Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Frontswap frontend
  4 *
  5 * This code provides the generic "frontend" layer to call a matching
  6 * "backend" driver implementation of frontswap.  See
  7 * Documentation/vm/frontswap.rst for more information.
  8 *
  9 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
 10 * Author: Dan Magenheimer
 
 
 11 */
 12
 
 13#include <linux/mman.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 
 16#include <linux/security.h>
 
 17#include <linux/module.h>
 
 18#include <linux/debugfs.h>
 19#include <linux/frontswap.h>
 20#include <linux/swapfile.h>
 21
 22DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
 23
 24/*
 25 * frontswap_ops are added by frontswap_register_ops, and provide the
 26 * frontswap "backend" implementation functions.  Multiple implementations
 27 * may be registered, but implementations can never deregister.  This
 28 * is a simple singly-linked list of all registered implementations.
 29 */
 30static struct frontswap_ops *frontswap_ops __read_mostly;
 31
 32#define for_each_frontswap_ops(ops)		\
 33	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
 
 
 
 
 
 34
 35/*
 36 * If enabled, frontswap_store will return failure even on success.  As
 37 * a result, the swap subsystem will always write the page to swap, in
 38 * effect converting frontswap into a writethrough cache.  In this mode,
 39 * there is no direct reduction in swap writes, but a frontswap backend
 40 * can unilaterally "reclaim" any pages in use with no data loss, thus
 41 * providing increases control over maximum memory usage due to frontswap.
 42 */
 43static bool frontswap_writethrough_enabled __read_mostly;
 44
 45/*
 46 * If enabled, the underlying tmem implementation is capable of doing
 47 * exclusive gets, so frontswap_load, on a successful tmem_get must
 48 * mark the page as no longer in frontswap AND mark it dirty.
 49 */
 50static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 51
 52#ifdef CONFIG_DEBUG_FS
 53/*
 54 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 55 * properly configured).  These are for information only so are not protected
 56 * against increment races.
 57 */
 58static u64 frontswap_loads;
 59static u64 frontswap_succ_stores;
 60static u64 frontswap_failed_stores;
 61static u64 frontswap_invalidates;
 62
 63static inline void inc_frontswap_loads(void)
 64{
 65	data_race(frontswap_loads++);
 66}
 67static inline void inc_frontswap_succ_stores(void)
 68{
 69	data_race(frontswap_succ_stores++);
 70}
 71static inline void inc_frontswap_failed_stores(void)
 72{
 73	data_race(frontswap_failed_stores++);
 74}
 75static inline void inc_frontswap_invalidates(void)
 76{
 77	data_race(frontswap_invalidates++);
 78}
 79#else
 80static inline void inc_frontswap_loads(void) { }
 81static inline void inc_frontswap_succ_stores(void) { }
 82static inline void inc_frontswap_failed_stores(void) { }
 83static inline void inc_frontswap_invalidates(void) { }
 84#endif
 85
 86/*
 87 * Due to the asynchronous nature of the backends loading potentially
 88 * _after_ the swap system has been activated, we have chokepoints
 89 * on all frontswap functions to not call the backend until the backend
 90 * has registered.
 91 *
 92 * This would not guards us against the user deciding to call swapoff right as
 93 * we are calling the backend to initialize (so swapon is in action).
 94 * Fortunately for us, the swapon_mutex has been taken by the callee so we are
 95 * OK. The other scenario where calls to frontswap_store (called via
 96 * swap_writepage) is racing with frontswap_invalidate_area (called via
 97 * swapoff) is again guarded by the swap subsystem.
 98 *
 99 * While no backend is registered all calls to frontswap_[store|load|
100 * invalidate_area|invalidate_page] are ignored or fail.
101 *
102 * The time between the backend being registered and the swap file system
103 * calling the backend (via the frontswap_* functions) is indeterminate as
104 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
105 * That is OK as we are comfortable missing some of these calls to the newly
106 * registered backend.
107 *
108 * Obviously the opposite (unloading the backend) must be done after all
109 * the frontswap_[store|load|invalidate_area|invalidate_page] start
110 * ignoring or failing the requests.  However, there is currently no way
111 * to unload a backend once it is registered.
112 */
113
114/*
115 * Register operations for frontswap
 
