Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	IP multicast routing support for mrouted 3.6/3.8
   4 *
   5 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   6 *	  Linux Consultancy and Custom Driver Development
   7 *
 
 
 
 
 
   8 *	Fixes:
   9 *	Michael Chastain	:	Incorrect size of copying.
  10 *	Alan Cox		:	Added the cache manager code
  11 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  12 *	Mike McLagan		:	Routing by source
  13 *	Malcolm Beattie		:	Buffer handling fixes.
  14 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  15 *	SVR Anand		:	Fixed several multicast bugs and problems.
  16 *	Alexey Kuznetsov	:	Status, optimisations and more.
  17 *	Brad Parker		:	Better behaviour on mrouted upcall
  18 *					overflow.
  19 *      Carlos Picoto           :       PIMv1 Support
  20 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  21 *					Relax this requirement to work with older peers.
 
  22 */
  23
  24#include <linux/uaccess.h>
  25#include <linux/types.h>
  26#include <linux/cache.h>
  27#include <linux/capability.h>
  28#include <linux/errno.h>
 
  29#include <linux/mm.h>
  30#include <linux/kernel.h>
  31#include <linux/fcntl.h>
  32#include <linux/stat.h>
  33#include <linux/socket.h>
  34#include <linux/in.h>
  35#include <linux/inet.h>
  36#include <linux/netdevice.h>
  37#include <linux/inetdevice.h>
  38#include <linux/igmp.h>
  39#include <linux/proc_fs.h>
  40#include <linux/seq_file.h>
  41#include <linux/mroute.h>
  42#include <linux/init.h>
  43#include <linux/if_ether.h>
  44#include <linux/slab.h>
  45#include <net/net_namespace.h>
  46#include <net/ip.h>
  47#include <net/protocol.h>
  48#include <linux/skbuff.h>
  49#include <net/route.h>
 
  50#include <net/icmp.h>
  51#include <net/udp.h>
  52#include <net/raw.h>
  53#include <linux/notifier.h>
  54#include <linux/if_arp.h>
  55#include <linux/netfilter_ipv4.h>
  56#include <linux/compat.h>
  57#include <linux/export.h>
  58#include <linux/rhashtable.h>
  59#include <net/ip_tunnels.h>
  60#include <net/checksum.h>
  61#include <net/netlink.h>
  62#include <net/fib_rules.h>
  63#include <linux/netconf.h>
  64#include <net/rtnh.h>
  65
  66#include <linux/nospec.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68struct ipmr_rule {
  69	struct fib_rule		common;
  70};
  71
  72struct ipmr_result {
  73	struct mr_table		*mrt;
  74};
  75
  76/* Big lock, protecting vif table, mrt cache and mroute socket state.
  77 * Note that the changes are semaphored via rtnl_lock.
  78 */
  79
  80static DEFINE_RWLOCK(mrt_lock);
  81
  82/* Multicast router control variables */
 
 
 
 
  83
  84/* Special spinlock for queue of unresolved entries */
  85static DEFINE_SPINLOCK(mfc_unres_lock);
  86
  87/* We return to original Alan's scheme. Hash table of resolved
  88 * entries is changed only in process context and protected
  89 * with weak lock mrt_lock. Queue of unresolved entries is protected
  90 * with strong spinlock mfc_unres_lock.
  91 *
  92 * In this case data path is free of exclusive locks at all.
  93 */
  94
  95static struct kmem_cache *mrt_cachep __ro_after_init;
  96
  97static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  98static void ipmr_free_table(struct mr_table *mrt);
  99
 100static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 101			  struct net_device *dev, struct sk_buff *skb,
 102			  struct mfc_cache *cache, int local);
 103static int ipmr_cache_report(struct mr_table *mrt,
 104			     struct sk_buff *pkt, vifi_t vifi, int assert);
 105static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 106				 int cmd);
 107static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
 108static void mroute_clean_tables(struct mr_table *mrt, int flags);
 109static void ipmr_expire_process(struct timer_list *t);
 110
 111#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 112#define ipmr_for_each_table(mrt, net)					\
 113	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
 114				lockdep_rtnl_is_held() ||		\
 115				list_empty(&net->ipv4.mr_tables))
 116
 117static struct mr_table *ipmr_mr_table_iter(struct net *net,
 118					   struct mr_table *mrt)
 119{
 120	struct mr_table *ret;
 121
 122	if (!mrt)
 123		ret = list_entry_rcu(net->ipv4.mr_tables.next,
 124				     struct mr_table, list);
 125	else
 126		ret = list_entry_rcu(mrt->list.next,
 127				     struct mr_table, list);
 128
 129	if (&ret->list == &net->ipv4.mr_tables)
 130		return NULL;
 131	return ret;
 132}
 133
 134static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 135{
 136	struct mr_table *mrt;
 137
 138	ipmr_for_each_table(mrt, net) {
 139		if (mrt->id == id)
 140			return mrt;
 141	}
 142	return NULL;
 143}
 144
 145static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 146			   struct mr_table **mrt)
 147{
 148	int err;
 149	struct ipmr_result res;
 150	struct fib_lookup_arg arg = {
 151		.result = &res,
 152		.flags = FIB_LOOKUP_NOREF,
 153	};
 154
 155	/* update flow if oif or iif point to device enslaved to l3mdev */
 156	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
 157
 158	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 159			       flowi4_to_flowi(flp4), 0, &arg);
 160	if (err < 0)
 161		return err;
 162	*mrt = res.mrt;
 163	return 0;
 164}
 165
 166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 167			    int flags, struct fib_lookup_arg *arg)
 168{
 169	struct ipmr_result *res = arg->result;
 170	struct mr_table *mrt;
 171
 172	switch (rule->action) {
 173	case FR_ACT_TO_TBL:
 174		break;
 175	case FR_ACT_UNREACHABLE:
 176		return -ENETUNREACH;
 177	case FR_ACT_PROHIBIT:
 178		return -EACCES;
 179	case FR_ACT_BLACKHOLE:
 180	default:
 181		return -EINVAL;
 182	}
 183
 184	arg->table = fib_rule_get_table(rule, arg);
 185
 186	mrt = ipmr_get_table(rule->fr_net, arg->table);
 187	if (!mrt)
 188		return -EAGAIN;
 189	res->mrt = mrt;
 190	return 0;
 191}
 192
 193static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 194{
 195	return 1;
 196}
 197
 198static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 199	FRA_GENERIC_POLICY,
 200};
 201
 202static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 203			       struct fib_rule_hdr *frh, struct nlattr **tb,
 204			       struct netlink_ext_ack *extack)
 205{
 206	return 0;
 207}
 208
 209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 210			     struct nlattr **tb)
 211{
 212	return 1;
 213}
 214
 215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 216			  struct fib_rule_hdr *frh)
 217{
 218	frh->dst_len = 0;
 219	frh->src_len = 0;
 220	frh->tos     = 0;
 221	return 0;
 222}
 223
 224static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 225	.family		= RTNL_FAMILY_IPMR,
 226	.rule_size	= sizeof(struct ipmr_rule),
 227	.addr_size	= sizeof(u32),
 228	.action		= ipmr_rule_action,
 229	.match		= ipmr_rule_match,
 230	.configure	= ipmr_rule_configure,
 231	.compare	= ipmr_rule_compare,
 
 232	.fill		= ipmr_rule_fill,
 233	.nlgroup	= RTNLGRP_IPV4_RULE,
 234	.policy		= ipmr_rule_policy,
 235	.owner		= THIS_MODULE,
 236};
 237
 238static int __net_init ipmr_rules_init(struct net *net)
 239{
 240	struct fib_rules_ops *ops;
 241	struct mr_table *mrt;
 242	int err;
 243
 244	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 245	if (IS_ERR(ops))
 246		return PTR_ERR(ops);
 247
 248	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 249
 250	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 251	if (IS_ERR(mrt)) {
 252		err = PTR_ERR(mrt);
 253		goto err1;
 254	}
 255
 256	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 257	if (err < 0)
 258		goto err2;
 259
 260	net->ipv4.mr_rules_ops = ops;
 261	return 0;
 262
 263err2:
 264	ipmr_free_table(mrt);
 265err1:
 266	fib_rules_unregister(ops);
 267	return err;
 268}
 269
 270static void __net_exit ipmr_rules_exit(struct net *net)
 271{
 272	struct mr_table *mrt, *next;
 273
 274	rtnl_lock();
 275	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 276		list_del(&mrt->list);
 277		ipmr_free_table(mrt);
 278	}
 279	fib_rules_unregister(net->ipv4.mr_rules_ops);
 280	rtnl_unlock();
 281}
 282
 283static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 284			   struct netlink_ext_ack *extack)
 285{
 286	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
 287}
 288
 289static unsigned int ipmr_rules_seq_read(struct net *net)
 290{
 291	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
 292}
 293
 294bool ipmr_rule_default(const struct fib_rule *rule)
 295{
 296	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
 297}
 298EXPORT_SYMBOL(ipmr_rule_default);
 299#else
 300#define ipmr_for_each_table(mrt, net) \
 301	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 302
 303static struct mr_table *ipmr_mr_table_iter(struct net *net,
 304					   struct mr_table *mrt)
 305{
 306	if (!mrt)
 307		return net->ipv4.mrt;
 308	return NULL;
 309}
 310
 311static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 312{
 313	return net->ipv4.mrt;
 314}
 315
 316static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 317			   struct mr_table **mrt)
 318{
 319	*mrt = net->ipv4.mrt;
 320	return 0;
 321}
 322
 323static int __net_init ipmr_rules_init(struct net *net)
 324{
 325	struct mr_table *mrt;
 326
 327	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 328	if (IS_ERR(mrt))
 329		return PTR_ERR(mrt);
 330	net->ipv4.mrt = mrt;
 331	return 0;
 332}
 333
 334static void __net_exit ipmr_rules_exit(struct net *net)
 335{
 336	rtnl_lock();
 337	ipmr_free_table(net->ipv4.mrt);
 338	net->ipv4.mrt = NULL;
 339	rtnl_unlock();
 340}
 
 341
 342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 343			   struct netlink_ext_ack *extack)
 344{
 345	return 0;
 346}
 347
 348static unsigned int ipmr_rules_seq_read(struct net *net)
 349{
 350	return 0;
 351}
 352
 353bool ipmr_rule_default(const struct fib_rule *rule)
 354{
 355	return true;
 356}
 357EXPORT_SYMBOL(ipmr_rule_default);
 358#endif
 359
 360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
 361				const void *ptr)
 362{
 363	const struct mfc_cache_cmp_arg *cmparg = arg->key;
 364	struct mfc_cache *c = (struct mfc_cache *)ptr;
 365
 366	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
 367	       cmparg->mfc_origin != c->mfc_origin;
 368}
 369
 370static const struct rhashtable_params ipmr_rht_params = {
 371	.head_offset = offsetof(struct mr_mfc, mnode),
 372	.key_offset = offsetof(struct mfc_cache, cmparg),
 373	.key_len = sizeof(struct mfc_cache_cmp_arg),
 374	.nelem_hint = 3,
 375	.obj_cmpfn = ipmr_hash_cmp,
 376	.automatic_shrinking = true,
 377};
 378
 379static void ipmr_new_table_set(struct mr_table *mrt,
 380			       struct net *net)
 381{
 382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 383	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 384#endif
 385}
 386
 387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
 388	.mfc_mcastgrp = htonl(INADDR_ANY),
 389	.mfc_origin = htonl(INADDR_ANY),
 390};
 391
 392static struct mr_table_ops ipmr_mr_table_ops = {
 393	.rht_params = &ipmr_rht_params,
 394	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
 395};
 396
 397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 398{
 399	struct mr_table *mrt;
 400
 401	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 402	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 403		return ERR_PTR(-EINVAL);
 404
 405	mrt = ipmr_get_table(net, id);
 406	if (mrt)
 407		return mrt;
 408
 409	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
 410			      ipmr_expire_process, ipmr_new_table_set);
 411}
 412
 413static void ipmr_free_table(struct mr_table *mrt)
 414{
 415	del_timer_sync(&mrt->ipmr_expire_timer);
 416	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
 417				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
 418	rhltable_destroy(&mrt->mfc_hash);
 419	kfree(mrt);
 420}
 421
 422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 423
 424/* Initialize ipmr pimreg/tunnel in_device */
 425static bool ipmr_init_vif_indev(const struct net_device *dev)
 426{
 427	struct in_device *in_dev;
 428
 429	ASSERT_RTNL();
 430
 431	in_dev = __in_dev_get_rtnl(dev);
 432	if (!in_dev)
 433		return false;
 434	ipv4_devconf_setall(in_dev);
 435	neigh_parms_data_state_setall(in_dev->arp_parms);
 436	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 437
 438	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 440
 441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 442{
 443	struct net_device *tunnel_dev, *new_dev;
 444	struct ip_tunnel_parm p = { };
 445	int err;
 446
 447	tunnel_dev = __dev_get_by_name(net, "tunl0");
 448	if (!tunnel_dev)
 449		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	p.iph.daddr = v->vifc_rmt_addr.s_addr;
 452	p.iph.saddr = v->vifc_lcl_addr.s_addr;
 453	p.iph.version = 4;
 454	p.iph.ihl = 5;
 455	p.iph.protocol = IPPROTO_IPIP;
 456	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 457
 458	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
 459		goto out;
 460	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 461			SIOCADDTUNNEL);
 462	if (err)
 463		goto out;
 464
 465	new_dev = __dev_get_by_name(net, p.name);
 466	if (!new_dev)
 467		goto out;
 468
 469	new_dev->flags |= IFF_MULTICAST;
 470	if (!ipmr_init_vif_indev(new_dev))
 471		goto out_unregister;
 472	if (dev_open(new_dev, NULL))
 473		goto out_unregister;
 474	dev_hold(new_dev);
 475	err = dev_set_allmulti(new_dev, 1);
 476	if (err) {
 477		dev_close(new_dev);
 478		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 479				SIOCDELTUNNEL);
 480		dev_put(new_dev);
 481		new_dev = ERR_PTR(err);
 482	}
 483	return new_dev;
 484
 485out_unregister:
 486	unregister_netdevice(new_dev);
 487out:
 488	return ERR_PTR(-ENOBUFS);
 
 
 
 489}
 490
 491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 
 492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 493{
 494	struct net *net = dev_net(dev);
 495	struct mr_table *mrt;
 496	struct flowi4 fl4 = {
 497		.flowi4_oif	= dev->ifindex,
 498		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 499		.flowi4_mark	= skb->mark,
 500	};
 501	int err;
 502
 503	err = ipmr_fib_lookup(net, &fl4, &mrt);
 504	if (err < 0) {
 505		kfree_skb(skb);
 506		return err;
 507	}
 508
 509	read_lock(&mrt_lock);
 510	dev->stats.tx_bytes += skb->len;
 511	dev->stats.tx_packets++;
 512	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 513	read_unlock(&mrt_lock);
 514	kfree_skb(skb);
 515	return NETDEV_TX_OK;
 516}
 517
 518static int reg_vif_get_iflink(const struct net_device *dev)
 519{
 520	return 0;
 521}
 522
 523static const struct net_device_ops reg_vif_netdev_ops = {
 524	.ndo_start_xmit	= reg_vif_xmit,
 525	.ndo_get_iflink = reg_vif_get_iflink,
 526};
 527
 528static void reg_vif_setup(struct net_device *dev)
 529{
 530	dev->type		= ARPHRD_PIMREG;
 531	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 532	dev->flags		= IFF_NOARP;
 533	dev->netdev_ops		= &reg_vif_netdev_ops;
 534	dev->needs_free_netdev	= true;
 535	dev->features		|= NETIF_F_NETNS_LOCAL;
 536}
 537
 538static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 539{
 540	struct net_device *dev;
 
 541	char name[IFNAMSIZ];
 542
 543	if (mrt->id == RT_TABLE_DEFAULT)
 544		sprintf(name, "pimreg");
 545	else
 546		sprintf(name, "pimreg%u", mrt->id);
 547
 548	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 549
 550	if (!dev)
 551		return NULL;
 552
 553	dev_net_set(dev, net);
 554
 555	if (register_netdevice(dev)) {
 556		free_netdev(dev);
 557		return NULL;
 558	}
 
 559
 560	if (!ipmr_init_vif_indev(dev))
 
 
 
 561		goto failure;
 562	if (dev_open(dev, NULL))
 
 
 
 
 
 
 563		goto failure;
 564
 565	dev_hold(dev);
 566
 567	return dev;
 568
 569failure:
 570	unregister_netdevice(dev);
 571	return NULL;
 572}
 573
 574/* called with rcu_read_lock() */
 575static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 576		     unsigned int pimlen)
 577{
 578	struct net_device *reg_dev = NULL;
 579	struct iphdr *encap;
 580
 581	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 582	/* Check that:
 583	 * a. packet is really sent to a multicast group
 584	 * b. packet is not a NULL-REGISTER
 585	 * c. packet is not truncated
 586	 */
 587	if (!ipv4_is_multicast(encap->daddr) ||
 588	    encap->tot_len == 0 ||
 589	    ntohs(encap->tot_len) + pimlen > skb->len)
 590		return 1;
 591
 592	read_lock(&mrt_lock);
 593	if (mrt->mroute_reg_vif_num >= 0)
 594		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
 595	read_unlock(&mrt_lock);
 596
 597	if (!reg_dev)
 598		return 1;
 599
 600	skb->mac_header = skb->network_header;
 601	skb_pull(skb, (u8 *)encap - skb->data);
 602	skb_reset_network_header(skb);
 603	skb->protocol = htons(ETH_P_IP);
 604	skb->ip_summed = CHECKSUM_NONE;
 605
 606	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 607
 608	netif_rx(skb);
 609
 610	return NET_RX_SUCCESS;
 611}
 612#else
 613static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 614{
 615	return NULL;
 616}
 617#endif
 618
 619static int call_ipmr_vif_entry_notifiers(struct net *net,
 620					 enum fib_event_type event_type,
 621					 struct vif_device *vif,
 622					 vifi_t vif_index, u32 tb_id)
 623{
 624	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 625				     vif, vif_index, tb_id,
 626				     &net->ipv4.ipmr_seq);
 627}
 628
 629static int call_ipmr_mfc_entry_notifiers(struct net *net,
 630					 enum fib_event_type event_type,
 631					 struct mfc_cache *mfc, u32 tb_id)
 632{
 633	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 634				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
 635}
 636
 637/**
 638 *	vif_delete - Delete a VIF entry
 639 *	@mrt: Table to delete from
 640 *	@vifi: VIF identifier to delete
 641 *	@notify: Set to 1, if the caller is a notifier_call
 642 *	@head: if unregistering the VIF, place it on this queue
 643 */
 
 644static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 645		      struct list_head *head)
 646{
 647	struct net *net = read_pnet(&mrt->net);
 648	struct vif_device *v;
 649	struct net_device *dev;
 650	struct in_device *in_dev;
 651
 652	if (vifi < 0 || vifi >= mrt->maxvif)
 653		return -EADDRNOTAVAIL;
 654
 655	v = &mrt->vif_table[vifi];
 656
 657	if (VIF_EXISTS(mrt, vifi))
 658		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
 659					      mrt->id);
 660
 661	write_lock_bh(&mrt_lock);
 662	dev = v->dev;
 663	v->dev = NULL;
 664
 665	if (!dev) {
 666		write_unlock_bh(&mrt_lock);
 667		return -EADDRNOTAVAIL;
 668	}
 669
 
 670	if (vifi == mrt->mroute_reg_vif_num)
 671		mrt->mroute_reg_vif_num = -1;
 
