Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
  4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
  5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
  6 * Author: John Garry <john.garry@huawei.com>
  7 */
  8
  9#define pr_fmt(fmt)	"LOGIC PIO: " fmt
 10
 11#include <linux/of.h>
 12#include <linux/io.h>
 13#include <linux/logic_pio.h>
 14#include <linux/mm.h>
 15#include <linux/rculist.h>
 16#include <linux/sizes.h>
 17#include <linux/slab.h>
 18
 19/* The unique hardware address list */
 20static LIST_HEAD(io_range_list);
 21static DEFINE_MUTEX(io_range_mutex);
 22
 23/* Consider a kernel general helper for this */
 24#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
 25
 26/**
 27 * logic_pio_register_range - register logical PIO range for a host
 28 * @new_range: pointer to the IO range to be registered.
 29 *
 30 * Returns 0 on success, the error code in case of failure.
 31 * If the range already exists, -EEXIST will be returned, which should be
 32 * considered a success.
 33 *
 34 * Register a new IO range node in the IO range list.
 35 */
 36int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
 37{
 38	struct logic_pio_hwaddr *range;
 39	resource_size_t start;
 40	resource_size_t end;
 41	resource_size_t mmio_end = 0;
 42	resource_size_t iio_sz = MMIO_UPPER_LIMIT;
 43	int ret = 0;
 44
 45	if (!new_range || !new_range->fwnode || !new_range->size ||
 46	    (new_range->flags == LOGIC_PIO_INDIRECT && !new_range->ops))
 47		return -EINVAL;
 48
 49	start = new_range->hw_start;
 50	end = new_range->hw_start + new_range->size;
 51
 52	mutex_lock(&io_range_mutex);
 53	list_for_each_entry(range, &io_range_list, list) {
 54		if (range->fwnode == new_range->fwnode) {
 55			/* range already there */
 56			ret = -EEXIST;
 57			goto end_register;
 58		}
 59		if (range->flags == LOGIC_PIO_CPU_MMIO &&
 60		    new_range->flags == LOGIC_PIO_CPU_MMIO) {
 61			/* for MMIO ranges we need to check for overlap */
 62			if (start >= range->hw_start + range->size ||
 63			    end < range->hw_start) {
 64				mmio_end = range->io_start + range->size;
 65			} else {
 66				ret = -EFAULT;
 67				goto end_register;
 68			}
 69		} else if (range->flags == LOGIC_PIO_INDIRECT &&
 70			   new_range->flags == LOGIC_PIO_INDIRECT) {
 71			iio_sz += range->size;
 72		}
 73	}
 74
 75	/* range not registered yet, check for available space */
 76	if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
 77		if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) {
 78			/* if it's too big check if 64K space can be reserved */
 79			if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
 80				ret = -E2BIG;
 81				goto end_register;
 82			}
 83			new_range->size = SZ_64K;
 84			pr_warn("Requested IO range too big, new size set to 64K\n");
 85		}
 86		new_range->io_start = mmio_end;
 87	} else if (new_range->flags == LOGIC_PIO_INDIRECT) {
 88		if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
 89			ret = -E2BIG;
 90			goto end_register;
 91		}
 92		new_range->io_start = iio_sz;
 93	} else {
 94		/* invalid flag */
 95		ret = -EINVAL;
 96		goto end_register;
 97	}
 98
 99	list_add_tail_rcu(&new_range->list, &io_range_list);
100
101end_register:
102	mutex_unlock(&io_range_mutex);
103	return ret;
104}
105
106/**
107 * logic_pio_unregister_range - unregister a logical PIO range for a host
108 * @range: pointer to the IO range which has been already registered.
109 *
110 * Unregister a previously-registered IO range node.
111 */
112void logic_pio_unregister_range(struct logic_pio_hwaddr *range)
113{
114	mutex_lock(&io_range_mutex);
115	list_del_rcu(&range->list);
116	mutex_unlock(&io_range_mutex);
117	synchronize_rcu();
118}
119
120/**
121 * find_io_range_by_fwnode - find logical PIO range for given FW node
122 * @fwnode: FW node handle associated with logical PIO range
123 *
124 * Returns pointer to node on success, NULL otherwise.
125 *
126 * Traverse the io_range_list to find the registered node for @fwnode.
127 */
128struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
129{
130	struct logic_pio_hwaddr *range, *found_range = NULL;
131
132	rcu_read_lock();
133	list_for_each_entry_rcu(range, &io_range_list, list) {
134		if (range->fwnode == fwnode) {
135			found_range = range;
136			break;
137		}
138	}
139	rcu_read_unlock();
140
141	return found_range;
142}
143
144/* Return a registered range given an input PIO token */
145static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
146{
147	struct logic_pio_hwaddr *range, *found_range = NULL;
148
149	rcu_read_lock();
150	list_for_each_entry_rcu(range, &io_range_list, list) {
151		if (in_range(pio, range->io_start, range->size)) {
152			found_range = range;
153			break;
154		}
155	}
156	rcu_read_unlock();
157
158	if (!found_range)
159		pr_err("PIO entry token 0x%lx invalid\n", pio);
160
161	return found_range;
162}
163
164/**
165 * logic_pio_to_hwaddr - translate logical PIO to HW address
166 * @pio: logical PIO value
167 *
168 * Returns HW address if valid, ~0 otherwise.
