Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35#include <linux/kfence.h>
36#include <linux/pkeys.h>
37
38#include <asm/firmware.h>
39#include <asm/interrupt.h>
40#include <asm/page.h>
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <asm/kup.h>
46#include <asm/inst.h>
47
48
49/*
50 * do_page_fault error handling helpers
51 */
52
53static int
54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72}
73
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75{
76 struct mm_struct *mm = current->mm;
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 mmap_read_unlock(mm);
83
84 return __bad_area_nosemaphore(regs, address, si_code);
85}
86
87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
88{
89 return __bad_area(regs, address, SEGV_MAPERR);
90}
91
92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
93 struct vm_area_struct *vma)
94{
95 struct mm_struct *mm = current->mm;
96 int pkey;
97
98 /*
99 * We don't try to fetch the pkey from page table because reading
100 * page table without locking doesn't guarantee stable pte value.
101 * Hence the pkey value that we return to userspace can be different
102 * from the pkey that actually caused access error.
103 *
104 * It does *not* guarantee that the VMA we find here
105 * was the one that we faulted on.
106 *
107 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
108 * 2. T1 : set AMR to deny access to pkey=4, touches, page
109 * 3. T1 : faults...
110 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
111 * 5. T1 : enters fault handler, takes mmap_lock, etc...
112 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
113 * faulted on a pte with its pkey=4.
114 */
115 pkey = vma_pkey(vma);
116
117 mmap_read_unlock(mm);
118
119 /*
120 * If we are in kernel mode, bail out with a SEGV, this will
121 * be caught by the assembly which will restore the non-volatile
122 * registers before calling bad_page_fault()
123 */
124 if (!user_mode(regs))
125 return SIGSEGV;
126
127 _exception_pkey(regs, address, pkey);
128
129 return 0;
130}
131
132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133{
134 return __bad_area(regs, address, SEGV_ACCERR);
135}
136
137static int do_sigbus(struct pt_regs *regs, unsigned long address,
138 vm_fault_t fault)
139{
140 if (!user_mode(regs))
141 return SIGBUS;
142
143 current->thread.trap_nr = BUS_ADRERR;
144#ifdef CONFIG_MEMORY_FAILURE
145 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146 unsigned int lsb = 0; /* shutup gcc */
147
148 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149 current->comm, current->pid, address);
150
151 if (fault & VM_FAULT_HWPOISON_LARGE)
152 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153 if (fault & VM_FAULT_HWPOISON)
154 lsb = PAGE_SHIFT;
155
156 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157 return 0;
158 }
159
160#endif
161 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162 return 0;
163}
164
165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166 vm_fault_t fault)
167{
168 /*
169 * Kernel page fault interrupted by SIGKILL. We have no reason to
170 * continue processing.
171 */
172 if (fatal_signal_pending(current) && !user_mode(regs))
173 return SIGKILL;
174
175 /* Out of memory */
176 if (fault & VM_FAULT_OOM) {
177 /*
178 * We ran out of memory, or some other thing happened to us that
179 * made us unable to handle the page fault gracefully.
180 */
181 if (!user_mode(regs))
182 return SIGSEGV;
183 pagefault_out_of_memory();
184 } else {
185 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186 VM_FAULT_HWPOISON_LARGE))
187 return do_sigbus(regs, addr, fault);
188 else if (fault & VM_FAULT_SIGSEGV)
189 return bad_area_nosemaphore(regs, addr);
190 else
191 BUG();
192 }
193 return 0;
194}
195
196/* Is this a bad kernel fault ? */
197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198 unsigned long address, bool is_write)
199{
200 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
201
202 if (is_exec) {
203 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
204 address >= TASK_SIZE ? "exec-protected" : "user",
205 address,
206 from_kuid(&init_user_ns, current_uid()));
207
208 // Kernel exec fault is always bad
209 return true;
210 }
211
212 // Kernel fault on kernel address is bad
213 if (address >= TASK_SIZE)
214 return true;
215
216 // Read/write fault blocked by KUAP is bad, it can never succeed.
