Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * 
  4 * Common boot and setup code.
  5 *
  6 * Copyright (C) 2001 PPC64 Team, IBM Corp
 
 
 
 
 
  7 */
  8
 
 
  9#include <linux/export.h>
 10#include <linux/string.h>
 11#include <linux/sched.h>
 12#include <linux/init.h>
 13#include <linux/kernel.h>
 14#include <linux/reboot.h>
 15#include <linux/delay.h>
 16#include <linux/initrd.h>
 17#include <linux/seq_file.h>
 18#include <linux/ioport.h>
 19#include <linux/console.h>
 20#include <linux/utsname.h>
 21#include <linux/tty.h>
 22#include <linux/root_dev.h>
 23#include <linux/notifier.h>
 24#include <linux/cpu.h>
 25#include <linux/unistd.h>
 26#include <linux/serial.h>
 27#include <linux/serial_8250.h>
 28#include <linux/memblock.h>
 29#include <linux/pci.h>
 30#include <linux/lockdep.h>
 31#include <linux/memory.h>
 32#include <linux/nmi.h>
 33#include <linux/pgtable.h>
 34
 35#include <asm/debugfs.h>
 36#include <asm/kvm_guest.h>
 37#include <asm/io.h>
 38#include <asm/kdump.h>
 39#include <asm/prom.h>
 40#include <asm/processor.h>
 
 41#include <asm/smp.h>
 42#include <asm/elf.h>
 43#include <asm/machdep.h>
 44#include <asm/paca.h>
 45#include <asm/time.h>
 46#include <asm/cputable.h>
 47#include <asm/dt_cpu_ftrs.h>
 48#include <asm/sections.h>
 49#include <asm/btext.h>
 50#include <asm/nvram.h>
 51#include <asm/setup.h>
 52#include <asm/rtas.h>
 53#include <asm/iommu.h>
 54#include <asm/serial.h>
 55#include <asm/cache.h>
 56#include <asm/page.h>
 57#include <asm/mmu.h>
 58#include <asm/firmware.h>
 59#include <asm/xmon.h>
 60#include <asm/udbg.h>
 61#include <asm/kexec.h>
 
 62#include <asm/code-patching.h>
 63#include <asm/livepatch.h>
 64#include <asm/opal.h>
 65#include <asm/cputhreads.h>
 66#include <asm/hw_irq.h>
 67#include <asm/feature-fixups.h>
 68#include <asm/kup.h>
 69#include <asm/early_ioremap.h>
 70#include <asm/pgalloc.h>
 71#include <asm/asm-prototypes.h>
 72
 73#include "setup.h"
 74
 75int spinning_secondaries;
 
 
 
 
 
 
 
 76u64 ppc64_pft_size;
 77
 
 
 
 78struct ppc64_caches ppc64_caches = {
 79	.l1d = {
 80		.block_size = 0x40,
 81		.log_block_size = 6,
 82	},
 83	.l1i = {
 84		.block_size = 0x40,
 85		.log_block_size = 6
 86	},
 87};
 88EXPORT_SYMBOL_GPL(ppc64_caches);
 89
 90#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
 91void __init setup_tlb_core_data(void)
 92{
 93	int cpu;
 94
 95	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
 96
 97	for_each_possible_cpu(cpu) {
 98		int first = cpu_first_thread_sibling(cpu);
 99
100		/*
101		 * If we boot via kdump on a non-primary thread,
102		 * make sure we point at the thread that actually
103		 * set up this TLB.
104		 */
105		if (cpu_first_thread_sibling(boot_cpuid) == first)
106			first = boot_cpuid;
107
108		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109
110		/*
111		 * If we have threads, we need either tlbsrx.
112		 * or e6500 tablewalk mode, or else TLB handlers
113		 * will be racy and could produce duplicate entries.
114		 * Should we panic instead?
115		 */
116		WARN_ONCE(smt_enabled_at_boot >= 2 &&
117			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
118			  book3e_htw_mode != PPC_HTW_E6500,
119			  "%s: unsupported MMU configuration\n", __func__);
120	}
121}
122#endif
123
124#ifdef CONFIG_SMP
125
126static char *smt_enabled_cmdline;
127
128/* Look for ibm,smt-enabled OF option */
129void __init check_smt_enabled(void)
130{
131	struct device_node *dn;
132	const char *smt_option;
133
134	/* Default to enabling all threads */
135	smt_enabled_at_boot = threads_per_core;
136
137	/* Allow the command line to overrule the OF option */
138	if (smt_enabled_cmdline) {
139		if (!strcmp(smt_enabled_cmdline, "on"))
140			smt_enabled_at_boot = threads_per_core;
141		else if (!strcmp(smt_enabled_cmdline, "off"))
142			smt_enabled_at_boot = 0;
143		else {
144			int smt;
145			int rc;
146
147			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
148			if (!rc)
149				smt_enabled_at_boot =
150					min(threads_per_core, smt);
151		}
152	} else {
153		dn = of_find_node_by_path("/options");
154		if (dn) {
155			smt_option = of_get_property(dn, "ibm,smt-enabled",
156						     NULL);
157
158			if (smt_option) {
159				if (!strcmp(smt_option, "on"))
160					smt_enabled_at_boot = threads_per_core;
161				else if (!strcmp(smt_option, "off"))
162					smt_enabled_at_boot = 0;
163			}
164
165			of_node_put(dn);
166		}
167	}
168}
169
170/* Look for smt-enabled= cmdline option */
171static int __init early_smt_enabled(char *p)
172{
173	smt_enabled_cmdline = p;
174	return 0;
175}
176early_param("smt-enabled", early_smt_enabled);
177
 
