Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
 
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
 
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/proc_fs.h>
  29#include <linux/task_work.h>
  30#include <linux/sched/task.h>
  31#include <uapi/linux/mount.h>
  32#include <linux/fs_context.h>
  33#include <linux/shmem_fs.h>
  34
  35#include "pnode.h"
  36#include "internal.h"
  37
  38/* Maximum number of mounts in a mount namespace */
  39unsigned int sysctl_mount_max __read_mostly = 100000;
  40
  41static unsigned int m_hash_mask __read_mostly;
  42static unsigned int m_hash_shift __read_mostly;
  43static unsigned int mp_hash_mask __read_mostly;
  44static unsigned int mp_hash_shift __read_mostly;
  45
  46static __initdata unsigned long mhash_entries;
  47static int __init set_mhash_entries(char *str)
  48{
  49	if (!str)
  50		return 0;
  51	mhash_entries = simple_strtoul(str, &str, 0);
  52	return 1;
  53}
  54__setup("mhash_entries=", set_mhash_entries);
  55
  56static __initdata unsigned long mphash_entries;
  57static int __init set_mphash_entries(char *str)
  58{
  59	if (!str)
  60		return 0;
  61	mphash_entries = simple_strtoul(str, &str, 0);
  62	return 1;
  63}
  64__setup("mphash_entries=", set_mphash_entries);
  65
  66static u64 event;
  67static DEFINE_IDA(mnt_id_ida);
  68static DEFINE_IDA(mnt_group_ida);
 
 
 
  69
  70static struct hlist_head *mount_hashtable __read_mostly;
  71static struct hlist_head *mountpoint_hashtable __read_mostly;
  72static struct kmem_cache *mnt_cache __read_mostly;
  73static DECLARE_RWSEM(namespace_sem);
  74static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
  75static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  76
  77struct mount_kattr {
  78	unsigned int attr_set;
  79	unsigned int attr_clr;
  80	unsigned int propagation;
  81	unsigned int lookup_flags;
  82	bool recurse;
  83	struct user_namespace *mnt_userns;
  84};
  85
  86/* /sys/fs */
  87struct kobject *fs_kobj;
  88EXPORT_SYMBOL_GPL(fs_kobj);
  89
  90/*
  91 * vfsmount lock may be taken for read to prevent changes to the
  92 * vfsmount hash, ie. during mountpoint lookups or walking back
  93 * up the tree.
  94 *
  95 * It should be taken for write in all cases where the vfsmount
  96 * tree or hash is modified or when a vfsmount structure is modified.
  97 */
  98__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  99
 100static inline void lock_mount_hash(void)
 101{
 102	write_seqlock(&mount_lock);
 103}
 104
 105static inline void unlock_mount_hash(void)
 106{
 107	write_sequnlock(&mount_lock);
 108}
 109
 110static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
 111{
 112	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 113	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 114	tmp = tmp + (tmp >> m_hash_shift);
 115	return &mount_hashtable[tmp & m_hash_mask];
 116}
 117
 118static inline struct hlist_head *mp_hash(struct dentry *dentry)
 119{
 120	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 121	tmp = tmp + (tmp >> mp_hash_shift);
 122	return &mountpoint_hashtable[tmp & mp_hash_mask];
 123}
 124
 
 
 
 
 125static int mnt_alloc_id(struct mount *mnt)
 126{
 127	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 128
 129	if (res < 0)
 130		return res;
 131	mnt->mnt_id = res;
 132	return 0;
 
 
 
 
 
 
 
 133}
 134
 135static void mnt_free_id(struct mount *mnt)
 136{
 137	ida_free(&mnt_id_ida, mnt->mnt_id);
 
 
 
 
 
 138}
 139
 140/*
 141 * Allocate a new peer group ID
 
 
 142 */
 143static int mnt_alloc_group_id(struct mount *mnt)
 144{
 145	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 146
 147	if (res < 0)
 148		return res;
 149	mnt->mnt_group_id = res;
 150	return 0;
 
 
 
 
 
 
 151}
 152
 153/*
 154 * Release a peer group ID
 155 */
 156void mnt_release_group_id(struct mount *mnt)
 157{
 158	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 
 
 
 159	mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170	preempt_disable();
 171	mnt->mnt_count += n;
 172	preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182	int count = 0;
 183	int cpu;
 184
 185	for_each_possible_cpu(cpu) {
 186		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187	}
 188
 189	return count;
 190#else
 191	return mnt->mnt_count;
 192#endif
 193}
 194
 195static struct mount *alloc_vfsmnt(const char *name)
 196{
 197	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 198	if (mnt) {
 199		int err;
 200
 201		err = mnt_alloc_id(mnt);
 202		if (err)
 203			goto out_free_cache;
 204
 205		if (name) {
 206			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 207			if (!mnt->mnt_devname)
 208				goto out_free_id;
 209		}
 210
 211#ifdef CONFIG_SMP
 212		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 213		if (!mnt->mnt_pcp)
 214			goto out_free_devname;
 215
 216		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 217#else
 218		mnt->mnt_count = 1;
 219		mnt->mnt_writers = 0;
 220#endif
 221
 222		INIT_HLIST_NODE(&mnt->mnt_hash);
 223		INIT_LIST_HEAD(&mnt->mnt_child);
 224		INIT_LIST_HEAD(&mnt->mnt_mounts);
 225		INIT_LIST_HEAD(&mnt->mnt_list);
 226		INIT_LIST_HEAD(&mnt->mnt_expire);
 227		INIT_LIST_HEAD(&mnt->mnt_share);
 228		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 229		INIT_LIST_HEAD(&mnt->mnt_slave);
 230		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 231		INIT_LIST_HEAD(&mnt->mnt_umounting);
 232		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 233		mnt->mnt.mnt_userns = &init_user_ns;
 234	}
 235	return mnt;
 236
 237#ifdef CONFIG_SMP
 238out_free_devname:
 239	kfree_const(mnt->mnt_devname);
 240#endif
 241out_free_id:
 242	mnt_free_id(mnt);
 243out_free_cache:
 244	kmem_cache_free(mnt_cache, mnt);
 245	return NULL;
 246}
 247
 248/*
 249 * Most r/o checks on a fs are for operations that take
 250 * discrete amounts of time, like a write() or unlink().
 251 * We must keep track of when those operations start
 252 * (for permission checks) and when they end, so that
 253 * we can determine when writes are able to occur to
 254 * a filesystem.
 255 */
 256/*
 257 * __mnt_is_readonly: check whether a mount is read-only
 258 * @mnt: the mount to check for its write status
 259 *
 260 * This shouldn't be used directly ouside of the VFS.
 261 * It does not guarantee that the filesystem will stay
 262 * r/w, just that it is right *now*.  This can not and
 263 * should not be used in place of IS_RDONLY(inode).
 264 * mnt_want/drop_write() will _keep_ the filesystem
 265 * r/w.
 266 */
 267bool __mnt_is_readonly(struct vfsmount *mnt)
 268{
 269	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 
 
 
 
