Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/list.h>
  11#include <linux/types.h>
  12#include <linux/device.h>
  13#include <linux/slab.h>
  14#include <linux/log2.h>
  15#include <linux/bitmap.h>
  16#include <linux/delay.h>
  17#include <linux/sysfs.h>
  18#include <linux/cpu.h>
  19#include <linux/powercap.h>
  20#include <linux/suspend.h>
  21#include <linux/intel_rapl.h>
  22#include <linux/processor.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/iosf_mbi.h>
  26#include <asm/cpu_device_id.h>
  27#include <asm/intel-family.h>
  28
  29/* bitmasks for RAPL MSRs, used by primitive access functions */
  30#define ENERGY_STATUS_MASK      0xffffffff
  31
  32#define POWER_LIMIT1_MASK       0x7FFF
  33#define POWER_LIMIT1_ENABLE     BIT(15)
  34#define POWER_LIMIT1_CLAMP      BIT(16)
  35
  36#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  37#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  38#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  39#define POWER_HIGH_LOCK         BIT_ULL(63)
  40#define POWER_LOW_LOCK          BIT(31)
  41
  42#define POWER_LIMIT4_MASK		0x1FFF
  43
  44#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  45#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  46
  47#define POWER_UNIT_OFFSET	0
  48#define POWER_UNIT_MASK		0x0F
  49
  50#define ENERGY_UNIT_OFFSET	0x08
  51#define ENERGY_UNIT_MASK	0x1F00
  52
  53#define TIME_UNIT_OFFSET	0x10
  54#define TIME_UNIT_MASK		0xF0000
  55
  56#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  57#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  58#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  59#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  60
  61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  62#define PP_POLICY_MASK         0x1F
  63
  64/* Non HW constants */
  65#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  66#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  67
  68#define TIME_WINDOW_MAX_MSEC 40000
  69#define TIME_WINDOW_MIN_MSEC 250
  70#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  71enum unit_type {
  72	ARBITRARY_UNIT,		/* no translation */
  73	POWER_UNIT,
  74	ENERGY_UNIT,
  75	TIME_UNIT,
  76};
  77
  78/* per domain data, some are optional */
  79#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
  80
  81#define	DOMAIN_STATE_INACTIVE           BIT(0)
  82#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
  83#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
  84
  85static const char pl1_name[] = "long_term";
  86static const char pl2_name[] = "short_term";
  87static const char pl4_name[] = "peak_power";
  88
  89#define power_zone_to_rapl_domain(_zone) \
  90	container_of(_zone, struct rapl_domain, power_zone)
  91
  92struct rapl_defaults {
  93	u8 floor_freq_reg_addr;
  94	int (*check_unit)(struct rapl_package *rp, int cpu);
  95	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
  96	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
  97				    bool to_raw);
  98	unsigned int dram_domain_energy_unit;
  99	unsigned int psys_domain_energy_unit;
 100};
 101static struct rapl_defaults *rapl_defaults;
 102
 103/* Sideband MBI registers */
 104#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 105#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 106
 107#define PACKAGE_PLN_INT_SAVED   BIT(0)
 108#define MAX_PRIM_NAME (32)
 109
 110/* per domain data. used to describe individual knobs such that access function
 111 * can be consolidated into one instead of many inline functions.
 112 */
 113struct rapl_primitive_info {
 114	const char *name;
 115	u64 mask;
 116	int shift;
 117	enum rapl_domain_reg_id id;
 118	enum unit_type unit;
 119	u32 flag;
 120};
 121
 122#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 123		.name = #p,			\
 124		.mask = m,			\
 125		.shift = s,			\
 126		.id = i,			\
 127		.unit = u,			\
 128		.flag = f			\
 129	}
 130
 131static void rapl_init_domains(struct rapl_package *rp);
 132static int rapl_read_data_raw(struct rapl_domain *rd,
 133			      enum rapl_primitives prim,
 134			      bool xlate, u64 *data);
 135static int rapl_write_data_raw(struct rapl_domain *rd,
 136			       enum rapl_primitives prim,
 137			       unsigned long long value);
 138static u64 rapl_unit_xlate(struct rapl_domain *rd,
 139			   enum unit_type type, u64 value, int to_raw);
 140static void package_power_limit_irq_save(struct rapl_package *rp);
 141
 142static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 143
 144static const char *const rapl_domain_names[] = {
 145	"package",
 146	"core",
 147	"uncore",
 148	"dram",
 149	"psys",
 150};
 151
 152static int get_energy_counter(struct powercap_zone *power_zone,
 153			      u64 *energy_raw)
 154{
 155	struct rapl_domain *rd;
 156	u64 energy_now;
 157
 158	/* prevent CPU hotplug, make sure the RAPL domain does not go
 159	 * away while reading the counter.
 160	 */
 161	get_online_cpus();
 162	rd = power_zone_to_rapl_domain(power_zone);
 163
 164	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 165		*energy_raw = energy_now;
 166		put_online_cpus();
 167
 168		return 0;
 169	}
 170	put_online_cpus();
 171
 172	return -EIO;
 173}
 174
 175static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 176{
 177	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 178
 179	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 180	return 0;
 181}
 182
 183static int release_zone(struct powercap_zone *power_zone)
 184{
 185	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 186	struct rapl_package *rp = rd->rp;
 187
 188	/* package zone is the last zone of a package, we can free
 189	 * memory here since all children has been unregistered.