 672
 673	if (vifi + 1 == mrt->maxvif) {
 674		int tmp;
 675
 676		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 677			if (VIF_EXISTS(mrt, tmp))
 678				break;
 679		}
 680		mrt->maxvif = tmp+1;
 681	}
 682
 683	write_unlock_bh(&mrt_lock);
 684
 685	dev_set_allmulti(dev, -1);
 686
 687	in_dev = __in_dev_get_rtnl(dev);
 688	if (in_dev) {
 689		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 690		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
 691					    NETCONFA_MC_FORWARDING,
 692					    dev->ifindex, &in_dev->cnf);
 693		ip_rt_multicast_event(in_dev);
 694	}
 695
 696	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 697		unregister_netdevice_queue(dev, head);
 698
 699	dev_put(dev);
 700	return 0;
 701}
 702
 703static void ipmr_cache_free_rcu(struct rcu_head *head)
 704{
 705	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
 706
 707	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
 708}
 709
 710static void ipmr_cache_free(struct mfc_cache *c)
 711{
 712	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
 713}
 714
 715/* Destroy an unresolved cache entry, killing queued skbs
 716 * and reporting error to netlink readers.
 717 */
 
 718static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 719{
 720	struct net *net = read_pnet(&mrt->net);
 721	struct sk_buff *skb;
 722	struct nlmsgerr *e;
 723
 724	atomic_dec(&mrt->cache_resolve_queue_len);
 725
 726	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
 727		if (ip_hdr(skb)->version == 0) {
 728			struct nlmsghdr *nlh = skb_pull(skb,
 729							sizeof(struct iphdr));
 730			nlh->nlmsg_type = NLMSG_ERROR;
 731			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 732			skb_trim(skb, nlh->nlmsg_len);
 733			e = nlmsg_data(nlh);
 734			e->error = -ETIMEDOUT;
 735			memset(&e->msg, 0, sizeof(e->msg));
 736
 737			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 738		} else {
 739			kfree_skb(skb);
 740		}
 741	}
 742
 743	ipmr_cache_free(c);
 744}
 745
 
 746/* Timer process for the unresolved queue. */
 747static void ipmr_expire_process(struct timer_list *t)
 
 748{
 749	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
 750	struct mr_mfc *c, *next;
 751	unsigned long expires;
 752	unsigned long now;
 
 
 753
 754	if (!spin_trylock(&mfc_unres_lock)) {
 755		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 756		return;
 757	}
 758
 759	if (list_empty(&mrt->mfc_unres_queue))
 760		goto out;
 761
 762	now = jiffies;
 763	expires = 10*HZ;
 764
 765	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 766		if (time_after(c->mfc_un.unres.expires, now)) {
 767			unsigned long interval = c->mfc_un.unres.expires - now;
 768			if (interval < expires)
 769				expires = interval;
 770			continue;
 771		}
 772
 773		list_del(&c->list);
 774		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
 775		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
 776	}
 777
 778	if (!list_empty(&mrt->mfc_unres_queue))
 779		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 780
 781out:
 782	spin_unlock(&mfc_unres_lock);
 783}
 784
 785/* Fill oifs list. It is called under write locked mrt_lock. */
 786static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
 
 787				   unsigned char *ttls)
 788{
 789	int vifi;
 790
 791	cache->mfc_un.res.minvif = MAXVIFS;
 792	cache->mfc_un.res.maxvif = 0;
 793	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 794
 795	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 796		if (VIF_EXISTS(mrt, vifi) &&
 797		    ttls[vifi] && ttls[vifi] < 255) {
 798			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 799			if (cache->mfc_un.res.minvif > vifi)
 800				cache->mfc_un.res.minvif = vifi;
 801			if (cache->mfc_un.res.maxvif <= vifi)
 802				cache->mfc_un.res.maxvif = vifi + 1;
 803		}
 804	}
 805	cache->mfc_un.res.lastuse = jiffies;
 806}
 807
 808static int vif_add(struct net *net, struct mr_table *mrt,
 809		   struct vifctl *vifc, int mrtsock)
 810{
 811	struct netdev_phys_item_id ppid = { };
 812	int vifi = vifc->vifc_vifi;
 813	struct vif_device *v = &mrt->vif_table[vifi];
 814	struct net_device *dev;
 815	struct in_device *in_dev;
 816	int err;
 817
 818	/* Is vif busy ? */
 819	if (VIF_EXISTS(mrt, vifi))
 820		return -EADDRINUSE;
 821
 822	switch (vifc->vifc_flags) {
 
 823	case VIFF_REGISTER:
 824		if (!ipmr_pimsm_enabled())
 825			return -EINVAL;
 826		/* Special Purpose VIF in PIM
 827		 * All the packets will be sent to the daemon
 828		 */
 829		if (mrt->mroute_reg_vif_num >= 0)
 830			return -EADDRINUSE;
 831		dev = ipmr_reg_vif(net, mrt);
 832		if (!dev)
 833			return -ENOBUFS;
 834		err = dev_set_allmulti(dev, 1);
 835		if (err) {
 836			unregister_netdevice(dev);
 837			dev_put(dev);
 838			return err;
 839		}
 840		break;
 
 841	case VIFF_TUNNEL:
 842		dev = ipmr_new_tunnel(net, vifc);
 843		if (IS_ERR(dev))
 844			return PTR_ERR(dev);
 
 
 
 
 
 
 845		break;
 
 846	case VIFF_USE_IFINDEX:
 847	case 0:
 848		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 849			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 850			if (dev && !__in_dev_get_rtnl(dev)) {
 851				dev_put(dev);
 852				return -EADDRNOTAVAIL;
 853			}
 854		} else {
 855			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 856		}
 857		if (!dev)
 858			return -EADDRNOTAVAIL;
 859		err = dev_set_allmulti(dev, 1);
 860		if (err) {
 861			dev_put(dev);
 862			return err;
 863		}
 864		break;
 865	default:
 866		return -EINVAL;
 867	}
 868
 869	in_dev = __in_dev_get_rtnl(dev);
 870	if (!in_dev) {
 871		dev_put(dev);
 872		return -EADDRNOTAVAIL;
 873	}
 874	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 875	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
 876				    dev->ifindex, &in_dev->cnf);
 877	ip_rt_multicast_event(in_dev);
 878
 879	/* Fill in the VIF structures */
 880	vif_device_init(v, dev, vifc->vifc_rate_limit,
 881			vifc->vifc_threshold,
 882			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
 883			(VIFF_TUNNEL | VIFF_REGISTER));
 884
 885	err = dev_get_port_parent_id(dev, &ppid, true);
 886	if (err == 0) {
 887		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
 888		v->dev_parent_id.id_len = ppid.id_len;
 889	} else {
 890		v->dev_parent_id.id_len = 0;
 891	}
 892
 
 893	v->local = vifc->vifc_lcl_addr.s_addr;
 894	v->remote = vifc->vifc_rmt_addr.s_addr;
 
 
 
 
 
 
 
 
 
 
 
 895
 896	/* And finish update writing critical data */
 897	write_lock_bh(&mrt_lock);
 898	v->dev = dev;
 
 899	if (v->flags & VIFF_REGISTER)
 900		mrt->mroute_reg_vif_num = vifi;
 
 901	if (vifi+1 > mrt->maxvif)
 902		mrt->maxvif = vifi+1;
 903	write_unlock_bh(&mrt_lock);
 904	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
 905	return 0;
 906}
 907
 908/* called with rcu_read_lock() */
 909static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 910					 __be32 origin,
 911					 __be32 mcastgrp)
 912{
 913	struct mfc_cache_cmp_arg arg = {
 914			.mfc_mcastgrp = mcastgrp,
 915			.mfc_origin = origin
 916	};
 917
 918	return mr_mfc_find(mrt, &arg);
 919}
 920
 921/* Look for a (*,G) entry */
 922static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 923					     __be32 mcastgrp, int vifi)
 924{
 925	struct mfc_cache_cmp_arg arg = {
 926			.mfc_mcastgrp = mcastgrp,
 927			.mfc_origin = htonl(INADDR_ANY)
 928	};
 929
 930	if (mcastgrp == htonl(INADDR_ANY))
 931		return mr_mfc_find_any_parent(mrt, vifi);
 932	return mr_mfc_find_any(mrt, vifi, &arg);
 933}
 934
 935/* Look for a (S,G,iif) entry if parent != -1 */
 936static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
 937						__be32 origin, __be32 mcastgrp,
 938						int parent)
 939{
 940	struct mfc_cache_cmp_arg arg = {
 941			.mfc_mcastgrp = mcastgrp,
 942			.mfc_origin = origin,
 943	};
 944
 945	return mr_mfc_find_parent(mrt, &arg, parent);
 
 
 
 
 946}
 947
 948/* Allocate a multicast cache entry */
 
 
 949static struct mfc_cache *ipmr_cache_alloc(void)
 950{
 951	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 952
 953	if (c) {
 954		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
 955		c->_c.mfc_un.res.minvif = MAXVIFS;
 956		c->_c.free = ipmr_cache_free_rcu;
 957		refcount_set(&c->_c.mfc_un.res.refcount, 1);
 958	}
 959	return c;
 960}
 961
 962static struct mfc_cache *ipmr_cache_alloc_unres(void)
 963{
 964	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 965
 966	if (c) {
 967		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
 968		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
 969	}
 970	return c;
 971}
 972
 973/* A cache entry has gone into a resolved state from queued */
 
 
 
 974static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 975			       struct mfc_cache *uc, struct mfc_cache *c)
 976{
 977	struct sk_buff *skb;
 978	struct nlmsgerr *e;
 979
 980	/* Play the pending entries through our router */
 981	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
 
 982		if (ip_hdr(skb)->version == 0) {
 983			struct nlmsghdr *nlh = skb_pull(skb,
 984							sizeof(struct iphdr));
 985
 986			if (mr_fill_mroute(mrt, skb, &c->_c,
 987					   nlmsg_data(nlh)) > 0) {
 988				nlh->nlmsg_len = skb_tail_pointer(skb) -
 989						 (u8 *)nlh;
 990			} else {
 991				nlh->nlmsg_type = NLMSG_ERROR;
 992				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 993				skb_trim(skb, nlh->nlmsg_len);
 994				e = nlmsg_data(nlh);
 995				e->error = -EMSGSIZE;
 996				memset(&e->msg, 0, sizeof(e->msg));
 997			}
 998
 999			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1000		} else {
1001			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1002		}
1003	}
1004}
1005
1006/* Bounce a cache query up to mrouted and netlink.
 
 
1007 *
1008 * Called under mrt_lock.
1009 */
 
1010static int ipmr_cache_report(struct mr_table *mrt,
1011			     struct sk_buff *pkt, vifi_t vifi, int assert)
1012{
 
1013	const int ihl = ip_hdrlen(pkt);
1014	struct sock *mroute_sk;
1015	struct igmphdr *igmp;
1016	struct igmpmsg *msg;
1017	struct sk_buff *skb;
1018	int ret;
1019
1020	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
 
1021		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1022	else
 
1023		skb = alloc_skb(128, GFP_ATOMIC);
1024
1025	if (!skb)
1026		return -ENOBUFS;
1027
1028	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
 
1029		/* Ugly, but we have no choice with this interface.
1030		 * Duplicate old header, fix ihl, length etc.
1031		 * And all this only to mangle msg->im_msgtype and
1032		 * to set msg->im_mbz to "mbz" :-)
1033		 */
1034		skb_push(skb, sizeof(struct iphdr));
1035		skb_reset_network_header(skb);
1036		skb_reset_transport_header(skb);
1037		msg = (struct igmpmsg *)skb_network_header(skb);
1038		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1039		msg->im_msgtype = assert;
1040		msg->im_mbz = 0;
1041		if (assert == IGMPMSG_WRVIFWHOLE) {
1042			msg->im_vif = vifi;
1043			msg->im_vif_hi = vifi >> 8;
1044		} else {
1045			msg->im_vif = mrt->mroute_reg_vif_num;
1046			msg->im_vif_hi = mrt->mroute_reg_vif_num >> 8;
1047		}
1048		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1049		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1050					     sizeof(struct iphdr));
1051	} else {
1052		/* Copy the IP header */
1053		skb_set_network_header(skb, skb->len);
1054		skb_put(skb, ihl);
1055		skb_copy_to_linear_data(skb, pkt->data, ihl);
1056		/* Flag to the kernel this is a route add */
1057		ip_hdr(skb)->protocol = 0;
1058		msg = (struct igmpmsg *)skb_network_header(skb);
1059		msg->im_vif = vifi;
1060		msg->im_vif_hi = vifi >> 8;
1061		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1062		/* Add our header */
1063		igmp = skb_put(skb, sizeof(struct igmphdr));
1064		igmp->type = assert;
1065		msg->im_msgtype = assert;
1066		igmp->code = 0;
1067		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1068		skb->transport_header = skb->network_header;
 
 
 
 
1069	}
1070
1071	rcu_read_lock();
1072	mroute_sk = rcu_dereference(mrt->mroute_sk);
1073	if (!mroute_sk) {
1074		rcu_read_unlock();
1075		kfree_skb(skb);
1076		return -EINVAL;
1077	}
1078
1079	igmpmsg_netlink_event(mrt, skb);
1080
1081	/* Deliver to mrouted */
 
1082	ret = sock_queue_rcv_skb(mroute_sk, skb);
1083	rcu_read_unlock();
1084	if (ret < 0) {
1085		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1086		kfree_skb(skb);
1087	}
1088
1089	return ret;
1090}
1091
1092/* Queue a packet for resolution. It gets locked cache entry! */
1093static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1094				 struct sk_buff *skb, struct net_device *dev)
 
 
 
1095{
1096	const struct iphdr *iph = ip_hdr(skb);
1097	struct mfc_cache *c;
1098	bool found = false;
1099	int err;
 
 
1100
1101	spin_lock_bh(&mfc_unres_lock);
1102	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1103		if (c->mfc_mcastgrp == iph->daddr &&
1104		    c->mfc_origin == iph->saddr) {
1105			found = true;
1106			break;
1107		}
1108	}
1109
1110	if (!found) {
1111		/* Create a new entry if allowable */
1112		c = ipmr_cache_alloc_unres();
1113		if (!c) {
 
1114			spin_unlock_bh(&mfc_unres_lock);
1115
1116			kfree_skb(skb);
1117			return -ENOBUFS;
1118		}
1119
1120		/* Fill in the new cache entry */
1121		c->_c.mfc_parent = -1;
 
1122		c->mfc_origin	= iph->saddr;
1123		c->mfc_mcastgrp	= iph->daddr;
1124
1125		/* Reflect first query at mrouted. */
1126		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1127
 
1128		if (err < 0) {
1129			/* If the report failed throw the cache entry
1130			   out - Brad Parker
1131			 */
1132			spin_unlock_bh(&mfc_unres_lock);
1133
1134			ipmr_cache_free(c);
1135			kfree_skb(skb);
1136			return err;
1137		}
1138
1139		atomic_inc(&mrt->cache_resolve_queue_len);
1140		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1141		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1142
1143		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1144			mod_timer(&mrt->ipmr_expire_timer,
1145				  c->_c.mfc_un.unres.expires);
1146	}
1147
1148	/* See if we can append the packet */
1149	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
 
1150		kfree_skb(skb);
1151		err = -ENOBUFS;
1152	} else {
1153		if (dev) {
1154			skb->dev = dev;
1155			skb->skb_iif = dev->ifindex;
1156		}
1157		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1158		err = 0;
1159	}
1160
1161	spin_unlock_bh(&mfc_unres_lock);
1162	return err;
1163}
1164
1165/* MFC cache manipulation by user space mroute daemon */
 
 
1166
1167static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1168{
1169	struct net *net = read_pnet(&mrt->net);
1170	struct mfc_cache *c;
1171
1172	/* The entries are added/deleted only under RTNL */
1173	rcu_read_lock();
1174	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1175				   mfc->mfcc_mcastgrp.s_addr, parent);
1176	rcu_read_unlock();
1177	if (!c)
1178		return -ENOENT;
1179	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1180	list_del_rcu(&c->_c.list);
1181	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1182	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1183	mr_cache_put(&c->_c);
1184
1185	return 0;
 
 
 
 
 
 
 
 
 
1186}
1187
1188static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1189			struct mfcctl *mfc, int mrtsock, int parent)
1190{
 
 
1191	struct mfc_cache *uc, *c;
1192	struct mr_mfc *_uc;
1193	bool found;
1194	int ret;
1195
1196	if (mfc->mfcc_parent >= MAXVIFS)
1197		return -ENFILE;
1198
1199	/* The entries are added/deleted only under RTNL */
1200	rcu_read_lock();
1201	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202				   mfc->mfcc_mcastgrp.s_addr, parent);
1203	rcu_read_unlock();
1204	if (c) {
 
 
 
 
 
1205		write_lock_bh(&mrt_lock);
1206		c->_c.mfc_parent = mfc->mfcc_parent;
1207		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1208		if (!mrtsock)
1209			c->_c.mfc_flags |= MFC_STATIC;
1210		write_unlock_bh(&mrt_lock);
1211		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1212					      mrt->id);
1213		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1214		return 0;
1215	}
1216
1217	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1218	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1219		return -EINVAL;
1220
1221	c = ipmr_cache_alloc();
1222	if (!c)
1223		return -ENOMEM;
1224
1225	c->mfc_origin = mfc->mfcc_origin.s_addr;
1226	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1227	c->_c.mfc_parent = mfc->mfcc_parent;
1228	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1229	if (!mrtsock)
1230		c->_c.mfc_flags |= MFC_STATIC;
1231
1232	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1233				  ipmr_rht_params);
1234	if (ret) {
1235		pr_err("ipmr: rhtable insert error %d\n", ret);
1236		ipmr_cache_free(c);
1237		return ret;
1238	}
1239	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1240	/* Check to see if we resolved a queued list. If so we
1241	 * need to send on the frames and tidy up.
1242	 */
1243	found = false;
1244	spin_lock_bh(&mfc_unres_lock);
1245	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1246		uc = (struct mfc_cache *)_uc;
1247		if (uc->mfc_origin == c->mfc_origin &&
1248		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1249			list_del(&_uc->list);
1250			atomic_dec(&mrt->cache_resolve_queue_len);
1251			found = true;
1252			break;
1253		}
1254	}
1255	if (list_empty(&mrt->mfc_unres_queue))
1256		del_timer(&mrt->ipmr_expire_timer);
1257	spin_unlock_bh(&mfc_unres_lock);
1258
1259	if (found) {
1260		ipmr_cache_resolve(net, mrt, uc, c);
1261		ipmr_cache_free(uc);
1262	}
1263	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1264	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1265	return 0;
1266}
1267
1268/* Close the multicast socket, and clear the vif tables etc */
1269static void mroute_clean_tables(struct mr_table *mrt, int flags)
 
 
 
1270{
1271	struct net *net = read_pnet(&mrt->net);
1272	struct mr_mfc *c, *tmp;
1273	struct mfc_cache *cache;
1274	LIST_HEAD(list);
1275	int i;
 
 
1276
1277	/* Shut down all active vif entries */
1278	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1279		for (i = 0; i < mrt->maxvif; i++) {
1280			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1281			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1282			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1283				continue;
1284			vif_delete(mrt, i, 0, &list);
1285		}
1286		unregister_netdevice_many(&list);
1287	}
 
1288
1289	/* Wipe the cache */
1290	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1291		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1292			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1293			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1294				continue;
1295			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1296			list_del_rcu(&c->list);
1297			cache = (struct mfc_cache *)c;
1298			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1299						      mrt->id);
1300			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1301			mr_cache_put(c);
1302		}
1303	}
1304
1305	if (flags & MRT_FLUSH_MFC) {
1306		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1307			spin_lock_bh(&mfc_unres_lock);
1308			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1309				list_del(&c->list);
1310				cache = (struct mfc_cache *)c;
1311				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1312				ipmr_destroy_unres(mrt, cache);
1313			}
1314			spin_unlock_bh(&mfc_unres_lock);
1315		}
 
1316	}
1317}
1318
1319/* called from ip_ra_control(), before an RCU grace period,
1320 * we don't need to call synchronize_rcu() here
1321 */
1322static void mrtsock_destruct(struct sock *sk)
1323{
1324	struct net *net = sock_net(sk);
1325	struct mr_table *mrt;
1326
1327	rtnl_lock();
1328	ipmr_for_each_table(mrt, net) {
1329		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1330			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1331			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1332						    NETCONFA_MC_FORWARDING,
1333						    NETCONFA_IFINDEX_ALL,
1334						    net->ipv4.devconf_all);
1335			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1336			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1337		}
1338	}
1339	rtnl_unlock();
1340}
1341
1342/* Socket options and virtual interface manipulation. The whole
1343 * virtual interface system is a complete heap, but unfortunately
1344 * that's how BSD mrouted happens to think. Maybe one day with a proper
1345 * MOSPF/PIM router set up we can clean this up.
 