 270}
 271EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 272
 273static inline void mnt_inc_writers(struct mount *mnt)
 274{
 275#ifdef CONFIG_SMP
 276	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 277#else
 278	mnt->mnt_writers++;
 279#endif
 280}
 281
 282static inline void mnt_dec_writers(struct mount *mnt)
 283{
 284#ifdef CONFIG_SMP
 285	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 286#else
 287	mnt->mnt_writers--;
 288#endif
 289}
 290
 291static unsigned int mnt_get_writers(struct mount *mnt)
 292{
 293#ifdef CONFIG_SMP
 294	unsigned int count = 0;
 295	int cpu;
 296
 297	for_each_possible_cpu(cpu) {
 298		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 299	}
 300
 301	return count;
 302#else
 303	return mnt->mnt_writers;
 304#endif
 305}
 306
 307static int mnt_is_readonly(struct vfsmount *mnt)
 308{
 309	if (mnt->mnt_sb->s_readonly_remount)
 310		return 1;
 311	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 312	smp_rmb();
 313	return __mnt_is_readonly(mnt);
 314}
 315
 316/*
 317 * Most r/o & frozen checks on a fs are for operations that take discrete
 318 * amounts of time, like a write() or unlink().  We must keep track of when
 319 * those operations start (for permission checks) and when they end, so that we
 320 * can determine when writes are able to occur to a filesystem.
 321 */
 322/**
 323 * __mnt_want_write - get write access to a mount without freeze protection
 324 * @m: the mount on which to take a write
 325 *
 326 * This tells the low-level filesystem that a write is about to be performed to
 327 * it, and makes sure that writes are allowed (mnt it read-write) before
 328 * returning success. This operation does not protect against filesystem being
 329 * frozen. When the write operation is finished, __mnt_drop_write() must be
 330 * called. This is effectively a refcount.
 331 */
 332int __mnt_want_write(struct vfsmount *m)
 333{
 334	struct mount *mnt = real_mount(m);
 335	int ret = 0;
 336
 337	preempt_disable();
 338	mnt_inc_writers(mnt);
 339	/*
 340	 * The store to mnt_inc_writers must be visible before we pass
 341	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 342	 * incremented count after it has set MNT_WRITE_HOLD.
 343	 */
 344	smp_mb();
 345	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 346		cpu_relax();
 347	/*
 348	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 349	 * be set to match its requirements. So we must not load that until
 350	 * MNT_WRITE_HOLD is cleared.
 351	 */
 352	smp_rmb();
 353	if (mnt_is_readonly(m)) {
 354		mnt_dec_writers(mnt);
 355		ret = -EROFS;
 356	}
 357	preempt_enable();
 358
 359	return ret;
 360}
 361
 362/**
 363 * mnt_want_write - get write access to a mount
 364 * @m: the mount on which to take a write
 365 *
 366 * This tells the low-level filesystem that a write is about to be performed to
 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 368 * is not frozen) before returning success.  When the write operation is
 369 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 370 */
 371int mnt_want_write(struct vfsmount *m)
 372{
 373	int ret;
 374
 375	sb_start_write(m->mnt_sb);
 376	ret = __mnt_want_write(m);
 377	if (ret)
 378		sb_end_write(m->mnt_sb);
 379	return ret;
 380}
 381EXPORT_SYMBOL_GPL(mnt_want_write);
 382
 383/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384 * __mnt_want_write_file - get write access to a file's mount
 385 * @file: the file who's mount on which to take a write
 386 *
 387 * This is like __mnt_want_write, but if the file is already open for writing it
 388 * skips incrementing mnt_writers (since the open file already has a reference)
 389 * and instead only does the check for emergency r/o remounts.  This must be
 390 * paired with __mnt_drop_write_file.
 391 */
 392int __mnt_want_write_file(struct file *file)
 393{
 394	if (file->f_mode & FMODE_WRITER) {
 395		/*
 396		 * Superblock may have become readonly while there are still
 397		 * writable fd's, e.g. due to a fs error with errors=remount-ro
 398		 */
 399		if (__mnt_is_readonly(file->f_path.mnt))
 400			return -EROFS;
 401		return 0;
 402	}
 403	return __mnt_want_write(file->f_path.mnt);
 404}
 405
 406/**
 407 * mnt_want_write_file - get write access to a file's mount
 408 * @file: the file who's mount on which to take a write
 409 *
 410 * This is like mnt_want_write, but if the file is already open for writing it
 411 * skips incrementing mnt_writers (since the open file already has a reference)
 412 * and instead only does the freeze protection and the check for emergency r/o
 413 * remounts.  This must be paired with mnt_drop_write_file.
 414 */
 415int mnt_want_write_file(struct file *file)
 416{
 417	int ret;
 418
 419	sb_start_write(file_inode(file)->i_sb);
 420	ret = __mnt_want_write_file(file);
 421	if (ret)
 422		sb_end_write(file_inode(file)->i_sb);
 423	return ret;
 424}
 425EXPORT_SYMBOL_GPL(mnt_want_write_file);
 426
 427/**
 428 * __mnt_drop_write - give up write access to a mount
 429 * @mnt: the mount on which to give up write access
 430 *
 431 * Tells the low-level filesystem that we are done
 432 * performing writes to it.  Must be matched with
 433 * __mnt_want_write() call above.
 434 */
 435void __mnt_drop_write(struct vfsmount *mnt)
 436{
 437	preempt_disable();
 438	mnt_dec_writers(real_mount(mnt));
 439	preempt_enable();
 440}
 441
 442/**
 443 * mnt_drop_write - give up write access to a mount
 444 * @mnt: the mount on which to give up write access
 445 *
 446 * Tells the low-level filesystem that we are done performing writes to it and
 447 * also allows filesystem to be frozen again.  Must be matched with
 448 * mnt_want_write() call above.
 449 */
 450void mnt_drop_write(struct vfsmount *mnt)
 451{
 452	__mnt_drop_write(mnt);
 453	sb_end_write(mnt->mnt_sb);
 454}
 455EXPORT_SYMBOL_GPL(mnt_drop_write);
 456
 457void __mnt_drop_write_file(struct file *file)
 458{
 459	if (!(file->f_mode & FMODE_WRITER))
 460		__mnt_drop_write(file->f_path.mnt);
 461}
 462
 463void mnt_drop_write_file(struct file *file)
 464{
 465	__mnt_drop_write_file(file);
 466	sb_end_write(file_inode(file)->i_sb);
 467}
 468EXPORT_SYMBOL(mnt_drop_write_file);
 469
 470static inline int mnt_hold_writers(struct mount *mnt)
 471{
 
 
 
 472	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 473	/*
 474	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 475	 * should be visible before we do.
 476	 */
 477	smp_mb();
 478
 479	/*
 480	 * With writers on hold, if this value is zero, then there are
 481	 * definitely no active writers (although held writers may subsequently
 482	 * increment the count, they'll have to wait, and decrement it after
 483	 * seeing MNT_READONLY).
 484	 *
 485	 * It is OK to have counter incremented on one CPU and decremented on
 486	 * another: the sum will add up correctly. The danger would be when we
 487	 * sum up each counter, if we read a counter before it is incremented,
 488	 * but then read another CPU's count which it has been subsequently
 489	 * decremented from -- we would see more decrements than we should.
 490	 * MNT_WRITE_HOLD protects against this scenario, because
 491	 * mnt_want_write first increments count, then smp_mb, then spins on
 492	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 493	 * we're counting up here.
 494	 */
 495	if (mnt_get_writers(mnt) > 0)
 496		return -EBUSY;
 497
 498	return 0;
 499}
 500
 501static inline void mnt_unhold_writers(struct mount *mnt)
 502{
 503	/*
 504	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 505	 * that become unheld will see MNT_READONLY.
 506	 */
 507	smp_wmb();
 508	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 
 