116 */
117void frontswap_register_ops(struct frontswap_ops *ops)
118{
119	DECLARE_BITMAP(a, MAX_SWAPFILES);
120	DECLARE_BITMAP(b, MAX_SWAPFILES);
121	struct swap_info_struct *si;
122	unsigned int i;
123
124	bitmap_zero(a, MAX_SWAPFILES);
125	bitmap_zero(b, MAX_SWAPFILES);
126
127	spin_lock(&swap_lock);
128	plist_for_each_entry(si, &swap_active_head, list) {
129		if (!WARN_ON(!si->frontswap_map))
130			set_bit(si->type, a);
131	}
132	spin_unlock(&swap_lock);
133
134	/* the new ops needs to know the currently active swap devices */
135	for_each_set_bit(i, a, MAX_SWAPFILES)
136		ops->init(i);
137
138	/*
139	 * Setting frontswap_ops must happen after the ops->init() calls
140	 * above; cmpxchg implies smp_mb() which will ensure the init is
141	 * complete at this point.
142	 */
143	do {
144		ops->next = frontswap_ops;
145	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
146
147	static_branch_inc(&frontswap_enabled_key);
148
149	spin_lock(&swap_lock);
150	plist_for_each_entry(si, &swap_active_head, list) {
151		if (si->frontswap_map)
152			set_bit(si->type, b);
153	}
154	spin_unlock(&swap_lock);
155
156	/*
157	 * On the very unlikely chance that a swap device was added or
158	 * removed between setting the "a" list bits and the ops init
159	 * calls, we re-check and do init or invalidate for any changed
160	 * bits.
161	 */
162	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
163		for (i = 0; i < MAX_SWAPFILES; i++) {
164			if (!test_bit(i, a) && test_bit(i, b))
165				ops->init(i);
166			else if (test_bit(i, a) && !test_bit(i, b))
167				ops->invalidate_area(i);
168		}
169	}
170}
171EXPORT_SYMBOL(frontswap_register_ops);
172
173/*
174 * Enable/disable frontswap writethrough (see above).
175 */
176void frontswap_writethrough(bool enable)
177{
178	frontswap_writethrough_enabled = enable;
179}
180EXPORT_SYMBOL(frontswap_writethrough);
181
182/*
183 * Enable/disable frontswap exclusive gets (see above).
184 */
185void frontswap_tmem_exclusive_gets(bool enable)
186{
187	frontswap_tmem_exclusive_gets_enabled = enable;
188}
189EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
190
191/*
192 * Called when a swap device is swapon'd.
193 */
194void __frontswap_init(unsigned type, unsigned long *map)
195{
196	struct swap_info_struct *sis = swap_info[type];
197	struct frontswap_ops *ops;
198
199	VM_BUG_ON(sis == NULL);
200
201	/*
202	 * p->frontswap is a bitmap that we MUST have to figure out which page
203	 * has gone in frontswap. Without it there is no point of continuing.
204	 */
205	if (WARN_ON(!map))
206		return;
207	/*
208	 * Irregardless of whether the frontswap backend has been loaded
209	 * before this function or it will be later, we _MUST_ have the
210	 * p->frontswap set to something valid to work properly.
211	 */
212	frontswap_map_set(sis, map);
213
214	for_each_frontswap_ops(ops)
215		ops->init(type);
216}
217EXPORT_SYMBOL(__frontswap_init);
218
219bool __frontswap_test(struct swap_info_struct *sis,
220				pgoff_t offset)
221{
222	if (sis->frontswap_map)
223		return test_bit(offset, sis->frontswap_map);
224	return false;
225}
226EXPORT_SYMBOL(__frontswap_test);
227
228static inline void __frontswap_set(struct swap_info_struct *sis,
229				   pgoff_t offset)
230{
231	set_bit(offset, sis->frontswap_map);
232	atomic_inc(&sis->frontswap_pages);
233}
234
235static inline void __frontswap_clear(struct swap_info_struct *sis,
236				     pgoff_t offset)
237{
238	clear_bit(offset, sis->frontswap_map);
239	atomic_dec(&sis->frontswap_pages);
240}
241
242/*
243 * "Store" data from a page to frontswap and associate it with the page's
244 * swaptype and offset.  Page must be locked and in the swap cache.
245 * If frontswap already contains a page with matching swaptype and
246 * offset, the frontswap implementation may either overwrite the data and
247 * return success or invalidate the page from frontswap and return failure.
248 */
249int __frontswap_store(struct page *page)
250{
251	int ret = -1;
252	swp_entry_t entry = { .val = page_private(page), };
253	int type = swp_type(entry);
254	struct swap_info_struct *sis = swap_info[type];
255	pgoff_t offset = swp_offset(entry);
256	struct frontswap_ops *ops;
257
258	VM_BUG_ON(!frontswap_ops);
259	VM_BUG_ON(!PageLocked(page));
260	VM_BUG_ON(sis == NULL);
261
262	/*
263	 * If a dup, we must remove the old page first; we can't leave the
264	 * old page no matter if the store of the new page succeeds or fails,
265	 * and we can't rely on the new page replacing the old page as we may
266	 * not store to the same implementation that contains the old page.
267	 */
268	if (__frontswap_test(sis, offset)) {
269		__frontswap_clear(sis, offset);
270		for_each_frontswap_ops(ops)
271			ops->invalidate_page(type, offset);
272	}
273
274	/* Try to store in each implementation, until one succeeds. */
275	for_each_frontswap_ops(ops) {
276		ret = ops->store(type, offset, page);
277		if (!ret) /* successful store */
278			break;
279	}
280	if (ret == 0) {
281		__frontswap_set(sis, offset);
282		inc_frontswap_succ_stores();
283	} else {
 