217 if (bad_kuap_fault(regs, address, is_write)) {
218 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
219 is_write ? "write" : "read", address,
220 from_kuid(&init_user_ns, current_uid()));
221
222 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223 if (!search_exception_tables(regs->nip))
224 return true;
225
226 // Read/write fault in a valid region (the exception table search passed
227 // above), but blocked by KUAP is bad, it can never succeed.
228 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
229 }
230
231 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
232 return false;
233}
234
235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
236 struct vm_area_struct *vma)
237{
238 /*
239 * Make sure to check the VMA so that we do not perform
240 * faults just to hit a pkey fault as soon as we fill in a
241 * page. Only called for current mm, hence foreign == 0
242 */
243 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
244 return true;
245
246 return false;
247}
248
249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
250{
251 /*
252 * Allow execution from readable areas if the MMU does not
253 * provide separate controls over reading and executing.
254 *
255 * Note: That code used to not be enabled for 4xx/BookE.
256 * It is now as I/D cache coherency for these is done at
257 * set_pte_at() time and I see no reason why the test
258 * below wouldn't be valid on those processors. This -may-
259 * break programs compiled with a really old ABI though.
260 */
261 if (is_exec) {
262 return !(vma->vm_flags & VM_EXEC) &&
263 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
264 !(vma->vm_flags & (VM_READ | VM_WRITE)));
265 }
266
267 if (is_write) {
268 if (unlikely(!(vma->vm_flags & VM_WRITE)))
269 return true;
270 return false;
271 }
272
273 if (unlikely(!vma_is_accessible(vma)))
274 return true;
275 /*
276 * We should ideally do the vma pkey access check here. But in the
277 * fault path, handle_mm_fault() also does the same check. To avoid
278 * these multiple checks, we skip it here and handle access error due
279 * to pkeys later.
280 */
281 return false;
282}
283
284#ifdef CONFIG_PPC_SMLPAR
285static inline void cmo_account_page_fault(void)
286{
287 if (firmware_has_feature(FW_FEATURE_CMO)) {
288 u32 page_ins;
289
290 preempt_disable();
291 page_ins = be32_to_cpu(get_lppaca()->page_ins);
292 page_ins += 1 << PAGE_FACTOR;
293 get_lppaca()->page_ins = cpu_to_be32(page_ins);
294 preempt_enable();
295 }
296}
297#else
298static inline void cmo_account_page_fault(void) { }
299#endif /* CONFIG_PPC_SMLPAR */
300
301static void sanity_check_fault(bool is_write, bool is_user,
302 unsigned long error_code, unsigned long address)
303{
304 /*
305 * Userspace trying to access kernel address, we get PROTFAULT for that.
306 */
307 if (is_user && address >= TASK_SIZE) {
308 if ((long)address == -1)
309 return;
310
311 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
312 current->comm, current->pid, address,
313 from_kuid(&init_user_ns, current_uid()));
314 return;
315 }
316
317 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
318 return;
319
320 /*
321 * For hash translation mode, we should never get a
322 * PROTFAULT. Any update to pte to reduce access will result in us
323 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
324 * fault instead of DSISR_PROTFAULT.
325 *
326 * A pte update to relax the access will not result in a hash page table
327 * entry invalidate and hence can result in DSISR_PROTFAULT.
328 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
329 * the special !is_write in the below conditional.
330 *
331 * For platforms that doesn't supports coherent icache and do support
332 * per page noexec bit, we do setup things such that we do the
333 * sync between D/I cache via fault. But that is handled via low level
334 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
335 * here in such case.
336 *
337 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
338 * check should handle those and hence we should fall to the bad_area
339 * handling correctly.
340 *
341 * For embedded with per page exec support that doesn't support coherent
342 * icache we do get PROTFAULT and we handle that D/I cache sync in
343 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
344 * is conditional for server MMU.
345 *
346 * For radix, we can get prot fault for autonuma case, because radix
347 * page table will have them marked noaccess for user.
348 */
349 if (radix_enabled() || is_write)
350 return;
351
352 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
353}
354
355/*
356 * Define the correct "is_write" bit in error_code based
357 * on the processor family
358 */
359#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
360#define page_fault_is_write(__err) ((__err) & ESR_DST)
361#else
362#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
363#endif
364
365#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
366#define page_fault_is_bad(__err) (0)
367#elif defined(CONFIG_PPC_8xx)
368#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
369#elif defined(CONFIG_PPC64)
370#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
371#else
372#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
373#endif
374
375/*
376 * For 600- and 800-family processors, the error_code parameter is DSISR
377 * for a data fault, SRR1 for an instruction fault.
378 * For 400-family processors the error_code parameter is ESR for a data fault,
379 * 0 for an instruction fault.
380 * For 64-bit processors, the error_code parameter is DSISR for a data access
381 * fault, SRR1 & 0x08000000 for an instruction access fault.
382 *
383 * The return value is 0 if the fault was handled, or the signal
384 * number if this is a kernel fault that can't be handled here.
385 */
386static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
387 unsigned long error_code)
388{
389 struct vm_area_struct * vma;
390 struct mm_struct *mm = current->mm;
391 unsigned int flags = FAULT_FLAG_DEFAULT;
392 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
393 int is_user = user_mode(regs);
394 int is_write = page_fault_is_write(error_code);
395 vm_fault_t fault, major = 0;
396 bool kprobe_fault = kprobe_page_fault(regs, 11);
397
398 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
399 return 0;
400
401 if (unlikely(page_fault_is_bad(error_code))) {
402 if (is_user) {
403 _exception(SIGBUS, regs, BUS_OBJERR, address);
404 return 0;
405 }
406 return SIGBUS;
407 }
408
409 /* Additional sanity check(s) */
410 sanity_check_fault(is_write, is_user, error_code, address);
411
412 /*
413 * The kernel should never take an execute fault nor should it
414 * take a page fault to a kernel address or a page fault to a user
415 * address outside of dedicated places
416 */
417 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
418 if (kfence_handle_page_fault(address, is_write, regs))
419 return 0;
420
421 return SIGSEGV;
422 }
423
424 /*
425 * If we're in an interrupt, have no user context or are running
426 * in a region with pagefaults disabled then we must not take the fault
427 */
428 if (unlikely(faulthandler_disabled() || !mm)) {
429 if (is_user)
430 printk_ratelimited(KERN_ERR "Page fault in user mode"
431 " with faulthandler_disabled()=%d"
432 " mm=%p\n",
433 faulthandler_disabled(), mm);
434 return bad_area_nosemaphore(regs, address);
435 }
436
437 interrupt_cond_local_irq_enable(regs);
438
439 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
440
441 /*
442 * We want to do this outside mmap_lock, because reading code around nip
443 * can result in fault, which will cause a deadlock when called with
444 * mmap_lock held
445 */
446 if (is_user)
447 flags |= FAULT_FLAG_USER;
448 if (is_write)
449 flags |= FAULT_FLAG_WRITE;
450 if (is_exec)
451 flags |= FAULT_FLAG_INSTRUCTION;
452
453 /* When running in the kernel we expect faults to occur only to
454 * addresses in user space. All other faults represent errors in the
455 * kernel and should generate an OOPS. Unfortunately, in the case of an
456 * erroneous fault occurring in a code path which already holds mmap_lock
457 * we will deadlock attempting to validate the fault against the
458 * address space. Luckily the kernel only validly references user
459 * space from well defined areas of code, which are listed in the
460 * exceptions table.
461 *
462 * As the vast majority of faults will be valid we will only perform
463 * the source reference check when there is a possibility of a deadlock.
464 * Attempt to lock the address space, if we cannot we then validate the
465 * source. If this is invalid we can skip the address space check,
466 * thus avoiding the deadlock.
467 */
468 if (unlikely(!mmap_read_trylock(mm))) {
469 if (!is_user && !search_exception_tables(regs->nip))
470 return bad_area_nosemaphore(regs, address);
471
472retry:
473 mmap_read_lock(mm);
474 } else {
475 /*
476 * The above down_read_trylock() might have succeeded in
477 * which case we'll have missed the might_sleep() from
478 * down_read():
479 */
480 might_sleep();
481 }
482
483 vma = find_vma(mm, address);
484 if (unlikely(!vma))
485 return bad_area(regs, address);
486
487 if (unlikely(vma->vm_start > address)) {
488 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
489 return bad_area(regs, address);
490
491 if (unlikely(expand_stack(vma, address)))
492 return bad_area(regs, address);
493 }
494
495 if (unlikely(access_pkey_error(is_write, is_exec,
496 (error_code & DSISR_KEYFAULT), vma)))
497 return bad_access_pkey(regs, address, vma);
498
499 if (unlikely(access_error(is_write, is_exec, vma)))
500 return bad_access(regs, address);
501
502 /*
503 * If for any reason at all we couldn't handle the fault,
504 * make sure we exit gracefully rather than endlessly redo
505 * the fault.
506 */
507 fault = handle_mm_fault(vma, address, flags, regs);
508
509 major |= fault & VM_FAULT_MAJOR;
510
511 if (fault_signal_pending(fault, regs))
512 return user_mode(regs) ? 0 : SIGBUS;
513
514 /*
515 * Handle the retry right now, the mmap_lock has been released in that
516 * case.
517 */
518 if (unlikely(fault & VM_FAULT_RETRY)) {
519 if (flags & FAULT_FLAG_ALLOW_RETRY) {
520 flags |= FAULT_FLAG_TRIED;
521 goto retry;
522 }
523 }
524
525 mmap_read_unlock(current->mm);
526
527 if (unlikely(fault & VM_FAULT_ERROR))
528 return mm_fault_error(regs, address, fault);
529
530 /*
531 * Major/minor page fault accounting.
532 */
533 if (major)
534 cmo_account_page_fault();
535
536 return 0;
537}
538NOKPROBE_SYMBOL(___do_page_fault);
539
540static __always_inline void __do_page_fault(struct pt_regs *regs)
541{
542 long err;
543
544 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
545 if (unlikely(err))
546 bad_page_fault(regs, err);
547}
548
549DEFINE_INTERRUPT_HANDLER(do_page_fault)
550{
551 __do_page_fault(regs);
552}
553
554#ifdef CONFIG_PPC_BOOK3S_64
555/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
556void hash__do_page_fault(struct pt_regs *regs)
557{
558 __do_page_fault(regs);
559}
560NOKPROBE_SYMBOL(hash__do_page_fault);
561#endif
562
563/*
564 * bad_page_fault is called when we have a bad access from the kernel.
565 * It is called from the DSI and ISI handlers in head.S and from some
566 * of the procedures in traps.c.