 509}
 510
 511static int mnt_make_readonly(struct mount *mnt)
 512{
 513	int ret;
 514
 515	ret = mnt_hold_writers(mnt);
 516	if (!ret)
 517		mnt->mnt.mnt_flags |= MNT_READONLY;
 518	mnt_unhold_writers(mnt);
 519	return ret;
 520}
 521
 522int sb_prepare_remount_readonly(struct super_block *sb)
 523{
 524	struct mount *mnt;
 525	int err = 0;
 526
 527	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 528	if (atomic_long_read(&sb->s_remove_count))
 529		return -EBUSY;
 530
 531	lock_mount_hash();
 532	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 533		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 534			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 535			smp_mb();
 536			if (mnt_get_writers(mnt) > 0) {
 537				err = -EBUSY;
 538				break;
 539			}
 540		}
 541	}
 542	if (!err && atomic_long_read(&sb->s_remove_count))
 543		err = -EBUSY;
 544
 545	if (!err) {
 546		sb->s_readonly_remount = 1;
 547		smp_wmb();
 548	}
 549	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 550		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 551			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 552	}
 553	unlock_mount_hash();
 554
 555	return err;
 556}
 557
 558static void free_vfsmnt(struct mount *mnt)
 559{
 560	struct user_namespace *mnt_userns;
 561
 562	mnt_userns = mnt_user_ns(&mnt->mnt);
 563	if (mnt_userns != &init_user_ns)
 564		put_user_ns(mnt_userns);
 565	kfree_const(mnt->mnt_devname);
 566#ifdef CONFIG_SMP
 567	free_percpu(mnt->mnt_pcp);
 568#endif
 569	kmem_cache_free(mnt_cache, mnt);
 570}
 571
 572static void delayed_free_vfsmnt(struct rcu_head *head)
 573{
 574	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 575}
 576
 577/* call under rcu_read_lock */
 578int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 579{
 580	struct mount *mnt;
 581	if (read_seqretry(&mount_lock, seq))
 582		return 1;
 583	if (bastard == NULL)
 584		return 0;
 585	mnt = real_mount(bastard);
 586	mnt_add_count(mnt, 1);
 587	smp_mb();			// see mntput_no_expire()
 588	if (likely(!read_seqretry(&mount_lock, seq)))
 589		return 0;
 590	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 591		mnt_add_count(mnt, -1);
 592		return 1;
 593	}
 594	lock_mount_hash();
 595	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 596		mnt_add_count(mnt, -1);
 597		unlock_mount_hash();
 598		return 1;
 599	}
 600	unlock_mount_hash();
 601	/* caller will mntput() */
 602	return -1;
 603}
 604
 605/* call under rcu_read_lock */
 606bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 607{
 608	int res = __legitimize_mnt(bastard, seq);
 609	if (likely(!res))
 610		return true;
 611	if (unlikely(res < 0)) {
 612		rcu_read_unlock();
 613		mntput(bastard);
 614		rcu_read_lock();
 615	}
 
 
 
 616	return false;
 617}
 618
 619/*
 620 * find the first mount at @dentry on vfsmount @mnt.
 621 * call under rcu_read_lock()
 622 */
 623struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 624{
 625	struct hlist_head *head = m_hash(mnt, dentry);
 626	struct mount *p;
 627
 628	hlist_for_each_entry_rcu(p, head, mnt_hash)
 629		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 630			return p;
 631	return NULL;
 632}
 633
 634/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635 * lookup_mnt - Return the first child mount mounted at path
 636 *
 637 * "First" means first mounted chronologically.  If you create the
 638 * following mounts:
 639 *
 640 * mount /dev/sda1 /mnt
 641 * mount /dev/sda2 /mnt
 642 * mount /dev/sda3 /mnt
 643 *
 644 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 645 * return successively the root dentry and vfsmount of /dev/sda1, then
 646 * /dev/sda2, then /dev/sda3, then NULL.
 647 *
 648 * lookup_mnt takes a reference to the found vfsmount.
 649 */
 650struct vfsmount *lookup_mnt(const struct path *path)
 651{
 652	struct mount *child_mnt;
 653	struct vfsmount *m;
 654	unsigned seq;
 655
 656	rcu_read_lock();
 657	do {
 658		seq = read_seqbegin(&mount_lock);
 659		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 660		m = child_mnt ? &child_mnt->mnt : NULL;
 661	} while (!legitimize_mnt(m, seq));
 662	rcu_read_unlock();
 663	return m;
 664}
 665
 666static inline void lock_ns_list(struct mnt_namespace *ns)
 667{
 668	spin_lock(&ns->ns_lock);
 669}
 670
 671static inline void unlock_ns_list(struct mnt_namespace *ns)
 672{
 673	spin_unlock(&ns->ns_lock);
 674}
 675
 676static inline bool mnt_is_cursor(struct mount *mnt)
 677{
 678	return mnt->mnt.mnt_flags & MNT_CURSOR;
 679}
 680
 681/*
 682 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 683 *                         current mount namespace.
 684 *
 685 * The common case is dentries are not mountpoints at all and that
 686 * test is handled inline.  For the slow case when we are actually
 687 * dealing with a mountpoint of some kind, walk through all of the
 688 * mounts in the current mount namespace and test to see if the dentry
 689 * is a mountpoint.
 690 *
 691 * The mount_hashtable is not usable in the context because we
 692 * need to identify all mounts that may be in the current mount
 693 * namespace not just a mount that happens to have some specified
 694 * parent mount.
 695 */
 696bool __is_local_mountpoint(struct dentry *dentry)
 697{
 698	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 699	struct mount *mnt;
 700	bool is_covered = false;
 701
 702	down_read(&namespace_sem);
 703	lock_ns_list(ns);
 704	list_for_each_entry(mnt, &ns->list, mnt_list) {
 705		if (mnt_is_cursor(mnt))
 706			continue;
 707		is_covered = (mnt->mnt_mountpoint == dentry);
 708		if (is_covered)
 709			break;
 710	}
 711	unlock_ns_list(ns);
 712	up_read(&namespace_sem);
 713
 714	return is_covered;
 715}
 716
 717static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 718{
 719	struct hlist_head *chain = mp_hash(dentry);
 720	struct mountpoint *mp;
 
 721
 722	hlist_for_each_entry(mp, chain, m_hash) {
 723		if (mp->m_dentry == dentry) {
 
 
 