 
178#endif /* CONFIG_SMP */
179
180/** Fix up paca fields required for the boot cpu */
181static void __init fixup_boot_paca(void)
182{
183	/* The boot cpu is started */
184	get_paca()->cpu_start = 1;
185	/* Allow percpu accesses to work until we setup percpu data */
186	get_paca()->data_offset = 0;
187	/* Mark interrupts disabled in PACA */
188	irq_soft_mask_set(IRQS_DISABLED);
189}
190
191static void __init configure_exceptions(void)
192{
193	/*
194	 * Setup the trampolines from the lowmem exception vectors
195	 * to the kdump kernel when not using a relocatable kernel.
196	 */
197	setup_kdump_trampoline();
198
199	/* Under a PAPR hypervisor, we need hypercalls */
200	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
201		/* Enable AIL if possible */
202		if (!pseries_enable_reloc_on_exc()) {
203			init_task.thread.fscr &= ~FSCR_SCV;
204			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
205		}
206
207		/*
208		 * Tell the hypervisor that we want our exceptions to
209		 * be taken in little endian mode.
210		 *
211		 * We don't call this for big endian as our calling convention
212		 * makes us always enter in BE, and the call may fail under
213		 * some circumstances with kdump.
214		 */
215#ifdef __LITTLE_ENDIAN__
216		pseries_little_endian_exceptions();
217#endif
218	} else {
219		/* Set endian mode using OPAL */
220		if (firmware_has_feature(FW_FEATURE_OPAL))
221			opal_configure_cores();
222
223		/* AIL on native is done in cpu_ready_for_interrupts() */
224	}
225}
226
227static void cpu_ready_for_interrupts(void)
228{
229	/*
230	 * Enable AIL if supported, and we are in hypervisor mode. This
231	 * is called once for every processor.
232	 *
233	 * If we are not in hypervisor mode the job is done once for
234	 * the whole partition in configure_exceptions().
235	 */
236	if (cpu_has_feature(CPU_FTR_HVMODE)) {
237		unsigned long lpcr = mfspr(SPRN_LPCR);
238		unsigned long new_lpcr = lpcr;
239
240		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
241			/* P10 DD1 does not have HAIL */
242			if (pvr_version_is(PVR_POWER10) &&
243					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
244				new_lpcr |= LPCR_AIL_3;
245			else
246				new_lpcr |= LPCR_HAIL;
247		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
248			new_lpcr |= LPCR_AIL_3;
249		}
250
251		if (new_lpcr != lpcr)
252			mtspr(SPRN_LPCR, new_lpcr);
253	}
254
255	/*
256	 * Set HFSCR:TM based on CPU features:
257	 * In the special case of TM no suspend (P9N DD2.1), Linux is
258	 * told TM is off via the dt-ftrs but told to (partially) use
259	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
260	 * will be off from dt-ftrs but we need to turn it on for the
261	 * no suspend case.
262	 */
263	if (cpu_has_feature(CPU_FTR_HVMODE)) {
264		if (cpu_has_feature(CPU_FTR_TM_COMP))
265			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
266		else
267			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
268	}
269
270	/* Set IR and DR in PACA MSR */
271	get_paca()->kernel_msr = MSR_KERNEL;
272}
273
274unsigned long spr_default_dscr = 0;
275
276static void __init record_spr_defaults(void)
277{
278	if (early_cpu_has_feature(CPU_FTR_DSCR))
279		spr_default_dscr = mfspr(SPRN_DSCR);
280}
281
282/*
283 * Early initialization entry point. This is called by head.S
284 * with MMU translation disabled. We rely on the "feature" of
285 * the CPU that ignores the top 2 bits of the address in real
286 * mode so we can access kernel globals normally provided we
287 * only toy with things in the RMO region. From here, we do
288 * some early parsing of the device-tree to setup out MEMBLOCK
289 * data structures, and allocate & initialize the hash table
290 * and segment tables so we can start running with translation
291 * enabled.
292 *
293 * It is this function which will call the probe() callback of
294 * the various platform types and copy the matching one to the
295 * global ppc_md structure. Your platform can eventually do
296 * some very early initializations from the probe() routine, but
297 * this is not recommended, be very careful as, for example, the
298 * device-tree is not accessible via normal means at this point.
299 */
300
301void __init early_setup(unsigned long dt_ptr)
302{
303	static __initdata struct paca_struct boot_paca;
304
305	/* -------- printk is _NOT_ safe to use here ! ------- */
306
307	/*
308	 * Assume we're on cpu 0 for now.
309	 *
310	 * We need to load a PACA very early for a few reasons.
311	 *
312	 * The stack protector canary is stored in the paca, so as soon as we
313	 * call any stack protected code we need r13 pointing somewhere valid.
314	 *
315	 * If we are using kcov it will call in_task() in its instrumentation,
316	 * which relies on the current task from the PACA.
317	 *
318	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
319	 * printk(), which can trigger both stack protector and kcov.
320	 *
321	 * percpu variables and spin locks also use the paca.
322	 *
323	 * So set up a temporary paca. It will be replaced below once we know
324	 * what CPU we are on.
325	 */
326	initialise_paca(&boot_paca, 0);
327	setup_paca(&boot_paca);
328	fixup_boot_paca();
329
330	/* -------- printk is now safe to use ------- */
 
