Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  29 *           anon_vma->rwsem
  30 *             mm->page_table_lock or pte_lock
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
  35 *                     i_pages lock (widely used)
  36 *                       lruvec->lru_lock (in lock_page_lruvec_irq)
  37 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  40 *                   i_pages lock (widely used, in set_page_dirty,
  41 *                             in arch-dependent flush_dcache_mmap_lock,
  42 *                             within bdi.wb->list_lock in __sync_single_inode)
  43 *
  44 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  45 *   ->tasklist_lock
  46 *     pte map lock
  47 *
  48 * * hugetlbfs PageHuge() pages take locks in this order:
  49 *         mapping->i_mmap_rwsem
  50 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  51 *             page->flags PG_locked (lock_page)
  52 */
  53
  54#include <linux/mm.h>
  55#include <linux/sched/mm.h>
  56#include <linux/sched/task.h>
  57#include <linux/pagemap.h>
  58#include <linux/swap.h>
  59#include <linux/swapops.h>
  60#include <linux/slab.h>
  61#include <linux/init.h>
  62#include <linux/ksm.h>
  63#include <linux/rmap.h>
  64#include <linux/rcupdate.h>
  65#include <linux/export.h>
  66#include <linux/memcontrol.h>
  67#include <linux/mmu_notifier.h>
  68#include <linux/migrate.h>
  69#include <linux/hugetlb.h>
  70#include <linux/huge_mm.h>
  71#include <linux/backing-dev.h>
  72#include <linux/page_idle.h>
  73#include <linux/memremap.h>
  74#include <linux/userfaultfd_k.h>
  75
  76#include <asm/tlbflush.h>
  77
  78#include <trace/events/tlb.h>
  79
  80#include "internal.h"
  81
  82static struct kmem_cache *anon_vma_cachep;
  83static struct kmem_cache *anon_vma_chain_cachep;
  84
  85static inline struct anon_vma *anon_vma_alloc(void)
  86{
  87	struct anon_vma *anon_vma;
  88
  89	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  90	if (anon_vma) {
  91		atomic_set(&anon_vma->refcount, 1);
  92		anon_vma->degree = 1;	/* Reference for first vma */
  93		anon_vma->parent = anon_vma;
  94		/*
  95		 * Initialise the anon_vma root to point to itself. If called
  96		 * from fork, the root will be reset to the parents anon_vma.
  97		 */
  98		anon_vma->root = anon_vma;
  99	}
 100
 101	return anon_vma;
 102}
 103
 104static inline void anon_vma_free(struct anon_vma *anon_vma)
 105{
 106	VM_BUG_ON(atomic_read(&anon_vma->refcount));
 107
 108	/*
 109	 * Synchronize against page_lock_anon_vma_read() such that
 110	 * we can safely hold the lock without the anon_vma getting
 111	 * freed.
 112	 *
 113	 * Relies on the full mb implied by the atomic_dec_and_test() from
 114	 * put_anon_vma() against the acquire barrier implied by
 115	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 116	 *
 117	 * page_lock_anon_vma_read()	VS	put_anon_vma()
 118	 *   down_read_trylock()		  atomic_dec_and_test()
 119	 *   LOCK				  MB
 120	 *   atomic_read()			  rwsem_is_locked()
 121	 *
 122	 * LOCK should suffice since the actual taking of the lock must
 123	 * happen _before_ what follows.
 124	 */
 125	might_sleep();
 126	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 127		anon_vma_lock_write(anon_vma);
 128		anon_vma_unlock_write(anon_vma);
 129	}
 130
 131	kmem_cache_free(anon_vma_cachep, anon_vma);
 132}
 133
 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 135{
 136	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 137}
 138
 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 140{
 141	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 142}
 143
 144static void anon_vma_chain_link(struct vm_area_struct *vma,
 145				struct anon_vma_chain *avc,
 146				struct anon_vma *anon_vma)
 147{
 148	avc->vma = vma;
 149	avc->anon_vma = anon_vma;
 150	list_add(&avc->same_vma, &vma->anon_vma_chain);
 151	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 
 
 
 
 
 152}
 153
 154/**
 155 * __anon_vma_prepare - attach an anon_vma to a memory region
 156 * @vma: the memory region in question
 157 *
 158 * This makes sure the memory mapping described by 'vma' has
 159 * an 'anon_vma' attached to it, so that we can associate the
 160 * anonymous pages mapped into it with that anon_vma.
 161 *
 162 * The common case will be that we already have one, which
 163 * is handled inline by anon_vma_prepare(). But if
 164 * not we either need to find an adjacent mapping that we
 165 * can re-use the anon_vma from (very common when the only
 166 * reason for splitting a vma has been mprotect()), or we
 167 * allocate a new one.
 168 *
 169 * Anon-vma allocations are very subtle, because we may have
 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 171 * and that may actually touch the rwsem even in the newly
 172 * allocated vma (it depends on RCU to make sure that the
 173 * anon_vma isn't actually destroyed).
 174 *
 175 * As a result, we need to do proper anon_vma locking even
 176 * for the new allocation. At the same time, we do not want
 177 * to do any locking for the common case of already having
 178 * an anon_vma.
 179 *
 180 * This must be called with the mmap_lock held for reading.
 181 */
 182int __anon_vma_prepare(struct vm_area_struct *vma)
 183{
 184	struct mm_struct *mm = vma->vm_mm;
 185	struct anon_vma *anon_vma, *allocated;
 186	struct anon_vma_chain *avc;
 187
 188	might_sleep();
 
 
 
 
 
 
 
 189
 190	avc = anon_vma_chain_alloc(GFP_KERNEL);
 191	if (!avc)
 192		goto out_enomem;
 193
 194	anon_vma = find_mergeable_anon_vma(vma);
 195	allocated = NULL;
 196	if (!anon_vma) {
 197		anon_vma = anon_vma_alloc();
 198		if (unlikely(!anon_vma))
 199			goto out_enomem_free_avc;
 200		allocated = anon_vma;
 201	}
 202
 203	anon_vma_lock_write(anon_vma);
 204	/* page_table_lock to protect against threads */
 205	spin_lock(&mm->page_table_lock);
 206	if (likely(!vma->anon_vma)) {
 207		vma->anon_vma = anon_vma;
 208		anon_vma_chain_link(vma, avc, anon_vma);
 209		/* vma reference or self-parent link for new root */
 210		anon_vma->degree++;
 211		allocated = NULL;
 212		avc = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 214	spin_unlock(&mm->page_table_lock);
 215	anon_vma_unlock_write(anon_vma);
 216
 217	if (unlikely(allocated))
 218		put_anon_vma(allocated);
 219	if (unlikely(avc))
 220		anon_vma_chain_free(avc);
 221
 222	return 0;
 223
 224 out_enomem_free_avc:
 225	anon_vma_chain_free(avc);
 226 out_enomem:
 227	return -ENOMEM;
 228}
 229
 230/*
 231 * This is a useful helper function for locking the anon_vma root as
 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 233 * have the same vma.
 234 *
 235 * Such anon_vma's should have the same root, so you'd expect to see
 236 * just a single mutex_lock for the whole traversal.
 237 */
 238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 239{
 240	struct anon_vma *new_root = anon_vma->root;
 241	if (new_root != root) {
 242		if (WARN_ON_ONCE(root))
 243			up_write(&root->rwsem);
 244		root = new_root;
 245		down_write(&root->rwsem);
 246	}
 247	return root;
 248}
 249
 250static inline void unlock_anon_vma_root(struct anon_vma *root)
 251{
 252	if (root)
 253		up_write(&root->rwsem);
 254}
 255
 256/*
 257 * Attach the anon_vmas from src to dst.
 258 * Returns 0 on success, -ENOMEM on failure.
 259 *
 260 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
 261 * anon_vma_fork(). The first three want an exact copy of src, while the last
 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
 265 *
 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 269 * case of constantly forking task. On the other hand, an anon_vma with more
 270 * than one child isn't reused even if there was no alive vma, thus rmap
 271 * walker has a good chance of avoiding scanning the whole hierarchy when it
 272 * searches where page is mapped.
 273 */
 274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 275{
 276	struct anon_vma_chain *avc, *pavc;
 277	struct anon_vma *root = NULL;
 278
 279	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 280		struct anon_vma *anon_vma;
 281
 282		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 283		if (unlikely(!avc)) {
 284			unlock_anon_vma_root(root);
 285			root = NULL;
 286			avc = anon_vma_chain_alloc(GFP_KERNEL);
 287			if (!avc)
 288				goto enomem_failure;
 289		}
 290		anon_vma = pavc->anon_vma;
 291		root = lock_anon_vma_root(root, anon_vma);
 292		anon_vma_chain_link(dst, avc, anon_vma);
 293
 294		/*
 295		 * Reuse existing anon_vma if its degree lower than two,
 296		 * that means it has no vma and only one anon_vma child.
 297		 *
 298		 * Do not chose parent anon_vma, otherwise first child
 299		 * will always reuse it. Root anon_vma is never reused:
 300		 * it has self-parent reference and at least one child.
 301		 */
 302		if (!dst->anon_vma && src->anon_vma &&
 303		    anon_vma != src->anon_vma && anon_vma->degree < 2)
 304			dst->anon_vma = anon_vma;
 305	}
 306	if (dst->anon_vma)
 307		dst->anon_vma->degree++;
 308	unlock_anon_vma_root(root);
 309	return 0;
 310
 311 enomem_failure:
 312	/*
 313	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 314	 * decremented in unlink_anon_vmas().
 315	 * We can safely do this because callers of anon_vma_clone() don't care
 316	 * about dst->anon_vma if anon_vma_clone() failed.
 317	 */
 318	dst->anon_vma = NULL;
 319	unlink_anon_vmas(dst);
 320	return -ENOMEM;
 321}
 322
 323/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 325 * the corresponding VMA in the parent process is attached to.
 326 * Returns 0 on success, non-zero on failure.
 327 */
 328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 329{
 330	struct anon_vma_chain *avc;
 331	struct anon_vma *anon_vma;
 332	int error;
 333
 334	/* Don't bother if the parent process has no anon_vma here. */
 335	if (!pvma->anon_vma)
 336		return 0;
 337
 338	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 339	vma->anon_vma = NULL;
 340
 341	/*
 342	 * First, attach the new VMA to the parent VMA's anon_vmas,
 343	 * so rmap can find non-COWed pages in child processes.
 344	 */
 345	error = anon_vma_clone(vma, pvma);
 346	if (error)
 347		return error;
 348
 349	/* An existing anon_vma has been reused, all done then. */
 350	if (vma->anon_vma)
 351		return 0;
 352
 353	/* Then add our own anon_vma. */
 354	anon_vma = anon_vma_alloc();
 355	if (!anon_vma)
 356		goto out_error;
 357	avc = anon_vma_chain_alloc(GFP_KERNEL);
 358	if (!avc)
 359		goto out_error_free_anon_vma;
 360
 361	/*
 362	 * The root anon_vma's rwsem is the lock actually used when we
 363	 * lock any of the anon_vmas in this anon_vma tree.
 364	 */
 365	anon_vma->root = pvma->anon_vma->root;
 366	anon_vma->parent = pvma->anon_vma;
 367	/*
 368	 * With refcounts, an anon_vma can stay around longer than the
 369	 * process it belongs to. The root anon_vma needs to be pinned until
 370	 * this anon_vma is freed, because the lock lives in the root.
 371	 */
 372	get_anon_vma(anon_vma->root);
 373	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 374	vma->anon_vma = anon_vma;
 375	anon_vma_lock_write(anon_vma);
 376	anon_vma_chain_link(vma, avc, anon_vma);
 377	anon_vma->parent->degree++;
 378	anon_vma_unlock_write(anon_vma);
 379
 380	return 0;
 381
 382 out_error_free_anon_vma:
 383	put_anon_vma(anon_vma);
 384 out_error:
 385	unlink_anon_vmas(vma);
 386	return -ENOMEM;
 387}
 388
 389void unlink_anon_vmas(struct vm_area_struct *vma)
 390{
 391	struct anon_vma_chain *avc, *next;
 392	struct anon_vma *root = NULL;
 393
 394	/*
 395	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 396	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 397	 */
 398	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 399		struct anon_vma *anon_vma = avc->anon_vma;
 400
 401		root = lock_anon_vma_root(root, anon_vma);
 402		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 403
 404		/*
 405		 * Leave empty anon_vmas on the list - we'll need
 406		 * to free them outside the lock.
 407		 */
 408		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 409			anon_vma->parent->degree--;
 410			continue;
 411		}
 412
 413		list_del(&avc->same_vma);
 414		anon_vma_chain_free(avc);
 415	}
 416	if (vma->anon_vma) {
 417		vma->anon_vma->degree--;
 418
 419		/*
 420		 * vma would still be needed after unlink, and anon_vma will be prepared
 421		 * when handle fault.
 422		 */
 423		vma->anon_vma = NULL;
 424	}
 425	unlock_anon_vma_root(root);
 426
 427	/*
 428	 * Iterate the list once more, it now only contains empty and unlinked
 429	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 430	 * needing to write-acquire the anon_vma->root->rwsem.
 431	 */
 432	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 433		struct anon_vma *anon_vma = avc->anon_vma;
 434
 435		VM_WARN_ON(anon_vma->degree);
 436		put_anon_vma(anon_vma);
 437
 438		list_del(&avc->same_vma);
 439		anon_vma_chain_free(avc);
 440	}
 441}
 442
 443static void anon_vma_ctor(void *data)
 444{
 445	struct anon_vma *anon_vma = data;
 446
 447	init_rwsem(&anon_vma->rwsem);
 448	atomic_set(&anon_vma->refcount, 0);
 449	anon_vma->rb_root = RB_ROOT_CACHED;
 450}
 451
 452void __init anon_vma_init(void)
 453{
 454	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 455			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 456			anon_vma_ctor);
 457	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 458			SLAB_PANIC|SLAB_ACCOUNT);
 459}
 460
 461/*
 462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 463 *
 464 * Since there is no serialization what so ever against page_remove_rmap()
 465 * the best this function can do is return a refcount increased anon_vma
 466 * that might have been relevant to this page.
 467 *
 468 * The page might have been remapped to a different anon_vma or the anon_vma
 469 * returned may already be freed (and even reused).
 470 *
 471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 473 * ensure that any anon_vma obtained from the page will still be valid for as
 474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 475 *
 476 * All users of this function must be very careful when walking the anon_vma
 477 * chain and verify that the page in question is indeed mapped in it
 478 * [ something equivalent to page_mapped_in_vma() ].
 479 *
 480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 482 * if there is a mapcount, we can dereference the anon_vma after observing
 483 * those.
 484 */
 485struct anon_vma *page_get_anon_vma(struct page *page)
 486{
 487	struct anon_vma *anon_vma = NULL;
 488	unsigned long anon_mapping;
 489
 490	rcu_read_lock();
 491	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 492	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 493		goto out;
 494	if (!page_mapped(page))
 495		goto out;
 496
 497	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 498	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 499		anon_vma = NULL;
 500		goto out;
 501	}
 502
 503	/*
 504	 * If this page is still mapped, then its anon_vma cannot have been
 505	 * freed.  But if it has been unmapped, we have no security against the
 506	 * anon_vma structure being freed and reused (for another anon_vma:
 507	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 508	 * above cannot corrupt).
 509	 */
 510	if (!page_mapped(page)) {
 511		rcu_read_unlock();
 512		put_anon_vma(anon_vma);
 513		return NULL;
 514	}
 515out:
 516	rcu_read_unlock();
 517
 518	return anon_vma;
 519}
 520
 521/*
 522 * Similar to page_get_anon_vma() except it locks the anon_vma.
 523 *
 524 * Its a little more complex as it tries to keep the fast path to a single
 525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 526 * reference like with page_get_anon_vma() and then block on the mutex.
 527 */
 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
 529{
 530	struct anon_vma *anon_vma = NULL;
 531	struct anon_vma *root_anon_vma;
 532	unsigned long anon_mapping;
 533
 534	rcu_read_lock();
 535	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 536	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 537		goto out;
 538	if (!page_mapped(page))
 539		goto out;
 540
 541	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 542	root_anon_vma = READ_ONCE(anon_vma->root);
 543	if (down_read_trylock(&root_anon_vma->rwsem)) {
 544		/*
 545		 * If the page is still mapped, then this anon_vma is still
 546		 * its anon_vma, and holding the mutex ensures that it will
 547		 * not go away, see anon_vma_free().
 548		 */
 549		if (!page_mapped(page)) {
 550			up_read(&root_anon_vma->rwsem);
 551			anon_vma = NULL;
 552		}
 553		goto out;
 554	}
 555
 556	/* trylock failed, we got to sleep */
 557	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 558		anon_vma = NULL;
 559		goto out;
 560	}
 561
 562	if (!page_mapped(page)) {
 563		rcu_read_unlock();
 564		put_anon_vma(anon_vma);
 565		return NULL;
 