 
 
 
 
 
 
 
 
 
284		inc_frontswap_failed_stores();
285	}
286	if (frontswap_writethrough_enabled)
287		/* report failure so swap also writes to swap device */
288		ret = -1;
289	return ret;
290}
291EXPORT_SYMBOL(__frontswap_store);
292
293/*
294 * "Get" data from frontswap associated with swaptype and offset that were
295 * specified when the data was put to frontswap and use it to fill the
296 * specified page with data. Page must be locked and in the swap cache.
297 */
298int __frontswap_load(struct page *page)
299{
300	int ret = -1;
301	swp_entry_t entry = { .val = page_private(page), };
302	int type = swp_type(entry);
303	struct swap_info_struct *sis = swap_info[type];
304	pgoff_t offset = swp_offset(entry);
305	struct frontswap_ops *ops;
306
307	VM_BUG_ON(!frontswap_ops);
308	VM_BUG_ON(!PageLocked(page));
309	VM_BUG_ON(sis == NULL);
310
311	if (!__frontswap_test(sis, offset))
312		return -1;
313
314	/* Try loading from each implementation, until one succeeds. */
315	for_each_frontswap_ops(ops) {
316		ret = ops->load(type, offset, page);
317		if (!ret) /* successful load */
318			break;
319	}
320	if (ret == 0) {
321		inc_frontswap_loads();
322		if (frontswap_tmem_exclusive_gets_enabled) {
323			SetPageDirty(page);
324			__frontswap_clear(sis, offset);
325		}
326	}
327	return ret;
328}
329EXPORT_SYMBOL(__frontswap_load);
330
331/*
332 * Invalidate any data from frontswap associated with the specified swaptype
333 * and offset so that a subsequent "get" will fail.
334 */
335void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
336{
337	struct swap_info_struct *sis = swap_info[type];
338	struct frontswap_ops *ops;
339
340	VM_BUG_ON(!frontswap_ops);
341	VM_BUG_ON(sis == NULL);
342
343	if (!__frontswap_test(sis, offset))
344		return;
345
346	for_each_frontswap_ops(ops)
347		ops->invalidate_page(type, offset);
348	__frontswap_clear(sis, offset);
349	inc_frontswap_invalidates();
350}
351EXPORT_SYMBOL(__frontswap_invalidate_page);
352
353/*
354 * Invalidate all data from frontswap associated with all offsets for the
355 * specified swaptype.
356 */
357void __frontswap_invalidate_area(unsigned type)
358{
359	struct swap_info_struct *sis = swap_info[type];
360	struct frontswap_ops *ops;
361
362	VM_BUG_ON(!frontswap_ops);
363	VM_BUG_ON(sis == NULL);
364
 
365	if (sis->frontswap_map == NULL)
366		return;
367
368	for_each_frontswap_ops(ops)
369		ops->invalidate_area(type);
370	atomic_set(&sis->frontswap_pages, 0);
371	bitmap_zero(sis->frontswap_map, sis->max);
372}
373EXPORT_SYMBOL(__frontswap_invalidate_area);
374
375static unsigned long __frontswap_curr_pages(void)
376{
377	unsigned long totalpages = 0;
378	struct swap_info_struct *si = NULL;
379
380	assert_spin_locked(&swap_lock);
381	plist_for_each_entry(si, &swap_active_head, list)
382		totalpages += atomic_read(&si->frontswap_pages);
383	return totalpages;
384}
385
386static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
387					int *swapid)
388{
389	int ret = -EINVAL;
390	struct swap_info_struct *si = NULL;
391	int si_frontswap_pages;
392	unsigned long total_pages_to_unuse = total;
393	unsigned long pages = 0, pages_to_unuse = 0;
394
395	assert_spin_locked(&swap_lock);
396	plist_for_each_entry(si, &swap_active_head, list) {
397		si_frontswap_pages = atomic_read(&si->frontswap_pages);
398		if (total_pages_to_unuse < si_frontswap_pages) {
399			pages = pages_to_unuse = total_pages_to_unuse;
400		} else {
401			pages = si_frontswap_pages;
402			pages_to_unuse = 0; /* unuse all */
403		}
404		/* ensure there is enough RAM to fetch pages from frontswap */
405		if (security_vm_enough_memory_mm(current->mm, pages)) {
406			ret = -ENOMEM;
407			continue;
408		}
409		vm_unacct_memory(pages);
410		*unused = pages_to_unuse;
411		*swapid = si->type;
412		ret = 0;
413		break;
414	}
415
416	return ret;
417}
418
419/*
420 * Used to check if it's necessary and feasible to unuse pages.
421 * Return 1 when nothing to do, 0 when need to shrink pages,
422 * error code when there is an error.
423 */
424static int __frontswap_shrink(unsigned long target_pages,
425				unsigned long *pages_to_unuse,
426				int *type)
427{
428	unsigned long total_pages = 0, total_pages_to_unuse;
429
430	assert_spin_locked(&swap_lock);
431
432	total_pages = __frontswap_curr_pages();
433	if (total_pages <= target_pages) {
434		/* Nothing to do */
435		*pages_to_unuse = 0;
436		return 1;
437	}
438	total_pages_to_unuse = total_pages - target_pages;
439	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
440}
441
442/*
443 * Frontswap, like a true swap device, may unnecessarily retain pages
444 * under certain circumstances; "shrink" frontswap is essentially a
445 * "partial swapoff" and works by calling try_to_unuse to attempt to
446 * unuse enough frontswap pages to attempt to -- subject to memory
447 * constraints -- reduce the number of pages in frontswap to the
448 * number given in the parameter target_pages.
449 */
450void frontswap_shrink(unsigned long target_pages)
451{
452	unsigned long pages_to_unuse = 0;
453	int type, ret;
 
 
 
 
454
455	/*
456	 * we don't want to hold swap_lock while doing a very
457	 * lengthy try_to_unuse, but swap_list may change
458	 * so restart scan from swap_active_head each time
459	 */
460	spin_lock(&swap_lock);
461	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462	spin_unlock(&swap_lock);
463	if (ret == 0)
464		try_to_unuse(type, true, pages_to_unuse);
 