331
332	/* Try new device tree based feature discovery ... */
333	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
334		/* Otherwise use the old style CPU table */
335		identify_cpu(0, mfspr(SPRN_PVR));
336
337	/* Enable early debugging if any specified (see udbg.h) */
338	udbg_early_init();
339
340	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
341
342	/*
343	 * Do early initialization using the flattened device
344	 * tree, such as retrieving the physical memory map or
345	 * calculating/retrieving the hash table size.
346	 */
347	early_init_devtree(__va(dt_ptr));
348
349	/* Now we know the logical id of our boot cpu, setup the paca. */
350	if (boot_cpuid != 0) {
351		/* Poison paca_ptrs[0] again if it's not the boot cpu */
352		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
353	}
354	setup_paca(paca_ptrs[boot_cpuid]);
355	fixup_boot_paca();
356
357	/*
358	 * Configure exception handlers. This include setting up trampolines
359	 * if needed, setting exception endian mode, etc...
360	 */
361	configure_exceptions();
362
363	/*
364	 * Configure Kernel Userspace Protection. This needs to happen before
365	 * feature fixups for platforms that implement this using features.
366	 */
367	setup_kup();
368
369	/* Apply all the dynamic patching */
370	apply_feature_fixups();
371	setup_feature_keys();
372
373	/* Initialize the hash table or TLB handling */
374	early_init_mmu();
375
376	early_ioremap_setup();
377
378	/*
379	 * After firmware and early platform setup code has set things up,
380	 * we note the SPR values for configurable control/performance
381	 * registers, and use those as initial defaults.
382	 */
383	record_spr_defaults();
384
385	/*
386	 * At this point, we can let interrupts switch to virtual mode
387	 * (the MMU has been setup), so adjust the MSR in the PACA to
388	 * have IR and DR set and enable AIL if it exists
389	 */
390	cpu_ready_for_interrupts();
391
392	/*
393	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
394	 * will only actually get enabled on the boot cpu much later once
395	 * ftrace itself has been initialized.
396	 */
397	this_cpu_enable_ftrace();
398
399	udbg_printf(" <- %s()\n", __func__);
400
401#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
402	/*
403	 * This needs to be done *last* (after the above udbg_printf() even)
404	 *
405	 * Right after we return from this function, we turn on the MMU
406	 * which means the real-mode access trick that btext does will
407	 * no longer work, it needs to switch to using a real MMU
408	 * mapping. This call will ensure that it does
409	 */
410	btext_map();
411#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
412}
413
414#ifdef CONFIG_SMP
415void early_setup_secondary(void)
416{
417	/* Mark interrupts disabled in PACA */
418	irq_soft_mask_set(IRQS_DISABLED);
419
420	/* Initialize the hash table or TLB handling */
421	early_init_mmu_secondary();
422
423	/* Perform any KUP setup that is per-cpu */
424	setup_kup();
425
426	/*
427	 * At this point, we can let interrupts switch to virtual mode
428	 * (the MMU has been setup), so adjust the MSR in the PACA to
429	 * have IR and DR set.
430	 */
431	cpu_ready_for_interrupts();
432}
433
434#endif /* CONFIG_SMP */
435
436void panic_smp_self_stop(void)
437{
438	hard_irq_disable();
439	spin_begin();
440	while (1)
441		spin_cpu_relax();
442}
443
444#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
445static bool use_spinloop(void)
446{
447	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
448		/*
449		 * See comments in head_64.S -- not all platforms insert
450		 * secondaries at __secondary_hold and wait at the spin
451		 * loop.
452		 */
453		if (firmware_has_feature(FW_FEATURE_OPAL))
454			return false;
455		return true;
456	}
457
458	/*
459	 * When book3e boots from kexec, the ePAPR spin table does
460	 * not get used.
461	 */
462	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
463}
464
465void smp_release_cpus(void)
466{
467	unsigned long *ptr;
468	int i;
469
470	if (!use_spinloop())
471		return;
472
473	/* All secondary cpus are spinning on a common spinloop, release them
474	 * all now so they can start to spin on their individual paca
475	 * spinloops. For non SMP kernels, the secondary cpus never get out
476	 * of the common spinloop.
477	 */
478
479	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
480			- PHYSICAL_START);
481	*ptr = ppc_function_entry(generic_secondary_smp_init);
482
483	/* And wait a bit for them to catch up */
484	for (i = 0; i < 100000; i++) {
485		mb();
486		HMT_low();
487		if (spinning_secondaries == 0)
488			break;
489		udelay(1);
490	}
491	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
 
 
492}
493#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
494
495/*
496 * Initialize some remaining members of the ppc64_caches and systemcfg
497 * structures
498 * (at least until we get rid of them completely). This is mostly some
499 * cache informations about the CPU that will be used by cache flush
500 * routines and/or provided to userland
501 */
502
503static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
504			    u32 bsize, u32 sets)
505{
506	info->size = size;
507	info->sets = sets;
508	info->line_size = lsize;
509	info->block_size = bsize;
510	info->log_block_size = __ilog2(bsize);
511	if (bsize)
512		info->blocks_per_page = PAGE_SIZE / bsize;
513	else
514		info->blocks_per_page = 0;
515
516	if (sets == 0)
517		info->assoc = 0xffff;
518	else
519		info->assoc = size / (sets * lsize);
520}
521
522static bool __init parse_cache_info(struct device_node *np,
523				    bool icache,
524				    struct ppc_cache_info *info)
525{
526	static const char *ipropnames[] __initdata = {
527		"i-cache-size",
528		"i-cache-sets",
529		"i-cache-block-size",
530		"i-cache-line-size",
531	};
532	static const char *dpropnames[] __initdata = {
533		"d-cache-size",
534		"d-cache-sets",
535		"d-cache-block-size",
536		"d-cache-line-size",
537	};
538	const char **propnames = icache ? ipropnames : dpropnames;
539	const __be32 *sizep, *lsizep, *bsizep, *setsp;
540	u32 size, lsize, bsize, sets;
541	bool success = true;
542
543	size = 0;
544	sets = -1u;
545	lsize = bsize = cur_cpu_spec->dcache_bsize;
546	sizep = of_get_property(np, propnames[0], NULL);
547	if (sizep != NULL)
548		size = be32_to_cpu(*sizep);
549	setsp = of_get_property(np, propnames[1], NULL);
550	if (setsp != NULL)
551		sets = be32_to_cpu(*setsp);
552	bsizep = of_get_property(np, propnames[2], NULL);
553	lsizep = of_get_property(np, propnames[3], NULL);
554	if (bsizep == NULL)
555		bsizep = lsizep;
556	if (lsizep == NULL)
557		lsizep = bsizep;
558	if (lsizep != NULL)
559		lsize = be32_to_cpu(*lsizep);
560	if (bsizep != NULL)
561		bsize = be32_to_cpu(*bsizep);
562	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
563		success = false;
564
565	/*
566	 * OF is weird .. it represents fully associative caches
567	 * as "1 way" which doesn't make much sense and doesn't
568	 * leave room for direct mapped. We'll assume that 0
569	 * in OF means direct mapped for that reason.
570	 */
571	if (sets == 1)
572		sets = 0;
573	else if (sets == 0)
574		sets = 1;
575
576	init_cache_info(info, size, lsize, bsize, sets);
577
578	return success;
579}
580
581void __init initialize_cache_info(void)
582{
583	struct device_node *cpu = NULL, *l2, *l3 = NULL;
584	u32 pvr;
585
586	/*
587	 * All shipping POWER8 machines have a firmware bug that
588	 * puts incorrect information in the device-tree. This will
589	 * be (hopefully) fixed for future chips but for now hard
590	 * code the values if we are running on one of these
591	 */
592	pvr = PVR_VER(mfspr(SPRN_PVR));
593	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
594	    pvr == PVR_POWER8NVL) {
595						/* size    lsize   blk  sets */
596		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
597		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
598		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
599		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
600	} else
601		cpu = of_find_node_by_type(NULL, "cpu");
602
603	/*
604	 * We're assuming *all* of the CPUs have the same
605	 * d-cache and i-cache sizes... -Peter
606	 */
607	if (cpu) {
608		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
609			pr_warn("Argh, can't find dcache properties !\n");
610
611		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
612			pr_warn("Argh, can't find icache properties !\n");
613
614		/*
615		 * Try to find the L2 and L3 if any. Assume they are
616		 * unified and use the D-side properties.
617		 */
618		l2 = of_find_next_cache_node(cpu);
619		of_node_put(cpu);
620		if (l2) {
621			parse_cache_info(l2, false, &ppc64_caches.l2);
622			l3 = of_find_next_cache_node(l2);
623			of_node_put(l2);
624		}
625		if (l3) {
626			parse_cache_info(l3, false, &ppc64_caches.l3);
627			of_node_put(l3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628		}
629	}
630
631	/* For use by binfmt_elf */
632	dcache_bsize = ppc64_caches.l1d.block_size;
633	icache_bsize = ppc64_caches.l1i.block_size;
634
635	cur_cpu_spec->dcache_bsize = dcache_bsize;
636	cur_cpu_spec->icache_bsize = icache_bsize;
637}
638
 