169 *
170 * Translate the input logical PIO to the corresponding hardware address.
171 * The input PIO should be unique in the whole logical PIO space.
172 */
173resource_size_t logic_pio_to_hwaddr(unsigned long pio)
174{
175	struct logic_pio_hwaddr *range;
176
177	range = find_io_range(pio);
178	if (range)
179		return range->hw_start + pio - range->io_start;
180
181	return (resource_size_t)~0;
182}
183
184/**
185 * logic_pio_trans_hwaddr - translate HW address to logical PIO
186 * @fwnode: FW node reference for the host
187 * @addr: Host-relative HW address
188 * @size: size to translate
189 *
190 * Returns Logical PIO value if successful, ~0UL otherwise
191 */
192unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
193				     resource_size_t addr, resource_size_t size)
194{
195	struct logic_pio_hwaddr *range;
196
197	range = find_io_range_by_fwnode(fwnode);
198	if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
199		pr_err("IO range not found or invalid\n");
200		return ~0UL;
201	}
202	if (range->size < size) {
203		pr_err("resource size %pa cannot fit in IO range size %pa\n",
204		       &size, &range->size);
205		return ~0UL;
206	}
207	return addr - range->hw_start + range->io_start;
208}
209
210unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
211{
212	struct logic_pio_hwaddr *range;
213
214	rcu_read_lock();
215	list_for_each_entry_rcu(range, &io_range_list, list) {
216		if (range->flags != LOGIC_PIO_CPU_MMIO)
217			continue;
218		if (in_range(addr, range->hw_start, range->size)) {
219			unsigned long cpuaddr;
220
221			cpuaddr = addr - range->hw_start + range->io_start;
222
223			rcu_read_unlock();
224			return cpuaddr;
225		}
226	}
227	rcu_read_unlock();
228
229	pr_err("addr %pa not registered in io_range_list\n", &addr);
230
231	return ~0UL;
232}
233
234#if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
235#define BUILD_LOGIC_IO(bwl, type)					\
236type logic_in##bwl(unsigned long addr)					\
237{									\
238	type ret = (type)~0;						\
239									\
240	if (addr < MMIO_UPPER_LIMIT) {					\
241		ret = _in##bwl(addr);					\
242	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
243		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
244									\
245		if (entry)						\
246			ret = entry->ops->in(entry->hostdata,		\
247					addr, sizeof(type));		\
248		else							\
249			WARN_ON_ONCE(1);				\
250	}								\
251	return ret;							\
252}									\
253									\
254void logic_out##bwl(type value, unsigned long addr)			\
255{									\
256	if (addr < MMIO_UPPER_LIMIT) {					\
257		_out##bwl(value, addr);				\
258	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
259		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
260									\
261		if (entry)						\
262			entry->ops->out(entry->hostdata,		\
263					addr, value, sizeof(type));	\
264		else							\
265			WARN_ON_ONCE(1);				\
266	}								\
267}									\
268									\
269void logic_ins##bwl(unsigned long addr, void *buffer,			\
270		    unsigned int count)					\
271{									\
272	if (addr < MMIO_UPPER_LIMIT) {					\
273		reads##bwl(PCI_IOBASE + addr, buffer, count);		\
274	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
275		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
276									\
277		if (entry)						\
278			entry->ops->ins(entry->hostdata,		\
279				addr, buffer, sizeof(type), count);	\
280		else							\
281			WARN_ON_ONCE(1);				\
282	}								\
283									\
284}									\
285									\
286void logic_outs##bwl(unsigned long addr, const void *buffer,		\
287		     unsigned int count)				\
288{									\
289	if (addr < MMIO_UPPER_LIMIT) {					\
290		writes##bwl(PCI_IOBASE + addr, buffer, count);		\
291	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
292		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
293									\
294		if (entry)						\
295			entry->ops->outs(entry->hostdata,		\
296				addr, buffer, sizeof(type), count);	\
297		else							\
298			WARN_ON_ONCE(1);				\
299	}								\
300}
301
302BUILD_LOGIC_IO(b, u8)
303EXPORT_SYMBOL(logic_inb);
304EXPORT_SYMBOL(logic_insb);
305EXPORT_SYMBOL(logic_outb);
306EXPORT_SYMBOL(logic_outsb);
307
308BUILD_LOGIC_IO(w, u16)
309EXPORT_SYMBOL(logic_inw);
310EXPORT_SYMBOL(logic_insw);
311EXPORT_SYMBOL(logic_outw);
312EXPORT_SYMBOL(logic_outsw);
313
314BUILD_LOGIC_IO(l, u32)
315EXPORT_SYMBOL(logic_inl);
316EXPORT_SYMBOL(logic_insl);
317EXPORT_SYMBOL(logic_outl);
318EXPORT_SYMBOL(logic_outsl);
319
320#endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */