Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for high-speed SCC boards (those with DMA support)
   4 * Copyright (C) 1997-2000 Klaus Kudielka
   5 *
   6 * S5SCC/DMA support by Janko Koleznik S52HI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9
  10#include <linux/module.h>
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/errno.h>
  14#include <linux/if_arp.h>
  15#include <linux/in.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/netdevice.h>
  22#include <linux/slab.h>
  23#include <linux/rtnetlink.h>
  24#include <linux/sockios.h>
  25#include <linux/workqueue.h>
  26#include <linux/atomic.h>
  27#include <asm/dma.h>
  28#include <asm/io.h>
  29#include <asm/irq.h>
  30#include <linux/uaccess.h>
  31#include <net/ax25.h>
  32#include "z8530.h"
  33
  34
  35/* Number of buffers per channel */
  36
  37#define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */
  38#define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */
  39#define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */
  40
  41
  42/* Cards supported */
  43
  44#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
  45                            0, 8, 1843200, 3686400 }
  46#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
  47			    0, 8, 3686400, 7372800 }
  48#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
  49			    0, 4, 6144000, 6144000 }
  50#define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
  51                          0, 8, 4915200, 9830400 }
  52
  53#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
  54
  55#define TMR_0_HZ        25600	/* Frequency of timer 0 */
  56
  57#define TYPE_PI         0
  58#define TYPE_PI2        1
  59#define TYPE_TWIN       2
  60#define TYPE_S5         3
  61#define NUM_TYPES       4
  62
  63#define MAX_NUM_DEVS    32
  64
  65
  66/* SCC chips supported */
  67
  68#define Z8530           0
  69#define Z85C30          1
  70#define Z85230          2
  71
  72#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
  73
  74
  75/* I/O registers */
  76
  77/* 8530 registers relative to card base */
  78#define SCCB_CMD        0x00
  79#define SCCB_DATA       0x01
  80#define SCCA_CMD        0x02
  81#define SCCA_DATA       0x03
  82
  83/* 8253/8254 registers relative to card base */
  84#define TMR_CNT0        0x00
  85#define TMR_CNT1        0x01
  86#define TMR_CNT2        0x02
  87#define TMR_CTRL        0x03
  88
  89/* Additional PI/PI2 registers relative to card base */
  90#define PI_DREQ_MASK    0x04
  91
  92/* Additional PackeTwin registers relative to card base */
  93#define TWIN_INT_REG    0x08
  94#define TWIN_CLR_TMR1   0x09
  95#define TWIN_CLR_TMR2   0x0a
  96#define TWIN_SPARE_1    0x0b
  97#define TWIN_DMA_CFG    0x08
  98#define TWIN_SERIAL_CFG 0x09
  99#define TWIN_DMA_CLR_FF 0x0a
 100#define TWIN_SPARE_2    0x0b
 101
 102
 103/* PackeTwin I/O register values */
 104
 105/* INT_REG */
 106#define TWIN_SCC_MSK       0x01
 107#define TWIN_TMR1_MSK      0x02
 108#define TWIN_TMR2_MSK      0x04
 109#define TWIN_INT_MSK       0x07
 110
 111/* SERIAL_CFG */
 112#define TWIN_DTRA_ON       0x01
 113#define TWIN_DTRB_ON       0x02
 114#define TWIN_EXTCLKA       0x04
 115#define TWIN_EXTCLKB       0x08
 116#define TWIN_LOOPA_ON      0x10
 117#define TWIN_LOOPB_ON      0x20
 118#define TWIN_EI            0x80
 119
 120/* DMA_CFG */
 121#define TWIN_DMA_HDX_T1    0x08
 122#define TWIN_DMA_HDX_R1    0x0a
 123#define TWIN_DMA_HDX_T3    0x14
 124#define TWIN_DMA_HDX_R3    0x16
 125#define TWIN_DMA_FDX_T3R1  0x1b
 126#define TWIN_DMA_FDX_T1R3  0x1d
 127
 128
 129/* Status values */
 130
 131#define IDLE      0
 132#define TX_HEAD   1
 133#define TX_DATA   2
 134#define TX_PAUSE  3
 135#define TX_TAIL   4
 136#define RTS_OFF   5
 137#define WAIT      6
 138#define DCD_ON    7
 139#define RX_ON     8
 140#define DCD_OFF   9
 141
 142
 143/* Ioctls */
 144
 145#define SIOCGSCCPARAM SIOCDEVPRIVATE
 146#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
 147
 148
 149/* Data types */
 150
 151struct scc_param {
 152	int pclk_hz;		/* frequency of BRG input (don't change) */
 153	int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */
 154	int nrzi;		/* 0 (nrz), 1 (nrzi) */
 155	int clocks;		/* see dmascc_cfg documentation */
 156	int txdelay;		/* [1/TMR_0_HZ] */
 157	int txtimeout;		/* [1/HZ] */
 158	int txtail;		/* [1/TMR_0_HZ] */
 159	int waittime;		/* [1/TMR_0_HZ] */
 160	int slottime;		/* [1/TMR_0_HZ] */
 161	int persist;		/* 1 ... 256 */
 162	int dma;		/* -1 (disable), 0, 1, 3 */
 163	int txpause;		/* [1/TMR_0_HZ] */
 164	int rtsoff;		/* [1/TMR_0_HZ] */
 165	int dcdon;		/* [1/TMR_0_HZ] */
 166	int dcdoff;		/* [1/TMR_0_HZ] */
 167};
 168
 169struct scc_hardware {
 170	char *name;
 171	int io_region;
 172	int io_delta;
 173	int io_size;
 174	int num_devs;
 175	int scc_offset;
 176	int tmr_offset;
 177	int tmr_hz;
 178	int pclk_hz;
 179};
 180
 181struct scc_priv {
 182	int type;
 183	int chip;
 184	struct net_device *dev;
 185	struct scc_info *info;
 186
 187	int channel;
 188	int card_base, scc_cmd, scc_data;
 189	int tmr_cnt, tmr_ctrl, tmr_mode;
 190	struct scc_param param;
 191	char rx_buf[NUM_RX_BUF][BUF_SIZE];
 192	int rx_len[NUM_RX_BUF];
 193	int rx_ptr;
 194	struct work_struct rx_work;
 195	int rx_head, rx_tail, rx_count;
 196	int rx_over;
 197	char tx_buf[NUM_TX_BUF][BUF_SIZE];
 198	int tx_len[NUM_TX_BUF];
 199	int tx_ptr;
 200	int tx_head, tx_tail, tx_count;
 201	int state;
 202	unsigned long tx_start;
 203	int rr0;
 204	spinlock_t *register_lock;	/* Per scc_info */
 205	spinlock_t ring_lock;
 206};
 207
 208struct scc_info {
 209	int irq_used;
 210	int twin_serial_cfg;
 211	struct net_device *dev[2];
 212	struct scc_priv priv[2];
 213	struct scc_info *next;
 214	spinlock_t register_lock;	/* Per device register lock */
 215};
 216
 217
 218/* Function declarations */
 219static int setup_adapter(int card_base, int type, int n) __init;
 220
 221static void write_scc(struct scc_priv *priv, int reg, int val);
 222static void write_scc_data(struct scc_priv *priv, int val, int fast);
 223static int read_scc(struct scc_priv *priv, int reg);
 224static int read_scc_data(struct scc_priv *priv);
 225
 226static int scc_open(struct net_device *dev);
 227static int scc_close(struct net_device *dev);
 228static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
 229static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
 230static int scc_set_mac_address(struct net_device *dev, void *sa);
 231
 232static inline void tx_on(struct scc_priv *priv);
 233static inline void rx_on(struct scc_priv *priv);
 234static inline void rx_off(struct scc_priv *priv);
 235static void start_timer(struct scc_priv *priv, int t, int r15);
 236static inline unsigned char random(void);
 237
 238static inline void z8530_isr(struct scc_info *info);
 239static irqreturn_t scc_isr(int irq, void *dev_id);
 240static void rx_isr(struct scc_priv *priv);
 241static void special_condition(struct scc_priv *priv, int rc);
 242static void rx_bh(struct work_struct *);
 243static void tx_isr(struct scc_priv *priv);
 244static void es_isr(struct scc_priv *priv);
 245static void tm_isr(struct scc_priv *priv);
 246
 247
 248/* Initialization variables */
 249
 250static int io[MAX_NUM_DEVS] __initdata = { 0, };
 251
 252/* Beware! hw[] is also used in dmascc_exit(). */
 253static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
 254
 255
 256/* Global variables */
 257
 258static struct scc_info *first;
 259static unsigned long rand;
 260
 261
 262MODULE_AUTHOR("Klaus Kudielka");
 263MODULE_DESCRIPTION("Driver for high-speed SCC boards");
 264module_param_hw_array(io, int, ioport, NULL, 0);
 265MODULE_LICENSE("GPL");
 266
 267static void __exit dmascc_exit(void)
 268{
 269	int i;
 270	struct scc_info *info;
 271
 272	while (first) {
 273		info = first;
 274
 275		/* Unregister devices */
 276		for (i = 0; i < 2; i++)
 277			unregister_netdev(info->dev[i]);
 278
 279		/* Reset board */
 280		if (info->priv[0].type == TYPE_TWIN)
 281			outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 282		write_scc(&info->priv[0], R9, FHWRES);
 283		release_region(info->dev[0]->base_addr,
 284			       hw[info->priv[0].type].io_size);
 285
 286		for (i = 0; i < 2; i++)
 287			free_netdev(info->dev[i]);
 288
 289		/* Free memory */
 290		first = info->next;
 291		kfree(info);
 292	}
 293}
 294
 295static int __init dmascc_init(void)
 296{
 297	int h, i, j, n;
 298	int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
 299	    t1[MAX_NUM_DEVS];
 300	unsigned t_val;
 301	unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
 302	    counting[MAX_NUM_DEVS];
 303
 304	/* Initialize random number generator */
 305	rand = jiffies;
 306	/* Cards found = 0 */
 307	n = 0;
 308	/* Warning message */
 309	if (!io[0])
 310		printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
 311
 312	/* Run autodetection for each card type */
 313	for (h = 0; h < NUM_TYPES; h++) {
 314
 315		if (io[0]) {
 316			/* User-specified I/O address regions */
 317			for (i = 0; i < hw[h].num_devs; i++)
 318				base[i] = 0;
 319			for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
 320				j = (io[i] -
 321				     hw[h].io_region) / hw[h].io_delta;
 322				if (j >= 0 && j < hw[h].num_devs &&
 323				    hw[h].io_region +
 324				    j * hw[h].io_delta == io[i]) {
 325					base[j] = io[i];
 326				}
 327			}
 328		} else {
 329			/* Default I/O address regions */
 330			for (i = 0; i < hw[h].num_devs; i++) {
 331				base[i] =
 332				    hw[h].io_region + i * hw[h].io_delta;
 333			}
 334		}
 335
 336		/* Check valid I/O address regions */
 337		for (i = 0; i < hw[h].num_devs; i++)
 338			if (base[i]) {
 339				if (!request_region
 340				    (base[i], hw[h].io_size, "dmascc"))
 341					base[i] = 0;
 342				else {
 343					tcmd[i] =
 344					    base[i] + hw[h].tmr_offset +
 345					    TMR_CTRL;
 346					t0[i] =
 347					    base[i] + hw[h].tmr_offset +
 348					    TMR_CNT0;
 349					t1[i] =
 350					    base[i] + hw[h].tmr_offset +
 351					    TMR_CNT1;
 352				}
 353			}
 354
 355		/* Start timers */
 356		for (i = 0; i < hw[h].num_devs; i++)
 357			if (base[i]) {
 358				/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
 359				outb(0x36, tcmd[i]);
 360				outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
 361				     t0[i]);
 362				outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
 363				     t0[i]);
 364				/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
 365				outb(0x70, tcmd[i]);
 366				outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
 367				outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
 368				start[i] = jiffies;
 369				delay[i] = 0;
 370				counting[i] = 1;
 371				/* Timer 2: LSB+MSB, Mode 0 */
 372				outb(0xb0, tcmd[i]);
 373			}
 374		time = jiffies;
 375		/* Wait until counter registers are loaded */
 376		udelay(2000000 / TMR_0_HZ);
 377
 378		/* Timing loop */
 379		while (jiffies - time < 13) {
 380			for (i = 0; i < hw[h].num_devs; i++)
 381				if (base[i] && counting[i]) {
 382					/* Read back Timer 1: latch; read LSB; read MSB */
 383					outb(0x40, tcmd[i]);
 384					t_val =
 385					    inb(t1[i]) + (inb(t1[i]) << 8);
 386					/* Also check whether counter did wrap */
 387					if (t_val == 0 ||
 388					    t_val > TMR_0_HZ / HZ * 10)