567 */
568static void __bad_page_fault(struct pt_regs *regs, int sig)
569{
570 int is_write = page_fault_is_write(regs->dsisr);
571
572 /* kernel has accessed a bad area */
573
574 switch (TRAP(regs)) {
575 case INTERRUPT_DATA_STORAGE:
576 case INTERRUPT_DATA_SEGMENT:
577 case INTERRUPT_H_DATA_STORAGE:
578 pr_alert("BUG: %s on %s at 0x%08lx\n",
579 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
580 "Unable to handle kernel data access",
581 is_write ? "write" : "read", regs->dar);
582 break;
583 case INTERRUPT_INST_STORAGE:
584 case INTERRUPT_INST_SEGMENT:
585 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
586 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
587 break;
588 case INTERRUPT_ALIGNMENT:
589 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
590 regs->dar);
591 break;
592 default:
593 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
594 regs->dar);
595 break;
596 }
597 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
598 regs->nip);
599
600 if (task_stack_end_corrupted(current))
601 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
602
603 die("Kernel access of bad area", regs, sig);
604}
605
606void bad_page_fault(struct pt_regs *regs, int sig)
607{
608 const struct exception_table_entry *entry;
609
610 /* Are we prepared to handle this fault? */
611 entry = search_exception_tables(instruction_pointer(regs));
612 if (entry)
613 instruction_pointer_set(regs, extable_fixup(entry));
614 else
615 __bad_page_fault(regs, sig);
616}
617
618#ifdef CONFIG_PPC_BOOK3S_64
619DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
620{
621 bad_page_fault(regs, SIGSEGV);
622}
623#endif
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/string.h>
23#include <linux/types.h>
24#include <linux/ptrace.h>
25#include <linux/mman.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/highmem.h>
29#include <linux/module.h>
30#include <linux/kprobes.h>
31#include <linux/kdebug.h>
32#include <linux/perf_event.h>
33#include <linux/magic.h>
34#include <linux/ratelimit.h>
35
36#include <asm/firmware.h>
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/mmu.h>
40#include <asm/mmu_context.h>
41#include <asm/uaccess.h>
42#include <asm/tlbflush.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <mm/mmu_decl.h>
46
47#include "icswx.h"
48
49#ifdef CONFIG_KPROBES
50static inline int notify_page_fault(struct pt_regs *regs)
51{
52 int ret = 0;
53
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 ret = 1;
59 preempt_enable();
60 }
61
62 return ret;
63}
64#else
65static inline int notify_page_fault(struct pt_regs *regs)
66{
67 return 0;
68}
69#endif
70
71/*
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
74 */
75static int store_updates_sp(struct pt_regs *regs)
76{
77 unsigned int inst;
78
79 if (get_user(inst, (unsigned int __user *)regs->nip))
80 return 0;
81 /* check for 1 in the rA field */
82 if (((inst >> 16) & 0x1f) != 1)
83 return 0;
84 /* check major opcode */
85 switch (inst >> 26) {
86 case 37: /* stwu */
87 case 39: /* stbu */
88 case 45: /* sthu */
89 case 53: /* stfsu */
90 case 55: /* stfdu */
91 return 1;
92 case 62: /* std or stdu */
93 return (inst & 3) == 1;
94 case 31:
95 /* check minor opcode */
96 switch ((inst >> 1) & 0x3ff) {
97 case 181: /* stdux */
98 case 183: /* stwux */
99 case 247: /* stbux */
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
103 return 1;
104 }
105 }
106 return 0;
107}
108/*
109 * do_page_fault error handling helpers
110 */
111
112#define MM_FAULT_RETURN 0
113#define MM_FAULT_CONTINUE -1
114#define MM_FAULT_ERR(sig) (sig)
115
116static int out_of_memory(struct pt_regs *regs)
117{
118 /*
119 * We ran out of memory, or some other thing happened to us that made
120 * us unable to handle the page fault gracefully.
121 */
122 up_read(¤t->mm->mmap_sem);
123 if (!user_mode(regs))
124 return MM_FAULT_ERR(SIGKILL);
125 pagefault_out_of_memory();
126 return MM_FAULT_RETURN;
127}
128
129static int do_sigbus(struct pt_regs *regs, unsigned long address)
130{
131 siginfo_t info;
132
133 up_read(¤t->mm->mmap_sem);
134
135 if (user_mode(regs)) {
136 info.si_signo = SIGBUS;
137 info.si_errno = 0;
138 info.si_code = BUS_ADRERR;
139 info.si_addr = (void __user *)address;
140 force_sig_info(SIGBUS, &info, current);
141 return MM_FAULT_RETURN;
142 }
143 return MM_FAULT_ERR(SIGBUS);
144}
145
146static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
147{
148 /*
149 * Pagefault was interrupted by SIGKILL. We have no reason to
150 * continue the pagefault.
151 */
152 if (fatal_signal_pending(current)) {
153 /*
154 * If we have retry set, the mmap semaphore will have
155 * alrady been released in __lock_page_or_retry(). Else
156 * we release it now.