 190	 */
 191	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 192		kfree(rd);
 193		rp->domains = NULL;
 194	}
 195
 196	return 0;
 197
 198}
 199
 200static int find_nr_power_limit(struct rapl_domain *rd)
 201{
 202	int i, nr_pl = 0;
 203
 204	for (i = 0; i < NR_POWER_LIMITS; i++) {
 205		if (rd->rpl[i].name)
 206			nr_pl++;
 207	}
 208
 209	return nr_pl;
 210}
 211
 212static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 213{
 214	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 215
 216	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 217		return -EACCES;
 218
 219	get_online_cpus();
 220	rapl_write_data_raw(rd, PL1_ENABLE, mode);
 221	if (rapl_defaults->set_floor_freq)
 222		rapl_defaults->set_floor_freq(rd, mode);
 223	put_online_cpus();
 224
 225	return 0;
 226}
 227
 228static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 229{
 230	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 231	u64 val;
 232
 233	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 234		*mode = false;
 235		return 0;
 236	}
 237	get_online_cpus();
 238	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 239		put_online_cpus();
 240		return -EIO;
 241	}
 242	*mode = val;
 243	put_online_cpus();
 244
 245	return 0;
 246}
 247
 248/* per RAPL domain ops, in the order of rapl_domain_type */
 249static const struct powercap_zone_ops zone_ops[] = {
 250	/* RAPL_DOMAIN_PACKAGE */
 251	{
 252	 .get_energy_uj = get_energy_counter,
 253	 .get_max_energy_range_uj = get_max_energy_counter,
 254	 .release = release_zone,
 255	 .set_enable = set_domain_enable,
 256	 .get_enable = get_domain_enable,
 257	 },
 258	/* RAPL_DOMAIN_PP0 */
 259	{
 260	 .get_energy_uj = get_energy_counter,
 261	 .get_max_energy_range_uj = get_max_energy_counter,
 262	 .release = release_zone,
 263	 .set_enable = set_domain_enable,
 264	 .get_enable = get_domain_enable,
 265	 },
 266	/* RAPL_DOMAIN_PP1 */
 267	{
 268	 .get_energy_uj = get_energy_counter,
 269	 .get_max_energy_range_uj = get_max_energy_counter,
 270	 .release = release_zone,
 271	 .set_enable = set_domain_enable,
 272	 .get_enable = get_domain_enable,
 273	 },
 274	/* RAPL_DOMAIN_DRAM */
 275	{
 276	 .get_energy_uj = get_energy_counter,
 277	 .get_max_energy_range_uj = get_max_energy_counter,
 278	 .release = release_zone,
 279	 .set_enable = set_domain_enable,
 280	 .get_enable = get_domain_enable,
 281	 },
 282	/* RAPL_DOMAIN_PLATFORM */
 283	{
 284	 .get_energy_uj = get_energy_counter,
 285	 .get_max_energy_range_uj = get_max_energy_counter,
 286	 .release = release_zone,
 287	 .set_enable = set_domain_enable,
 288	 .get_enable = get_domain_enable,
 289	 },
 290};
 291
 292/*
 293 * Constraint index used by powercap can be different than power limit (PL)
 294 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 295 * need to convert here by finding the valid PLs only (name populated).
 296 */
 297static int contraint_to_pl(struct rapl_domain *rd, int cid)
 298{
 299	int i, j;
 300
 301	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
 302		if ((rd->rpl[i].name) && j++ == cid) {
 303			pr_debug("%s: index %d\n", __func__, i);
 304			return i;
 305		}
 306	}
 307	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 308
 309	return -EINVAL;
 310}
 311
 312static int set_power_limit(struct powercap_zone *power_zone, int cid,
 313			   u64 power_limit)
 314{
 315	struct rapl_domain *rd;
 316	struct rapl_package *rp;
 317	int ret = 0;
 318	int id;
 319
 320	get_online_cpus();
 321	rd = power_zone_to_rapl_domain(power_zone);
 322	id = contraint_to_pl(rd, cid);
 323	if (id < 0) {
 324		ret = id;
 325		goto set_exit;
 326	}
 327
 328	rp = rd->rp;
 329
 330	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 331		dev_warn(&power_zone->dev,
 332			 "%s locked by BIOS, monitoring only\n", rd->name);
 333		ret = -EACCES;
 334		goto set_exit;
 335	}
 336
 337	switch (rd->rpl[id].prim_id) {
 338	case PL1_ENABLE:
 339		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 340		break;
 341	case PL2_ENABLE:
 342		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 343		break;
 344	case PL4_ENABLE:
 345		rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
 346		break;
 347	default:
 348		ret = -EINVAL;
 349	}
 350	if (!ret)
 351		package_power_limit_irq_save(rp);
 352set_exit:
 353	put_online_cpus();
 354	return ret;
 355}
 356
 357static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 358				   u64 *data)
 359{
 360	struct rapl_domain *rd;
 361	u64 val;
 362	int prim;
 363	int ret = 0;
 364	int id;
 365
 366	get_online_cpus();
 367	rd = power_zone_to_rapl_domain(power_zone);
 368	id = contraint_to_pl(rd, cid);
 369	if (id < 0) {
 370		ret = id;
 371		goto get_exit;
 372	}
 373
 374	switch (rd->rpl[id].prim_id) {
 375	case PL1_ENABLE:
 376		prim = POWER_LIMIT1;
 377		break;
 378	case PL2_ENABLE:
 379		prim = POWER_LIMIT2;
 380		break;
 381	case PL4_ENABLE:
 382		prim = POWER_LIMIT4;
 383		break;
 384	default:
 385		put_online_cpus();
 386		return -EINVAL;
 387	}
 388	if (rapl_read_data_raw(rd, prim, true, &val))
 389		ret = -EIO;
 390	else
 391		*data = val;
 392
 393get_exit:
 394	put_online_cpus();
 395
 396	return ret;
 397}
 398
 399static int set_time_window(struct powercap_zone *power_zone, int cid,
 400			   u64 window)
 401{
 402	struct rapl_domain *rd;
 403	int ret = 0;
 404	int id;
 405
 406	get_online_cpus();
 407	rd = power_zone_to_rapl_domain(power_zone);