 
465	return;
466}
467EXPORT_SYMBOL(frontswap_shrink);
468
469/*
470 * Count and return the number of frontswap pages across all
471 * swap devices.  This is exported so that backend drivers can
472 * determine current usage without reading debugfs.
473 */
474unsigned long frontswap_curr_pages(void)
475{
 
476	unsigned long totalpages = 0;
 
477
478	spin_lock(&swap_lock);
479	totalpages = __frontswap_curr_pages();
 
 
 
480	spin_unlock(&swap_lock);
481
482	return totalpages;
483}
484EXPORT_SYMBOL(frontswap_curr_pages);
485
486static int __init init_frontswap(void)
487{
488#ifdef CONFIG_DEBUG_FS
489	struct dentry *root = debugfs_create_dir("frontswap", NULL);
490	if (root == NULL)
491		return -ENXIO;
492	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
493	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
494	debugfs_create_u64("failed_stores", 0444, root,
495			   &frontswap_failed_stores);
496	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
 
497#endif
498	return 0;
499}
500
501module_init(init_frontswap);
v3.5.6
 
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/mman.h>
 16#include <linux/swap.h>
 17#include <linux/swapops.h>
 18#include <linux/proc_fs.h>
 19#include <linux/security.h>
 20#include <linux/capability.h>
 21#include <linux/module.h>
 22#include <linux/uaccess.h>
 23#include <linux/debugfs.h>
 24#include <linux/frontswap.h>
 25#include <linux/swapfile.h>
 26
 
 
 27/*
 28 * frontswap_ops is set by frontswap_register_ops to contain the pointers
 29 * to the frontswap "backend" implementation functions.
 
 
 30 */
 31static struct frontswap_ops frontswap_ops __read_mostly;
 32
 33/*
 34 * This global enablement flag reduces overhead on systems where frontswap_ops
 35 * has not been registered, so is preferred to the slower alternative: a
 36 * function call that checks a non-global.
 37 */
 38bool frontswap_enabled __read_mostly;
 39EXPORT_SYMBOL(frontswap_enabled);
 40
 41/*
 42 * If enabled, frontswap_store will return failure even on success.  As
 43 * a result, the swap subsystem will always write the page to swap, in
 44 * effect converting frontswap into a writethrough cache.  In this mode,
 45 * there is no direct reduction in swap writes, but a frontswap backend
 46 * can unilaterally "reclaim" any pages in use with no data loss, thus
 47 * providing increases control over maximum memory usage due to frontswap.
 48 */
 49static bool frontswap_writethrough_enabled __read_mostly;
 50
 
 
 
 
 
 
 
 51#ifdef CONFIG_DEBUG_FS
 52/*
 53 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 54 * properly configured).  These are for information only so are not protected
 55 * against increment races.
 56 */
 57static u64 frontswap_loads;
 58static u64 frontswap_succ_stores;
 59static u64 frontswap_failed_stores;
 60static u64 frontswap_invalidates;
 61
 62static inline void inc_frontswap_loads(void) {
 63	frontswap_loads++;
 
 64}
 65static inline void inc_frontswap_succ_stores(void) {
 66	frontswap_succ_stores++;
 
 67}
 68static inline void inc_frontswap_failed_stores(void) {
 69	frontswap_failed_stores++;
 
 70}
 71static inline void inc_frontswap_invalidates(void) {
 72	frontswap_invalidates++;
 
 73}
 74#else
 75static inline void inc_frontswap_loads(void) { }
 76static inline void inc_frontswap_succ_stores(void) { }
 77static inline void inc_frontswap_failed_stores(void) { }
 78static inline void inc_frontswap_invalidates(void) { }
 79#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80/*
 81 * Register operations for frontswap, returning previous thus allowing
 82 * detection of multiple backends and possible nesting.
 83 */
 84struct frontswap_ops frontswap_register_ops(struct frontswap_ops *ops)
 85{
 86	struct frontswap_ops old = frontswap_ops;
 
 
 
 
 
