page);
1685
1686			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687			    NUMA(stable_node_dup->nid)) {
1688				put_page(tree_page);
1689				goto replace;
1690			}
1691			return tree_page;
1692		}
1693	}
1694
1695	if (!page_node)
1696		return NULL;
1697
1698	list_del(&page_node->list);
1699	DO_NUMA(page_node->nid = nid);
1700	rb_link_node(&page_node->node, parent, new);
1701	rb_insert_color(&page_node->node, root);
1702out:
1703	if (is_page_sharing_candidate(page_node)) {
1704		get_page(page);
1705		return page;
1706	} else
1707		return NULL;
1708
1709replace:
1710	/*
1711	 * If stable_node was a chain and chain_prune collapsed it,
1712	 * stable_node has been updated to be the new regular
1713	 * stable_node. A collapse of the chain is indistinguishable
1714	 * from the case there was no chain in the stable
1715	 * rbtree. Otherwise stable_node is the chain and
1716	 * stable_node_dup is the dup to replace.
1717	 */
1718	if (stable_node_dup == stable_node) {
1719		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721		/* there is no chain */
1722		if (page_node) {
1723			VM_BUG_ON(page_node->head != &migrate_nodes);
1724			list_del(&page_node->list);
1725			DO_NUMA(page_node->nid = nid);
1726			rb_replace_node(&stable_node_dup->node,
1727					&page_node->node,
1728					root);
1729			if (is_page_sharing_candidate(page_node))
1730				get_page(page);
1731			else
1732				page = NULL;
1733		} else {
1734			rb_erase(&stable_node_dup->node, root);
1735			page = NULL;
1736		}
1737	} else {
1738		VM_BUG_ON(!is_stable_node_chain(stable_node));
1739		__stable_node_dup_del(stable_node_dup);
1740		if (page_node) {
1741			VM_BUG_ON(page_node->head != &migrate_nodes);
1742			list_del(&page_node->list);
1743			DO_NUMA(page_node->nid = nid);
1744			stable_node_chain_add_dup(page_node, stable_node);
1745			if (is_page_sharing_candidate(page_node))
1746				get_page(page);
1747			else
1748				page = NULL;
1749		} else {
1750			page = NULL;
1751		}
1752	}
1753	stable_node_dup->head = &migrate_nodes;
1754	list_add(&stable_node_dup->list, stable_node_dup->head);
1755	return page;
1756
1757chain_append:
1758	/* stable_node_dup could be null if it reached the limit */
1759	if (!stable_node_dup)
1760		stable_node_dup = stable_node_any;
1761	/*
1762	 * If stable_node was a chain and chain_prune collapsed it,
1763	 * stable_node has been updated to be the new regular
1764	 * stable_node. A collapse of the chain is indistinguishable
1765	 * from the case there was no chain in the stable
1766	 * rbtree. Otherwise stable_node is the chain and
1767	 * stable_node_dup is the dup to replace.
1768	 */
1769	if (stable_node_dup == stable_node) {
1770		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771		/* chain is missing so create it */
1772		stable_node = alloc_stable_node_chain(stable_node_dup,
1773						      root);
1774		if (!stable_node)
1775			return NULL;
1776	}
1777	/*
1778	 * Add this stable_node dup that was
1779	 * migrated to the stable_node chain
1780	 * of the current nid for this page
1781	 * content.
1782	 */
1783	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1784	VM_BUG_ON(page_node->head != &migrate_nodes);
1785	list_del(&page_node->list);
1786	DO_NUMA(page_node->nid = nid);
1787	stable_node_chain_add_dup(page_node, stable_node);
1788	goto out;
1789}
1790
1791/*
1792 * stable_tree_insert - insert stable tree node pointing to new ksm page
1793 * into the stable tree.
1794 *
1795 * This function returns the stable tree node just allocated on success,
1796 * NULL otherwise.
1797 */
1798static struct stable_node *stable_tree_insert(struct page *kpage)
1799{
1800	int nid;
1801	unsigned long kpfn;
1802	struct rb_root *root;
1803	struct rb_node **new;
1804	struct rb_node *parent;
1805	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1806	bool need_chain = false;
1807
1808	kpfn = page_to_pfn(kpage);
1809	nid = get_kpfn_nid(kpfn);
1810	root = root_stable_tree + nid;
1811again:
1812	parent = NULL;
1813	new = &root->rb_node;
1814
1815	while (*new) {
1816		struct page *tree_page;
1817		int ret;
1818
1819		cond_resched();
1820		stable_node = rb_entry(*new, struct stable_node, node);
1821		stable_node_any = NULL;
1822		tree_page = chain(&stable_node_dup, stable_node, root);
1823		if (!stable_node_dup) {
1824			/*
1825			 * Either all stable_node dups were full in
1826			 * this stable_node chain, or this chain was
1827			 * empty and should be rb_erased.
1828			 */
1829			stable_node_any = stable_node_dup_any(stable_node,
1830							      root);
1831			if (!stable_node_any) {
1832				/* rb_erase just run */
1833				goto again;
1834			}
1835			/*
1836			 * Take any of the stable_node dups page of
1837			 * this stable_node chain to let the tree walk
1838			 * continue. All KSM pages belonging to the
1839			 * stable_node dups in a stable_node chain
1840			 * have the same content and they're
1841			 * write protected at all times. Any will work
1842			 * fine to continue the walk.
1843			 */
1844			tree_page = get_ksm_page(stable_node_any,
1845						 GET_KSM_PAGE_NOLOCK);
1846		}
1847		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848		if (!tree_page) {
1849			/*
1850			 * If we walked over a stale stable_node,
1851			 * get_ksm_page() will call rb_erase() and it
1852			 * may rebalance the tree from under us. So
1853			 * restart the search from scratch. Returning
1854			 * NULL would be safe too, but we'd generate
1855			 * false negative insertions just because some
1856			 * stable_node was stale.
1857			 */
1858			goto again;
1859		}
1860
1861		ret = memcmp_pages(kpage, tree_page);
1862		put_page(tree_page);
1863
1864		parent = *new;
1865		if (ret < 0)
1866			new = &parent->rb_left;
1867		else if (ret > 0)
1868			new = &parent->rb_right;
1869		else {
1870			need_chain = true;
1871			break;
 
 
 
 
1872		}
1873	}
1874
1875	stable_node_dup = alloc_stable_node();
1876	if (!stable_node_dup)
1877		return NULL;
1878
1879	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880	stable_node_dup->kpfn = kpfn;
1881	set_page_stable_node(kpage, stable_node_dup);
1882	stable_node_dup->rmap_hlist_len = 0;
1883	DO_NUMA(stable_node_dup->nid = nid);
1884	if (!need_chain) {
1885		rb_link_node(&stable_node_dup->node, parent, new);
1886		rb_insert_color(&stable_node_dup->node, root);
1887	} else {
1888		if (!is_stable_node_chain(stable_node)) {
1889			struct stable_node *orig = stable_node;
1890			/* chain is missing so create it */
1891			stable_node = alloc_stable_node_chain(orig, root);
1892			if (!stable_node) {
1893				free_stable_node(stable_node_dup);
1894				return NULL;
1895			}
1896		}
1897		stable_node_chain_add_dup(stable_node_dup, stable_node);
1898	}
1899
1900	return stable_node_dup;
1901}
1902
1903/*
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
1917static
1918struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919					      struct page *page,
1920					      struct page **tree_pagep)
 
1921{
1922	struct rb_node **new;
1923	struct rb_root *root;
1924	struct rb_node *parent = NULL;
1925	int nid;
1926
1927	nid = get_kpfn_nid(page_to_pfn(page));
1928	root = root_unstable_tree + nid;
1929	new = &root->rb_node;
1930
1931	while (*new) {
1932		struct rmap_item *tree_rmap_item;
1933		struct page *tree_page;
1934		int ret;
1935
1936		cond_resched();
1937		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938		tree_page = get_mergeable_page(tree_rmap_item);
1939		if (!tree_page)
1940			return NULL;
1941
1942		/*
1943		 * Don't substitute a ksm page for a forked page.
1944		 */
1945		if (page == tree_page) {
1946			put_page(tree_page);
1947			return NULL;
1948		}
1949
1950		ret = memcmp_pages(page, tree_page);
1951
1952		parent = *new;
1953		if (ret < 0) {
1954			put_page(tree_page);
1955			new = &parent->rb_left;
1956		} else if (ret > 0) {
1957			put_page(tree_page);
1958			new = &parent->rb_right;
1959		} else if (!ksm_merge_across_nodes &&
1960			   page_to_nid(tree_page) != nid) {
1961			/*
1962			 * If tree_page has been migrated to another NUMA node,
1963			 * it will be flushed out and put in the right unstable
1964			 * tree next time: only merge with it when across_nodes.
1965			 */
1966			put_page(tree_page);
1967			return NULL;
1968		} else {
1969			*tree_pagep = tree_page;
1970			return tree_rmap_item;
1971		}
1972	}
1973
1974	rmap_item->address |= UNSTABLE_FLAG;
1975	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976	DO_NUMA(rmap_item->nid = nid);
1977	rb_link_node(&rmap_item->node, parent, new);
1978	rb_insert_color(&rmap_item->node, root);
1979
1980	ksm_pages_unshared++;
1981	return NULL;
1982}
1983
1984/*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989static void stable_tree_append(struct rmap_item *rmap_item,
1990			       struct stable_node *stable_node,
1991			       bool max_page_sharing_bypass)
1992{
1993	/*
1994	 * rmap won't find this mapping if we don't insert the
1995	 * rmap_item in the right stable_node
1996	 * duplicate. page_migration could break later if rmap breaks,
1997	 * so we can as well crash here. We really need to check for
1998	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999	 * for other negative values as an underflow if detected here
2000	 * for the first time (and not when decreasing rmap_hlist_len)
2001	 * would be sign of memory corruption in the stable_node.
2002	 */
2003	BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005	stable_node->rmap_hlist_len++;
2006	if (!max_page_sharing_bypass)
2007		/* possibly non fatal but unexpected overflow, only warn */
2008		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009			     ksm_max_page_sharing);
2010
2011	rmap_item->head = stable_node;
2012	rmap_item->address |= STABLE_FLAG;
2013	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014
2015	if (rmap_item->hlist.next)
2016		ksm_pages_sharing++;
2017	else
2018		ksm_pages_shared++;
2019}
2020
2021/*
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031{
2032	struct mm_struct *mm = rmap_item->mm;
2033	struct rmap_item *tree_rmap_item;
2034	struct page *tree_page = NULL;
2035	struct stable_node *stable_node;
2036	struct page *kpage;
2037	unsigned int checksum;
2038	int err;
2039	bool max_page_sharing_bypass = false;
2040
2041	stable_node = page_stable_node(page);
2042	if (stable_node) {
2043		if (stable_node->head != &migrate_nodes &&
2044		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045		    NUMA(stable_node->nid)) {
2046			stable_node_dup_del(stable_node);
2047			stable_node->head = &migrate_nodes;
2048			list_add(&stable_node->list, stable_node->head);
2049		}
2050		if (stable_node->head != &migrate_nodes &&
2051		    rmap_item->head == stable_node)
2052			return;
2053		/*
2054		 * If it's a KSM fork, allow it to go over the sharing limit
2055		 * without warnings.
2056		 */
2057		if (!is_page_sharing_candidate(stable_node))
2058			max_page_sharing_bypass = true;
2059	}
2060
2061	/* We first start with searching the page inside the stable tree */
2062	kpage = stable_tree_search(page);
2063	if (kpage == page && rmap_item->head == stable_node) {
2064		put_page(kpage);
2065		return;
2066	}
2067
2068	remove_rmap_item_from_tree(rmap_item);
2069
2070	if (kpage) {
2071		if (PTR_ERR(kpage) == -EBUSY)
2072			return;
2073
2074		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075		if (!err) {
2076			/*
2077			 * The page was successfully merged:
2078			 * add its rmap_item to the stable tree.
2079			 */
2080			lock_page(kpage);
2081			stable_tree_append(rmap_item, page_stable_node(kpage),
2082					   max_page_sharing_bypass);
2083			unlock_page(kpage);
2084		}
2085		put_page(kpage);
2086		return;
2087	}
2088
2089	/*
2090	 * If the hash value of the page has changed from the last time
2091	 * we calculated it, this page is changing frequently: therefore we
2092	 * don't want to insert it in the unstable tree, and we don't want
2093	 * to waste our time searching for something identical to it there.
2094	 */
2095	checksum = calc_checksum(page);
2096	if (rmap_item->oldchecksum != checksum) {
2097		rmap_item->oldchecksum = checksum;
2098		return;
2099	}
2100
2101	/*
2102	 * Same checksum as an empty page. We attempt to merge it with the
2103	 * appropriate zero page if the user enabled this via sysfs.
2104	 */
2105	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106		struct vm_area_struct *vma;
2107
2108		mmap_read_lock(mm);
2109		vma = find_mergeable_vma(mm, rmap_item->address);
2110		if (vma) {
2111			err = try_to_merge_one_page(vma, page,
2112					ZERO_PAGE(rmap_item->address));
2113		} else {
2114			/*
2115			 * If the vma is out of date, we do not need to
2116			 * continue.
2117			 */
2118			err = 0;
2119		}
2120		mmap_read_unlock(mm);
2121		/*
2122		 * In case of failure, the page was not really empty, so we
2123		 * need to continue. Otherwise we're done.
2124		 */
2125		if (!err)
2126			return;
2127	}
2128	tree_rmap_item =
2129		unstable_tree_search_insert(rmap_item, page, &tree_page);
2130	if (tree_rmap_item) {
2131		bool split;
2132
2133		kpage = try_to_merge_two_pages(rmap_item, page,
2134						tree_rmap_item, tree_page);
 