 724			mp->m_count++;
 725			return mp;
 726		}
 727	}
 728	return NULL;
 729}
 730
 731static struct mountpoint *get_mountpoint(struct dentry *dentry)
 732{
 733	struct mountpoint *mp, *new = NULL;
 734	int ret;
 735
 736	if (d_mountpoint(dentry)) {
 737		/* might be worth a WARN_ON() */
 738		if (d_unlinked(dentry))
 739			return ERR_PTR(-ENOENT);
 740mountpoint:
 741		read_seqlock_excl(&mount_lock);
 742		mp = lookup_mountpoint(dentry);
 743		read_sequnlock_excl(&mount_lock);
 744		if (mp)
 745			goto done;
 746	}
 747
 748	if (!new)
 749		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 750	if (!new)
 751		return ERR_PTR(-ENOMEM);
 752
 753
 754	/* Exactly one processes may set d_mounted */
 755	ret = d_set_mounted(dentry);
 
 
 
 
 756
 757	/* Someone else set d_mounted? */
 758	if (ret == -EBUSY)
 759		goto mountpoint;
 760
 761	/* The dentry is not available as a mountpoint? */
 762	mp = ERR_PTR(ret);
 763	if (ret)
 764		goto done;
 765
 766	/* Add the new mountpoint to the hash table */
 767	read_seqlock_excl(&mount_lock);
 768	new->m_dentry = dget(dentry);
 769	new->m_count = 1;
 770	hlist_add_head(&new->m_hash, mp_hash(dentry));
 771	INIT_HLIST_HEAD(&new->m_list);
 772	read_sequnlock_excl(&mount_lock);
 773
 774	mp = new;
 775	new = NULL;
 776done:
 777	kfree(new);
 778	return mp;
 779}
 780
 781/*
 782 * vfsmount lock must be held.  Additionally, the caller is responsible
 783 * for serializing calls for given disposal list.
 784 */
 785static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 786{
 787	if (!--mp->m_count) {
 788		struct dentry *dentry = mp->m_dentry;
 789		BUG_ON(!hlist_empty(&mp->m_list));
 790		spin_lock(&dentry->d_lock);
 791		dentry->d_flags &= ~DCACHE_MOUNTED;
 792		spin_unlock(&dentry->d_lock);
 793		dput_to_list(dentry, list);
 794		hlist_del(&mp->m_hash);
 795		kfree(mp);
 796	}
 797}
 798
 799/* called with namespace_lock and vfsmount lock */
 800static void put_mountpoint(struct mountpoint *mp)
 801{
 802	__put_mountpoint(mp, &ex_mountpoints);
 803}
 804
 805static inline int check_mnt(struct mount *mnt)
 806{
 807	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 808}
 809
 810/*
 811 * vfsmount lock must be held for write
 812 */
 813static void touch_mnt_namespace(struct mnt_namespace *ns)
 814{
 815	if (ns) {
 816		ns->event = ++event;
 817		wake_up_interruptible(&ns->poll);
 818	}
 819}
 820
 821/*
 822 * vfsmount lock must be held for write
 823 */
 824static void __touch_mnt_namespace(struct mnt_namespace *ns)
 825{
 826	if (ns && ns->event != event) {
 827		ns->event = event;
 828		wake_up_interruptible(&ns->poll);
 829	}
 830}
 831
 832/*
 833 * vfsmount lock must be held for write
 834 */
 835static struct mountpoint *unhash_mnt(struct mount *mnt)
 836{
 837	struct mountpoint *mp;
 
 838	mnt->mnt_parent = mnt;
 839	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 840	list_del_init(&mnt->mnt_child);
 841	hlist_del_init_rcu(&mnt->mnt_hash);
 842	hlist_del_init(&mnt->mnt_mp_list);
 843	mp = mnt->mnt_mp;
 844	mnt->mnt_mp = NULL;
 845	return mp;
 846}
 847
 848/*
 849 * vfsmount lock must be held for write
 850 */
 851static void umount_mnt(struct mount *mnt)
 852{
 853	put_mountpoint(unhash_mnt(mnt));
 854}
 855
 856/*
 857 * vfsmount lock must be held for write
 858 */
 859void mnt_set_mountpoint(struct mount *mnt,
 860			struct mountpoint *mp,
 861			struct mount *child_mnt)
 862{
 863	mp->m_count++;
 864	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 865	child_mnt->mnt_mountpoint = mp->m_dentry;
 866	child_mnt->mnt_parent = mnt;
 867	child_mnt->mnt_mp = mp;
 868	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 869}
 870
 871static void __attach_mnt(struct mount *mnt, struct mount *parent)
 872{
 873	hlist_add_head_rcu(&mnt->mnt_hash,
 874			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 875	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 876}
 877
 878/*
 879 * vfsmount lock must be held for write
 880 */
 881static void attach_mnt(struct mount *mnt,
 882			struct mount *parent,
 883			struct mountpoint *mp)
 884{
 885	mnt_set_mountpoint(parent, mp, mnt);
 886	__attach_mnt(mnt, parent);
 887}
 888
 889void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 890{
 891	struct mountpoint *old_mp = mnt->mnt_mp;
 892	struct mount *old_parent = mnt->mnt_parent;
 893
 894	list_del_init(&mnt->mnt_child);
 895	hlist_del_init(&mnt->mnt_mp_list);
 896	hlist_del_init_rcu(&mnt->mnt_hash);
 897
 898	attach_mnt(mnt, parent, mp);
 899
 900	put_mountpoint(old_mp);
 901	mnt_add_count(old_parent, -1);
 902}
 903
 904/*
 905 * vfsmount lock must be held for write
 906 */
 907static void commit_tree(struct mount *mnt)
 908{
 909	struct mount *parent = mnt->mnt_parent;
 910	struct mount *m;
 911	LIST_HEAD(head);
 912	struct mnt_namespace *n = parent->mnt_ns;
 913
 914	BUG_ON(parent == mnt);
 915
 916	list_add_tail(&head, &mnt->mnt_list);
 917	list_for_each_entry(m, &head, mnt_list)
 918		m->mnt_ns = n;
 919
 920	list_splice(&head, n->list.prev);
 921
 922	n->mounts += n->pending_mounts;
 923	n->pending_mounts = 0;
 924
 925	__attach_mnt(mnt, parent);
 
 
 926	touch_mnt_namespace(n);
 927}
 928
 929static struct mount *next_mnt(struct mount *p, struct mount *root)
 930{
 931	struct list_head *next = p->mnt_mounts.next;
 932	if (next == &p->mnt_mounts) {
 933		while (1) {
 934			if (p == root)
 935				return NULL;
 936			next = p->mnt_child.next;
 937			if (next != &p->mnt_parent->mnt_mounts)
 938				break;
 939			p = p->mnt_parent;
 940		}
 941	}
 942	return list_entry(next, struct mount, mnt_child);
 943}
 944
 945static struct mount *skip_mnt_tree(struct mount *p)
 946{
 947	struct list_head *prev = p->mnt_mounts.prev;
 948	while (prev != &p->mnt_mounts) {
 949		p = list_entry(prev, struct mount, mnt_child);
 950		prev = p->mnt_mounts.prev;
 951	}
 952	return p;
 953}
 954
 955/**
 956 * vfs_create_mount - Create a mount for a configured superblock
 957 * @fc: The configuration context with the superblock attached
 958 *
 959 * Create a mount to an already configured superblock.  If necessary, the
 960 * caller should invoke vfs_get_tree() before calling this.
 961 *
 962 * Note that this does not attach the mount to anything.
 963 */
 964struct vfsmount *vfs_create_mount(struct fs_context *fc)
 965{
 966	struct mount *mnt;
 