1346 */
1347
1348int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1349			 unsigned int optlen)
1350{
1351	struct net *net = sock_net(sk);
1352	int val, ret = 0, parent = 0;
1353	struct mr_table *mrt;
1354	struct vifctl vif;
1355	struct mfcctl mfc;
1356	bool do_wrvifwhole;
1357	u32 uval;
1358
1359	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1360	rtnl_lock();
1361	if (sk->sk_type != SOCK_RAW ||
1362	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1363		ret = -EOPNOTSUPP;
1364		goto out_unlock;
1365	}
1366
1367	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1368	if (!mrt) {
1369		ret = -ENOENT;
1370		goto out_unlock;
1371	}
1372	if (optname != MRT_INIT) {
1373		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1374		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1375			ret = -EACCES;
1376			goto out_unlock;
1377		}
1378	}
1379
1380	switch (optname) {
1381	case MRT_INIT:
1382		if (optlen != sizeof(int)) {
1383			ret = -EINVAL;
1384			break;
1385		}
 
 
 
1386		if (rtnl_dereference(mrt->mroute_sk)) {
1387			ret = -EADDRINUSE;
1388			break;
1389		}
1390
1391		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1392		if (ret == 0) {
1393			rcu_assign_pointer(mrt->mroute_sk, sk);
1394			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1395			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1396						    NETCONFA_MC_FORWARDING,
1397						    NETCONFA_IFINDEX_ALL,
1398						    net->ipv4.devconf_all);
1399		}
1400		break;
 
1401	case MRT_DONE:
1402		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1403			ret = -EACCES;
1404		} else {
1405			/* We need to unlock here because mrtsock_destruct takes
1406			 * care of rtnl itself and we can't change that due to
1407			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1408			 */
1409			rtnl_unlock();
1410			ret = ip_ra_control(sk, 0, NULL);
1411			goto out;
1412		}
1413		break;
1414	case MRT_ADD_VIF:
1415	case MRT_DEL_VIF:
1416		if (optlen != sizeof(vif)) {
1417			ret = -EINVAL;
1418			break;
1419		}
1420		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1421			ret = -EFAULT;
1422			break;
1423		}
1424		if (vif.vifc_vifi >= MAXVIFS) {
1425			ret = -ENFILE;
1426			break;
1427		}
1428		if (optname == MRT_ADD_VIF) {
1429			ret = vif_add(net, mrt, &vif,
1430				      sk == rtnl_dereference(mrt->mroute_sk));
1431		} else {
1432			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1433		}
1434		break;
1435	/* Manipulate the forwarding caches. These live
1436	 * in a sort of kernel/user symbiosis.
1437	 */
 
 
 
1438	case MRT_ADD_MFC:
1439	case MRT_DEL_MFC:
1440		parent = -1;
1441		fallthrough;
1442	case MRT_ADD_MFC_PROXY:
1443	case MRT_DEL_MFC_PROXY:
1444		if (optlen != sizeof(mfc)) {
1445			ret = -EINVAL;
1446			break;
1447		}
1448		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1449			ret = -EFAULT;
1450			break;
1451		}
1452		if (parent == 0)
1453			parent = mfc.mfcc_parent;
1454		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1455			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1456		else
1457			ret = ipmr_mfc_add(net, mrt, &mfc,
1458					   sk == rtnl_dereference(mrt->mroute_sk),
1459					   parent);
1460		break;
1461	case MRT_FLUSH:
1462		if (optlen != sizeof(val)) {
1463			ret = -EINVAL;
1464			break;
1465		}
1466		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1467			ret = -EFAULT;
1468			break;
1469		}
1470		mroute_clean_tables(mrt, val);
1471		break;
1472	/* Control PIM assert. */
1473	case MRT_ASSERT:
1474		if (optlen != sizeof(val)) {
1475			ret = -EINVAL;
1476			break;
1477		}
1478		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1479			ret = -EFAULT;
1480			break;
1481		}
1482		mrt->mroute_do_assert = val;
1483		break;
1484	case MRT_PIM:
1485		if (!ipmr_pimsm_enabled()) {
1486			ret = -ENOPROTOOPT;
1487			break;
1488		}
1489		if (optlen != sizeof(val)) {
1490			ret = -EINVAL;
1491			break;
1492		}
1493		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1494			ret = -EFAULT;
1495			break;
1496		}
1497
1498		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1499		val = !!val;
1500		if (val != mrt->mroute_do_pim) {
1501			mrt->mroute_do_pim = val;
1502			mrt->mroute_do_assert = val;
1503			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
 
 
 
1504		}
1505		break;
 
 
 
 
1506	case MRT_TABLE:
1507		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1508			ret = -ENOPROTOOPT;
1509			break;
1510		}
1511		if (optlen != sizeof(uval)) {
1512			ret = -EINVAL;
1513			break;
1514		}
1515		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1516			ret = -EFAULT;
1517			break;
1518		}
1519
 
 
 
 
 
 
 
1520		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1521			ret = -EBUSY;
1522		} else {
1523			mrt = ipmr_new_table(net, uval);
1524			if (IS_ERR(mrt))
1525				ret = PTR_ERR(mrt);
1526			else
1527				raw_sk(sk)->ipmr_table = uval;
1528		}
1529		break;
1530	/* Spurious command, or MRT_VERSION which you cannot set. */
 
 
 
 
 
 
1531	default:
1532		ret = -ENOPROTOOPT;
1533	}
1534out_unlock:
1535	rtnl_unlock();
1536out:
1537	return ret;
1538}
1539
1540/* Getsock opt support for the multicast routing system. */
 
 
 
1541int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1542{
1543	int olr;
1544	int val;
1545	struct net *net = sock_net(sk);
1546	struct mr_table *mrt;
1547
1548	if (sk->sk_type != SOCK_RAW ||
1549	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1550		return -EOPNOTSUPP;
1551
1552	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1553	if (!mrt)
1554		return -ENOENT;
1555
1556	switch (optname) {
1557	case MRT_VERSION:
1558		val = 0x0305;
1559		break;
1560	case MRT_PIM:
1561		if (!ipmr_pimsm_enabled())
1562			return -ENOPROTOOPT;
1563		val = mrt->mroute_do_pim;
1564		break;
1565	case MRT_ASSERT:
1566		val = mrt->mroute_do_assert;
1567		break;
1568	default:
1569		return -ENOPROTOOPT;
1570	}
1571
1572	if (get_user(olr, optlen))
1573		return -EFAULT;
 
1574	olr = min_t(unsigned int, olr, sizeof(int));
1575	if (olr < 0)
1576		return -EINVAL;
 
1577	if (put_user(olr, optlen))
1578		return -EFAULT;
 
 
 
 
 
 
 
 
1579	if (copy_to_user(optval, &val, olr))
1580		return -EFAULT;
1581	return 0;
1582}
1583
1584/* The IP multicast ioctl support routines. */
 
 
 
1585int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1586{
1587	struct sioc_sg_req sr;
1588	struct sioc_vif_req vr;
1589	struct vif_device *vif;
1590	struct mfc_cache *c;
1591	struct net *net = sock_net(sk);
1592	struct mr_table *mrt;
1593
1594	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1595	if (!mrt)
1596		return -ENOENT;
1597
1598	switch (cmd) {
1599	case SIOCGETVIFCNT:
1600		if (copy_from_user(&vr, arg, sizeof(vr)))
1601			return -EFAULT;
1602		if (vr.vifi >= mrt->maxvif)
1603			return -EINVAL;
1604		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1605		read_lock(&mrt_lock);
1606		vif = &mrt->vif_table[vr.vifi];
1607		if (VIF_EXISTS(mrt, vr.vifi)) {
1608			vr.icount = vif->pkt_in;
1609			vr.ocount = vif->pkt_out;
1610			vr.ibytes = vif->bytes_in;
1611			vr.obytes = vif->bytes_out;
1612			read_unlock(&mrt_lock);
1613
1614			if (copy_to_user(arg, &vr, sizeof(vr)))
1615				return -EFAULT;
1616			return 0;
1617		}
1618		read_unlock(&mrt_lock);
1619		return -EADDRNOTAVAIL;
1620	case SIOCGETSGCNT:
1621		if (copy_from_user(&sr, arg, sizeof(sr)))
1622			return -EFAULT;
1623
1624		rcu_read_lock();
1625		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1626		if (c) {
1627			sr.pktcnt = c->_c.mfc_un.res.pkt;
1628			sr.bytecnt = c->_c.mfc_un.res.bytes;
1629			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1630			rcu_read_unlock();
1631
1632			if (copy_to_user(arg, &sr, sizeof(sr)))
1633				return -EFAULT;
1634			return 0;
1635		}
1636		rcu_read_unlock();
1637		return -EADDRNOTAVAIL;
1638	default:
1639		return -ENOIOCTLCMD;
1640	}
1641}
1642
1643#ifdef CONFIG_COMPAT
1644struct compat_sioc_sg_req {
1645	struct in_addr src;
1646	struct in_addr grp;
1647	compat_ulong_t pktcnt;
1648	compat_ulong_t bytecnt;
1649	compat_ulong_t wrong_if;
1650};
1651
1652struct compat_sioc_vif_req {
1653	vifi_t	vifi;		/* Which iface */
1654	compat_ulong_t icount;
1655	compat_ulong_t ocount;
1656	compat_ulong_t ibytes;
1657	compat_ulong_t obytes;
1658};
1659
1660int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1661{
1662	struct compat_sioc_sg_req sr;
1663	struct compat_sioc_vif_req vr;
1664	struct vif_device *vif;
1665	struct mfc_cache *c;
1666	struct net *net = sock_net(sk);
1667	struct mr_table *mrt;
1668
1669	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1670	if (!mrt)
1671		return -ENOENT;
1672
1673	switch (cmd) {
1674	case SIOCGETVIFCNT:
1675		if (copy_from_user(&vr, arg, sizeof(vr)))
1676			return -EFAULT;
1677		if (vr.vifi >= mrt->maxvif)
1678			return -EINVAL;
1679		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1680		read_lock(&mrt_lock);
1681		vif = &mrt->vif_table[vr.vifi];
1682		if (VIF_EXISTS(mrt, vr.vifi)) {
1683			vr.icount = vif->pkt_in;
1684			vr.ocount = vif->pkt_out;
1685			vr.ibytes = vif->bytes_in;
1686			vr.obytes = vif->bytes_out;
1687			read_unlock(&mrt_lock);
1688
1689			if (copy_to_user(arg, &vr, sizeof(vr)))
1690				return -EFAULT;
1691			return 0;
1692		}
1693		read_unlock(&mrt_lock);
1694		return -EADDRNOTAVAIL;
1695	case SIOCGETSGCNT:
1696		if (copy_from_user(&sr, arg, sizeof(sr)))
1697			return -EFAULT;
1698
1699		rcu_read_lock();
1700		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1701		if (c) {
1702			sr.pktcnt = c->_c.mfc_un.res.pkt;
1703			sr.bytecnt = c->_c.mfc_un.res.bytes;
1704			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1705			rcu_read_unlock();
1706
1707			if (copy_to_user(arg, &sr, sizeof(sr)))
1708				return -EFAULT;
1709			return 0;
1710		}
1711		rcu_read_unlock();
1712		return -EADDRNOTAVAIL;
1713	default:
1714		return -ENOIOCTLCMD;
1715	}
1716}
1717#endif
1718
 
1719static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1720{
1721	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1722	struct net *net = dev_net(dev);
1723	struct mr_table *mrt;
1724	struct vif_device *v;
1725	int ct;
1726
1727	if (event != NETDEV_UNREGISTER)
1728		return NOTIFY_DONE;
1729
1730	ipmr_for_each_table(mrt, net) {
1731		v = &mrt->vif_table[0];
1732		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1733			if (v->dev == dev)
1734				vif_delete(mrt, ct, 1, NULL);
1735		}
1736	}
1737	return NOTIFY_DONE;
1738}
1739
 
1740static struct notifier_block ip_mr_notifier = {
1741	.notifier_call = ipmr_device_event,
1742};
1743
1744/* Encapsulate a packet by attaching a valid IPIP header to it.
1745 * This avoids tunnel drivers and other mess and gives us the speed so
1746 * important for multicast video.
 
1747 */
1748static void ip_encap(struct net *net, struct sk_buff *skb,
1749		     __be32 saddr, __be32 daddr)
1750{
1751	struct iphdr *iph;
1752	const struct iphdr *old_iph = ip_hdr(skb);
1753
1754	skb_push(skb, sizeof(struct iphdr));
1755	skb->transport_header = skb->network_header;
1756	skb_reset_network_header(skb);
1757	iph = ip_hdr(skb);
1758
1759	iph->version	=	4;
1760	iph->tos	=	old_iph->tos;
1761	iph->ttl	=	old_iph->ttl;
1762	iph->frag_off	=	0;
1763	iph->daddr	=	daddr;
1764	iph->saddr	=	saddr;
1765	iph->protocol	=	IPPROTO_IPIP;
1766	iph->ihl	=	5;
1767	iph->tot_len	=	htons(skb->len);
1768	ip_select_ident(net, skb, NULL);
1769	ip_send_check(iph);
1770
1771	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1772	nf_reset_ct(skb);
1773}
1774
1775static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1776				      struct sk_buff *skb)
1777{
1778	struct ip_options *opt = &(IPCB(skb)->opt);
1779
1780	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1781	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1782
1783	if (unlikely(opt->optlen))
1784		ip_forward_options(skb);
1785
1786	return dst_output(net, sk, skb);
1787}
1788
1789#ifdef CONFIG_NET_SWITCHDEV
1790static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1791				   int in_vifi, int out_vifi)
1792{
1793	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1794	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1795
1796	if (!skb->offload_l3_fwd_mark)
1797		return false;
1798	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1799		return false;
1800	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1801					&in_vif->dev_parent_id);
1802}
1803#else
1804static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1805				   int in_vifi, int out_vifi)
1806{
1807	return false;
1808}
1809#endif
1810
1811/* Processing handlers for ipmr_forward */
 
 
1812
1813static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1814			    int in_vifi, struct sk_buff *skb, int vifi)
1815{
1816	const struct iphdr *iph = ip_hdr(skb);
1817	struct vif_device *vif = &mrt->vif_table[vifi];
1818	struct net_device *dev;
1819	struct rtable *rt;
1820	struct flowi4 fl4;
1821	int    encap = 0;
1822
1823	if (!vif->dev)
1824		goto out_free;
1825
 
1826	if (vif->flags & VIFF_REGISTER) {
1827		vif->pkt_out++;
1828		vif->bytes_out += skb->len;
1829		vif->dev->stats.tx_bytes += skb->len;
1830		vif->dev->stats.tx_packets++;
1831		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1832		goto out_free;
1833	}
1834
1835	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1836		goto out_free;
1837
1838	if (vif->flags & VIFF_TUNNEL) {
1839		rt = ip_route_output_ports(net, &fl4, NULL,
1840					   vif->remote, vif->local,
1841					   0, 0,
1842					   IPPROTO_IPIP,
1843					   RT_TOS(iph->tos), vif->link);
1844		if (IS_ERR(rt))
1845			goto out_free;
1846		encap = sizeof(struct iphdr);
1847	} else {
1848		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1849					   0, 0,
1850					   IPPROTO_IPIP,
1851					   RT_TOS(iph->tos), vif->link);
1852		if (IS_ERR(rt))
1853			goto out_free;
1854	}
1855
1856	dev = rt->dst.dev;
1857
1858	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1859		/* Do not fragment multicasts. Alas, IPv4 does not
1860		 * allow to send ICMP, so that packets will disappear
1861		 * to blackhole.
1862		 */
1863		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
1864		ip_rt_put(rt);
1865		goto out_free;
1866	}
1867
1868	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1869
1870	if (skb_cow(skb, encap)) {
1871		ip_rt_put(rt);
1872		goto out_free;
1873	}
1874
1875	vif->pkt_out++;
1876	vif->bytes_out += skb->len;
1877
1878	skb_dst_drop(skb);
1879	skb_dst_set(skb, &rt->dst);
1880	ip_decrease_ttl(ip_hdr(skb));
1881
1882	/* FIXME: forward and output firewalls used to be called here.
1883	 * What do we do with netfilter? -- RR
1884	 */
1885	if (vif->flags & VIFF_TUNNEL) {
1886		ip_encap(net, skb, vif->local, vif->remote);
1887		/* FIXME: extra output firewall step used to be here. --RR */
1888		vif->dev->stats.tx_packets++;
1889		vif->dev->stats.tx_bytes += skb->len;
1890	}
1891
1892	IPCB(skb)->flags |= IPSKB_FORWARDED;
1893
1894	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 
1895	 * not only before forwarding, but after forwarding on all output
1896	 * interfaces. It is clear, if mrouter runs a multicasting
1897	 * program, it should receive packets not depending to what interface
1898	 * program is joined.
1899	 * If we will not make it, the program will have to join on all
1900	 * interfaces. On the other hand, multihoming host (or router, but
1901	 * not mrouter) cannot join to more than one interface - it will
1902	 * result in receiving multiple packets.
1903	 */
1904	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1905		net, NULL, skb, skb->dev, dev,
1906		ipmr_forward_finish);
1907	return;
1908
1909out_free:
1910	kfree_skb(skb);
1911}
1912
1913static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1914{
1915	int ct;
1916
1917	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1918		if (mrt->vif_table[ct].dev == dev)
1919			break;
1920	}
1921	return ct;
1922}
1923
1924/* "local" means that we should preserve one skb (for local delivery) */
1925static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1926			  struct net_device *dev, struct sk_buff *skb,
1927			  struct mfc_cache *c, int local)
 
1928{
1929	int true_vifi = ipmr_find_vif(mrt, dev);
1930	int psend = -1;
1931	int vif, ct;
1932
1933	vif = c->_c.mfc_parent;
1934	c->_c.mfc_un.res.pkt++;
1935	c->_c.mfc_un.res.bytes += skb->len;
1936	c->_c.mfc_un.res.lastuse = jiffies;
1937
1938	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1939		struct mfc_cache *cache_proxy;
1940
1941		/* For an (*,G) entry, we only check that the incoming
1942		 * interface is part of the static tree.
1943		 */
1944		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1945		if (cache_proxy &&
1946		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1947			goto forward;
1948	}
1949
1950	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1951	if (mrt->vif_table[vif].dev != dev) {
1952		if (rt_is_output_route(skb_rtable(skb))) {
1953			/* It is our own packet, looped back.
1954			 * Very complicated situation...
1955			 *
1956			 * The best workaround until routing daemons will be
1957			 * fixed is not to redistribute packet, if it was
1958			 * send through wrong interface. It means, that
1959			 * multicast applications WILL NOT work for
1960			 * (S,G), which have default multicast route pointing
1961			 * to wrong oif. In any case, it is not a good
1962			 * idea to use multicasting applications on router.
1963			 */
1964			goto dont_forward;
1965		}
1966
1967		c->_c.mfc_un.res.wrong_if++;
 