157 */
158 if (!(fault & VM_FAULT_RETRY))
159 up_read(¤t->mm->mmap_sem);
160 /* Coming from kernel, we need to deal with uaccess fixups */
161 if (user_mode(regs))
162 return MM_FAULT_RETURN;
163 return MM_FAULT_ERR(SIGKILL);
164 }
165
166 /* No fault: be happy */
167 if (!(fault & VM_FAULT_ERROR))
168 return MM_FAULT_CONTINUE;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM)
172 return out_of_memory(regs);
173
174 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
175 * we support the feature in HW
176 */
177 if (fault & VM_FAULT_SIGBUS)
178 return do_sigbus(regs, addr);
179
180 /* We don't understand the fault code, this is fatal */
181 BUG();
182 return MM_FAULT_CONTINUE;
183}
184
185/*
186 * For 600- and 800-family processors, the error_code parameter is DSISR
187 * for a data fault, SRR1 for an instruction fault. For 400-family processors
188 * the error_code parameter is ESR for a data fault, 0 for an instruction
189 * fault.
190 * For 64-bit processors, the error_code parameter is
191 * - DSISR for a non-SLB data access fault,
192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
193 * - 0 any SLB fault.
194 *
195 * The return value is 0 if the fault was handled, or the signal
196 * number if this is a kernel fault that can't be handled here.
197 */
198int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
199 unsigned long error_code)
200{
201 struct vm_area_struct * vma;
202 struct mm_struct *mm = current->mm;
203 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204 int code = SEGV_MAPERR;
205 int is_write = 0;
206 int trap = TRAP(regs);
207 int is_exec = trap == 0x400;
208 int fault;
209
210#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
211 /*
212 * Fortunately the bit assignments in SRR1 for an instruction
213 * fault and DSISR for a data fault are mostly the same for the
214 * bits we are interested in. But there are some bits which
215 * indicate errors in DSISR but can validly be set in SRR1.
216 */
217 if (trap == 0x400)
218 error_code &= 0x48200000;
219 else
220 is_write = error_code & DSISR_ISSTORE;
221#else
222 is_write = error_code & ESR_DST;
223#endif /* CONFIG_4xx || CONFIG_BOOKE */
224
225 if (is_write)
226 flags |= FAULT_FLAG_WRITE;
227
228#ifdef CONFIG_PPC_ICSWX
229 /*
230 * we need to do this early because this "data storage
231 * interrupt" does not update the DAR/DEAR so we don't want to
232 * look at it
233 */
234 if (error_code & ICSWX_DSI_UCT) {
235 int rc = acop_handle_fault(regs, address, error_code);
236 if (rc)
237 return rc;
238 }
239#endif /* CONFIG_PPC_ICSWX */
240
241 if (notify_page_fault(regs))
242 return 0;
243
244 if (unlikely(debugger_fault_handler(regs)))
245 return 0;
246
247 /* On a kernel SLB miss we can only check for a valid exception entry */
248 if (!user_mode(regs) && (address >= TASK_SIZE))
249 return SIGSEGV;
250
251#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 defined(CONFIG_PPC_BOOK3S_64))
253 if (error_code & DSISR_DABRMATCH) {
254 /* DABR match */
255 do_dabr(regs, address, error_code);
256 return 0;
257 }
258#endif
259
260 /* We restore the interrupt state now */
261 if (!arch_irq_disabled_regs(regs))
262 local_irq_enable();
263
264 if (in_atomic() || mm == NULL) {
265 if (!user_mode(regs))
266 return SIGSEGV;
267 /* in_atomic() in user mode is really bad,
268 as is current->mm == NULL. */
269 printk(KERN_EMERG "Page fault in user mode with "
270 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
271 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
272 regs->nip, regs->msr);
273 die("Weird page fault", regs, SIGSEGV);
274 }
275
276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
277
278 /* When running in the kernel we expect faults to occur only to
279 * addresses in user space. All other faults represent errors in the
280 * kernel and should generate an OOPS. Unfortunately, in the case of an
281 * erroneous fault occurring in a code path which already holds mmap_sem
282 * we will deadlock attempting to validate the fault against the
283 * address space. Luckily the kernel only validly references user
284 * space from well defined areas of code, which are listed in the
285 * exceptions table.