639/*
640 * This returns the limit below which memory accesses to the linear
641 * mapping are guarnateed not to cause an architectural exception (e.g.,
642 * TLB or SLB miss fault).
643 *
644 * This is used to allocate PACAs and various interrupt stacks that
645 * that are accessed early in interrupt handlers that must not cause
646 * re-entrant interrupts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647 */
648__init u64 ppc64_bolted_size(void)
649{
650#ifdef CONFIG_PPC_BOOK3E
651	/* Freescale BookE bolts the entire linear mapping */
652	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
653	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
654		return linear_map_top;
655	/* Other BookE, we assume the first GB is bolted */
656	return 1ul << 30;
657#else
658	/* BookS radix, does not take faults on linear mapping */
659	if (early_radix_enabled())
660		return ULONG_MAX;
661
662	/* BookS hash, the first segment is bolted */
663	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
664		return 1UL << SID_SHIFT_1T;
665	return 1UL << SID_SHIFT;
666#endif
667}
668
669static void *__init alloc_stack(unsigned long limit, int cpu)
670{
671	void *ptr;
672
673	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
674
675	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
676				     MEMBLOCK_LOW_LIMIT, limit,
677				     early_cpu_to_node(cpu));
678	if (!ptr)
679		panic("cannot allocate stacks");
680
681	return ptr;
682}
683
684void __init irqstack_early_init(void)
685{
686	u64 limit = ppc64_bolted_size();
687	unsigned int i;
688
689	/*
690	 * Interrupt stacks must be in the first segment since we
691	 * cannot afford to take SLB misses on them. They are not
692	 * accessed in realmode.
693	 */
694	for_each_possible_cpu(i) {
695		softirq_ctx[i] = alloc_stack(limit, i);
696		hardirq_ctx[i] = alloc_stack(limit, i);
 
 
 
 
697	}
698}
699
700#ifdef CONFIG_PPC_BOOK3E
701void __init exc_lvl_early_init(void)
702{
 
 
 
703	unsigned int i;
704
705	for_each_possible_cpu(i) {
706		void *sp;
707
708		sp = alloc_stack(ULONG_MAX, i);
709		critirq_ctx[i] = sp;
710		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
711
712		sp = alloc_stack(ULONG_MAX, i);
713		dbgirq_ctx[i] = sp;
714		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
715
716		sp = alloc_stack(ULONG_MAX, i);
717		mcheckirq_ctx[i] = sp;
718		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
719	}
720
721	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
722		patch_exception(0x040, exc_debug_debug_book3e);
 
723}
 
 
724#endif
725
726/*
727 * Stack space used when we detect a bad kernel stack pointer, and
728 * early in SMP boots before relocation is enabled. Exclusive emergency
729 * stack for machine checks.
730 */
731void __init emergency_stack_init(void)
732{
733	u64 limit, mce_limit;
734	unsigned int i;
735
736	/*
737	 * Emergency stacks must be under 256MB, we cannot afford to take
738	 * SLB misses on them. The ABI also requires them to be 128-byte
739	 * aligned.
740	 *
741	 * Since we use these as temporary stacks during secondary CPU
742	 * bringup, machine check, system reset, and HMI, we need to get
743	 * at them in real mode. This means they must also be within the RMO
744	 * region.
745	 *
746	 * The IRQ stacks allocated elsewhere in this file are zeroed and
747	 * initialized in kernel/irq.c. These are initialized here in order
748	 * to have emergency stacks available as early as possible.
749	 */
750	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751
752	/*
753	 * Machine check on pseries calls rtas, but can't use the static
754	 * rtas_args due to a machine check hitting while the lock is held.
755	 * rtas args have to be under 4GB, so the machine check stack is
756	 * limited to 4GB so args can be put on stack.
757	 */
758	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
759		mce_limit = SZ_4G;
760
761	for_each_possible_cpu(i) {
762		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 
 
 
763
764#ifdef CONFIG_PPC_BOOK3S_64
765		/* emergency stack for NMI exception handling. */
766		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 
 
 
 
 
767
768		/* emergency stack for machine check exception handling. */
769		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
770#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771	}
772}
773
 
 
 
 
 
 
 