 967
 968	if (!fc->root)
 969		return ERR_PTR(-EINVAL);
 970
 971	mnt = alloc_vfsmnt(fc->source ?: "none");
 972	if (!mnt)
 973		return ERR_PTR(-ENOMEM);
 974
 975	if (fc->sb_flags & SB_KERNMOUNT)
 976		mnt->mnt.mnt_flags = MNT_INTERNAL;
 977
 978	atomic_inc(&fc->root->d_sb->s_active);
 979	mnt->mnt.mnt_sb		= fc->root->d_sb;
 980	mnt->mnt.mnt_root	= dget(fc->root);
 981	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
 982	mnt->mnt_parent		= mnt;
 
 983
 
 
 
 
 984	lock_mount_hash();
 985	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 986	unlock_mount_hash();
 987	return &mnt->mnt;
 988}
 989EXPORT_SYMBOL(vfs_create_mount);
 990
 991struct vfsmount *fc_mount(struct fs_context *fc)
 992{
 993	int err = vfs_get_tree(fc);
 994	if (!err) {
 995		up_write(&fc->root->d_sb->s_umount);
 996		return vfs_create_mount(fc);
 997	}
 998	return ERR_PTR(err);
 999}
1000EXPORT_SYMBOL(fc_mount);
1001
1002struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1003				int flags, const char *name,
1004				void *data)
1005{
1006	struct fs_context *fc;
1007	struct vfsmount *mnt;
1008	int ret = 0;
1009
1010	if (!type)
1011		return ERR_PTR(-EINVAL);
1012
1013	fc = fs_context_for_mount(type, flags);
1014	if (IS_ERR(fc))
1015		return ERR_CAST(fc);
1016
1017	if (name)
1018		ret = vfs_parse_fs_string(fc, "source",
1019					  name, strlen(name));
1020	if (!ret)
1021		ret = parse_monolithic_mount_data(fc, data);
1022	if (!ret)
1023		mnt = fc_mount(fc);
1024	else
1025		mnt = ERR_PTR(ret);
1026
1027	put_fs_context(fc);
1028	return mnt;
1029}
1030EXPORT_SYMBOL_GPL(vfs_kern_mount);
1031
1032struct vfsmount *
1033vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1034	     const char *name, void *data)
1035{
1036	/* Until it is worked out how to pass the user namespace
1037	 * through from the parent mount to the submount don't support
1038	 * unprivileged mounts with submounts.
1039	 */
1040	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1041		return ERR_PTR(-EPERM);
1042
1043	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1044}
1045EXPORT_SYMBOL_GPL(vfs_submount);
1046
1047static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1048					int flag)
1049{
1050	struct super_block *sb = old->mnt.mnt_sb;
1051	struct mount *mnt;
1052	int err;
1053
1054	mnt = alloc_vfsmnt(old->mnt_devname);
1055	if (!mnt)
1056		return ERR_PTR(-ENOMEM);
1057
1058	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1059		mnt->mnt_group_id = 0; /* not a peer of original */
1060	else
1061		mnt->mnt_group_id = old->mnt_group_id;
1062
1063	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1064		err = mnt_alloc_group_id(mnt);
1065		if (err)
1066			goto out_free;
1067	}
1068
1069	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1070	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
 
 
 
 
 
 
1071
1072	atomic_inc(&sb->s_active);
1073	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1074	if (mnt->mnt.mnt_userns != &init_user_ns)
1075		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1076	mnt->mnt.mnt_sb = sb;
1077	mnt->mnt.mnt_root = dget(root);
1078	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1079	mnt->mnt_parent = mnt;
1080	lock_mount_hash();
1081	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1082	unlock_mount_hash();
1083
1084	if ((flag & CL_SLAVE) ||
1085	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1086		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1087		mnt->mnt_master = old;
1088		CLEAR_MNT_SHARED(mnt);
1089	} else if (!(flag & CL_PRIVATE)) {
1090		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1091			list_add(&mnt->mnt_share, &old->mnt_share);
1092		if (IS_MNT_SLAVE(old))
1093			list_add(&mnt->mnt_slave, &old->mnt_slave);
1094		mnt->mnt_master = old->mnt_master;
1095	} else {
1096		CLEAR_MNT_SHARED(mnt);
1097	}
1098	if (flag & CL_MAKE_SHARED)
1099		set_mnt_shared(mnt);
1100
1101	/* stick the duplicate mount on the same expiry list
1102	 * as the original if that was on one */
1103	if (flag & CL_EXPIRE) {
1104		if (!list_empty(&old->mnt_expire))
1105			list_add(&mnt->mnt_expire, &old->mnt_expire);
1106	}
1107
1108	return mnt;
1109
1110 out_free:
1111	mnt_free_id(mnt);
1112	free_vfsmnt(mnt);
1113	return ERR_PTR(err);
1114}
1115
1116static void cleanup_mnt(struct mount *mnt)
1117{
1118	struct hlist_node *p;
1119	struct mount *m;
1120	/*
1121	 * The warning here probably indicates that somebody messed
1122	 * up a mnt_want/drop_write() pair.  If this happens, the
1123	 * filesystem was probably unable to make r/w->r/o transitions.
1124	 * The locking used to deal with mnt_count decrement provides barriers,
1125	 * so mnt_get_writers() below is safe.
1126	 */
1127	WARN_ON(mnt_get_writers(mnt));
1128	if (unlikely(mnt->mnt_pins.first))
1129		mnt_pin_kill(mnt);
1130	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1131		hlist_del(&m->mnt_umount);
1132		mntput(&m->mnt);
1133	}
1134	fsnotify_vfsmount_delete(&mnt->mnt);
1135	dput(mnt->mnt.mnt_root);
1136	deactivate_super(mnt->mnt.mnt_sb);
1137	mnt_free_id(mnt);
1138	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1139}
1140
1141static void __cleanup_mnt(struct rcu_head *head)
1142{
1143	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1144}
1145
1146static LLIST_HEAD(delayed_mntput_list);
1147static void delayed_mntput(struct work_struct *unused)
1148{
1149	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1150	struct mount *m, *t;
1151
1152	llist_for_each_entry_safe(m, t, node, mnt_llist)
1153		cleanup_mnt(m);
1154}
1155static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156
1157static void mntput_no_expire(struct mount *mnt)
1158{
1159	LIST_HEAD(list);
1160	int count;
1161
1162	rcu_read_lock();
1163	if (likely(READ_ONCE(mnt->mnt_ns))) {
1164		/*
1165		 * Since we don't do lock_mount_hash() here,
1166		 * ->mnt_ns can change under us.  However, if it's
1167		 * non-NULL, then there's a reference that won't
1168		 * be dropped until after an RCU delay done after
1169		 * turning ->mnt_ns NULL.  So if we observe it
1170		 * non-NULL under rcu_read_lock(), the reference
1171		 * we are dropping is not the final one.
1172		 */
1173		mnt_add_count(mnt, -1);
1174		rcu_read_unlock();
1175		return;
1176	}
1177	lock_mount_hash();
1178	/*
1179	 * make sure that if __legitimize_mnt() has not seen us grab
1180	 * mount_lock, we'll see their refcount increment here.
1181	 */
1182	smp_mb();
1183	mnt_add_count(mnt, -1);
1184	count = mnt_get_count(mnt);
1185	if (count != 0) {
1186		WARN_ON(count < 0);
1187		rcu_read_unlock();
1188		unlock_mount_hash();
1189		return;
1190	}
 