286 *
287 * As the vast majority of faults will be valid we will only perform
288 * the source reference check when there is a possibility of a deadlock.
289 * Attempt to lock the address space, if we cannot we then validate the
290 * source. If this is invalid we can skip the address space check,
291 * thus avoiding the deadlock.
292 */
293 if (!down_read_trylock(&mm->mmap_sem)) {
294 if (!user_mode(regs) && !search_exception_tables(regs->nip))
295 goto bad_area_nosemaphore;
296
297retry:
298 down_read(&mm->mmap_sem);
299 } else {
300 /*
301 * The above down_read_trylock() might have succeeded in
302 * which case we'll have missed the might_sleep() from
303 * down_read():
304 */
305 might_sleep();
306 }
307
308 vma = find_vma(mm, address);
309 if (!vma)
310 goto bad_area;
311 if (vma->vm_start <= address)
312 goto good_area;
313 if (!(vma->vm_flags & VM_GROWSDOWN))
314 goto bad_area;
315
316 /*
317 * N.B. The POWER/Open ABI allows programs to access up to
318 * 288 bytes below the stack pointer.
319 * The kernel signal delivery code writes up to about 1.5kB
320 * below the stack pointer (r1) before decrementing it.
321 * The exec code can write slightly over 640kB to the stack
322 * before setting the user r1. Thus we allow the stack to
323 * expand to 1MB without further checks.
324 */
325 if (address + 0x100000 < vma->vm_end) {
326 /* get user regs even if this fault is in kernel mode */
327 struct pt_regs *uregs = current->thread.regs;
328 if (uregs == NULL)
329 goto bad_area;
330
331 /*
332 * A user-mode access to an address a long way below
333 * the stack pointer is only valid if the instruction
334 * is one which would update the stack pointer to the
335 * address accessed if the instruction completed,
336 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
337 * (or the byte, halfword, float or double forms).
338 *
339 * If we don't check this then any write to the area
340 * between the last mapped region and the stack will
341 * expand the stack rather than segfaulting.
342 */
343 if (address + 2048 < uregs->gpr[1]
344 && (!user_mode(regs) || !store_updates_sp(regs)))
345 goto bad_area;
346 }
347 if (expand_stack(vma, address))
348 goto bad_area;
349
350good_area:
351 code = SEGV_ACCERR;
352#if defined(CONFIG_6xx)
353 if (error_code & 0x95700000)
354 /* an error such as lwarx to I/O controller space,
355 address matching DABR, eciwx, etc. */
356 goto bad_area;
357#endif /* CONFIG_6xx */
358#if defined(CONFIG_8xx)
359 /* 8xx sometimes need to load a invalid/non-present TLBs.
360 * These must be invalidated separately as linux mm don't.
361 */
362 if (error_code & 0x40000000) /* no translation? */
363 _tlbil_va(address, 0, 0, 0);
364
365 /* The MPC8xx seems to always set 0x80000000, which is
366 * "undefined". Of those that can be set, this is the only
367 * one which seems bad.
368 */
369 if (error_code & 0x10000000)
370 /* Guarded storage error. */
371 goto bad_area;
372#endif /* CONFIG_8xx */
373
374 if (is_exec) {
375#ifdef CONFIG_PPC_STD_MMU
376 /* Protection fault on exec go straight to failure on
377 * Hash based MMUs as they either don't support per-page
378 * execute permission, or if they do, it's handled already
379 * at the hash level. This test would probably have to
380 * be removed if we change the way this works to make hash
381 * processors use the same I/D cache coherency mechanism
382 * as embedded.
383 */
384 if (error_code & DSISR_PROTFAULT)
385 goto bad_area;
386#endif /* CONFIG_PPC_STD_MMU */
387
388 /*
389 * Allow execution from readable areas if the MMU does not
390 * provide separate controls over reading and executing.