 408	id = contraint_to_pl(rd, cid);
 409	if (id < 0) {
 410		ret = id;
 411		goto set_time_exit;
 412	}
 413
 414	switch (rd->rpl[id].prim_id) {
 415	case PL1_ENABLE:
 416		rapl_write_data_raw(rd, TIME_WINDOW1, window);
 417		break;
 418	case PL2_ENABLE:
 419		rapl_write_data_raw(rd, TIME_WINDOW2, window);
 420		break;
 421	default:
 422		ret = -EINVAL;
 423	}
 424
 425set_time_exit:
 426	put_online_cpus();
 427	return ret;
 428}
 429
 430static int get_time_window(struct powercap_zone *power_zone, int cid,
 431			   u64 *data)
 432{
 433	struct rapl_domain *rd;
 434	u64 val;
 435	int ret = 0;
 436	int id;
 437
 438	get_online_cpus();
 439	rd = power_zone_to_rapl_domain(power_zone);
 440	id = contraint_to_pl(rd, cid);
 441	if (id < 0) {
 442		ret = id;
 443		goto get_time_exit;
 444	}
 445
 446	switch (rd->rpl[id].prim_id) {
 447	case PL1_ENABLE:
 448		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 449		break;
 450	case PL2_ENABLE:
 451		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 452		break;
 453	case PL4_ENABLE:
 454		/*
 455		 * Time window parameter is not applicable for PL4 entry
 456		 * so assigining '0' as default value.
 457		 */
 458		val = 0;
 459		break;
 460	default:
 461		put_online_cpus();
 462		return -EINVAL;
 463	}
 464	if (!ret)
 465		*data = val;
 466
 467get_time_exit:
 468	put_online_cpus();
 469
 470	return ret;
 471}
 472
 473static const char *get_constraint_name(struct powercap_zone *power_zone,
 474				       int cid)
 475{
 476	struct rapl_domain *rd;
 477	int id;
 478
 479	rd = power_zone_to_rapl_domain(power_zone);
 480	id = contraint_to_pl(rd, cid);
 481	if (id >= 0)
 482		return rd->rpl[id].name;
 483
 484	return NULL;
 485}
 486
 487static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
 488{
 489	struct rapl_domain *rd;
 490	u64 val;
 491	int prim;
 492	int ret = 0;
 493
 494	get_online_cpus();
 495	rd = power_zone_to_rapl_domain(power_zone);
 496	switch (rd->rpl[id].prim_id) {
 497	case PL1_ENABLE:
 498		prim = THERMAL_SPEC_POWER;
 499		break;
 500	case PL2_ENABLE:
 501		prim = MAX_POWER;
 502		break;
 503	case PL4_ENABLE:
 504		prim = MAX_POWER;
 505		break;
 506	default:
 507		put_online_cpus();
 508		return -EINVAL;
 509	}
 510	if (rapl_read_data_raw(rd, prim, true, &val))
 511		ret = -EIO;
 512	else
 513		*data = val;
 514
 515	/* As a generalization rule, PL4 would be around two times PL2. */
 516	if (rd->rpl[id].prim_id == PL4_ENABLE)
 517		*data = *data * 2;
 518
 519	put_online_cpus();
 520
 521	return ret;
 522}
 523
 524static const struct powercap_zone_constraint_ops constraint_ops = {
 525	.set_power_limit_uw = set_power_limit,
 526	.get_power_limit_uw = get_current_power_limit,
 527	.set_time_window_us = set_time_window,
 528	.get_time_window_us = get_time_window,
 529	.get_max_power_uw = get_max_power,
 530	.get_name = get_constraint_name,
 531};
 532
 533/* called after domain detection and package level data are set */
 534static void rapl_init_domains(struct rapl_package *rp)
 535{
 536	enum rapl_domain_type i;
 537	enum rapl_domain_reg_id j;
 538	struct rapl_domain *rd = rp->domains;
 539
 540	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 541		unsigned int mask = rp->domain_map & (1 << i);
 542
 543		if (!mask)
 544			continue;
 545
 546		rd->rp = rp;
 547
 548		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
 549			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
 550				topology_physical_package_id(rp->lead_cpu));
 551		} else
 552			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
 553				rapl_domain_names[i]);
 554
 555		rd->id = i;
 556		rd->rpl[0].prim_id = PL1_ENABLE;
 557		rd->rpl[0].name = pl1_name;
 558
 559		/*
 560		 * The PL2 power domain is applicable for limits two
 561		 * and limits three
 562		 */
 563		if (rp->priv->limits[i] >= 2) {
 564			rd->rpl[1].prim_id = PL2_ENABLE;
 565			rd->rpl[1].name = pl2_name;
 566		}
 567
 568		/* Enable PL4 domain if the total power limits are three */
 569		if (rp->priv->limits[i] == 3) {
 570			rd->rpl[2].prim_id = PL4_ENABLE;
 571			rd->rpl[2].name = pl4_name;
 572		}
 573
 574		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 575			rd->regs[j] = rp->priv->regs[i][j];
 576
 577		switch (i) {
 578		case RAPL_DOMAIN_DRAM:
 579			rd->domain_energy_unit =
 580			    rapl_defaults->dram_domain_energy_unit;
 581			if (rd->domain_energy_unit)
 582				pr_info("DRAM domain energy unit %dpj\n",
 583					rd->domain_energy_unit);
 584			break;
 585		case RAPL_DOMAIN_PLATFORM:
 586			rd->domain_energy_unit =
 587			    rapl_defaults->psys_domain_energy_unit;
 588			if (rd->domain_energy_unit)
 589				pr_info("Platform domain energy unit %dpj\n",
 590					rd->domain_energy_unit);
 591			break;
 592		default:
 593			break;
 594		}
 595		rd++;
 596	}
 597}
 598
 599static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 600			   u64 value, int to_raw)
 601{
 602	u64 units = 1;
 603	struct rapl_package *rp = rd->rp;
 604	u64 scale = 1;
 605
 606	switch (type) {
 607	case POWER_UNIT:
 608		units = rp->power_unit;
 609		break;
 610	case ENERGY_UNIT:
 611		scale = ENERGY_UNIT_SCALE;
 612		/* per domain unit takes precedence */
 613		if (rd->domain_energy_unit)
 614			units = rd->domain_energy_unit;
 615		else
 616			units = rp->energy_unit;
 617		break;
 618	case TIME_UNIT:
 619		return rapl_defaults->compute_time_window(rp, value, to_raw);
 620	case ARBITRARY_UNIT:
 621	default:
 622		return value;
 623	}