 389						counting[i] = 0;
 390					delay[i] = jiffies - start[i];
 391				}
 392		}
 393
 394		/* Evaluate measurements */
 395		for (i = 0; i < hw[h].num_devs; i++)
 396			if (base[i]) {
 397				if ((delay[i] >= 9 && delay[i] <= 11) &&
 398				    /* Ok, we have found an adapter */
 399				    (setup_adapter(base[i], h, n) == 0))
 400					n++;
 401				else
 402					release_region(base[i],
 403						       hw[h].io_size);
 404			}
 405
 406	}			/* NUM_TYPES */
 407
 408	/* If any adapter was successfully initialized, return ok */
 409	if (n)
 410		return 0;
 411
 412	/* If no adapter found, return error */
 413	printk(KERN_INFO "dmascc: no adapters found\n");
 414	return -EIO;
 415}
 416
 417module_init(dmascc_init);
 418module_exit(dmascc_exit);
 419
 420static void __init dev_setup(struct net_device *dev)
 421{
 422	dev->type = ARPHRD_AX25;
 423	dev->hard_header_len = AX25_MAX_HEADER_LEN;
 424	dev->mtu = 1500;
 425	dev->addr_len = AX25_ADDR_LEN;
 426	dev->tx_queue_len = 64;
 427	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 428	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 429}
 430
 431static const struct net_device_ops scc_netdev_ops = {
 432	.ndo_open = scc_open,
 433	.ndo_stop = scc_close,
 434	.ndo_start_xmit = scc_send_packet,
 435	.ndo_do_ioctl = scc_ioctl,
 436	.ndo_set_mac_address = scc_set_mac_address,
 437};
 438
 439static int __init setup_adapter(int card_base, int type, int n)
 440{
 441	int i, irq, chip, err;
 442	struct scc_info *info;
 443	struct net_device *dev;
 444	struct scc_priv *priv;
 445	unsigned long time;
 446	unsigned int irqs;
 447	int tmr_base = card_base + hw[type].tmr_offset;
 448	int scc_base = card_base + hw[type].scc_offset;
 449	char *chipnames[] = CHIPNAMES;
 450
 451	/* Initialize what is necessary for write_scc and write_scc_data */
 452	info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
 453	if (!info) {
 454		err = -ENOMEM;
 
 
 455		goto out;
 456	}
 457
 458	info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
 
 459	if (!info->dev[0]) {
 460		printk(KERN_ERR "dmascc: "
 461		       "could not allocate memory for %s at %#3x\n",
 462		       hw[type].name, card_base);
 463		err = -ENOMEM;
 464		goto out1;
 465	}
 466
 467	info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
 468	if (!info->dev[1]) {
 469		printk(KERN_ERR "dmascc: "
 470		       "could not allocate memory for %s at %#3x\n",
 471		       hw[type].name, card_base);
 472		err = -ENOMEM;
 473		goto out2;
 474	}
 475	spin_lock_init(&info->register_lock);
 476
 477	priv = &info->priv[0];
 478	priv->type = type;
 479	priv->card_base = card_base;
 480	priv->scc_cmd = scc_base + SCCA_CMD;
 481	priv->scc_data = scc_base + SCCA_DATA;
 482	priv->register_lock = &info->register_lock;
 483
 484	/* Reset SCC */
 485	write_scc(priv, R9, FHWRES | MIE | NV);
 486
 487	/* Determine type of chip by enabling SDLC/HDLC enhancements */
 488	write_scc(priv, R15, SHDLCE);
 489	if (!read_scc(priv, R15)) {
 490		/* WR7' not present. This is an ordinary Z8530 SCC. */
 491		chip = Z8530;
 492	} else {
 493		/* Put one character in TX FIFO */
 494		write_scc_data(priv, 0, 0);
 495		if (read_scc(priv, R0) & Tx_BUF_EMP) {
 496			/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
 497			chip = Z85230;
 498		} else {
 499			/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
 500			chip = Z85C30;
 501		}
 502	}
 503	write_scc(priv, R15, 0);
 504
 505	/* Start IRQ auto-detection */
 506	irqs = probe_irq_on();
 507
 508	/* Enable interrupts */
 509	if (type == TYPE_TWIN) {
 510		outb(0, card_base + TWIN_DMA_CFG);
 511		inb(card_base + TWIN_CLR_TMR1);
 512		inb(card_base + TWIN_CLR_TMR2);
 513		info->twin_serial_cfg = TWIN_EI;
 514		outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
 515	} else {
 516		write_scc(priv, R15, CTSIE);
 517		write_scc(priv, R0, RES_EXT_INT);
 518		write_scc(priv, R1, EXT_INT_ENAB);
 519	}
 520
 521	/* Start timer */
 522	outb(1, tmr_base + TMR_CNT1);
 523	outb(0, tmr_base + TMR_CNT1);
 524
 525	/* Wait and detect IRQ */
 526	time = jiffies;
 527	while (jiffies - time < 2 + HZ / TMR_0_HZ);
 528	irq = probe_irq_off(irqs);
 529
 530	/* Clear pending interrupt, disable interrupts */
 531	if (type == TYPE_TWIN) {
 532		inb(card_base + TWIN_CLR_TMR1);
 533	} else {
 534		write_scc(priv, R1, 0);
 535		write_scc(priv, R15, 0);
 536		write_scc(priv, R0, RES_EXT_INT);
 537	}
 538
 539	if (irq <= 0) {
 540		printk(KERN_ERR
 541		       "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
 542		       hw[type].name, card_base, irq);
 543		err = -ENODEV;
 544		goto out3;
 545	}
 546
 547	/* Set up data structures */
 548	for (i = 0; i < 2; i++) {
 549		dev = info->dev[i];
 550		priv = &info->priv[i];
 551		priv->type = type;
 552		priv->chip = chip;
 553		priv->dev = dev;
 554		priv->info = info;
 555		priv->channel = i;
 556		spin_lock_init(&priv->ring_lock);
 557		priv->register_lock = &info->register_lock;
 558		priv->card_base = card_base;
 559		priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
 560		priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
 561		priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
 562		priv->tmr_ctrl = tmr_base + TMR_CTRL;
 563		priv->tmr_mode = i ? 0xb0 : 0x70;
 564		priv->param.pclk_hz = hw[type].pclk_hz;
 565		priv->param.brg_tc = -1;
 566		priv->param.clocks = TCTRxCP | RCRTxCP;
 567		priv->param.persist = 256;
 568		priv->param.dma = -1;
 569		INIT_WORK(&priv->rx_work, rx_bh);
 570		dev->ml_priv = priv;
 571		snprintf(dev->name, sizeof(dev->name), "dmascc%i", 2 * n + i);
 572		dev->base_addr = card_base;
 573		dev->irq = irq;
 574		dev->netdev_ops = &scc_netdev_ops;
 575		dev->header_ops = &ax25_header_ops;
 576	}
 577	if (register_netdev(info->dev[0])) {
 578		printk(KERN_ERR "dmascc: could not register %s\n",
 579		       info->dev[0]->name);
 580		err = -ENODEV;
 581		goto out3;
 582	}
 583	if (register_netdev(info->dev[1])) {
 584		printk(KERN_ERR "dmascc: could not register %s\n",
 585		       info->dev[1]->name);
 586		err = -ENODEV;
 587		goto out4;
 588	}
 589
 590
 591	info->next = first;
 592	first = info;
 593	printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
 594	       hw[type].name, chipnames[chip], card_base, irq);
 595	return 0;
 596
 597      out4:
 598	unregister_netdev(info->dev[0]);
 599      out3:
 600	if (info->priv[0].type == TYPE_TWIN)
 601		outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 602	write_scc(&info->priv[0], R9, FHWRES);
 603	free_netdev(info->dev[1]);
 604      out2:
 605	free_netdev(info->dev[0]);
 606      out1:
 607	kfree(info);
 608      out:
 609	return err;
 610}
 611
 612
 613/* Driver functions */
 614
 615static void write_scc(struct scc_priv *priv, int reg, int val)
 616{
 617	unsigned long flags;
 618	switch (priv->type) {
 619	case TYPE_S5:
 620		if (reg)
 621			outb(reg, priv->scc_cmd);
 622		outb(val, priv->scc_cmd);
 623		return;
 624	case TYPE_TWIN:
 625		if (reg)
 626			outb_p(reg, priv->scc_cmd);
 627		outb_p(val, priv->scc_cmd);
 628		return;
 629	default:
 630		spin_lock_irqsave(priv->register_lock, flags);
 631		outb_p(0, priv->card_base + PI_DREQ_MASK);
 632		if (reg)
 633			outb_p(reg, priv->scc_cmd);
 634		outb_p(val, priv->scc_cmd);
 635		outb(1, priv->card_base + PI_DREQ_MASK);
 636		spin_unlock_irqrestore(priv->register_lock, flags);
 637		return;
 638	}
 639}
 640
 641
 642static void write_scc_data(struct scc_priv *priv, int val, int fast)
 643{
 644	unsigned long flags;
 645	switch (priv->type) {
 646	case TYPE_S5:
 647		outb(val, priv->scc_data);
 648		return;
 649	case TYPE_TWIN:
 650		outb_p(val, priv->scc_data);
 651		return;
 652	default:
 653		if (fast)
 654			outb_p(val, priv->scc_data);
 655		else {
 656			spin_lock_irqsave(priv->register_lock, flags);
 657			outb_p(0, priv->card_base + PI_DREQ_MASK);
 658			outb_p(val, priv->scc_data);
 659			outb(1, priv->card_base + PI_DREQ_MASK);
 660			spin_unlock_irqrestore(priv->register_lock, flags);
 661		}
 662		return;
 663	}
 664}
 665
 666
 667static int read_scc(struct scc_priv *priv, int reg)
 668{
 669	int rc;
 670	unsigned long flags;
 671	switch (priv->type) {
 672	case TYPE_S5:
 673		if (reg)
 674			outb(reg, priv->scc_cmd);
 675		return inb(priv->scc_cmd);
 676	case TYPE_TWIN:
 677		if (reg)
 678			outb_p(reg, priv->scc_cmd);
 679		return inb_p(priv->scc_cmd);
 680	default:
 681		spin_lock_irqsave(priv->register_lock, flags);
 682		outb_p(0, priv->card_base + PI_DREQ_MASK);
 683		if (reg)
 684			outb_p(reg, priv->scc_cmd);
 685		rc = inb_p(priv->scc_cmd);
 686		outb(1, priv->card_base + PI_DREQ_MASK);
 687		spin_unlock_irqrestore(priv->register_lock, flags);
 688		return rc;
 689	}
 690}
 691
 692
 693static int read_scc_data(struct scc_priv *priv)
 694{
 695	int rc;
 696	unsigned long flags;
 697	switch (priv->type) {
 698	case TYPE_S5:
 699		return inb(priv->scc_data);
 700	case TYPE_TWIN:
 701		return inb_p(priv->scc_data);
 702	default:
 703		spin_lock_irqsave(priv->register_lock, flags);
 704		outb_p(0, priv->card_base + PI_DREQ_MASK);
 705		rc = inb_p(priv->scc_data);
 706		outb(1, priv->card_base + PI_DREQ_MASK);
 707		spin_unlock_irqrestore(priv->register_lock, flags);
 708		return rc;
 709	}
 710}
 711
 712
 713static int scc_open(struct net_device *dev)
 714{
 715	struct scc_priv *priv = dev->ml_priv;
 716	struct scc_info *info = priv->info;
 717	int card_base = priv->card_base;
 718
 719	/* Request IRQ if not already used by other channel */
 720	if (!info->irq_used) {
 721		if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
 722			return -EAGAIN;
 723		}
 724	}
 725	info->irq_used++;
 726
 727	/* Request DMA if required */
 728	if (priv->param.dma >= 0) {
 729		if (request_dma(priv->param.dma, "dmascc")) {
 730			if (--info->irq_used == 0)
 731				free_irq(dev->irq, info);
 732			return -EAGAIN;
 733		} else {
 734			unsigned long flags = claim_dma_lock();
 735			clear_dma_ff(priv->param.dma);
 736			release_dma_lock(flags);
 737		}
 738	}
 739
 740	/* Initialize local variables */
 741	priv->rx_ptr = 0;
 742	priv->rx_over = 0;
 743	priv->rx_head = priv->rx_tail = priv->rx_count = 0;
 744	priv->state = IDLE;
 745	priv->tx_head = priv->tx_tail = priv->tx_count = 0;
 746	priv->tx_ptr = 0;
 747
 748	/* Reset channel */
 749	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 750	/* X1 clock, SDLC mode */
 751	write_scc(priv, R4, SDLC | X1CLK);
 752	/* DMA */
 753	write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
 754	/* 8 bit RX char, RX disable */
 755	write_scc(priv, R3, Rx8);
 756	/* 8 bit TX char, TX disable */
 757	write_scc(priv, R5, Tx8);
 758	/* SDLC address field */
 759	write_scc(priv, R6, 0);
 760	/* SDLC flag */
 761	write_scc(priv, R7, FLAG);
 762	switch (priv->chip) {
 763	case Z85C30:
 764		/* Select WR7' */
 765		write_scc(priv, R15, SHDLCE);
 766		/* Auto EOM reset */
 767		write_scc(priv, R7, AUTOEOM);
 768		write_scc(priv, R15, 0);
 769		break;
 770	case Z85230:
 771		/* Select WR7' */
 772		write_scc(priv, R15, SHDLCE);
 773		/* The following bits are set (see 2.5.2.1):
 774		   - Automatic EOM reset
 775		   - Interrupt request if RX FIFO is half full
 776		   This bit should be ignored in DMA mode (according to the
 777		   documentation), but actually isn't. The receiver doesn't work if
 778		   it is set. Thus, we have to clear it in DMA mode.
 779		   - Interrupt/DMA request if TX FIFO is completely empty
 780		   a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
 781		   compatibility).
 782		   b) If cleared, DMA requests may follow each other very quickly,
 783		   filling up the TX FIFO.
 784		   Advantage: TX works even in case of high bus latency.
 785		   Disadvantage: Edge-triggered DMA request circuitry may miss
 786		   a request. No more data is delivered, resulting
 787		   in a TX FIFO underrun.
 788		   Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
 789		   The PackeTwin doesn't. I don't know about the PI, but let's
 790		   assume it behaves like the PI2.
 791		 */
 792		if (priv->param.dma >= 0) {
 793			if (priv->type == TYPE_TWIN)
 794				write_scc(priv, R7, AUTOEOM | TXFIFOE);
 795			else
 796				write_scc(priv, R7, AUTOEOM);
 797		} else {
 798			write_scc(priv, R7, AUTOEOM | RXFIFOH);
 799		}
 800		write_scc(priv, R15, 0);
 801		break;
 802	}
 803	/* Preset CRC, NRZ(I) encoding */
 804	write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
 805
 806	/* Configure baud rate generator */
 807	if (priv->param.brg_tc >= 0) {
 808		/* Program BR generator */
 809		write_scc(priv, R12, priv->param.brg_tc & 0xFF);
 810		write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
 811		/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
 812		   PackeTwin, not connected on the PI2); set DPLL source to BRG */
 813		write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
 814		/* Enable DPLL */
 815		write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
 816	} else {
 817		/* Disable BR generator */
 818		write_scc(priv, R14, DTRREQ | BRSRC);
 819	}
 820
 821	/* Configure clocks */
 822	if (priv->type == TYPE_TWIN) {
 823		/* Disable external TX clock receiver */
 824		outb((info->twin_serial_cfg &=
 825		      ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 826		     card_base + TWIN_SERIAL_CFG);
 827	}
 828	write_scc(priv, R11, priv->param.clocks);
 829	if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
 830		/* Enable external TX clock receiver */
 831		outb((info->twin_serial_cfg |=
 832		      (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 833		     card_base + TWIN_SERIAL_CFG);
 834	}
 835
 836	/* Configure PackeTwin */
 837	if (priv->type == TYPE_TWIN) {
 838		/* Assert DTR, enable interrupts */
 839		outb((info->twin_serial_cfg |= TWIN_EI |
 840		      (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
 841		     card_base + TWIN_SERIAL_CFG);
 842	}
 843
 844	/* Read current status */
 845	priv->rr0 = read_scc(priv, R0);
 846	/* Enable DCD interrupt */
 847	write_scc(priv, R15, DCDIE);
 848
 849	netif_start_queue(dev);
 850
 851	return 0;
 852}
 853
 854
 855static int scc_close(struct net_device *dev)
 856{
 857	struct scc_priv *priv = dev->ml_priv;
 858	struct scc_info *info = priv->info;
 859	int card_base = priv->card_base;
 860
 861	netif_stop_queue(dev);
 862
 863	if (priv->type == TYPE_TWIN) {
 864		/* Drop DTR */
 865		outb((info->twin_serial_cfg &=
 866		      (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
 867		     card_base + TWIN_SERIAL_CFG);
 868	}
 869
 870	/* Reset channel, free DMA and IRQ */
 871	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 872	if (priv->param.dma >= 0) {
 873		if (priv->type == TYPE_TWIN)
 874			outb(0, card_base + TWIN_DMA_CFG);
 875		free_dma(priv->param.dma);
 876	}
 877	if (--info->irq_used == 0)
 878		free_irq(dev->irq, info);
 879
 880	return 0;
 881}
 882
 883
 884static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 885{
 886	struct scc_priv *priv = dev->ml_priv;
 887
 888	switch (cmd) {
 889	case SIOCGSCCPARAM:
 890		if (copy_to_user
 891		    (ifr->ifr_data, &priv->param,
 892		     sizeof(struct scc_param)))
 893			return -EFAULT;
 894		return 0;
 895	case SIOCSSCCPARAM:
 896		if (!capable(CAP_NET_ADMIN))
 897			return -EPERM;
 898		if (netif_running(dev))
 899			return -EAGAIN;
 900		if (copy_from_user
 901		    (&priv->param, ifr->ifr_data,
 902		     sizeof(struct scc_param)))
 903			return -EFAULT;
 904		return 0;
 905	default:
 906		return -EINVAL;
 907	}
 908}
 909
 910
 911static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
 912{
 913	struct scc_priv *priv = dev->ml_priv;
 914	unsigned long flags;
 915	int i;
 916
 917	if (skb->protocol == htons(ETH_P_IP))
 918		return ax25_ip_xmit(skb);
 919
 920	/* Temporarily stop the scheduler feeding us packets */
 921	netif_stop_queue(dev);
 922
 923	/* Transfer data to DMA buffer */
 924	i = priv->tx_head;
 925	skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
 926	priv->tx_len[i] = skb->len - 1;
 927
 928	/* Clear interrupts while we touch our circular buffers */
 929
 930	spin_lock_irqsave(&priv->ring_lock, flags);
 931	/* Move the ring buffer's head */
 932	priv->tx_head = (i + 1) % NUM_TX_BUF;
 933	priv->tx_count++;
 934
 935	/* If we just filled up the last buffer, leave queue stopped.
 936	   The higher layers must wait until we have a DMA buffer
 937	   to accept the data. */
 938	if (priv->tx_count < NUM_TX_BUF)
 939		netif_wake_queue(dev);
 940
 941	/* Set new TX state */
 942	if (priv->state == IDLE) {
 943		/* Assert RTS, start timer */
 944		priv->state = TX_HEAD;
 945		priv->tx_start = jiffies;
 946		write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
 947		write_scc(priv, R15, 0);
 948		start_timer(priv, priv->param.txdelay, 0);
 949	}
 950
 951	/* Turn interrupts back on and free buffer */
 952	spin_unlock_irqrestore(&priv->ring_lock, flags);
 953	dev_kfree_skb(skb);
 954
 955	return NETDEV_TX_OK;
 956}
 957
 958
 959static int scc_set_mac_address(struct net_device *dev, void *sa)
 960{
 961	memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
 962	       dev->addr_len);
 963	return 0;
 964}
 965
 966
 967static inline void tx_on(struct scc_priv *priv)
 968{
 969	int i, n;
 970	unsigned long flags;
 971
 972	if (priv->param.dma >= 0) {
 973		n = (priv->chip == Z85230) ? 3 : 1;
 974		/* Program DMA controller */
 975		flags = claim_dma_lock();
 976		set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
 977		set_dma_addr(priv->param.dma,
 978			     (int) priv->tx_buf[priv->tx_tail] + n);
 979		set_dma_count(priv->param.dma,
 980			      priv->tx_len[priv->tx_tail] - n);
 981		release_dma_lock(flags);
 982		/* Enable TX underrun interrupt */
 983		write_scc(priv, R15, TxUIE);
 984		/* Configure DREQ */
 985		if (priv->type == TYPE_TWIN)
 986			outb((priv->param.dma ==
 987			      1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
 988			     priv->card_base + TWIN_DMA_CFG);
 989		else
 990			write_scc(priv, R1,
 991				  EXT_INT_ENAB | WT_FN_RDYFN |
 992				  WT_RDY_ENAB);
 993		/* Write first byte(s) */
 994		spin_lock_irqsave(priv->register_lock, flags);
 995		for (i = 0; i < n; i++)
 996			write_scc_data(priv,
 997				       priv->tx_buf[priv->tx_tail][i], 1);
 998		enable_dma(priv->param.dma);
 999		spin_unlock_irqrestore(priv->register_lock, flags);
1000	} else {
1001		write_scc(priv, R15, TxUIE);
1002		write_scc(priv, R1,
1003			  EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1004		tx_isr(priv);
1005	}
1006	/* Reset EOM latch if we do not have the AUTOEOM feature */
1007	if (priv->chip == Z8530)
1008		write_scc(priv, R0, RES_EOM_L);
1009}
1010
1011
1012static inline void rx_on(struct scc_priv *priv)
1013{
1014	unsigned long flags;
1015
1016	/* Clear RX FIFO */
1017	while (read_scc(priv, R0) & Rx_CH_AV)
1018		read_scc_data(priv);
1019	priv->rx_over = 0;
1020	if (priv->param.dma >= 0) {
1021		/* Program DMA controller */
1022		flags = claim_dma_lock();
1023		set_dma_mode(priv->param.dma, DMA_MODE_READ);
1024		set_dma_addr(priv->param.dma,
1025			     (int) priv->rx_buf[priv->rx_head]);
1026		set_dma_count(priv->param.dma, BUF_SIZE);
1027		release_dma_lock(flags);
1028		enable_dma(priv->param.dma);
1029		/* Configure PackeTwin DMA */
1030		if (priv->type == TYPE_TWIN) {
1031			outb((priv->param.dma ==
1032			      1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1033			     priv->card_base + TWIN_DMA_CFG);
1034		}
1035		/* Sp. cond. intr. only, ext int enable, RX DMA enable */
1036		write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1037			  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1038	} else {
1039		/* Reset current frame */
1040		priv->rx_ptr = 0;
1041		/* Intr. on all Rx characters and Sp. cond., ext int enable */
1042		write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1043			  WT_FN_RDYFN);
1044	}
1045	write_scc(priv, R0, ERR_RES);
1046	write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1047}
1048
1049
1050static inline void rx_off(struct scc_priv *priv)
1051{
1052	/* Disable receiver */
1053	write_scc(priv, R3, Rx8);
1054	/* Disable DREQ / RX interrupt */
1055	if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1056		outb(0, priv->card_base + TWIN_DMA_CFG);
1057	else
1058		write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1059	/* Disable DMA */
1060	if (priv->param.dma >= 0)
1061		disable_dma(priv->param.dma);
1062}
1063
1064
1065static void start_timer(struct scc_priv *priv, int t, int r15)
1066{
1067	outb(priv->tmr_mode, priv->tmr_ctrl);
1068	if (t == 0) {
1069		tm_isr(priv);
1070	} else if (t > 0) {
1071		outb(t & 0xFF, priv->tmr_cnt);
1072		outb((t >> 8) & 0xFF, priv->tmr_cnt);
1073		if (priv->type != TYPE_TWIN) {
1074			write_scc(priv, R15, r15 | CTSIE);
1075			priv->rr0 |= CTS;
1076		}
1077	}
1078}
1079
1080
1081static inline unsigned char random(void)
1082{
1083	/* See "Numerical Recipes in C", second edition, p. 284 */
1084	rand = rand * 1664525L + 1013904223L;
1085	return (unsigned char) (rand >> 24);
1086}
1087
1088static inline void z8530_isr(struct scc_info *info)
1089{
1090	int is, i = 100;
1091
1092	while ((is = read_scc(&info->priv[0], R3)) && i--) {
1093		if (is & CHARxIP) {
1094			rx_isr(&info->priv[0]);
1095		} else if (is & CHATxIP) {
1096			tx_isr(&info->priv[0]);
1097		} else if (is & CHAEXT) {
1098			es_isr(&info->priv[0]);
1099		} else if (is & CHBRxIP) {
1100			rx_isr(&info->priv[1]);
1101		} else if (is & CHBTxIP) {
1102			tx_isr(&info->priv[1]);
1103		} else {
1104			es_isr(&info->priv[1]);
1105		}
1106		write_scc(&info->priv[0], R0, RES_H_IUS);
1107		i++;
1108	}
1109	if (i < 0) {
1110		printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1111		       is);
1112	}
1113	/* Ok, no interrupts pending from this 8530. The INT line should
1114	   be inactive now. */
1115}
1116
1117
1118static irqreturn_t scc_isr(int irq, void *dev_id)
1119{
1120	struct scc_info *info = dev_id;
1121
1122	spin_lock(info->priv[0].register_lock);
1123	/* At this point interrupts are enabled, and the interrupt under service
1124	   is already acknowledged, but masked off.