 566	}
 567
 568	/* we pinned the anon_vma, its safe to sleep */
 569	rcu_read_unlock();
 570	anon_vma_lock_read(anon_vma);
 571
 572	if (atomic_dec_and_test(&anon_vma->refcount)) {
 573		/*
 574		 * Oops, we held the last refcount, release the lock
 575		 * and bail -- can't simply use put_anon_vma() because
 576		 * we'll deadlock on the anon_vma_lock_write() recursion.
 577		 */
 578		anon_vma_unlock_read(anon_vma);
 579		__put_anon_vma(anon_vma);
 580		anon_vma = NULL;
 581	}
 582
 583	return anon_vma;
 584
 585out:
 586	rcu_read_unlock();
 587	return anon_vma;
 588}
 589
 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 591{
 592	anon_vma_unlock_read(anon_vma);
 593}
 594
 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 596/*
 597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 598 * important if a PTE was dirty when it was unmapped that it's flushed
 599 * before any IO is initiated on the page to prevent lost writes. Similarly,
 600 * it must be flushed before freeing to prevent data leakage.
 601 */
 602void try_to_unmap_flush(void)
 603{
 604	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 605
 606	if (!tlb_ubc->flush_required)
 607		return;
 608
 609	arch_tlbbatch_flush(&tlb_ubc->arch);
 610	tlb_ubc->flush_required = false;
 611	tlb_ubc->writable = false;
 612}
 613
 614/* Flush iff there are potentially writable TLB entries that can race with IO */
 615void try_to_unmap_flush_dirty(void)
 616{
 617	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 618
 619	if (tlb_ubc->writable)
 620		try_to_unmap_flush();
 621}
 622
 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 624{
 625	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 626
 627	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 628	tlb_ubc->flush_required = true;
 629
 630	/*
 631	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 632	 * before the PTE is cleared.
 633	 */
 634	barrier();
 635	mm->tlb_flush_batched = true;
 636
 637	/*
 638	 * If the PTE was dirty then it's best to assume it's writable. The
 639	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 640	 * before the page is queued for IO.
 641	 */
 642	if (writable)
 643		tlb_ubc->writable = true;
 644}
 645
 646/*
 647 * Returns true if the TLB flush should be deferred to the end of a batch of
 648 * unmap operations to reduce IPIs.
 649 */
 650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 651{
 652	bool should_defer = false;
 653
 654	if (!(flags & TTU_BATCH_FLUSH))
 655		return false;
 656
 657	/* If remote CPUs need to be flushed then defer batch the flush */
 658	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 659		should_defer = true;
 660	put_cpu();
 661
 662	return should_defer;
 663}
 664
 665/*
 666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 668 * operation such as mprotect or munmap to race between reclaim unmapping
 669 * the page and flushing the page. If this race occurs, it potentially allows
 670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 671 * batching in flight would be expensive during reclaim so instead track
 672 * whether TLB batching occurred in the past and if so then do a flush here
 673 * if required. This will cost one additional flush per reclaim cycle paid
 674 * by the first operation at risk such as mprotect and mumap.
 675 *
 676 * This must be called under the PTL so that an access to tlb_flush_batched
 677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 678 * via the PTL.
 679 */
 680void flush_tlb_batched_pending(struct mm_struct *mm)
 
 681{
 682	if (data_race(mm->tlb_flush_batched)) {
 683		flush_tlb_mm(mm);
 684
 685		/*
 686		 * Do not allow the compiler to re-order the clearing of
 687		 * tlb_flush_batched before the tlb is flushed.
 688		 */
 689		barrier();
 690		mm->tlb_flush_batched = false;
 691	}
 
 692}
 693#else
 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 695{
 696}
 697
 698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 699{
 700	return false;
 701}
 702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 703
 704/*
 705 * At what user virtual address is page expected in vma?
 706 * Caller should check the page is actually part of the vma.
 707 */
 708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 709{
 710	if (PageAnon(page)) {
 711		struct anon_vma *page__anon_vma = page_anon_vma(page);
 712		/*
 713		 * Note: swapoff's unuse_vma() is more efficient with this
 714		 * check, and needs it to match anon_vma when KSM is active.
 715		 */
 716		if (!vma->anon_vma || !page__anon_vma ||
 717		    vma->anon_vma->root != page__anon_vma->root)
 718			return -EFAULT;
 719	} else if (!vma->vm_file) {
 720		return -EFAULT;
 721	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
 
 
 722		return -EFAULT;
 723	}
 724
 725	return vma_address(page, vma);
 726}
 727
 728pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 
 
 
 
 
 
 
 
 
 
 729{
 730	pgd_t *pgd;
 731	p4d_t *p4d;
 732	pud_t *pud;
 733	pmd_t *pmd = NULL;
 734	pmd_t pmde;
 
 
 
 
 
 
 
 735
 736	pgd = pgd_offset(mm, address);
 737	if (!pgd_present(*pgd))
 738		goto out;
 739
 740	p4d = p4d_offset(pgd, address);
 741	if (!p4d_present(*p4d))
 742		goto out;
 743
 744	pud = pud_offset(p4d, address);
 745	if (!pud_present(*pud))
 746		goto out;
 747
 748	pmd = pmd_offset(pud, address);
 749	/*
 750	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 751	 * without holding anon_vma lock for write.  So when looking for a
 752	 * genuine pmde (in which to find pte), test present and !THP together.
 753	 */
 754	pmde = *pmd;
 755	barrier();
 756	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 757		pmd = NULL;
 758out:
 759	return pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760}
 761
 762struct page_referenced_arg {
 763	int mapcount;
 764	int referenced;
 765	unsigned long vm_flags;
 766	struct mem_cgroup *memcg;
 767};
 768/*
 769 * arg: page_referenced_arg will be passed
 
 770 */
 771static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 772			unsigned long address, void *arg)
 
 773{
 774	struct page_referenced_arg *pra = arg;
 775	struct page_vma_mapped_walk pvmw = {
 776		.page = page,
 777		.vma = vma,
 778		.address = address,
 779	};
 780	int referenced = 0;
 781
 782	while (page_vma_mapped_walk(&pvmw)) {
 783		address = pvmw.address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785		if (vma->vm_flags & VM_LOCKED) {
 786			page_vma_mapped_walk_done(&pvmw);
 787			pra->vm_flags |= VM_LOCKED;
 788			return false; /* To break the loop */
 
 789		}
 790
 791		if (pvmw.pte) {
 792			if (ptep_clear_flush_young_notify(vma, address,
 793						pvmw.pte)) {
 794				/*
 795				 * Don't treat a reference through
 796				 * a sequentially read mapping as such.
 797				 * If the page has been used in another mapping,
 798				 * we will catch it; if this other mapping is
 799				 * already gone, the unmap path will have set
 800				 * PG_referenced or activated the page.
 801				 */
 802				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 803					referenced++;
 804			}
 805		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 806			if (pmdp_clear_flush_young_notify(vma, address,
 807						pvmw.pmd))
 808				referenced++;
 809		} else {
 810			/* unexpected pmd-mapped page? */
 811			WARN_ON_ONCE(1);
 812		}
 813
 814		pra->mapcount--;
 815	}
 816
 
 
 817	if (referenced)
 818		clear_page_idle(page);
 819	if (test_and_clear_page_young(page))
 820		referenced++;
 
 821
 822	if (referenced) {
 823		pra->referenced++;
 824		pra->vm_flags |= vma->vm_flags;
 825	}
 
 
 
 
 826
 827	if (!pra->mapcount)
 828		return false; /* To break the loop */
 
 829
 830	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831}
 832
 833static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 834{
 835	struct page_referenced_arg *pra = arg;
 836	struct mem_cgroup *memcg = pra->memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	if (!mm_match_cgroup(vma->vm_mm, memcg))
 839		return true;
 
 
 
 
 840
 841	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842}
 843
 844/**
 845 * page_referenced - test if the page was referenced
 846 * @page: the page to test
 847 * @is_locked: caller holds lock on the page
 848 * @memcg: target memory cgroup
 849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 850 *
 851 * Quick test_and_clear_referenced for all mappings to a page,
 852 * returns the number of ptes which referenced the page.
 853 */
 854int page_referenced(struct page *page,
 855		    int is_locked,
 856		    struct mem_cgroup *memcg,
 857		    unsigned long *vm_flags)
 858{
 
 859	int we_locked = 0;
 860	struct page_referenced_arg pra = {
 861		.mapcount = total_mapcount(page),
 862		.memcg = memcg,
 863	};
 864	struct rmap_walk_control rwc = {
 865		.rmap_one = page_referenced_one,
 866		.arg = (void *)&pra,
 867		.anon_lock = page_lock_anon_vma_read,
 868	};
 869
 870	*vm_flags = 0;
 871	if (!pra.mapcount)
 872		return 0;
 873
 874	if (!page_rmapping(page))
 875		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 878		we_locked = trylock_page(page);
 879		if (!we_locked)
 880			return 1;
 881	}
 882
 883	/*
 884	 * If we are reclaiming on behalf of a cgroup, skip
 885	 * counting on behalf of references from different
 886	 * cgroups
 887	 */
 888	if (memcg) {
 889		rwc.invalid_vma = invalid_page_referenced_vma;
 890	}
 891
 892	rmap_walk(page, &rwc);
 893	*vm_flags = pra.vm_flags;
 894
 895	if (we_locked)
 896		unlock_page(page);
 897
 898	return pra.referenced;
 899}
 900
 901static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 902			    unsigned long address, void *arg)
 903{
 904	struct page_vma_mapped_walk pvmw = {
 905		.page = page,
 906		.vma = vma,
 907		.address = address,
 908		.flags = PVMW_SYNC,
 909	};
 910	struct mmu_notifier_range range;
 911	int *cleaned = arg;
 912
 913	/*
 914	 * We have to assume the worse case ie pmd for invalidation. Note that
 915	 * the page can not be free from this function.
 916	 */
 917	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 918				0, vma, vma->vm_mm, address,
 919				vma_address_end(page, vma));
 920	mmu_notifier_invalidate_range_start(&range);
 921
 922	while (page_vma_mapped_walk(&pvmw)) {
 923		int ret = 0;
 924
 925		address = pvmw.address;
 926		if (pvmw.pte) {
 927			pte_t entry;
 928			pte_t *pte = pvmw.pte;
 929
 930			if (!pte_dirty(*pte) && !pte_write(*pte))
 931				continue;
 932
 933			flush_cache_page(vma, address, pte_pfn(*pte));
 934			entry = ptep_clear_flush(vma, address, pte);
 935			entry = pte_wrprotect(entry);
 936			entry = pte_mkclean(entry);
 937			set_pte_at(vma->vm_mm, address, pte, entry);
 938			ret = 1;
 939		} else {
 940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 941			pmd_t *pmd = pvmw.pmd;
 942			pmd_t entry;
 943
 944			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 945				continue;
 946
 947			flush_cache_page(vma, address, page_to_pfn(page));
 948			entry = pmdp_invalidate(vma, address, pmd);
 949			entry = pmd_wrprotect(entry);
 950			entry = pmd_mkclean(entry);
 951			set_pmd_at(vma->vm_mm, address, pmd, entry);
 952			ret = 1;
 953#else
 954			/* unexpected pmd-mapped page? */
 955			WARN_ON_ONCE(1);
 956#endif
 957		}
 958
 959		/*
 960		 * No need to call mmu_notifier_invalidate_range() as we are
 961		 * downgrading page table protection not changing it to point
 962		 * to a new page.
 963		 *
 964		 * See Documentation/vm/mmu_notifier.rst
 965		 */
 966		if (ret)
 967			(*cleaned)++;
 968	}
 969
 970	mmu_notifier_invalidate_range_end(&range);
 971
 972	return true;
 973}
 974
 975static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 976{
 977	if (vma->vm_flags & VM_SHARED)
 978		return false;
 
 
 
 
 979
 980	return true;
 
 
 
 
 
 
 
 
 
 
 981}
 982
 983int page_mkclean(struct page *page)
 984{
 985	int cleaned = 0;
 986	struct address_space *mapping;
 987	struct rmap_walk_control rwc = {
 988		.arg = (void *)&cleaned,
 989		.rmap_one = page_mkclean_one,
 990		.invalid_vma = invalid_mkclean_vma,
 991	};
 992
 993	BUG_ON(!PageLocked(page));
 994
 995	if (!page_mapped(page))
 996		return 0;
 997
 998	mapping = page_mapping(page);
 999	if (!mapping)
1000		return 0;
1001
1002	rmap_walk(page, &rwc);
1003
1004	return cleaned;
1005}
1006EXPORT_SYMBOL_GPL(page_mkclean);
1007
1008/**
1009 * page_move_anon_rmap - move a page to our anon_vma
1010 * @page:	the page to move to our anon_vma
1011 * @vma:	the vma the page belongs to
 
1012 *
1013 * When a page belongs exclusively to one process after a COW event,
1014 * that page can be moved into the anon_vma that belongs to just that
1015 * process, so the rmap code will not search the parent or sibling
1016 * processes.
1017 */
1018void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
 
1019{
1020	struct anon_vma *anon_vma = vma->anon_vma;
1021
1022	page = compound_head(page);
1023
1024	VM_BUG_ON_PAGE(!PageLocked(page), page);
1025	VM_BUG_ON_VMA(!anon_vma, vma);
1026
1027	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1028	/*
1029	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1030	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1031	 * PageAnon()) will not see one without the other.
1032	 */
1033	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1034}
1035
1036/**
1037 * __page_set_anon_rmap - set up new anonymous rmap
1038 * @page:	Page or Hugepage to add to rmap
1039 * @vma:	VM area to add page to.
1040 * @address:	User virtual address of the mapping	
1041 * @exclusive:	the page is exclusively owned by the current process
1042 */
1043static void __page_set_anon_rmap(struct page *page,
1044	struct vm_area_struct *vma, unsigned long address, int exclusive)
1045{
1046	struct anon_vma *anon_vma = vma->anon_vma;
1047
1048	BUG_ON(!anon_vma);
1049
1050	if (PageAnon(page))
1051		return;
1052
1053	/*
1054	 * If the page isn't exclusively mapped into this vma,
1055	 * we must use the _oldest_ possible anon_vma for the
1056	 * page mapping!
1057	 */
1058	if (!exclusive)
1059		anon_vma = anon_vma->root;
1060
1061	/*
1062	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1063	 * Make sure the compiler doesn't split the stores of anon_vma and
1064	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1065	 * could mistake the mapping for a struct address_space and crash.
1066	 */
1067	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1068	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1069	page->index = linear_page_index(vma, address);
1070}
1071
1072/**
1073 * __page_check_anon_rmap - sanity check anonymous rmap addition
1074 * @page:	the page to add the mapping to
1075 * @vma:	the vm area in which the mapping is added
1076 * @address:	the user virtual address mapped
1077 */
1078static void __page_check_anon_rmap(struct page *page,
1079	struct vm_area_struct *vma, unsigned long address)
1080{
 
1081	/*
1082	 * The page's anon-rmap details (mapping and index) are guaranteed to
1083	 * be set up correctly at this point.
1084	 *
1085	 * We have exclusion against page_add_anon_rmap because the caller
1086	 * always holds the page locked.
 