 624
 625	if (to_raw)
 626		return div64_u64(value, units) * scale;
 627
 628	value *= units;
 629
 630	return div64_u64(value, scale);
 631}
 632
 633/* in the order of enum rapl_primitives */
 634static struct rapl_primitive_info rpi[] = {
 635	/* name, mask, shift, msr index, unit divisor */
 636	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 637			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 638	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 639			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 640	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 641			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 642	PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 643				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 644	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 645			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 646	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 647			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 648	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 649			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 650	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 651			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 652	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 653			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 654	PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
 655				RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 656	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 657			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 658	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 659			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 660	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 661			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 662	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 663			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 664	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 665			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 666	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 667			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 668	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 669			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 670	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 671			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 672	/* non-hardware */
 673	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 674			    RAPL_PRIMITIVE_DERIVED),
 675	{NULL, 0, 0, 0},
 676};
 677
 678/* Read primitive data based on its related struct rapl_primitive_info.
 679 * if xlate flag is set, return translated data based on data units, i.e.
 680 * time, energy, and power.
 681 * RAPL MSRs are non-architectual and are laid out not consistently across
 682 * domains. Here we use primitive info to allow writing consolidated access
 683 * functions.
 684 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 685 * is pre-assigned based on RAPL unit MSRs read at init time.
 686 * 63-------------------------- 31--------------------------- 0
 687 * |                           xxxxx (mask)                   |
 688 * |                                |<- shift ----------------|
 689 * 63-------------------------- 31--------------------------- 0
 690 */
 691static int rapl_read_data_raw(struct rapl_domain *rd,
 692			      enum rapl_primitives prim, bool xlate, u64 *data)
 693{
 694	u64 value;
 695	struct rapl_primitive_info *rp = &rpi[prim];
 696	struct reg_action ra;
 697	int cpu;
 698
 699	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 700		return -EINVAL;
 701
 702	ra.reg = rd->regs[rp->id];
 703	if (!ra.reg)
 704		return -EINVAL;
 705
 706	cpu = rd->rp->lead_cpu;
 707
 708	/* domain with 2 limits has different bit */
 709	if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
 710		rp->mask = POWER_HIGH_LOCK;
 711		rp->shift = 63;
 712	}
 713	/* non-hardware data are collected by the polling thread */
 714	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 715		*data = rd->rdd.primitives[prim];
 716		return 0;
 717	}
 718
 719	ra.mask = rp->mask;
 720
 721	if (rd->rp->priv->read_raw(cpu, &ra)) {
 722		pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
 723		return -EIO;
 724	}
 725
 726	value = ra.value >> rp->shift;
 727
 728	if (xlate)
 729		*data = rapl_unit_xlate(rd, rp->unit, value, 0);
 730	else
 731		*data = value;
 732
 733	return 0;
 734}
 735
 736/* Similar use of primitive info in the read counterpart */
 737static int rapl_write_data_raw(struct rapl_domain *rd,
 738			       enum rapl_primitives prim,
 739			       unsigned long long value)
 740{
 741	struct rapl_primitive_info *rp = &rpi[prim];
 742	int cpu;
 743	u64 bits;
 744	struct reg_action ra;
 745	int ret;
 746
 747	cpu = rd->rp->lead_cpu;
 748	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 749	bits <<= rp->shift;
 750	bits &= rp->mask;
 751
 752	memset(&ra, 0, sizeof(ra));
 753
 754	ra.reg = rd->regs[rp->id];
 755	ra.mask = rp->mask;
 756	ra.value = bits;
 757
 758	ret = rd->rp->priv->write_raw(cpu, &ra);
 759
 760	return ret;
 761}
 762
 763/*
 764 * Raw RAPL data stored in MSRs are in certain scales. We need to
 765 * convert them into standard units based on the units reported in
 766 * the RAPL unit MSRs. This is specific to CPUs as the method to
 767 * calculate units differ on different CPUs.