 
 87
 88	frontswap_ops = *ops;
 89	frontswap_enabled = true;
 90	return old;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91}
 92EXPORT_SYMBOL(frontswap_register_ops);
 93
 94/*
 95 * Enable/disable frontswap writethrough (see above).
 96 */
 97void frontswap_writethrough(bool enable)
 98{
 99	frontswap_writethrough_enabled = enable;
100}
101EXPORT_SYMBOL(frontswap_writethrough);
102
103/*
 
 
 
 
 
 
 
 
 
104 * Called when a swap device is swapon'd.
105 */
106void __frontswap_init(unsigned type)
107{
108	struct swap_info_struct *sis = swap_info[type];
 
 
 
109
110	BUG_ON(sis == NULL);
111	if (sis->frontswap_map == NULL)
 
 
 
112		return;
113	if (frontswap_enabled)
114		(*frontswap_ops.init)(type);
 
 
 
 
 
 
 
115}
116EXPORT_SYMBOL(__frontswap_init);
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118/*
119 * "Store" data from a page to frontswap and associate it with the page's
120 * swaptype and offset.  Page must be locked and in the swap cache.
121 * If frontswap already contains a page with matching swaptype and
122 * offset, the frontswap implmentation may either overwrite the data and
123 * return success or invalidate the page from frontswap and return failure.
124 */
125int __frontswap_store(struct page *page)
126{
127	int ret = -1, dup = 0;
128	swp_entry_t entry = { .val = page_private(page), };
129	int type = swp_type(entry);
130	struct swap_info_struct *sis = swap_info[type];
131	pgoff_t offset = swp_offset(entry);
 
 
 
 
 
132
133	BUG_ON(!PageLocked(page));
134	BUG_ON(sis == NULL);
135	if (frontswap_test(sis, offset))
136		dup = 1;
137	ret = (*frontswap_ops.store)(type, offset, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
138	if (ret == 0) {
139		frontswap_set(sis, offset);
140		inc_frontswap_succ_stores();
141		if (!dup)
142			atomic_inc(&sis->frontswap_pages);
143	} else if (dup) {
144		/*
145		  failed dup always results in automatic invalidate of
146		  the (older) page from frontswap
147		 */
148		frontswap_clear(sis, offset);
149		atomic_dec(&sis->frontswap_pages);
150		inc_frontswap_failed_stores();
151	} else
152		inc_frontswap_failed_stores();
 
153	if (frontswap_writethrough_enabled)
154		/* report failure so swap also writes to swap device */
155		ret = -1;
156	return ret;
157}
158EXPORT_SYMBOL(__frontswap_store);
159
160/*
161 * "Get" data from frontswap associated with swaptype and offset that were
162 * specified when the data was put to frontswap and use it to fill the
163 * specified page with data. Page must be locked and in the swap cache.
164 */
165int __frontswap_load(struct page *page)
166{
167	int ret = -1;
168	swp_entry_t entry = { .val = page_private(page), };
169	int type = swp_type(entry);
170	struct swap_info_struct *sis = swap_info[type];
171	pgoff_t offset = swp_offset(entry);
 
172
173	BUG_ON(!PageLocked(page));
174	BUG_ON(sis == NULL);
175	if (frontswap_test(sis, offset))
176		ret = (*frontswap_ops.load)(type, offset, page);
177	if (ret == 0)
 
 
 
 
 
 
 
 
 
178		inc_frontswap_loads();
 
 
 
 
 
179	return ret;
180}
181EXPORT_SYMBOL(__frontswap_load);
182
183/*
184 * Invalidate any data from frontswap associated with the specified swaptype
185 * and offset so that a subsequent "get" will fail.
186 */
187void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
188{
189	struct swap_info_struct *sis = swap_info[type];
 
 
 
 
190
191	BUG_ON(sis == NULL);
192	if (frontswap_test(sis, offset)) {
193		(*frontswap_ops.invalidate_page)(type, offset);
194		atomic_dec(&sis->frontswap_pages);
195		frontswap_clear(sis, offset);
196		inc_frontswap_invalidates();
197	}
198}
199EXPORT_SYMBOL(__frontswap_invalidate_page);
200
201/*
202 * Invalidate all data from frontswap associated with all offsets for the
203 * specified swaptype.
204 */
205void __frontswap_invalidate_area(unsigned type)
206{
207	struct swap_info_struct *sis = swap_info[type];
 