774#ifdef CONFIG_SMP
775/**
776 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
777 * @cpu: cpu to allocate for
778 * @size: size allocation in bytes
779 * @align: alignment
780 *
781 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
782 * does the right thing for NUMA regardless of the current
783 * configuration.
784 *
785 * RETURNS:
786 * Pointer to the allocated area on success, NULL on failure.
787 */
788static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
789					size_t align)
790{
791	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
792#ifdef CONFIG_NUMA
793	int node = early_cpu_to_node(cpu);
794	void *ptr;
795
796	if (!node_online(node) || !NODE_DATA(node)) {
797		ptr = memblock_alloc_from(size, align, goal);
798		pr_info("cpu %d has no node %d or node-local memory\n",
799			cpu, node);
800		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
801			 cpu, size, __pa(ptr));
802	} else {
803		ptr = memblock_alloc_try_nid(size, align, goal,
804					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
805		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
806			 "%016lx\n", cpu, size, node, __pa(ptr));
807	}
808	return ptr;
809#else
810	return memblock_alloc_from(size, align, goal);
811#endif
812}
813
814static void __init pcpu_free_bootmem(void *ptr, size_t size)
815{
816	memblock_free(__pa(ptr), size);
817}
818
819static int pcpu_cpu_distance(unsigned int from, unsigned int to)
820{
821	if (early_cpu_to_node(from) == early_cpu_to_node(to))
822		return LOCAL_DISTANCE;
823	else
824		return REMOTE_DISTANCE;
825}
826
827unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
828EXPORT_SYMBOL(__per_cpu_offset);
829
830static void __init pcpu_populate_pte(unsigned long addr)
831{
832	pgd_t *pgd = pgd_offset_k(addr);
833	p4d_t *p4d;
834	pud_t *pud;
835	pmd_t *pmd;
836
837	p4d = p4d_offset(pgd, addr);
838	if (p4d_none(*p4d)) {
839		pud_t *new;
840
841		new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
842		if (!new)
843			goto err_alloc;
844		p4d_populate(&init_mm, p4d, new);
845	}
846
847	pud = pud_offset(p4d, addr);
848	if (pud_none(*pud)) {
849		pmd_t *new;
850
851		new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
852		if (!new)
853			goto err_alloc;
854		pud_populate(&init_mm, pud, new);
855	}
856
857	pmd = pmd_offset(pud, addr);
858	if (!pmd_present(*pmd)) {
859		pte_t *new;
860
861		new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
862		if (!new)
863			goto err_alloc;
864		pmd_populate_kernel(&init_mm, pmd, new);
865	}
866
867	return;
868
869err_alloc:
870	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
871	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
872}
873
874
875void __init setup_per_cpu_areas(void)
876{
877	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
878	size_t atom_size;
879	unsigned long delta;
880	unsigned int cpu;
881	int rc = -EINVAL;
882
883	/*
884	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
885	 * to group units.  For larger mappings, use 1M atom which
886	 * should be large enough to contain a number of units.
887	 */
888	if (mmu_linear_psize == MMU_PAGE_4K)
889		atom_size = PAGE_SIZE;
890	else
891		atom_size = 1 << 20;
892
893	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
894		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
895					    pcpu_alloc_bootmem, pcpu_free_bootmem);
896		if (rc)
897			pr_warn("PERCPU: %s allocator failed (%d), "
898				"falling back to page size\n",
899				pcpu_fc_names[pcpu_chosen_fc], rc);
900	}
901
902	if (rc < 0)
903		rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
904					   pcpu_populate_pte);
905	if (rc < 0)
906		panic("cannot initialize percpu area (err=%d)", rc);
907
908	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
909	for_each_possible_cpu(cpu) {
910                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
911		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
912	}
913}
914#endif
915
916#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
917unsigned long memory_block_size_bytes(void)
918{
919	if (ppc_md.memory_block_size)
920		return ppc_md.memory_block_size();
921
922	return MIN_MEMORY_BLOCK_SIZE;
923}
924#endif
925
926#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
927struct ppc_pci_io ppc_pci_io;
928EXPORT_SYMBOL(ppc_pci_io);
929#endif
930
931#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
932u64 hw_nmi_get_sample_period(int watchdog_thresh)
933{
934	return ppc_proc_freq * watchdog_thresh;
935}
936#endif
937
938/*
939 * The perf based hardlockup detector breaks PMU event based branches, so
940 * disable it by default. Book3S has a soft-nmi hardlockup detector based
941 * on the decrementer interrupt, so it does not suffer from this problem.
942 *
943 * It is likely to get false positives in KVM guests, so disable it there
944 * by default too. PowerVM will not stop or arbitrarily oversubscribe
945 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
946 * the detector for non-KVM guests, assume PowerVM.
947 */
948static int __init disable_hardlockup_detector(void)
949{
950#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
951	hardlockup_detector_disable();
952#else
953	if (firmware_has_feature(FW_FEATURE_LPAR)) {
954		if (is_kvm_guest())
955			hardlockup_detector_disable();
956	}
957#endif
958
959	return 0;
960}
961early_initcall(disable_hardlockup_detector);
v3.5.6
 
  1/*
  2 * 
  3 * Common boot and setup code.
  4 *
  5 * Copyright (C) 2001 PPC64 Team, IBM Corp
  6 *
  7 *      This program is free software; you can redistribute it and/or
  8 *      modify it under the terms of the GNU General Public License
  9 *      as published by the Free Software Foundation; either version
 10 *      2 of the License, or (at your option) any later version.
 11 */
 12
 13#undef DEBUG
 14
 15#include <linux/export.h>
 16#include <linux/string.h>
 17#include <linux/sched.h>
 18#include <linux/init.h>
 19#include <linux/kernel.h>
 20#include <linux/reboot.h>
 21#include <linux/delay.h>
 22#include <linux/initrd.h>
 23#include <linux/seq_file.h>
 24#include <linux/ioport.h>
 25#include <linux/console.h>
 26#include <linux/utsname.h>
 27#include <linux/tty.h>
 28#include <linux/root_dev.h>
 29#include <linux/notifier.h>
 30#include <linux/cpu.h>
 31#include <linux/unistd.h>
 32#include <linux/serial.h>
 33#include <linux/serial_8250.h>
 34#include <linux/bootmem.h>
 35#include <linux/pci.h>
 36#include <linux/lockdep.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 
 39
 
 
 40#include <asm/io.h>
 41#include <asm/kdump.h>
 42#include <asm/prom.h>
 43#include <asm/processor.h>
 44#include <asm/pgtable.h>
 45#include <asm/smp.h>
 46#include <asm/elf.h>
 47#include <asm/machdep.h>
 48#include <asm/paca.h>
 49#include <asm/time.h>
 50#include <asm/cputable.h>
 
 51#include <asm/sections.h>
 52#include <asm/btext.h>
 53#include <asm/nvram.h>
 54#include <asm/setup.h>
 55#include <asm/rtas.h>
 56#include <asm/iommu.h>
 57#include <asm/serial.h>
 58#include <asm/cache.h>
 59#include <asm/page.h>
 60#include <asm/mmu.h>
 61#include <asm/firmware.h>
 62#include <asm/xmon.h>
 63#include <asm/udbg.h>
 64#include <asm/kexec.h>
 65#include <asm/mmu_context.h>
 66#include <asm/code-patching.h>
 67#include <asm/kvm_ppc.h>
 68#include <asm/hugetlb.h>
 
 
 
 
 
 
 
 69
 70#include "setup.h"
 71
 72#ifdef DEBUG
 73#define DBG(fmt...) udbg_printf(fmt)
 74#else
 75#define DBG(fmt...)
 76#endif
 77
 78int boot_cpuid = 0;
 79int __initdata spinning_secondaries;
 80u64 ppc64_pft_size;
 81
 82/* Pick defaults since we might want to patch instructions
 83 * before we've read this from the device tree.
 84 */
 85struct ppc64_caches ppc64_caches = {
 86	.dline_size = 0x40,
 87	.log_dline_size = 6,
 88	.iline_size = 0x40,
 89	.log_iline_size = 6
 