 768 * We convert the units to below format based on CPUs.
 769 * i.e.
 770 * energy unit: picoJoules  : Represented in picoJoules by default
 771 * power unit : microWatts  : Represented in milliWatts by default
 772 * time unit  : microseconds: Represented in seconds by default
 773 */
 774static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 775{
 776	struct reg_action ra;
 777	u32 value;
 778
 779	ra.reg = rp->priv->reg_unit;
 780	ra.mask = ~0;
 781	if (rp->priv->read_raw(cpu, &ra)) {
 782		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 783		       rp->priv->reg_unit, cpu);
 784		return -ENODEV;
 785	}
 786
 787	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 788	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 789
 790	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 791	rp->power_unit = 1000000 / (1 << value);
 792
 793	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 794	rp->time_unit = 1000000 / (1 << value);
 795
 796	pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
 797		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 798
 799	return 0;
 800}
 801
 802static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 803{
 804	struct reg_action ra;
 805	u32 value;
 806
 807	ra.reg = rp->priv->reg_unit;
 808	ra.mask = ~0;
 809	if (rp->priv->read_raw(cpu, &ra)) {
 810		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 811		       rp->priv->reg_unit, cpu);
 812		return -ENODEV;
 813	}
 814
 815	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 816	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 817
 818	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 819	rp->power_unit = (1 << value) * 1000;
 820
 821	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 822	rp->time_unit = 1000000 / (1 << value);
 823
 824	pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
 825		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 826
 827	return 0;
 828}
 829
 830static void power_limit_irq_save_cpu(void *info)
 831{
 832	u32 l, h = 0;
 833	struct rapl_package *rp = (struct rapl_package *)info;
 834
 835	/* save the state of PLN irq mask bit before disabling it */
 836	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 837	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 838		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 839		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 840	}
 841	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 842	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 843}
 844
 845/* REVISIT:
 846 * When package power limit is set artificially low by RAPL, LVT
 847 * thermal interrupt for package power limit should be ignored
 848 * since we are not really exceeding the real limit. The intention
 849 * is to avoid excessive interrupts while we are trying to save power.
 850 * A useful feature might be routing the package_power_limit interrupt
 851 * to userspace via eventfd. once we have a usecase, this is simple
 852 * to do by adding an atomic notifier.
 853 */
 854
 855static void package_power_limit_irq_save(struct rapl_package *rp)
 856{
 857	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 858		return;
 859
 860	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 861}
 862
 863/*
 864 * Restore per package power limit interrupt enable state. Called from cpu
 865 * hotplug code on package removal.
 866 */
 867static void package_power_limit_irq_restore(struct rapl_package *rp)
 868{
 869	u32 l, h;
 870
 871	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 872		return;
 873
 874	/* irq enable state not saved, nothing to restore */
 875	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
 876		return;
 877
 878	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 879
 880	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
 881		l |= PACKAGE_THERM_INT_PLN_ENABLE;
 882	else
 883		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 884
 885	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 886}
 887
 888static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
 889{
 890	int nr_powerlimit = find_nr_power_limit(rd);
 891
 892	/* always enable clamp such that p-state can go below OS requested
 893	 * range. power capping priority over guranteed frequency.
 894	 */
 895	rapl_write_data_raw(rd, PL1_CLAMP, mode);
 896
 897	/* some domains have pl2 */
 898	if (nr_powerlimit > 1) {
 899		rapl_write_data_raw(rd, PL2_ENABLE, mode);
 900		rapl_write_data_raw(rd, PL2_CLAMP, mode);
 901	}
 902}
 903
 904static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
 905{
 906	static u32 power_ctrl_orig_val;
 907	u32 mdata;
 908
 909	if (!rapl_defaults->floor_freq_reg_addr) {
 910		pr_err("Invalid floor frequency config register\n");
 911		return;
 912	}
 913
 914	if (!power_ctrl_orig_val)
 915		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
 916			      rapl_defaults->floor_freq_reg_addr,
 917			      &power_ctrl_orig_val);
 918	mdata = power_ctrl_orig_val;
 919	if (enable) {
 920		mdata &= ~(0x7f << 8);
 921		mdata |= 1 << 8;
 922	}
 923	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
 924		       rapl_defaults->floor_freq_reg_addr, mdata);
 925}
 926
 927static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
 928					 bool to_raw)
 929{
 930	u64 f, y;		/* fraction and exp. used for time unit */
 931
 932	/*
 933	 * Special processing based on 2^Y*(1+F/4), refer
 934	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
 935	 */
 936	if (!to_raw) {
 937		f = (value & 0x60) >> 5;
 938		y = value & 0x1f;
 939		value = (1 << y) * (4 + f) * rp->time_unit / 4;
 940	} else {
 941		do_div(value, rp->time_unit);
 942		y = ilog2(value);
 943		f = div64_u64(4 * (value - (1 << y)), 1 << y);
 944		value = (y & 0x1f) | ((f & 0x3) << 5);
 945	}
 946	return value;
 947}
 948
 949static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
 950					 bool to_raw)
 951{
 952	/*
 953	 * Atom time unit encoding is straight forward val * time_unit,
 954	 * where time_unit is default to 1 sec. Never 0.