1125
1126	   Interrupt processing: We loop until we know that the IRQ line is
1127	   low. If another positive edge occurs afterwards during the ISR,
1128	   another interrupt will be triggered by the interrupt controller
1129	   as soon as the IRQ level is enabled again (see asm/irq.h).
1130
1131	   Bottom-half handlers will be processed after scc_isr(). This is
1132	   important, since we only have small ringbuffers and want new data
1133	   to be fetched/delivered immediately. */
1134
1135	if (info->priv[0].type == TYPE_TWIN) {
1136		int is, card_base = info->priv[0].card_base;
1137		while ((is = ~inb(card_base + TWIN_INT_REG)) &
1138		       TWIN_INT_MSK) {
1139			if (is & TWIN_SCC_MSK) {
1140				z8530_isr(info);
1141			} else if (is & TWIN_TMR1_MSK) {
1142				inb(card_base + TWIN_CLR_TMR1);
1143				tm_isr(&info->priv[0]);
1144			} else {
1145				inb(card_base + TWIN_CLR_TMR2);
1146				tm_isr(&info->priv[1]);
1147			}
1148		}
1149	} else
1150		z8530_isr(info);
1151	spin_unlock(info->priv[0].register_lock);
1152	return IRQ_HANDLED;
1153}
1154
1155
1156static void rx_isr(struct scc_priv *priv)
1157{
1158	if (priv->param.dma >= 0) {
1159		/* Check special condition and perform error reset. See 2.4.7.5. */
1160		special_condition(priv, read_scc(priv, R1));
1161		write_scc(priv, R0, ERR_RES);
1162	} else {
1163		/* Check special condition for each character. Error reset not necessary.
1164		   Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1165		int rc;
1166		while (read_scc(priv, R0) & Rx_CH_AV) {
1167			rc = read_scc(priv, R1);
1168			if (priv->rx_ptr < BUF_SIZE)
1169				priv->rx_buf[priv->rx_head][priv->
1170							    rx_ptr++] =
1171				    read_scc_data(priv);
1172			else {
1173				priv->rx_over = 2;
1174				read_scc_data(priv);
1175			}
1176			special_condition(priv, rc);
1177		}
1178	}
1179}
1180
1181
1182static void special_condition(struct scc_priv *priv, int rc)
1183{
1184	int cb;
1185	unsigned long flags;
1186
1187	/* See Figure 2-15. Only overrun and EOF need to be checked. */
1188
1189	if (rc & Rx_OVR) {
1190		/* Receiver overrun */
1191		priv->rx_over = 1;
1192		if (priv->param.dma < 0)
1193			write_scc(priv, R0, ERR_RES);
1194	} else if (rc & END_FR) {
1195		/* End of frame. Get byte count */
1196		if (priv->param.dma >= 0) {
1197			flags = claim_dma_lock();
1198			cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1199			    2;
1200			release_dma_lock(flags);
1201		} else {
1202			cb = priv->rx_ptr - 2;
1203		}
1204		if (priv->rx_over) {
1205			/* We had an overrun */
1206			priv->dev->stats.rx_errors++;
1207			if (priv->rx_over == 2)
1208				priv->dev->stats.rx_length_errors++;
1209			else
1210				priv->dev->stats.rx_fifo_errors++;
1211			priv->rx_over = 0;
1212		} else if (rc & CRC_ERR) {
1213			/* Count invalid CRC only if packet length >= minimum */
1214			if (cb >= 15) {
1215				priv->dev->stats.rx_errors++;
1216				priv->dev->stats.rx_crc_errors++;
1217			}
1218		} else {
1219			if (cb >= 15) {
1220				if (priv->rx_count < NUM_RX_BUF - 1) {
1221					/* Put good frame in FIFO */
1222					priv->rx_len[priv->rx_head] = cb;
1223					priv->rx_head =
1224					    (priv->rx_head +
1225					     1) % NUM_RX_BUF;
1226					priv->rx_count++;
1227					schedule_work(&priv->rx_work);
1228				} else {
1229					priv->dev->stats.rx_errors++;
1230					priv->dev->stats.rx_over_errors++;
1231				}
1232			}
1233		}
1234		/* Get ready for new frame */
1235		if (priv->param.dma >= 0) {
1236			flags = claim_dma_lock();
1237			set_dma_addr(priv->param.dma,
1238				     (int) priv->rx_buf[priv->rx_head]);
1239			set_dma_count(priv->param.dma, BUF_SIZE);
1240			release_dma_lock(flags);
1241		} else {
1242			priv->rx_ptr = 0;
1243		}
1244	}
1245}
1246
1247
1248static void rx_bh(struct work_struct *ugli_api)
1249{
1250	struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1251	int i = priv->rx_tail;
1252	int cb;
1253	unsigned long flags;
1254	struct sk_buff *skb;
1255	unsigned char *data;
1256
1257	spin_lock_irqsave(&priv->ring_lock, flags);
1258	while (priv->rx_count) {
1259		spin_unlock_irqrestore(&priv->ring_lock, flags);
1260		cb = priv->rx_len[i];
1261		/* Allocate buffer */
1262		skb = dev_alloc_skb(cb + 1);
1263		if (skb == NULL) {
1264			/* Drop packet */
1265			priv->dev->stats.rx_dropped++;
1266		} else {
1267			/* Fill buffer */
1268			data = skb_put(skb, cb + 1);
1269			data[0] = 0;
1270			memcpy(&data[1], priv->rx_buf[i], cb);
1271			skb->protocol = ax25_type_trans(skb, priv->dev);
1272			netif_rx(skb);
1273			priv->dev->stats.rx_packets++;
1274			priv->dev->stats.rx_bytes += cb;
1275		}
1276		spin_lock_irqsave(&priv->ring_lock, flags);
1277		/* Move tail */
1278		priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1279		priv->rx_count--;
1280	}
1281	spin_unlock_irqrestore(&priv->ring_lock, flags);
1282}
1283
1284
1285static void tx_isr(struct scc_priv *priv)
1286{
1287	int i = priv->tx_tail, p = priv->tx_ptr;
1288
1289	/* Suspend TX interrupts if we don't want to send anything.
1290	   See Figure 2-22. */
1291	if (p == priv->tx_len[i]) {
1292		write_scc(priv, R0, RES_Tx_P);
1293		return;
1294	}
1295
1296	/* Write characters */
1297	while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1298		write_scc_data(priv, priv->tx_buf[i][p++], 0);
1299	}
1300
1301	/* Reset EOM latch of Z8530 */
1302	if (!priv->tx_ptr && p && priv->chip == Z8530)
1303		write_scc(priv, R0, RES_EOM_L);
1304
1305	priv->tx_ptr = p;
1306}
1307
1308
1309static void es_isr(struct scc_priv *priv)
1310{
1311	int i, rr0, drr0, res;
1312	unsigned long flags;
1313
1314	/* Read status, reset interrupt bit (open latches) */
1315	rr0 = read_scc(priv, R0);
1316	write_scc(priv, R0, RES_EXT_INT);
1317	drr0 = priv->rr0 ^ rr0;
1318	priv->rr0 = rr0;
1319
1320	/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1321	   it might have already been cleared again by AUTOEOM. */
1322	if (priv->state == TX_DATA) {
1323		/* Get remaining bytes */
1324		i = priv->tx_tail;
1325		if (priv->param.dma >= 0) {
1326			disable_dma(priv->param.dma);
1327			flags = claim_dma_lock();
1328			res = get_dma_residue(priv->param.dma);
1329			release_dma_lock(flags);
1330		} else {
1331			res = priv->tx_len[i] - priv->tx_ptr;
1332			priv->tx_ptr = 0;
1333		}
1334		/* Disable DREQ / TX interrupt */
1335		if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1336			outb(0, priv->card_base + TWIN_DMA_CFG);
1337		else
1338			write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1339		if (res) {
1340			/* Update packet statistics */
1341			priv->dev->stats.tx_errors++;
1342			priv->dev->stats.tx_fifo_errors++;
1343			/* Other underrun interrupts may already be waiting */
1344			write_scc(priv, R0, RES_EXT_INT);
1345			write_scc(priv, R0, RES_EXT_INT);
1346		} else {
1347			/* Update packet statistics */
1348			priv->dev->stats.tx_packets++;
1349			priv->dev->stats.tx_bytes += priv->tx_len[i];
1350			/* Remove frame from FIFO */
1351			priv->tx_tail = (i + 1) % NUM_TX_BUF;
1352			priv->tx_count--;
1353			/* Inform upper layers */
1354			netif_wake_queue(priv->dev);
1355		}
1356		/* Switch state */
1357		write_scc(priv, R15, 0);
1358		if (priv->tx_count &&
1359		    (jiffies - priv->tx_start) < priv->param.txtimeout) {
1360			priv->state = TX_PAUSE;
1361			start_timer(priv, priv->param.txpause, 0);
1362		} else {
1363			priv->state = TX_TAIL;
1364			start_timer(priv, priv->param.txtail, 0);
1365		}
1366	}
1367
1368	/* DCD transition */
1369	if (drr0 & DCD) {
1370		if (rr0 & DCD) {
1371			switch (priv->state) {
1372			case IDLE:
1373			case WAIT:
1374				priv->state = DCD_ON;
1375				write_scc(priv, R15, 0);
1376				start_timer(priv, priv->param.dcdon, 0);
1377			}
1378		} else {
1379			switch (priv->state) {
1380			case RX_ON:
1381				rx_off(priv);
1382				priv->state = DCD_OFF;
1383				write_scc(priv, R15, 0);
1384				start_timer(priv, priv->param.dcdoff, 0);
1385			}
1386		}
1387	}
1388
1389	/* CTS transition */
1390	if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1391		tm_isr(priv);
1392
1393}
1394
1395
1396static void tm_isr(struct scc_priv *priv)
1397{
1398	switch (priv->state) {
1399	case TX_HEAD:
1400	case TX_PAUSE:
1401		tx_on(priv);
1402		priv->state = TX_DATA;
1403		break;
1404	case TX_TAIL:
1405		write_scc(priv, R5, TxCRC_ENAB | Tx8);
1406		priv->state = RTS_OFF;
1407		if (priv->type != TYPE_TWIN)
1408			write_scc(priv, R15, 0);
1409		start_timer(priv, priv->param.rtsoff, 0);
1410		break;
1411	case RTS_OFF:
1412		write_scc(priv, R15, DCDIE);
1413		priv->rr0 = read_scc(priv, R0);
1414		if (priv->rr0 & DCD) {
1415			priv->dev->stats.collisions++;
1416			rx_on(priv);
1417			priv->state = RX_ON;
1418		} else {
1419			priv->state = WAIT;
1420			start_timer(priv, priv->param.waittime, DCDIE);
1421		}
1422		break;
1423	case WAIT:
1424		if (priv->tx_count) {
1425			priv->state = TX_HEAD;
1426			priv->tx_start = jiffies;
1427			write_scc(priv, R5,
1428				  TxCRC_ENAB | RTS | TxENAB | Tx8);
1429			write_scc(priv, R15, 0);
1430			start_timer(priv, priv->param.txdelay, 0);
1431		} else {
1432			priv->state = IDLE;
1433			if (priv->type != TYPE_TWIN)
1434				write_scc(priv, R15, DCDIE);
1435		}
1436		break;
1437	case DCD_ON:
1438	case DCD_OFF:
1439		write_scc(priv, R15, DCDIE);
1440		priv->rr0 = read_scc(priv, R0);
1441		if (priv->rr0 & DCD) {
1442			rx_on(priv);
1443			priv->state = RX_ON;
1444		} else {
1445			priv->state = WAIT;
1446			start_timer(priv,
1447				    random() / priv->param.persist *
1448				    priv->param.slottime, DCDIE);
1449		}
1450		break;
1451	}
1452}
v3.5.6
 
   1/*
   2 * Driver for high-speed SCC boards (those with DMA support)
   3 * Copyright (C) 1997-2000 Klaus Kudielka
   4 *
   5 * S5SCC/DMA support by Janko Koleznik S52HI
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22
  23#include <linux/module.h>
  24#include <linux/bitops.h>
  25#include <linux/delay.h>
  26#include <linux/errno.h>
  27#include <linux/if_arp.h>
  28#include <linux/in.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/ioport.h>
  32#include <linux/kernel.h>
  33#include <linux/mm.h>
  34#include <linux/netdevice.h>
  35#include <linux/slab.h>
  36#include <linux/rtnetlink.h>
  37#include <linux/sockios.h>
  38#include <linux/workqueue.h>
  39#include <linux/atomic.h>
  40#include <asm/dma.h>
  41#include <asm/io.h>
  42#include <asm/irq.h>
  43#include <asm/uaccess.h>
  44#include <net/ax25.h>
  45#include "z8530.h"
  46
  47
  48/* Number of buffers per channel */
  49
  50#define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */
  51#define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */
  52#define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */
  53
  54
  55/* Cards supported */
  56
  57#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