1968
1969		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1970		    /* pimsm uses asserts, when switching from RPT to SPT,
1971		     * so that we cannot check that packet arrived on an oif.
1972		     * It is bad, but otherwise we would need to move pretty
1973		     * large chunk of pimd to kernel. Ough... --ANK
1974		     */
1975		    (mrt->mroute_do_pim ||
1976		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1977		    time_after(jiffies,
1978			       c->_c.mfc_un.res.last_assert +
1979			       MFC_ASSERT_THRESH)) {
1980			c->_c.mfc_un.res.last_assert = jiffies;
1981			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1982			if (mrt->mroute_do_wrvifwhole)
1983				ipmr_cache_report(mrt, skb, true_vifi,
1984						  IGMPMSG_WRVIFWHOLE);
1985		}
1986		goto dont_forward;
1987	}
1988
1989forward:
1990	mrt->vif_table[vif].pkt_in++;
1991	mrt->vif_table[vif].bytes_in += skb->len;
1992
1993	/* Forward the frame */
1994	if (c->mfc_origin == htonl(INADDR_ANY) &&
1995	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1996		if (true_vifi >= 0 &&
1997		    true_vifi != c->_c.mfc_parent &&
1998		    ip_hdr(skb)->ttl >
1999				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2000			/* It's an (*,*) entry and the packet is not coming from
2001			 * the upstream: forward the packet to the upstream
2002			 * only.
2003			 */
2004			psend = c->_c.mfc_parent;
2005			goto last_forward;
2006		}
2007		goto dont_forward;
2008	}
2009	for (ct = c->_c.mfc_un.res.maxvif - 1;
2010	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2011		/* For (*,G) entry, don't forward to the incoming interface */
2012		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2013		     ct != true_vifi) &&
2014		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2015			if (psend != -1) {
2016				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2017
2018				if (skb2)
2019					ipmr_queue_xmit(net, mrt, true_vifi,
2020							skb2, psend);
2021			}
2022			psend = ct;
2023		}
2024	}
2025last_forward:
2026	if (psend != -1) {
2027		if (local) {
2028			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2029
2030			if (skb2)
2031				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2032						psend);
2033		} else {
2034			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2035			return;
2036		}
2037	}
2038
2039dont_forward:
2040	if (!local)
2041		kfree_skb(skb);
 
2042}
2043
2044static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2045{
2046	struct rtable *rt = skb_rtable(skb);
2047	struct iphdr *iph = ip_hdr(skb);
2048	struct flowi4 fl4 = {
2049		.daddr = iph->daddr,
2050		.saddr = iph->saddr,
2051		.flowi4_tos = RT_TOS(iph->tos),
2052		.flowi4_oif = (rt_is_output_route(rt) ?
2053			       skb->dev->ifindex : 0),
2054		.flowi4_iif = (rt_is_output_route(rt) ?
2055			       LOOPBACK_IFINDEX :
2056			       skb->dev->ifindex),
2057		.flowi4_mark = skb->mark,
2058	};
2059	struct mr_table *mrt;
2060	int err;
2061
2062	err = ipmr_fib_lookup(net, &fl4, &mrt);
2063	if (err)
2064		return ERR_PTR(err);
2065	return mrt;
2066}
2067
2068/* Multicast packets for forwarding arrive here
2069 * Called with rcu_read_lock();
 
2070 */
 
2071int ip_mr_input(struct sk_buff *skb)
2072{
2073	struct mfc_cache *cache;
2074	struct net *net = dev_net(skb->dev);
2075	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2076	struct mr_table *mrt;
2077	struct net_device *dev;
2078
2079	/* skb->dev passed in is the loX master dev for vrfs.
2080	 * As there are no vifs associated with loopback devices,
2081	 * get the proper interface that does have a vif associated with it.
2082	 */
2083	dev = skb->dev;
2084	if (netif_is_l3_master(skb->dev)) {
2085		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2086		if (!dev) {
2087			kfree_skb(skb);
2088			return -ENODEV;
2089		}
2090	}
2091
2092	/* Packet is looped back after forward, it should not be
2093	 * forwarded second time, but still can be delivered locally.
2094	 */
2095	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2096		goto dont_forward;
2097
2098	mrt = ipmr_rt_fib_lookup(net, skb);
2099	if (IS_ERR(mrt)) {
2100		kfree_skb(skb);
2101		return PTR_ERR(mrt);
2102	}
2103	if (!local) {
2104		if (IPCB(skb)->opt.router_alert) {
2105			if (ip_call_ra_chain(skb))
2106				return 0;
2107		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2108			/* IGMPv1 (and broken IGMPv2 implementations sort of
2109			 * Cisco IOS <= 11.2(8)) do not put router alert
2110			 * option to IGMP packets destined to routable
2111			 * groups. It is very bad, because it means
2112			 * that we can forward NO IGMP messages.
2113			 */
2114			struct sock *mroute_sk;
2115
2116			mroute_sk = rcu_dereference(mrt->mroute_sk);
2117			if (mroute_sk) {
2118				nf_reset_ct(skb);
2119				raw_rcv(mroute_sk, skb);
2120				return 0;
2121			}
2122		}
2123	}
2124
2125	/* already under rcu_read_lock() */
2126	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2127	if (!cache) {
2128		int vif = ipmr_find_vif(mrt, dev);
2129
2130		if (vif >= 0)
2131			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2132						    vif);
2133	}
2134
2135	/* No usable cache entry */
2136	if (!cache) {
 
 
2137		int vif;
2138
2139		if (local) {
2140			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2141			ip_local_deliver(skb);
2142			if (!skb2)
2143				return -ENOBUFS;
2144			skb = skb2;
2145		}
2146
2147		read_lock(&mrt_lock);
2148		vif = ipmr_find_vif(mrt, dev);
2149		if (vif >= 0) {
2150			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2151			read_unlock(&mrt_lock);
2152
2153			return err2;
2154		}
2155		read_unlock(&mrt_lock);
2156		kfree_skb(skb);
2157		return -ENODEV;
2158	}
2159
2160	read_lock(&mrt_lock);
2161	ip_mr_forward(net, mrt, dev, skb, cache, local);
2162	read_unlock(&mrt_lock);
2163
2164	if (local)
2165		return ip_local_deliver(skb);
2166
2167	return 0;
2168
2169dont_forward:
2170	if (local)
2171		return ip_local_deliver(skb);
2172	kfree_skb(skb);
2173	return 0;
2174}
2175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176#ifdef CONFIG_IP_PIMSM_V1
2177/* Handle IGMP messages of PIMv1 */
 
 
 
2178int pim_rcv_v1(struct sk_buff *skb)
2179{
2180	struct igmphdr *pim;
2181	struct net *net = dev_net(skb->dev);
2182	struct mr_table *mrt;
2183
2184	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2185		goto drop;
2186
2187	pim = igmp_hdr(skb);
2188
2189	mrt = ipmr_rt_fib_lookup(net, skb);
2190	if (IS_ERR(mrt))
2191		goto drop;
2192	if (!mrt->mroute_do_pim ||
2193	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2194		goto drop;
2195
2196	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2197drop:
2198		kfree_skb(skb);
2199	}
2200	return 0;
2201}
2202#endif
2203
2204#ifdef CONFIG_IP_PIMSM_V2
2205static int pim_rcv(struct sk_buff *skb)
2206{
2207	struct pimreghdr *pim;
2208	struct net *net = dev_net(skb->dev);
2209	struct mr_table *mrt;
2210
2211	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2212		goto drop;
2213
2214	pim = (struct pimreghdr *)skb_transport_header(skb);
2215	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2216	    (pim->flags & PIM_NULL_REGISTER) ||
2217	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2218	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2219		goto drop;
2220
2221	mrt = ipmr_rt_fib_lookup(net, skb);
2222	if (IS_ERR(mrt))
2223		goto drop;
2224	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2225drop:
2226		kfree_skb(skb);
2227	}
2228	return 0;
2229}
2230#endif
2231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232int ipmr_get_route(struct net *net, struct sk_buff *skb,
2233		   __be32 saddr, __be32 daddr,
2234		   struct rtmsg *rtm, u32 portid)
2235{
2236	struct mfc_cache *cache;
2237	struct mr_table *mrt;
2238	int err;
2239
2240	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2241	if (!mrt)
2242		return -ENOENT;
2243
2244	rcu_read_lock();
2245	cache = ipmr_cache_find(mrt, saddr, daddr);
2246	if (!cache && skb->dev) {
2247		int vif = ipmr_find_vif(mrt, skb->dev);
2248
2249		if (vif >= 0)
2250			cache = ipmr_cache_find_any(mrt, daddr, vif);
2251	}
2252	if (!cache) {
2253		struct sk_buff *skb2;
2254		struct iphdr *iph;
2255		struct net_device *dev;
2256		int vif = -1;
2257
 
 
 
 
 
2258		dev = skb->dev;
2259		read_lock(&mrt_lock);
2260		if (dev)
2261			vif = ipmr_find_vif(mrt, dev);
2262		if (vif < 0) {
2263			read_unlock(&mrt_lock);
2264			rcu_read_unlock();
2265			return -ENODEV;
2266		}
2267
2268		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2269		if (!skb2) {
2270			read_unlock(&mrt_lock);
2271			rcu_read_unlock();
2272			return -ENOMEM;
2273		}
2274
2275		NETLINK_CB(skb2).portid = portid;
2276		skb_push(skb2, sizeof(struct iphdr));
2277		skb_reset_network_header(skb2);
2278		iph = ip_hdr(skb2);
2279		iph->ihl = sizeof(struct iphdr) >> 2;
2280		iph->saddr = saddr;
2281		iph->daddr = daddr;
2282		iph->version = 0;
2283		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2284		read_unlock(&mrt_lock);
2285		rcu_read_unlock();
2286		return err;
2287	}
2288
2289	read_lock(&mrt_lock);
2290	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
 
 
2291	read_unlock(&mrt_lock);
2292	rcu_read_unlock();
2293	return err;
2294}
2295
2296static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2297			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2298			    int flags)
2299{
2300	struct nlmsghdr *nlh;
2301	struct rtmsg *rtm;
2302	int err;
2303
2304	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2305	if (!nlh)
2306		return -EMSGSIZE;
2307
2308	rtm = nlmsg_data(nlh);
2309	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2310	rtm->rtm_dst_len  = 32;
2311	rtm->rtm_src_len  = 32;
2312	rtm->rtm_tos      = 0;
2313	rtm->rtm_table    = mrt->id;
2314	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2315		goto nla_put_failure;
2316	rtm->rtm_type     = RTN_MULTICAST;
2317	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2318	if (c->_c.mfc_flags & MFC_STATIC)
2319		rtm->rtm_protocol = RTPROT_STATIC;
2320	else
2321		rtm->rtm_protocol = RTPROT_MROUTED;
2322	rtm->rtm_flags    = 0;
2323
2324	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2325	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2326		goto nla_put_failure;
2327	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2328	/* do not break the dump if cache is unresolved */
2329	if (err < 0 && err != -ENOENT)
2330		goto nla_put_failure;
2331
2332	nlmsg_end(skb, nlh);
2333	return 0;
2334
2335nla_put_failure:
2336	nlmsg_cancel(skb, nlh);
2337	return -EMSGSIZE;
2338}
2339
2340static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2341			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2342			     int flags)
2343{
2344	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2345				cmd, flags);
2346}
2347
2348static size_t mroute_msgsize(bool unresolved, int maxvif)
2349{
2350	size_t len =
2351		NLMSG_ALIGN(sizeof(struct rtmsg))
2352		+ nla_total_size(4)	/* RTA_TABLE */
2353		+ nla_total_size(4)	/* RTA_SRC */
2354		+ nla_total_size(4)	/* RTA_DST */
2355		;
2356
2357	if (!unresolved)
2358		len = len
2359		      + nla_total_size(4)	/* RTA_IIF */
2360		      + nla_total_size(0)	/* RTA_MULTIPATH */
2361		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2362						/* RTA_MFC_STATS */
2363		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2364		;
2365
2366	return len;
2367}
2368
2369static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2370				 int cmd)
2371{
2372	struct net *net = read_pnet(&mrt->net);
2373	struct sk_buff *skb;
2374	int err = -ENOBUFS;
2375
2376	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2377				       mrt->maxvif),
2378			GFP_ATOMIC);
2379	if (!skb)
2380		goto errout;
2381
2382	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2383	if (err < 0)
2384		goto errout;
2385
2386	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2387	return;
2388
2389errout:
2390	kfree_skb(skb);
2391	if (err < 0)
2392		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2393}
2394
2395static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2396{
2397	size_t len =
2398		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2399		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2400		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2401		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2402		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2403		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2404					/* IPMRA_CREPORT_PKT */
2405		+ nla_total_size(payloadlen)
2406		;
2407
2408	return len;
2409}
2410
2411static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2412{
2413	struct net *net = read_pnet(&mrt->net);
2414	struct nlmsghdr *nlh;
2415	struct rtgenmsg *rtgenm;
2416	struct igmpmsg *msg;
2417	struct sk_buff *skb;
2418	struct nlattr *nla;
2419	int payloadlen;
2420
2421	payloadlen = pkt->len - sizeof(struct igmpmsg);
2422	msg = (struct igmpmsg *)skb_network_header(pkt);
2423
2424	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2425	if (!skb)
2426		goto errout;
2427
2428	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2429			sizeof(struct rtgenmsg), 0);
2430	if (!nlh)
2431		goto errout;
2432	rtgenm = nlmsg_data(nlh);
2433	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2434	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2435	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2436	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2437			    msg->im_src.s_addr) ||
2438	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2439			    msg->im_dst.s_addr) ||
2440	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2441		goto nla_put_failure;
2442
2443	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2444	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2445				  nla_data(nla), payloadlen))
2446		goto nla_put_failure;
2447
2448	nlmsg_end(skb, nlh);
2449
2450	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2451	return;
2452
2453nla_put_failure:
2454	nlmsg_cancel(skb, nlh);
2455errout:
2456	kfree_skb(skb);
2457	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2458}
2459
2460static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2461				       const struct nlmsghdr *nlh,
2462				       struct nlattr **tb,
2463				       struct netlink_ext_ack *extack)
2464{
2465	struct rtmsg *rtm;
2466	int i, err;
2467
2468	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2469		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2470		return -EINVAL;
2471	}
2472
2473	if (!netlink_strict_get_check(skb))
2474		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2475					      rtm_ipv4_policy, extack);
2476
2477	rtm = nlmsg_data(nlh);
2478	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2479	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2480	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2481	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2482		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2483		return -EINVAL;
2484	}
2485
2486	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2487					    rtm_ipv4_policy, extack);
2488	if (err)
2489		return err;
2490
2491	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2492	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2493		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2494		return -EINVAL;
2495	}
2496
2497	for (i = 0; i <= RTA_MAX; i++) {
2498		if (!tb[i])
2499			continue;
2500
2501		switch (i) {
2502		case RTA_SRC:
2503		case RTA_DST:
2504		case RTA_TABLE:
2505			break;
2506		default:
2507			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2508			return -EINVAL;
2509		}
2510	}
2511
2512	return 0;
2513}
2514
2515static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2516			     struct netlink_ext_ack *extack)
2517{
2518	struct net *net = sock_net(in_skb->sk);
2519	struct nlattr *tb[RTA_MAX + 1];
2520	struct sk_buff *skb = NULL;
2521	struct mfc_cache *cache;
2522	struct mr_table *mrt;
2523	__be32 src, grp;
2524	u32 tableid;
2525	int err;
2526
2527	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2528	if (err < 0)
2529		goto errout;
2530
2531	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2532	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2533	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2534
2535	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2536	if (!mrt) {
2537		err = -ENOENT;
2538		goto errout_free;
2539	}
2540
2541	/* entries are added/deleted only under RTNL */
2542	rcu_read_lock();
2543	cache = ipmr_cache_find(mrt, src, grp);
2544	rcu_read_unlock();
2545	if (!cache) {
2546		err = -ENOENT;
2547		goto errout_free;
2548	}
2549
2550	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2551	if (!skb) {
2552		err = -ENOBUFS;
2553		goto errout_free;
2554	}
2555
2556	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2557			       nlh->nlmsg_seq, cache,
2558			       RTM_NEWROUTE, 0);
2559	if (err < 0)
2560		goto errout_free;
2561
2562	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2563
2564errout:
2565	return err;
2566
2567errout_free:
2568	kfree_skb(skb);
2569	goto errout;
2570}
2571
2572static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2573{
2574	struct fib_dump_filter filter = {};
2575	int err;
2576
2577	if (cb->strict_check) {
2578		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2579					    &filter, cb);
2580		if (err < 0)
2581			return err;
2582	}
2583
2584	if (filter.table_id) {
2585		struct mr_table *mrt;
2586
2587		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2588		if (!mrt) {
2589			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2590				return skb->len;
2591
2592			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2593			return -ENOENT;
2594		}
2595		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2596				    &mfc_unres_lock, &filter);
2597		return skb->len ? : err;
2598	}
2599
2600	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2601				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2602}
2603
2604static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2605	[RTA_SRC]	= { .type = NLA_U32 },
2606	[RTA_DST]	= { .type = NLA_U32 },
2607	[RTA_IIF]	= { .type = NLA_U32 },
2608	[RTA_TABLE]	= { .type = NLA_U32 },
2609	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2610};
2611
2612static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2613{
2614	switch (rtm_protocol) {
2615	case RTPROT_STATIC:
2616	case RTPROT_MROUTED:
2617		return true;
2618	}
2619	return false;
2620}
2621
2622static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2623{
2624	struct rtnexthop *rtnh = nla_data(nla);
2625	int remaining = nla_len(nla), vifi = 0;
2626
2627	while (rtnh_ok(rtnh, remaining)) {
2628		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2629		if (++vifi == MAXVIFS)
2630			break;
2631		rtnh = rtnh_next(rtnh, &remaining);
2632	}
2633
2634	return remaining > 0 ? -EINVAL : vifi;
2635}
2636
2637/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2638static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2639			    struct mfcctl *mfcc, int *mrtsock,
2640			    struct mr_table **mrtret,
2641			    struct netlink_ext_ack *extack)
2642{
2643	struct net_device *dev = NULL;
2644	u32 tblid = RT_TABLE_DEFAULT;
2645	struct mr_table *mrt;
2646	struct nlattr *attr;
2647	struct rtmsg *rtm;
2648	int ret, rem;
2649
2650	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2651					rtm_ipmr_policy, extack);
2652	if (ret < 0)
2653		goto out;
2654	rtm = nlmsg_data(nlh);
2655
2656	ret = -EINVAL;
2657	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2658	    rtm->rtm_type != RTN_MULTICAST ||
2659	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2660	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2661		goto out;
2662
2663	memset(mfcc, 0, sizeof(*mfcc));
2664	mfcc->mfcc_parent = -1;
2665	ret = 0;
2666	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2667		switch (nla_type(attr)) {
2668		case RTA_SRC:
2669			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2670			break;
2671		case RTA_DST:
2672			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2673			break;
2674		case RTA_IIF:
2675			dev = __dev_get_by_index(net, nla_get_u32(attr));
2676			if (!dev) {
2677				ret = -ENODEV;
2678				goto out;
2679			}
2680			break;
2681		case RTA_MULTIPATH:
2682			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2683				ret = -EINVAL;
2684				goto out;
2685			}
2686			break;
2687		case RTA_PREFSRC:
2688			ret = 1;
2689			break;
2690		case RTA_TABLE:
2691			tblid = nla_get_u32(attr);
2692			break;
2693		}
2694	}
2695	mrt = ipmr_get_table(net, tblid);
2696	if (!mrt) {
2697		ret = -ENOENT;
2698		goto out;
2699	}
2700	*mrtret = mrt;
2701	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2702	if (dev)
2703		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2704
2705out:
2706	return ret;
2707}
2708
2709/* takes care of both newroute and delroute */
2710static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2711			  struct netlink_ext_ack *extack)
2712{
2713	struct net *net = sock_net(skb->sk);
2714	int ret, mrtsock, parent;
2715	struct mr_table *tbl;
2716	struct mfcctl mfcc;
2717
2718	mrtsock = 0;
2719	tbl = NULL;
2720	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2721	if (ret < 0)
2722		return ret;
2723
2724	parent = ret ? mfcc.mfcc_parent : -1;
2725	if (nlh->nlmsg_type == RTM_NEWROUTE)
2726		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2727	else
2728		return ipmr_mfc_delete(tbl, &mfcc, parent);
2729}
2730
2731static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2732{
2733	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2734
2735	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2736	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2737	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2738			mrt->mroute_reg_vif_num) ||
2739	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2740		       mrt->mroute_do_assert) ||
2741	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2742	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2743		       mrt->mroute_do_wrvifwhole))
2744		return false;
2745
2746	return true;
2747}
2748
2749static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2750{
2751	struct nlattr *vif_nest;
2752	struct vif_device *vif;
2753
2754	/* if the VIF doesn't exist just continue */
2755	if (!VIF_EXISTS(mrt, vifid))
2756		return true;
2757
2758	vif = &mrt->vif_table[vifid];
2759	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2760	if (!vif_nest)
2761		return false;
2762	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2763	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2764	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2765	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2766			      IPMRA_VIFA_PAD) ||
2767	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2768			      IPMRA_VIFA_PAD) ||
2769	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2770			      IPMRA_VIFA_PAD) ||
2771	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2772			      IPMRA_VIFA_PAD) ||
2773	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2774	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2775		nla_nest_cancel(skb, vif_nest);
2776		return false;
2777	}
2778	nla_nest_end(skb, vif_nest);
2779
2780	return true;
2781}
2782
2783static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2784			       struct netlink_ext_ack *extack)
2785{
2786	struct ifinfomsg *ifm;
2787
2788	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2789		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2790		return -EINVAL;
2791	}
2792
2793	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2794		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2795		return -EINVAL;
2796	}
2797
2798	ifm = nlmsg_data(nlh);
2799	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2800	    ifm->ifi_change || ifm->ifi_index) {
2801		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2802		return -EINVAL;
2803	}
2804
2805	return 0;
2806}
2807
2808static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2809{
2810	struct net *net = sock_net(skb->sk);
2811	struct nlmsghdr *nlh = NULL;
2812	unsigned int t = 0, s_t;
 