 955	 */
 956	if (!to_raw)
 957		return (value) ? value *= rp->time_unit : rp->time_unit;
 958
 959	value = div64_u64(value, rp->time_unit);
 960
 961	return value;
 962}
 963
 964static const struct rapl_defaults rapl_defaults_core = {
 965	.floor_freq_reg_addr = 0,
 966	.check_unit = rapl_check_unit_core,
 967	.set_floor_freq = set_floor_freq_default,
 968	.compute_time_window = rapl_compute_time_window_core,
 969};
 970
 971static const struct rapl_defaults rapl_defaults_hsw_server = {
 972	.check_unit = rapl_check_unit_core,
 973	.set_floor_freq = set_floor_freq_default,
 974	.compute_time_window = rapl_compute_time_window_core,
 975	.dram_domain_energy_unit = 15300,
 976};
 977
 978static const struct rapl_defaults rapl_defaults_spr_server = {
 979	.check_unit = rapl_check_unit_core,
 980	.set_floor_freq = set_floor_freq_default,
 981	.compute_time_window = rapl_compute_time_window_core,
 982	.dram_domain_energy_unit = 15300,
 983	.psys_domain_energy_unit = 1000000000,
 984};
 985
 986static const struct rapl_defaults rapl_defaults_byt = {
 987	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
 988	.check_unit = rapl_check_unit_atom,
 989	.set_floor_freq = set_floor_freq_atom,
 990	.compute_time_window = rapl_compute_time_window_atom,
 991};
 992
 993static const struct rapl_defaults rapl_defaults_tng = {
 994	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
 995	.check_unit = rapl_check_unit_atom,
 996	.set_floor_freq = set_floor_freq_atom,
 997	.compute_time_window = rapl_compute_time_window_atom,
 998};
 999
1000static const struct rapl_defaults rapl_defaults_ann = {
1001	.floor_freq_reg_addr = 0,
1002	.check_unit = rapl_check_unit_atom,
1003	.set_floor_freq = NULL,
1004	.compute_time_window = rapl_compute_time_window_atom,
1005};
1006
1007static const struct rapl_defaults rapl_defaults_cht = {
1008	.floor_freq_reg_addr = 0,
1009	.check_unit = rapl_check_unit_atom,
1010	.set_floor_freq = NULL,
1011	.compute_time_window = rapl_compute_time_window_atom,
1012};
1013
1014static const struct rapl_defaults rapl_defaults_amd = {
1015	.check_unit = rapl_check_unit_core,
1016};
1017
1018static const struct x86_cpu_id rapl_ids[] __initconst = {
1019	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1020	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1021
1022	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1023	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1024
1025	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1026	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1027	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1028	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1029
1030	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1031	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1032	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1033	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1034
1035	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1036	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1037	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1038	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1039	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1040	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1041	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1042	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1043	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1044	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1045	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1046	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1047	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1048	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1049	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1050	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1051	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1052	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1053	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1054	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1055
1056	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1057	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1058	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1059	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1060	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1061	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1062	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1063	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1064	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1065	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1066
1067	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1068	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1069
1070	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1071	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1072	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1073	{}
1074};
1075MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1076
1077/* Read once for all raw primitive data for domains */
1078static void rapl_update_domain_data(struct rapl_package *rp)
1079{
1080	int dmn, prim;
1081	u64 val;
1082
1083	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1084		pr_debug("update %s domain %s data\n", rp->name,
1085			 rp->domains[dmn].name);
1086		/* exclude non-raw primitives */
1087		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1088			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1089						rpi[prim].unit, &val))
1090				rp->domains[dmn].rdd.primitives[prim] = val;
1091		}
1092	}
1093
1094}
1095
1096static int rapl_package_register_powercap(struct rapl_package *rp)
1097{
1098	struct rapl_domain *rd;
1099	struct powercap_zone *power_zone = NULL;
1100	int nr_pl, ret;
1101
1102	/* Update the domain data of the new package */
1103	rapl_update_domain_data(rp);
1104
1105	/* first we register package domain as the parent zone */
1106	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1107		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1108			nr_pl = find_nr_power_limit(rd);
1109			pr_debug("register package domain %s\n", rp->name);
1110			power_zone = powercap_register_zone(&rd->power_zone,
1111					    rp->priv->control_type, rp->name,
1112					    NULL, &zone_ops[rd->id], nr_pl,
1113					    &constraint_ops);
1114			if (IS_ERR(power_zone)) {
1115				pr_debug("failed to register power zone %s\n",
1116					 rp->name);
1117				return PTR_ERR(power_zone);
1118			}
1119			/* track parent zone in per package/socket data */
1120			rp->power_zone = power_zone;
1121			/* done, only one package domain per socket */
1122			break;
1123		}
1124	}
1125	if (!power_zone) {
1126		pr_err("no package domain found, unknown topology!\n");
1127		return -ENODEV;
1128	}
1129	/* now register domains as children of the socket/package */
1130	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1131		struct powercap_zone *parent = rp->power_zone;
1132
1133		if (rd->id == RAPL_DOMAIN_PACKAGE)
1134			continue;
1135		if (rd->id == RAPL_DOMAIN_PLATFORM)
1136			parent = NULL;
1137		/* number of power limits per domain varies */
1138		nr_pl = find_nr_power_limit(rd);
1139		power_zone = powercap_register_zone(&rd->power_zone,
1140						    rp->priv->control_type,
1141						    rd->name, parent,
1142						    &zone_ops[rd->id], nr_pl,
1143						    &constraint_ops);
1144
1145		if (IS_ERR(power_zone)) {
1146			pr_debug("failed to register power_zone, %s:%s\n",
1147				 rp->name, rd->name);
1148			ret = PTR_ERR(power_zone);
1149			goto err_cleanup;
1150		}
1151	}
1152	return 0;
1153
1154err_cleanup:
1155	/*
1156	 * Clean up previously initialized domains within the package if we
1157	 * failed after the first domain setup.