1087	 *
1088	 * We have exclusion against page_add_new_anon_rmap because those pages
1089	 * are initially only visible via the pagetables, and the pte is locked
1090	 * over the call to page_add_new_anon_rmap.
1091	 */
1092	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1093	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1094		       page);
1095}
1096
1097/**
1098 * page_add_anon_rmap - add pte mapping to an anonymous page
1099 * @page:	the page to add the mapping to
1100 * @vma:	the vm area in which the mapping is added
1101 * @address:	the user virtual address mapped
1102 * @compound:	charge the page as compound or small page
1103 *
1104 * The caller needs to hold the pte lock, and the page must be locked in
1105 * the anon_vma case: to serialize mapping,index checking after setting,
1106 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1107 * (but PageKsm is never downgraded to PageAnon).
1108 */
1109void page_add_anon_rmap(struct page *page,
1110	struct vm_area_struct *vma, unsigned long address, bool compound)
1111{
1112	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1113}
1114
1115/*
1116 * Special version of the above for do_swap_page, which often runs
1117 * into pages that are exclusively owned by the current process.
1118 * Everybody else should continue to use page_add_anon_rmap above.
1119 */
1120void do_page_add_anon_rmap(struct page *page,
1121	struct vm_area_struct *vma, unsigned long address, int flags)
1122{
1123	bool compound = flags & RMAP_COMPOUND;
1124	bool first;
1125
1126	if (unlikely(PageKsm(page)))
1127		lock_page_memcg(page);
1128	else
1129		VM_BUG_ON_PAGE(!PageLocked(page), page);
1130
1131	if (compound) {
1132		atomic_t *mapcount;
1133		VM_BUG_ON_PAGE(!PageLocked(page), page);
1134		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1135		mapcount = compound_mapcount_ptr(page);
1136		first = atomic_inc_and_test(mapcount);
1137	} else {
1138		first = atomic_inc_and_test(&page->_mapcount);
1139	}
1140
1141	if (first) {
1142		int nr = compound ? thp_nr_pages(page) : 1;
1143		/*
1144		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1145		 * these counters are not modified in interrupt context, and
1146		 * pte lock(a spinlock) is held, which implies preemption
1147		 * disabled.
1148		 */
1149		if (compound)
1150			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1151		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1152	}
1153
1154	if (unlikely(PageKsm(page))) {
1155		unlock_page_memcg(page);
1156		return;
1157	}
1158
 
1159	/* address might be in next vma when migration races vma_adjust */
1160	if (first)
1161		__page_set_anon_rmap(page, vma, address,
1162				flags & RMAP_EXCLUSIVE);
1163	else
1164		__page_check_anon_rmap(page, vma, address);
1165}
1166
1167/**
1168 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169 * @page:	the page to add the mapping to
1170 * @vma:	the vm area in which the mapping is added
1171 * @address:	the user virtual address mapped
1172 * @compound:	charge the page as compound or small page
1173 *
1174 * Same as page_add_anon_rmap but must only be called on *new* pages.
1175 * This means the inc-and-test can be bypassed.
1176 * Page does not have to be locked.
1177 */
1178void page_add_new_anon_rmap(struct page *page,
1179	struct vm_area_struct *vma, unsigned long address, bool compound)
1180{
1181	int nr = compound ? thp_nr_pages(page) : 1;
1182
1183	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1184	__SetPageSwapBacked(page);
1185	if (compound) {
1186		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1187		/* increment count (starts at -1) */
1188		atomic_set(compound_mapcount_ptr(page), 0);
1189		if (hpage_pincount_available(page))
1190			atomic_set(compound_pincount_ptr(page), 0);
1191
1192		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1193	} else {
1194		/* Anon THP always mapped first with PMD */
1195		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1196		/* increment count (starts at -1) */
1197		atomic_set(&page->_mapcount, 0);
1198	}
1199	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1200	__page_set_anon_rmap(page, vma, address, 1);
 
 
 
 
1201}
1202
1203/**
1204 * page_add_file_rmap - add pte mapping to a file page
1205 * @page: the page to add the mapping to
1206 * @compound: charge the page as compound or small page
1207 *
1208 * The caller needs to hold the pte lock.
1209 */
1210void page_add_file_rmap(struct page *page, bool compound)
1211{
1212	int i, nr = 1;
1213
1214	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1215	lock_page_memcg(page);
1216	if (compound && PageTransHuge(page)) {
1217		int nr_pages = thp_nr_pages(page);
1218
1219		for (i = 0, nr = 0; i < nr_pages; i++) {
1220			if (atomic_inc_and_test(&page[i]._mapcount))
1221				nr++;
1222		}
1223		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1224			goto out;
1225		if (PageSwapBacked(page))
1226			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1227						nr_pages);
1228		else
1229			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1230						nr_pages);
1231	} else {
1232		if (PageTransCompound(page) && page_mapping(page)) {
1233			VM_WARN_ON_ONCE(!PageLocked(page));
1234
1235			SetPageDoubleMap(compound_head(page));
1236			if (PageMlocked(page))
1237				clear_page_mlock(compound_head(page));
1238		}
1239		if (!atomic_inc_and_test(&page->_mapcount))
1240			goto out;
1241	}
1242	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1243out:
1244	unlock_page_memcg(page);
1245}
1246
1247static void page_remove_file_rmap(struct page *page, bool compound)
1248{
1249	int i, nr = 1;
1250
1251	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1252
1253	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1254	if (unlikely(PageHuge(page))) {
1255		/* hugetlb pages are always mapped with pmds */
1256		atomic_dec(compound_mapcount_ptr(page));
1257		return;
1258	}
1259
1260	/* page still mapped by someone else? */
1261	if (compound && PageTransHuge(page)) {
1262		int nr_pages = thp_nr_pages(page);
1263
1264		for (i = 0, nr = 0; i < nr_pages; i++) {
1265			if (atomic_add_negative(-1, &page[i]._mapcount))
1266				nr++;
1267		}
1268		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1269			return;
1270		if (PageSwapBacked(page))
1271			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1272						-nr_pages);
1273		else
1274			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1275						-nr_pages);
1276	} else {
1277		if (!atomic_add_negative(-1, &page->_mapcount))
1278			return;
1279	}
1280
1281	/*
1282	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1283	 * these counters are not modified in interrupt context, and
1284	 * pte lock(a spinlock) is held, which implies preemption disabled.
1285	 */
1286	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1287
1288	if (unlikely(PageMlocked(page)))
1289		clear_page_mlock(page);
1290}
1291
1292static void page_remove_anon_compound_rmap(struct page *page)
1293{
1294	int i, nr;
1295
1296	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1297		return;
1298
1299	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1300	if (unlikely(PageHuge(page)))
1301		return;
1302
1303	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1304		return;
1305
1306	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1307
1308	if (TestClearPageDoubleMap(page)) {
1309		/*
1310		 * Subpages can be mapped with PTEs too. Check how many of
1311		 * them are still mapped.
1312		 */
1313		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1314			if (atomic_add_negative(-1, &page[i]._mapcount))
1315				nr++;
1316		}
1317
1318		/*
1319		 * Queue the page for deferred split if at least one small
1320		 * page of the compound page is unmapped, but at least one
1321		 * small page is still mapped.
1322		 */
1323		if (nr && nr < thp_nr_pages(page))
1324			deferred_split_huge_page(page);
1325	} else {
1326		nr = thp_nr_pages(page);
1327	}
1328
1329	if (unlikely(PageMlocked(page)))
1330		clear_page_mlock(page);
1331
1332	if (nr)
1333		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1334}
1335
1336/**
1337 * page_remove_rmap - take down pte mapping from a page
1338 * @page:	page to remove mapping from
1339 * @compound:	uncharge the page as compound or small page
1340 *
1341 * The caller needs to hold the pte lock.
1342 */
1343void page_remove_rmap(struct page *page, bool compound)
1344{
1345	lock_page_memcg(page);
1346
1347	if (!PageAnon(page)) {
1348		page_remove_file_rmap(page, compound);
1349		goto out;
1350	}
1351
1352	if (compound) {
1353		page_remove_anon_compound_rmap(page);
1354		goto out;
1355	}
 
 
 
1356
1357	/* page still mapped by someone else? */
1358	if (!atomic_add_negative(-1, &page->_mapcount))
1359		goto out;
1360
1361	/*
1362	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1363	 * these counters are not modified in interrupt context, and
1364	 * pte lock(a spinlock) is held, which implies preemption disabled.
 
 
 
 
 
 
 
 
 
1365	 */
1366	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1367
1368	if (unlikely(PageMlocked(page)))
1369		clear_page_mlock(page);
1370
1371	if (PageTransCompound(page))
1372		deferred_split_huge_page(compound_head(page));
1373
 
 
 
 
 
1374	/*
1375	 * It would be tidy to reset the PageAnon mapping here,
1376	 * but that might overwrite a racing page_add_anon_rmap
1377	 * which increments mapcount after us but sets mapping
1378	 * before us: so leave the reset to free_unref_page,
1379	 * and remember that it's only reliable while mapped.
1380	 * Leaving it set also helps swapoff to reinstate ptes
1381	 * faster for those pages still in swapcache.
1382	 */
1383out:
1384	unlock_page_memcg(page);
 
1385}
1386
1387/*
1388 * @arg: enum ttu_flags will be passed to this argument
 
1389 */
1390static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1391		     unsigned long address, void *arg)
1392{
1393	struct mm_struct *mm = vma->vm_mm;
1394	struct page_vma_mapped_walk pvmw = {
1395		.page = page,
1396		.vma = vma,
1397		.address = address,
1398	};
1399	pte_t pteval;
1400	struct page *subpage;
1401	bool ret = true;
1402	struct mmu_notifier_range range;
1403	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1404
1405	/*
1406	 * When racing against e.g. zap_pte_range() on another cpu,
1407	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1408	 * try_to_unmap() may return before page_mapped() has become false,
1409	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1410	 */
1411	if (flags & TTU_SYNC)
1412		pvmw.flags = PVMW_SYNC;
1413
1414	if (flags & TTU_SPLIT_HUGE_PMD)
1415		split_huge_pmd_address(vma, address, false, page);
 
1416
1417	/*
1418	 * For THP, we have to assume the worse case ie pmd for invalidation.
1419	 * For hugetlb, it could be much worse if we need to do pud
1420	 * invalidation in the case of pmd sharing.
1421	 *
1422	 * Note that the page can not be free in this function as call of
1423	 * try_to_unmap() must hold a reference on the page.
1424	 */
1425	range.end = PageKsm(page) ?
1426			address + PAGE_SIZE : vma_address_end(page, vma);
1427	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1428				address, range.end);
1429	if (PageHuge(page)) {
1430		/*
1431		 * If sharing is possible, start and end will be adjusted
1432		 * accordingly.
1433		 */
1434		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1435						     &range.end);
1436	}
1437	mmu_notifier_invalidate_range_start(&range);
1438
1439	while (page_vma_mapped_walk(&pvmw)) {
1440		/*
1441		 * If the page is mlock()d, we cannot swap it out.
1442		 */
1443		if (!(flags & TTU_IGNORE_MLOCK) &&
1444		    (vma->vm_flags & VM_LOCKED)) {
1445			/*
1446			 * PTE-mapped THP are never marked as mlocked: so do
1447			 * not set it on a DoubleMap THP, nor on an Anon THP
1448			 * (which may still be PTE-mapped after DoubleMap was
1449			 * cleared).  But stop unmapping even in those cases.
1450			 */
1451			if (!PageTransCompound(page) || (PageHead(page) &&
1452			     !PageDoubleMap(page) && !PageAnon(page)))
1453				mlock_vma_page(page);
1454			page_vma_mapped_walk_done(&pvmw);
1455			ret = false;
1456			break;
1457		}
1458
1459		/* Unexpected PMD-mapped THP? */
1460		VM_BUG_ON_PAGE(!pvmw.pte, page);
1461
1462		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1463		address = pvmw.address;
1464
1465		if (PageHuge(page) && !PageAnon(page)) {
1466			/*
1467			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1468			 * held in write mode.  Caller needs to explicitly
1469			 * do this outside rmap routines.
1470			 */
1471			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1472			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1473				/*
1474				 * huge_pmd_unshare unmapped an entire PMD
1475				 * page.  There is no way of knowing exactly
1476				 * which PMDs may be cached for this mm, so
1477				 * we must flush them all.  start/end were
1478				 * already adjusted above to cover this range.
1479				 */
1480				flush_cache_range(vma, range.start, range.end);
1481				flush_tlb_range(vma, range.start, range.end);
1482				mmu_notifier_invalidate_range(mm, range.start,
1483							      range.end);
1484
1485				/*
1486				 * The ref count of the PMD page was dropped
1487				 * which is part of the way map counting
1488				 * is done for shared PMDs.  Return 'true'
1489				 * here.  When there is no other sharing,
1490				 * huge_pmd_unshare returns false and we will
1491				 * unmap the actual page and drop map count
1492				 * to zero.
1493				 */
1494				page_vma_mapped_walk_done(&pvmw);
1495				break;
1496			}
1497		}
 
1498
1499		/* Nuke the page table entry. */
1500		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1501		if (should_defer_flush(mm, flags)) {
1502			/*
1503			 * We clear the PTE but do not flush so potentially
1504			 * a remote CPU could still be writing to the page.
1505			 * If the entry was previously clean then the
1506			 * architecture must guarantee that a clear->dirty
1507			 * transition on a cached TLB entry is written through
1508			 * and traps if the PTE is unmapped.
1509			 */
1510			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1511
1512			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1513		} else {
1514			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1515		}
1516
1517		/* Move the dirty bit to the page. Now the pte is gone. */
1518		if (pte_dirty(pteval))
1519			set_page_dirty(page);
1520
1521		/* Update high watermark before we lower rss */
1522		update_hiwater_rss(mm);
1523
1524		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1525			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1526			if (PageHuge(page)) {
1527				hugetlb_count_sub(compound_nr(page), mm);
1528				set_huge_swap_pte_at(mm, address,
1529						     pvmw.pte, pteval,
1530						     vma_mmu_pagesize(vma));
1531			} else {
1532				dec_mm_counter(mm, mm_counter(page));
1533				set_pte_at(mm, address, pvmw.pte, pteval);
1534			}
1535
1536		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1537			/*
1538			 * The guest indicated that the page content is of no
1539			 * interest anymore. Simply discard the pte, vmscan
1540			 * will take care of the rest.
1541			 * A future reference will then fault in a new zero
1542			 * page. When userfaultfd is active, we must not drop
1543			 * this page though, as its main user (postcopy
1544			 * migration) will not expect userfaults on already
1545			 * copied pages.
1546			 */
1547			dec_mm_counter(mm, mm_counter(page));
1548			/* We have to invalidate as we cleared the pte */
1549			mmu_notifier_invalidate_range(mm, address,
1550						      address + PAGE_SIZE);
1551		} else if (PageAnon(page)) {
1552			swp_entry_t entry = { .val = page_private(subpage) };
1553			pte_t swp_pte;
1554			/*
1555			 * Store the swap location in the pte.
1556			 * See handle_pte_fault() ...
1557			 */
1558			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1559				WARN_ON_ONCE(1);
1560				ret = false;
1561				/* We have to invalidate as we cleared the pte */
1562				mmu_notifier_invalidate_range(mm, address,
1563							address + PAGE_SIZE);
1564				page_vma_mapped_walk_done(&pvmw);
1565				break;
1566			}
1567
1568			/* MADV_FREE page check */
1569			if (!PageSwapBacked(page)) {
1570				if (!PageDirty(page)) {
1571					/* Invalidate as we cleared the pte */
1572					mmu_notifier_invalidate_range(mm,
1573						address, address + PAGE_SIZE);
1574					dec_mm_counter(mm, MM_ANONPAGES);
1575					goto discard;
1576				}
1577
1578				/*
1579				 * If the page was redirtied, it cannot be
1580				 * discarded. Remap the page to page table.
1581				 */
1582				set_pte_at(mm, address, pvmw.pte, pteval);
1583				SetPageSwapBacked(page);
1584				ret = false;
1585				page_vma_mapped_walk_done(&pvmw);
1586				break;
1587			}
1588
1589			if (swap_duplicate(entry) < 0) {
1590				set_pte_at(mm, address, pvmw.pte, pteval);
1591				ret = false;
1592				page_vma_mapped_walk_done(&pvmw);
1593				break;
1594			}
1595			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1596				set_pte_at(mm, address, pvmw.pte, pteval);
1597				ret = false;
1598				page_vma_mapped_walk_done(&pvmw);
1599				break;
1600			}
1601			if (list_empty(&mm->mmlist)) {
1602				spin_lock(&mmlist_lock);
1603				if (list_empty(&mm->mmlist))
1604					list_add(&mm->mmlist, &init_mm.mmlist);
1605				spin_unlock(&mmlist_lock);
1606			}
1607			dec_mm_counter(mm, MM_ANONPAGES);
1608			inc_mm_counter(mm, MM_SWAPENTS);
1609			swp_pte = swp_entry_to_pte(entry);
1610			if (pte_soft_dirty(pteval))
1611				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1612			if (pte_uffd_wp(pteval))
1613				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1614			set_pte_at(mm, address, pvmw.pte, swp_pte);
1615			/* Invalidate as we cleared the pte */
1616			mmu_notifier_invalidate_range(mm, address,
1617						      address + PAGE_SIZE);
1618		} else {
1619			/*
1620			 * This is a locked file-backed page, thus it cannot
1621			 * be removed from the page cache and replaced by a new
1622			 * page before mmu_notifier_invalidate_range_end, so no
1623			 * concurrent thread might update its page table to
1624			 * point at new page while a device still is using this
1625			 * page.
1626			 *
1627			 * See Documentation/vm/mmu_notifier.rst
1628			 */
1629			dec_mm_counter(mm, mm_counter_file(page));
 
1630		}
1631discard:
1632		/*
1633		 * No need to call mmu_notifier_invalidate_range() it has be
1634		 * done above for all cases requiring it to happen under page
1635		 * table lock before mmu_notifier_invalidate_range_end()
1636		 *
1637		 * See Documentation/vm/mmu_notifier.rst
1638		 */
1639		page_remove_rmap(subpage, PageHuge(page));
1640		put_page(page);
1641	}
1642
1643	mmu_notifier_invalidate_range_end(&range);
 
1644
 
 
 