2813	unsigned int e = 0, s_e;
2814	struct mr_table *mrt;
2815
2816	if (cb->strict_check) {
2817		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2818
2819		if (err < 0)
2820			return err;
2821	}
2822
2823	s_t = cb->args[0];
2824	s_e = cb->args[1];
 
2825
 
2826	ipmr_for_each_table(mrt, net) {
2827		struct nlattr *vifs, *af;
2828		struct ifinfomsg *hdr;
2829		u32 i;
2830
2831		if (t < s_t)
2832			goto skip_table;
2833		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2834				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2835				sizeof(*hdr), NLM_F_MULTI);
2836		if (!nlh)
2837			break;
2838
2839		hdr = nlmsg_data(nlh);
2840		memset(hdr, 0, sizeof(*hdr));
2841		hdr->ifi_family = RTNL_FAMILY_IPMR;
2842
2843		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2844		if (!af) {
2845			nlmsg_cancel(skb, nlh);
2846			goto out;
2847		}
2848
2849		if (!ipmr_fill_table(mrt, skb)) {
2850			nlmsg_cancel(skb, nlh);
2851			goto out;
2852		}
2853
2854		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2855		if (!vifs) {
2856			nla_nest_end(skb, af);
2857			nlmsg_end(skb, nlh);
2858			goto out;
2859		}
2860		for (i = 0; i < mrt->maxvif; i++) {
2861			if (e < s_e)
2862				goto skip_entry;
2863			if (!ipmr_fill_vif(mrt, i, skb)) {
2864				nla_nest_end(skb, vifs);
2865				nla_nest_end(skb, af);
2866				nlmsg_end(skb, nlh);
2867				goto out;
2868			}
2869skip_entry:
2870			e++;
2871		}
2872		s_e = 0;
2873		e = 0;
2874		nla_nest_end(skb, vifs);
2875		nla_nest_end(skb, af);
2876		nlmsg_end(skb, nlh);
2877skip_table:
2878		t++;
2879	}
 
 
2880
2881out:
2882	cb->args[1] = e;
2883	cb->args[0] = t;
2884
2885	return skb->len;
2886}
2887
2888#ifdef CONFIG_PROC_FS
2889/* The /proc interfaces to multicast routing :
2890 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
 
2891 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892
2893static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2894	__acquires(mrt_lock)
2895{
2896	struct mr_vif_iter *iter = seq->private;
2897	struct net *net = seq_file_net(seq);
2898	struct mr_table *mrt;
2899
2900	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2901	if (!mrt)
2902		return ERR_PTR(-ENOENT);
2903
2904	iter->mrt = mrt;
2905
2906	read_lock(&mrt_lock);
2907	return mr_vif_seq_start(seq, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908}
2909
2910static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2911	__releases(mrt_lock)
2912{
2913	read_unlock(&mrt_lock);
2914}
2915
2916static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2917{
2918	struct mr_vif_iter *iter = seq->private;
2919	struct mr_table *mrt = iter->mrt;
2920
2921	if (v == SEQ_START_TOKEN) {
2922		seq_puts(seq,
2923			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2924	} else {
2925		const struct vif_device *vif = v;
2926		const char *name =  vif->dev ?
2927				    vif->dev->name : "none";
2928
2929		seq_printf(seq,
2930			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2931			   vif - mrt->vif_table,
2932			   name, vif->bytes_in, vif->pkt_in,
2933			   vif->bytes_out, vif->pkt_out,
2934			   vif->flags, vif->local, vif->remote);
2935	}
2936	return 0;
2937}
2938
2939static const struct seq_operations ipmr_vif_seq_ops = {
2940	.start = ipmr_vif_seq_start,
2941	.next  = mr_vif_seq_next,
2942	.stop  = ipmr_vif_seq_stop,
2943	.show  = ipmr_vif_seq_show,
2944};
2945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2947{
 
2948	struct net *net = seq_file_net(seq);
2949	struct mr_table *mrt;
2950
2951	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2952	if (!mrt)
2953		return ERR_PTR(-ENOENT);
2954
2955	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2956}
2957
2958static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2959{
2960	int n;
2961
2962	if (v == SEQ_START_TOKEN) {
2963		seq_puts(seq,
2964		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2965	} else {
2966		const struct mfc_cache *mfc = v;
2967		const struct mr_mfc_iter *it = seq->private;
2968		const struct mr_table *mrt = it->mrt;
2969
2970		seq_printf(seq, "%08X %08X %-3hd",
2971			   (__force u32) mfc->mfc_mcastgrp,
2972			   (__force u32) mfc->mfc_origin,
2973			   mfc->_c.mfc_parent);
2974
2975		if (it->cache != &mrt->mfc_unres_queue) {
2976			seq_printf(seq, " %8lu %8lu %8lu",
2977				   mfc->_c.mfc_un.res.pkt,
2978				   mfc->_c.mfc_un.res.bytes,
2979				   mfc->_c.mfc_un.res.wrong_if);
2980			for (n = mfc->_c.mfc_un.res.minvif;
2981			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2982				if (VIF_EXISTS(mrt, n) &&
2983				    mfc->_c.mfc_un.res.ttls[n] < 255)
2984					seq_printf(seq,
2985					   " %2d:%-3d",
2986					   n, mfc->_c.mfc_un.res.ttls[n]);
2987			}
2988		} else {
2989			/* unresolved mfc_caches don't contain
2990			 * pkt, bytes and wrong_if values
2991			 */
2992			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2993		}
2994		seq_putc(seq, '\n');
2995	}
2996	return 0;
2997}
2998
2999static const struct seq_operations ipmr_mfc_seq_ops = {
3000	.start = ipmr_mfc_seq_start,
3001	.next  = mr_mfc_seq_next,
3002	.stop  = mr_mfc_seq_stop,
3003	.show  = ipmr_mfc_seq_show,
3004};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005#endif
3006
3007#ifdef CONFIG_IP_PIMSM_V2
3008static const struct net_protocol pim_protocol = {
3009	.handler	=	pim_rcv,
 
3010};
3011#endif
3012
3013static unsigned int ipmr_seq_read(struct net *net)
3014{
3015	ASSERT_RTNL();
3016
3017	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3018}
3019
3020static int ipmr_dump(struct net *net, struct notifier_block *nb,
3021		     struct netlink_ext_ack *extack)
3022{
3023	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3024		       ipmr_mr_table_iter, &mrt_lock, extack);
3025}
3026
3027static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3028	.family		= RTNL_FAMILY_IPMR,
3029	.fib_seq_read	= ipmr_seq_read,
3030	.fib_dump	= ipmr_dump,
3031	.owner		= THIS_MODULE,
3032};
3033
3034static int __net_init ipmr_notifier_init(struct net *net)
3035{
3036	struct fib_notifier_ops *ops;
3037
3038	net->ipv4.ipmr_seq = 0;
3039
3040	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3041	if (IS_ERR(ops))
3042		return PTR_ERR(ops);
3043	net->ipv4.ipmr_notifier_ops = ops;
3044
3045	return 0;
3046}
3047
3048static void __net_exit ipmr_notifier_exit(struct net *net)
3049{
3050	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3051	net->ipv4.ipmr_notifier_ops = NULL;
3052}
3053
3054/* Setup for IP multicast routing */
3055static int __net_init ipmr_net_init(struct net *net)
3056{
3057	int err;
3058
3059	err = ipmr_notifier_init(net);
3060	if (err)
3061		goto ipmr_notifier_fail;
3062
3063	err = ipmr_rules_init(net);
3064	if (err < 0)
3065		goto ipmr_rules_fail;
3066
3067#ifdef CONFIG_PROC_FS
3068	err = -ENOMEM;
3069	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3070			sizeof(struct mr_vif_iter)))
3071		goto proc_vif_fail;
3072	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3073			sizeof(struct mr_mfc_iter)))
3074		goto proc_cache_fail;
3075#endif
3076	return 0;
3077
3078#ifdef CONFIG_PROC_FS
3079proc_cache_fail:
3080	remove_proc_entry("ip_mr_vif", net->proc_net);
3081proc_vif_fail:
3082	ipmr_rules_exit(net);
3083#endif
3084ipmr_rules_fail:
3085	ipmr_notifier_exit(net);
3086ipmr_notifier_fail:
3087	return err;
3088}
3089
3090static void __net_exit ipmr_net_exit(struct net *net)
3091{
3092#ifdef CONFIG_PROC_FS
3093	remove_proc_entry("ip_mr_cache", net->proc_net);
3094	remove_proc_entry("ip_mr_vif", net->proc_net);
3095#endif
3096	ipmr_notifier_exit(net);
3097	ipmr_rules_exit(net);
3098}
3099
3100static struct pernet_operations ipmr_net_ops = {
3101	.init = ipmr_net_init,
3102	.exit = ipmr_net_exit,
3103};
3104
3105int __init ip_mr_init(void)
3106{
3107	int err;
3108
3109	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3110				       sizeof(struct mfc_cache),
3111				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3112				       NULL);
 
 
3113
3114	err = register_pernet_subsys(&ipmr_net_ops);
3115	if (err)
3116		goto reg_pernet_fail;
3117
3118	err = register_netdevice_notifier(&ip_mr_notifier);
3119	if (err)
3120		goto reg_notif_fail;
3121#ifdef CONFIG_IP_PIMSM_V2
3122	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3123		pr_err("%s: can't add PIM protocol\n", __func__);
3124		err = -EAGAIN;
3125		goto add_proto_fail;
3126	}
3127#endif
3128	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3129		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3130	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3131		      ipmr_rtm_route, NULL, 0);
3132	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3133		      ipmr_rtm_route, NULL, 0);
3134
3135	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3136		      NULL, ipmr_rtm_dumplink, 0);
3137	return 0;
3138
3139#ifdef CONFIG_IP_PIMSM_V2
3140add_proto_fail:
3141	unregister_netdevice_notifier(&ip_mr_notifier);
3142#endif
3143reg_notif_fail:
3144	unregister_pernet_subsys(&ipmr_net_ops);
3145reg_pernet_fail:
3146	kmem_cache_destroy(mrt_cachep);
3147	return err;
3148}
v3.5.6
 
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
 
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ipip.h>
 
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
 
 
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static void ipmr_free_table(struct mr_table *mrt);
 128
 129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 130			 struct sk_buff *skb, struct mfc_cache *cache,
 131			 int local);
 132static int ipmr_cache_report(struct mr_table *mrt,
 133			     struct sk_buff *pkt, vifi_t vifi, int assert);
 134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 135			      struct mfc_cache *c, struct rtmsg *rtm);
 136static void mroute_clean_tables(struct mr_table *mrt);
 137static void ipmr_expire_process(unsigned long arg);
 
 138
 139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 140#define ipmr_for_each_table(mrt, net) \
 141	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 144{
 145	struct mr_table *mrt;
 146
 147	ipmr_for_each_table(mrt, net) {
 148		if (mrt->id == id)
 149			return mrt;
 150	}
 151	return NULL;
 152}
 153
 154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 155			   struct mr_table **mrt)
 156{
 
 157	struct ipmr_result res;
 158	struct fib_lookup_arg arg = { .result = &res, };
 159	int err;
 
 
 
 
 
 160
 161	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 162			       flowi4_to_flowi(flp4), 0, &arg);
 163	if (err < 0)
 164		return err;
 165	*mrt = res.mrt;
 166	return 0;
 167}
 168
 169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 170			    int flags, struct fib_lookup_arg *arg)
 171{
 172	struct ipmr_result *res = arg->result;
 173	struct mr_table *mrt;
 174
 175	switch (rule->action) {
 176	case FR_ACT_TO_TBL:
 177		break;
 178	case FR_ACT_UNREACHABLE:
 179		return -ENETUNREACH;
 180	case FR_ACT_PROHIBIT:
 181		return -EACCES;
 182	case FR_ACT_BLACKHOLE:
 183	default:
 184		return -EINVAL;
 185	}
 186
 187	mrt = ipmr_get_table(rule->fr_net, rule->table);
 188	if (mrt == NULL)
 
 
 189		return -EAGAIN;
 190	res->mrt = mrt;
 191	return 0;
 192}
 193
 194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 195{
 196	return 1;
 197}
 198
 199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 200	FRA_GENERIC_POLICY,
 201};
 202
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb)
 
 205{
 206	return 0;
 207}
 208
 209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 210			     struct nlattr **tb)
 211{
 212	return 1;
 213}
 214
 215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 216			  struct fib_rule_hdr *frh)
 217{
 218	frh->dst_len = 0;
 219	frh->src_len = 0;
 220	frh->tos     = 0;
 221	return 0;
 222}
 223
 224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 225	.family		= RTNL_FAMILY_IPMR,
 226	.rule_size	= sizeof(struct ipmr_rule),
 227	.addr_size	= sizeof(u32),
 228	.action		= ipmr_rule_action,
 229	.match		= ipmr_rule_match,
 230	.configure	= ipmr_rule_configure,
 231	.compare	= ipmr_rule_compare,
 232	.default_pref	= fib_default_rule_pref,
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 235	.policy		= ipmr_rule_policy,
 236	.owner		= THIS_MODULE,
 237};
 238
 239static int __net_init ipmr_rules_init(struct net *net)
 240{
 241	struct fib_rules_ops *ops;
 242	struct mr_table *mrt;
 243	int err;
 244
 245	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 246	if (IS_ERR(ops))
 247		return PTR_ERR(ops);
 248
 249	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 250
 251	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 252	if (mrt == NULL) {
 253		err = -ENOMEM;
 254		goto err1;
 255	}
 256
 257	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 258	if (err < 0)
 259		goto err2;
 260
 261	net->ipv4.mr_rules_ops = ops;
 262	return 0;
 263
 264err2:
 265	kfree(mrt);
 266err1:
 267	fib_rules_unregister(ops);
 268	return err;
 269}
 270
 271static void __net_exit ipmr_rules_exit(struct net *net)
 272{
 273	struct mr_table *mrt, *next;
 274
 
 275	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 276		list_del(&mrt->list);
 277		ipmr_free_table(mrt);
 278	}
 279	fib_rules_unregister(net->ipv4.mr_rules_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 280}
 
 
 
 
 
 
 281#else
 282#define ipmr_for_each_table(mrt, net) \
 283	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 284
 
 
 
 
 
 
 
 
 285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 286{
 287	return net->ipv4.mrt;
 288}
 289
 290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 291			   struct mr_table **mrt)
 292{
 293	*mrt = net->ipv4.mrt;
 294	return 0;
 295}
 296
 297static int __net_init ipmr_rules_init(struct net *net)
 298{
 299	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 300	return net->ipv4.mrt ? 0 : -ENOMEM;
 
 
 
 
 
 301}
 302
 303static void __net_exit ipmr_rules_exit(struct net *net)
 304{
 
 305	ipmr_free_table(net->ipv4.mrt);
 
 
 306}
 307#endif
 308
 309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 
 310{
 311	struct mr_table *mrt;
 312	unsigned int i;
 313
 314	mrt = ipmr_get_table(net, id);
 315	if (mrt != NULL)
 316		return mrt;
 
 317
 318	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 319	if (mrt == NULL)
 320		return NULL;
 321	write_pnet(&mrt->net, net);
 322	mrt->id = id;
 
 323
 324	/* Forwarding cache */
 325	for (i = 0; i < MFC_LINES; i++)
 326		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 
 
 327
 328	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 
 
 329
 330	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 331		    (unsigned long)mrt);
 
 
 
 
 
 
 332
 333#ifdef CONFIG_IP_PIMSM
 334	mrt->mroute_reg_vif_num = -1;
 335#endif
 336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 337	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 338#endif
 339	return mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void ipmr_free_table(struct mr_table *mrt)
 343{
 344	del_timer_sync(&mrt->ipmr_expire_timer);
 345	mroute_clean_tables(mrt);
 
 
 346	kfree(mrt);
 347}
 348
 349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 350
 351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 
 352{
 353	struct net *net = dev_net(dev);
 
 
 354
 355	dev_close(dev);
 
 
 
 
 