 
 
 
 
 
 
 
1191	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1192		rcu_read_unlock();
1193		unlock_mount_hash();
1194		return;
1195	}
1196	mnt->mnt.mnt_flags |= MNT_DOOMED;
1197	rcu_read_unlock();
1198
1199	list_del(&mnt->mnt_instance);
1200
1201	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1202		struct mount *p, *tmp;
1203		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1204			__put_mountpoint(unhash_mnt(p), &list);
1205			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1206		}
1207	}
1208	unlock_mount_hash();
1209	shrink_dentry_list(&list);
1210
1211	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1212		struct task_struct *task = current;
1213		if (likely(!(task->flags & PF_KTHREAD))) {
1214			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1215			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1216				return;
1217		}
1218		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1219			schedule_delayed_work(&delayed_mntput_work, 1);
1220		return;
1221	}
1222	cleanup_mnt(mnt);
 
 
 
 
1223}
1224
1225void mntput(struct vfsmount *mnt)
1226{
1227	if (mnt) {
1228		struct mount *m = real_mount(mnt);
1229		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1230		if (unlikely(m->mnt_expiry_mark))
1231			m->mnt_expiry_mark = 0;
1232		mntput_no_expire(m);
1233	}
1234}
1235EXPORT_SYMBOL(mntput);
1236
1237struct vfsmount *mntget(struct vfsmount *mnt)
1238{
1239	if (mnt)
1240		mnt_add_count(real_mount(mnt), 1);
1241	return mnt;
1242}
1243EXPORT_SYMBOL(mntget);
1244
1245/**
1246 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1247 * @path: path to check
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248 *
1249 *  d_mountpoint() can only be used reliably to establish if a dentry is
1250 *  not mounted in any namespace and that common case is handled inline.
1251 *  d_mountpoint() isn't aware of the possibility there may be multiple
1252 *  mounts using a given dentry in a different namespace. This function
1253 *  checks if the passed in path is a mountpoint rather than the dentry
1254 *  alone.
1255 */
1256bool path_is_mountpoint(const struct path *path)
1257{
1258	unsigned seq;
1259	bool res;
1260
1261	if (!d_mountpoint(path->dentry))
1262		return false;
1263
1264	rcu_read_lock();
1265	do {
1266		seq = read_seqbegin(&mount_lock);
1267		res = __path_is_mountpoint(path);
1268	} while (read_seqretry(&mount_lock, seq));
 
 
1269	rcu_read_unlock();
1270
1271	return res;
1272}
1273EXPORT_SYMBOL(path_is_mountpoint);
1274
1275struct vfsmount *mnt_clone_internal(const struct path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
1276{
1277	struct mount *p;
1278	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1279	if (IS_ERR(p))
1280		return ERR_CAST(p);
1281	p->mnt.mnt_flags |= MNT_INTERNAL;
1282	return &p->mnt;
1283}
 
1284
1285#ifdef CONFIG_PROC_FS
1286static struct mount *mnt_list_next(struct mnt_namespace *ns,
1287				   struct list_head *p)
1288{
1289	struct mount *mnt, *ret = NULL;
1290
1291	lock_ns_list(ns);
1292	list_for_each_continue(p, &ns->list) {
1293		mnt = list_entry(p, typeof(*mnt), mnt_list);
1294		if (!mnt_is_cursor(mnt)) {
1295			ret = mnt;
1296			break;
1297		}
1298	}
1299	unlock_ns_list(ns);
1300
1301	return ret;
1302}
 
1303
 
1304/* iterator; we want it to have access to namespace_sem, thus here... */
1305static void *m_start(struct seq_file *m, loff_t *pos)
1306{
1307	struct proc_mounts *p = m->private;
1308	struct list_head *prev;
1309
1310	down_read(&namespace_sem);
1311	if (!*pos) {
1312		prev = &p->ns->list;
1313	} else {
1314		prev = &p->cursor.mnt_list;
1315
1316		/* Read after we'd reached the end? */
1317		if (list_empty(prev))
1318			return NULL;
1319	}
1320
1321	return mnt_list_next(p->ns, prev);
 
 
 
1322}
1323
1324static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325{
1326	struct proc_mounts *p = m->private;
1327	struct mount *mnt = v;
1328
1329	++*pos;
1330	return mnt_list_next(p->ns, &mnt->mnt_list);
 
1331}
1332
1333static void m_stop(struct seq_file *m, void *v)
1334{
1335	struct proc_mounts *p = m->private;
1336	struct mount *mnt = v;
1337
1338	lock_ns_list(p->ns);
1339	if (mnt)
1340		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1341	else
1342		list_del_init(&p->cursor.mnt_list);
1343	unlock_ns_list(p->ns);
1344	up_read(&namespace_sem);
1345}
1346
1347static int m_show(struct seq_file *m, void *v)
1348{
1349	struct proc_mounts *p = m->private;
1350	struct mount *r = v;
1351	return p->show(m, &r->mnt);
1352}
1353
1354const struct seq_operations mounts_op = {
1355	.start	= m_start,
1356	.next	= m_next,
1357	.stop	= m_stop,
1358	.show	= m_show,
1359};
1360
1361void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1362{
1363	down_read(&namespace_sem);
1364	lock_ns_list(ns);
1365	list_del(&cursor->mnt_list);
1366	unlock_ns_list(ns);
1367	up_read(&namespace_sem);
1368}
1369#endif  /* CONFIG_PROC_FS */
1370
1371/**
1372 * may_umount_tree - check if a mount tree is busy
1373 * @m: root of mount tree
1374 *
1375 * This is called to check if a tree of mounts has any
1376 * open files, pwds, chroots or sub mounts that are
1377 * busy.
1378 */
1379int may_umount_tree(struct vfsmount *m)
1380{
1381	struct mount *mnt = real_mount(m);
1382	int actual_refs = 0;
1383	int minimum_refs = 0;
1384	struct mount *p;
1385	BUG_ON(!m);
1386
1387	/* write lock needed for mnt_get_count */
1388	lock_mount_hash();
1389	for (p = mnt; p; p = next_mnt(p, mnt)) {
1390		actual_refs += mnt_get_count(p);
1391		minimum_refs += 2;
1392	}
1393	unlock_mount_hash();
1394
1395	if (actual_refs > minimum_refs)
1396		return 0;
1397
1398	return 1;
1399}
1400
1401EXPORT_SYMBOL(may_umount_tree);
1402
1403/**
1404 * may_umount - check if a mount point is busy
1405 * @mnt: root of mount
1406 *
1407 * This is called to check if a mount point has any
1408 * open files, pwds, chroots or sub mounts. If the
1409 * mount has sub mounts this will return busy
1410 * regardless of whether the sub mounts are busy.
1411 *
1412 * Doesn't take quota and stuff into account. IOW, in some cases it will
1413 * give false negatives. The main reason why it's here is that we need
1414 * a non-destructive way to look for easily umountable filesystems.
1415 */
1416int may_umount(struct vfsmount *mnt)
1417{
1418	int ret = 1;
1419	down_read(&namespace_sem);
1420	lock_mount_hash();
1421	if (propagate_mount_busy(real_mount(mnt), 2))
1422		ret = 0;
1423	unlock_mount_hash();
1424	up_read(&namespace_sem);
1425	return ret;
1426}
1427
1428EXPORT_SYMBOL(may_umount);
1429
 