 
 
 
 90};
 91EXPORT_SYMBOL_GPL(ppc64_caches);
 92
 93/*
 94 * These are used in binfmt_elf.c to put aux entries on the stack
 95 * for each elf executable being started.
 96 */
 97int dcache_bsize;
 98int icache_bsize;
 99int ucache_bsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
101#ifdef CONFIG_SMP
102
103static char *smt_enabled_cmdline;
104
105/* Look for ibm,smt-enabled OF option */
106static void check_smt_enabled(void)
107{
108	struct device_node *dn;
109	const char *smt_option;
110
111	/* Default to enabling all threads */
112	smt_enabled_at_boot = threads_per_core;
113
114	/* Allow the command line to overrule the OF option */
115	if (smt_enabled_cmdline) {
116		if (!strcmp(smt_enabled_cmdline, "on"))
117			smt_enabled_at_boot = threads_per_core;
118		else if (!strcmp(smt_enabled_cmdline, "off"))
119			smt_enabled_at_boot = 0;
120		else {
121			long smt;
122			int rc;
123
124			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125			if (!rc)
126				smt_enabled_at_boot =
127					min(threads_per_core, (int)smt);
128		}
129	} else {
130		dn = of_find_node_by_path("/options");
131		if (dn) {
132			smt_option = of_get_property(dn, "ibm,smt-enabled",
133						     NULL);
134
135			if (smt_option) {
136				if (!strcmp(smt_option, "on"))
137					smt_enabled_at_boot = threads_per_core;
138				else if (!strcmp(smt_option, "off"))
139					smt_enabled_at_boot = 0;
140			}
141
142			of_node_put(dn);
143		}
144	}
145}
146
147/* Look for smt-enabled= cmdline option */
148static int __init early_smt_enabled(char *p)
149{
150	smt_enabled_cmdline = p;
151	return 0;
152}
153early_param("smt-enabled", early_smt_enabled);
154
155#else
156#define check_smt_enabled()
157#endif /* CONFIG_SMP */
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159/*
160 * Early initialization entry point. This is called by head.S
161 * with MMU translation disabled. We rely on the "feature" of
162 * the CPU that ignores the top 2 bits of the address in real
163 * mode so we can access kernel globals normally provided we
164 * only toy with things in the RMO region. From here, we do
165 * some early parsing of the device-tree to setup out MEMBLOCK
166 * data structures, and allocate & initialize the hash table
167 * and segment tables so we can start running with translation
168 * enabled.
169 *
170 * It is this function which will call the probe() callback of
171 * the various platform types and copy the matching one to the
172 * global ppc_md structure. Your platform can eventually do
173 * some very early initializations from the probe() routine, but
174 * this is not recommended, be very careful as, for example, the
175 * device-tree is not accessible via normal means at this point.
176 */
177
178void __init early_setup(unsigned long dt_ptr)
179{
 
 
180	/* -------- printk is _NOT_ safe to use here ! ------- */
181
182	/* Identify CPU type */
183	identify_cpu(0, mfspr(SPRN_PVR));
184
185	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186	initialise_paca(&boot_paca, 0);
187	setup_paca(&boot_paca);
 
188
189	/* Initialize lockdep early or else spinlocks will blow */
190	lockdep_init();
191
192	/* -------- printk is now safe to use ------- */
 
 
 
193
194	/* Enable early debugging if any specified (see udbg.h) */
195	udbg_early_init();
196
197 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198
199	/*
200	 * Do early initialization using the flattened device
201	 * tree, such as retrieving the physical memory map or
202	 * calculating/retrieving the hash table size.
203	 */
204	early_init_devtree(__va(dt_ptr));
205
206	/* Now we know the logical id of our boot cpu, setup the paca. */
207	setup_paca(&paca[boot_cpuid]);
 
 
 
 
 
208
209	/* Fix up paca fields required for the boot cpu */
210	get_paca()->cpu_start = 1;
 
 
 
211
212	/* Probe the machine type */
213	probe_machine();
214
215	setup_kdump_trampoline();
 
216
217	DBG("Found, Initializing memory management...\n");
 
 
218
219	/* Initialize the hash table or TLB handling */
220	early_init_mmu();
221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222	/*
223	 * Reserve any gigantic pages requested on the command line.
224	 * memblock needs to have been initialized by the time this is
225	 * called since this will reserve memory.
226	 */
227	reserve_hugetlb_gpages();
 
 
228
229	DBG(" <- early_setup()\n");
 
 
 
 
 
 
 
 
 
 
230}
231
232#ifdef CONFIG_SMP
233void early_setup_secondary(void)
234{
235	/* Mark interrupts enabled in PACA */
236	get_paca()->soft_enabled = 0;
237
238	/* Initialize the hash table or TLB handling */
239	early_init_mmu_secondary();
 
 
 
 
 
 
 
 
 
 
240}
241
242#endif /* CONFIG_SMP */
243
244#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245void smp_release_cpus(void)
246{
247	unsigned long *ptr;
248	int i;
249
250	DBG(" -> smp_release_cpus()\n");
 
251
252	/* All secondary cpus are spinning on a common spinloop, release them
253	 * all now so they can start to spin on their individual paca
254	 * spinloops. For non SMP kernels, the secondary cpus never get out
255	 * of the common spinloop.
256	 */
257
258	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
259			- PHYSICAL_START);
260	*ptr = __pa(generic_secondary_smp_init);
261
262	/* And wait a bit for them to catch up */
263	for (i = 0; i < 100000; i++) {
264		mb();
265		HMT_low();
266		if (spinning_secondaries == 0)
267			break;
268		udelay(1);
269	}
270	DBG("spinning_secondaries = %d\n", spinning_secondaries);
271
272	DBG(" <- smp_release_cpus()\n");
273}
274#endif /* CONFIG_SMP || CONFIG_KEXEC */
275
276/*
277 * Initialize some remaining members of the ppc64_caches and systemcfg
278 * structures
279 * (at least until we get rid of them completely). This is mostly some
280 * cache informations about the CPU that will be used by cache flush
281 * routines and/or provided to userland
282 */
283static void __init initialize_cache_info(void)
 
 
284{
285	struct device_node *np;
286	unsigned long num_cpus = 0;
 