 356
 357	dev = __dev_get_by_name(net, "tunl0");
 358	if (dev) {
 359		const struct net_device_ops *ops = dev->netdev_ops;
 360		struct ifreq ifr;
 361		struct ip_tunnel_parm p;
 362
 363		memset(&p, 0, sizeof(p));
 364		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 365		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 366		p.iph.version = 4;
 367		p.iph.ihl = 5;
 368		p.iph.protocol = IPPROTO_IPIP;
 369		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 370		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 371
 372		if (ops->ndo_do_ioctl) {
 373			mm_segment_t oldfs = get_fs();
 374
 375			set_fs(KERNEL_DS);
 376			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 377			set_fs(oldfs);
 378		}
 379	}
 380}
 381
 382static
 383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 384{
 385	struct net_device  *dev;
 386
 387	dev = __dev_get_by_name(net, "tunl0");
 388
 389	if (dev) {
 390		const struct net_device_ops *ops = dev->netdev_ops;
 391		int err;
 392		struct ifreq ifr;
 393		struct ip_tunnel_parm p;
 394		struct in_device  *in_dev;
 395
 396		memset(&p, 0, sizeof(p));
 397		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 398		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 399		p.iph.version = 4;
 400		p.iph.ihl = 5;
 401		p.iph.protocol = IPPROTO_IPIP;
 402		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 403		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 404
 405		if (ops->ndo_do_ioctl) {
 406			mm_segment_t oldfs = get_fs();
 407
 408			set_fs(KERNEL_DS);
 409			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 410			set_fs(oldfs);
 411		} else {
 412			err = -EOPNOTSUPP;
 413		}
 414		dev = NULL;
 415
 416		if (err == 0 &&
 417		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 418			dev->flags |= IFF_MULTICAST;
 
 
 
 419
 420			in_dev = __in_dev_get_rtnl(dev);
 421			if (in_dev == NULL)
 422				goto failure;
 
 
 
 423
 424			ipv4_devconf_setall(in_dev);
 425			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 
 426
 427			if (dev_open(dev))
 428				goto failure;
 429			dev_hold(dev);
 430		}
 
 
 
 
 
 
 
 
 
 431	}
 432	return dev;
 433
 434failure:
 435	/* allow the register to be completed before unregistering. */
 436	rtnl_unlock();
 437	rtnl_lock();
 438
 439	unregister_netdevice(dev);
 440	return NULL;
 441}
 442
 443#ifdef CONFIG_IP_PIMSM
 444
 445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 446{
 447	struct net *net = dev_net(dev);
 448	struct mr_table *mrt;
 449	struct flowi4 fl4 = {
 450		.flowi4_oif	= dev->ifindex,
 451		.flowi4_iif	= skb->skb_iif,
 452		.flowi4_mark	= skb->mark,
 453	};
 454	int err;
 455
 456	err = ipmr_fib_lookup(net, &fl4, &mrt);
 457	if (err < 0) {
 458		kfree_skb(skb);
 459		return err;
 460	}
 461
 462	read_lock(&mrt_lock);
 463	dev->stats.tx_bytes += skb->len;
 464	dev->stats.tx_packets++;
 465	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 466	read_unlock(&mrt_lock);
 467	kfree_skb(skb);
 468	return NETDEV_TX_OK;
 469}
 470
 
 
 
 
 
 471static const struct net_device_ops reg_vif_netdev_ops = {
 472	.ndo_start_xmit	= reg_vif_xmit,
 
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops,
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 488	struct in_device *in_dev;
 489	char name[IFNAMSIZ];
 490
 491	if (mrt->id == RT_TABLE_DEFAULT)
 492		sprintf(name, "pimreg");
 493	else
 494		sprintf(name, "pimreg%u", mrt->id);
 495
 496	dev = alloc_netdev(0, name, reg_vif_setup);
 497
 498	if (dev == NULL)
 499		return NULL;
 500
 501	dev_net_set(dev, net);
 502
 503	if (register_netdevice(dev)) {
 504		free_netdev(dev);
 505		return NULL;
 506	}
 507	dev->iflink = 0;
 508
 509	rcu_read_lock();
 510	in_dev = __in_dev_get_rcu(dev);
 511	if (!in_dev) {
 512		rcu_read_unlock();
 513		goto failure;
 514	}
 515
 516	ipv4_devconf_setall(in_dev);
 517	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 518	rcu_read_unlock();
 519
 520	if (dev_open(dev))
 521		goto failure;
 522
 523	dev_hold(dev);
 524
 525	return dev;
 526
 527failure:
 528	/* allow the register to be completed before unregistering. */
 529	rtnl_unlock();
 530	rtnl_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532	unregister_netdevice(dev);
 
 
 
 
 533	return NULL;
 534}
 535#endif
 536
 537/*
 538 *	Delete a VIF entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539 *	@notify: Set to 1, if the caller is a notifier_call
 
 540 */
 541
 542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 543		      struct list_head *head)
 544{
 
 545	struct vif_device *v;
 546	struct net_device *dev;
 547	struct in_device *in_dev;
 548
 549	if (vifi < 0 || vifi >= mrt->maxvif)
 550		return -EADDRNOTAVAIL;
 551
 552	v = &mrt->vif_table[vifi];
 553
 
 
 
 
 554	write_lock_bh(&mrt_lock);
 555	dev = v->dev;
 556	v->dev = NULL;
 557
 558	if (!dev) {
 559		write_unlock_bh(&mrt_lock);
 560		return -EADDRNOTAVAIL;
 561	}
 562
 563#ifdef CONFIG_IP_PIMSM
 564	if (vifi == mrt->mroute_reg_vif_num)
 565		mrt->mroute_reg_vif_num = -1;
 566#endif
 567
 568	if (vifi + 1 == mrt->maxvif) {
 569		int tmp;
 570
 571		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 572			if (VIF_EXISTS(mrt, tmp))
 573				break;
 574		}
 575		mrt->maxvif = tmp+1;
 576	}
 577
 578	write_unlock_bh(&mrt_lock);
 579
 580	dev_set_allmulti(dev, -1);
 581
 582	in_dev = __in_dev_get_rtnl(dev);
 583	if (in_dev) {
 584		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 585		ip_rt_multicast_event(in_dev);
 586	}
 587
 588	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 589		unregister_netdevice_queue(dev, head);
 590
 591	dev_put(dev);
 592	return 0;
 593}
 594
 595static void ipmr_cache_free_rcu(struct rcu_head *head)
 596{
 597	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 598
 599	kmem_cache_free(mrt_cachep, c);
 600}
 601
 602static inline void ipmr_cache_free(struct mfc_cache *c)
 603{
 604	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 605}
 606
 607/* Destroy an unresolved cache entry, killing queued skbs
 608 * and reporting error to netlink readers.
 609 */
 610
 611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 612{
 613	struct net *net = read_pnet(&mrt->net);
 614	struct sk_buff *skb;
 615	struct nlmsgerr *e;
 616
 617	atomic_dec(&mrt->cache_resolve_queue_len);
 618
 619	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 620		if (ip_hdr(skb)->version == 0) {
 621			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 622			nlh->nlmsg_type = NLMSG_ERROR;
 623			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 624			skb_trim(skb, nlh->nlmsg_len);
 625			e = NLMSG_DATA(nlh);
 626			e->error = -ETIMEDOUT;
 627			memset(&e->msg, 0, sizeof(e->msg));
 628
 629			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 630		} else {
 631			kfree_skb(skb);
 632		}
 633	}
 634
 635	ipmr_cache_free(c);
 636}
 637
 638
 639/* Timer process for the unresolved queue. */
 640
 641static void ipmr_expire_process(unsigned long arg)
 642{
 643	struct mr_table *mrt = (struct mr_table *)arg;
 
 
 644	unsigned long now;
 645	unsigned long expires;
 646	struct mfc_cache *c, *next;
 647
 648	if (!spin_trylock(&mfc_unres_lock)) {
 649		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 650		return;
 651	}
 652
 653	if (list_empty(&mrt->mfc_unres_queue))
 654		goto out;
 655
 656	now = jiffies;
 657	expires = 10*HZ;
 658
 659	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 660		if (time_after(c->mfc_un.unres.expires, now)) {
 661			unsigned long interval = c->mfc_un.unres.expires - now;
 662			if (interval < expires)
 663				expires = interval;
 664			continue;
 665		}
 666
 667		list_del(&c->list);
 668		ipmr_destroy_unres(mrt, c);
 
 669	}
 670
 671	if (!list_empty(&mrt->mfc_unres_queue))
 672		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 673
 674out:
 675	spin_unlock(&mfc_unres_lock);
 676}
 677
 678/* Fill oifs list. It is called under write locked mrt_lock. */
 679
 680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 681				   unsigned char *ttls)
 682{
 683	int vifi;
 684
 685	cache->mfc_un.res.minvif = MAXVIFS;
 686	cache->mfc_un.res.maxvif = 0;
 687	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 688
 689	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 690		if (VIF_EXISTS(mrt, vifi) &&
 691		    ttls[vifi] && ttls[vifi] < 255) {
 692			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 693			if (cache->mfc_un.res.minvif > vifi)
 694				cache->mfc_un.res.minvif = vifi;
 695			if (cache->mfc_un.res.maxvif <= vifi)
 696				cache->mfc_un.res.maxvif = vifi + 1;
 697		}
 698	}
 
 699}
 700
 701static int vif_add(struct net *net, struct mr_table *mrt,
 702		   struct vifctl *vifc, int mrtsock)
 703{
 
 704	int vifi = vifc->vifc_vifi;
 705	struct vif_device *v = &mrt->vif_table[vifi];
 706	struct net_device *dev;
 707	struct in_device *in_dev;
 708	int err;
 709
 710	/* Is vif busy ? */
 711	if (VIF_EXISTS(mrt, vifi))
 712		return -EADDRINUSE;
 713
 714	switch (vifc->vifc_flags) {
 715#ifdef CONFIG_IP_PIMSM
 716	case VIFF_REGISTER:
 717		/*
 718		 * Special Purpose VIF in PIM
 
 719		 * All the packets will be sent to the daemon
 720		 */
 721		if (mrt->mroute_reg_vif_num >= 0)
 722			return -EADDRINUSE;
 723		dev = ipmr_reg_vif(net, mrt);
 724		if (!dev)
 725			return -ENOBUFS;
 726		err = dev_set_allmulti(dev, 1);
 727		if (err) {
 728			unregister_netdevice(dev);
 729			dev_put(dev);
 730			return err;
 731		}
 732		break;
 733#endif
 734	case VIFF_TUNNEL:
 735		dev = ipmr_new_tunnel(net, vifc);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			ipmr_del_tunnel(dev, vifc);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745
 746	case VIFF_USE_IFINDEX:
 747	case 0:
 748		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 749			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 750			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 751				dev_put(dev);
 752				return -EADDRNOTAVAIL;
 753			}
 754		} else {
 755			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 756		}
 757		if (!dev)
 758			return -EADDRNOTAVAIL;
 759		err = dev_set_allmulti(dev, 1);
 760		if (err) {
 761			dev_put(dev);
 762			return err;
 763		}
 764		break;
 765	default:
 766		return -EINVAL;
 767	}
 768
 769	in_dev = __in_dev_get_rtnl(dev);
 770	if (!in_dev) {
 771		dev_put(dev);
 772		return -EADDRNOTAVAIL;
 773	}
 774	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 775	ip_rt_multicast_event(in_dev);
 776
 777	/* Fill in the VIF structures */
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	v->rate_limit = vifc->vifc_rate_limit;
 780	v->local = vifc->vifc_lcl_addr.s_addr;
 781	v->remote = vifc->vifc_rmt_addr.s_addr;
 782	v->flags = vifc->vifc_flags;
 783	if (!mrtsock)
 784		v->flags |= VIFF_STATIC;
 785	v->threshold = vifc->vifc_threshold;
 786	v->bytes_in = 0;
 787	v->bytes_out = 0;
 788	v->pkt_in = 0;
 789	v->pkt_out = 0;
 790	v->link = dev->ifindex;
 791	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 792		v->link = dev->iflink;
 793
 794	/* And finish update writing critical data */
 795	write_lock_bh(&mrt_lock);
 796	v->dev = dev;
 797#ifdef CONFIG_IP_PIMSM
 798	if (v->flags & VIFF_REGISTER)
 799		mrt->mroute_reg_vif_num = vifi;
 800#endif
 801	if (vifi+1 > mrt->maxvif)
 802		mrt->maxvif = vifi+1;
 803	write_unlock_bh(&mrt_lock);
 
 804	return 0;
 805}
 806
 807/* called with rcu_read_lock() */
 808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 809					 __be32 origin,
 810					 __be32 mcastgrp)
 811{
 812	int line = MFC_HASH(mcastgrp, origin);
 813	struct mfc_cache *c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814
 815	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 816		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 817			return c;
 818	}
 819	return NULL;
 820}
 821
 822/*
 823 *	Allocate a multicast cache entry
 824 */
 825static struct mfc_cache *ipmr_cache_alloc(void)
 826{
 827	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 828
 829	if (c)
 830		c->mfc_un.res.minvif = MAXVIFS;
 
 
 
 
 831	return c;
 832}
 833
 834static struct mfc_cache *ipmr_cache_alloc_unres(void)
 835{
 836	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 837
 838	if (c) {
 839		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 840		c->mfc_un.unres.expires = jiffies + 10*HZ;
 841	}
 842	return c;
 843}
 844
 845/*
 846 *	A cache entry has gone into a resolved state from queued
 847 */
 848
 849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 850			       struct mfc_cache *uc, struct mfc_cache *c)
 851{
 852	struct sk_buff *skb;
 853	struct nlmsgerr *e;
 854
 855	/* Play the pending entries through our router */
 856
 857	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 858		if (ip_hdr(skb)->version == 0) {
 859			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 860
 861			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 
 862				nlh->nlmsg_len = skb_tail_pointer(skb) -
 863						 (u8 *)nlh;
 864			} else {
 865				nlh->nlmsg_type = NLMSG_ERROR;
 866				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 867				skb_trim(skb, nlh->nlmsg_len);
 868				e = NLMSG_DATA(nlh);
 869				e->error = -EMSGSIZE;
 870				memset(&e->msg, 0, sizeof(e->msg));
 871			}
 872
 873			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 874		} else {
 875			ip_mr_forward(net, mrt, skb, c, 0);
 876		}
 877	}
 878}
 879
 880/*
 881 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 882 *	expects the following bizarre scheme.
 883 *
 884 *	Called under mrt_lock.
 885 */
 886
 887static int ipmr_cache_report(struct mr_table *mrt,
 888			     struct sk_buff *pkt, vifi_t vifi, int assert)
 889{
 890	struct sk_buff *skb;
 891	const int ihl = ip_hdrlen(pkt);
 
 892	struct igmphdr *igmp;
 893	struct igmpmsg *msg;
 894	struct sock *mroute_sk;
 895	int ret;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT)
 899		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 900	else
 901#endif
 902		skb = alloc_skb(128, GFP_ATOMIC);
 903
 904	if (!skb)
 905		return -ENOBUFS;
 906
 907#ifdef CONFIG_IP_PIMSM
 908	if (assert == IGMPMSG_WHOLEPKT) {
 909		/* Ugly, but we have no choice with this interface.
 910		 * Duplicate old header, fix ihl, length etc.
 911		 * And all this only to mangle msg->im_msgtype and
 912		 * to set msg->im_mbz to "mbz" :-)
 913		 */
 914		skb_push(skb, sizeof(struct iphdr));
 915		skb_reset_network_header(skb);
 916		skb_reset_transport_header(skb);
 917		msg = (struct igmpmsg *)skb_network_header(skb);
 918		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 919		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 920		msg->im_mbz = 0;
 921		msg->im_vif = mrt->mroute_reg_vif_num;
 
 
 
 
 
 
 922		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 923		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 924					     sizeof(struct iphdr));
 925	} else
 926#endif
 927	{
 928
 929	/* Copy the IP header */
 930
 931	skb->network_header = skb->tail;
 932	skb_put(skb, ihl);
 933	skb_copy_to_linear_data(skb, pkt->data, ihl);
 934	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 935	msg = (struct igmpmsg *)skb_network_header(skb);
 936	msg->im_vif = vifi;
 937	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 938
 939	/* Add our header */
 940
 941	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 942	igmp->type	=
 943	msg->im_msgtype = assert;
 944	igmp->code	= 0;
 945	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 946	skb->transport_header = skb->network_header;
 947	}
 948
 949	rcu_read_lock();
 950	mroute_sk = rcu_dereference(mrt->mroute_sk);
 951	if (mroute_sk == NULL) {
 952		rcu_read_unlock();
 953		kfree_skb(skb);
 954		return -EINVAL;
 955	}
 956
 
 
 957	/* Deliver to mrouted */
 958
 959	ret = sock_queue_rcv_skb(mroute_sk, skb);
 960	rcu_read_unlock();
 961	if (ret < 0) {
 962		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 963		kfree_skb(skb);
 964	}
 965
 966	return ret;
 967}
 968
 969/*
 970 *	Queue a packet for resolution. It gets locked cache entry!
 971 */
 972
 973static int
 974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 975{
 
 
 976	bool found = false;
 977	int err;
 978	struct mfc_cache *c;
 979	const struct iphdr *iph = ip_hdr(skb);
 980
 981	spin_lock_bh(&mfc_unres_lock);
 982	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 983		if (c->mfc_mcastgrp == iph->daddr &&
 984		    c->mfc_origin == iph->saddr) {
 985			found = true;
 986			break;
 987		}
 988	}
 989
 990	if (!found) {
 991		/* Create a new entry if allowable */
 992
 993		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 994		    (c = ipmr_cache_alloc_unres()) == NULL) {
 995			spin_unlock_bh(&mfc_unres_lock);
 996
 997			kfree_skb(skb);
 998			return -ENOBUFS;
 999		}
1000
1001		/* Fill in the new cache entry */
1002
1003		c->mfc_parent	= -1;
1004		c->mfc_origin	= iph->saddr;
1005		c->mfc_mcastgrp	= iph->daddr;
1006
1007		/* Reflect first query at mrouted. */
 
1008
1009		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010		if (err < 0) {
1011			/* If the report failed throw the cache entry
1012			   out - Brad Parker
1013			 */
1014			spin_unlock_bh(&mfc_unres_lock);
1015
1016			ipmr_cache_free(c);
1017			kfree_skb(skb);
1018			return err;
1019		}
1020
1021		atomic_inc(&mrt->cache_resolve_queue_len);
1022		list_add(&c->list, &mrt->mfc_unres_queue);
 
1023
1024		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
 
1026	}
1027
1028	/* See if we can append the packet */
1029
1030	if (c->mfc_un.unres.unresolved.qlen > 3) {
1031		kfree_skb(skb);
1032		err = -ENOBUFS;
1033	} else {
1034		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
 
 
 
 
1035		err = 0;
1036	}
1037
1038	spin_unlock_bh(&mfc_unres_lock);
1039	return err;
1040}
1041
1042/*
1043 *	MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048	int line;
1049	struct mfc_cache *c, *next;
1050
1051	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
 
 
 
 
 
 
 
 
 
 
 
1052
1053	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1056			list_del_rcu(&c->list);
1057
1058			ipmr_cache_free(c);
1059			return 0;
1060		}
1061	}
1062	return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066			struct mfcctl *mfc, int mrtsock)
1067{
1068	bool found = false;
1069	int line;
1070	struct mfc_cache *uc, *c;
 
 
 
1071
1072	if (mfc->mfcc_parent >= MAXVIFS)
1073		return -ENFILE;
1074
1075	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1080			found = true;
1081			break;
1082		}
1083	}
1084
1085	if (found) {
1086		write_lock_bh(&mrt_lock);
1087		c->mfc_parent = mfc->mfcc_parent;
1088		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089		if (!mrtsock)
1090			c->mfc_flags |= MFC_STATIC;
1091		write_unlock_bh(&mrt_lock);
 
 
 
1092		return 0;
1093	}
1094
1095	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1096		return -EINVAL;
1097
1098	c = ipmr_cache_alloc();
1099	if (c == NULL)
1100		return -ENOMEM;
1101
1102	c->mfc_origin = mfc->mfcc_origin.s_addr;
1103	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104	c->mfc_parent = mfc->mfcc_parent;
1105	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106	if (!mrtsock)
1107		c->mfc_flags |= MFC_STATIC;
1108
1109	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111	/*
1112	 *	Check to see if we resolved a queued list. If so we
1113	 *	need to send on the frames and tidy up.
 