2135		/*
2136		 * If both pages we tried to merge belong to the same compound
2137		 * page, then we actually ended up increasing the reference
2138		 * count of the same compound page twice, and split_huge_page
2139		 * failed.
2140		 * Here we set a flag if that happened, and we use it later to
2141		 * try split_huge_page again. Since we call put_page right
2142		 * afterwards, the reference count will be correct and
2143		 * split_huge_page should succeed.
2144		 */
2145		split = PageTransCompound(page)
2146			&& compound_head(page) == compound_head(tree_page);
2147		put_page(tree_page);
2148		if (kpage) {
2149			/*
2150			 * The pages were successfully merged: insert new
2151			 * node in the stable tree and add both rmap_items.
2152			 */
2153			lock_page(kpage);
2154			stable_node = stable_tree_insert(kpage);
2155			if (stable_node) {
2156				stable_tree_append(tree_rmap_item, stable_node,
2157						   false);
2158				stable_tree_append(rmap_item, stable_node,
2159						   false);
2160			}
2161			unlock_page(kpage);
2162
2163			/*
2164			 * If we fail to insert the page into the stable tree,
2165			 * we will have 2 virtual addresses that are pointing
2166			 * to a ksm page left outside the stable tree,
2167			 * in which case we need to break_cow on both.
2168			 */
2169			if (!stable_node) {
2170				break_cow(tree_rmap_item);
2171				break_cow(rmap_item);
2172			}
2173		} else if (split) {
2174			/*
2175			 * We are here if we tried to merge two pages and
2176			 * failed because they both belonged to the same
2177			 * compound page. We will split the page now, but no
2178			 * merging will take place.
2179			 * We do not want to add the cost of a full lock; if
2180			 * the page is locked, it is better to skip it and
2181			 * perhaps try again later.
2182			 */
2183			if (!trylock_page(page))
2184				return;
2185			split_huge_page(page);
2186			unlock_page(page);
2187		}
2188	}
2189}
2190
2191static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192					    struct rmap_item **rmap_list,
2193					    unsigned long addr)
2194{
2195	struct rmap_item *rmap_item;
2196
2197	while (*rmap_list) {
2198		rmap_item = *rmap_list;
2199		if ((rmap_item->address & PAGE_MASK) == addr)
2200			return rmap_item;
2201		if (rmap_item->address > addr)
2202			break;
2203		*rmap_list = rmap_item->rmap_list;
2204		remove_rmap_item_from_tree(rmap_item);
2205		free_rmap_item(rmap_item);
2206	}
2207
2208	rmap_item = alloc_rmap_item();
2209	if (rmap_item) {
2210		/* It has already been zeroed */
2211		rmap_item->mm = mm_slot->mm;
2212		rmap_item->address = addr;
2213		rmap_item->rmap_list = *rmap_list;
2214		*rmap_list = rmap_item;
2215	}
2216	return rmap_item;
2217}
2218
2219static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220{
2221	struct mm_struct *mm;
2222	struct mm_slot *slot;
2223	struct vm_area_struct *vma;
2224	struct rmap_item *rmap_item;
2225	int nid;
2226
2227	if (list_empty(&ksm_mm_head.mm_list))
2228		return NULL;
2229
2230	slot = ksm_scan.mm_slot;
2231	if (slot == &ksm_mm_head) {
2232		/*
2233		 * A number of pages can hang around indefinitely on per-cpu
2234		 * pagevecs, raised page count preventing write_protect_page
2235		 * from merging them.  Though it doesn't really matter much,
2236		 * it is puzzling to see some stuck in pages_volatile until
2237		 * other activity jostles them out, and they also prevented
2238		 * LTP's KSM test from succeeding deterministically; so drain
2239		 * them here (here rather than on entry to ksm_do_scan(),
2240		 * so we don't IPI too often when pages_to_scan is set low).
2241		 */
2242		lru_add_drain_all();
2243
2244		/*
2245		 * Whereas stale stable_nodes on the stable_tree itself
2246		 * get pruned in the regular course of stable_tree_search(),
2247		 * those moved out to the migrate_nodes list can accumulate:
2248		 * so prune them once before each full scan.
2249		 */
2250		if (!ksm_merge_across_nodes) {
2251			struct stable_node *stable_node, *next;
2252			struct page *page;
2253
2254			list_for_each_entry_safe(stable_node, next,
2255						 &migrate_nodes, list) {
2256				page = get_ksm_page(stable_node,
2257						    GET_KSM_PAGE_NOLOCK);
2258				if (page)
2259					put_page(page);
2260				cond_resched();
2261			}
2262		}
2263
2264		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2265			root_unstable_tree[nid] = RB_ROOT;
2266
2267		spin_lock(&ksm_mmlist_lock);
2268		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2269		ksm_scan.mm_slot = slot;
2270		spin_unlock(&ksm_mmlist_lock);
2271		/*
2272		 * Although we tested list_empty() above, a racing __ksm_exit
2273		 * of the last mm on the list may have removed it since then.
2274		 */
2275		if (slot == &ksm_mm_head)
2276			return NULL;
2277next_mm:
2278		ksm_scan.address = 0;
2279		ksm_scan.rmap_list = &slot->rmap_list;
2280	}
2281
2282	mm = slot->mm;
2283	mmap_read_lock(mm);
2284	if (ksm_test_exit(mm))
2285		vma = NULL;
2286	else
2287		vma = find_vma(mm, ksm_scan.address);
2288
2289	for (; vma; vma = vma->vm_next) {
2290		if (!(vma->vm_flags & VM_MERGEABLE))
2291			continue;
2292		if (ksm_scan.address < vma->vm_start)
2293			ksm_scan.address = vma->vm_start;
2294		if (!vma->anon_vma)
2295			ksm_scan.address = vma->vm_end;
2296
2297		while (ksm_scan.address < vma->vm_end) {
2298			if (ksm_test_exit(mm))
2299				break;
2300			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2301			if (IS_ERR_OR_NULL(*page)) {
2302				ksm_scan.address += PAGE_SIZE;
2303				cond_resched();
2304				continue;
2305			}
2306			if (PageAnon(*page)) {
 
2307				flush_anon_page(vma, *page, ksm_scan.address);
2308				flush_dcache_page(*page);
2309				rmap_item = get_next_rmap_item(slot,
2310					ksm_scan.rmap_list, ksm_scan.address);
2311				if (rmap_item) {
2312					ksm_scan.rmap_list =
2313							&rmap_item->rmap_list;
2314					ksm_scan.address += PAGE_SIZE;
2315				} else
2316					put_page(*page);
2317				mmap_read_unlock(mm);
2318				return rmap_item;
2319			}
2320			put_page(*page);
2321			ksm_scan.address += PAGE_SIZE;
2322			cond_resched();
2323		}
2324	}
2325
2326	if (ksm_test_exit(mm)) {
2327		ksm_scan.address = 0;
2328		ksm_scan.rmap_list = &slot->rmap_list;
2329	}
2330	/*
2331	 * Nuke all the rmap_items that are above this current rmap:
2332	 * because there were no VM_MERGEABLE vmas with such addresses.
2333	 */
2334	remove_trailing_rmap_items(ksm_scan.rmap_list);
2335
2336	spin_lock(&ksm_mmlist_lock);
2337	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2338						struct mm_slot, mm_list);
2339	if (ksm_scan.address == 0) {
2340		/*
2341		 * We've completed a full scan of all vmas, holding mmap_lock
2342		 * throughout, and found no VM_MERGEABLE: so do the same as
2343		 * __ksm_exit does to remove this mm from all our lists now.
2344		 * This applies either when cleaning up after __ksm_exit
2345		 * (but beware: we can reach here even before __ksm_exit),
2346		 * or when all VM_MERGEABLE areas have been unmapped (and
2347		 * mmap_lock then protects against race with MADV_MERGEABLE).
2348		 */
2349		hash_del(&slot->link);
2350		list_del(&slot->mm_list);
2351		spin_unlock(&ksm_mmlist_lock);
2352
2353		free_mm_slot(slot);
2354		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2355		mmap_read_unlock(mm);
2356		mmdrop(mm);
2357	} else {
2358		mmap_read_unlock(mm);
2359		/*
2360		 * mmap_read_unlock(mm) first because after
2361		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2362		 * already have been freed under us by __ksm_exit()
2363		 * because the "mm_slot" is still hashed and
2364		 * ksm_scan.mm_slot doesn't point to it anymore.
2365		 */
2366		spin_unlock(&ksm_mmlist_lock);
 
2367	}
2368
2369	/* Repeat until we've completed scanning the whole list */
2370	slot = ksm_scan.mm_slot;
2371	if (slot != &ksm_mm_head)
2372		goto next_mm;
2373
2374	ksm_scan.seqnr++;
2375	return NULL;
2376}
2377
2378/**
2379 * ksm_do_scan  - the ksm scanner main worker function.
2380 * @scan_npages:  number of pages we want to scan before we return.
2381 */
2382static void ksm_do_scan(unsigned int scan_npages)
2383{
2384	struct rmap_item *rmap_item;
2385	struct page *page;
2386
2387	while (scan_npages-- && likely(!freezing(current))) {
2388		cond_resched();
2389		rmap_item = scan_get_next_rmap_item(&page);
2390		if (!rmap_item)
2391			return;
2392		cmp_and_merge_page(page, rmap_item);
 
2393		put_page(page);
2394	}
2395}
2396
2397static int ksmd_should_run(void)
2398{
2399	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2400}
2401
2402static int ksm_scan_thread(void *nothing)
2403{
2404	unsigned int sleep_ms;
2405
2406	set_freezable();
2407	set_user_nice(current, 5);
2408
2409	while (!kthread_should_stop()) {
2410		mutex_lock(&ksm_thread_mutex);
2411		wait_while_offlining();
2412		if (ksmd_should_run())
2413			ksm_do_scan(ksm_thread_pages_to_scan);
2414		mutex_unlock(&ksm_thread_mutex);
2415
2416		try_to_freeze();
2417
2418		if (ksmd_should_run()) {
2419			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2420			wait_event_interruptible_timeout(ksm_iter_wait,
2421				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2422				msecs_to_jiffies(sleep_ms));
2423		} else {
2424			wait_event_freezable(ksm_thread_wait,
2425				ksmd_should_run() || kthread_should_stop());
2426		}
2427	}
2428	return 0;
2429}
2430
2431int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2432		unsigned long end, int advice, unsigned long *vm_flags)
2433{
2434	struct mm_struct *mm = vma->vm_mm;
2435	int err;
2436
2437	switch (advice) {
2438	case MADV_MERGEABLE:
2439		/*
2440		 * Be somewhat over-protective for now!
2441		 */
2442		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2443				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2444				 VM_HUGETLB | VM_MIXEDMAP))
 
2445			return 0;		/* just ignore the advice */
2446
2447		if (vma_is_dax(vma))
2448			return 0;
2449
2450#ifdef VM_SAO
2451		if (*vm_flags & VM_SAO)
2452			return 0;
2453#endif
2454#ifdef VM_SPARC_ADI
2455		if (*vm_flags & VM_SPARC_ADI)
2456			return 0;
2457#endif
2458
2459		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2460			err = __ksm_enter(mm);
2461			if (err)
2462				return err;
2463		}
2464
2465		*vm_flags |= VM_MERGEABLE;
2466		break;
2467
2468	case MADV_UNMERGEABLE:
2469		if (!(*vm_flags & VM_MERGEABLE))
2470			return 0;		/* just ignore the advice */
2471
2472		if (vma->anon_vma) {
2473			err = unmerge_ksm_pages(vma, start, end);
2474			if (err)
2475				return err;
2476		}
2477
2478		*vm_flags &= ~VM_MERGEABLE;
2479		break;
2480	}
2481
2482	return 0;
2483}
2484EXPORT_SYMBOL_GPL(ksm_madvise);
2485
2486int __ksm_enter(struct mm_struct *mm)
2487{
2488	struct mm_slot *mm_slot;
2489	int needs_wakeup;
2490
2491	mm_slot = alloc_mm_slot();
2492	if (!mm_slot)
2493		return -ENOMEM;
2494
2495	/* Check ksm_run too?  Would need tighter locking */
2496	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497
2498	spin_lock(&ksm_mmlist_lock);
2499	insert_to_mm_slots_hash(mm, mm_slot);
2500	/*
2501	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2502	 * insert just behind the scanning cursor, to let the area settle
2503	 * down a little; when fork is followed by immediate exec, we don't
2504	 * want ksmd to waste time setting up and tearing down an rmap_list.
2505	 *
2506	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2507	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2508	 * missed: then we might as well insert at the end of the list.
2509	 */
2510	if (ksm_run & KSM_RUN_UNMERGE)
2511		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512	else
2513		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2514	spin_unlock(&ksm_mmlist_lock);
2515
2516	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2517	mmgrab(mm);
2518
2519	if (needs_wakeup)
2520		wake_up_interruptible(&ksm_thread_wait);
2521
2522	return 0;
2523}
2524
2525void __ksm_exit(struct mm_struct *mm)
2526{
2527	struct mm_slot *mm_slot;
2528	int easy_to_free = 0;
2529
2530	/*
2531	 * This process is exiting: if it's straightforward (as is the
2532	 * case when ksmd was never running), free mm_slot immediately.
2533	 * But if it's at the cursor or has rmap_items linked to it, use
2534	 * mmap_lock to synchronize with any break_cows before pagetables
2535	 * are freed, and leave the mm_slot on the list for ksmd to free.
2536	 * Beware: ksm may already have noticed it exiting and freed the slot.
2537	 */
2538
2539	spin_lock(&ksm_mmlist_lock);
2540	mm_slot = get_mm_slot(mm);
2541	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2542		if (!mm_slot->rmap_list) {
2543			hash_del(&mm_slot->link);
2544			list_del(&mm_slot->mm_list);
2545			easy_to_free = 1;
2546		} else {
2547			list_move(&mm_slot->mm_list,
2548				  &ksm_scan.mm_slot->mm_list);
2549		}
2550	}
2551	spin_unlock(&ksm_mmlist_lock);
2552
2553	if (easy_to_free) {
2554		free_mm_slot(mm_slot);
2555		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556		mmdrop(mm);
2557	} else if (mm_slot) {
2558		mmap_write_lock(mm);
2559		mmap_write_unlock(mm);
2560	}
2561}
2562
2563struct page *ksm_might_need_to_copy(struct page *page,
2564			struct vm_area_struct *vma, unsigned long address)
2565{
2566	struct anon_vma *anon_vma = page_anon_vma(page);
2567	struct page *new_page;
2568
2569	if (PageKsm(page)) {
2570		if (page_stable_node(page) &&
2571		    !(ksm_run & KSM_RUN_UNMERGE))
2572			return page;	/* no need to copy it */
2573	} else if (!anon_vma) {
2574		return page;		/* no need to copy it */
2575	} else if (anon_vma->root == vma->anon_vma->root &&
2576		 page->index == linear_page_index(vma, address)) {
2577		return page;		/* still no need to copy it */
2578	}
2579	if (!PageUptodate(page))
2580		return page;		/* let do_swap_page report the error */
2581
2582	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2583	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2584		put_page(new_page);
2585		new_page = NULL;
2586	}
2587	if (new_page) {
2588		copy_user_highpage(new_page, page, address, vma);
2589
2590		SetPageDirty(new_page);
2591		__SetPageUptodate(new_page);
2592		__SetPageLocked(new_page);
 