1645	return ret;
1646}
1647
1648static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1649{
1650	return vma_is_temporary_stack(vma);
1651}
1652
1653static int page_not_mapped(struct page *page)
1654{
1655	return !page_mapped(page);
1656}
1657
1658/**
1659 * try_to_unmap - try to remove all page table mappings to a page
1660 * @page: the page to get unmapped
1661 * @flags: action and flags
1662 *
1663 * Tries to remove all the page table entries which are mapping this
1664 * page, used in the pageout path.  Caller must hold the page lock.
1665 *
1666 * It is the caller's responsibility to check if the page is still
1667 * mapped when needed (use TTU_SYNC to prevent accounting races).
1668 */
1669void try_to_unmap(struct page *page, enum ttu_flags flags)
1670{
1671	struct rmap_walk_control rwc = {
1672		.rmap_one = try_to_unmap_one,
1673		.arg = (void *)flags,
1674		.done = page_not_mapped,
1675		.anon_lock = page_lock_anon_vma_read,
1676	};
1677
1678	if (flags & TTU_RMAP_LOCKED)
1679		rmap_walk_locked(page, &rwc);
1680	else
1681		rmap_walk(page, &rwc);
1682}
1683
1684/*
1685 * @arg: enum ttu_flags will be passed to this argument.
1686 *
1687 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1688 * containing migration entries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689 */
1690static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1691		     unsigned long address, void *arg)
 
 
 
1692{
1693	struct mm_struct *mm = vma->vm_mm;
1694	struct page_vma_mapped_walk pvmw = {
1695		.page = page,
1696		.vma = vma,
1697		.address = address,
1698	};
1699	pte_t pteval;
1700	struct page *subpage;
1701	bool ret = true;
1702	struct mmu_notifier_range range;
1703	enum ttu_flags flags = (enum ttu_flags)(long)arg;
 
 
 
 
 
 
 
 
 
1704
1705	/*
1706	 * When racing against e.g. zap_pte_range() on another cpu,
1707	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1708	 * try_to_migrate() may return before page_mapped() has become false,
1709	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1710	 */
1711	if (flags & TTU_SYNC)
1712		pvmw.flags = PVMW_SYNC;
1713
1714	/*
1715	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1716	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1717	 */
1718	if (flags & TTU_SPLIT_HUGE_PMD)
1719		split_huge_pmd_address(vma, address, true, page);
 
1720
1721	/*
1722	 * For THP, we have to assume the worse case ie pmd for invalidation.
1723	 * For hugetlb, it could be much worse if we need to do pud
1724	 * invalidation in the case of pmd sharing.
1725	 *
1726	 * Note that the page can not be free in this function as call of
1727	 * try_to_unmap() must hold a reference on the page.
1728	 */
1729	range.end = PageKsm(page) ?
1730			address + PAGE_SIZE : vma_address_end(page, vma);
1731	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1732				address, range.end);
1733	if (PageHuge(page)) {
1734		/*
1735		 * If sharing is possible, start and end will be adjusted
1736		 * accordingly.
1737		 */
1738		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1739						     &range.end);
1740	}
1741	mmu_notifier_invalidate_range_start(&range);
1742
1743	while (page_vma_mapped_walk(&pvmw)) {
1744#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1745		/* PMD-mapped THP migration entry */
1746		if (!pvmw.pte) {
1747			VM_BUG_ON_PAGE(PageHuge(page) ||
1748				       !PageTransCompound(page), page);
1749
1750			set_pmd_migration_entry(&pvmw, page);
1751			continue;
1752		}
1753#endif
1754
1755		/* Unexpected PMD-mapped THP? */
1756		VM_BUG_ON_PAGE(!pvmw.pte, page);
1757
1758		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1759		address = pvmw.address;
1760
1761		if (PageHuge(page) && !PageAnon(page)) {
1762			/*
1763			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1764			 * held in write mode.  Caller needs to explicitly
1765			 * do this outside rmap routines.
1766			 */
1767			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1768			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1769				/*
1770				 * huge_pmd_unshare unmapped an entire PMD
1771				 * page.  There is no way of knowing exactly
1772				 * which PMDs may be cached for this mm, so
1773				 * we must flush them all.  start/end were
1774				 * already adjusted above to cover this range.
1775				 */
1776				flush_cache_range(vma, range.start, range.end);
1777				flush_tlb_range(vma, range.start, range.end);
1778				mmu_notifier_invalidate_range(mm, range.start,
1779							      range.end);
1780
1781				/*
1782				 * The ref count of the PMD page was dropped
1783				 * which is part of the way map counting
1784				 * is done for shared PMDs.  Return 'true'
1785				 * here.  When there is no other sharing,
1786				 * huge_pmd_unshare returns false and we will
1787				 * unmap the actual page and drop map count
1788				 * to zero.
1789				 */
1790				page_vma_mapped_walk_done(&pvmw);
1791				break;
1792			}
1793		}
1794
 
 
 
1795		/* Nuke the page table entry. */
1796		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1797		pteval = ptep_clear_flush(vma, address, pvmw.pte);
 
 
 
 
1798
1799		/* Move the dirty bit to the page. Now the pte is gone. */
1800		if (pte_dirty(pteval))
1801			set_page_dirty(page);
1802
1803		/* Update high watermark before we lower rss */
1804		update_hiwater_rss(mm);
1805
1806		if (is_zone_device_page(page)) {
1807			swp_entry_t entry;
1808			pte_t swp_pte;
1809
1810			/*
1811			 * Store the pfn of the page in a special migration
1812			 * pte. do_swap_page() will wait until the migration
1813			 * pte is removed and then restart fault handling.
1814			 */
1815			entry = make_readable_migration_entry(
1816							page_to_pfn(page));
1817			swp_pte = swp_entry_to_pte(entry);
1818
1819			/*
1820			 * pteval maps a zone device page and is therefore
1821			 * a swap pte.
1822			 */
1823			if (pte_swp_soft_dirty(pteval))
1824				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1825			if (pte_swp_uffd_wp(pteval))
1826				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1827			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1828			/*
1829			 * No need to invalidate here it will synchronize on
1830			 * against the special swap migration pte.
1831			 *
1832			 * The assignment to subpage above was computed from a
1833			 * swap PTE which results in an invalid pointer.
1834			 * Since only PAGE_SIZE pages can currently be
1835			 * migrated, just set it to page. This will need to be
1836			 * changed when hugepage migrations to device private
1837			 * memory are supported.
1838			 */
1839			subpage = page;
1840		} else if (PageHWPoison(page)) {
1841			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1842			if (PageHuge(page)) {
1843				hugetlb_count_sub(compound_nr(page), mm);
1844				set_huge_swap_pte_at(mm, address,
1845						     pvmw.pte, pteval,
1846						     vma_mmu_pagesize(vma));
1847			} else {
1848				dec_mm_counter(mm, mm_counter(page));
1849				set_pte_at(mm, address, pvmw.pte, pteval);
1850			}
1851
1852		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1853			/*
1854			 * The guest indicated that the page content is of no
1855			 * interest anymore. Simply discard the pte, vmscan
1856			 * will take care of the rest.
1857			 * A future reference will then fault in a new zero
1858			 * page. When userfaultfd is active, we must not drop
1859			 * this page though, as its main user (postcopy
1860			 * migration) will not expect userfaults on already
1861			 * copied pages.
1862			 */
1863			dec_mm_counter(mm, mm_counter(page));
1864			/* We have to invalidate as we cleared the pte */
1865			mmu_notifier_invalidate_range(mm, address,
1866						      address + PAGE_SIZE);
1867		} else {
1868			swp_entry_t entry;
1869			pte_t swp_pte;
1870
1871			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1872				set_pte_at(mm, address, pvmw.pte, pteval);
1873				ret = false;
1874				page_vma_mapped_walk_done(&pvmw);
1875				break;
1876			}
1877
1878			/*
1879			 * Store the pfn of the page in a special migration
1880			 * pte. do_swap_page() will wait until the migration
1881			 * pte is removed and then restart fault handling.
1882			 */
1883			if (pte_write(pteval))
1884				entry = make_writable_migration_entry(
1885							page_to_pfn(subpage));
1886			else
1887				entry = make_readable_migration_entry(
1888							page_to_pfn(subpage));
1889
1890			swp_pte = swp_entry_to_pte(entry);
1891			if (pte_soft_dirty(pteval))
1892				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1893			if (pte_uffd_wp(pteval))
1894				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1895			set_pte_at(mm, address, pvmw.pte, swp_pte);
1896			/*
1897			 * No need to invalidate here it will synchronize on
1898			 * against the special swap migration pte.
1899			 */
1900		}
1901
1902		/*
1903		 * No need to call mmu_notifier_invalidate_range() it has be
1904		 * done above for all cases requiring it to happen under page
1905		 * table lock before mmu_notifier_invalidate_range_end()
1906		 *
1907		 * See Documentation/vm/mmu_notifier.rst
1908		 */
1909		page_remove_rmap(subpage, PageHuge(page));
1910		put_page(page);
1911	}
1912
1913	mmu_notifier_invalidate_range_end(&range);
 
 
1914
1915	return ret;
1916}
1917
1918/**
1919 * try_to_migrate - try to replace all page table mappings with swap entries
1920 * @page: the page to replace page table entries for
 
1921 * @flags: action and flags
1922 *
1923 * Tries to remove all the page table entries which are mapping this page and
1924 * replace them with special swap entries. Caller must hold the page lock.
 
 
 
 
 
 
 
1925 */
1926void try_to_migrate(struct page *page, enum ttu_flags flags)
1927{
1928	struct rmap_walk_control rwc = {
1929		.rmap_one = try_to_migrate_one,
1930		.arg = (void *)flags,
1931		.done = page_not_mapped,
1932		.anon_lock = page_lock_anon_vma_read,
1933	};
1934
1935	/*
1936	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1937	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1938	 */
1939	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1940					TTU_SYNC)))
1941		return;
1942
1943	if (is_zone_device_page(page) && !is_device_private_page(page))
1944		return;
1945
1946	/*
1947	 * During exec, a temporary VMA is setup and later moved.
1948	 * The VMA is moved under the anon_vma lock but not the
1949	 * page tables leading to a race where migration cannot
1950	 * find the migration ptes. Rather than increasing the
1951	 * locking requirements of exec(), migration skips
1952	 * temporary VMAs until after exec() completes.
1953	 */
1954	if (!PageKsm(page) && PageAnon(page))
1955		rwc.invalid_vma = invalid_migration_vma;
1956
1957	if (flags & TTU_RMAP_LOCKED)
1958		rmap_walk_locked(page, &rwc);
1959	else
1960		rmap_walk(page, &rwc);
1961}
1962
1963/*
1964 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1965 * found. Once one is found the page is locked and the scan can be terminated.
1966 */
1967static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1968				 unsigned long address, void *unused)
1969{
1970	struct page_vma_mapped_walk pvmw = {
1971		.page = page,
1972		.vma = vma,
1973		.address = address,
1974	};
1975
1976	/* An un-locked vma doesn't have any pages to lock, continue the scan */
1977	if (!(vma->vm_flags & VM_LOCKED))
1978		return true;
1979
1980	while (page_vma_mapped_walk(&pvmw)) {
1981		/*
1982		 * Need to recheck under the ptl to serialise with
1983		 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1984		 * munlock_vma_pages_range().
 
 
 
1985		 */
1986		if (vma->vm_flags & VM_LOCKED) {
1987			/*
1988			 * PTE-mapped THP are never marked as mlocked; but
1989			 * this function is never called on a DoubleMap THP,
1990			 * nor on an Anon THP (which may still be PTE-mapped
1991			 * after DoubleMap was cleared).
1992			 */
1993			mlock_vma_page(page);
1994			/*
1995			 * No need to scan further once the page is marked
1996			 * as mlocked.
1997			 */
1998			page_vma_mapped_walk_done(&pvmw);
1999			return false;
2000		}
2001	}
2002
2003	return true;
 
2004}
2005
2006/**
2007 * page_mlock - try to mlock a page
2008 * @page: the page to be mlocked
 
 
 
 
2009 *
2010 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2011 * the page if any are found. The page will be returned with PG_mlocked cleared
2012 * if it is not mapped by any locked vmas.
 
 
 
2013 */
2014void page_mlock(struct page *page)
2015{
2016	struct rmap_walk_control rwc = {
2017		.rmap_one = page_mlock_one,
2018		.done = page_not_mapped,
2019		.anon_lock = page_lock_anon_vma_read,
2020
2021	};
2022
2023	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2024	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2025
2026	/* Anon THP are only marked as mlocked when singly mapped */
2027	if (PageTransCompound(page) && PageAnon(page))
2028		return;
2029
2030	rmap_walk(page, &rwc);
2031}
2032
2033#ifdef CONFIG_DEVICE_PRIVATE
2034struct make_exclusive_args {
2035	struct mm_struct *mm;
2036	unsigned long address;
2037	void *owner;
2038	bool valid;
2039};
2040
2041static bool page_make_device_exclusive_one(struct page *page,
2042		struct vm_area_struct *vma, unsigned long address, void *priv)
2043{
2044	struct mm_struct *mm = vma->vm_mm;
2045	struct page_vma_mapped_walk pvmw = {
2046		.page = page,
2047		.vma = vma,
2048		.address = address,
2049	};
2050	struct make_exclusive_args *args = priv;
2051	pte_t pteval;
2052	struct page *subpage;
2053	bool ret = true;
2054	struct mmu_notifier_range range;
2055	swp_entry_t entry;
2056	pte_t swp_pte;
2057
2058	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2059				      vma->vm_mm, address, min(vma->vm_end,
2060				      address + page_size(page)), args->owner);
2061	mmu_notifier_invalidate_range_start(&range);
2062
2063	while (page_vma_mapped_walk(&pvmw)) {
2064		/* Unexpected PMD-mapped THP? */
2065		VM_BUG_ON_PAGE(!pvmw.pte, page);
2066
2067		if (!pte_present(*pvmw.pte)) {
2068			ret = false;
2069			page_vma_mapped_walk_done(&pvmw);
2070			break;
2071		}
2072
2073		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2074		address = pvmw.address;
2075
2076		/* Nuke the page table entry. */
2077		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2078		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2079
2080		/* Move the dirty bit to the page. Now the pte is gone. */
2081		if (pte_dirty(pteval))
2082			set_page_dirty(page);
 
 
 
 
 
 
2083
2084		/*
2085		 * Check that our target page is still mapped at the expected
2086		 * address.
2087		 */
2088		if (args->mm == mm && args->address == address &&
2089		    pte_write(pteval))
2090			args->valid = true;
2091
2092		/*
2093		 * Store the pfn of the page in a special migration
2094		 * pte. do_swap_page() will wait until the migration
2095		 * pte is removed and then restart fault handling.
2096		 */
2097		if (pte_write(pteval))
2098			entry = make_writable_device_exclusive_entry(
2099							page_to_pfn(subpage));
2100		else
2101			entry = make_readable_device_exclusive_entry(
2102							page_to_pfn(subpage));
2103		swp_pte = swp_entry_to_pte(entry);
2104		if (pte_soft_dirty(pteval))
2105			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2106		if (pte_uffd_wp(pteval))
2107			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2108
2109		set_pte_at(mm, address, pvmw.pte, swp_pte);
 
 
 
 
 
 
 
 
2110
2111		/*
2112		 * There is a reference on the page for the swap entry which has
2113		 * been removed, so shouldn't take another.
2114		 */
2115		page_remove_rmap(subpage, false);
2116	}
2117
2118	mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
 
 
 
 
 
2119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2120	return ret;
2121}
2122
2123/**
2124 * page_make_device_exclusive - mark the page exclusively owned by a device
2125 * @page: the page to replace page table entries for
2126 * @mm: the mm_struct where the page is expected to be mapped
2127 * @address: address where the page is expected to be mapped
2128 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2129 *
2130 * Tries to remove all the page table entries which are mapping this page and
2131 * replace them with special device exclusive swap entries to grant a device
2132 * exclusive access to the page. Caller must hold the page lock.
2133 *
2134 * Returns false if the page is still mapped, or if it could not be unmapped
2135 * from the expected address. Otherwise returns true (success).
2136 */
2137static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2138				unsigned long address, void *owner)
2139{
2140	struct make_exclusive_args args = {
2141		.mm = mm,
2142		.address = address,
2143		.owner = owner,
2144		.valid = false,
2145	};
2146	struct rmap_walk_control rwc = {
2147		.rmap_one = page_make_device_exclusive_one,
2148		.done = page_not_mapped,
2149		.anon_lock = page_lock_anon_vma_read,
2150		.arg = &args,
2151	};
2152
2153	/*
2154	 * Restrict to anonymous pages for now to avoid potential writeback
2155	 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2156	 * those.
2157	 */
2158	if (!PageAnon(page) || PageTail(page))
2159		return false;
2160
2161	rmap_walk(page, &rwc);
 