 
 
 
 
 
 
287
288	DBG(" -> initialize_cache_info()\n");
 
 
 
 
289
290	for_each_node_by_type(np, "cpu") {
291		num_cpus += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
293		/*
294		 * We're assuming *all* of the CPUs have the same
295		 * d-cache and i-cache sizes... -Peter
296		 */
297		if (num_cpus == 1) {
298			const u32 *sizep, *lsizep;
299			u32 size, lsize;
300
301			size = 0;
302			lsize = cur_cpu_spec->dcache_bsize;
303			sizep = of_get_property(np, "d-cache-size", NULL);
304			if (sizep != NULL)
305				size = *sizep;
306			lsizep = of_get_property(np, "d-cache-block-size",
307						 NULL);
308			/* fallback if block size missing */
309			if (lsizep == NULL)
310				lsizep = of_get_property(np,
311							 "d-cache-line-size",
312							 NULL);
313			if (lsizep != NULL)
314				lsize = *lsizep;
315			if (sizep == 0 || lsizep == 0)
316				DBG("Argh, can't find dcache properties ! "
317				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
318
319			ppc64_caches.dsize = size;
320			ppc64_caches.dline_size = lsize;
321			ppc64_caches.log_dline_size = __ilog2(lsize);
322			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
323
324			size = 0;
325			lsize = cur_cpu_spec->icache_bsize;
326			sizep = of_get_property(np, "i-cache-size", NULL);
327			if (sizep != NULL)
328				size = *sizep;
329			lsizep = of_get_property(np, "i-cache-block-size",
330						 NULL);
331			if (lsizep == NULL)
332				lsizep = of_get_property(np,
333							 "i-cache-line-size",
334							 NULL);
335			if (lsizep != NULL)
336				lsize = *lsizep;
337			if (sizep == 0 || lsizep == 0)
338				DBG("Argh, can't find icache properties ! "
339				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
340
341			ppc64_caches.isize = size;
342			ppc64_caches.iline_size = lsize;
343			ppc64_caches.log_iline_size = __ilog2(lsize);
344			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
345		}
346	}
347
348	DBG(" <- initialize_cache_info()\n");
 
 
 
 
 
349}
350
351
352/*
353 * Do some initial setup of the system.  The parameters are those which 
354 * were passed in from the bootloader.
355 */
356void __init setup_system(void)
357{
358	DBG(" -> setup_system()\n");
359
360	/* Apply the CPUs-specific and firmware specific fixups to kernel
361	 * text (nop out sections not relevant to this CPU or this firmware)
362	 */
363	do_feature_fixups(cur_cpu_spec->cpu_features,
364			  &__start___ftr_fixup, &__stop___ftr_fixup);
365	do_feature_fixups(cur_cpu_spec->mmu_features,
366			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
367	do_feature_fixups(powerpc_firmware_features,
368			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
369	do_lwsync_fixups(cur_cpu_spec->cpu_features,
370			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
371	do_final_fixups();
372
373	/*
374	 * Unflatten the device-tree passed by prom_init or kexec
375	 */
376	unflatten_device_tree();
377
378	/*
379	 * Fill the ppc64_caches & systemcfg structures with informations
380 	 * retrieved from the device-tree.
381	 */
382	initialize_cache_info();
383
384#ifdef CONFIG_PPC_RTAS
385	/*
386	 * Initialize RTAS if available
387	 */
388	rtas_initialize();
389#endif /* CONFIG_PPC_RTAS */
390
391	/*
392	 * Check if we have an initrd provided via the device-tree
393	 */
394	check_for_initrd();
395
396	/*
397	 * Do some platform specific early initializations, that includes
398	 * setting up the hash table pointers. It also sets up some interrupt-mapping
399	 * related options that will be used by finish_device_tree()
400	 */
401	if (ppc_md.init_early)
402		ppc_md.init_early();
403
404 	/*
405	 * We can discover serial ports now since the above did setup the
406	 * hash table management for us, thus ioremap works. We do that early
407	 * so that further code can be debugged
408	 */
409	find_legacy_serial_ports();
410
411	/*
412	 * Register early console
413	 */
414	register_early_udbg_console();
415
416	/*
417	 * Initialize xmon
418	 */
419	xmon_setup();
420
421	smp_setup_cpu_maps();
422	check_smt_enabled();
423
424#ifdef CONFIG_SMP
425	/* Release secondary cpus out of their spinloops at 0x60 now that
426	 * we can map physical -> logical CPU ids
427	 */
428	smp_release_cpus();
429#endif
430
431	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
432
433	printk("-----------------------------------------------------\n");
434	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
435	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
436	if (ppc64_caches.dline_size != 0x80)
437		printk("ppc64_caches.dcache_line_size = 0x%x\n",
438		       ppc64_caches.dline_size);
439	if (ppc64_caches.iline_size != 0x80)
440		printk("ppc64_caches.icache_line_size = 0x%x\n",
441		       ppc64_caches.iline_size);
442#ifdef CONFIG_PPC_STD_MMU_64
443	if (htab_address)
444		printk("htab_address                  = 0x%p\n", htab_address);
445	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
446#endif /* CONFIG_PPC_STD_MMU_64 */
447	if (PHYSICAL_START > 0)
448		printk("physical_start                = 0x%llx\n",
449		       (unsigned long long)PHYSICAL_START);
450	printk("-----------------------------------------------------\n");
451
452	DBG(" <- setup_system()\n");
453}
454
455/* This returns the limit below which memory accesses to the linear
456 * mapping are guarnateed not to cause a TLB or SLB miss. This is
457 * used to allocate interrupt or emergency stacks for which our
458 * exception entry path doesn't deal with being interrupted.
459 */
460static u64 safe_stack_limit(void)
461{
462#ifdef CONFIG_PPC_BOOK3E
463	/* Freescale BookE bolts the entire linear mapping */
464	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
 
465		return linear_map_top;
466	/* Other BookE, we assume the first GB is bolted */
467	return 1ul << 30;
468#else
469	/* BookS, the first segment is bolted */
470	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
 
 
 
 
471		return 1UL << SID_SHIFT_1T;
472	return 1UL << SID_SHIFT;
473#endif
474}
475
476static void __init irqstack_early_init(void)
477{
478	u64 limit = safe_stack_limit();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479	unsigned int i;
480
481	/*
482	 * Interrupt stacks must be in the first segment since we
483	 * cannot afford to take SLB misses on them.
 