  58                            0, 8, 1843200, 3686400 }
  59#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
  60			    0, 8, 3686400, 7372800 }
  61#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
  62			    0, 4, 6144000, 6144000 }
  63#define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
  64                          0, 8, 4915200, 9830400 }
  65
  66#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
  67
  68#define TMR_0_HZ        25600	/* Frequency of timer 0 */
  69
  70#define TYPE_PI         0
  71#define TYPE_PI2        1
  72#define TYPE_TWIN       2
  73#define TYPE_S5         3
  74#define NUM_TYPES       4
  75
  76#define MAX_NUM_DEVS    32
  77
  78
  79/* SCC chips supported */
  80
  81#define Z8530           0
  82#define Z85C30          1
  83#define Z85230          2
  84
  85#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
  86
  87
  88/* I/O registers */
  89
  90/* 8530 registers relative to card base */
  91#define SCCB_CMD        0x00
  92#define SCCB_DATA       0x01
  93#define SCCA_CMD        0x02
  94#define SCCA_DATA       0x03
  95
  96/* 8253/8254 registers relative to card base */
  97#define TMR_CNT0        0x00
  98#define TMR_CNT1        0x01
  99#define TMR_CNT2        0x02
 100#define TMR_CTRL        0x03
 101
 102/* Additional PI/PI2 registers relative to card base */
 103#define PI_DREQ_MASK    0x04
 104
 105/* Additional PackeTwin registers relative to card base */
 106#define TWIN_INT_REG    0x08
 107#define TWIN_CLR_TMR1   0x09
 108#define TWIN_CLR_TMR2   0x0a
 109#define TWIN_SPARE_1    0x0b
 110#define TWIN_DMA_CFG    0x08
 111#define TWIN_SERIAL_CFG 0x09
 112#define TWIN_DMA_CLR_FF 0x0a
 113#define TWIN_SPARE_2    0x0b
 114
 115
 116/* PackeTwin I/O register values */
 117
 118/* INT_REG */
 119#define TWIN_SCC_MSK       0x01
 120#define TWIN_TMR1_MSK      0x02
 121#define TWIN_TMR2_MSK      0x04
 122#define TWIN_INT_MSK       0x07
 123
 124/* SERIAL_CFG */
 125#define TWIN_DTRA_ON       0x01
 126#define TWIN_DTRB_ON       0x02
 127#define TWIN_EXTCLKA       0x04
 128#define TWIN_EXTCLKB       0x08
 129#define TWIN_LOOPA_ON      0x10
 130#define TWIN_LOOPB_ON      0x20
 131#define TWIN_EI            0x80
 132
 133/* DMA_CFG */
 134#define TWIN_DMA_HDX_T1    0x08
 135#define TWIN_DMA_HDX_R1    0x0a
 136#define TWIN_DMA_HDX_T3    0x14
 137#define TWIN_DMA_HDX_R3    0x16
 138#define TWIN_DMA_FDX_T3R1  0x1b
 139#define TWIN_DMA_FDX_T1R3  0x1d
 140
 141
 142/* Status values */
 143
 144#define IDLE      0
 145#define TX_HEAD   1
 146#define TX_DATA   2
 147#define TX_PAUSE  3
 148#define TX_TAIL   4
 149#define RTS_OFF   5
 150#define WAIT      6
 151#define DCD_ON    7
 152#define RX_ON     8
 153#define DCD_OFF   9
 154
 155
 156/* Ioctls */
 157
 158#define SIOCGSCCPARAM SIOCDEVPRIVATE
 159#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
 160
 161
 162/* Data types */
 163
 164struct scc_param {
 165	int pclk_hz;		/* frequency of BRG input (don't change) */
 166	int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */
 167	int nrzi;		/* 0 (nrz), 1 (nrzi) */
 168	int clocks;		/* see dmascc_cfg documentation */
 169	int txdelay;		/* [1/TMR_0_HZ] */
 170	int txtimeout;		/* [1/HZ] */
 171	int txtail;		/* [1/TMR_0_HZ] */
 172	int waittime;		/* [1/TMR_0_HZ] */
 173	int slottime;		/* [1/TMR_0_HZ] */
 174	int persist;		/* 1 ... 256 */
 175	int dma;		/* -1 (disable), 0, 1, 3 */
 176	int txpause;		/* [1/TMR_0_HZ] */
 177	int rtsoff;		/* [1/TMR_0_HZ] */
 178	int dcdon;		/* [1/TMR_0_HZ] */
 179	int dcdoff;		/* [1/TMR_0_HZ] */
 180};
 181
 182struct scc_hardware {
 183	char *name;
 184	int io_region;
 185	int io_delta;
 186	int io_size;
 187	int num_devs;
 188	int scc_offset;
 189	int tmr_offset;
 190	int tmr_hz;
 191	int pclk_hz;
 192};
 193
 194struct scc_priv {
 195	int type;
 196	int chip;
 197	struct net_device *dev;
 198	struct scc_info *info;
 199
 200	int channel;
 201	int card_base, scc_cmd, scc_data;
 202	int tmr_cnt, tmr_ctrl, tmr_mode;
 203	struct scc_param param;
 204	char rx_buf[NUM_RX_BUF][BUF_SIZE];
 205	int rx_len[NUM_RX_BUF];
 206	int rx_ptr;
 207	struct work_struct rx_work;
 208	int rx_head, rx_tail, rx_count;
 209	int rx_over;
 210	char tx_buf[NUM_TX_BUF][BUF_SIZE];
 211	int tx_len[NUM_TX_BUF];
 212	int tx_ptr;
 213	int tx_head, tx_tail, tx_count;
 214	int state;
 215	unsigned long tx_start;
 216	int rr0;
 217	spinlock_t *register_lock;	/* Per scc_info */
 218	spinlock_t ring_lock;
 219};
 220
 221struct scc_info {
 222	int irq_used;
 223	int twin_serial_cfg;
 224	struct net_device *dev[2];
 225	struct scc_priv priv[2];
 226	struct scc_info *next;
 227	spinlock_t register_lock;	/* Per device register lock */
 228};
 229
 230
 231/* Function declarations */
 232static int setup_adapter(int card_base, int type, int n) __init;
 233
 234static void write_scc(struct scc_priv *priv, int reg, int val);
 235static void write_scc_data(struct scc_priv *priv, int val, int fast);
 236static int read_scc(struct scc_priv *priv, int reg);
 237static int read_scc_data(struct scc_priv *priv);
 238
 239static int scc_open(struct net_device *dev);
 240static int scc_close(struct net_device *dev);
 241static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
 242static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
 243static int scc_set_mac_address(struct net_device *dev, void *sa);
 244
 245static inline void tx_on(struct scc_priv *priv);
 246static inline void rx_on(struct scc_priv *priv);
 247static inline void rx_off(struct scc_priv *priv);
 248static void start_timer(struct scc_priv *priv, int t, int r15);
 249static inline unsigned char random(void);
 250
 251static inline void z8530_isr(struct scc_info *info);
 252static irqreturn_t scc_isr(int irq, void *dev_id);
 253static void rx_isr(struct scc_priv *priv);
 254static void special_condition(struct scc_priv *priv, int rc);
 255static void rx_bh(struct work_struct *);
 256static void tx_isr(struct scc_priv *priv);
 257static void es_isr(struct scc_priv *priv);
 258static void tm_isr(struct scc_priv *priv);
 259
 260
 261/* Initialization variables */
 262
 263static int io[MAX_NUM_DEVS] __initdata = { 0, };
 264
 265/* Beware! hw[] is also used in dmascc_exit(). */
 266static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
 267
 268
 269/* Global variables */
 270
 271static struct scc_info *first;
 272static unsigned long rand;
 273
 274
 275MODULE_AUTHOR("Klaus Kudielka");
 276MODULE_DESCRIPTION("Driver for high-speed SCC boards");
 277module_param_array(io, int, NULL, 0);
 278MODULE_LICENSE("GPL");
 279
 280static void __exit dmascc_exit(void)
 281{
 282	int i;
 283	struct scc_info *info;
 284
 285	while (first) {
 286		info = first;
 287
 288		/* Unregister devices */
 289		for (i = 0; i < 2; i++)
 290			unregister_netdev(info->dev[i]);
 291
 292		/* Reset board */
 293		if (info->priv[0].type == TYPE_TWIN)
 294			outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 295		write_scc(&info->priv[0], R9, FHWRES);
 296		release_region(info->dev[0]->base_addr,
 297			       hw[info->priv[0].type].io_size);
 298
 299		for (i = 0; i < 2; i++)
 300			free_netdev(info->dev[i]);
 301
 302		/* Free memory */
 303		first = info->next;
 304		kfree(info);
 305	}
 306}
 307
 308static int __init dmascc_init(void)
 309{
 310	int h, i, j, n;
 311	int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
 312	    t1[MAX_NUM_DEVS];
 313	unsigned t_val;
 314	unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
 315	    counting[MAX_NUM_DEVS];
 316
 317	/* Initialize random number generator */
 318	rand = jiffies;
 319	/* Cards found = 0 */
 320	n = 0;
 321	/* Warning message */
 322	if (!io[0])
 323		printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
 324
 325	/* Run autodetection for each card type */
 326	for (h = 0; h < NUM_TYPES; h++) {
 327
 328		if (io[0]) {
 329			/* User-specified I/O address regions */
 330			for (i = 0; i < hw[h].num_devs; i++)
 331				base[i] = 0;
 332			for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
 333				j = (io[i] -
 334				     hw[h].io_region) / hw[h].io_delta;
 335				if (j >= 0 && j < hw[h].num_devs &&
 336				    hw[h].io_region +
 337				    j * hw[h].io_delta == io[i]) {
 338					base[j] = io[i];
 339				}
 340			}
 341		} else {
 342			/* Default I/O address regions */
 343			for (i = 0; i < hw[h].num_devs; i++) {
 344				base[i] =
 345				    hw[h].io_region + i * hw[h].io_delta;
 346			}
 347		}
 348
 349		/* Check valid I/O address regions */
 350		for (i = 0; i < hw[h].num_devs; i++)
 351			if (base[i]) {
 352				if (!request_region
 353				    (base[i], hw[h].io_size, "dmascc"))
 354					base[i] = 0;
 355				else {
 356					tcmd[i] =
 357					    base[i] + hw[h].tmr_offset +
 358					    TMR_CTRL;
 359					t0[i] =
 360					    base[i] + hw[h].tmr_offset +
 361					    TMR_CNT0;
 362					t1[i] =
 363					    base[i] + hw[h].tmr_offset +
 364					    TMR_CNT1;
 365				}
 366			}
 367
 368		/* Start timers */
 369		for (i = 0; i < hw[h].num_devs; i++)
 370			if (base[i]) {
 371				/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
 372				outb(0x36, tcmd[i]);
 373				outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
 374				     t0[i]);
 375				outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
 376				     t0[i]);
 377				/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
 378				outb(0x70, tcmd[i]);
 379				outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
 380				outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
 381				start[i] = jiffies;
 382				delay[i] = 0;
 383				counting[i] = 1;
 384				/* Timer 2: LSB+MSB, Mode 0 */
 385				outb(0xb0, tcmd[i]);
 386			}
 387		time = jiffies;
 388		/* Wait until counter registers are loaded */
 389		udelay(2000000 / TMR_0_HZ);
 390
 391		/* Timing loop */
 392		while (jiffies - time < 13) {
 393			for (i = 0; i < hw[h].num_devs; i++)
 394				if (base[i] && counting[i]) {
 395					/* Read back Timer 1: latch; read LSB; read MSB */
 396					outb(0x40, tcmd[i]);
 397					t_val =
 398					    inb(t1[i]) + (inb(t1[i]) << 8);
 399					/* Also check whether counter did wrap */
 400					if (t_val == 0 ||
 401					    t_val > TMR_0_HZ / HZ * 10)
 402						counting[i] = 0;
 403					delay[i] = jiffies - start[i];
 404				}
 405		}
 406
 407		/* Evaluate measurements */
 408		for (i = 0; i < hw[h].num_devs; i++)
 409			if (base[i]) {
 410				if ((delay[i] >= 9 && delay[i] <= 11) &&
 411				    /* Ok, we have found an adapter */
 412				    (setup_adapter(base[i], h, n) == 0))
 413					n++;
 414				else
 415					release_region(base[i],
 416						       hw[h].io_size);
 417			}
 418
 419	}			/* NUM_TYPES */
 420
 421	/* If any adapter was successfully initialized, return ok */
 422	if (n)
 423		return 0;