1158	 */
1159	while (--rd >= rp->domains) {
1160		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1161		powercap_unregister_zone(rp->priv->control_type,
1162					 &rd->power_zone);
1163	}
1164
1165	return ret;
1166}
1167
1168static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1169{
1170	struct reg_action ra;
1171
1172	switch (domain) {
1173	case RAPL_DOMAIN_PACKAGE:
1174	case RAPL_DOMAIN_PP0:
1175	case RAPL_DOMAIN_PP1:
1176	case RAPL_DOMAIN_DRAM:
1177	case RAPL_DOMAIN_PLATFORM:
1178		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1179		break;
1180	default:
1181		pr_err("invalid domain id %d\n", domain);
1182		return -EINVAL;
1183	}
1184	/* make sure domain counters are available and contains non-zero
1185	 * values, otherwise skip it.
1186	 */
1187
1188	ra.mask = ENERGY_STATUS_MASK;
1189	if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1190		return -ENODEV;
1191
1192	return 0;
1193}
1194
1195/*
1196 * Check if power limits are available. Two cases when they are not available:
1197 * 1. Locked by BIOS, in this case we still provide read-only access so that
1198 *    users can see what limit is set by the BIOS.
1199 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1200 *    exist at all. In this case, we do not show the constraints in powercap.
1201 *
1202 * Called after domains are detected and initialized.
1203 */
1204static void rapl_detect_powerlimit(struct rapl_domain *rd)
1205{
1206	u64 val64;
1207	int i;
1208
1209	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1210	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1211		if (val64) {
1212			pr_info("RAPL %s domain %s locked by BIOS\n",
1213				rd->rp->name, rd->name);
1214			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1215		}
1216	}
1217	/* check if power limit MSR exists, otherwise domain is monitoring only */
1218	for (i = 0; i < NR_POWER_LIMITS; i++) {
1219		int prim = rd->rpl[i].prim_id;
1220
1221		if (rapl_read_data_raw(rd, prim, false, &val64))
1222			rd->rpl[i].name = NULL;
1223	}
1224}
1225
1226/* Detect active and valid domains for the given CPU, caller must
1227 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1228 */
1229static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1230{
1231	struct rapl_domain *rd;
1232	int i;
1233
1234	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1235		/* use physical package id to read counters */
1236		if (!rapl_check_domain(cpu, i, rp)) {
1237			rp->domain_map |= 1 << i;
1238			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1239		}
1240	}
1241	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1242	if (!rp->nr_domains) {
1243		pr_debug("no valid rapl domains found in %s\n", rp->name);
1244		return -ENODEV;
1245	}
1246	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1247
1248	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1249			      GFP_KERNEL);
1250	if (!rp->domains)
1251		return -ENOMEM;
1252
1253	rapl_init_domains(rp);
1254
1255	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1256		rapl_detect_powerlimit(rd);
1257
1258	return 0;
1259}
1260
1261/* called from CPU hotplug notifier, hotplug lock held */
1262void rapl_remove_package(struct rapl_package *rp)
1263{
1264	struct rapl_domain *rd, *rd_package = NULL;
1265
1266	package_power_limit_irq_restore(rp);
1267
1268	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1269		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1270		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1271		if (find_nr_power_limit(rd) > 1) {
1272			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1273			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1274			rapl_write_data_raw(rd, PL4_ENABLE, 0);
1275		}
1276		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1277			rd_package = rd;
1278			continue;
1279		}
1280		pr_debug("remove package, undo power limit on %s: %s\n",
1281			 rp->name, rd->name);
1282		powercap_unregister_zone(rp->priv->control_type,
1283					 &rd->power_zone);
1284	}
1285	/* do parent zone last */
1286	powercap_unregister_zone(rp->priv->control_type,
1287				 &rd_package->power_zone);
1288	list_del(&rp->plist);
1289	kfree(rp);
1290}
1291EXPORT_SYMBOL_GPL(rapl_remove_package);
1292
1293/* caller to ensure CPU hotplug lock is held */
1294struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1295{
1296	int id = topology_logical_die_id(cpu);
1297	struct rapl_package *rp;
1298
1299	list_for_each_entry(rp, &rapl_packages, plist) {
1300		if (rp->id == id
1301		    && rp->priv->control_type == priv->control_type)
1302			return rp;
1303	}
1304
1305	return NULL;
1306}
1307EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1308
1309/* called from CPU hotplug notifier, hotplug lock held */
1310struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1311{
1312	int id = topology_logical_die_id(cpu);
1313	struct rapl_package *rp;
1314	int ret;