 
 
 
 
1114	 */
1115	found = false;
1116	spin_lock_bh(&mfc_unres_lock);
1117	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
 
1118		if (uc->mfc_origin == c->mfc_origin &&
1119		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120			list_del(&uc->list);
1121			atomic_dec(&mrt->cache_resolve_queue_len);
1122			found = true;
1123			break;
1124		}
1125	}
1126	if (list_empty(&mrt->mfc_unres_queue))
1127		del_timer(&mrt->ipmr_expire_timer);
1128	spin_unlock_bh(&mfc_unres_lock);
1129
1130	if (found) {
1131		ipmr_cache_resolve(net, mrt, uc, c);
1132		ipmr_cache_free(uc);
1133	}
 
 
1134	return 0;
1135}
1136
1137/*
1138 *	Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
 
 
 
 
1143	int i;
1144	LIST_HEAD(list);
1145	struct mfc_cache *c, *next;
1146
1147	/* Shut down all active vif entries */
1148
1149	for (i = 0; i < mrt->maxvif; i++) {
1150		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
 
 
 
1151			vif_delete(mrt, i, 0, &list);
 
 
1152	}
1153	unregister_netdevice_many(&list);
1154
1155	/* Wipe the cache */
1156
1157	for (i = 0; i < MFC_LINES; i++) {
1158		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159			if (c->mfc_flags & MFC_STATIC)
1160				continue;
 
1161			list_del_rcu(&c->list);
1162			ipmr_cache_free(c);
 
 
 
 
1163		}
1164	}
1165
1166	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167		spin_lock_bh(&mfc_unres_lock);
1168		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169			list_del(&c->list);
1170			ipmr_destroy_unres(mrt, c);
 
 
 
 
 
1171		}
1172		spin_unlock_bh(&mfc_unres_lock);
1173	}
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181	struct net *net = sock_net(sk);
1182	struct mr_table *mrt;
1183
1184	rtnl_lock();
1185	ipmr_for_each_table(mrt, net) {
1186		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
 
 
 
 
1188			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189			mroute_clean_tables(mrt);
1190		}
1191	}
1192	rtnl_unlock();
1193}
1194
1195/*
1196 *	Socket options and virtual interface manipulation. The whole
1197 *	virtual interface system is a complete heap, but unfortunately
1198 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1199 *	MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
 
1203{
1204	int ret;
 
 
1205	struct vifctl vif;
1206	struct mfcctl mfc;
1207	struct net *net = sock_net(sk);
1208	struct mr_table *mrt;
 
 
 
 
 
 
 
 
1209
1210	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211	if (mrt == NULL)
1212		return -ENOENT;
1213
 
1214	if (optname != MRT_INIT) {
1215		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216		    !capable(CAP_NET_ADMIN))
1217			return -EACCES;
 
 
1218	}
1219
1220	switch (optname) {
1221	case MRT_INIT:
1222		if (sk->sk_type != SOCK_RAW ||
1223		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224			return -EOPNOTSUPP;
1225		if (optlen != sizeof(int))
1226			return -ENOPROTOOPT;
1227
1228		rtnl_lock();
1229		if (rtnl_dereference(mrt->mroute_sk)) {
1230			rtnl_unlock();
1231			return -EADDRINUSE;
1232		}
1233
1234		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235		if (ret == 0) {
1236			rcu_assign_pointer(mrt->mroute_sk, sk);
1237			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
 
1238		}
1239		rtnl_unlock();
1240		return ret;
1241	case MRT_DONE:
1242		if (sk != rcu_access_pointer(mrt->mroute_sk))
1243			return -EACCES;
1244		return ip_ra_control(sk, 0, NULL);
 
 
 
 
 
 
 
 
 
1245	case MRT_ADD_VIF:
1246	case MRT_DEL_VIF:
1247		if (optlen != sizeof(vif))
1248			return -EINVAL;
1249		if (copy_from_user(&vif, optval, sizeof(vif)))
1250			return -EFAULT;
1251		if (vif.vifc_vifi >= MAXVIFS)
1252			return -ENFILE;
1253		rtnl_lock();
 
 
 
 
 
1254		if (optname == MRT_ADD_VIF) {
1255			ret = vif_add(net, mrt, &vif,
1256				      sk == rtnl_dereference(mrt->mroute_sk));
1257		} else {
1258			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259		}
1260		rtnl_unlock();
1261		return ret;
1262
1263		/*
1264		 *	Manipulate the forwarding caches. These live
1265		 *	in a sort of kernel/user symbiosis.
1266		 */
1267	case MRT_ADD_MFC:
1268	case MRT_DEL_MFC:
1269		if (optlen != sizeof(mfc))
1270			return -EINVAL;
1271		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272			return -EFAULT;
1273		rtnl_lock();
1274		if (optname == MRT_DEL_MFC)
1275			ret = ipmr_mfc_delete(mrt, &mfc);
 
 
 
 
 
 
 
 
 
1276		else
1277			ret = ipmr_mfc_add(net, mrt, &mfc,
1278					   sk == rtnl_dereference(mrt->mroute_sk));
1279		rtnl_unlock();
1280		return ret;
1281		/*
1282		 *	Control PIM assert.
1283		 */
 
 
 
 
 
 
 
 
 
1284	case MRT_ASSERT:
1285	{
1286		int v;
1287		if (get_user(v, (int __user *)optval))
1288			return -EFAULT;
1289		mrt->mroute_do_assert = (v) ? 1 : 0;
1290		return 0;
1291	}
1292#ifdef CONFIG_IP_PIMSM
 
 
1293	case MRT_PIM:
1294	{
1295		int v;
 
 
 
 
 
 
 
 
 
 
1296
1297		if (get_user(v, (int __user *)optval))
1298			return -EFAULT;
1299		v = (v) ? 1 : 0;
1300
1301		rtnl_lock();
1302		ret = 0;
1303		if (v != mrt->mroute_do_pim) {
1304			mrt->mroute_do_pim = v;
1305			mrt->mroute_do_assert = v;
1306		}
1307		rtnl_unlock();
1308		return ret;
1309	}
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312	case MRT_TABLE:
1313	{
1314		u32 v;
 
 
 
 
 
 
 
 
 
 
1315
1316		if (optlen != sizeof(u32))
1317			return -EINVAL;
1318		if (get_user(v, (u32 __user *)optval))
1319			return -EFAULT;
1320
1321		rtnl_lock();
1322		ret = 0;
1323		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324			ret = -EBUSY;
1325		} else {
1326			if (!ipmr_new_table(net, v))
1327				ret = -ENOMEM;
1328			raw_sk(sk)->ipmr_table = v;
 
 
1329		}
1330		rtnl_unlock();
1331		return ret;
1332	}
1333#endif
1334	/*
1335	 *	Spurious command, or MRT_VERSION which you cannot
1336	 *	set.
1337	 */
1338	default:
1339		return -ENOPROTOOPT;
1340	}
 
 
 
 
1341}
1342
1343/*
1344 *	Getsock opt support for the multicast routing system.
1345 */
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1348{
1349	int olr;
1350	int val;
1351	struct net *net = sock_net(sk);
1352	struct mr_table *mrt;
1353
 
 
 
 
1354	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355	if (mrt == NULL)
1356		return -ENOENT;
1357
1358	if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360	   optname != MRT_PIM &&
1361#endif
1362	   optname != MRT_ASSERT)
 
 
 
 
 
 
 
 
1363		return -ENOPROTOOPT;
 
1364
1365	if (get_user(olr, optlen))
1366		return -EFAULT;
1367
1368	olr = min_t(unsigned int, olr, sizeof(int));
1369	if (olr < 0)
1370		return -EINVAL;
1371
1372	if (put_user(olr, optlen))
1373		return -EFAULT;
1374	if (optname == MRT_VERSION)
1375		val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377	else if (optname == MRT_PIM)
1378		val = mrt->mroute_do_pim;
1379#endif
1380	else
1381		val = mrt->mroute_do_assert;
1382	if (copy_to_user(optval, &val, olr))
1383		return -EFAULT;
1384	return 0;
1385}
1386
1387/*
1388 *	The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393	struct sioc_sg_req sr;
1394	struct sioc_vif_req vr;
1395	struct vif_device *vif;
1396	struct mfc_cache *c;
1397	struct net *net = sock_net(sk);
1398	struct mr_table *mrt;
1399
1400	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401	if (mrt == NULL)
1402		return -ENOENT;
1403
1404	switch (cmd) {
1405	case SIOCGETVIFCNT:
1406		if (copy_from_user(&vr, arg, sizeof(vr)))
1407			return -EFAULT;
1408		if (vr.vifi >= mrt->maxvif)
1409			return -EINVAL;
 
1410		read_lock(&mrt_lock);
1411		vif = &mrt->vif_table[vr.vifi];
1412		if (VIF_EXISTS(mrt, vr.vifi)) {
1413			vr.icount = vif->pkt_in;
1414			vr.ocount = vif->pkt_out;
1415			vr.ibytes = vif->bytes_in;
1416			vr.obytes = vif->bytes_out;
1417			read_unlock(&mrt_lock);
1418
1419			if (copy_to_user(arg, &vr, sizeof(vr)))
1420				return -EFAULT;
1421			return 0;
1422		}
1423		read_unlock(&mrt_lock);
1424		return -EADDRNOTAVAIL;
1425	case SIOCGETSGCNT:
1426		if (copy_from_user(&sr, arg, sizeof(sr)))
1427			return -EFAULT;
1428
1429		rcu_read_lock();
1430		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431		if (c) {
1432			sr.pktcnt = c->mfc_un.res.pkt;
1433			sr.bytecnt = c->mfc_un.res.bytes;
1434			sr.wrong_if = c->mfc_un.res.wrong_if;
1435			rcu_read_unlock();
1436
1437			if (copy_to_user(arg, &sr, sizeof(sr)))
1438				return -EFAULT;
1439			return 0;
1440		}
1441		rcu_read_unlock();
1442		return -EADDRNOTAVAIL;
1443	default:
1444		return -ENOIOCTLCMD;
1445	}
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450	struct in_addr src;
1451	struct in_addr grp;
1452	compat_ulong_t pktcnt;
1453	compat_ulong_t bytecnt;
1454	compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458	vifi_t	vifi;		/* Which iface */
1459	compat_ulong_t icount;
1460	compat_ulong_t ocount;
1461	compat_ulong_t ibytes;
1462	compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467	struct compat_sioc_sg_req sr;
1468	struct compat_sioc_vif_req vr;
1469	struct vif_device *vif;
1470	struct mfc_cache *c;
1471	struct net *net = sock_net(sk);
1472	struct mr_table *mrt;
1473
1474	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475	if (mrt == NULL)
1476		return -ENOENT;
1477
1478	switch (cmd) {
1479	case SIOCGETVIFCNT:
1480		if (copy_from_user(&vr, arg, sizeof(vr)))
1481			return -EFAULT;
1482		if (vr.vifi >= mrt->maxvif)
1483			return -EINVAL;
 
1484		read_lock(&mrt_lock);
1485		vif = &mrt->vif_table[vr.vifi];
1486		if (VIF_EXISTS(mrt, vr.vifi)) {
1487			vr.icount = vif->pkt_in;
1488			vr.ocount = vif->pkt_out;
1489			vr.ibytes = vif->bytes_in;
1490			vr.obytes = vif->bytes_out;
1491			read_unlock(&mrt_lock);
1492
1493			if (copy_to_user(arg, &vr, sizeof(vr)))
1494				return -EFAULT;
1495			return 0;
1496		}
1497		read_unlock(&mrt_lock);
1498		return -EADDRNOTAVAIL;
1499	case SIOCGETSGCNT:
1500		if (copy_from_user(&sr, arg, sizeof(sr)))
1501			return -EFAULT;
1502
1503		rcu_read_lock();
1504		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505		if (c) {
1506			sr.pktcnt = c->mfc_un.res.pkt;
1507			sr.bytecnt = c->mfc_un.res.bytes;
1508			sr.wrong_if = c->mfc_un.res.wrong_if;
1509			rcu_read_unlock();
1510
1511			if (copy_to_user(arg, &sr, sizeof(sr)))
1512				return -EFAULT;
1513			return 0;
1514		}
1515		rcu_read_unlock();
1516		return -EADDRNOTAVAIL;
1517	default:
1518		return -ENOIOCTLCMD;
1519	}
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526	struct net_device *dev = ptr;
1527	struct net *net = dev_net(dev);
1528	struct mr_table *mrt;
1529	struct vif_device *v;
1530	int ct;
1531
1532	if (event != NETDEV_UNREGISTER)
1533		return NOTIFY_DONE;
1534
1535	ipmr_for_each_table(mrt, net) {
1536		v = &mrt->vif_table[0];
1537		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538			if (v->dev == dev)
1539				vif_delete(mrt, ct, 1, NULL);
1540		}
1541	}
1542	return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547	.notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 *	Encapsulate a packet by attaching a valid IPIP header to it.
1552 *	This avoids tunnel drivers and other mess and gives us the speed so
1553 *	important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558	struct iphdr *iph;
1559	const struct iphdr *old_iph = ip_hdr(skb);
1560
1561	skb_push(skb, sizeof(struct iphdr));
1562	skb->transport_header = skb->network_header;
1563	skb_reset_network_header(skb);
1564	iph = ip_hdr(skb);
1565
1566	iph->version	=	4;
1567	iph->tos	=	old_iph->tos;
1568	iph->ttl	=	old_iph->ttl;
1569	iph->frag_off	=	0;
1570	iph->daddr	=	daddr;
1571	iph->saddr	=	saddr;
1572	iph->protocol	=	IPPROTO_IPIP;
1573	iph->ihl	=	5;
1574	iph->tot_len	=	htons(skb->len);
1575	ip_select_ident(iph, skb_dst(skb), NULL);
1576	ip_send_check(iph);
1577
1578	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579	nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
 
1583{
1584	struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589	if (unlikely(opt->optlen))
1590		ip_forward_options(skb);
1591
1592	return dst_output(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593}
 
1594
1595/*
1596 *	Processing handlers for ipmr_forward
1597 */
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602	const struct iphdr *iph = ip_hdr(skb);
1603	struct vif_device *vif = &mrt->vif_table[vifi];
1604	struct net_device *dev;
1605	struct rtable *rt;
1606	struct flowi4 fl4;
1607	int    encap = 0;
1608
1609	if (vif->dev == NULL)
1610		goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613	if (vif->flags & VIFF_REGISTER) {
1614		vif->pkt_out++;
1615		vif->bytes_out += skb->len;
1616		vif->dev->stats.tx_bytes += skb->len;
1617		vif->dev->stats.tx_packets++;
1618		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619		goto out_free;
1620	}
1621#endif
 
 
1622
1623	if (vif->flags & VIFF_TUNNEL) {
1624		rt = ip_route_output_ports(net, &fl4, NULL,
1625					   vif->remote, vif->local,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631		encap = sizeof(struct iphdr);
1632	} else {
1633		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634					   0, 0,
1635					   IPPROTO_IPIP,
1636					   RT_TOS(iph->tos), vif->link);
1637		if (IS_ERR(rt))
1638			goto out_free;
1639	}
1640
1641	dev = rt->dst.dev;
1642
1643	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644		/* Do not fragment multicasts. Alas, IPv4 does not
1645		 * allow to send ICMP, so that packets will disappear
1646		 * to blackhole.
1647		 */
1648
1649		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650		ip_rt_put(rt);
1651		goto out_free;
1652	}
1653
1654	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656	if (skb_cow(skb, encap)) {
1657		ip_rt_put(rt);
1658		goto out_free;
1659	}
1660
1661	vif->pkt_out++;
1662	vif->bytes_out += skb->len;
1663
1664	skb_dst_drop(skb);
1665	skb_dst_set(skb, &rt->dst);
1666	ip_decrease_ttl(ip_hdr(skb));
1667
1668	/* FIXME: forward and output firewalls used to be called here.
1669	 * What do we do with netfilter? -- RR
1670	 */
1671	if (vif->flags & VIFF_TUNNEL) {
1672		ip_encap(skb, vif->local, vif->remote);
1673		/* FIXME: extra output firewall step used to be here. --RR */
1674		vif->dev->stats.tx_packets++;
1675		vif->dev->stats.tx_bytes += skb->len;
1676	}
1677
1678	IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680	/*
1681	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682	 * not only before forwarding, but after forwarding on all output
1683	 * interfaces. It is clear, if mrouter runs a multicasting
1684	 * program, it should receive packets not depending to what interface
1685	 * program is joined.
1686	 * If we will not make it, the program will have to join on all
1687	 * interfaces. On the other hand, multihoming host (or router, but
1688	 * not mrouter) cannot join to more than one interface - it will
1689	 * result in receiving multiple packets.
1690	 */
1691	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 
1692		ipmr_forward_finish);
1693	return;
1694
1695out_free:
1696	kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1700{
1701	int ct;
1702
1703	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704		if (mrt->vif_table[ct].dev == dev)
1705			break;
1706	}
1707	return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713			 struct sk_buff *skb, struct mfc_cache *cache,
1714			 int local)
1715{
 
1716	int psend = -1;
1717	int vif, ct;
1718
1719	vif = cache->mfc_parent;
1720	cache->mfc_un.res.pkt++;
1721	cache->mfc_un.res.bytes += skb->len;
 
 
 
 
1722
1723	/*
1724	 * Wrong interface: drop packet and (maybe) send PIM assert.
1725	 */
1726	if (mrt->vif_table[vif].dev != skb->dev) {
1727		int true_vifi;
 
 
 
1728
 
 
1729		if (rt_is_output_route(skb_rtable(skb))) {
1730			/* It is our own packet, looped back.
1731			 * Very complicated situation...
1732			 *
1733			 * The best workaround until routing daemons will be
1734			 * fixed is not to redistribute packet, if it was
1735			 * send through wrong interface. It means, that
1736			 * multicast applications WILL NOT work for
1737			 * (S,G), which have default multicast route pointing
1738			 * to wrong oif. In any case, it is not a good
1739			 * idea to use multicasting applications on router.
1740			 */
1741			goto dont_forward;
1742		}
1743
1744		cache->mfc_un.res.wrong_if++;
1745		true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748		    /* pimsm uses asserts, when switching from RPT to SPT,
1749		     * so that we cannot check that packet arrived on an oif.
1750		     * It is bad, but otherwise we would need to move pretty
1751		     * large chunk of pimd to kernel. Ough... --ANK
1752		     */
1753		    (mrt->mroute_do_pim ||
1754		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755		    time_after(jiffies,
1756			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757			cache->mfc_un.res.last_assert = jiffies;
 
1758			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
 
 
 
1759		}
1760		goto dont_forward;
1761	}
1762
 
1763	mrt->vif_table[vif].pkt_in++;
1764	mrt->vif_table[vif].bytes_in += skb->len;
1765
1766	/*
1767	 *	Forward the frame
1768	 */
1769	for (ct = cache->mfc_un.res.maxvif - 1;
1770	     ct >= cache->mfc_un.res.minvif; ct--) {
1771		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772			if (psend != -1) {
1773				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775				if (skb2)
1776					ipmr_queue_xmit(net, mrt, skb2, cache,
1777							psend);
1778			}
1779			psend = ct;
1780		}
1781	}
 