 
 
 
208
209	BUG_ON(sis == NULL);
210	if (sis->frontswap_map == NULL)
211		return;
212	(*frontswap_ops.invalidate_area)(type);
 
 
213	atomic_set(&sis->frontswap_pages, 0);
214	memset(sis->frontswap_map, 0, sis->max / sizeof(long));
215}
216EXPORT_SYMBOL(__frontswap_invalidate_area);
217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218/*
219 * Frontswap, like a true swap device, may unnecessarily retain pages
220 * under certain circumstances; "shrink" frontswap is essentially a
221 * "partial swapoff" and works by calling try_to_unuse to attempt to
222 * unuse enough frontswap pages to attempt to -- subject to memory
223 * constraints -- reduce the number of pages in frontswap to the
224 * number given in the parameter target_pages.
225 */
226void frontswap_shrink(unsigned long target_pages)
227{
228	struct swap_info_struct *si = NULL;
229	int si_frontswap_pages;
230	unsigned long total_pages = 0, total_pages_to_unuse;
231	unsigned long pages = 0, pages_to_unuse = 0;
232	int type;
233	bool locked = false;
234
235	/*
236	 * we don't want to hold swap_lock while doing a very
237	 * lengthy try_to_unuse, but swap_list may change
238	 * so restart scan from swap_list.head each time
239	 */
240	spin_lock(&swap_lock);
241	locked = true;
242	total_pages = 0;
243	for (type = swap_list.head; type >= 0; type = si->next) {
244		si = swap_info[type];
245		total_pages += atomic_read(&si->frontswap_pages);
246	}
247	if (total_pages <= target_pages)
248		goto out;
249	total_pages_to_unuse = total_pages - target_pages;
250	for (type = swap_list.head; type >= 0; type = si->next) {
251		si = swap_info[type];
252		si_frontswap_pages = atomic_read(&si->frontswap_pages);
253		if (total_pages_to_unuse < si_frontswap_pages)
254			pages = pages_to_unuse = total_pages_to_unuse;
255		else {
256			pages = si_frontswap_pages;
257			pages_to_unuse = 0; /* unuse all */
258		}
259		/* ensure there is enough RAM to fetch pages from frontswap */
260		if (security_vm_enough_memory_mm(current->mm, pages))
261			continue;
262		vm_unacct_memory(pages);
263		break;
264	}
265	if (type < 0)
266		goto out;
267	locked = false;
268	spin_unlock(&swap_lock);
269	try_to_unuse(type, true, pages_to_unuse);
270out:
271	if (locked)
272		spin_unlock(&swap_lock);
273	return;
274}
275EXPORT_SYMBOL(frontswap_shrink);
276
277/*
278 * Count and return the number of frontswap pages across all
279 * swap devices.  This is exported so that backend drivers can
280 * determine current usage without reading debugfs.
281 */
282unsigned long frontswap_curr_pages(void)
283{
284	int type;
285	unsigned long totalpages = 0;
286	struct swap_info_struct *si = NULL;
287
288	spin_lock(&swap_lock);
289	for (type = swap_list.head; type >= 0; type = si->next) {
290		si = swap_info[type];
291		totalpages += atomic_read(&si->frontswap_pages);
292	}
293	spin_unlock(&swap_lock);
 
294	return totalpages;
295}
296EXPORT_SYMBOL(frontswap_curr_pages);
297
298static int __init init_frontswap(void)
299{
300#ifdef CONFIG_DEBUG_FS
301	struct dentry *root = debugfs_create_dir("frontswap", NULL);
302	if (root == NULL)
303		return -ENXIO;
304	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
305	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
306	debugfs_create_u64("failed_stores", S_IRUGO, root,
307				&frontswap_failed_stores);
308	debugfs_create_u64("invalidates", S_IRUGO,
309				root, &frontswap_invalidates);
310#endif
311	return 0;
312}
313
314module_init(init_frontswap);