 
 
 
 
 
2593	}
2594
2595	return new_page;
2596}
2597
2598void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
 
2599{
2600	struct stable_node *stable_node;
2601	struct rmap_item *rmap_item;
 
 
 
2602	int search_new_forks = 0;
2603
2604	VM_BUG_ON_PAGE(!PageKsm(page), page);
2605
2606	/*
2607	 * Rely on the page lock to protect against concurrent modifications
2608	 * to that page's node of the stable tree.
2609	 */
2610	VM_BUG_ON_PAGE(!PageLocked(page), page);
2611
2612	stable_node = page_stable_node(page);
2613	if (!stable_node)
2614		return;
2615again:
2616	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2617		struct anon_vma *anon_vma = rmap_item->anon_vma;
2618		struct anon_vma_chain *vmac;
2619		struct vm_area_struct *vma;
2620
2621		cond_resched();
2622		anon_vma_lock_read(anon_vma);
2623		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2624					       0, ULONG_MAX) {
2625			unsigned long addr;
2626
2627			cond_resched();
2628			vma = vmac->vma;
2629
2630			/* Ignore the stable/unstable/sqnr flags */
2631			addr = rmap_item->address & PAGE_MASK;
2632
2633			if (addr < vma->vm_start || addr >= vma->vm_end)
2634				continue;
2635			/*
2636			 * Initially we examine only the vma which covers this
2637			 * rmap_item; but later, if there is still work to do,
2638			 * we examine covering vmas in other mms: in case they
2639			 * were forked from the original since ksmd passed.
2640			 */
2641			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2642				continue;
2643
2644			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2645				continue;
2646
2647			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2648				anon_vma_unlock_read(anon_vma);
2649				return;
2650			}
2651			if (rwc->done && rwc->done(page)) {
2652				anon_vma_unlock_read(anon_vma);
2653				return;
2654			}
2655		}
2656		anon_vma_unlock_read(anon_vma);
 
 
2657	}
2658	if (!search_new_forks++)
2659		goto again;
 
 
2660}
2661
2662#ifdef CONFIG_MIGRATION
2663void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664{
2665	struct stable_node *stable_node;
 
 
 
 
2666
2667	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670
2671	stable_node = page_stable_node(newpage);
2672	if (stable_node) {
2673		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674		stable_node->kpfn = page_to_pfn(newpage);
2675		/*
2676		 * newpage->mapping was set in advance; now we need smp_wmb()
2677		 * to make sure that the new stable_node->kpfn is visible
2678		 * to get_ksm_page() before it can see that oldpage->mapping
2679		 * has gone stale (or that PageSwapCache has been cleared).
2680		 */
2681		smp_wmb();
2682		set_page_stable_node(oldpage, NULL);
2683	}
2684}
2685#endif /* CONFIG_MIGRATION */
2686
2687#ifdef CONFIG_MEMORY_HOTREMOVE
2688static void wait_while_offlining(void)
2689{
2690	while (ksm_run & KSM_RUN_OFFLINE) {
2691		mutex_unlock(&ksm_thread_mutex);
2692		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693			    TASK_UNINTERRUPTIBLE);
2694		mutex_lock(&ksm_thread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695	}
 
 
 
 
2696}
2697
2698static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699					 unsigned long start_pfn,
2700					 unsigned long end_pfn)
2701{
2702	if (stable_node->kpfn >= start_pfn &&
2703	    stable_node->kpfn < end_pfn) {
2704		/*
2705		 * Don't get_ksm_page, page has already gone:
2706		 * which is why we keep kpfn instead of page*
2707		 */
2708		remove_node_from_stable_tree(stable_node);
2709		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710	}
2711	return false;
 
 
 
2712}
2713
2714static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715					   unsigned long start_pfn,
2716					   unsigned long end_pfn,
2717					   struct rb_root *root)
2718{
2719	struct stable_node *dup;
2720	struct hlist_node *hlist_safe;
2721
2722	if (!is_stable_node_chain(stable_node)) {
2723		VM_BUG_ON(is_stable_node_dup(stable_node));
2724		return stable_node_dup_remove_range(stable_node, start_pfn,
2725						    end_pfn);
2726	}
2727
2728	hlist_for_each_entry_safe(dup, hlist_safe,
2729				  &stable_node->hlist, hlist_dup) {
2730		VM_BUG_ON(!is_stable_node_dup(dup));
2731		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732	}
2733	if (hlist_empty(&stable_node->hlist)) {
2734		free_stable_node_chain(stable_node, root);
2735		return true; /* notify caller that tree was rebalanced */
2736	} else
2737		return false;
2738}
 
2739
2740static void ksm_check_stable_tree(unsigned long start_pfn,
2741				  unsigned long end_pfn)
 
2742{
2743	struct stable_node *stable_node, *next;
2744	struct rb_node *node;
2745	int nid;
2746
2747	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748		node = rb_first(root_stable_tree + nid);
2749		while (node) {
2750			stable_node = rb_entry(node, struct stable_node, node);
2751			if (stable_node_chain_remove_range(stable_node,
2752							   start_pfn, end_pfn,
2753							   root_stable_tree +
2754							   nid))
2755				node = rb_first(root_stable_tree + nid);
2756			else
2757				node = rb_next(node);
2758			cond_resched();
2759		}
2760	}
2761	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762		if (stable_node->kpfn >= start_pfn &&
2763		    stable_node->kpfn < end_pfn)
2764			remove_node_from_stable_tree(stable_node);
2765		cond_resched();
2766	}
 
2767}
2768
2769static int ksm_memory_callback(struct notifier_block *self,
2770			       unsigned long action, void *arg)
2771{
2772	struct memory_notify *mn = arg;
 
2773
2774	switch (action) {
2775	case MEM_GOING_OFFLINE:
2776		/*
2777		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778		 * and remove_all_stable_nodes() while memory is going offline:
2779		 * it is unsafe for them to touch the stable tree at this time.
2780		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2781		 * which do not need the ksm_thread_mutex are all safe.
 
 
2782		 */
2783		mutex_lock(&ksm_thread_mutex);
2784		ksm_run |= KSM_RUN_OFFLINE;
2785		mutex_unlock(&ksm_thread_mutex);
2786		break;
2787
2788	case MEM_OFFLINE:
2789		/*
2790		 * Most of the work is done by page migration; but there might
2791		 * be a few stable_nodes left over, still pointing to struct
2792		 * pages which have been offlined: prune those from the tree,
2793		 * otherwise get_ksm_page() might later try to access a
2794		 * non-existent struct page.
2795		 */
2796		ksm_check_stable_tree(mn->start_pfn,
2797				      mn->start_pfn + mn->nr_pages);
2798		fallthrough;
 
 
2799	case MEM_CANCEL_OFFLINE:
2800		mutex_lock(&ksm_thread_mutex);
2801		ksm_run &= ~KSM_RUN_OFFLINE;
2802		mutex_unlock(&ksm_thread_mutex);
2803
2804		smp_mb();	/* wake_up_bit advises this */
2805		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2806		break;
2807	}
2808	return NOTIFY_OK;
2809}
2810#else
2811static void wait_while_offlining(void)
2812{
2813}
2814#endif /* CONFIG_MEMORY_HOTREMOVE */
2815
2816#ifdef CONFIG_SYSFS
2817/*
2818 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2819 */
2820
2821#define KSM_ATTR_RO(_name) \
2822	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2823#define KSM_ATTR(_name) \
2824	static struct kobj_attribute _name##_attr = \
2825		__ATTR(_name, 0644, _name##_show, _name##_store)
2826
2827static ssize_t sleep_millisecs_show(struct kobject *kobj,
2828				    struct kobj_attribute *attr, char *buf)
2829{
2830	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2831}
2832
2833static ssize_t sleep_millisecs_store(struct kobject *kobj,
2834				     struct kobj_attribute *attr,
2835				     const char *buf, size_t count)
2836{
2837	unsigned int msecs;
2838	int err;
2839
2840	err = kstrtouint(buf, 10, &msecs);
2841	if (err)
2842		return -EINVAL;
2843
2844	ksm_thread_sleep_millisecs = msecs;
2845	wake_up_interruptible(&ksm_iter_wait);
2846
2847	return count;
2848}
2849KSM_ATTR(sleep_millisecs);
2850
2851static ssize_t pages_to_scan_show(struct kobject *kobj,
2852				  struct kobj_attribute *attr, char *buf)
2853{
2854	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2855}
2856
2857static ssize_t pages_to_scan_store(struct kobject *kobj,
2858				   struct kobj_attribute *attr,
2859				   const char *buf, size_t count)
2860{
2861	unsigned int nr_pages;
2862	int err;
 
2863
2864	err = kstrtouint(buf, 10, &nr_pages);
2865	if (err)
2866		return -EINVAL;
2867
2868	ksm_thread_pages_to_scan = nr_pages;
2869
2870	return count;
2871}
2872KSM_ATTR(pages_to_scan);
2873
2874static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875			char *buf)
2876{
2877	return sysfs_emit(buf, "%lu\n", ksm_run);
2878}
2879
2880static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881			 const char *buf, size_t count)
2882{
2883	unsigned int flags;
2884	int err;
 
2885
2886	err = kstrtouint(buf, 10, &flags);
2887	if (err)
2888		return -EINVAL;
2889	if (flags > KSM_RUN_UNMERGE)
2890		return -EINVAL;
2891
2892	/*
2893	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895	 * breaking COW to free the pages_shared (but leaves mm_slots
2896	 * on the list for when ksmd may be set running again).
2897	 */
2898
2899	mutex_lock(&ksm_thread_mutex);
2900	wait_while_offlining();
2901	if (ksm_run != flags) {
2902		ksm_run = flags;
2903		if (flags & KSM_RUN_UNMERGE) {
2904			set_current_oom_origin();
 
 
2905			err = unmerge_and_remove_all_rmap_items();
2906			clear_current_oom_origin();
 