2162
2163	return args.valid && !page_mapcount(page);
 
 
 
 
 
 
 
 
2164}
2165
2166/**
2167 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2168 * @mm: mm_struct of assoicated target process
2169 * @start: start of the region to mark for exclusive device access
2170 * @end: end address of region
2171 * @pages: returns the pages which were successfully marked for exclusive access
2172 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2173 *
2174 * Returns: number of pages found in the range by GUP. A page is marked for
2175 * exclusive access only if the page pointer is non-NULL.
2176 *
2177 * This function finds ptes mapping page(s) to the given address range, locks
2178 * them and replaces mappings with special swap entries preventing userspace CPU
2179 * access. On fault these entries are replaced with the original mapping after
2180 * calling MMU notifiers.
2181 *
2182 * A driver using this to program access from a device must use a mmu notifier
2183 * critical section to hold a device specific lock during programming. Once
2184 * programming is complete it should drop the page lock and reference after
2185 * which point CPU access to the page will revoke the exclusive access.
2186 */
2187int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2188				unsigned long end, struct page **pages,
2189				void *owner)
2190{
2191	long npages = (end - start) >> PAGE_SHIFT;
2192	long i;
2193
2194	npages = get_user_pages_remote(mm, start, npages,
2195				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2196				       pages, NULL, NULL);
2197	if (npages < 0)
2198		return npages;
2199
2200	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2201		if (!trylock_page(pages[i])) {
2202			put_page(pages[i]);
2203			pages[i] = NULL;
2204			continue;
2205		}
2206
2207		if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2208			unlock_page(pages[i]);
2209			put_page(pages[i]);
2210			pages[i] = NULL;
2211		}
2212	}
2213
2214	return npages;
 
 
 
 
 
2215}
2216EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2217#endif
2218
2219void __put_anon_vma(struct anon_vma *anon_vma)
2220{
2221	struct anon_vma *root = anon_vma->root;
2222
2223	anon_vma_free(anon_vma);
2224	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2225		anon_vma_free(root);
 
 
2226}
2227
2228static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2229					struct rmap_walk_control *rwc)
 
 
 
 
 
2230{
2231	struct anon_vma *anon_vma;
2232
2233	if (rwc->anon_lock)
2234		return rwc->anon_lock(page);
2235
2236	/*
2237	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2238	 * because that depends on page_mapped(); but not all its usages
2239	 * are holding mmap_lock. Users without mmap_lock are required to
2240	 * take a reference count to prevent the anon_vma disappearing
2241	 */
2242	anon_vma = page_anon_vma(page);
2243	if (!anon_vma)
2244		return NULL;
2245
2246	anon_vma_lock_read(anon_vma);
2247	return anon_vma;
2248}
2249
2250/*
2251 * rmap_walk_anon - do something to anonymous page using the object-based
2252 * rmap method
2253 * @page: the page to be handled
2254 * @rwc: control variable according to each walk type
2255 *
2256 * Find all the mappings of a page using the mapping pointer and the vma chains
2257 * contained in the anon_vma struct it points to.
2258 *
2259 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2260 * where the page was found will be held for write.  So, we won't recheck
2261 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2262 * LOCKED.
2263 */
2264static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2265		bool locked)
2266{
2267	struct anon_vma *anon_vma;
2268	pgoff_t pgoff_start, pgoff_end;
2269	struct anon_vma_chain *avc;
2270
2271	if (locked) {
2272		anon_vma = page_anon_vma(page);
2273		/* anon_vma disappear under us? */
2274		VM_BUG_ON_PAGE(!anon_vma, page);
2275	} else {
2276		anon_vma = rmap_walk_anon_lock(page, rwc);
2277	}
2278	if (!anon_vma)
2279		return;
2280
2281	pgoff_start = page_to_pgoff(page);
2282	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2283	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2284			pgoff_start, pgoff_end) {
2285		struct vm_area_struct *vma = avc->vma;
2286		unsigned long address = vma_address(page, vma);
2287
2288		VM_BUG_ON_VMA(address == -EFAULT, vma);
2289		cond_resched();
2290
2291		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2292			continue;
2293
2294		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2295			break;
2296		if (rwc->done && rwc->done(page))
2297			break;
2298	}
2299
2300	if (!locked)
2301		anon_vma_unlock_read(anon_vma);
2302}
2303
2304/*
2305 * rmap_walk_file - do something to file page using the object-based rmap method
2306 * @page: the page to be handled
2307 * @rwc: control variable according to each walk type
2308 *
2309 * Find all the mappings of a page using the mapping pointer and the vma chains
2310 * contained in the address_space struct it points to.
2311 *
2312 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2313 * where the page was found will be held for write.  So, we won't recheck
2314 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2315 * LOCKED.
2316 */
2317static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2318		bool locked)
2319{
2320	struct address_space *mapping = page_mapping(page);
2321	pgoff_t pgoff_start, pgoff_end;
2322	struct vm_area_struct *vma;
2323
2324	/*
2325	 * The page lock not only makes sure that page->mapping cannot
2326	 * suddenly be NULLified by truncation, it makes sure that the
2327	 * structure at mapping cannot be freed and reused yet,
2328	 * so we can safely take mapping->i_mmap_rwsem.
2329	 */
2330	VM_BUG_ON_PAGE(!PageLocked(page), page);
2331
2332	if (!mapping)
2333		return;
2334
2335	pgoff_start = page_to_pgoff(page);
2336	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2337	if (!locked)
2338		i_mmap_lock_read(mapping);
2339	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2340			pgoff_start, pgoff_end) {
2341		unsigned long address = vma_address(page, vma);
2342
2343		VM_BUG_ON_VMA(address == -EFAULT, vma);
2344		cond_resched();
2345
2346		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2347			continue;
2348
2349		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2350			goto done;
2351		if (rwc->done && rwc->done(page))
2352			goto done;
2353	}
2354
2355done:
2356	if (!locked)
2357		i_mmap_unlock_read(mapping);
 
 
 
2358}
2359
2360void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
 
2361{
 
 
2362	if (unlikely(PageKsm(page)))
2363		rmap_walk_ksm(page, rwc);
2364	else if (PageAnon(page))
2365		rmap_walk_anon(page, rwc, false);
2366	else
2367		rmap_walk_file(page, rwc, false);
2368}
2369
2370/* Like rmap_walk, but caller holds relevant rmap lock */
2371void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2372{
2373	/* no ksm support for now */
2374	VM_BUG_ON_PAGE(PageKsm(page), page);
2375	if (PageAnon(page))
2376		rmap_walk_anon(page, rwc, true);
2377	else
2378		rmap_walk_file(page, rwc, true);
2379}
 
2380
2381#ifdef CONFIG_HUGETLB_PAGE
2382/*
2383 * The following two functions are for anonymous (private mapped) hugepages.
2384 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2385 * and no lru code, because we handle hugepages differently from common pages.
2386 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387void hugepage_add_anon_rmap(struct page *page,
2388			    struct vm_area_struct *vma, unsigned long address)
2389{
2390	struct anon_vma *anon_vma = vma->anon_vma;
2391	int first;
2392
2393	BUG_ON(!PageLocked(page));
2394	BUG_ON(!anon_vma);
2395	/* address might be in next vma when migration races vma_adjust */
2396	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2397	if (first)
2398		__page_set_anon_rmap(page, vma, address, 0);
2399}
2400
2401void hugepage_add_new_anon_rmap(struct page *page,
2402			struct vm_area_struct *vma, unsigned long address)
2403{
2404	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2405	atomic_set(compound_mapcount_ptr(page), 0);
2406	if (hpage_pincount_available(page))
2407		atomic_set(compound_pincount_ptr(page), 0);
2408
2409	__page_set_anon_rmap(page, vma, address, 1);
2410}
2411#endif /* CONFIG_HUGETLB_PAGE */
v3.5.6
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->mutex
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
 
 
 
 
  39 *
  40 * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
 
 
 
 
 
  43 */
  44
  45#include <linux/mm.h>
 
 
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/export.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
 
 
 
 
 
  59
  60#include <asm/tlbflush.h>
  61
 
 
  62#include "internal.h"
  63
  64static struct kmem_cache *anon_vma_cachep;
  65static struct kmem_cache *anon_vma_chain_cachep;
  66
  67static inline struct anon_vma *anon_vma_alloc(void)
  68{
  69	struct anon_vma *anon_vma;
  70
  71	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  72	if (anon_vma) {
  73		atomic_set(&anon_vma->refcount, 1);
 
 
  74		/*
  75		 * Initialise the anon_vma root to point to itself. If called
  76		 * from fork, the root will be reset to the parents anon_vma.
  77		 */
  78		anon_vma->root = anon_vma;
  79	}
  80
  81	return anon_vma;
  82}
  83
  84static inline void anon_vma_free(struct anon_vma *anon_vma)
  85{
  86	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  87
  88	/*
  89	 * Synchronize against page_lock_anon_vma() such that
  90	 * we can safely hold the lock without the anon_vma getting
  91	 * freed.
  92	 *
  93	 * Relies on the full mb implied by the atomic_dec_and_test() from
  94	 * put_anon_vma() against the acquire barrier implied by
  95	 * mutex_trylock() from page_lock_anon_vma(). This orders:
  96	 *
  97	 * page_lock_anon_vma()		VS	put_anon_vma()
  98	 *   mutex_trylock()			  atomic_dec_and_test()
  99	 *   LOCK				  MB
 100	 *   atomic_read()			  mutex_is_locked()
 101	 *
 102	 * LOCK should suffice since the actual taking of the lock must
 103	 * happen _before_ what follows.
 104	 */
 105	if (mutex_is_locked(&anon_vma->root->mutex)) {
 106		anon_vma_lock(anon_vma);
 107		anon_vma_unlock(anon_vma);
 
 108	}
 109
 110	kmem_cache_free(anon_vma_cachep, anon_vma);
 111}
 112
 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 114{
 115	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 116}
 117
 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 119{
 120	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 121}
 122
 123static void anon_vma_chain_link(struct vm_area_struct *vma,
 124				struct anon_vma_chain *avc,
 125				struct anon_vma *anon_vma)
 126{
 127	avc->vma = vma;
 128	avc->anon_vma = anon_vma;
 129	list_add(&avc->same_vma, &vma->anon_vma_chain);
 130
 131	/*
 132	 * It's critical to add new vmas to the tail of the anon_vma,
 133	 * see comment in huge_memory.c:__split_huge_page().
 134	 */
 135	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
 136}
 137
 138/**
 139 * anon_vma_prepare - attach an anon_vma to a memory region
 140 * @vma: the memory region in question
 141 *
 142 * This makes sure the memory mapping described by 'vma' has
 143 * an 'anon_vma' attached to it, so that we can associate the
 144 * anonymous pages mapped into it with that anon_vma.
 145 *
 146 * The common case will be that we already have one, but if
 
 147 * not we either need to find an adjacent mapping that we
 148 * can re-use the anon_vma from (very common when the only
 149 * reason for splitting a vma has been mprotect()), or we
 150 * allocate a new one.
 151 *
 152 * Anon-vma allocations are very subtle, because we may have
 153 * optimistically looked up an anon_vma in page_lock_anon_vma()
 154 * and that may actually touch the spinlock even in the newly
 155 * allocated vma (it depends on RCU to make sure that the
 156 * anon_vma isn't actually destroyed).
 157 *
 158 * As a result, we need to do proper anon_vma locking even
 159 * for the new allocation. At the same time, we do not want
 160 * to do any locking for the common case of already having
 161 * an anon_vma.
 162 *
 163 * This must be called with the mmap_sem held for reading.
 164 */
 165int anon_vma_prepare(struct vm_area_struct *vma)
 166{
 167	struct anon_vma *anon_vma = vma->anon_vma;
 
 168	struct anon_vma_chain *avc;
 169
 170	might_sleep();
 171	if (unlikely(!anon_vma)) {
 172		struct mm_struct *mm = vma->vm_mm;
 173		struct anon_vma *allocated;
 174
 175		avc = anon_vma_chain_alloc(GFP_KERNEL);
 176		if (!avc)
 177			goto out_enomem;
 178
 179		anon_vma = find_mergeable_anon_vma(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180		allocated = NULL;
 181		if (!anon_vma) {
 182			anon_vma = anon_vma_alloc();
 183			if (unlikely(!anon_vma))
 184				goto out_enomem_free_avc;
 185			allocated = anon_vma;
 186		}
 187
 188		anon_vma_lock(anon_vma);
 189		/* page_table_lock to protect against threads */
 190		spin_lock(&mm->page_table_lock);
 191		if (likely(!vma->anon_vma)) {
 192			vma->anon_vma = anon_vma;
 193			anon_vma_chain_link(vma, avc, anon_vma);
 194			allocated = NULL;
 195			avc = NULL;
 196		}
 197		spin_unlock(&mm->page_table_lock);
 198		anon_vma_unlock(anon_vma);
 199
 200		if (unlikely(allocated))
 201			put_anon_vma(allocated);
 202		if (unlikely(avc))
 203			anon_vma_chain_free(avc);
 204	}
 
 
 
 
 
 
 
 
 205	return 0;
 206
 207 out_enomem_free_avc:
 208	anon_vma_chain_free(avc);
 209 out_enomem:
 210	return -ENOMEM;
 211}
 212
 213/*
 214 * This is a useful helper function for locking the anon_vma root as
 215 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 216 * have the same vma.
 217 *
 218 * Such anon_vma's should have the same root, so you'd expect to see
 219 * just a single mutex_lock for the whole traversal.
 220 */
 221static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 222{
 223	struct anon_vma *new_root = anon_vma->root;
 224	if (new_root != root) {
 225		if (WARN_ON_ONCE(root))
 226			mutex_unlock(&root->mutex);
 227		root = new_root;
 228		mutex_lock(&root->mutex);
 229	}
 230	return root;
 231}
 232
 233static inline void unlock_anon_vma_root(struct anon_vma *root)
 234{
 235	if (root)
 236		mutex_unlock(&root->mutex);
 237}
 238
 239/*
 240 * Attach the anon_vmas from src to dst.
 241 * Returns 0 on success, -ENOMEM on failure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242 */
 243int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 244{
 245	struct anon_vma_chain *avc, *pavc;
 246	struct anon_vma *root = NULL;
 247
 248	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 249		struct anon_vma *anon_vma;
 250
 251		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 252		if (unlikely(!avc)) {
 253			unlock_anon_vma_root(root);
 254			root = NULL;
 255			avc = anon_vma_chain_alloc(GFP_KERNEL);
 256			if (!avc)
 257				goto enomem_failure;
 258		}
 259		anon_vma = pavc->anon_vma;
 260		root = lock_anon_vma_root(root, anon_vma);
 261		anon_vma_chain_link(dst, avc, anon_vma);
 
 
 
 
 
 
 
 
 
 
 
 
 262	}
 
 
 263	unlock_anon_vma_root(root);
 264	return 0;
 265
 266 enomem_failure:
 
 
 
 
 
 
 
 267	unlink_anon_vmas(dst);
 268	return -ENOMEM;
 269}
 270
 271/*
 272 * Some rmap walk that needs to find all ptes/hugepmds without false
 273 * negatives (like migrate and split_huge_page) running concurrent
 274 * with operations that copy or move pagetables (like mremap() and
 275 * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
 276 * list to be in a certain order: the dst_vma must be placed after the
 277 * src_vma in the list. This is always guaranteed by fork() but
 278 * mremap() needs to call this function to enforce it in case the
 279 * dst_vma isn't newly allocated and chained with the anon_vma_clone()
 280 * function but just an extension of a pre-existing vma through
 281 * vma_merge.
 282 *
 283 * NOTE: the same_anon_vma list can still be changed by other
 284 * processes while mremap runs because mremap doesn't hold the
 285 * anon_vma mutex to prevent modifications to the list while it
 286 * runs. All we need to enforce is that the relative order of this
 287 * process vmas isn't changing (we don't care about other vmas
 288 * order). Each vma corresponds to an anon_vma_chain structure so
 289 * there's no risk that other processes calling anon_vma_moveto_tail()
 290 * and changing the same_anon_vma list under mremap() will screw with
 291 * the relative order of this process vmas in the list, because we
 292 * they can't alter the order of any vma that belongs to this
 293 * process. And there can't be another anon_vma_moveto_tail() running
 294 * concurrently with mremap() coming from this process because we hold
 295 * the mmap_sem for the whole mremap(). fork() ordering dependency
 296 * also shouldn't be affected because fork() only cares that the
 297 * parent vmas are placed in the list before the child vmas and
 298 * anon_vma_moveto_tail() won't reorder vmas from either the fork()
 299 * parent or child.
 300 */
 301void anon_vma_moveto_tail(struct vm_area_struct *dst)
 302{
 303	struct anon_vma_chain *pavc;
 304	struct anon_vma *root = NULL;
 305
 306	list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
 307		struct anon_vma *anon_vma = pavc->anon_vma;
 308		VM_BUG_ON(pavc->vma != dst);
 309		root = lock_anon_vma_root(root, anon_vma);
 310		list_del(&pavc->same_anon_vma);
 311		list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
 312	}
 313	unlock_anon_vma_root(root);
 314}
 315
 316/*
 317 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 318 * the corresponding VMA in the parent process is attached to.
 319 * Returns 0 on success, non-zero on failure.
 320 */
 321int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 322{
 323	struct anon_vma_chain *avc;
 324	struct anon_vma *anon_vma;
 
 325
 326	/* Don't bother if the parent process has no anon_vma here. */
 327	if (!pvma->anon_vma)
 328		return 0;
 329
 
 
 
 330	/*
 331	 * First, attach the new VMA to the parent VMA's anon_vmas,
 332	 * so rmap can find non-COWed pages in child processes.
 333	 */
 334	if (anon_vma_clone(vma, pvma))
 335		return -ENOMEM;
 
 
 
 
 
 336
 337	/* Then add our own anon_vma. */
 338	anon_vma = anon_vma_alloc();
 339	if (!anon_vma)
 340		goto out_error;
 341	avc = anon_vma_chain_alloc(GFP_KERNEL);
 342	if (!avc)
 343		goto out_error_free_anon_vma;
 344
 345	/*
 346	 * The root anon_vma's spinlock is the lock actually used when we
 347	 * lock any of the anon_vmas in this anon_vma tree.
 348	 */
 349	anon_vma->root = pvma->anon_vma->root;
 
 350	/*
 351	 * With refcounts, an anon_vma can stay around longer than the
 352	 * process it belongs to. The root anon_vma needs to be pinned until
 353	 * this anon_vma is freed, because the lock lives in the root.
 354	 */
 355	get_anon_vma(anon_vma->root);
 356	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 357	vma->anon_vma = anon_vma;
 358	anon_vma_lock(anon_vma);
 359	anon_vma_chain_link(vma, avc, anon_vma);
 360	anon_vma_unlock(anon_vma);
 
 361
 362	return 0;
 363
 364 out_error_free_anon_vma:
 365	put_anon_vma(anon_vma);
 366 out_error:
 367	unlink_anon_vmas(vma);
 368	return -ENOMEM;
 369}
 370
 371void unlink_anon_vmas(struct vm_area_struct *vma)
 372{
 373	struct anon_vma_chain *avc, *next;
 374	struct anon_vma *root = NULL;
 375
 376	/*
 377	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 378	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 379	 */
 380	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 381		struct anon_vma *anon_vma = avc->anon_vma;
 382
 383		root = lock_anon_vma_root(root, anon_vma);
 384		list_del(&avc->same_anon_vma);
 385
 386		/*
 387		 * Leave empty anon_vmas on the list - we'll need
 388		 * to free them outside the lock.
 389		 */
 390		if (list_empty(&anon_vma->head))
 
 391			continue;
 
 392
 393		list_del(&avc->same_vma);
 394		anon_vma_chain_free(avc);
 395	}
 
 
 
 
 
 
 
 
 
 396	unlock_anon_vma_root(root);
 397
 398	/*
 399	 * Iterate the list once more, it now only contains empty and unlinked
 400	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 401	 * needing to acquire the anon_vma->root->mutex.
 402	 */
 403	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 404		struct anon_vma *anon_vma = avc->anon_vma;
 405
 
 406		put_anon_vma(anon_vma);
 407
 408		list_del(&avc->same_vma);
 409		anon_vma_chain_free(avc);
 410	}
 411}
 412
 413static void anon_vma_ctor(void *data)
 414{
 415	struct anon_vma *anon_vma = data;
 416
 417	mutex_init(&anon_vma->mutex);
 418	atomic_set(&anon_vma->refcount, 0);
 419	INIT_LIST_HEAD(&anon_vma->head);
 420}
 421
 422void __init anon_vma_init(void)
 423{
 424	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 425			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 426	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 
 
 427}
 428
 429/*
 430 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 431 *
 432 * Since there is no serialization what so ever against page_remove_rmap()
 433 * the best this function can do is return a locked anon_vma that might
 434 * have been relevant to this page.
 435 *
 436 * The page might have been remapped to a different anon_vma or the anon_vma
 437 * returned may already be freed (and even reused).
 438 *
 439 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 440 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 441 * ensure that any anon_vma obtained from the page will still be valid for as
 442 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 443 *
 444 * All users of this function must be very careful when walking the anon_vma
 445 * chain and verify that the page in question is indeed mapped in it
 446 * [ something equivalent to page_mapped_in_vma() ].
 447 *
 448 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 449 * that the anon_vma pointer from page->mapping is valid if there is a
 450 * mapcount, we can dereference the anon_vma after observing those.
 
 451 */
 452struct anon_vma *page_get_anon_vma(struct page *page)
 453{
 454	struct anon_vma *anon_vma = NULL;
 455	unsigned long anon_mapping;
 456
 457	rcu_read_lock();
 458	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 459	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 460		goto out;
 461	if (!page_mapped(page))
 462		goto out;
 463
 464	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 465	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 466		anon_vma = NULL;
 467		goto out;
 468	}
 469
 470	/*
 471	 * If this page is still mapped, then its anon_vma cannot have been
 472	 * freed.  But if it has been unmapped, we have no security against the
 473	 * anon_vma structure being freed and reused (for another anon_vma:
 474	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 475	 * above cannot corrupt).
 476	 */
 477	if (!page_mapped(page)) {
 
 478		put_anon_vma(anon_vma);
 479		anon_vma = NULL;
 480	}
 481out:
 482	rcu_read_unlock();
 483
 484	return anon_vma;
 485}
 486
 487/*
 488 * Similar to page_get_anon_vma() except it locks the anon_vma.
 489 *
 490 * Its a little more complex as it tries to keep the fast path to a single
 491 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 492 * reference like with page_get_anon_vma() and then block on the mutex.
 493 */
 494struct anon_vma *page_lock_anon_vma(struct page *page)
 495{
 496	struct anon_vma *anon_vma = NULL;
 497	struct anon_vma *root_anon_vma;
 498	unsigned long anon_mapping;
 499
 500	rcu_read_lock();
 501	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 502	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 503		goto out;
 504	if (!page_mapped(page))
 505		goto out;
 506
 507	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 508	root_anon_vma = ACCESS_ONCE(anon_vma->root);
 509	if (mutex_trylock(&root_anon_vma->mutex)) {
 510		/*
 511		 * If the page is still mapped, then this anon_vma is still
 512		 * its anon_vma, and holding the mutex ensures that it will
 513		 * not go away, see anon_vma_free().
 514		 */
 515		if (!page_mapped(page)) {
 516			mutex_unlock(&root_anon_vma->mutex);
 517			anon_vma = NULL;
 518		}
 519		goto out;
 520	}
 521
 522	/* trylock failed, we got to sleep */
 523	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 524		anon_vma = NULL;
 525		goto out;
 526	}
 527
 528	if (!page_mapped(page)) {
 
 529		put_anon_vma(anon_vma);
 530		anon_vma = NULL;
 531		goto out;
 532	}
 533
 534	/* we pinned the anon_vma, its safe to sleep */
 535	rcu_read_unlock();
 536	anon_vma_lock(anon_vma);
 537
 538	if (atomic_dec_and_test(&anon_vma->refcount)) {
 539		/*
 540		 * Oops, we held the last refcount, release the lock
 541		 * and bail -- can't simply use put_anon_vma() because
 542		 * we'll deadlock on the anon_vma_lock() recursion.
 543		 */
 544		anon_vma_unlock(anon_vma);
 545		__put_anon_vma(anon_vma);
 546		anon_vma = NULL;
 547	}
 548
 549	return anon_vma;
 550
 551out:
 552	rcu_read_unlock();
 553	return anon_vma;
 554}
 555
 556void page_unlock_anon_vma(struct anon_vma *anon_vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557{
 558	anon_vma_unlock(anon_vma);
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561/*
 562 * At what user virtual address is page expected in @vma?
 563 * Returns virtual address or -EFAULT if page's index/offset is not
 564 * within the range mapped the @vma.
 
 
 
 
 
 
 
 
 
 
 565 */
 566inline unsigned long
 567vma_address(struct page *page, struct vm_area_struct *vma)
 568{
 569	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 570	unsigned long address;
 571
 572	if (unlikely(is_vm_hugetlb_page(vma)))
 573		pgoff = page->index << huge_page_order(page_hstate(page));
 574	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 575	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
 576		/* page should be within @vma mapping range */
 577		return -EFAULT;
 578	}
 579	return address;
 580}
 
 
 
 
 
 
 
 
 
 
 581
 582/*
 583 * At what user virtual address is page expected in vma?
 584 * Caller should check the page is actually part of the vma.
 585 */
 586unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 587{
 588	if (PageAnon(page)) {
 589		struct anon_vma *page__anon_vma = page_anon_vma(page);
 590		/*
 591		 * Note: swapoff's unuse_vma() is more efficient with this
 592		 * check, and needs it to match anon_vma when KSM is active.
 593		 */
 594		if (!vma->anon_vma || !page__anon_vma ||
 595		    vma->anon_vma->root != page__anon_vma->root)
 596			return -EFAULT;
 597	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 598		if (!vma->vm_file ||
 599		    vma->vm_file->f_mapping != page->mapping)
 600			return -EFAULT;
 601	} else
 602		return -EFAULT;
 
 
 603	return vma_address(page, vma);
 604}
 605
 606/*
 607 * Check that @page is mapped at @address into @mm.
 608 *
 609 * If @sync is false, page_check_address may perform a racy check to avoid
 610 * the page table lock when the pte is not present (helpful when reclaiming
 611 * highly shared pages).
 612 *
 613 * On success returns with pte mapped and locked.
 614 */
 615pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 616			  unsigned long address, spinlock_t **ptlp, int sync)
 617{
 618	pgd_t *pgd;
 
 619	pud_t *pud;
 620	pmd_t *pmd;
 621	pte_t *pte;
 622	spinlock_t *ptl;
 623
 624	if (unlikely(PageHuge(page))) {
 625		pte = huge_pte_offset(mm, address);
 626		ptl = &mm->page_table_lock;
 627		goto check;
 628	}
 629
 630	pgd = pgd_offset(mm, address);
 631	if (!pgd_present(*pgd))
 632		return NULL;
 
 
 
 
 633
 634	pud = pud_offset(pgd, address);
 635	if (!pud_present(*pud))
 636		return NULL;
 637
 638	pmd = pmd_offset(pud, address);
 639	if (!pmd_present(*pmd))
 640		return NULL;
 641	if (pmd_trans_huge(*pmd))
 642		return NULL;
 643
 644	pte = pte_offset_map(pmd, address);
 645	/* Make a quick check before getting the lock */
 646	if (!sync && !pte_present(*pte)) {
 647		pte_unmap(pte);
 648		return NULL;
 649	}
 650
 651	ptl = pte_lockptr(mm, pmd);
 652check:
 653	spin_lock(ptl);
 654	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 655		*ptlp = ptl;
 656		return pte;
 657	}
 658	pte_unmap_unlock(pte, ptl);
 659	return NULL;
 660}
 661
 662/**
 663 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 664 * @page: the page to test
 665 * @vma: the VMA to test
 666 *
 667 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 668 * if the page is not mapped into the page tables of this VMA.  Only
 669 * valid for normal file or anonymous VMAs.
 670 */
 671int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 672{
 673	unsigned long address;
 674	pte_t *pte;
 675	spinlock_t *ptl;
 676
 677	address = vma_address(page, vma);
 678	if (address == -EFAULT)		/* out of vma range */
 679		return 0;
 680	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 681	if (!pte)			/* the page is not in this mm */
 682		return 0;
 683	pte_unmap_unlock(pte, ptl);
 684
 685	return 1;
 686}
 687
 
 
 
 
 
 
 688/*
 689 * Subfunctions of page_referenced: page_referenced_one called
 690 * repeatedly from either page_referenced_anon or page_referenced_file.
 691 */
 692int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 693			unsigned long address, unsigned int *mapcount,
 694			unsigned long *vm_flags)
 695{
 696	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 697	int referenced = 0;
 698
 699	if (unlikely(PageTransHuge(page))) {
 700		pmd_t *pmd;
 701
 702		spin_lock(&mm->page_table_lock);
 703		/*
 704		 * rmap might return false positives; we must filter
 705		 * these out using page_check_address_pmd().
 706		 */
 707		pmd = page_check_address_pmd(page, mm, address,
 708					     PAGE_CHECK_ADDRESS_PMD_FLAG);
 709		if (!pmd) {
 710			spin_unlock(&mm->page_table_lock);
 711			goto out;
 712		}
 713
 714		if (vma->vm_flags & VM_LOCKED) {
 715			spin_unlock(&mm->page_table_lock);
 716			*mapcount = 0;	/* break early from loop */
 717			*vm_flags |= VM_LOCKED;
 718			goto out;
 719		}
 720
 721		/* go ahead even if the pmd is pmd_trans_splitting() */
 722		if (pmdp_clear_flush_young_notify(vma, address, pmd))
 723			referenced++;
 724		spin_unlock(&mm->page_table_lock);
 725	} else {
 726		pte_t *pte;
 727		spinlock_t *ptl;
 728
 729		/*
 730		 * rmap might return false positives; we must filter
 731		 * these out using page_check_address().
 732		 */
 733		pte = page_check_address(page, mm, address, &ptl, 0);
 734		if (!pte)
 735			goto out;
 736
 737		if (vma->vm_flags & VM_LOCKED) {
 738			pte_unmap_unlock(pte, ptl);
 739			*mapcount = 0;	/* break early from loop */
 740			*vm_flags |= VM_LOCKED;
 741			goto out;
 742		}
 743
 744		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 745			/*
 746			 * Don't treat a reference through a sequentially read
 747			 * mapping as such.  If the page has been used in
 748			 * another mapping, we will catch it; if this other
 749			 * mapping is already gone, the unmap path will have
 750			 * set PG_referenced or activated the page.
 751			 */
 752			if (likely(!VM_SequentialReadHint(vma)))
 
 
 
 
 
 
 
 
 753				referenced++;
 
 
 
 754		}
 755		pte_unmap_unlock(pte, ptl);
 
 756	}
 757
 758	(*mapcount)--;
 759
 760	if (referenced)
 761		*vm_flags |= vma->vm_flags;
 762out:
 763	return referenced;
 764}
 765
 766static int page_referenced_anon(struct page *page,
 767				struct mem_cgroup *memcg,
 768				unsigned long *vm_flags)
 769{
 770	unsigned int mapcount;
 771	struct anon_vma *anon_vma;
 772	struct anon_vma_chain *avc;
 773	int referenced = 0;
 774
 775	anon_vma = page_lock_anon_vma(page);
 776	if (!anon_vma)
 777		return referenced;
 778
 779	mapcount = page_mapcount(page);
 780	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
 781		struct vm_area_struct *vma = avc->vma;
 782		unsigned long address = vma_address(page, vma);
 783		if (address == -EFAULT)
 784			continue;
 785		/*
 786		 * If we are reclaiming on behalf of a cgroup, skip
 787		 * counting on behalf of references from different
 788		 * cgroups
 789		 */
 790		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
 791			continue;
 792		referenced += page_referenced_one(page, vma, address,
 793						  &mapcount, vm_flags);
 794		if (!mapcount)
 795			break;
 796	}
 797
 798	page_unlock_anon_vma(anon_vma);
 799	return referenced;
 800}
 801
 802/**
 803 * page_referenced_file - referenced check for object-based rmap
 804 * @page: the page we're checking references on.
 805 * @memcg: target memory control group
 806 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 807 *
 808 * For an object-based mapped page, find all the places it is mapped and
 809 * check/clear the referenced flag.  This is done by following the page->mapping
 810 * pointer, then walking the chain of vmas it holds.  It returns the number
 811 * of references it found.
 812 *
 813 * This function is only called from page_referenced for object-based pages.
 814 */
 815static int page_referenced_file(struct page *page,
 816				struct mem_cgroup *memcg,
 817				unsigned long *vm_flags)
 818{
 819	unsigned int mapcount;
 820	struct address_space *mapping = page->mapping;
 821	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 822	struct vm_area_struct *vma;
 823	struct prio_tree_iter iter;
 824	int referenced = 0;
 825
 826	/*
 827	 * The caller's checks on page->mapping and !PageAnon have made
 828	 * sure that this is a file page: the check for page->mapping
 829	 * excludes the case just before it gets set on an anon page.
 830	 */
 831	BUG_ON(PageAnon(page));
 832
 833	/*
 834	 * The page lock not only makes sure that page->mapping cannot
 835	 * suddenly be NULLified by truncation, it makes sure that the
 836	 * structure at mapping cannot be freed and reused yet,
 837	 * so we can safely take mapping->i_mmap_mutex.
 838	 */
 839	BUG_ON(!PageLocked(page));
 840
 841	mutex_lock(&mapping->i_mmap_mutex);
 842
 843	/*
 844	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
 845	 * is more likely to be accurate if we note it after spinning.
 846	 */
 847	mapcount = page_mapcount(page);
 848
 849	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 850		unsigned long address = vma_address(page, vma);
 851		if (address == -EFAULT)
 852			continue;
 853		/*
 854		 * If we are reclaiming on behalf of a cgroup, skip
 855		 * counting on behalf of references from different
 856		 * cgroups
 857		 */
 858		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
 859			continue;
 860		referenced += page_referenced_one(page, vma, address,
 861						  &mapcount, vm_flags);
 862		if (!mapcount)
 863			break;
 864	}
 865
 866	mutex_unlock(&mapping->i_mmap_mutex);
 867	return referenced;
 868}
 869
 870/**
 871 * page_referenced - test if the page was referenced
 872 * @page: the page to test
 873 * @is_locked: caller holds lock on the page
 874 * @memcg: target memory cgroup
 875 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 876 *
 877 * Quick test_and_clear_referenced for all mappings to a page,
 878 * returns the number of ptes which referenced the page.
 879 */
 880int page_referenced(struct page *page,
 881		    int is_locked,
 882		    struct mem_cgroup *memcg,
 883		    unsigned long *vm_flags)
 884{
 885	int referenced = 0;
 886	int we_locked = 0;
 