1315
1316	if (!rapl_defaults)
1317		return ERR_PTR(-ENODEV);
1318
1319	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1320	if (!rp)
1321		return ERR_PTR(-ENOMEM);
1322
1323	/* add the new package to the list */
1324	rp->id = id;
1325	rp->lead_cpu = cpu;
1326	rp->priv = priv;
1327
1328	if (topology_max_die_per_package() > 1)
1329		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1330			 "package-%d-die-%d",
1331			 topology_physical_package_id(cpu), topology_die_id(cpu));
1332	else
1333		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1334			 topology_physical_package_id(cpu));
1335
1336	/* check if the package contains valid domains */
1337	if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1338		ret = -ENODEV;
1339		goto err_free_package;
1340	}
1341	ret = rapl_package_register_powercap(rp);
1342	if (!ret) {
1343		INIT_LIST_HEAD(&rp->plist);
1344		list_add(&rp->plist, &rapl_packages);
1345		return rp;
1346	}
1347
1348err_free_package:
1349	kfree(rp->domains);
1350	kfree(rp);
1351	return ERR_PTR(ret);
1352}
1353EXPORT_SYMBOL_GPL(rapl_add_package);
1354
1355static void power_limit_state_save(void)
1356{
1357	struct rapl_package *rp;
1358	struct rapl_domain *rd;
1359	int nr_pl, ret, i;
1360
1361	get_online_cpus();
1362	list_for_each_entry(rp, &rapl_packages, plist) {
1363		if (!rp->power_zone)
1364			continue;
1365		rd = power_zone_to_rapl_domain(rp->power_zone);
1366		nr_pl = find_nr_power_limit(rd);
1367		for (i = 0; i < nr_pl; i++) {
1368			switch (rd->rpl[i].prim_id) {
1369			case PL1_ENABLE:
1370				ret = rapl_read_data_raw(rd,
1371						 POWER_LIMIT1, true,
1372						 &rd->rpl[i].last_power_limit);
1373				if (ret)
1374					rd->rpl[i].last_power_limit = 0;
1375				break;
1376			case PL2_ENABLE:
1377				ret = rapl_read_data_raw(rd,
1378						 POWER_LIMIT2, true,
1379						 &rd->rpl[i].last_power_limit);
1380				if (ret)
1381					rd->rpl[i].last_power_limit = 0;
1382				break;
1383			case PL4_ENABLE:
1384				ret = rapl_read_data_raw(rd,
1385						 POWER_LIMIT4, true,
1386						 &rd->rpl[i].last_power_limit);
1387				if (ret)
1388					rd->rpl[i].last_power_limit = 0;
1389				break;
1390			}
1391		}
1392	}
1393	put_online_cpus();
1394}
1395
1396static void power_limit_state_restore(void)
1397{
1398	struct rapl_package *rp;
1399	struct rapl_domain *rd;
1400	int nr_pl, i;
1401
1402	get_online_cpus();
1403	list_for_each_entry(rp, &rapl_packages, plist) {
1404		if (!rp->power_zone)
1405			continue;
1406		rd = power_zone_to_rapl_domain(rp->power_zone);
1407		nr_pl = find_nr_power_limit(rd);
1408		for (i = 0; i < nr_pl; i++) {
1409			switch (rd->rpl[i].prim_id) {
1410			case PL1_ENABLE:
1411				if (rd->rpl[i].last_power_limit)
1412					rapl_write_data_raw(rd, POWER_LIMIT1,
1413					    rd->rpl[i].last_power_limit);
1414				break;
1415			case PL2_ENABLE:
1416				if (rd->rpl[i].last_power_limit)
1417					rapl_write_data_raw(rd, POWER_LIMIT2,
1418					    rd->rpl[i].last_power_limit);
1419				break;
1420			case PL4_ENABLE:
1421				if (rd->rpl[i].last_power_limit)
1422					rapl_write_data_raw(rd, POWER_LIMIT4,
1423					    rd->rpl[i].last_power_limit);
1424				break;
1425			}
1426		}
1427	}
1428	put_online_cpus();
1429}
1430
1431static int rapl_pm_callback(struct notifier_block *nb,
1432			    unsigned long mode, void *_unused)
1433{
1434	switch (mode) {
1435	case PM_SUSPEND_PREPARE:
1436		power_limit_state_save();
1437		break;
1438	case PM_POST_SUSPEND:
1439		power_limit_state_restore();
1440		break;
1441	}
1442	return NOTIFY_OK;
1443}
1444
1445static struct notifier_block rapl_pm_notifier = {
1446	.notifier_call = rapl_pm_callback,
1447};
1448
1449static struct platform_device *rapl_msr_platdev;
1450
1451static int __init rapl_init(void)
1452{
1453	const struct x86_cpu_id *id;
1454	int ret;
1455
1456	id = x86_match_cpu(rapl_ids);
1457	if (!id) {
1458		pr_err("driver does not support CPU family %d model %d\n",
1459		       boot_cpu_data.x86, boot_cpu_data.x86_model);
1460
1461		return -ENODEV;
1462	}
1463
1464	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1465
1466	ret = register_pm_notifier(&rapl_pm_notifier);
1467	if (ret)
1468		return ret;
1469
1470	rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1471	if (!rapl_msr_platdev) {
1472		ret = -ENOMEM;
1473		goto end;
1474	}
1475
1476	ret = platform_device_add(rapl_msr_platdev);
1477	if (ret)
1478		platform_device_put(rapl_msr_platdev);
1479
1480end:
1481	if (ret)
1482		unregister_pm_notifier(&rapl_pm_notifier);
1483
1484	return ret;
1485}
1486
1487static void __exit rapl_exit(void)
1488{
1489	platform_device_unregister(rapl_msr_platdev);
1490	unregister_pm_notifier(&rapl_pm_notifier);
1491}
1492
1493fs_initcall(rapl_init);
1494module_exit(rapl_exit);
1495
1496MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1497MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1498MODULE_LICENSE("GPL v2");