2907			if (err) {
2908				ksm_run = KSM_RUN_STOP;
2909				count = err;
2910			}
2911		}
2912	}
2913	mutex_unlock(&ksm_thread_mutex);
2914
2915	if (flags & KSM_RUN_MERGE)
2916		wake_up_interruptible(&ksm_thread_wait);
2917
2918	return count;
2919}
2920KSM_ATTR(run);
2921
2922#ifdef CONFIG_NUMA
2923static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924				       struct kobj_attribute *attr, char *buf)
2925{
2926	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2927}
2928
2929static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930				   struct kobj_attribute *attr,
2931				   const char *buf, size_t count)
2932{
2933	int err;
2934	unsigned long knob;
2935
2936	err = kstrtoul(buf, 10, &knob);
2937	if (err)
2938		return err;
2939	if (knob > 1)
2940		return -EINVAL;
2941
2942	mutex_lock(&ksm_thread_mutex);
2943	wait_while_offlining();
2944	if (ksm_merge_across_nodes != knob) {
2945		if (ksm_pages_shared || remove_all_stable_nodes())
2946			err = -EBUSY;
2947		else if (root_stable_tree == one_stable_tree) {
2948			struct rb_root *buf;
2949			/*
2950			 * This is the first time that we switch away from the
2951			 * default of merging across nodes: must now allocate
2952			 * a buffer to hold as many roots as may be needed.
2953			 * Allocate stable and unstable together:
2954			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2955			 */
2956			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957				      GFP_KERNEL);
2958			/* Let us assume that RB_ROOT is NULL is zero */
2959			if (!buf)
2960				err = -ENOMEM;
2961			else {
2962				root_stable_tree = buf;
2963				root_unstable_tree = buf + nr_node_ids;
2964				/* Stable tree is empty but not the unstable */
2965				root_unstable_tree[0] = one_unstable_tree[0];
2966			}
2967		}
2968		if (!err) {
2969			ksm_merge_across_nodes = knob;
2970			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971		}
2972	}
2973	mutex_unlock(&ksm_thread_mutex);
2974
2975	return err ? err : count;
2976}
2977KSM_ATTR(merge_across_nodes);
2978#endif
2979
2980static ssize_t use_zero_pages_show(struct kobject *kobj,
2981				   struct kobj_attribute *attr, char *buf)
2982{
2983	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984}
2985static ssize_t use_zero_pages_store(struct kobject *kobj,
2986				   struct kobj_attribute *attr,
2987				   const char *buf, size_t count)
2988{
2989	int err;
2990	bool value;
2991
2992	err = kstrtobool(buf, &value);
2993	if (err)
2994		return -EINVAL;
2995
2996	ksm_use_zero_pages = value;
2997
2998	return count;
2999}
3000KSM_ATTR(use_zero_pages);
3001
3002static ssize_t max_page_sharing_show(struct kobject *kobj,
3003				     struct kobj_attribute *attr, char *buf)
3004{
3005	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3006}
3007
3008static ssize_t max_page_sharing_store(struct kobject *kobj,
3009				      struct kobj_attribute *attr,
3010				      const char *buf, size_t count)
3011{
3012	int err;
3013	int knob;
3014
3015	err = kstrtoint(buf, 10, &knob);
3016	if (err)
3017		return err;
3018	/*
3019	 * When a KSM page is created it is shared by 2 mappings. This
3020	 * being a signed comparison, it implicitly verifies it's not
3021	 * negative.
3022	 */
3023	if (knob < 2)
3024		return -EINVAL;
3025
3026	if (READ_ONCE(ksm_max_page_sharing) == knob)
3027		return count;
3028
3029	mutex_lock(&ksm_thread_mutex);
3030	wait_while_offlining();
3031	if (ksm_max_page_sharing != knob) {
3032		if (ksm_pages_shared || remove_all_stable_nodes())
3033			err = -EBUSY;
3034		else
3035			ksm_max_page_sharing = knob;
3036	}
3037	mutex_unlock(&ksm_thread_mutex);
3038
3039	return err ? err : count;
3040}
3041KSM_ATTR(max_page_sharing);
3042
3043static ssize_t pages_shared_show(struct kobject *kobj,
3044				 struct kobj_attribute *attr, char *buf)
3045{
3046	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047}
3048KSM_ATTR_RO(pages_shared);
3049
3050static ssize_t pages_sharing_show(struct kobject *kobj,
3051				  struct kobj_attribute *attr, char *buf)
3052{
3053	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054}
3055KSM_ATTR_RO(pages_sharing);
3056
3057static ssize_t pages_unshared_show(struct kobject *kobj,
3058				   struct kobj_attribute *attr, char *buf)
3059{
3060	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061}
3062KSM_ATTR_RO(pages_unshared);
3063
3064static ssize_t pages_volatile_show(struct kobject *kobj,
3065				   struct kobj_attribute *attr, char *buf)
3066{
3067	long ksm_pages_volatile;
3068
3069	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070				- ksm_pages_sharing - ksm_pages_unshared;
3071	/*
3072	 * It was not worth any locking to calculate that statistic,
3073	 * but it might therefore sometimes be negative: conceal that.
3074	 */
3075	if (ksm_pages_volatile < 0)
3076		ksm_pages_volatile = 0;
3077	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078}
3079KSM_ATTR_RO(pages_volatile);
3080
3081static ssize_t stable_node_dups_show(struct kobject *kobj,
3082				     struct kobj_attribute *attr, char *buf)
3083{
3084	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085}
3086KSM_ATTR_RO(stable_node_dups);
3087
3088static ssize_t stable_node_chains_show(struct kobject *kobj,
3089				       struct kobj_attribute *attr, char *buf)
3090{
3091	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092}
3093KSM_ATTR_RO(stable_node_chains);
3094
3095static ssize_t
3096stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097					struct kobj_attribute *attr,
3098					char *buf)
3099{
3100	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101}
3102
3103static ssize_t
3104stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105					 struct kobj_attribute *attr,
3106					 const char *buf, size_t count)
3107{
3108	unsigned long msecs;
3109	int err;
3110
3111	err = kstrtoul(buf, 10, &msecs);
3112	if (err || msecs > UINT_MAX)
3113		return -EINVAL;
3114
3115	ksm_stable_node_chains_prune_millisecs = msecs;
3116
3117	return count;
3118}
3119KSM_ATTR(stable_node_chains_prune_millisecs);
3120
3121static ssize_t full_scans_show(struct kobject *kobj,
3122			       struct kobj_attribute *attr, char *buf)
3123{
3124	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125}
3126KSM_ATTR_RO(full_scans);
3127
3128static struct attribute *ksm_attrs[] = {
3129	&sleep_millisecs_attr.attr,
3130	&pages_to_scan_attr.attr,
3131	&run_attr.attr,
3132	&pages_shared_attr.attr,
3133	&pages_sharing_attr.attr,
3134	&pages_unshared_attr.attr,
3135	&pages_volatile_attr.attr,
3136	&full_scans_attr.attr,
3137#ifdef CONFIG_NUMA
3138	&merge_across_nodes_attr.attr,
3139#endif
3140	&max_page_sharing_attr.attr,
3141	&stable_node_chains_attr.attr,
3142	&stable_node_dups_attr.attr,
3143	&stable_node_chains_prune_millisecs_attr.attr,
3144	&use_zero_pages_attr.attr,
3145	NULL,
3146};
3147
3148static const struct attribute_group ksm_attr_group = {
3149	.attrs = ksm_attrs,
3150	.name = "ksm",
3151};
3152#endif /* CONFIG_SYSFS */
3153
3154static int __init ksm_init(void)
3155{
3156	struct task_struct *ksm_thread;
3157	int err;
3158
3159	/* The correct value depends on page size and endianness */
3160	zero_checksum = calc_checksum(ZERO_PAGE(0));
3161	/* Default to false for backwards compatibility */
3162	ksm_use_zero_pages = false;
3163
3164	err = ksm_slab_init();
3165	if (err)
3166		goto out;
3167
3168	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169	if (IS_ERR(ksm_thread)) {
3170		pr_err("ksm: creating kthread failed\n");
3171		err = PTR_ERR(ksm_thread);
3172		goto out_free;
3173	}
3174
3175#ifdef CONFIG_SYSFS
3176	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177	if (err) {
3178		pr_err("ksm: register sysfs failed\n");
3179		kthread_stop(ksm_thread);
3180		goto out_free;
3181	}
3182#else
3183	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3184
3185#endif /* CONFIG_SYSFS */
3186
3187#ifdef CONFIG_MEMORY_HOTREMOVE
3188	/* There is no significance to this priority 100 */
 
 
 
3189	hotplug_memory_notifier(ksm_memory_callback, 100);
3190#endif
3191	return 0;
3192
3193out_free:
3194	ksm_slab_free();
3195out:
3196	return err;
3197}
3198subsys_initcall(ksm_init);
v3.5.6
 
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
 
 
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hash.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
 
  39
  40#include <asm/tlbflush.h>
  41#include "internal.h"
  42
  43/*
 
 
 
 
 
 
 
 
 
 
  44 * A few notes about the KSM scanning process,
  45 * to make it easier to understand the data structures below:
  46 *
  47 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  48 * contents into a data structure that holds pointers to the pages' locations.
  49 *
  50 * Since the contents of the pages may change at any moment, KSM cannot just
  51 * insert the pages into a normal sorted tree and expect it to find anything.
  52 * Therefore KSM uses two data structures - the stable and the unstable tree.
  53 *
  54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  55 * by their contents.  Because each such page is write-protected, searching on
  56 * this tree is fully assured to be working (except when pages are unmapped),
  57 * and therefore this tree is called the stable tree.
  58 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 * In addition to the stable tree, KSM uses a second data structure called the
  60 * unstable tree: this tree holds pointers to pages which have been found to
  61 * be "unchanged for a period of time".  The unstable tree sorts these pages
  62 * by their contents, but since they are not write-protected, KSM cannot rely
  63 * upon the unstable tree to work correctly - the unstable tree is liable to
  64 * be corrupted as its contents are modified, and so it is called unstable.
  65 *
  66 * KSM solves this problem by several techniques:
  67 *
  68 * 1) The unstable tree is flushed every time KSM completes scanning all
  69 *    memory areas, and then the tree is rebuilt again from the beginning.
  70 * 2) KSM will only insert into the unstable tree, pages whose hash value
  71 *    has not changed since the previous scan of all memory areas.
  72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  73 *    colors of the nodes and not on their contents, assuring that even when
  74 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  75 *    remains the same (also, searching and inserting nodes in an rbtree uses
  76 *    the same algorithm, so we have no overhead when we flush and rebuild).
  77 * 4) KSM never flushes the stable tree, which means that even if it were to
  78 *    take 10 attempts to find a page in the unstable tree, once it is found,
  79 *    it is secured in the stable tree.  (When we scan a new page, we first
  80 *    compare it against the stable tree, and then against the unstable tree.)
 
 
 
  81 */
  82
  83/**
  84 * struct mm_slot - ksm information per mm that is being scanned
  85 * @link: link to the mm_slots hash list
  86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
  88 * @mm: the mm that this information is valid for
  89 */
  90struct mm_slot {
  91	struct hlist_node link;
  92	struct list_head mm_list;
  93	struct rmap_item *rmap_list;
  94	struct mm_struct *mm;
  95};
  96
  97/**
  98 * struct ksm_scan - cursor for scanning
  99 * @mm_slot: the current mm_slot we are scanning
 100 * @address: the next address inside that to be scanned
 101 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 102 * @seqnr: count of completed full scans (needed when removing unstable node)
 103 *
 104 * There is only the one ksm_scan instance of this cursor structure.
 105 */
 106struct ksm_scan {
 107	struct mm_slot *mm_slot;
 108	unsigned long address;
 109	struct rmap_item **rmap_list;
 110	unsigned long seqnr;
 111};
 112
 113/**
 114 * struct stable_node - node of the stable rbtree
 115 * @node: rb node of this ksm page in the stable tree
 
 
 
 116 * @hlist: hlist head of rmap_items using this ksm page
 117 * @kpfn: page frame number of this ksm page
 
 
 
 118 */
 119struct stable_node {
 120	struct rb_node node;
 
 
 
 
 
 
 
 
 
 121	struct hlist_head hlist;
 122	unsigned long kpfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 123};
 124
 125/**
 126 * struct rmap_item - reverse mapping item for virtual addresses
 127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 
 129 * @mm: the memory structure this rmap_item is pointing into
 130 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 131 * @oldchecksum: previous checksum of the page at that virtual address
 132 * @node: rb node of this rmap_item in the unstable tree
 133 * @head: pointer to stable_node heading this list in the stable tree
 134 * @hlist: link into hlist of rmap_items hanging off that stable_node
 135 */
 136struct rmap_item {
 137	struct rmap_item *rmap_list;
 138	struct anon_vma *anon_vma;	/* when stable */
 
 
 
 
 
 139	struct mm_struct *mm;
 140	unsigned long address;		/* + low bits used for flags below */
 141	unsigned int oldchecksum;	/* when unstable */
 142	union {
 143		struct rb_node node;	/* when node of unstable tree */
 144		struct {		/* when listed from stable tree */
 145			struct stable_node *head;
 146			struct hlist_node hlist;
 147		};
 148	};
 149};
 150
 151#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 152#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 153#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 154
 155/* The stable and unstable tree heads */
 156static struct rb_root root_stable_tree = RB_ROOT;
 157static struct rb_root root_unstable_tree = RB_ROOT;
 
 
 
 
 
 
 158
 159#define MM_SLOTS_HASH_SHIFT 10
 160#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
 161static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
 162
 163static struct mm_slot ksm_mm_head = {
 164	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 165};
 166static struct ksm_scan ksm_scan = {
 167	.mm_slot = &ksm_mm_head,
 168};
 169
 170static struct kmem_cache *rmap_item_cache;
 171static struct kmem_cache *stable_node_cache;
 172static struct kmem_cache *mm_slot_cache;
 173
 174/* The number of nodes in the stable tree */
 175static unsigned long ksm_pages_shared;
 176
 177/* The number of page slots additionally sharing those nodes */
 178static unsigned long ksm_pages_sharing;
 179
 180/* The number of nodes in the unstable tree */
 181static unsigned long ksm_pages_unshared;
 182
 183/* The number of rmap_items in use: to calculate pages_volatile */
 184static unsigned long ksm_rmap_items;
 185
 
 
 
 
 
 
 
 
 
 
 
 
 186/* Number of pages ksmd should scan in one batch */
 187static unsigned int ksm_thread_pages_to_scan = 100;
 188
 189/* Milliseconds ksmd should sleep between batches */
 190static unsigned int ksm_thread_sleep_millisecs = 20;
 191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192#define KSM_RUN_STOP	0
 193#define KSM_RUN_MERGE	1
 194#define KSM_RUN_UNMERGE	2
 195static unsigned int ksm_run = KSM_RUN_STOP;
 
 
 196
 197static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 
 198static DEFINE_MUTEX(ksm_thread_mutex);
 199static DEFINE_SPINLOCK(ksm_mmlist_lock);
 200
 201#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 202		sizeof(struct __struct), __alignof__(struct __struct),\
 203		(__flags), NULL)
 204
 205static int __init ksm_slab_init(void)
 206{
 207	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 208	if (!rmap_item_cache)
 209		goto out;
 210
 211	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 212	if (!stable_node_cache)
 213		goto out_free1;
 214
 215	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 216	if (!mm_slot_cache)
 217		goto out_free2;
 218
 219	return 0;
 220
 221out_free2:
 222	kmem_cache_destroy(stable_node_cache);
 223out_free1:
 224	kmem_cache_destroy(rmap_item_cache);
 225out:
 226	return -ENOMEM;
 227}
 228
 229static void __init ksm_slab_free(void)
 230{
 231	kmem_cache_destroy(mm_slot_cache);
 232	kmem_cache_destroy(stable_node_cache);
 233	kmem_cache_destroy(rmap_item_cache);
 234	mm_slot_cache = NULL;
 235}
 236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237static inline struct rmap_item *alloc_rmap_item(void)
 238{
 239	struct rmap_item *rmap_item;
 240
 241	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 
 242	if (rmap_item)
 243		ksm_rmap_items++;
 244	return rmap_item;
 245}
 246
 247static inline void free_rmap_item(struct rmap_item *rmap_item)
 248{
 249	ksm_rmap_items--;
 250	rmap_item->mm = NULL;	/* debug safety */
 251	kmem_cache_free(rmap_item_cache, rmap_item);
 252}
 253
 254static inline struct stable_node *alloc_stable_node(void)
 255{
 256	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
 
 
 
 
 
 257}
 258
 259static inline void free_stable_node(struct stable_node *stable_node)
 260{
 
 
 261	kmem_cache_free(stable_node_cache, stable_node);
 262}
 263
 264static inline struct mm_slot *alloc_mm_slot(void)
 265{
 266	if (!mm_slot_cache)	/* initialization failed */
 267		return NULL;
 268	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 269}
 270
 271static inline void free_mm_slot(struct mm_slot *mm_slot)
 272{
 273	kmem_cache_free(mm_slot_cache, mm_slot);
 274}
 275
 276static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 277{
 278	struct mm_slot *mm_slot;
 279	struct hlist_head *bucket;
 280	struct hlist_node *node;
 