 424
 425	/* If no adapter found, return error */
 426	printk(KERN_INFO "dmascc: no adapters found\n");
 427	return -EIO;
 428}
 429
 430module_init(dmascc_init);
 431module_exit(dmascc_exit);
 432
 433static void __init dev_setup(struct net_device *dev)
 434{
 435	dev->type = ARPHRD_AX25;
 436	dev->hard_header_len = AX25_MAX_HEADER_LEN;
 437	dev->mtu = 1500;
 438	dev->addr_len = AX25_ADDR_LEN;
 439	dev->tx_queue_len = 64;
 440	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 441	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 442}
 443
 444static const struct net_device_ops scc_netdev_ops = {
 445	.ndo_open = scc_open,
 446	.ndo_stop = scc_close,
 447	.ndo_start_xmit = scc_send_packet,
 448	.ndo_do_ioctl = scc_ioctl,
 449	.ndo_set_mac_address = scc_set_mac_address,
 450};
 451
 452static int __init setup_adapter(int card_base, int type, int n)
 453{
 454	int i, irq, chip;
 455	struct scc_info *info;
 456	struct net_device *dev;
 457	struct scc_priv *priv;
 458	unsigned long time;
 459	unsigned int irqs;
 460	int tmr_base = card_base + hw[type].tmr_offset;
 461	int scc_base = card_base + hw[type].scc_offset;
 462	char *chipnames[] = CHIPNAMES;
 463
 464	/* Initialize what is necessary for write_scc and write_scc_data */
 465	info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
 466	if (!info) {
 467		printk(KERN_ERR "dmascc: "
 468		       "could not allocate memory for %s at %#3x\n",
 469		       hw[type].name, card_base);
 470		goto out;
 471	}
 472
 473
 474	info->dev[0] = alloc_netdev(0, "", dev_setup);
 475	if (!info->dev[0]) {
 476		printk(KERN_ERR "dmascc: "
 477		       "could not allocate memory for %s at %#3x\n",
 478		       hw[type].name, card_base);
 
 479		goto out1;
 480	}
 481
 482	info->dev[1] = alloc_netdev(0, "", dev_setup);
 483	if (!info->dev[1]) {
 484		printk(KERN_ERR "dmascc: "
 485		       "could not allocate memory for %s at %#3x\n",
 486		       hw[type].name, card_base);
 
 487		goto out2;
 488	}
 489	spin_lock_init(&info->register_lock);
 490
 491	priv = &info->priv[0];
 492	priv->type = type;
 493	priv->card_base = card_base;
 494	priv->scc_cmd = scc_base + SCCA_CMD;
 495	priv->scc_data = scc_base + SCCA_DATA;
 496	priv->register_lock = &info->register_lock;
 497
 498	/* Reset SCC */
 499	write_scc(priv, R9, FHWRES | MIE | NV);
 500
 501	/* Determine type of chip by enabling SDLC/HDLC enhancements */
 502	write_scc(priv, R15, SHDLCE);
 503	if (!read_scc(priv, R15)) {
 504		/* WR7' not present. This is an ordinary Z8530 SCC. */
 505		chip = Z8530;
 506	} else {
 507		/* Put one character in TX FIFO */
 508		write_scc_data(priv, 0, 0);
 509		if (read_scc(priv, R0) & Tx_BUF_EMP) {
 510			/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
 511			chip = Z85230;
 512		} else {
 513			/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
 514			chip = Z85C30;
 515		}
 516	}
 517	write_scc(priv, R15, 0);
 518
 519	/* Start IRQ auto-detection */
 520	irqs = probe_irq_on();
 521
 522	/* Enable interrupts */
 523	if (type == TYPE_TWIN) {
 524		outb(0, card_base + TWIN_DMA_CFG);
 525		inb(card_base + TWIN_CLR_TMR1);
 526		inb(card_base + TWIN_CLR_TMR2);
 527		info->twin_serial_cfg = TWIN_EI;
 528		outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
 529	} else {
 530		write_scc(priv, R15, CTSIE);
 531		write_scc(priv, R0, RES_EXT_INT);
 532		write_scc(priv, R1, EXT_INT_ENAB);
 533	}
 534
 535	/* Start timer */
 536	outb(1, tmr_base + TMR_CNT1);
 537	outb(0, tmr_base + TMR_CNT1);
 538
 539	/* Wait and detect IRQ */
 540	time = jiffies;
 541	while (jiffies - time < 2 + HZ / TMR_0_HZ);
 542	irq = probe_irq_off(irqs);
 543
 544	/* Clear pending interrupt, disable interrupts */
 545	if (type == TYPE_TWIN) {
 546		inb(card_base + TWIN_CLR_TMR1);
 547	} else {
 548		write_scc(priv, R1, 0);
 549		write_scc(priv, R15, 0);
 550		write_scc(priv, R0, RES_EXT_INT);
 551	}
 552
 553	if (irq <= 0) {
 554		printk(KERN_ERR
 555		       "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
 556		       hw[type].name, card_base, irq);
 
 557		goto out3;
 558	}
 559
 560	/* Set up data structures */
 561	for (i = 0; i < 2; i++) {
 562		dev = info->dev[i];
 563		priv = &info->priv[i];
 564		priv->type = type;
 565		priv->chip = chip;
 566		priv->dev = dev;
 567		priv->info = info;
 568		priv->channel = i;
 569		spin_lock_init(&priv->ring_lock);
 570		priv->register_lock = &info->register_lock;
 571		priv->card_base = card_base;
 572		priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
 573		priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
 574		priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
 575		priv->tmr_ctrl = tmr_base + TMR_CTRL;
 576		priv->tmr_mode = i ? 0xb0 : 0x70;
 577		priv->param.pclk_hz = hw[type].pclk_hz;
 578		priv->param.brg_tc = -1;
 579		priv->param.clocks = TCTRxCP | RCRTxCP;
 580		priv->param.persist = 256;
 581		priv->param.dma = -1;
 582		INIT_WORK(&priv->rx_work, rx_bh);
 583		dev->ml_priv = priv;
 584		sprintf(dev->name, "dmascc%i", 2 * n + i);
 585		dev->base_addr = card_base;
 586		dev->irq = irq;
 587		dev->netdev_ops = &scc_netdev_ops;
 588		dev->header_ops = &ax25_header_ops;
 589	}
 590	if (register_netdev(info->dev[0])) {
 591		printk(KERN_ERR "dmascc: could not register %s\n",
 592		       info->dev[0]->name);
 
 593		goto out3;
 594	}
 595	if (register_netdev(info->dev[1])) {
 596		printk(KERN_ERR "dmascc: could not register %s\n",
 597		       info->dev[1]->name);
 
 598		goto out4;
 599	}
 600
 601
 602	info->next = first;
 603	first = info;
 604	printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
 605	       hw[type].name, chipnames[chip], card_base, irq);
 606	return 0;
 607
 608      out4:
 609	unregister_netdev(info->dev[0]);
 610      out3:
 611	if (info->priv[0].type == TYPE_TWIN)
 612		outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 613	write_scc(&info->priv[0], R9, FHWRES);
 614	free_netdev(info->dev[1]);
 615      out2:
 616	free_netdev(info->dev[0]);
 617      out1:
 618	kfree(info);
 619      out:
 620	return -1;
 621}
 622
 623
 624/* Driver functions */
 625
 626static void write_scc(struct scc_priv *priv, int reg, int val)
 627{
 628	unsigned long flags;
 629	switch (priv->type) {
 630	case TYPE_S5:
 631		if (reg)
 632			outb(reg, priv->scc_cmd);
 633		outb(val, priv->scc_cmd);
 634		return;
 635	case TYPE_TWIN:
 636		if (reg)
 637			outb_p(reg, priv->scc_cmd);
 638		outb_p(val, priv->scc_cmd);
 639		return;
 640	default:
 641		spin_lock_irqsave(priv->register_lock, flags);
 642		outb_p(0, priv->card_base + PI_DREQ_MASK);
 643		if (reg)
 644			outb_p(reg, priv->scc_cmd);
 645		outb_p(val, priv->scc_cmd);
 646		outb(1, priv->card_base + PI_DREQ_MASK);
 647		spin_unlock_irqrestore(priv->register_lock, flags);
 648		return;
 649	}
 650}
 651
 652
 653static void write_scc_data(struct scc_priv *priv, int val, int fast)
 654{
 655	unsigned long flags;
 656	switch (priv->type) {
 657	case TYPE_S5:
 658		outb(val, priv->scc_data);
 659		return;
 660	case TYPE_TWIN:
 661		outb_p(val, priv->scc_data);
 662		return;
 663	default:
 664		if (fast)
 665			outb_p(val, priv->scc_data);
 666		else {
 667			spin_lock_irqsave(priv->register_lock, flags);
 668			outb_p(0, priv->card_base + PI_DREQ_MASK);
 669			outb_p(val, priv->scc_data);
 670			outb(1, priv->card_base + PI_DREQ_MASK);
 671			spin_unlock_irqrestore(priv->register_lock, flags);
 672		}
 673		return;
 674	}
 675}
 676
 677
 678static int read_scc(struct scc_priv *priv, int reg)
 679{
 680	int rc;
 681	unsigned long flags;
 682	switch (priv->type) {
 683	case TYPE_S5:
 684		if (reg)
 685			outb(reg, priv->scc_cmd);
 686		return inb(priv->scc_cmd);
 687	case TYPE_TWIN:
 688		if (reg)
 689			outb_p(reg, priv->scc_cmd);
 690		return inb_p(priv->scc_cmd);
 691	default:
 692		spin_lock_irqsave(priv->register_lock, flags);
 693		outb_p(0, priv->card_base + PI_DREQ_MASK);
 694		if (reg)
 695			outb_p(reg, priv->scc_cmd);
 696		rc = inb_p(priv->scc_cmd);
 697		outb(1, priv->card_base + PI_DREQ_MASK);
 698		spin_unlock_irqrestore(priv->register_lock, flags);
 699		return rc;
 700	}
 701}
 702
 703
 704static int read_scc_data(struct scc_priv *priv)
 705{
 706	int rc;
 707	unsigned long flags;
 708	switch (priv->type) {
 709	case TYPE_S5:
 710		return inb(priv->scc_data);
 711	case TYPE_TWIN:
 712		return inb_p(priv->scc_data);
 713	default:
 714		spin_lock_irqsave(priv->register_lock, flags);
 715		outb_p(0, priv->card_base + PI_DREQ_MASK);
 716		rc = inb_p(priv->scc_data);
 717		outb(1, priv->card_base + PI_DREQ_MASK);
 718		spin_unlock_irqrestore(priv->register_lock, flags);
 719		return rc;
 720	}
 721}
 722
 723
 724static int scc_open(struct net_device *dev)
 725{
 726	struct scc_priv *priv = dev->ml_priv;
 727	struct scc_info *info = priv->info;
 728	int card_base = priv->card_base;
 729
 730	/* Request IRQ if not already used by other channel */
 731	if (!info->irq_used) {
 732		if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
 733			return -EAGAIN;
 734		}
 735	}
 736	info->irq_used++;
 737
 738	/* Request DMA if required */
 739	if (priv->param.dma >= 0) {
 740		if (request_dma(priv->param.dma, "dmascc")) {
 741			if (--info->irq_used == 0)
 742				free_irq(dev->irq, info);
 743			return -EAGAIN;
 744		} else {
 745			unsigned long flags = claim_dma_lock();
 746			clear_dma_ff(priv->param.dma);
 747			release_dma_lock(flags);
 748		}
 749	}
 750
 751	/* Initialize local variables */
 752	priv->rx_ptr = 0;
 753	priv->rx_over = 0;
 754	priv->rx_head = priv->rx_tail = priv->rx_count = 0;
 755	priv->state = IDLE;
 756	priv->tx_head = priv->tx_tail = priv->tx_count = 0;
 757	priv->tx_ptr = 0;
 758
 759	/* Reset channel */
 760	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 761	/* X1 clock, SDLC mode */
 762	write_scc(priv, R4, SDLC | X1CLK);
 763	/* DMA */
 764	write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
 765	/* 8 bit RX char, RX disable */
 766	write_scc(priv, R3, Rx8);
 767	/* 8 bit TX char, TX disable */
 768	write_scc(priv, R5, Tx8);
 769	/* SDLC address field */
 770	write_scc(priv, R6, 0);
 771	/* SDLC flag */
 772	write_scc(priv, R7, FLAG);
 773	switch (priv->chip) {
 774	case Z85C30:
 775		/* Select WR7' */
 776		write_scc(priv, R15, SHDLCE);
 777		/* Auto EOM reset */
 778		write_scc(priv, R7, AUTOEOM);
 779		write_scc(priv, R15, 0);
 780		break;
 781	case Z85230:
 782		/* Select WR7' */
 783		write_scc(priv, R15, SHDLCE);
 784		/* The following bits are set (see 2.5.2.1):
 785		   - Automatic EOM reset
 786		   - Interrupt request if RX FIFO is half full
 787		   This bit should be ignored in DMA mode (according to the
 788		   documentation), but actually isn't. The receiver doesn't work if
 789		   it is set. Thus, we have to clear it in DMA mode.