1782	if (psend != -1) {
1783		if (local) {
1784			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786			if (skb2)
1787				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
 
1788		} else {
1789			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790			return 0;
1791		}
1792	}
1793
1794dont_forward:
1795	if (!local)
1796		kfree_skb(skb);
1797	return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802	struct rtable *rt = skb_rtable(skb);
1803	struct iphdr *iph = ip_hdr(skb);
1804	struct flowi4 fl4 = {
1805		.daddr = iph->daddr,
1806		.saddr = iph->saddr,
1807		.flowi4_tos = RT_TOS(iph->tos),
1808		.flowi4_oif = rt->rt_oif,
1809		.flowi4_iif = rt->rt_iif,
1810		.flowi4_mark = rt->rt_mark,
 
 
 
1811	};
1812	struct mr_table *mrt;
1813	int err;
1814
1815	err = ipmr_fib_lookup(net, &fl4, &mrt);
1816	if (err)
1817		return ERR_PTR(err);
1818	return mrt;
1819}
1820
1821/*
1822 *	Multicast packets for forwarding arrive here
1823 *	Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828	struct mfc_cache *cache;
1829	struct net *net = dev_net(skb->dev);
1830	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831	struct mr_table *mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832
1833	/* Packet is looped back after forward, it should not be
1834	 * forwarded second time, but still can be delivered locally.
1835	 */
1836	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837		goto dont_forward;
1838
1839	mrt = ipmr_rt_fib_lookup(net, skb);
1840	if (IS_ERR(mrt)) {
1841		kfree_skb(skb);
1842		return PTR_ERR(mrt);
1843	}
1844	if (!local) {
1845		if (IPCB(skb)->opt.router_alert) {
1846			if (ip_call_ra_chain(skb))
1847				return 0;
1848		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849			/* IGMPv1 (and broken IGMPv2 implementations sort of
1850			 * Cisco IOS <= 11.2(8)) do not put router alert
1851			 * option to IGMP packets destined to routable
1852			 * groups. It is very bad, because it means
1853			 * that we can forward NO IGMP messages.
1854			 */
1855			struct sock *mroute_sk;
1856
1857			mroute_sk = rcu_dereference(mrt->mroute_sk);
1858			if (mroute_sk) {
1859				nf_reset(skb);
1860				raw_rcv(mroute_sk, skb);
1861				return 0;
1862			}
1863		    }
1864	}
1865
1866	/* already under rcu_read_lock() */
1867	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
 
 
 
 
 
1868
1869	/*
1870	 *	No usable cache entry
1871	 */
1872	if (cache == NULL) {
1873		int vif;
1874
1875		if (local) {
1876			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877			ip_local_deliver(skb);
1878			if (skb2 == NULL)
1879				return -ENOBUFS;
1880			skb = skb2;
1881		}
1882
1883		read_lock(&mrt_lock);
1884		vif = ipmr_find_vif(mrt, skb->dev);
1885		if (vif >= 0) {
1886			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887			read_unlock(&mrt_lock);
1888
1889			return err2;
1890		}
1891		read_unlock(&mrt_lock);
1892		kfree_skb(skb);
1893		return -ENODEV;
1894	}
1895
1896	read_lock(&mrt_lock);
1897	ip_mr_forward(net, mrt, skb, cache, local);
1898	read_unlock(&mrt_lock);
1899
1900	if (local)
1901		return ip_local_deliver(skb);
1902
1903	return 0;
1904
1905dont_forward:
1906	if (local)
1907		return ip_local_deliver(skb);
1908	kfree_skb(skb);
1909	return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915		     unsigned int pimlen)
1916{
1917	struct net_device *reg_dev = NULL;
1918	struct iphdr *encap;
1919
1920	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921	/*
1922	 * Check that:
1923	 * a. packet is really sent to a multicast group
1924	 * b. packet is not a NULL-REGISTER
1925	 * c. packet is not truncated
1926	 */
1927	if (!ipv4_is_multicast(encap->daddr) ||
1928	    encap->tot_len == 0 ||
1929	    ntohs(encap->tot_len) + pimlen > skb->len)
1930		return 1;
1931
1932	read_lock(&mrt_lock);
1933	if (mrt->mroute_reg_vif_num >= 0)
1934		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935	read_unlock(&mrt_lock);
1936
1937	if (reg_dev == NULL)
1938		return 1;
1939
1940	skb->mac_header = skb->network_header;
1941	skb_pull(skb, (u8 *)encap - skb->data);
1942	skb_reset_network_header(skb);
1943	skb->protocol = htons(ETH_P_IP);
1944	skb->ip_summed = CHECKSUM_NONE;
1945	skb->pkt_type = PACKET_HOST;
1946
1947	skb_tunnel_rx(skb, reg_dev);
1948
1949	netif_rx(skb);
1950
1951	return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962	struct igmphdr *pim;
1963	struct net *net = dev_net(skb->dev);
1964	struct mr_table *mrt;
1965
1966	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967		goto drop;
1968
1969	pim = igmp_hdr(skb);
1970
1971	mrt = ipmr_rt_fib_lookup(net, skb);
1972	if (IS_ERR(mrt))
1973		goto drop;
1974	if (!mrt->mroute_do_pim ||
1975	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976		goto drop;
1977
1978	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980		kfree_skb(skb);
1981	}
1982	return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989	struct pimreghdr *pim;
1990	struct net *net = dev_net(skb->dev);
1991	struct mr_table *mrt;
1992
1993	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994		goto drop;
1995
1996	pim = (struct pimreghdr *)skb_transport_header(skb);
1997	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998	    (pim->flags & PIM_NULL_REGISTER) ||
1999	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001		goto drop;
2002
2003	mrt = ipmr_rt_fib_lookup(net, skb);
2004	if (IS_ERR(mrt))
2005		goto drop;
2006	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008		kfree_skb(skb);
2009	}
2010	return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015			      struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017	int ct;
2018	struct rtnexthop *nhp;
2019	u8 *b = skb_tail_pointer(skb);
2020	struct rtattr *mp_head;
2021
2022	/* If cache is unresolved, don't try to parse IIF and OIF */
2023	if (c->mfc_parent >= MAXVIFS)
2024		return -ENOENT;
2025
2026	if (VIF_EXISTS(mrt, c->mfc_parent))
2027		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2028
2029	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2030
2031	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034				goto rtattr_failure;
2035			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2036			nhp->rtnh_flags = 0;
2037			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039			nhp->rtnh_len = sizeof(*nhp);
2040		}
2041	}
2042	mp_head->rta_type = RTA_MULTIPATH;
2043	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2044	rtm->rtm_type = RTN_MULTICAST;
2045	return 1;
2046
2047rtattr_failure:
2048	nlmsg_trim(skb, b);
2049	return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053		   __be32 saddr, __be32 daddr,
2054		   struct rtmsg *rtm, int nowait)
2055{
2056	struct mfc_cache *cache;
2057	struct mr_table *mrt;
2058	int err;
2059
2060	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061	if (mrt == NULL)
2062		return -ENOENT;
2063
2064	rcu_read_lock();
2065	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2066
2067	if (cache == NULL) {
 
 
 
2068		struct sk_buff *skb2;
2069		struct iphdr *iph;
2070		struct net_device *dev;
2071		int vif = -1;
2072
2073		if (nowait) {
2074			rcu_read_unlock();
2075			return -EAGAIN;
2076		}
2077
2078		dev = skb->dev;
2079		read_lock(&mrt_lock);
2080		if (dev)
2081			vif = ipmr_find_vif(mrt, dev);
2082		if (vif < 0) {
2083			read_unlock(&mrt_lock);
2084			rcu_read_unlock();
2085			return -ENODEV;
2086		}
2087		skb2 = skb_clone(skb, GFP_ATOMIC);
 
2088		if (!skb2) {
2089			read_unlock(&mrt_lock);
2090			rcu_read_unlock();
2091			return -ENOMEM;
2092		}
2093
 
2094		skb_push(skb2, sizeof(struct iphdr));
2095		skb_reset_network_header(skb2);
2096		iph = ip_hdr(skb2);
2097		iph->ihl = sizeof(struct iphdr) >> 2;
2098		iph->saddr = saddr;
2099		iph->daddr = daddr;
2100		iph->version = 0;
2101		err = ipmr_cache_unresolved(mrt, vif, skb2);
2102		read_unlock(&mrt_lock);
2103		rcu_read_unlock();
2104		return err;
2105	}
2106
2107	read_lock(&mrt_lock);
2108	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109		cache->mfc_flags |= MFC_NOTIFY;
2110	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111	read_unlock(&mrt_lock);
2112	rcu_read_unlock();
2113	return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117			    u32 pid, u32 seq, struct mfc_cache *c)
 
2118{
2119	struct nlmsghdr *nlh;
2120	struct rtmsg *rtm;
 
2121
2122	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123	if (nlh == NULL)
2124		return -EMSGSIZE;
2125
2126	rtm = nlmsg_data(nlh);
2127	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2128	rtm->rtm_dst_len  = 32;
2129	rtm->rtm_src_len  = 32;
2130	rtm->rtm_tos      = 0;
2131	rtm->rtm_table    = mrt->id;
2132	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133		goto nla_put_failure;
2134	rtm->rtm_type     = RTN_MULTICAST;
2135	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2136	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2137	rtm->rtm_flags    = 0;
2138
2139	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141		goto nla_put_failure;
2142	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2143		goto nla_put_failure;
2144
2145	return nlmsg_end(skb, nlh);
 
2146
2147nla_put_failure:
2148	nlmsg_cancel(skb, nlh);
2149	return -EMSGSIZE;
2150}
2151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154	struct net *net = sock_net(skb->sk);
2155	struct mr_table *mrt;
2156	struct mfc_cache *mfc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157	unsigned int t = 0, s_t;
2158	unsigned int h = 0, s_h;
2159	unsigned int e = 0, s_e;
 
 
 
 
 
 
 
 
2160
2161	s_t = cb->args[0];
2162	s_h = cb->args[1];
2163	s_e = cb->args[2];
2164
2165	rcu_read_lock();
2166	ipmr_for_each_table(mrt, net) {
 
 
 
 
2167		if (t < s_t)
2168			goto next_table;
2169		if (t > s_t)
2170			s_h = 0;
2171		for (h = s_h; h < MFC_LINES; h++) {
2172			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173				if (e < s_e)
2174					goto next_entry;
2175				if (ipmr_fill_mroute(mrt, skb,
2176						     NETLINK_CB(cb->skb).pid,
2177						     cb->nlh->nlmsg_seq,
2178						     mfc) < 0)
2179					goto done;
2180next_entry:
2181				e++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182			}
2183			e = s_e = 0;
 
2184		}
2185		s_h = 0;
2186next_table:
 
 
 
 
2187		t++;
2188	}
2189done:
2190	rcu_read_unlock();
2191
2192	cb->args[2] = e;
2193	cb->args[1] = h;
2194	cb->args[0] = t;
2195
2196	return skb->len;
2197}
2198
2199#ifdef CONFIG_PROC_FS
2200/*
2201 *	The /proc interfaces to multicast routing :
2202 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205	struct seq_net_private p;
2206	struct mr_table *mrt;
2207	int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211					   struct ipmr_vif_iter *iter,
2212					   loff_t pos)
2213{
2214	struct mr_table *mrt = iter->mrt;
2215
2216	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217		if (!VIF_EXISTS(mrt, iter->ct))
2218			continue;
2219		if (pos-- == 0)
2220			return &mrt->vif_table[iter->ct];
2221	}
2222	return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226	__acquires(mrt_lock)
2227{
2228	struct ipmr_vif_iter *iter = seq->private;
2229	struct net *net = seq_file_net(seq);
2230	struct mr_table *mrt;
2231
2232	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233	if (mrt == NULL)
2234		return ERR_PTR(-ENOENT);
2235
2236	iter->mrt = mrt;
2237
2238	read_lock(&mrt_lock);
2239	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240		: SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245	struct ipmr_vif_iter *iter = seq->private;
2246	struct net *net = seq_file_net(seq);
2247	struct mr_table *mrt = iter->mrt;
2248
2249	++*pos;
2250	if (v == SEQ_START_TOKEN)
2251		return ipmr_vif_seq_idx(net, iter, 0);
2252
2253	while (++iter->ct < mrt->maxvif) {
2254		if (!VIF_EXISTS(mrt, iter->ct))
2255			continue;
2256		return &mrt->vif_table[iter->ct];
2257	}
2258	return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262	__releases(mrt_lock)
2263{
2264	read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269	struct ipmr_vif_iter *iter = seq->private;
2270	struct mr_table *mrt = iter->mrt;
2271
2272	if (v == SEQ_START_TOKEN) {
2273		seq_puts(seq,
2274			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2275	} else {
2276		const struct vif_device *vif = v;
2277		const char *name =  vif->dev ? vif->dev->name : "none";
 
2278
2279		seq_printf(seq,
2280			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2281			   vif - mrt->vif_table,
2282			   name, vif->bytes_in, vif->pkt_in,
2283			   vif->bytes_out, vif->pkt_out,
2284			   vif->flags, vif->local, vif->remote);
2285	}
2286	return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290	.start = ipmr_vif_seq_start,
2291	.next  = ipmr_vif_seq_next,
2292	.stop  = ipmr_vif_seq_stop,
2293	.show  = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299			    sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303	.owner	 = THIS_MODULE,
2304	.open    = ipmr_vif_open,
2305	.read    = seq_read,
2306	.llseek  = seq_lseek,
2307	.release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311	struct seq_net_private p;
2312	struct mr_table *mrt;
2313	struct list_head *cache;
2314	int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319					  struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321	struct mr_table *mrt = it->mrt;
2322	struct mfc_cache *mfc;
2323
2324	rcu_read_lock();
2325	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326		it->cache = &mrt->mfc_cache_array[it->ct];
2327		list_for_each_entry_rcu(mfc, it->cache, list)
2328			if (pos-- == 0)
2329				return mfc;
2330	}
2331	rcu_read_unlock();
2332
2333	spin_lock_bh(&mfc_unres_lock);
2334	it->cache = &mrt->mfc_unres_queue;
2335	list_for_each_entry(mfc, it->cache, list)
2336		if (pos-- == 0)
2337			return mfc;
2338	spin_unlock_bh(&mfc_unres_lock);
2339
2340	it->cache = NULL;
2341	return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347	struct ipmr_mfc_iter *it = seq->private;
2348	struct net *net = seq_file_net(seq);
2349	struct mr_table *mrt;
2350
2351	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352	if (mrt == NULL)
2353		return ERR_PTR(-ENOENT);
2354
2355	it->mrt = mrt;
2356	it->cache = NULL;
2357	it->ct = 0;
2358	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359		: SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364	struct mfc_cache *mfc = v;
2365	struct ipmr_mfc_iter *it = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	struct mr_table *mrt = it->mrt;
2368
2369	++*pos;
2370
2371	if (v == SEQ_START_TOKEN)
2372		return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374	if (mfc->list.next != it->cache)
2375		return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377	if (it->cache == &mrt->mfc_unres_queue)
2378		goto end_of_list;
2379
2380	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382	while (++it->ct < MFC_LINES) {
2383		it->cache = &mrt->mfc_cache_array[it->ct];
2384		if (list_empty(it->cache))
2385			continue;
2386		return list_first_entry(it->cache, struct mfc_cache, list);
2387	}
2388
2389	/* exhausted cache_array, show unresolved */
2390	rcu_read_unlock();
2391	it->cache = &mrt->mfc_unres_queue;
2392	it->ct = 0;
2393
2394	spin_lock_bh(&mfc_unres_lock);
2395	if (!list_empty(it->cache))
2396		return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399	spin_unlock_bh(&mfc_unres_lock);
2400	it->cache = NULL;
2401
2402	return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407	struct ipmr_mfc_iter *it = seq->private;
2408	struct mr_table *mrt = it->mrt;
2409
2410	if (it->cache == &mrt->mfc_unres_queue)
2411		spin_unlock_bh(&mfc_unres_lock);
2412	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413		rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418	int n;
2419
2420	if (v == SEQ_START_TOKEN) {
2421		seq_puts(seq,
2422		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2423	} else {
2424		const struct mfc_cache *mfc = v;
2425		const struct ipmr_mfc_iter *it = seq->private;
2426		const struct mr_table *mrt = it->mrt;
2427
2428		seq_printf(seq, "%08X %08X %-3hd",
2429			   (__force u32) mfc->mfc_mcastgrp,
2430			   (__force u32) mfc->mfc_origin,
2431			   mfc->mfc_parent);
2432
2433		if (it->cache != &mrt->mfc_unres_queue) {
2434			seq_printf(seq, " %8lu %8lu %8lu",
2435				   mfc->mfc_un.res.pkt,
2436				   mfc->mfc_un.res.bytes,
2437				   mfc->mfc_un.res.wrong_if);
2438			for (n = mfc->mfc_un.res.minvif;
2439			     n < mfc->mfc_un.res.maxvif; n++) {
2440				if (VIF_EXISTS(mrt, n) &&
2441				    mfc->mfc_un.res.ttls[n] < 255)
2442					seq_printf(seq,
2443					   " %2d:%-3d",
2444					   n, mfc->mfc_un.res.ttls[n]);
2445			}
2446		} else {
2447			/* unresolved mfc_caches don't contain
2448			 * pkt, bytes and wrong_if values
2449			 */
2450			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451		}
2452		seq_putc(seq, '\n');
2453	}
2454	return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458	.start = ipmr_mfc_seq_start,
2459	.next  = ipmr_mfc_seq_next,
2460	.stop  = ipmr_mfc_seq_stop,
2461	.show  = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467			    sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471	.owner	 = THIS_MODULE,
2472	.open    = ipmr_mfc_open,
2473	.read    = seq_read,
2474	.llseek  = seq_lseek,
2475	.release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481	.handler	=	pim_rcv,
2482	.netns_ok	=	1,
2483};
2484#endif
2485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486
2487/*
2488 *	Setup for IP multicast routing
2489 */
 
 
 
 
 
 
 
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492	int err;
2493
 
 
 
 
2494	err = ipmr_rules_init(net);
2495	if (err < 0)
2496		goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499	err = -ENOMEM;
2500	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
 
2501		goto proc_vif_fail;
2502	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
 
2503		goto proc_cache_fail;
2504#endif
2505	return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509	proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
2511	ipmr_rules_exit(net);
2512#endif
2513fail:
 
 
2514	return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520	proc_net_remove(net, "ip_mr_cache");
2521	proc_net_remove(net, "ip_mr_vif");
2522#endif
 
2523	ipmr_rules_exit(net);
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527	.init = ipmr_net_init,
2528	.exit = ipmr_net_exit,
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533	int err;
2534
2535	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536				       sizeof(struct mfc_cache),
2537				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538				       NULL);
2539	if (!mrt_cachep)
2540		return -ENOMEM;
2541
2542	err = register_pernet_subsys(&ipmr_net_ops);
2543	if (err)
2544		goto reg_pernet_fail;
2545
2546	err = register_netdevice_notifier(&ip_mr_notifier);
2547	if (err)
2548		goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551		pr_err("%s: can't add PIM protocol\n", __func__);
2552		err = -EAGAIN;
2553		goto add_proto_fail;
2554	}
2555#endif
2556	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557		      NULL, ipmr_rtm_dumproute, NULL);
 
 
 
 
 
 
 
2558	return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562	unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565	unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567	kmem_cache_destroy(mrt_cachep);
2568	return err;
2569}