 
 281
 282	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 283	hlist_for_each_entry(mm_slot, node, bucket, link) {
 284		if (mm == mm_slot->mm)
 285			return mm_slot;
 286	}
 287	return NULL;
 288}
 289
 290static void insert_to_mm_slots_hash(struct mm_struct *mm,
 291				    struct mm_slot *mm_slot)
 292{
 293	struct hlist_head *bucket;
 294
 295	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 296	mm_slot->mm = mm;
 297	hlist_add_head(&mm_slot->link, bucket);
 298}
 299
 300static inline int in_stable_tree(struct rmap_item *rmap_item)
 301{
 302	return rmap_item->address & STABLE_FLAG;
 303}
 304
 305/*
 306 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 307 * page tables after it has passed through ksm_exit() - which, if necessary,
 308 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 309 * a special flag: they can just back out as soon as mm_users goes to zero.
 310 * ksm_test_exit() is used throughout to make this test for exit: in some
 311 * places for correctness, in some places just to avoid unnecessary work.
 312 */
 313static inline bool ksm_test_exit(struct mm_struct *mm)
 314{
 315	return atomic_read(&mm->mm_users) == 0;
 316}
 317
 318/*
 319 * We use break_ksm to break COW on a ksm page: it's a stripped down
 320 *
 321 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
 322 *		put_page(page);
 323 *
 324 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 325 * in case the application has unmapped and remapped mm,addr meanwhile.
 326 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 327 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 
 
 
 
 328 */
 329static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 330{
 331	struct page *page;
 332	int ret = 0;
 333
 334	do {
 335		cond_resched();
 336		page = follow_page(vma, addr, FOLL_GET);
 
 337		if (IS_ERR_OR_NULL(page))
 338			break;
 339		if (PageKsm(page))
 340			ret = handle_mm_fault(vma->vm_mm, vma, addr,
 341							FAULT_FLAG_WRITE);
 
 342		else
 343			ret = VM_FAULT_WRITE;
 344		put_page(page);
 345	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
 346	/*
 347	 * We must loop because handle_mm_fault() may back out if there's
 348	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 349	 *
 350	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 351	 * COW has been broken, even if the vma does not permit VM_WRITE;
 352	 * but note that a concurrent fault might break PageKsm for us.
 353	 *
 354	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 355	 * backing file, which also invalidates anonymous pages: that's
 356	 * okay, that truncation will have unmapped the PageKsm for us.
 357	 *
 358	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 359	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 360	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 361	 * to user; and ksmd, having no mm, would never be chosen for that.
 362	 *
 363	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 364	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 365	 * even ksmd can fail in this way - though it's usually breaking ksm
 366	 * just to undo a merge it made a moment before, so unlikely to oom.
 367	 *
 368	 * That's a pity: we might therefore have more kernel pages allocated
 369	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 370	 * will retry to break_cow on each pass, so should recover the page
 371	 * in due course.  The important thing is to not let VM_MERGEABLE
 372	 * be cleared while any such pages might remain in the area.
 373	 */
 374	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 375}
 376
 377static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 378		unsigned long addr)
 379{
 380	struct vm_area_struct *vma;
 381	if (ksm_test_exit(mm))
 382		return NULL;
 383	vma = find_vma(mm, addr);
 384	if (!vma || vma->vm_start > addr)
 385		return NULL;
 386	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 387		return NULL;
 388	return vma;
 389}
 390
 391static void break_cow(struct rmap_item *rmap_item)
 392{
 393	struct mm_struct *mm = rmap_item->mm;
 394	unsigned long addr = rmap_item->address;
 395	struct vm_area_struct *vma;
 396
 397	/*
 398	 * It is not an accident that whenever we want to break COW
 399	 * to undo, we also need to drop a reference to the anon_vma.
 400	 */
 401	put_anon_vma(rmap_item->anon_vma);
 402
 403	down_read(&mm->mmap_sem);
 404	vma = find_mergeable_vma(mm, addr);
 405	if (vma)
 406		break_ksm(vma, addr);
 407	up_read(&mm->mmap_sem);
 408}
 409
 410static struct page *page_trans_compound_anon(struct page *page)
 411{
 412	if (PageTransCompound(page)) {
 413		struct page *head = compound_trans_head(page);
 414		/*
 415		 * head may actually be splitted and freed from under
 416		 * us but it's ok here.
 417		 */
 418		if (PageAnon(head))
 419			return head;
 420	}
 421	return NULL;
 422}
 423
 424static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 425{
 426	struct mm_struct *mm = rmap_item->mm;
 427	unsigned long addr = rmap_item->address;
 428	struct vm_area_struct *vma;
 429	struct page *page;
 430
 431	down_read(&mm->mmap_sem);
 432	vma = find_mergeable_vma(mm, addr);
 433	if (!vma)
 434		goto out;
 435
 436	page = follow_page(vma, addr, FOLL_GET);
 437	if (IS_ERR_OR_NULL(page))
 438		goto out;
 439	if (PageAnon(page) || page_trans_compound_anon(page)) {
 440		flush_anon_page(vma, page, addr);
 441		flush_dcache_page(page);
 442	} else {
 443		put_page(page);
 444out:		page = NULL;
 
 445	}
 446	up_read(&mm->mmap_sem);
 447	return page;
 448}
 449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450static void remove_node_from_stable_tree(struct stable_node *stable_node)
 451{
 452	struct rmap_item *rmap_item;
 453	struct hlist_node *hlist;
 454
 455	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 
 
 
 456		if (rmap_item->hlist.next)
 457			ksm_pages_sharing--;
 458		else
 459			ksm_pages_shared--;
 
 
 460		put_anon_vma(rmap_item->anon_vma);
 461		rmap_item->address &= PAGE_MASK;
 462		cond_resched();
 463	}
 464
 465	rb_erase(&stable_node->node, &root_stable_tree);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466	free_stable_node(stable_node);
 467}
 468
 
 
 
 
 
 
 469/*
 470 * get_ksm_page: checks if the page indicated by the stable node
 471 * is still its ksm page, despite having held no reference to it.
 472 * In which case we can trust the content of the page, and it
 473 * returns the gotten page; but if the page has now been zapped,
 474 * remove the stale node from the stable tree and return NULL.
 
 475 *
 476 * You would expect the stable_node to hold a reference to the ksm page.
 477 * But if it increments the page's count, swapping out has to wait for
 478 * ksmd to come around again before it can free the page, which may take
 479 * seconds or even minutes: much too unresponsive.  So instead we use a
 480 * "keyhole reference": access to the ksm page from the stable node peeps
 481 * out through its keyhole to see if that page still holds the right key,
 482 * pointing back to this stable node.  This relies on freeing a PageAnon
 483 * page to reset its page->mapping to NULL, and relies on no other use of
 484 * a page to put something that might look like our key in page->mapping.
 485 *
 486 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
 487 * but this is different - made simpler by ksm_thread_mutex being held, but
 488 * interesting for assuming that no other use of the struct page could ever
 489 * put our expected_mapping into page->mapping (or a field of the union which
 490 * coincides with page->mapping).  The RCU calls are not for KSM at all, but
 491 * to keep the page_count protocol described with page_cache_get_speculative.
 492 *
 493 * Note: it is possible that get_ksm_page() will return NULL one moment,
 494 * then page the next, if the page is in between page_freeze_refs() and
 495 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
 496 * is on its way to being freed; but it is an anomaly to bear in mind.
 497 */
 498static struct page *get_ksm_page(struct stable_node *stable_node)
 
 499{
 500	struct page *page;
 501	void *expected_mapping;
 
 502
 503	page = pfn_to_page(stable_node->kpfn);
 504	expected_mapping = (void *)stable_node +
 505				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 506	rcu_read_lock();
 507	if (page->mapping != expected_mapping)
 
 508		goto stale;
 509	if (!get_page_unless_zero(page))
 510		goto stale;
 511	if (page->mapping != expected_mapping) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512		put_page(page);
 513		goto stale;
 514	}
 515	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516	return page;
 
 517stale:
 518	rcu_read_unlock();
 
 
 
 
 
 
 
 
 519	remove_node_from_stable_tree(stable_node);
 520	return NULL;
 521}
 522
 523/*
 524 * Removing rmap_item from stable or unstable tree.
 525 * This function will clean the information from the stable/unstable tree.
 526 */
 527static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 528{
 529	if (rmap_item->address & STABLE_FLAG) {
 530		struct stable_node *stable_node;
 531		struct page *page;
 532
 533		stable_node = rmap_item->head;
 534		page = get_ksm_page(stable_node);
 535		if (!page)
 536			goto out;
 537
 538		lock_page(page);
 539		hlist_del(&rmap_item->hlist);
 540		unlock_page(page);
 541		put_page(page);
 542
 543		if (stable_node->hlist.first)
 544			ksm_pages_sharing--;
 545		else
 546			ksm_pages_shared--;
 
 
 547
 548		put_anon_vma(rmap_item->anon_vma);
 
 549		rmap_item->address &= PAGE_MASK;
 550
 551	} else if (rmap_item->address & UNSTABLE_FLAG) {
 552		unsigned char age;
 553		/*
 554		 * Usually ksmd can and must skip the rb_erase, because
 555		 * root_unstable_tree was already reset to RB_ROOT.
 556		 * But be careful when an mm is exiting: do the rb_erase
 557		 * if this rmap_item was inserted by this scan, rather
 558		 * than left over from before.
 559		 */
 560		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 561		BUG_ON(age > 1);
 562		if (!age)
 563			rb_erase(&rmap_item->node, &root_unstable_tree);
 564
 565		ksm_pages_unshared--;
 566		rmap_item->address &= PAGE_MASK;
 567	}
 568out:
 569	cond_resched();		/* we're called from many long loops */
 570}
 571
 572static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 573				       struct rmap_item **rmap_list)
 574{
 575	while (*rmap_list) {
 576		struct rmap_item *rmap_item = *rmap_list;
 577		*rmap_list = rmap_item->rmap_list;
 578		remove_rmap_item_from_tree(rmap_item);
 579		free_rmap_item(rmap_item);
 580	}
 581}
 582
 583/*
 584 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
 585 * than check every pte of a given vma, the locking doesn't quite work for
 586 * that - an rmap_item is assigned to the stable tree after inserting ksm
 587 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 588 * rmap_items from parent to child at fork time (so as not to waste time
 589 * if exit comes before the next scan reaches it).
 590 *
 591 * Similarly, although we'd like to remove rmap_items (so updating counts
 592 * and freeing memory) when unmerging an area, it's easier to leave that
 593 * to the next pass of ksmd - consider, for example, how ksmd might be
 594 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 595 */
 596static int unmerge_ksm_pages(struct vm_area_struct *vma,
 597			     unsigned long start, unsigned long end)
 598{
 599	unsigned long addr;
 600	int err = 0;
 601
 602	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 603		if (ksm_test_exit(vma->vm_mm))
 604			break;
 605		if (signal_pending(current))
 606			err = -ERESTARTSYS;
 607		else
 608			err = break_ksm(vma, addr);
 609	}
 610	return err;
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 613#ifdef CONFIG_SYSFS
 614/*
 615 * Only called through the sysfs control interface:
 616 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617static int unmerge_and_remove_all_rmap_items(void)
 618{
 619	struct mm_slot *mm_slot;
 620	struct mm_struct *mm;
 621	struct vm_area_struct *vma;
 622	int err = 0;
 623
 624	spin_lock(&ksm_mmlist_lock);
 625	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 626						struct mm_slot, mm_list);
 627	spin_unlock(&ksm_mmlist_lock);
 628
 629	for (mm_slot = ksm_scan.mm_slot;
 630			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 631		mm = mm_slot->mm;
 632		down_read(&mm->mmap_sem);
 633		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 634			if (ksm_test_exit(mm))
 635				break;
 636			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 637				continue;
 638			err = unmerge_ksm_pages(vma,
 639						vma->vm_start, vma->vm_end);
 640			if (err)
 641				goto error;
 642		}
 643
 644		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 
 645
 646		spin_lock(&ksm_mmlist_lock);
 647		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 648						struct mm_slot, mm_list);
 649		if (ksm_test_exit(mm)) {
 650			hlist_del(&mm_slot->link);
 651			list_del(&mm_slot->mm_list);
 652			spin_unlock(&ksm_mmlist_lock);
 653
 654			free_mm_slot(mm_slot);
 655			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 656			up_read(&mm->mmap_sem);
 657			mmdrop(mm);
 658		} else {
 659			spin_unlock(&ksm_mmlist_lock);
 660			up_read(&mm->mmap_sem);
 661		}
 662	}
 663
 
 
 664	ksm_scan.seqnr = 0;
 665	return 0;
 666
 667error:
 668	up_read(&mm->mmap_sem);
 669	spin_lock(&ksm_mmlist_lock);
 670	ksm_scan.mm_slot = &ksm_mm_head;
 671	spin_unlock(&ksm_mmlist_lock);
 672	return err;
 673}
 674#endif /* CONFIG_SYSFS */
 675
 676static u32 calc_checksum(struct page *page)
 677{
 678	u32 checksum;
 679	void *addr = kmap_atomic(page);
 680	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 681	kunmap_atomic(addr);
 682	return checksum;
 683}
 684
 685static int memcmp_pages(struct page *page1, struct page *page2)
 686{
 687	char *addr1, *addr2;
 688	int ret;
 689
 690	addr1 = kmap_atomic(page1);
 691	addr2 = kmap_atomic(page2);
 692	ret = memcmp(addr1, addr2, PAGE_SIZE);
 693	kunmap_atomic(addr2);
 694	kunmap_atomic(addr1);
 695	return ret;
 696}
 697
 698static inline int pages_identical(struct page *page1, struct page *page2)
 699{
 700	return !memcmp_pages(page1, page2);
 701}
 702
 703static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 704			      pte_t *orig_pte)
 705{
 706	struct mm_struct *mm = vma->vm_mm;
 707	unsigned long addr;
 708	pte_t *ptep;
 709	spinlock_t *ptl;
 
 710	int swapped;
 711	int err = -EFAULT;
 
 712
 713	addr = page_address_in_vma(page, vma);
 714	if (addr == -EFAULT)
 715		goto out;
 716
 717	BUG_ON(PageTransCompound(page));
 718	ptep = page_check_address(page, mm, addr, &ptl, 0);
 719	if (!ptep)
 720		goto out;
 721
 722	if (pte_write(*ptep) || pte_dirty(*ptep)) {
 
 
 
 
 
 
 
 
 
 
 
 
 723		pte_t entry;
 724
 725		swapped = PageSwapCache(page);
 726		flush_cache_page(vma, addr, page_to_pfn(page));
 727		/*
 728		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 729		 * take any lock, therefore the check that we are going to make
 730		 * with the pagecount against the mapcount is racey and
 731		 * O_DIRECT can happen right after the check.
 732		 * So we clear the pte and flush the tlb before the check
 733		 * this assure us that no O_DIRECT can happen after the check
 734		 * or in the middle of the check.
 