 790		   - Interrupt/DMA request if TX FIFO is completely empty
 791		   a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
 792		   compatibility).
 793		   b) If cleared, DMA requests may follow each other very quickly,
 794		   filling up the TX FIFO.
 795		   Advantage: TX works even in case of high bus latency.
 796		   Disadvantage: Edge-triggered DMA request circuitry may miss
 797		   a request. No more data is delivered, resulting
 798		   in a TX FIFO underrun.
 799		   Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
 800		   The PackeTwin doesn't. I don't know about the PI, but let's
 801		   assume it behaves like the PI2.
 802		 */
 803		if (priv->param.dma >= 0) {
 804			if (priv->type == TYPE_TWIN)
 805				write_scc(priv, R7, AUTOEOM | TXFIFOE);
 806			else
 807				write_scc(priv, R7, AUTOEOM);
 808		} else {
 809			write_scc(priv, R7, AUTOEOM | RXFIFOH);
 810		}
 811		write_scc(priv, R15, 0);
 812		break;
 813	}
 814	/* Preset CRC, NRZ(I) encoding */
 815	write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
 816
 817	/* Configure baud rate generator */
 818	if (priv->param.brg_tc >= 0) {
 819		/* Program BR generator */
 820		write_scc(priv, R12, priv->param.brg_tc & 0xFF);
 821		write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
 822		/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
 823		   PackeTwin, not connected on the PI2); set DPLL source to BRG */
 824		write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
 825		/* Enable DPLL */
 826		write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
 827	} else {
 828		/* Disable BR generator */
 829		write_scc(priv, R14, DTRREQ | BRSRC);
 830	}
 831
 832	/* Configure clocks */
 833	if (priv->type == TYPE_TWIN) {
 834		/* Disable external TX clock receiver */
 835		outb((info->twin_serial_cfg &=
 836		      ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 837		     card_base + TWIN_SERIAL_CFG);
 838	}
 839	write_scc(priv, R11, priv->param.clocks);
 840	if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
 841		/* Enable external TX clock receiver */
 842		outb((info->twin_serial_cfg |=
 843		      (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 844		     card_base + TWIN_SERIAL_CFG);
 845	}
 846
 847	/* Configure PackeTwin */
 848	if (priv->type == TYPE_TWIN) {
 849		/* Assert DTR, enable interrupts */
 850		outb((info->twin_serial_cfg |= TWIN_EI |
 851		      (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
 852		     card_base + TWIN_SERIAL_CFG);
 853	}
 854
 855	/* Read current status */
 856	priv->rr0 = read_scc(priv, R0);
 857	/* Enable DCD interrupt */
 858	write_scc(priv, R15, DCDIE);
 859
 860	netif_start_queue(dev);
 861
 862	return 0;
 863}
 864
 865
 866static int scc_close(struct net_device *dev)
 867{
 868	struct scc_priv *priv = dev->ml_priv;
 869	struct scc_info *info = priv->info;
 870	int card_base = priv->card_base;
 871
 872	netif_stop_queue(dev);
 873
 874	if (priv->type == TYPE_TWIN) {
 875		/* Drop DTR */
 876		outb((info->twin_serial_cfg &=
 877		      (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
 878		     card_base + TWIN_SERIAL_CFG);
 879	}
 880
 881	/* Reset channel, free DMA and IRQ */
 882	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 883	if (priv->param.dma >= 0) {
 884		if (priv->type == TYPE_TWIN)
 885			outb(0, card_base + TWIN_DMA_CFG);
 886		free_dma(priv->param.dma);
 887	}
 888	if (--info->irq_used == 0)
 889		free_irq(dev->irq, info);
 890
 891	return 0;
 892}
 893
 894
 895static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 896{
 897	struct scc_priv *priv = dev->ml_priv;
 898
 899	switch (cmd) {
 900	case SIOCGSCCPARAM:
 901		if (copy_to_user
 902		    (ifr->ifr_data, &priv->param,
 903		     sizeof(struct scc_param)))
 904			return -EFAULT;
 905		return 0;
 906	case SIOCSSCCPARAM:
 907		if (!capable(CAP_NET_ADMIN))
 908			return -EPERM;
 909		if (netif_running(dev))
 910			return -EAGAIN;
 911		if (copy_from_user
 912		    (&priv->param, ifr->ifr_data,
 913		     sizeof(struct scc_param)))
 914			return -EFAULT;
 915		return 0;
 916	default:
 917		return -EINVAL;
 918	}
 919}
 920
 921
 922static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
 923{
 924	struct scc_priv *priv = dev->ml_priv;
 925	unsigned long flags;
 926	int i;
 
 
 
 927
 928	/* Temporarily stop the scheduler feeding us packets */
 929	netif_stop_queue(dev);
 930
 931	/* Transfer data to DMA buffer */
 932	i = priv->tx_head;
 933	skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
 934	priv->tx_len[i] = skb->len - 1;
 935
 936	/* Clear interrupts while we touch our circular buffers */
 937
 938	spin_lock_irqsave(&priv->ring_lock, flags);
 939	/* Move the ring buffer's head */
 940	priv->tx_head = (i + 1) % NUM_TX_BUF;
 941	priv->tx_count++;
 942
 943	/* If we just filled up the last buffer, leave queue stopped.
 944	   The higher layers must wait until we have a DMA buffer
 945	   to accept the data. */
 946	if (priv->tx_count < NUM_TX_BUF)
 947		netif_wake_queue(dev);
 948
 949	/* Set new TX state */
 950	if (priv->state == IDLE) {
 951		/* Assert RTS, start timer */
 952		priv->state = TX_HEAD;
 953		priv->tx_start = jiffies;
 954		write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
 955		write_scc(priv, R15, 0);
 956		start_timer(priv, priv->param.txdelay, 0);
 957	}
 958
 959	/* Turn interrupts back on and free buffer */
 960	spin_unlock_irqrestore(&priv->ring_lock, flags);
 961	dev_kfree_skb(skb);
 962
 963	return NETDEV_TX_OK;
 964}
 965
 966
 967static int scc_set_mac_address(struct net_device *dev, void *sa)
 968{
 969	memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
 970	       dev->addr_len);
 971	return 0;
 972}
 973
 974
 975static inline void tx_on(struct scc_priv *priv)
 976{
 977	int i, n;
 978	unsigned long flags;
 979
 980	if (priv->param.dma >= 0) {
 981		n = (priv->chip == Z85230) ? 3 : 1;
 982		/* Program DMA controller */
 983		flags = claim_dma_lock();
 984		set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
 985		set_dma_addr(priv->param.dma,
 986			     (int) priv->tx_buf[priv->tx_tail] + n);
 987		set_dma_count(priv->param.dma,
 988			      priv->tx_len[priv->tx_tail] - n);
 989		release_dma_lock(flags);
 990		/* Enable TX underrun interrupt */
 991		write_scc(priv, R15, TxUIE);
 992		/* Configure DREQ */
 993		if (priv->type == TYPE_TWIN)
 994			outb((priv->param.dma ==
 995			      1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
 996			     priv->card_base + TWIN_DMA_CFG);
 997		else
 998			write_scc(priv, R1,
 999				  EXT_INT_ENAB | WT_FN_RDYFN |
1000				  WT_RDY_ENAB);
1001		/* Write first byte(s) */
1002		spin_lock_irqsave(priv->register_lock, flags);
1003		for (i = 0; i < n; i++)
1004			write_scc_data(priv,
1005				       priv->tx_buf[priv->tx_tail][i], 1);
1006		enable_dma(priv->param.dma);
1007		spin_unlock_irqrestore(priv->register_lock, flags);
1008	} else {
1009		write_scc(priv, R15, TxUIE);
1010		write_scc(priv, R1,
1011			  EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1012		tx_isr(priv);
1013	}
1014	/* Reset EOM latch if we do not have the AUTOEOM feature */
1015	if (priv->chip == Z8530)
1016		write_scc(priv, R0, RES_EOM_L);
1017}
1018
1019
1020static inline void rx_on(struct scc_priv *priv)
1021{
1022	unsigned long flags;
1023
1024	/* Clear RX FIFO */
1025	while (read_scc(priv, R0) & Rx_CH_AV)
1026		read_scc_data(priv);
1027	priv->rx_over = 0;
1028	if (priv->param.dma >= 0) {
1029		/* Program DMA controller */
1030		flags = claim_dma_lock();
1031		set_dma_mode(priv->param.dma, DMA_MODE_READ);
1032		set_dma_addr(priv->param.dma,
1033			     (int) priv->rx_buf[priv->rx_head]);
1034		set_dma_count(priv->param.dma, BUF_SIZE);
1035		release_dma_lock(flags);
1036		enable_dma(priv->param.dma);
1037		/* Configure PackeTwin DMA */
1038		if (priv->type == TYPE_TWIN) {
1039			outb((priv->param.dma ==
1040			      1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1041			     priv->card_base + TWIN_DMA_CFG);
1042		}
1043		/* Sp. cond. intr. only, ext int enable, RX DMA enable */
1044		write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1045			  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1046	} else {
1047		/* Reset current frame */
1048		priv->rx_ptr = 0;
1049		/* Intr. on all Rx characters and Sp. cond., ext int enable */
1050		write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1051			  WT_FN_RDYFN);
1052	}
1053	write_scc(priv, R0, ERR_RES);
1054	write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1055}
1056
1057
1058static inline void rx_off(struct scc_priv *priv)
1059{
1060	/* Disable receiver */
1061	write_scc(priv, R3, Rx8);
1062	/* Disable DREQ / RX interrupt */
1063	if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1064		outb(0, priv->card_base + TWIN_DMA_CFG);
1065	else
1066		write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1067	/* Disable DMA */
1068	if (priv->param.dma >= 0)
1069		disable_dma(priv->param.dma);
1070}
1071
1072
1073static void start_timer(struct scc_priv *priv, int t, int r15)
1074{
1075	outb(priv->tmr_mode, priv->tmr_ctrl);
1076	if (t == 0) {
1077		tm_isr(priv);
1078	} else if (t > 0) {
1079		outb(t & 0xFF, priv->tmr_cnt);
1080		outb((t >> 8) & 0xFF, priv->tmr_cnt);
1081		if (priv->type != TYPE_TWIN) {
1082			write_scc(priv, R15, r15 | CTSIE);
1083			priv->rr0 |= CTS;
1084		}
1085	}
1086}
1087
1088
1089static inline unsigned char random(void)
1090{
1091	/* See "Numerical Recipes in C", second edition, p. 284 */
1092	rand = rand * 1664525L + 1013904223L;
1093	return (unsigned char) (rand >> 24);
1094}
1095
1096static inline void z8530_isr(struct scc_info *info)
1097{
1098	int is, i = 100;
1099
1100	while ((is = read_scc(&info->priv[0], R3)) && i--) {
1101		if (is & CHARxIP) {
1102			rx_isr(&info->priv[0]);
1103		} else if (is & CHATxIP) {
1104			tx_isr(&info->priv[0]);
1105		} else if (is & CHAEXT) {
1106			es_isr(&info->priv[0]);
1107		} else if (is & CHBRxIP) {
1108			rx_isr(&info->priv[1]);
1109		} else if (is & CHBTxIP) {
1110			tx_isr(&info->priv[1]);
1111		} else {
1112			es_isr(&info->priv[1]);
1113		}
1114		write_scc(&info->priv[0], R0, RES_H_IUS);
1115		i++;
1116	}
1117	if (i < 0) {
1118		printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1119		       is);
1120	}
1121	/* Ok, no interrupts pending from this 8530. The INT line should
1122	   be inactive now. */
1123}
1124
1125
1126static irqreturn_t scc_isr(int irq, void *dev_id)
1127{
1128	struct scc_info *info = dev_id;
1129
1130	spin_lock(info->priv[0].register_lock);
1131	/* At this point interrupts are enabled, and the interrupt under service
1132	   is already acknowledged, but masked off.