 
1430static void namespace_unlock(void)
1431{
1432	struct hlist_head head;
1433	struct hlist_node *p;
1434	struct mount *m;
1435	LIST_HEAD(list);
1436
1437	hlist_move_list(&unmounted, &head);
1438	list_splice_init(&ex_mountpoints, &list);
1439
1440	up_write(&namespace_sem);
 
 
 
1441
1442	shrink_dentry_list(&list);
 
1443
1444	if (likely(hlist_empty(&head)))
1445		return;
1446
1447	synchronize_rcu_expedited();
1448
1449	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1450		hlist_del(&m->mnt_umount);
1451		mntput(&m->mnt);
 
 
 
1452	}
1453}
1454
1455static inline void namespace_lock(void)
1456{
1457	down_write(&namespace_sem);
1458}
1459
1460enum umount_tree_flags {
1461	UMOUNT_SYNC = 1,
1462	UMOUNT_PROPAGATE = 2,
1463	UMOUNT_CONNECTED = 4,
1464};
1465
1466static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1467{
1468	/* Leaving mounts connected is only valid for lazy umounts */
1469	if (how & UMOUNT_SYNC)
1470		return true;
1471
1472	/* A mount without a parent has nothing to be connected to */
1473	if (!mnt_has_parent(mnt))
1474		return true;
1475
1476	/* Because the reference counting rules change when mounts are
1477	 * unmounted and connected, umounted mounts may not be
1478	 * connected to mounted mounts.
1479	 */
1480	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1481		return true;
1482
1483	/* Has it been requested that the mount remain connected? */
1484	if (how & UMOUNT_CONNECTED)
1485		return false;
1486
1487	/* Is the mount locked such that it needs to remain connected? */
1488	if (IS_MNT_LOCKED(mnt))
1489		return false;
1490
1491	/* By default disconnect the mount */
1492	return true;
1493}
1494
1495/*
1496 * mount_lock must be held
1497 * namespace_sem must be held for write
 
 
 
1498 */
1499static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1500{
1501	LIST_HEAD(tmp_list);
1502	struct mount *p;
 
1503
1504	if (how & UMOUNT_PROPAGATE)
1505		propagate_mount_unlock(mnt);
1506
1507	/* Gather the mounts to umount */
1508	for (p = mnt; p; p = next_mnt(p, mnt)) {
1509		p->mnt.mnt_flags |= MNT_UMOUNT;
1510		list_move(&p->mnt_list, &tmp_list);
1511	}
1512
1513	/* Hide the mounts from mnt_mounts */
1514	list_for_each_entry(p, &tmp_list, mnt_list) {
1515		list_del_init(&p->mnt_child);
1516	}
1517
1518	/* Add propogated mounts to the tmp_list */
1519	if (how & UMOUNT_PROPAGATE)
1520		propagate_umount(&tmp_list);
1521
1522	while (!list_empty(&tmp_list)) {
1523		struct mnt_namespace *ns;
1524		bool disconnect;
1525		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1526		list_del_init(&p->mnt_expire);
1527		list_del_init(&p->mnt_list);
1528		ns = p->mnt_ns;
1529		if (ns) {
1530			ns->mounts--;
1531			__touch_mnt_namespace(ns);
1532		}
1533		p->mnt_ns = NULL;
1534		if (how & UMOUNT_SYNC)
1535			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1536
1537		disconnect = disconnect_mount(p, how);
1538		if (mnt_has_parent(p)) {
1539			mnt_add_count(p->mnt_parent, -1);
1540			if (!disconnect) {
1541				/* Don't forget about p */
1542				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1543			} else {
1544				umount_mnt(p);
1545			}
1546		}
1547		change_mnt_propagation(p, MS_PRIVATE);
1548		if (disconnect)
1549			hlist_add_head(&p->mnt_umount, &unmounted);
 
 
 
 
1550	}
1551}
1552
1553static void shrink_submounts(struct mount *mnt);
1554
1555static int do_umount_root(struct super_block *sb)
1556{
1557	int ret = 0;
1558
1559	down_write(&sb->s_umount);
1560	if (!sb_rdonly(sb)) {
1561		struct fs_context *fc;
1562
1563		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1564						SB_RDONLY);
1565		if (IS_ERR(fc)) {
1566			ret = PTR_ERR(fc);
1567		} else {
1568			ret = parse_monolithic_mount_data(fc, NULL);
1569			if (!ret)
1570				ret = reconfigure_super(fc);
1571			put_fs_context(fc);
1572		}
1573	}
1574	up_write(&sb->s_umount);
1575	return ret;
1576}
1577
1578static int do_umount(struct mount *mnt, int flags)
1579{
1580	struct super_block *sb = mnt->mnt.mnt_sb;
1581	int retval;
1582
1583	retval = security_sb_umount(&mnt->mnt, flags);
1584	if (retval)
1585		return retval;
1586
1587	/*
1588	 * Allow userspace to request a mountpoint be expired rather than
1589	 * unmounting unconditionally. Unmount only happens if:
1590	 *  (1) the mark is already set (the mark is cleared by mntput())
1591	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1592	 */
1593	if (flags & MNT_EXPIRE) {
1594		if (&mnt->mnt == current->fs->root.mnt ||
1595		    flags & (MNT_FORCE | MNT_DETACH))
1596			return -EINVAL;
1597
1598		/*
1599		 * probably don't strictly need the lock here if we examined
1600		 * all race cases, but it's a slowpath.
1601		 */
1602		lock_mount_hash();
1603		if (mnt_get_count(mnt) != 2) {
1604			unlock_mount_hash();
1605			return -EBUSY;
1606		}
1607		unlock_mount_hash();
1608
1609		if (!xchg(&mnt->mnt_expiry_mark, 1))
1610			return -EAGAIN;
1611	}
1612
1613	/*
1614	 * If we may have to abort operations to get out of this
1615	 * mount, and they will themselves hold resources we must
1616	 * allow the fs to do things. In the Unix tradition of
1617	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1618	 * might fail to complete on the first run through as other tasks
1619	 * must return, and the like. Thats for the mount program to worry
1620	 * about for the moment.
1621	 */
1622
1623	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1624		sb->s_op->umount_begin(sb);
1625	}
1626
1627	/*
1628	 * No sense to grab the lock for this test, but test itself looks
1629	 * somewhat bogus. Suggestions for better replacement?
1630	 * Ho-hum... In principle, we might treat that as umount + switch
1631	 * to rootfs. GC would eventually take care of the old vfsmount.
1632	 * Actually it makes sense, especially if rootfs would contain a
1633	 * /reboot - static binary that would close all descriptors and
1634	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1635	 */
1636	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1637		/*
1638		 * Special case for "unmounting" root ...
1639		 * we just try to remount it readonly.
1640		 */
1641		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1642			return -EPERM;
1643		return do_umount_root(sb);
 