 
 
 
 
 
 
 
 
 887
 888	*vm_flags = 0;
 889	if (page_mapped(page) && page_rmapping(page)) {
 890		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 891			we_locked = trylock_page(page);
 892			if (!we_locked) {
 893				referenced++;
 894				goto out;
 895			}
 896		}
 897		if (unlikely(PageKsm(page)))
 898			referenced += page_referenced_ksm(page, memcg,
 899								vm_flags);
 900		else if (PageAnon(page))
 901			referenced += page_referenced_anon(page, memcg,
 902								vm_flags);
 903		else if (page->mapping)
 904			referenced += page_referenced_file(page, memcg,
 905								vm_flags);
 906		if (we_locked)
 907			unlock_page(page);
 908
 909		if (page_test_and_clear_young(page_to_pfn(page)))
 910			referenced++;
 
 
 911	}
 912out:
 913	return referenced;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914}
 915
 916static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 917			    unsigned long address)
 918{
 919	struct mm_struct *mm = vma->vm_mm;
 920	pte_t *pte;
 921	spinlock_t *ptl;
 922	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	pte = page_check_address(page, mm, address, &ptl, 1);
 925	if (!pte)
 926		goto out;
 
 
 
 
 
 
 
 927
 928	if (pte_dirty(*pte) || pte_write(*pte)) {
 929		pte_t entry;
 930
 931		flush_cache_page(vma, address, pte_pfn(*pte));
 932		entry = ptep_clear_flush_notify(vma, address, pte);
 933		entry = pte_wrprotect(entry);
 934		entry = pte_mkclean(entry);
 935		set_pte_at(mm, address, pte, entry);
 936		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937	}
 938
 939	pte_unmap_unlock(pte, ptl);
 940out:
 941	return ret;
 942}
 943
 944static int page_mkclean_file(struct address_space *mapping, struct page *page)
 945{
 946	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 947	struct vm_area_struct *vma;
 948	struct prio_tree_iter iter;
 949	int ret = 0;
 950
 951	BUG_ON(PageAnon(page));
 952
 953	mutex_lock(&mapping->i_mmap_mutex);
 954	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 955		if (vma->vm_flags & VM_SHARED) {
 956			unsigned long address = vma_address(page, vma);
 957			if (address == -EFAULT)
 958				continue;
 959			ret += page_mkclean_one(page, vma, address);
 960		}
 961	}
 962	mutex_unlock(&mapping->i_mmap_mutex);
 963	return ret;
 964}
 965
 966int page_mkclean(struct page *page)
 967{
 968	int ret = 0;
 
 
 
 
 
 
 969
 970	BUG_ON(!PageLocked(page));
 971
 972	if (page_mapped(page)) {
 973		struct address_space *mapping = page_mapping(page);
 974		if (mapping) {
 975			ret = page_mkclean_file(mapping, page);
 976			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
 977				ret = 1;
 978		}
 979	}
 980
 981	return ret;
 982}
 983EXPORT_SYMBOL_GPL(page_mkclean);
 984
 985/**
 986 * page_move_anon_rmap - move a page to our anon_vma
 987 * @page:	the page to move to our anon_vma
 988 * @vma:	the vma the page belongs to
 989 * @address:	the user virtual address mapped
 990 *
 991 * When a page belongs exclusively to one process after a COW event,
 992 * that page can be moved into the anon_vma that belongs to just that
 993 * process, so the rmap code will not search the parent or sibling
 994 * processes.
 995 */
 996void page_move_anon_rmap(struct page *page,
 997	struct vm_area_struct *vma, unsigned long address)
 998{
 999	struct anon_vma *anon_vma = vma->anon_vma;
1000
1001	VM_BUG_ON(!PageLocked(page));
1002	VM_BUG_ON(!anon_vma);
1003	VM_BUG_ON(page->index != linear_page_index(vma, address));
 
1004
1005	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1006	page->mapping = (struct address_space *) anon_vma;
 
 
 
 
 
1007}
1008
1009/**
1010 * __page_set_anon_rmap - set up new anonymous rmap
1011 * @page:	Page to add to rmap	
1012 * @vma:	VM area to add page to.
1013 * @address:	User virtual address of the mapping	
1014 * @exclusive:	the page is exclusively owned by the current process
1015 */
1016static void __page_set_anon_rmap(struct page *page,
1017	struct vm_area_struct *vma, unsigned long address, int exclusive)
1018{
1019	struct anon_vma *anon_vma = vma->anon_vma;
1020
1021	BUG_ON(!anon_vma);
1022
1023	if (PageAnon(page))
1024		return;
1025
1026	/*
1027	 * If the page isn't exclusively mapped into this vma,
1028	 * we must use the _oldest_ possible anon_vma for the
1029	 * page mapping!
1030	 */
1031	if (!exclusive)
1032		anon_vma = anon_vma->root;
1033
 
 
 
 
 
 
1034	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1035	page->mapping = (struct address_space *) anon_vma;
1036	page->index = linear_page_index(vma, address);
1037}
1038
1039/**
1040 * __page_check_anon_rmap - sanity check anonymous rmap addition
1041 * @page:	the page to add the mapping to
1042 * @vma:	the vm area in which the mapping is added
1043 * @address:	the user virtual address mapped
1044 */
1045static void __page_check_anon_rmap(struct page *page,
1046	struct vm_area_struct *vma, unsigned long address)
1047{
1048#ifdef CONFIG_DEBUG_VM
1049	/*
1050	 * The page's anon-rmap details (mapping and index) are guaranteed to
1051	 * be set up correctly at this point.
1052	 *
1053	 * We have exclusion against page_add_anon_rmap because the caller
1054	 * always holds the page locked, except if called from page_dup_rmap,
1055	 * in which case the page is already known to be setup.
1056	 *
1057	 * We have exclusion against page_add_new_anon_rmap because those pages
1058	 * are initially only visible via the pagetables, and the pte is locked
1059	 * over the call to page_add_new_anon_rmap.
1060	 */
1061	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1062	BUG_ON(page->index != linear_page_index(vma, address));
1063#endif
1064}
1065
1066/**
1067 * page_add_anon_rmap - add pte mapping to an anonymous page
1068 * @page:	the page to add the mapping to
1069 * @vma:	the vm area in which the mapping is added
1070 * @address:	the user virtual address mapped
 
1071 *
1072 * The caller needs to hold the pte lock, and the page must be locked in
1073 * the anon_vma case: to serialize mapping,index checking after setting,
1074 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1075 * (but PageKsm is never downgraded to PageAnon).
1076 */
1077void page_add_anon_rmap(struct page *page,
1078	struct vm_area_struct *vma, unsigned long address)
1079{
1080	do_page_add_anon_rmap(page, vma, address, 0);
1081}
1082
1083/*
1084 * Special version of the above for do_swap_page, which often runs
1085 * into pages that are exclusively owned by the current process.
1086 * Everybody else should continue to use page_add_anon_rmap above.
1087 */
1088void do_page_add_anon_rmap(struct page *page,
1089	struct vm_area_struct *vma, unsigned long address, int exclusive)
1090{
1091	int first = atomic_inc_and_test(&page->_mapcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092	if (first) {
1093		if (!PageTransHuge(page))
1094			__inc_zone_page_state(page, NR_ANON_PAGES);
1095		else
1096			__inc_zone_page_state(page,
1097					      NR_ANON_TRANSPARENT_HUGEPAGES);
 
 
 
 
 
1098	}
1099	if (unlikely(PageKsm(page)))
 
 
1100		return;
 
1101
1102	VM_BUG_ON(!PageLocked(page));
1103	/* address might be in next vma when migration races vma_adjust */
1104	if (first)
1105		__page_set_anon_rmap(page, vma, address, exclusive);
 
1106	else
1107		__page_check_anon_rmap(page, vma, address);
1108}
1109
1110/**
1111 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1112 * @page:	the page to add the mapping to
1113 * @vma:	the vm area in which the mapping is added
1114 * @address:	the user virtual address mapped
 
1115 *
1116 * Same as page_add_anon_rmap but must only be called on *new* pages.
1117 * This means the inc-and-test can be bypassed.
1118 * Page does not have to be locked.
1119 */
1120void page_add_new_anon_rmap(struct page *page,
1121	struct vm_area_struct *vma, unsigned long address)
1122{
1123	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1124	SetPageSwapBacked(page);
1125	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1126	if (!PageTransHuge(page))
1127		__inc_zone_page_state(page, NR_ANON_PAGES);
1128	else
1129		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
 
 
 
 
 
 
 
 
 
 
 
 
1130	__page_set_anon_rmap(page, vma, address, 1);
1131	if (page_evictable(page, vma))
1132		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1133	else
1134		add_page_to_unevictable_list(page);
1135}
1136
1137/**
1138 * page_add_file_rmap - add pte mapping to a file page
1139 * @page: the page to add the mapping to
 
1140 *
1141 * The caller needs to hold the pte lock.
1142 */
1143void page_add_file_rmap(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	bool locked;
1146	unsigned long flags;
 
 
1147
1148	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1149	if (atomic_inc_and_test(&page->_mapcount)) {
1150		__inc_zone_page_state(page, NR_FILE_MAPPED);
1151		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	}
1153	mem_cgroup_end_update_page_stat(page, &locked, &flags);
 
 
 
 
 
1154}
1155
1156/**
1157 * page_remove_rmap - take down pte mapping from a page
1158 * @page: page to remove mapping from
 
1159 *
1160 * The caller needs to hold the pte lock.
1161 */
1162void page_remove_rmap(struct page *page)
1163{
1164	bool anon = PageAnon(page);
1165	bool locked;
1166	unsigned long flags;
 
 
 
1167
1168	/*
1169	 * The anon case has no mem_cgroup page_stat to update; but may
1170	 * uncharge_page() below, where the lock ordering can deadlock if
1171	 * we hold the lock against page_stat move: so avoid it on anon.
1172	 */
1173	if (!anon)
1174		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1175
1176	/* page still mapped by someone else? */
1177	if (!atomic_add_negative(-1, &page->_mapcount))
1178		goto out;
1179
1180	/*
1181	 * Now that the last pte has gone, s390 must transfer dirty
1182	 * flag from storage key to struct page.  We can usually skip
1183	 * this if the page is anon, so about to be freed; but perhaps
1184	 * not if it's in swapcache - there might be another pte slot
1185	 * containing the swap entry, but page not yet written to swap.
1186	 */
1187	if ((!anon || PageSwapCache(page)) &&
1188	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1189		set_page_dirty(page);
1190	/*
1191	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1192	 * and not charged by memcg for now.
1193	 */
1194	if (unlikely(PageHuge(page)))
1195		goto out;
1196	if (anon) {
1197		mem_cgroup_uncharge_page(page);
1198		if (!PageTransHuge(page))
1199			__dec_zone_page_state(page, NR_ANON_PAGES);
1200		else
1201			__dec_zone_page_state(page,
1202					      NR_ANON_TRANSPARENT_HUGEPAGES);
1203	} else {
1204		__dec_zone_page_state(page, NR_FILE_MAPPED);
1205		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1206	}
1207	/*
1208	 * It would be tidy to reset the PageAnon mapping here,
1209	 * but that might overwrite a racing page_add_anon_rmap
1210	 * which increments mapcount after us but sets mapping
1211	 * before us: so leave the reset to free_hot_cold_page,
1212	 * and remember that it's only reliable while mapped.
1213	 * Leaving it set also helps swapoff to reinstate ptes
1214	 * faster for those pages still in swapcache.
1215	 */
1216out:
1217	if (!anon)
1218		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1219}
1220
1221/*
1222 * Subfunctions of try_to_unmap: try_to_unmap_one called
1223 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1224 */
1225int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1226		     unsigned long address, enum ttu_flags flags)
1227{
1228	struct mm_struct *mm = vma->vm_mm;
1229	pte_t *pte;
 
 
 
 
1230	pte_t pteval;
1231	spinlock_t *ptl;
1232	int ret = SWAP_AGAIN;
 
 
 
 
 
 
 
 
 
 
 
1233
1234	pte = page_check_address(page, mm, address, &ptl, 0);
1235	if (!pte)
1236		goto out;
1237
1238	/*
1239	 * If the page is mlock()d, we cannot swap it out.
1240	 * If it's recently referenced (perhaps page_referenced
1241	 * skipped over this mm) then we should reactivate it.
 
 
 
1242	 */
1243	if (!(flags & TTU_IGNORE_MLOCK)) {
1244		if (vma->vm_flags & VM_LOCKED)
1245			goto out_mlock;
 
 
 
 
 
 
 
 
 
 
1246
1247		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1248			goto out_unmap;
1249	}
1250	if (!(flags & TTU_IGNORE_ACCESS)) {
1251		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1252			ret = SWAP_FAIL;
1253			goto out_unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254		}
1255  	}
1256
1257	/* Nuke the page table entry. */
1258	flush_cache_page(vma, address, page_to_pfn(page));
1259	pteval = ptep_clear_flush_notify(vma, address, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261	/* Move the dirty bit to the physical page now the pte is gone. */
1262	if (pte_dirty(pteval))
1263		set_page_dirty(page);
1264
1265	/* Update high watermark before we lower rss */
1266	update_hiwater_rss(mm);
1267
1268	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1269		if (PageAnon(page))
1270			dec_mm_counter(mm, MM_ANONPAGES);
1271		else
1272			dec_mm_counter(mm, MM_FILEPAGES);
1273		set_pte_at(mm, address, pte,
1274				swp_entry_to_pte(make_hwpoison_entry(page)));
1275	} else if (PageAnon(page)) {
1276		swp_entry_t entry = { .val = page_private(page) };
 
 
1277
1278		if (PageSwapCache(page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279			/*
1280			 * Store the swap location in the pte.
1281			 * See handle_pte_fault() ...
1282			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283			if (swap_duplicate(entry) < 0) {
1284				set_pte_at(mm, address, pte, pteval);
1285				ret = SWAP_FAIL;
1286				goto out_unmap;
 
 
 
 
 
 
 
1287			}
1288			if (list_empty(&mm->mmlist)) {
1289				spin_lock(&mmlist_lock);
1290				if (list_empty(&mm->mmlist))
1291					list_add(&mm->mmlist, &init_mm.mmlist);
1292				spin_unlock(&mmlist_lock);
1293			}
1294			dec_mm_counter(mm, MM_ANONPAGES);
1295			inc_mm_counter(mm, MM_SWAPENTS);
1296		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
 
 
 
 
 
 
 
 
 
1297			/*
1298			 * Store the pfn of the page in a special migration
1299			 * pte. do_swap_page() will wait until the migration
1300			 * pte is removed and then restart fault handling.
 