1133
1134	   Interrupt processing: We loop until we know that the IRQ line is
1135	   low. If another positive edge occurs afterwards during the ISR,
1136	   another interrupt will be triggered by the interrupt controller
1137	   as soon as the IRQ level is enabled again (see asm/irq.h).
1138
1139	   Bottom-half handlers will be processed after scc_isr(). This is
1140	   important, since we only have small ringbuffers and want new data
1141	   to be fetched/delivered immediately. */
1142
1143	if (info->priv[0].type == TYPE_TWIN) {
1144		int is, card_base = info->priv[0].card_base;
1145		while ((is = ~inb(card_base + TWIN_INT_REG)) &
1146		       TWIN_INT_MSK) {
1147			if (is & TWIN_SCC_MSK) {
1148				z8530_isr(info);
1149			} else if (is & TWIN_TMR1_MSK) {
1150				inb(card_base + TWIN_CLR_TMR1);
1151				tm_isr(&info->priv[0]);
1152			} else {
1153				inb(card_base + TWIN_CLR_TMR2);
1154				tm_isr(&info->priv[1]);
1155			}
1156		}
1157	} else
1158		z8530_isr(info);
1159	spin_unlock(info->priv[0].register_lock);
1160	return IRQ_HANDLED;
1161}
1162
1163
1164static void rx_isr(struct scc_priv *priv)
1165{
1166	if (priv->param.dma >= 0) {
1167		/* Check special condition and perform error reset. See 2.4.7.5. */
1168		special_condition(priv, read_scc(priv, R1));
1169		write_scc(priv, R0, ERR_RES);
1170	} else {
1171		/* Check special condition for each character. Error reset not necessary.
1172		   Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1173		int rc;
1174		while (read_scc(priv, R0) & Rx_CH_AV) {
1175			rc = read_scc(priv, R1);
1176			if (priv->rx_ptr < BUF_SIZE)
1177				priv->rx_buf[priv->rx_head][priv->
1178							    rx_ptr++] =
1179				    read_scc_data(priv);
1180			else {
1181				priv->rx_over = 2;
1182				read_scc_data(priv);
1183			}
1184			special_condition(priv, rc);
1185		}
1186	}
1187}
1188
1189
1190static void special_condition(struct scc_priv *priv, int rc)
1191{
1192	int cb;
1193	unsigned long flags;
1194
1195	/* See Figure 2-15. Only overrun and EOF need to be checked. */
1196
1197	if (rc & Rx_OVR) {
1198		/* Receiver overrun */
1199		priv->rx_over = 1;
1200		if (priv->param.dma < 0)
1201			write_scc(priv, R0, ERR_RES);
1202	} else if (rc & END_FR) {
1203		/* End of frame. Get byte count */
1204		if (priv->param.dma >= 0) {
1205			flags = claim_dma_lock();
1206			cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1207			    2;
1208			release_dma_lock(flags);
1209		} else {
1210			cb = priv->rx_ptr - 2;
1211		}
1212		if (priv->rx_over) {
1213			/* We had an overrun */
1214			priv->dev->stats.rx_errors++;
1215			if (priv->rx_over == 2)
1216				priv->dev->stats.rx_length_errors++;
1217			else
1218				priv->dev->stats.rx_fifo_errors++;
1219			priv->rx_over = 0;
1220		} else if (rc & CRC_ERR) {
1221			/* Count invalid CRC only if packet length >= minimum */
1222			if (cb >= 15) {
1223				priv->dev->stats.rx_errors++;
1224				priv->dev->stats.rx_crc_errors++;
1225			}
1226		} else {
1227			if (cb >= 15) {
1228				if (priv->rx_count < NUM_RX_BUF - 1) {
1229					/* Put good frame in FIFO */
1230					priv->rx_len[priv->rx_head] = cb;
1231					priv->rx_head =
1232					    (priv->rx_head +
1233					     1) % NUM_RX_BUF;
1234					priv->rx_count++;
1235					schedule_work(&priv->rx_work);
1236				} else {
1237					priv->dev->stats.rx_errors++;
1238					priv->dev->stats.rx_over_errors++;
1239				}
1240			}
1241		}
1242		/* Get ready for new frame */
1243		if (priv->param.dma >= 0) {
1244			flags = claim_dma_lock();
1245			set_dma_addr(priv->param.dma,
1246				     (int) priv->rx_buf[priv->rx_head]);
1247			set_dma_count(priv->param.dma, BUF_SIZE);
1248			release_dma_lock(flags);
1249		} else {
1250			priv->rx_ptr = 0;
1251		}
1252	}
1253}
1254
1255
1256static void rx_bh(struct work_struct *ugli_api)
1257{
1258	struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1259	int i = priv->rx_tail;
1260	int cb;
1261	unsigned long flags;
1262	struct sk_buff *skb;
1263	unsigned char *data;
1264
1265	spin_lock_irqsave(&priv->ring_lock, flags);
1266	while (priv->rx_count) {
1267		spin_unlock_irqrestore(&priv->ring_lock, flags);
1268		cb = priv->rx_len[i];
1269		/* Allocate buffer */
1270		skb = dev_alloc_skb(cb + 1);
1271		if (skb == NULL) {
1272			/* Drop packet */
1273			priv->dev->stats.rx_dropped++;
1274		} else {
1275			/* Fill buffer */
1276			data = skb_put(skb, cb + 1);
1277			data[0] = 0;
1278			memcpy(&data[1], priv->rx_buf[i], cb);
1279			skb->protocol = ax25_type_trans(skb, priv->dev);
1280			netif_rx(skb);
1281			priv->dev->stats.rx_packets++;
1282			priv->dev->stats.rx_bytes += cb;
1283		}
1284		spin_lock_irqsave(&priv->ring_lock, flags);
1285		/* Move tail */
1286		priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1287		priv->rx_count--;
1288	}
1289	spin_unlock_irqrestore(&priv->ring_lock, flags);
1290}
1291
1292
1293static void tx_isr(struct scc_priv *priv)
1294{
1295	int i = priv->tx_tail, p = priv->tx_ptr;
1296
1297	/* Suspend TX interrupts if we don't want to send anything.
1298	   See Figure 2-22. */
1299	if (p == priv->tx_len[i]) {
1300		write_scc(priv, R0, RES_Tx_P);
1301		return;
1302	}
1303
1304	/* Write characters */
1305	while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1306		write_scc_data(priv, priv->tx_buf[i][p++], 0);
1307	}
1308
1309	/* Reset EOM latch of Z8530 */
1310	if (!priv->tx_ptr && p && priv->chip == Z8530)
1311		write_scc(priv, R0, RES_EOM_L);
1312
1313	priv->tx_ptr = p;
1314}
1315
1316
1317static void es_isr(struct scc_priv *priv)
1318{
1319	int i, rr0, drr0, res;
1320	unsigned long flags;
1321
1322	/* Read status, reset interrupt bit (open latches) */
1323	rr0 = read_scc(priv, R0);
1324	write_scc(priv, R0, RES_EXT_INT);
1325	drr0 = priv->rr0 ^ rr0;
1326	priv->rr0 = rr0;
1327
1328	/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1329	   it might have already been cleared again by AUTOEOM. */
1330	if (priv->state == TX_DATA) {
1331		/* Get remaining bytes */
1332		i = priv->tx_tail;
1333		if (priv->param.dma >= 0) {
1334			disable_dma(priv->param.dma);
1335			flags = claim_dma_lock();
1336			res = get_dma_residue(priv->param.dma);
1337			release_dma_lock(flags);
1338		} else {
1339			res = priv->tx_len[i] - priv->tx_ptr;
1340			priv->tx_ptr = 0;
1341		}
1342		/* Disable DREQ / TX interrupt */
1343		if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1344			outb(0, priv->card_base + TWIN_DMA_CFG);
1345		else
1346			write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1347		if (res) {
1348			/* Update packet statistics */
1349			priv->dev->stats.tx_errors++;
1350			priv->dev->stats.tx_fifo_errors++;
1351			/* Other underrun interrupts may already be waiting */
1352			write_scc(priv, R0, RES_EXT_INT);
1353			write_scc(priv, R0, RES_EXT_INT);
1354		} else {
1355			/* Update packet statistics */
1356			priv->dev->stats.tx_packets++;
1357			priv->dev->stats.tx_bytes += priv->tx_len[i];
1358			/* Remove frame from FIFO */
1359			priv->tx_tail = (i + 1) % NUM_TX_BUF;
1360			priv->tx_count--;
1361			/* Inform upper layers */
1362			netif_wake_queue(priv->dev);
1363		}
1364		/* Switch state */
1365		write_scc(priv, R15, 0);
1366		if (priv->tx_count &&
1367		    (jiffies - priv->tx_start) < priv->param.txtimeout) {
1368			priv->state = TX_PAUSE;
1369			start_timer(priv, priv->param.txpause, 0);
1370		} else {
1371			priv->state = TX_TAIL;
1372			start_timer(priv, priv->param.txtail, 0);
1373		}
1374	}
1375
1376	/* DCD transition */
1377	if (drr0 & DCD) {
1378		if (rr0 & DCD) {
1379			switch (priv->state) {
1380			case IDLE:
1381			case WAIT:
1382				priv->state = DCD_ON;
1383				write_scc(priv, R15, 0);
1384				start_timer(priv, priv->param.dcdon, 0);
1385			}
1386		} else {
1387			switch (priv->state) {
1388			case RX_ON:
1389				rx_off(priv);
1390				priv->state = DCD_OFF;
1391				write_scc(priv, R15, 0);
1392				start_timer(priv, priv->param.dcdoff, 0);
1393			}
1394		}
1395	}
1396
1397	/* CTS transition */
1398	if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1399		tm_isr(priv);
1400
1401}
1402
1403
1404static void tm_isr(struct scc_priv *priv)
1405{
1406	switch (priv->state) {
1407	case TX_HEAD:
1408	case TX_PAUSE:
1409		tx_on(priv);
1410		priv->state = TX_DATA;
1411		break;
1412	case TX_TAIL:
1413		write_scc(priv, R5, TxCRC_ENAB | Tx8);
1414		priv->state = RTS_OFF;
1415		if (priv->type != TYPE_TWIN)
1416			write_scc(priv, R15, 0);
1417		start_timer(priv, priv->param.rtsoff, 0);
1418		break;
1419	case RTS_OFF:
1420		write_scc(priv, R15, DCDIE);
1421		priv->rr0 = read_scc(priv, R0);
1422		if (priv->rr0 & DCD) {
1423			priv->dev->stats.collisions++;
1424			rx_on(priv);
1425			priv->state = RX_ON;
1426		} else {
1427			priv->state = WAIT;
1428			start_timer(priv, priv->param.waittime, DCDIE);
1429		}
1430		break;
1431	case WAIT:
1432		if (priv->tx_count) {
1433			priv->state = TX_HEAD;
1434			priv->tx_start = jiffies;
1435			write_scc(priv, R5,
1436				  TxCRC_ENAB | RTS | TxENAB | Tx8);
1437			write_scc(priv, R15, 0);
1438			start_timer(priv, priv->param.txdelay, 0);
1439		} else {
1440			priv->state = IDLE;
1441			if (priv->type != TYPE_TWIN)
1442				write_scc(priv, R15, DCDIE);
1443		}
1444		break;
1445	case DCD_ON:
1446	case DCD_OFF:
1447		write_scc(priv, R15, DCDIE);
1448		priv->rr0 = read_scc(priv, R0);
1449		if (priv->rr0 & DCD) {
1450			rx_on(priv);
1451			priv->state = RX_ON;
1452		} else {
1453			priv->state = WAIT;
1454			start_timer(priv,
1455				    random() / priv->param.persist *
1456				    priv->param.slottime, DCDIE);
1457		}
1458		break;
1459	}
1460}