 
 
 
 
 735		 */
 736		entry = ptep_clear_flush(vma, addr, ptep);
 737		/*
 738		 * Check that no O_DIRECT or similar I/O is in progress on the
 739		 * page
 740		 */
 741		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 742			set_pte_at(mm, addr, ptep, entry);
 743			goto out_unlock;
 744		}
 745		if (pte_dirty(entry))
 746			set_page_dirty(page);
 747		entry = pte_mkclean(pte_wrprotect(entry));
 748		set_pte_at_notify(mm, addr, ptep, entry);
 
 
 
 
 749	}
 750	*orig_pte = *ptep;
 751	err = 0;
 752
 753out_unlock:
 754	pte_unmap_unlock(ptep, ptl);
 
 
 755out:
 756	return err;
 757}
 758
 759/**
 760 * replace_page - replace page in vma by new ksm page
 761 * @vma:      vma that holds the pte pointing to page
 762 * @page:     the page we are replacing by kpage
 763 * @kpage:    the ksm page we replace page by
 764 * @orig_pte: the original value of the pte
 765 *
 766 * Returns 0 on success, -EFAULT on failure.
 767 */
 768static int replace_page(struct vm_area_struct *vma, struct page *page,
 769			struct page *kpage, pte_t orig_pte)
 770{
 771	struct mm_struct *mm = vma->vm_mm;
 772	pgd_t *pgd;
 773	pud_t *pud;
 774	pmd_t *pmd;
 775	pte_t *ptep;
 
 776	spinlock_t *ptl;
 777	unsigned long addr;
 778	int err = -EFAULT;
 
 779
 780	addr = page_address_in_vma(page, vma);
 781	if (addr == -EFAULT)
 782		goto out;
 783
 784	pgd = pgd_offset(mm, addr);
 785	if (!pgd_present(*pgd))
 786		goto out;
 787
 788	pud = pud_offset(pgd, addr);
 789	if (!pud_present(*pud))
 790		goto out;
 791
 792	pmd = pmd_offset(pud, addr);
 793	BUG_ON(pmd_trans_huge(*pmd));
 794	if (!pmd_present(*pmd))
 795		goto out;
 796
 797	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 798	if (!pte_same(*ptep, orig_pte)) {
 799		pte_unmap_unlock(ptep, ptl);
 800		goto out;
 801	}
 802
 803	get_page(kpage);
 804	page_add_anon_rmap(kpage, vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806	flush_cache_page(vma, addr, pte_pfn(*ptep));
 
 
 
 
 
 
 807	ptep_clear_flush(vma, addr, ptep);
 808	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 809
 810	page_remove_rmap(page);
 811	if (!page_mapped(page))
 812		try_to_free_swap(page);
 813	put_page(page);
 814
 815	pte_unmap_unlock(ptep, ptl);
 816	err = 0;
 
 
 817out:
 818	return err;
 819}
 820
 821static int page_trans_compound_anon_split(struct page *page)
 822{
 823	int ret = 0;
 824	struct page *transhuge_head = page_trans_compound_anon(page);
 825	if (transhuge_head) {
 826		/* Get the reference on the head to split it. */
 827		if (get_page_unless_zero(transhuge_head)) {
 828			/*
 829			 * Recheck we got the reference while the head
 830			 * was still anonymous.
 831			 */
 832			if (PageAnon(transhuge_head))
 833				ret = split_huge_page(transhuge_head);
 834			else
 835				/*
 836				 * Retry later if split_huge_page run
 837				 * from under us.
 838				 */
 839				ret = 1;
 840			put_page(transhuge_head);
 841		} else
 842			/* Retry later if split_huge_page run from under us. */
 843			ret = 1;
 844	}
 845	return ret;
 846}
 847
 848/*
 849 * try_to_merge_one_page - take two pages and merge them into one
 850 * @vma: the vma that holds the pte pointing to page
 851 * @page: the PageAnon page that we want to replace with kpage
 852 * @kpage: the PageKsm page that we want to map instead of page,
 853 *         or NULL the first time when we want to use page as kpage.
 854 *
 855 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 856 */
 857static int try_to_merge_one_page(struct vm_area_struct *vma,
 858				 struct page *page, struct page *kpage)
 859{
 860	pte_t orig_pte = __pte(0);
 861	int err = -EFAULT;
 862
 863	if (page == kpage)			/* ksm page forked */
 864		return 0;
 865
 866	if (!(vma->vm_flags & VM_MERGEABLE))
 867		goto out;
 868	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
 869		goto out;
 870	BUG_ON(PageTransCompound(page));
 871	if (!PageAnon(page))
 872		goto out;
 873
 874	/*
 875	 * We need the page lock to read a stable PageSwapCache in
 876	 * write_protect_page().  We use trylock_page() instead of
 877	 * lock_page() because we don't want to wait here - we
 878	 * prefer to continue scanning and merging different pages,
 879	 * then come back to this page when it is unlocked.
 880	 */
 881	if (!trylock_page(page))
 882		goto out;
 
 
 
 
 
 
 883	/*
 884	 * If this anonymous page is mapped only here, its pte may need
 885	 * to be write-protected.  If it's mapped elsewhere, all of its
 886	 * ptes are necessarily already write-protected.  But in either
 887	 * case, we need to lock and check page_count is not raised.
 888	 */
 889	if (write_protect_page(vma, page, &orig_pte) == 0) {
 890		if (!kpage) {
 891			/*
 892			 * While we hold page lock, upgrade page from
 893			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
 894			 * stable_tree_insert() will update stable_node.
 895			 */
 896			set_page_stable_node(page, NULL);
 897			mark_page_accessed(page);
 
 
 
 
 
 
 898			err = 0;
 899		} else if (pages_identical(page, kpage))
 900			err = replace_page(vma, page, kpage, orig_pte);
 901	}
 902
 903	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
 904		munlock_vma_page(page);
 905		if (!PageMlocked(kpage)) {
 906			unlock_page(page);
 907			lock_page(kpage);
 908			mlock_vma_page(kpage);
 909			page = kpage;		/* for final unlock */
 910		}
 911	}
 912
 
 913	unlock_page(page);
 914out:
 915	return err;
 916}
 917
 918/*
 919 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
 920 * but no new kernel page is allocated: kpage must already be a ksm page.
 921 *
 922 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 923 */
 924static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
 925				      struct page *page, struct page *kpage)
 926{
 927	struct mm_struct *mm = rmap_item->mm;
 928	struct vm_area_struct *vma;
 929	int err = -EFAULT;
 930
 931	down_read(&mm->mmap_sem);
 932	if (ksm_test_exit(mm))
 933		goto out;
 934	vma = find_vma(mm, rmap_item->address);
 935	if (!vma || vma->vm_start > rmap_item->address)
 936		goto out;
 937
 938	err = try_to_merge_one_page(vma, page, kpage);
 939	if (err)
 940		goto out;
 941
 942	/* Must get reference to anon_vma while still holding mmap_sem */
 
 
 
 943	rmap_item->anon_vma = vma->anon_vma;
 944	get_anon_vma(vma->anon_vma);
 945out:
 946	up_read(&mm->mmap_sem);
 947	return err;
 948}
 949
 950/*
 951 * try_to_merge_two_pages - take two identical pages and prepare them
 952 * to be merged into one page.
 953 *
 954 * This function returns the kpage if we successfully merged two identical
 955 * pages into one ksm page, NULL otherwise.
 956 *
 957 * Note that this function upgrades page to ksm page: if one of the pages
 958 * is already a ksm page, try_to_merge_with_ksm_page should be used.
 959 */
 960static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
 961					   struct page *page,
 962					   struct rmap_item *tree_rmap_item,
 963					   struct page *tree_page)
 964{
 965	int err;
 966
 967	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
 968	if (!err) {
 969		err = try_to_merge_with_ksm_page(tree_rmap_item,
 970							tree_page, page);
 971		/*
 972		 * If that fails, we have a ksm page with only one pte
 973		 * pointing to it: so break it.
 974		 */
 975		if (err)
 976			break_cow(rmap_item);
 977	}
 978	return err ? NULL : page;
 979}
 980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981/*
 982 * stable_tree_search - search for page inside the stable tree
 983 *
 984 * This function checks if there is a page inside the stable tree
 985 * with identical content to the page that we are scanning right now.
 986 *
 987 * This function returns the stable tree node of identical content if found,
 988 * NULL otherwise.
 989 */
 990static struct page *stable_tree_search(struct page *page)
 991{
 992	struct rb_node *node = root_stable_tree.rb_node;
 993	struct stable_node *stable_node;
 994
 995	stable_node = page_stable_node(page);
 996	if (stable_node) {			/* ksm page forked */
 
 
 
 
 
 997		get_page(page);
 998		return page;
 999	}
1000
1001	while (node) {
 
 
 
 
 
 
1002		struct page *tree_page;
1003		int ret;
1004
1005		cond_resched();
1006		stable_node = rb_entry(node, struct stable_node, node);
1007		tree_page = get_ksm_page(stable_node);
1008		if (!tree_page)
1009			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011		ret = memcmp_pages(page, tree_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013		if (ret < 0) {
1014			put_page(tree_page);
1015			node = node->rb_left;
1016		} else if (ret > 0) {
1017			put_page(tree_page);
1018			node = node->rb_right;
1019		} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020			return tree_page;
 
1021	}
1022
1023	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026/*
1027 * stable_tree_insert - insert rmap_item pointing to new ksm page
1028 * into the stable tree.
1029 *
1030 * This function returns the stable tree node just allocated on success,
1031 * NULL otherwise.
1032 */
1033static struct stable_node *stable_tree_insert(struct page *kpage)
1034{
1035	struct rb_node **new = &root_stable_tree.rb_node;
1036	struct rb_node *parent = NULL;
1037	struct stable_node *stable_node;
 
 
 
 
 
 
 
 
 
 
 
1038
1039	while (*new) {
1040		struct page *tree_page;
1041		int ret;
1042
1043		cond_resched();
1044		stable_node = rb_entry(*new, struct stable_node, node);
1045		tree_page = get_ksm_page(stable_node);
1046		if (!tree_page)
1047			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049		ret = memcmp_pages(kpage, tree_page);
1050		put_page(tree_page);
1051
1052		parent = *new;
1053		if (ret < 0)
1054			new = &parent->rb_left;
1055		else if (ret > 0)
1056			new = &parent->rb_right;
1057		else {
1058			/*
1059			 * It is not a bug that stable_tree_search() didn't
1060			 * find this node: because at that time our page was
1061			 * not yet write-protected, so may have changed since.
1062			 */
1063			return NULL;
1064		}
1065	}
1066
1067	stable_node = alloc_stable_node();
1068	if (!stable_node)
1069		return NULL;
1070
1071	rb_link_node(&stable_node->node, parent, new);
1072	rb_insert_color(&stable_node->node, &root_stable_tree);
1073
1074	INIT_HLIST_HEAD(&stable_node->hlist);
1075
1076	stable_node->kpfn = page_to_pfn(kpage);
1077	set_page_stable_node(kpage, stable_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079	return stable_node;
1080}
1081
1082/*
1083 * unstable_tree_search_insert - search for identical page,
1084 * else insert rmap_item into the unstable tree.
1085 *
1086 * This function searches for a page in the unstable tree identical to the
1087 * page currently being scanned; and if no identical page is found in the
1088 * tree, we insert rmap_item as a new object into the unstable tree.
1089 *
1090 * This function returns pointer to rmap_item found to be identical
1091 * to the currently scanned page, NULL otherwise.
1092 *
1093 * This function does both searching and inserting, because they share
1094 * the same walking algorithm in an rbtree.
1095 */
1096static
1097struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1098					      struct page *page,
1099					      struct page **tree_pagep)
1100
1101{
1102	struct rb_node **new = &root_unstable_tree.rb_node;
 
1103	struct rb_node *parent = NULL;
 
 
 
 
 
1104
1105	while (*new) {
1106		struct rmap_item *tree_rmap_item;
1107		struct page *tree_page;
1108		int ret;
1109
1110		cond_resched();
1111		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1112		tree_page = get_mergeable_page(tree_rmap_item);
1113		if (IS_ERR_OR_NULL(tree_page))
1114			return NULL;
1115
1116		/*
1117		 * Don't substitute a ksm page for a forked page.
1118		 */
1119		if (page == tree_page) {
1120			put_page(tree_page);
1121			return NULL;
1122		}
1123
1124		ret = memcmp_pages(page, tree_page);
1125
1126		parent = *new;
1127		if (ret < 0) {
1128			put_page(tree_page);
1129			new = &parent->rb_left;
1130		} else if (ret > 0) {
1131			put_page(tree_page);
1132			new = &parent->rb_right;
 
 
 
 
 
 
 
 
 
1133		} else {
1134			*tree_pagep = tree_page;
1135			return tree_rmap_item;
1136		}
1137	}
1138
1139	rmap_item->address |= UNSTABLE_FLAG;
1140	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
 
1141	rb_link_node(&rmap_item->node, parent, new);
1142	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1143
1144	ksm_pages_unshared++;
1145	return NULL;
1146}
1147
1148/*
1149 * stable_tree_append - add another rmap_item to the linked list of
1150 * rmap_items hanging off a given node of the stable tree, all sharing
1151 * the same ksm page.
1152 */
1153static void stable_tree_append(struct rmap_item *rmap_item,
1154			       struct stable_node *stable_node)
 
1155{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156	rmap_item->head = stable_node;
1157	rmap_item->address |= STABLE_FLAG;
1158	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1159
1160	if (rmap_item->hlist.next)
1161		ksm_pages_sharing++;
1162	else
1163		ksm_pages_shared++;
1164}
1165
1166/*
1167 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1168 * if not, compare checksum to previous and if it's the same, see if page can
1169 * be inserted into the unstable tree, or merged with a page already there and
1170 * both transferred to the stable tree.
1171 *
1172 * @page: the page that we are searching identical page to.
1173 * @rmap_item: the reverse mapping into the virtual address of this page
1174 */
1175static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1176{
 
1177	struct rmap_item *tree_rmap_item;
1178	struct page *tree_page = NULL;
1179	struct stable_node *stable_node;
1180	struct page *kpage;
1181	unsigned int checksum;
1182	int err;
 
1183
1184	remove_rmap_item_from_tree(rmap_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185
1186	/* We first start with searching the page inside the stable tree */
1187	kpage = stable_tree_search(page);
 
 
 
 
 
 
 
1188	if (kpage) {
 
 
 
1189		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1190		if (!err) {
1191			/*
1192			 * The page was successfully merged:
1193			 * add its rmap_item to the stable tree.
1194			 */
1195			lock_page(kpage);
1196			stable_tree_append(rmap_item, page_stable_node(kpage));
 
1197			unlock_page(kpage);
1198		}
1199		put_page(kpage);
1200		return;
1201	}
1202
1203	/*
1204	 * If the hash value of the page has changed from the last time
1205	 * we calculated it, this page is changing frequently: therefore we
1206	 * don't want to insert it in the unstable tree, and we don't want
1207	 * to waste our time searching for something identical to it there.
1208	 */
1209	checksum = calc_checksum(page);
1210	if (rmap_item->oldchecksum != checksum) {
1211		rmap_item->oldchecksum = checksum;
1212		return;
1213	}
1214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215	tree_rmap_item =
1216		unstable_tree_search_insert(rmap_item, page, &tree_page);
1217	if (tree_rmap_item) {
 
 
1218		kpage = try_to_merge_two_pages(rmap_item, page,
1219						tree_rmap_item, tree_page);
1220		put_page(tree_page);
1221		/*
1222		 * As soon as we merge this page, we want to remove the
1223		 * rmap_item of the page we have merged with from the unstable
1224		 * tree, and insert it instead as new node in the stable tree.
 
 
 
 
 
1225		 */
 
 
 
1226		if (kpage) {
1227			remove_rmap_item_from_tree(tree_rmap_item);
1228
 
 
1229			lock_page(kpage);
1230			stable_node = stable_tree_insert(kpage);
1231			if (stable_node) {
1232				stable_tree_append(tree_rmap_item, stable_node);
1233				stable_tree_append(rmap_item, stable_node);
 
 
1234			}
1235			unlock_page(kpage);
1236
1237			/*
1238			 * If we fail to insert the page into the stable tree,
1239			 * we will have 2 virtual addresses that are pointing
1240			 * to a ksm page left outside the stable tree,
1241			 * in which case we need to break_cow on both.
1242			 */
1243			if (!stable_node) {
1244				break_cow(tree_rmap_item);
1245				break_cow(rmap_item);
1246			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247		}
1248	}
1249}
1250
1251static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1252					    struct rmap_item **rmap_list,
1253					    unsigned long addr)
1254{
1255	struct rmap_item *rmap_item;
1256
1257	while (*rmap_list) {
1258		rmap_item = *rmap_list;
1259		if ((rmap_item->address & PAGE_MASK) == addr)
1260			return rmap_item;
1261		if (rmap_item->address > addr)
1262			break;
1263		*rmap_list = rmap_item->rmap_list;
1264		remove_rmap_item_from_tree(rmap_item);
1265		free_rmap_item(rmap_item);
1266	}
1267
1268	rmap_item = alloc_rmap_item();
1269	if (rmap_item) {
1270		/* It has already been zeroed */
1271		rmap_item->mm = mm_slot->mm;
1272		rmap_item->address = addr;
1273		rmap_item->rmap_list = *rmap_list;
1274		*rmap_list = rmap_item;
1275	}
1276	return rmap_item;
1277}
1278
1279static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1280{
1281	struct mm_struct *mm;
1282	struct mm_slot *slot;
1283	struct vm_area_struct *vma;
1284	struct rmap_item *rmap_item;
 
1285
1286	if (list_empty(&ksm_mm_head.mm_list))
1287		return NULL;
1288
1289	slot = ksm_scan.mm_slot;
1290	if (slot == &ksm_mm_head) {
1291		/*
1292		 * A number of pages can hang around indefinitely on per-cpu
1293		 * pagevecs, raised page count preventing write_protect_page
1294		 * from merging them.  Though it doesn't really matter much,
1295		 * it is puzzling to see some stuck in pages_volatile until
1296		 * other activity jostles them out, and they also prevented
1297		 * LTP's KSM test from succeeding deterministically; so drain
1298		 * them here (here rather than on entry to ksm_do_scan(),
1299		 * so we don't IPI too often when pages_to_scan is set low).
1300		 */
1301		lru_add_drain_all();
1302
1303		root_unstable_tree = RB_ROOT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304
1305		spin_lock(&ksm_mmlist_lock);
1306		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1307		ksm_scan.mm_slot = slot;
1308		spin_unlock(&ksm_mmlist_lock);
1309		/*
1310		 * Although we tested list_empty() above, a racing __ksm_exit
1311		 * of the last mm on the list may have removed it since then.
1312		 */
1313		if (slot == &ksm_mm_head)
1314			return NULL;
1315next_mm:
1316		ksm_scan.address = 0;
1317		ksm_scan.rmap_list = &slot->rmap_list;
1318	}
1319
1320	mm = slot->mm;
1321	down_read(&mm->mmap_sem);
1322	if (ksm_test_exit(mm))
1323		vma = NULL;
1324	else
1325		vma = find_vma(mm, ksm_scan.address);
1326
1327	for (; vma; vma = vma->vm_next) {
1328		if (!(vma->vm_flags & VM_MERGEABLE))
1329			continue;
1330		if (ksm_scan.address < vma->vm_start)
1331			ksm_scan.address = vma->vm_start;
1332		if (!vma->anon_vma)
1333			ksm_scan.address = vma->vm_end;
1334
1335		while (ksm_scan.address < vma->vm_end) {
1336			if (ksm_test_exit(mm))
1337				break;
1338			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1339			if (IS_ERR_OR_NULL(*page)) {
1340				ksm_scan.address += PAGE_SIZE;
1341				cond_resched();
1342				continue;
1343			}
1344			if (PageAnon(*page) ||
1345			    page_trans_compound_anon(*page)) {
1346				flush_anon_page(vma, *page, ksm_scan.address);
1347				flush_dcache_page(*page);
1348				rmap_item = get_next_rmap_item(slot,
1349					ksm_scan.rmap_list, ksm_scan.address);
1350				if (rmap_item) {
1351					ksm_scan.rmap_list =
1352							&rmap_item->rmap_list;
1353					ksm_scan.address += PAGE_SIZE;
1354				} else
1355					put_page(*page);
1356				up_read(&mm->mmap_sem);
1357				return rmap_item;
1358			}
1359			put_page(*page);
1360			ksm_scan.address += PAGE_SIZE;
1361			cond_resched();
1362		}
1363	}
1364
1365	if (ksm_test_exit(mm)) {
1366		ksm_scan.address = 0;
1367		ksm_scan.rmap_list = &slot->rmap_list;
1368	}
1369	/*
1370	 * Nuke all the rmap_items that are above this current rmap:
1371	 * because there were no VM_MERGEABLE vmas with such addresses.
1372	 */
1373	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1374
1375	spin_lock(&ksm_mmlist_lock);
1376	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1377						struct mm_slot, mm_list);
1378	if (ksm_scan.address == 0) {
1379		/*
1380		 * We've completed a full scan of all vmas, holding mmap_sem
1381		 * throughout, and found no VM_MERGEABLE: so do the same as
1382		 * __ksm_exit does to remove this mm from all our lists now.
1383		 * This applies either when cleaning up after __ksm_exit
1384		 * (but beware: we can reach here even before __ksm_exit),
1385		 * or when all VM_MERGEABLE areas have been unmapped (and
1386		 * mmap_sem then protects against race with MADV_MERGEABLE).
1387		 */
1388		hlist_del(&slot->link);
1389		list_del(&slot->mm_list);
1390		spin_unlock(&ksm_mmlist_lock);
1391
1392		free_mm_slot(slot);
1393		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1394		up_read(&mm->mmap_sem);
1395		mmdrop(mm);
1396	} else {
 
 
 
 
 
 
 
 
1397		spin_unlock(&ksm_mmlist_lock);
1398		up_read(&mm->mmap_sem);
1399	}
1400
1401	/* Repeat until we've completed scanning the whole list */
1402	slot = ksm_scan.mm_slot;
1403	if (slot != &ksm_mm_head)
1404		goto next_mm;
1405
1406	ksm_scan.seqnr++;
1407	return NULL;
1408}
1409
1410/**
1411 * ksm_do_scan  - the ksm scanner main worker function.
1412 * @scan_npages - number of pages we want to scan before we return.
1413 */
1414static void ksm_do_scan(unsigned int scan_npages)
1415{
1416	struct rmap_item *rmap_item;
1417	struct page *uninitialized_var(page);
1418
1419	while (scan_npages-- && likely(!freezing(current))) {
1420		cond_resched();
1421		rmap_item = scan_get_next_rmap_item(&page);
1422		if (!rmap_item)
1423			return;
1424		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1425			cmp_and_merge_page(page, rmap_item);
1426		put_page(page);
1427	}
1428}
1429
1430static int ksmd_should_run(void)
1431{
1432	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1433}
1434
1435static int ksm_scan_thread(void *nothing)
1436{
 
 
1437	set_freezable();
1438	set_user_nice(current, 5);
1439
1440	while (!kthread_should_stop()) {
1441		mutex_lock(&ksm_thread_mutex);
 
1442		if (ksmd_should_run())
1443			ksm_do_scan(ksm_thread_pages_to_scan);
1444		mutex_unlock(&ksm_thread_mutex);
1445
1446		try_to_freeze();
1447
1448		if (ksmd_should_run()) {
1449			schedule_timeout_interruptible(
1450				msecs_to_jiffies(ksm_thread_sleep_millisecs));
 
 
1451		} else {
1452			wait_event_freezable(ksm_thread_wait,
1453				ksmd_should_run() || kthread_should_stop());
1454		}
1455	}
1456	return 0;
1457}
1458
1459int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1460		unsigned long end, int advice, unsigned long *vm_flags)
1461{
1462	struct mm_struct *mm = vma->vm_mm;
1463	int err;
1464
1465	switch (advice) {
1466	case MADV_MERGEABLE:
1467		/*
1468		 * Be somewhat over-protective for now!
1469		 */
1470		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1471				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1472				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1473				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1474			return 0;		/* just ignore the advice */
1475
 
 
 
 
 
 
 
 
 
 
 
 
1476		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1477			err = __ksm_enter(mm);
1478			if (err)
1479				return err;
1480		}
1481
1482		*vm_flags |= VM_MERGEABLE;
1483		break;
1484
1485	case MADV_UNMERGEABLE:
1486		if (!(*vm_flags & VM_MERGEABLE))
1487			return 0;		/* just ignore the advice */
1488
1489		if (vma->anon_vma) {
1490			err = unmerge_ksm_pages(vma, start, end);
1491			if (err)
1492				return err;
1493		}
1494
1495		*vm_flags &= ~VM_MERGEABLE;
1496		break;
1497	}
1498
1499	return 0;
1500}
 
1501
1502int __ksm_enter(struct mm_struct *mm)
1503{
1504	struct mm_slot *mm_slot;
1505	int needs_wakeup;
1506
1507	mm_slot = alloc_mm_slot();
1508	if (!mm_slot)
1509		return -ENOMEM;
1510
1511	/* Check ksm_run too?  Would need tighter locking */
1512	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1513
1514	spin_lock(&ksm_mmlist_lock);
1515	insert_to_mm_slots_hash(mm, mm_slot);
1516	/*
1517	 * Insert just behind the scanning cursor, to let the area settle
 
1518	 * down a little; when fork is followed by immediate exec, we don't
1519	 * want ksmd to waste time setting up and tearing down an rmap_list.
 
 
 
 
1520	 */
1521	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
 
 
 
1522	spin_unlock(&ksm_mmlist_lock);
1523
1524	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1525	atomic_inc(&mm->mm_count);
1526
1527	if (needs_wakeup)
1528		wake_up_interruptible(&ksm_thread_wait);
1529
1530	return 0;
1531}
1532
1533void __ksm_exit(struct mm_struct *mm)
1534{
1535	struct mm_slot *mm_slot;
1536	int easy_to_free = 0;
1537
1538	/*
1539	 * This process is exiting: if it's straightforward (as is the
1540	 * case when ksmd was never running), free mm_slot immediately.
1541	 * But if it's at the cursor or has rmap_items linked to it, use
1542	 * mmap_sem to synchronize with any break_cows before pagetables
1543	 * are freed, and leave the mm_slot on the list for ksmd to free.
1544	 * Beware: ksm may already have noticed it exiting and freed the slot.
1545	 */
1546
1547	spin_lock(&ksm_mmlist_lock);
1548	mm_slot = get_mm_slot(mm);
1549	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1550		if (!mm_slot->rmap_list) {
1551			hlist_del(&mm_slot->link);
1552			list_del(&mm_slot->mm_list);
1553			easy_to_free = 1;
1554		} else {
1555			list_move(&mm_slot->mm_list,
1556				  &ksm_scan.mm_slot->mm_list);
1557		}
1558	}
1559	spin_unlock(&ksm_mmlist_lock);
1560
1561	if (easy_to_free) {
1562		free_mm_slot(mm_slot);
1563		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1564		mmdrop(mm);
1565	} else if (mm_slot) {
1566		down_write(&mm->mmap_sem);
1567		up_write(&mm->mmap_sem);
1568	}
1569}
1570
1571struct page *ksm_does_need_to_copy(struct page *page,
1572			struct vm_area_struct *vma, unsigned long address)
1573{
 
1574	struct page *new_page;
1575
 
 
 
 
 
 
 
 
 
 
 
 
 
1576	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
1577	if (new_page) {
1578		copy_user_highpage(new_page, page, address, vma);
1579
1580		SetPageDirty(new_page);
1581		__SetPageUptodate(new_page);
1582		SetPageSwapBacked(new_page);
1583		__set_page_locked(new_page);
1584
1585		if (page_evictable(new_page, vma))
1586			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1587		else
1588			add_page_to_unevictable_list(new_page);
1589	}
1590
1591	return new_page;
1592}
1593
1594int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1595			unsigned long *vm_flags)
1596{
1597	struct stable_node *stable_node;
1598	struct rmap_item *rmap_item;
1599	struct hlist_node *hlist;
1600	unsigned int mapcount = page_mapcount(page);
1601	int referenced = 0;
1602	int search_new_forks = 0;
1603
1604	VM_BUG_ON(!PageKsm(page));
1605	VM_BUG_ON(!PageLocked(page));
 
 
 
 
 
1606
1607	stable_node = page_stable_node(page);
1608	if (!stable_node)
1609		return 0;
1610again:
1611	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1612		struct anon_vma *anon_vma = rmap_item->anon_vma;
1613		struct anon_vma_chain *vmac;
1614		struct vm_area_struct *vma;
1615
1616		anon_vma_lock(anon_vma);
1617		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
 
 
 
 
 
1618			vma = vmac->vma;
1619			if (rmap_item->address < vma->vm_start ||
1620			    rmap_item->address >= vma->vm_end)
 
 
 
1621				continue;
1622			/*
1623			 * Initially we examine only the vma which covers this
1624			 * rmap_item; but later, if there is still work to do,
1625			 * we examine covering vmas in other mms: in case they
1626			 * were forked from the original since ksmd passed.
1627			 */
1628			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1629				continue;
1630
1631			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1632				continue;
1633
1634			referenced += page_referenced_one(page, vma,
1635				rmap_item->address, &mapcount, vm_flags);
1636			if (!search_new_forks || !mapcount)
1637				break;
 
 
 
 
1638		}
1639		anon_vma_unlock(anon_vma);
1640		if (!mapcount)
1641			goto out;
1642	}
1643	if (!search_new_forks++)
1644		goto again;
1645out:
1646	return referenced;
1647}
1648
1649int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
 
1650{
1651	struct stable_node *stable_node;
1652	struct hlist_node *hlist;
1653	struct rmap_item *rmap_item;
1654	int ret = SWAP_AGAIN;
1655	int search_new_forks = 0;
1656
1657	VM_BUG_ON(!PageKsm(page));
1658	VM_BUG_ON(!PageLocked(page));
 
1659
1660	stable_node = page_stable_node(page);
1661	if (!stable_node)
1662		return SWAP_FAIL;
1663again:
1664	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1665		struct anon_vma *anon_vma = rmap_item->anon_vma;
1666		struct anon_vma_chain *vmac;
1667		struct vm_area_struct *vma;
 
 
 
 
 
 
 
1668
1669		anon_vma_lock(anon_vma);
1670		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1671			vma = vmac->vma;
1672			if (rmap_item->address < vma->vm_start ||
1673			    rmap_item->address >= vma->vm_end)
1674				continue;
1675			/*
1676			 * Initially we examine only the vma which covers this
1677			 * rmap_item; but later, if there is still work to do,
1678			 * we examine covering vmas in other mms: in case they
1679			 * were forked from the original since ksmd passed.
1680			 */
1681			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1682				continue;
1683
1684			ret = try_to_unmap_one(page, vma,
1685					rmap_item->address, flags);
1686			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1687				anon_vma_unlock(anon_vma);
1688				goto out;
1689			}
1690		}
1691		anon_vma_unlock(anon_vma);
1692	}
1693	if (!search_new_forks++)
1694		goto again;
1695out:
1696	return ret;
1697}
1698
1699#ifdef CONFIG_MIGRATION
1700int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1701		  struct vm_area_struct *, unsigned long, void *), void *arg)
1702{
1703	struct stable_node *stable_node;
1704	struct hlist_node *hlist;
1705	struct rmap_item *rmap_item;
1706	int ret = SWAP_AGAIN;
1707	int search_new_forks = 0;
1708
1709	VM_BUG_ON(!PageKsm(page));
1710	VM_BUG_ON(!PageLocked(page));
1711
1712	stable_node = page_stable_node(page);
1713	if (!stable_node)
1714		return ret;
1715again:
1716	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1717		struct anon_vma *anon_vma = rmap_item->anon_vma;
1718		struct anon_vma_chain *vmac;
1719		struct vm_area_struct *vma;
1720
1721		anon_vma_lock(anon_vma);
1722		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1723			vma = vmac->vma;
1724			if (rmap_item->address < vma->vm_start ||
1725			    rmap_item->address >= vma->vm_end)
1726				continue;
1727			/*
1728			 * Initially we examine only the vma which covers this
1729			 * rmap_item; but later, if there is still work to do,
1730			 * we examine covering vmas in other mms: in case they
1731			 * were forked from the original since ksmd passed.
1732			 */
1733			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1734				continue;
1735
1736			ret = rmap_one(page, vma, rmap_item->address, arg);
1737			if (ret != SWAP_AGAIN) {
1738				anon_vma_unlock(anon_vma);
1739				goto out;
1740			}
1741		}
1742		anon_vma_unlock(anon_vma);
1743	}
1744	if (!search_new_forks++)
1745		goto again;
1746out:
1747	return ret;
1748}
1749
1750void ksm_migrate_page(struct page *newpage, struct page *oldpage)
 
 
 
1751{
1752	struct stable_node *stable_node;
 
1753
1754	VM_BUG_ON(!PageLocked(oldpage));
1755	VM_BUG_ON(!PageLocked(newpage));
1756	VM_BUG_ON(newpage->mapping != oldpage->mapping);
 
 
1757
1758	stable_node = page_stable_node(newpage);
1759	if (stable_node) {
1760		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1761		stable_node->kpfn = page_to_pfn(newpage);
1762	}
 
 
 
 
 
1763}
1764#endif /* CONFIG_MIGRATION */
1765
1766#ifdef CONFIG_MEMORY_HOTREMOVE
1767static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1768						 unsigned long end_pfn)
1769{
 
1770	struct rb_node *node;
 
1771
1772	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1773		struct stable_node *stable_node;
1774
1775		stable_node = rb_entry(node, struct stable_node, node);
 
 
 
 
 
 
 
 
 
 
 
1776		if (stable_node->kpfn >= start_pfn &&
1777		    stable_node->kpfn < end_pfn)
1778			return stable_node;
 
1779	}
1780	return NULL;
1781}
1782
1783static int ksm_memory_callback(struct notifier_block *self,
1784			       unsigned long action, void *arg)
1785{
1786	struct memory_notify *mn = arg;
1787	struct stable_node *stable_node;
1788
1789	switch (action) {
1790	case MEM_GOING_OFFLINE:
1791		/*
1792		 * Keep it very simple for now: just lock out ksmd and
1793		 * MADV_UNMERGEABLE while any memory is going offline.
1794		 * mutex_lock_nested() is necessary because lockdep was alarmed
1795		 * that here we take ksm_thread_mutex inside notifier chain
1796		 * mutex, and later take notifier chain mutex inside
1797		 * ksm_thread_mutex to unlock it.   But that's safe because both
1798		 * are inside mem_hotplug_mutex.
1799		 */
1800		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
 
 
1801		break;
1802
1803	case MEM_OFFLINE:
1804		/*
1805		 * Most of the work is done by page migration; but there might
1806		 * be a few stable_nodes left over, still pointing to struct
1807		 * pages which have been offlined: prune those from the tree.
 
 
1808		 */
1809		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1810					mn->start_pfn + mn->nr_pages)) != NULL)
1811			remove_node_from_stable_tree(stable_node);
1812		/* fallthrough */
1813
1814	case MEM_CANCEL_OFFLINE:
 
 
1815		mutex_unlock(&ksm_thread_mutex);
 
 
 
1816		break;
1817	}
1818	return NOTIFY_OK;
1819}
 
 
 
 
1820#endif /* CONFIG_MEMORY_HOTREMOVE */
1821
1822#ifdef CONFIG_SYSFS
1823/*
1824 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1825 */
1826
1827#define KSM_ATTR_RO(_name) \
1828	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1829#define KSM_ATTR(_name) \
1830	static struct kobj_attribute _name##_attr = \
1831		__ATTR(_name, 0644, _name##_show, _name##_store)
1832
1833static ssize_t sleep_millisecs_show(struct kobject *kobj,
1834				    struct kobj_attribute *attr, char *buf)
1835{
1836	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1837}
1838
1839static ssize_t sleep_millisecs_store(struct kobject *kobj,
1840				     struct kobj_attribute *attr,
1841				     const char *buf, size_t count)
1842{
1843	unsigned long msecs;
1844	int err;
1845
1846	err = strict_strtoul(buf, 10, &msecs);
1847	if (err || msecs > UINT_MAX)
1848		return -EINVAL;
1849
1850	ksm_thread_sleep_millisecs = msecs;
 
1851
1852	return count;
1853}
1854KSM_ATTR(sleep_millisecs);
1855
1856static ssize_t pages_to_scan_show(struct kobject *kobj,
1857				  struct kobj_attribute *attr, char *buf)
1858{
1859	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1860}
1861
1862static ssize_t pages_to_scan_store(struct kobject *kobj,
1863				   struct kobj_attribute *attr,
1864				   const char *buf, size_t count)
1865{
 
1866	int err;
1867	unsigned long nr_pages;
1868
1869	err = strict_strtoul(buf, 10, &nr_pages);
1870	if (err || nr_pages > UINT_MAX)
1871		return -EINVAL;
1872
1873	ksm_thread_pages_to_scan = nr_pages;
1874
1875	return count;
1876}
1877KSM_ATTR(pages_to_scan);
1878
1879static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1880			char *buf)
1881{
1882	return sprintf(buf, "%u\n", ksm_run);
1883}
1884
1885static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1886			 const char *buf, size_t count)
1887{
 
1888	int err;
1889	unsigned long flags;
1890
1891	err = strict_strtoul(buf, 10, &flags);
1892	if (err || flags > UINT_MAX)
1893		return -EINVAL;
1894	if (flags > KSM_RUN_UNMERGE)
1895		return -EINVAL;
1896
1897	/*
1898	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1899	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1900	 * breaking COW to free the pages_shared (but leaves mm_slots
1901	 * on the list for when ksmd may be set running again).
1902	 */
1903
1904	mutex_lock(&ksm_thread_mutex);
 
1905	if (ksm_run != flags) {
1906		ksm_run = flags;
1907		if (flags & KSM_RUN_UNMERGE) {
1908			int oom_score_adj;
1909
1910			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1911			err = unmerge_and_remove_all_rmap_items();
1912			compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1913								oom_score_adj);
1914			if (err) {
1915				ksm_run = KSM_RUN_STOP;
1916				count = err;
1917			}
1918		}
1919	}
1920	mutex_unlock(&ksm_thread_mutex);
1921
1922	if (flags & KSM_RUN_MERGE)
1923		wake_up_interruptible(&ksm_thread_wait);
1924
1925	return count;
1926}
1927KSM_ATTR(run);
1928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929static ssize_t pages_shared_show(struct kobject *kobj,
1930				 struct kobj_attribute *attr, char *buf)
1931{
1932	return sprintf(buf, "%lu\n", ksm_pages_shared);
1933}
1934KSM_ATTR_RO(pages_shared);
1935
1936static ssize_t pages_sharing_show(struct kobject *kobj,
1937				  struct kobj_attribute *attr, char *buf)
1938{
1939	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1940}
1941KSM_ATTR_RO(pages_sharing);
1942
1943static ssize_t pages_unshared_show(struct kobject *kobj,
1944				   struct kobj_attribute *attr, char *buf)
1945{
1946	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1947}
1948KSM_ATTR_RO(pages_unshared);
1949
1950static ssize_t pages_volatile_show(struct kobject *kobj,
1951				   struct kobj_attribute *attr, char *buf)
1952{
1953	long ksm_pages_volatile;
1954
1955	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1956				- ksm_pages_sharing - ksm_pages_unshared;
1957	/*
1958	 * It was not worth any locking to calculate that statistic,
1959	 * but it might therefore sometimes be negative: conceal that.
1960	 */
1961	if (ksm_pages_volatile < 0)
1962		ksm_pages_volatile = 0;
1963	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1964}
1965KSM_ATTR_RO(pages_volatile);
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967static ssize_t full_scans_show(struct kobject *kobj,
1968			       struct kobj_attribute *attr, char *buf)
1969{
1970	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1971}
1972KSM_ATTR_RO(full_scans);
1973
1974static struct attribute *ksm_attrs[] = {
1975	&sleep_millisecs_attr.attr,
1976	&pages_to_scan_attr.attr,
1977	&run_attr.attr,
1978	&pages_shared_attr.attr,
1979	&pages_sharing_attr.attr,
1980	&pages_unshared_attr.attr,
1981	&pages_volatile_attr.attr,
1982	&full_scans_attr.attr,
 
 
 
 
 
 
 
 
1983	NULL,
1984};
1985
1986static struct attribute_group ksm_attr_group = {
1987	.attrs = ksm_attrs,
1988	.name = "ksm",
1989};
1990#endif /* CONFIG_SYSFS */
1991
1992static int __init ksm_init(void)
1993{
1994	struct task_struct *ksm_thread;
1995	int err;
1996
 
 
 
 
 
1997	err = ksm_slab_init();
1998	if (err)
1999		goto out;
2000
2001	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2002	if (IS_ERR(ksm_thread)) {
2003		printk(KERN_ERR "ksm: creating kthread failed\n");
2004		err = PTR_ERR(ksm_thread);
2005		goto out_free;
2006	}
2007
2008#ifdef CONFIG_SYSFS
2009	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2010	if (err) {
2011		printk(KERN_ERR "ksm: register sysfs failed\n");
2012		kthread_stop(ksm_thread);
2013		goto out_free;
2014	}
2015#else
2016	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2017
2018#endif /* CONFIG_SYSFS */
2019
2020#ifdef CONFIG_MEMORY_HOTREMOVE
2021	/*
2022	 * Choose a high priority since the callback takes ksm_thread_mutex:
2023	 * later callbacks could only be taking locks which nest within that.
2024	 */
2025	hotplug_memory_notifier(ksm_memory_callback, 100);
2026#endif
2027	return 0;
2028
2029out_free:
2030	ksm_slab_free();
2031out:
2032	return err;
2033}
2034module_init(ksm_init)