 
 
 
 
1301			 */
1302			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1303			entry = make_migration_entry(page, pte_write(pteval));
1304		}
1305		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1306		BUG_ON(pte_file(*pte));
1307	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1308		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1309		/* Establish migration entry for a file page */
1310		swp_entry_t entry;
1311		entry = make_migration_entry(page, pte_write(pteval));
1312		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1313	} else
1314		dec_mm_counter(mm, MM_FILEPAGES);
 
1315
1316	page_remove_rmap(page);
1317	page_cache_release(page);
1318
1319out_unmap:
1320	pte_unmap_unlock(pte, ptl);
1321out:
1322	return ret;
 
1323
1324out_mlock:
1325	pte_unmap_unlock(pte, ptl);
 
 
1326
 
 
 
 
1327
1328	/*
1329	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1330	 * unstable result and race. Plus, We can't wait here because
1331	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1332	 * if trylock failed, the page remain in evictable lru and later
1333	 * vmscan could retry to move the page to unevictable lru if the
1334	 * page is actually mlocked.
1335	 */
1336	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1337		if (vma->vm_flags & VM_LOCKED) {
1338			mlock_vma_page(page);
1339			ret = SWAP_MLOCK;
1340		}
1341		up_read(&vma->vm_mm->mmap_sem);
1342	}
1343	return ret;
 
 
 
 
 
 
 
 
1344}
1345
1346/*
1347 * objrmap doesn't work for nonlinear VMAs because the assumption that
1348 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1349 * Consequently, given a particular page and its ->index, we cannot locate the
1350 * ptes which are mapping that page without an exhaustive linear search.
1351 *
1352 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1353 * maps the file to which the target page belongs.  The ->vm_private_data field
1354 * holds the current cursor into that scan.  Successive searches will circulate
1355 * around the vma's virtual address space.
1356 *
1357 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1358 * more scanning pressure is placed against them as well.   Eventually pages
1359 * will become fully unmapped and are eligible for eviction.
1360 *
1361 * For very sparsely populated VMAs this is a little inefficient - chances are
1362 * there there won't be many ptes located within the scan cluster.  In this case
1363 * maybe we could scan further - to the end of the pte page, perhaps.
1364 *
1365 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1366 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1367 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1368 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1369 */
1370#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1371#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1372
1373static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1374		struct vm_area_struct *vma, struct page *check_page)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	pgd_t *pgd;
1378	pud_t *pud;
1379	pmd_t *pmd;
1380	pte_t *pte;
 
1381	pte_t pteval;
1382	spinlock_t *ptl;
1383	struct page *page;
1384	unsigned long address;
1385	unsigned long end;
1386	int ret = SWAP_AGAIN;
1387	int locked_vma = 0;
1388
1389	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1390	end = address + CLUSTER_SIZE;
1391	if (address < vma->vm_start)
1392		address = vma->vm_start;
1393	if (end > vma->vm_end)
1394		end = vma->vm_end;
1395
1396	pgd = pgd_offset(mm, address);
1397	if (!pgd_present(*pgd))
1398		return ret;
 
 
 
 
 
1399
1400	pud = pud_offset(pgd, address);
1401	if (!pud_present(*pud))
1402		return ret;
1403
1404	pmd = pmd_offset(pud, address);
1405	if (!pmd_present(*pmd))
1406		return ret;
1407
1408	/*
1409	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1410	 * keep the sem while scanning the cluster for mlocking pages.
 
 
 
 
1411	 */
1412	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1413		locked_vma = (vma->vm_flags & VM_LOCKED);
1414		if (!locked_vma)
1415			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
 
 
 
 
 
 
 
1416	}
 
1417
1418	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
1419
1420	/* Update high watermark before we lower rss */
1421	update_hiwater_rss(mm);
 
 
1422
1423	for (; address < end; pte++, address += PAGE_SIZE) {
1424		if (!pte_present(*pte))
1425			continue;
1426		page = vm_normal_page(vma, address, *pte);
1427		BUG_ON(!page || PageAnon(page));
1428
1429		if (locked_vma) {
1430			mlock_vma_page(page);   /* no-op if already mlocked */
1431			if (page == check_page)
1432				ret = SWAP_MLOCK;
1433			continue;	/* don't unmap */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434		}
1435
1436		if (ptep_clear_flush_young_notify(vma, address, pte))
1437			continue;
1438
1439		/* Nuke the page table entry. */
1440		flush_cache_page(vma, address, pte_pfn(*pte));
1441		pteval = ptep_clear_flush_notify(vma, address, pte);
1442
1443		/* If nonlinear, store the file page offset in the pte. */
1444		if (page->index != linear_page_index(vma, address))
1445			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1446
1447		/* Move the dirty bit to the physical page now the pte is gone. */
1448		if (pte_dirty(pteval))
1449			set_page_dirty(page);
1450
1451		page_remove_rmap(page);
1452		page_cache_release(page);
1453		dec_mm_counter(mm, MM_FILEPAGES);
1454		(*mapcount)--;
1455	}
1456	pte_unmap_unlock(pte - 1, ptl);
1457	if (locked_vma)
1458		up_read(&vma->vm_mm->mmap_sem);
1459	return ret;
1460}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461
1462bool is_vma_temporary_stack(struct vm_area_struct *vma)
1463{
1464	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465
1466	if (!maybe_stack)
1467		return false;
 
 
 
 
 
 
 
 
1468
1469	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1470						VM_STACK_INCOMPLETE_SETUP)
1471		return true;
1472
1473	return false;
1474}
1475
1476/**
1477 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1478 * rmap method
1479 * @page: the page to unmap/unlock
1480 * @flags: action and flags
1481 *
1482 * Find all the mappings of a page using the mapping pointer and the vma chains
1483 * contained in the anon_vma struct it points to.
1484 *
1485 * This function is only called from try_to_unmap/try_to_munlock for
1486 * anonymous pages.
1487 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1488 * where the page was found will be held for write.  So, we won't recheck
1489 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1490 * 'LOCKED.
1491 */
1492static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1493{
1494	struct anon_vma *anon_vma;
1495	struct anon_vma_chain *avc;
1496	int ret = SWAP_AGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497
1498	anon_vma = page_lock_anon_vma(page);
1499	if (!anon_vma)
1500		return ret;
 
 
 
 
 
 
 
 
 
1501
1502	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1503		struct vm_area_struct *vma = avc->vma;
1504		unsigned long address;
1505
 
1506		/*
1507		 * During exec, a temporary VMA is setup and later moved.
1508		 * The VMA is moved under the anon_vma lock but not the
1509		 * page tables leading to a race where migration cannot
1510		 * find the migration ptes. Rather than increasing the
1511		 * locking requirements of exec(), migration skips
1512		 * temporary VMAs until after exec() completes.
1513		 */
1514		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1515				is_vma_temporary_stack(vma))
1516			continue;
1517
1518		address = vma_address(page, vma);
1519		if (address == -EFAULT)
1520			continue;
1521		ret = try_to_unmap_one(page, vma, address, flags);
1522		if (ret != SWAP_AGAIN || !page_mapped(page))
1523			break;
 
 
 
 
 
1524	}
1525
1526	page_unlock_anon_vma(anon_vma);
1527	return ret;
1528}
1529
1530/**
1531 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1532 * @page: the page to unmap/unlock
1533 * @flags: action and flags
1534 *
1535 * Find all the mappings of a page using the mapping pointer and the vma chains
1536 * contained in the address_space struct it points to.
1537 *
1538 * This function is only called from try_to_unmap/try_to_munlock for
1539 * object-based pages.
1540 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1541 * where the page was found will be held for write.  So, we won't recheck
1542 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1543 * 'LOCKED.
1544 */
1545static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1546{
1547	struct address_space *mapping = page->mapping;
1548	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1549	struct vm_area_struct *vma;
1550	struct prio_tree_iter iter;
1551	int ret = SWAP_AGAIN;
1552	unsigned long cursor;
1553	unsigned long max_nl_cursor = 0;
1554	unsigned long max_nl_size = 0;
1555	unsigned int mapcount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557	mutex_lock(&mapping->i_mmap_mutex);
1558	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1559		unsigned long address = vma_address(page, vma);
1560		if (address == -EFAULT)
1561			continue;
1562		ret = try_to_unmap_one(page, vma, address, flags);
1563		if (ret != SWAP_AGAIN || !page_mapped(page))
1564			goto out;
1565	}
1566
1567	if (list_empty(&mapping->i_mmap_nonlinear))
1568		goto out;
 
 
 
 
 
1569
1570	/*
1571	 * We don't bother to try to find the munlocked page in nonlinears.
1572	 * It's costly. Instead, later, page reclaim logic may call
1573	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1574	 */
1575	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1576		goto out;
 
 
 
 
 
 
 
 
 
1577
1578	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1579						shared.vm_set.list) {
1580		cursor = (unsigned long) vma->vm_private_data;
1581		if (cursor > max_nl_cursor)
1582			max_nl_cursor = cursor;
1583		cursor = vma->vm_end - vma->vm_start;
1584		if (cursor > max_nl_size)
1585			max_nl_size = cursor;
1586	}
1587
1588	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1589		ret = SWAP_FAIL;
1590		goto out;
 
 
1591	}
1592
1593	/*
1594	 * We don't try to search for this page in the nonlinear vmas,
1595	 * and page_referenced wouldn't have found it anyway.  Instead
1596	 * just walk the nonlinear vmas trying to age and unmap some.
1597	 * The mapcount of the page we came in with is irrelevant,
1598	 * but even so use it as a guide to how hard we should try?
1599	 */
1600	mapcount = page_mapcount(page);
1601	if (!mapcount)
1602		goto out;
1603	cond_resched();
1604
1605	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1606	if (max_nl_cursor == 0)
1607		max_nl_cursor = CLUSTER_SIZE;
1608
1609	do {
1610		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1611						shared.vm_set.list) {
1612			cursor = (unsigned long) vma->vm_private_data;
1613			while ( cursor < max_nl_cursor &&
1614				cursor < vma->vm_end - vma->vm_start) {
1615				if (try_to_unmap_cluster(cursor, &mapcount,
1616						vma, page) == SWAP_MLOCK)
1617					ret = SWAP_MLOCK;
1618				cursor += CLUSTER_SIZE;
1619				vma->vm_private_data = (void *) cursor;
1620				if ((int)mapcount <= 0)
1621					goto out;
1622			}
1623			vma->vm_private_data = (void *) max_nl_cursor;
1624		}
1625		cond_resched();
1626		max_nl_cursor += CLUSTER_SIZE;
1627	} while (max_nl_cursor <= max_nl_size);
1628
1629	/*
1630	 * Don't loop forever (perhaps all the remaining pages are
1631	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1632	 * vmas, now forgetting on which ones it had fallen behind.
1633	 */
1634	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1635		vma->vm_private_data = NULL;
1636out:
1637	mutex_unlock(&mapping->i_mmap_mutex);
1638	return ret;
1639}
1640
1641/**
1642 * try_to_unmap - try to remove all page table mappings to a page
1643 * @page: the page to get unmapped
1644 * @flags: action and flags
1645 *
1646 * Tries to remove all the page table entries which are mapping this
1647 * page, used in the pageout path.  Caller must hold the page lock.
1648 * Return values are:
1649 *
1650 * SWAP_SUCCESS	- we succeeded in removing all mappings
1651 * SWAP_AGAIN	- we missed a mapping, try again later
1652 * SWAP_FAIL	- the page is unswappable
1653 * SWAP_MLOCK	- page is mlocked.
1654 */
1655int try_to_unmap(struct page *page, enum ttu_flags flags)
1656{
1657	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	BUG_ON(!PageLocked(page));
1660	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1661
1662	if (unlikely(PageKsm(page)))
1663		ret = try_to_unmap_ksm(page, flags);
1664	else if (PageAnon(page))
1665		ret = try_to_unmap_anon(page, flags);
1666	else
1667		ret = try_to_unmap_file(page, flags);
1668	if (ret != SWAP_MLOCK && !page_mapped(page))
1669		ret = SWAP_SUCCESS;
1670	return ret;
1671}
1672
1673/**
1674 * try_to_munlock - try to munlock a page
1675 * @page: the page to be munlocked
1676 *
1677 * Called from munlock code.  Checks all of the VMAs mapping the page
1678 * to make sure nobody else has this page mlocked. The page will be
1679 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1680 *
1681 * Return values are:
1682 *
1683 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1684 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1685 * SWAP_FAIL	- page cannot be located at present
1686 * SWAP_MLOCK	- page is now mlocked.
1687 */
1688int try_to_munlock(struct page *page)
1689{
1690	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	if (unlikely(PageKsm(page)))
1693		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1694	else if (PageAnon(page))
1695		return try_to_unmap_anon(page, TTU_MUNLOCK);
1696	else
1697		return try_to_unmap_file(page, TTU_MUNLOCK);
1698}
 
 
1699
1700void __put_anon_vma(struct anon_vma *anon_vma)
1701{
1702	struct anon_vma *root = anon_vma->root;
1703
 
1704	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1705		anon_vma_free(root);
1706
1707	anon_vma_free(anon_vma);
1708}
1709
1710#ifdef CONFIG_MIGRATION
1711/*
1712 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1713 * Called by migrate.c to remove migration ptes, but might be used more later.
1714 */
1715static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1716		struct vm_area_struct *, unsigned long, void *), void *arg)
1717{
1718	struct anon_vma *anon_vma;
1719	struct anon_vma_chain *avc;
1720	int ret = SWAP_AGAIN;
 
1721
1722	/*
1723	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1724	 * because that depends on page_mapped(); but not all its usages
1725	 * are holding mmap_sem. Users without mmap_sem are required to
1726	 * take a reference count to prevent the anon_vma disappearing
1727	 */
1728	anon_vma = page_anon_vma(page);
1729	if (!anon_vma)
1730		return ret;
1731	anon_vma_lock(anon_vma);
1732	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733		struct vm_area_struct *vma = avc->vma;
1734		unsigned long address = vma_address(page, vma);
1735		if (address == -EFAULT)
 
 
 
 
1736			continue;
1737		ret = rmap_one(page, vma, address, arg);
1738		if (ret != SWAP_AGAIN)
 
 
1739			break;
1740	}
1741	anon_vma_unlock(anon_vma);
1742	return ret;
 
1743}
1744
1745static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1746		struct vm_area_struct *, unsigned long, void *), void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
1747{
1748	struct address_space *mapping = page->mapping;
1749	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1750	struct vm_area_struct *vma;
1751	struct prio_tree_iter iter;
1752	int ret = SWAP_AGAIN;
 
 
 
 
 
 
1753
1754	if (!mapping)
1755		return ret;
1756	mutex_lock(&mapping->i_mmap_mutex);
1757	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 
 
 
 
 
1758		unsigned long address = vma_address(page, vma);
1759		if (address == -EFAULT)
 
 
 
 
1760			continue;
1761		ret = rmap_one(page, vma, address, arg);
1762		if (ret != SWAP_AGAIN)
1763			break;
 
 
1764	}
1765	/*
1766	 * No nonlinear handling: being always shared, nonlinear vmas
1767	 * never contain migration ptes.  Decide what to do about this
1768	 * limitation to linear when we need rmap_walk() on nonlinear.
1769	 */
1770	mutex_unlock(&mapping->i_mmap_mutex);
1771	return ret;
1772}
1773
1774int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1775		struct vm_area_struct *, unsigned long, void *), void *arg)
1776{
1777	VM_BUG_ON(!PageLocked(page));
1778
1779	if (unlikely(PageKsm(page)))
1780		return rmap_walk_ksm(page, rmap_one, arg);
1781	else if (PageAnon(page))
1782		return rmap_walk_anon(page, rmap_one, arg);
 
 
 
 
 
 
 
 
 
 
 
1783	else
1784		return rmap_walk_file(page, rmap_one, arg);
1785}
1786#endif /* CONFIG_MIGRATION */
1787
1788#ifdef CONFIG_HUGETLB_PAGE
1789/*
1790 * The following three functions are for anonymous (private mapped) hugepages.
1791 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1792 * and no lru code, because we handle hugepages differently from common pages.
1793 */
1794static void __hugepage_set_anon_rmap(struct page *page,
1795	struct vm_area_struct *vma, unsigned long address, int exclusive)
1796{
1797	struct anon_vma *anon_vma = vma->anon_vma;
1798
1799	BUG_ON(!anon_vma);
1800
1801	if (PageAnon(page))
1802		return;
1803	if (!exclusive)
1804		anon_vma = anon_vma->root;
1805
1806	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1807	page->mapping = (struct address_space *) anon_vma;
1808	page->index = linear_page_index(vma, address);
1809}
1810
1811void hugepage_add_anon_rmap(struct page *page,
1812			    struct vm_area_struct *vma, unsigned long address)
1813{
1814	struct anon_vma *anon_vma = vma->anon_vma;
1815	int first;
1816
1817	BUG_ON(!PageLocked(page));
1818	BUG_ON(!anon_vma);
1819	/* address might be in next vma when migration races vma_adjust */
1820	first = atomic_inc_and_test(&page->_mapcount);
1821	if (first)
1822		__hugepage_set_anon_rmap(page, vma, address, 0);
1823}
1824
1825void hugepage_add_new_anon_rmap(struct page *page,
1826			struct vm_area_struct *vma, unsigned long address)
1827{
1828	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1829	atomic_set(&page->_mapcount, 0);
1830	__hugepage_set_anon_rmap(page, vma, address, 1);
 
 
 
1831}
1832#endif /* CONFIG_HUGETLB_PAGE */