391 *
392 * Note: That code used to not be enabled for 4xx/BookE.
393 * It is now as I/D cache coherency for these is done at
394 * set_pte_at() time and I see no reason why the test
395 * below wouldn't be valid on those processors. This -may-
396 * break programs compiled with a really old ABI though.
397 */
398 if (!(vma->vm_flags & VM_EXEC) &&
399 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
400 !(vma->vm_flags & (VM_READ | VM_WRITE))))
401 goto bad_area;
402 /* a write */
403 } else if (is_write) {
404 if (!(vma->vm_flags & VM_WRITE))
405 goto bad_area;
406 /* a read */
407 } else {
408 /* protection fault */
409 if (error_code & 0x08000000)
410 goto bad_area;
411 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
412 goto bad_area;
413 }
414
415 /*
416 * If for any reason at all we couldn't handle the fault,
417 * make sure we exit gracefully rather than endlessly redo
418 * the fault.
419 */
420 fault = handle_mm_fault(mm, vma, address, flags);
421 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
422 int rc = mm_fault_error(regs, address, fault);
423 if (rc >= MM_FAULT_RETURN)
424 return rc;
425 }
426
427 /*
428 * Major/minor page fault accounting is only done on the
429 * initial attempt. If we go through a retry, it is extremely
430 * likely that the page will be found in page cache at that point.
431 */
432 if (flags & FAULT_FLAG_ALLOW_RETRY) {
433 if (fault & VM_FAULT_MAJOR) {
434 current->maj_flt++;
435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
436 regs, address);
437#ifdef CONFIG_PPC_SMLPAR
438 if (firmware_has_feature(FW_FEATURE_CMO)) {
439 preempt_disable();
440 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
441 preempt_enable();
442 }
443#endif /* CONFIG_PPC_SMLPAR */
444 } else {
445 current->min_flt++;
446 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
447 regs, address);
448 }
449 if (fault & VM_FAULT_RETRY) {
450 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
451 * of starvation. */
452 flags &= ~FAULT_FLAG_ALLOW_RETRY;
453 goto retry;
454 }
455 }
456
457 up_read(&mm->mmap_sem);
458 return 0;
459
460bad_area:
461 up_read(&mm->mmap_sem);
462
463bad_area_nosemaphore:
464 /* User mode accesses cause a SIGSEGV */
465 if (user_mode(regs)) {
466 _exception(SIGSEGV, regs, code, address);
467 return 0;
468 }
469
470 if (is_exec && (error_code & DSISR_PROTFAULT))
471 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
472 " page (%lx) - exploit attempt? (uid: %d)\n",
473 address, current_uid());
474
475 return SIGSEGV;
476
477}
478
479/*
480 * bad_page_fault is called when we have a bad access from the kernel.
481 * It is called from the DSI and ISI handlers in head.S and from some
482 * of the procedures in traps.c.
483 */
484void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
485{
486 const struct exception_table_entry *entry;
487 unsigned long *stackend;
488
489 /* Are we prepared to handle this fault? */
490 if ((entry = search_exception_tables(regs->nip)) != NULL) {
491 regs->nip = entry->fixup;
492 return;
493 }
494
495 /* kernel has accessed a bad area */
496
497 switch (regs->trap) {
498 case 0x300:
499 case 0x380:
500 printk(KERN_ALERT "Unable to handle kernel paging request for "
501 "data at address 0x%08lx\n", regs->dar);
502 break;
503 case 0x400:
504 case 0x480:
505 printk(KERN_ALERT "Unable to handle kernel paging request for "
506 "instruction fetch\n");
507 break;
508 default:
509 printk(KERN_ALERT "Unable to handle kernel paging request for "
510 "unknown fault\n");
511 break;
512 }
513 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
514 regs->nip);
515
516 stackend = end_of_stack(current);
517 if (current != &init_task && *stackend != STACK_END_MAGIC)
518 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
519
520 die("Kernel access of bad area", regs, sig);
521}