484	 */
485	for_each_possible_cpu(i) {
486		softirq_ctx[i] = (struct thread_info *)
487			__va(memblock_alloc_base(THREAD_SIZE,
488					    THREAD_SIZE, limit));
489		hardirq_ctx[i] = (struct thread_info *)
490			__va(memblock_alloc_base(THREAD_SIZE,
491					    THREAD_SIZE, limit));
492	}
493}
494
495#ifdef CONFIG_PPC_BOOK3E
496static void __init exc_lvl_early_init(void)
497{
498	extern unsigned int interrupt_base_book3e;
499	extern unsigned int exc_debug_debug_book3e;
500
501	unsigned int i;
502
503	for_each_possible_cpu(i) {
504		critirq_ctx[i] = (struct thread_info *)
505			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
506		dbgirq_ctx[i] = (struct thread_info *)
507			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
508		mcheckirq_ctx[i] = (struct thread_info *)
509			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
 
 
 
 
 
 
 
510	}
511
512	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
513		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
514			     (unsigned long)&exc_debug_debug_book3e, 0);
515}
516#else
517#define exc_lvl_early_init()
518#endif
519
520/*
521 * Stack space used when we detect a bad kernel stack pointer, and
522 * early in SMP boots before relocation is enabled.
 
523 */
524static void __init emergency_stack_init(void)
525{
526	u64 limit;
527	unsigned int i;
528
529	/*
530	 * Emergency stacks must be under 256MB, we cannot afford to take
531	 * SLB misses on them. The ABI also requires them to be 128-byte
532	 * aligned.
533	 *
534	 * Since we use these as temporary stacks during secondary CPU
535	 * bringup, we need to get at them in real mode. This means they
536	 * must also be within the RMO region.
 
 
 
 
 
537	 */
538	limit = min(safe_stack_limit(), ppc64_rma_size);
539
540	for_each_possible_cpu(i) {
541		unsigned long sp;
542		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
543		sp += THREAD_SIZE;
544		paca[i].emergency_sp = __va(sp);
545	}
546}
547
548/*
549 * Called into from start_kernel this initializes bootmem, which is used
550 * to manage page allocation until mem_init is called.
551 */
552void __init setup_arch(char **cmdline_p)
553{
554	ppc64_boot_msg(0x12, "Setup Arch");
555
556	*cmdline_p = cmd_line;
557
558	/*
559	 * Set cache line size based on type of cpu as a default.
560	 * Systems with OF can look in the properties on the cpu node(s)
561	 * for a possibly more accurate value.
 
562	 */
563	dcache_bsize = ppc64_caches.dline_size;
564	icache_bsize = ppc64_caches.iline_size;
565
566	/* reboot on panic */
567	panic_timeout = 180;
568
569	if (ppc_md.panic)
570		setup_panic();
571
572	init_mm.start_code = (unsigned long)_stext;
573	init_mm.end_code = (unsigned long) _etext;
574	init_mm.end_data = (unsigned long) _edata;
575	init_mm.brk = klimit;
576	
577	irqstack_early_init();
578	exc_lvl_early_init();
579	emergency_stack_init();
580
581#ifdef CONFIG_PPC_STD_MMU_64
582	stabs_alloc();
583#endif
584	/* set up the bootmem stuff with available memory */
585	do_init_bootmem();
586	sparse_init();
587
588#ifdef CONFIG_DUMMY_CONSOLE
589	conswitchp = &dummy_con;
590#endif
591
592	if (ppc_md.setup_arch)
593		ppc_md.setup_arch();
594
595	paging_init();
596
597	/* Initialize the MMU context management stuff */
598	mmu_context_init();
599
600	kvm_linear_init();
601
602	ppc64_boot_msg(0x15, "Setup Done");
603}
604
605
606/* ToDo: do something useful if ppc_md is not yet setup. */
607#define PPC64_LINUX_FUNCTION 0x0f000000
608#define PPC64_IPL_MESSAGE 0xc0000000
609#define PPC64_TERM_MESSAGE 0xb0000000
610
611static void ppc64_do_msg(unsigned int src, const char *msg)
612{
613	if (ppc_md.progress) {
614		char buf[128];
615
616		sprintf(buf, "%08X\n", src);
617		ppc_md.progress(buf, 0);
618		snprintf(buf, 128, "%s", msg);
619		ppc_md.progress(buf, 0);
620	}
621}
622
623/* Print a boot progress message. */
624void ppc64_boot_msg(unsigned int src, const char *msg)
625{
626	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
627	printk("[boot]%04x %s\n", src, msg);
628}
629
630#ifdef CONFIG_SMP
631#define PCPU_DYN_SIZE		()
632
633static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 
 
 
 
 
 
 
 
 
 
 
 
634{
635	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
636				    __pa(MAX_DMA_ADDRESS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637}
638
639static void __init pcpu_fc_free(void *ptr, size_t size)
640{
641	free_bootmem(__pa(ptr), size);
642}
643
644static int pcpu_cpu_distance(unsigned int from, unsigned int to)
645{
646	if (cpu_to_node(from) == cpu_to_node(to))
647		return LOCAL_DISTANCE;
648	else
649		return REMOTE_DISTANCE;
650}
651
652unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
653EXPORT_SYMBOL(__per_cpu_offset);
654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655void __init setup_per_cpu_areas(void)
656{
657	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
658	size_t atom_size;
659	unsigned long delta;
660	unsigned int cpu;
661	int rc;
662
663	/*
664	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
665	 * to group units.  For larger mappings, use 1M atom which
666	 * should be large enough to contain a number of units.
667	 */
668	if (mmu_linear_psize == MMU_PAGE_4K)
669		atom_size = PAGE_SIZE;
670	else
671		atom_size = 1 << 20;
672
673	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
674				    pcpu_fc_alloc, pcpu_fc_free);
 
 
 
 
 
 
 
 
 
 
675	if (rc < 0)
676		panic("cannot initialize percpu area (err=%d)", rc);
677
678	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
679	for_each_possible_cpu(cpu) {
680                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
681		paca[cpu].data_offset = __per_cpu_offset[cpu];
682	}
683}
684#endif
685
 
 
 
 
 
686
687#ifdef CONFIG_PPC_INDIRECT_IO
 
 
 
 
688struct ppc_pci_io ppc_pci_io;
689EXPORT_SYMBOL(ppc_pci_io);
690#endif /* CONFIG_PPC_INDIRECT_IO */
691