 
1644	}
1645
1646	namespace_lock();
1647	lock_mount_hash();
1648
1649	/* Recheck MNT_LOCKED with the locks held */
1650	retval = -EINVAL;
1651	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1652		goto out;
1653
1654	event++;
 
1655	if (flags & MNT_DETACH) {
1656		if (!list_empty(&mnt->mnt_list))
1657			umount_tree(mnt, UMOUNT_PROPAGATE);
1658		retval = 0;
1659	} else {
1660		shrink_submounts(mnt);
1661		retval = -EBUSY;
1662		if (!propagate_mount_busy(mnt, 2)) {
1663			if (!list_empty(&mnt->mnt_list))
1664				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1665			retval = 0;
1666		}
1667	}
1668out:
1669	unlock_mount_hash();
1670	namespace_unlock();
1671	return retval;
1672}
1673
1674/*
1675 * __detach_mounts - lazily unmount all mounts on the specified dentry
1676 *
1677 * During unlink, rmdir, and d_drop it is possible to loose the path
1678 * to an existing mountpoint, and wind up leaking the mount.
1679 * detach_mounts allows lazily unmounting those mounts instead of
1680 * leaking them.
1681 *
1682 * The caller may hold dentry->d_inode->i_mutex.
1683 */
1684void __detach_mounts(struct dentry *dentry)
1685{
1686	struct mountpoint *mp;
1687	struct mount *mnt;
1688
1689	namespace_lock();
1690	lock_mount_hash();
1691	mp = lookup_mountpoint(dentry);
1692	if (!mp)
1693		goto out_unlock;
1694
1695	event++;
1696	while (!hlist_empty(&mp->m_list)) {
1697		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1698		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1699			umount_mnt(mnt);
1700			hlist_add_head(&mnt->mnt_umount, &unmounted);
1701		}
1702		else umount_tree(mnt, UMOUNT_CONNECTED);
1703	}
1704	put_mountpoint(mp);
1705out_unlock:
1706	unlock_mount_hash();
1707	namespace_unlock();
1708}
1709
1710/*
1711 * Is the caller allowed to modify his namespace?
1712 */
1713static inline bool may_mount(void)
1714{
1715	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1716}
1717
1718#ifdef	CONFIG_MANDATORY_FILE_LOCKING
1719static bool may_mandlock(void)
1720{
1721	pr_warn_once("======================================================\n"
1722		     "WARNING: the mand mount option is being deprecated and\n"
1723		     "         will be removed in v5.15!\n"
1724		     "======================================================\n");
1725	return capable(CAP_SYS_ADMIN);
1726}
1727#else
1728static inline bool may_mandlock(void)
1729{
1730	pr_warn("VFS: \"mand\" mount option not supported");
1731	return false;
1732}
1733#endif
1734
1735static int can_umount(const struct path *path, int flags)
1736{
1737	struct mount *mnt = real_mount(path->mnt);
1738
1739	if (!may_mount())
1740		return -EPERM;
1741	if (path->dentry != path->mnt->mnt_root)
1742		return -EINVAL;
1743	if (!check_mnt(mnt))
1744		return -EINVAL;
1745	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1746		return -EINVAL;
1747	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1748		return -EPERM;
1749	return 0;
1750}
1751
1752// caller is responsible for flags being sane
1753int path_umount(struct path *path, int flags)
1754{
1755	struct mount *mnt = real_mount(path->mnt);
1756	int ret;
1757
1758	ret = can_umount(path, flags);
1759	if (!ret)
1760		ret = do_umount(mnt, flags);
1761
1762	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1763	dput(path->dentry);
1764	mntput_no_expire(mnt);
1765	return ret;
1766}
1767
1768static int ksys_umount(char __user *name, int flags)
1769{
1770	int lookup_flags = LOOKUP_MOUNTPOINT;
1771	struct path path;
1772	int ret;
 
 
1773
1774	// basic validity checks done first
1775	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1776		return -EINVAL;
1777
 
 
 
1778	if (!(flags & UMOUNT_NOFOLLOW))
1779		lookup_flags |= LOOKUP_FOLLOW;
1780	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1781	if (ret)
1782		return ret;
1783	return path_umount(&path, flags);
1784}
1785
1786SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1787{
1788	return ksys_umount(name, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789}
1790
1791#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1792
1793/*
1794 *	The 2.0 compatible umount. No flags.
1795 */
1796SYSCALL_DEFINE1(oldumount, char __user *, name)
1797{
1798	return ksys_umount(name, 0);
1799}
1800
1801#endif
1802
1803static bool is_mnt_ns_file(struct dentry *dentry)
1804{
1805	/* Is this a proxy for a mount namespace? */
1806	return dentry->d_op == &ns_dentry_operations &&
1807	       dentry->d_fsdata == &mntns_operations;
1808}
1809
1810static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1811{
1812	return container_of(ns, struct mnt_namespace, ns);
1813}
1814
1815struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1816{
1817	return &mnt->ns;
 
 
1818}
1819
1820static bool mnt_ns_loop(struct dentry *dentry)
1821{
1822	/* Could bind mounting the mount namespace inode cause a
1823	 * mount namespace loop?
1824	 */
1825	struct mnt_namespace *mnt_ns;
1826	if (!is_mnt_ns_file(dentry))
1827		return false;
1828
1829	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1830	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1831}
1832
1833struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1834					int flag)
1835{
1836	struct mount *res, *p, *q, *r, *parent;
1837
1838	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1839		return ERR_PTR(-EINVAL);
1840
1841	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1842		return ERR_PTR(-EINVAL);
1843
1844	res = q = clone_mnt(mnt, dentry, flag);
1845	if (IS_ERR(q))
1846		return q;
1847
 
1848	q->mnt_mountpoint = mnt->mnt_mountpoint;
1849
1850	p = mnt;
1851	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1852		struct mount *s;
1853		if (!is_subdir(r->mnt_mountpoint, dentry))
1854			continue;
1855
1856		for (s = r; s; s = next_mnt(s, r)) {
1857			if (!(flag & CL_COPY_UNBINDABLE) &&
1858			    IS_MNT_UNBINDABLE(s)) {
1859				if (s->mnt.mnt_flags & MNT_LOCKED) {
1860					/* Both unbindable and locked. */
1861					q = ERR_PTR(-EPERM);
1862					goto out;
1863				} else {
1864					s = skip_mnt_tree(s);
1865					continue;
1866				}
1867			}
1868			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1869			    is_mnt_ns_file(s->mnt.mnt_root)) {
1870				s = skip_mnt_tree(s);
1871				continue;
1872			}
1873			while (p != s->mnt_parent) {
1874				p = p->mnt_parent;
1875				q = q->mnt_parent;
1876			}
1877			p = s;
1878			parent = q;
1879			q = clone_mnt(p, p->mnt.mnt_root, flag);
1880			if (IS_ERR(q))
1881				goto out;
1882			lock_mount_hash();
1883			list_add_tail(&q->mnt_list, &res->mnt_list);
1884			attach_mnt(q, parent, p->mnt_mp);
1885			unlock_mount_hash();
1886		}
1887	}
1888	return res;
1889out:
1890	if (res) {
1891		lock_mount_hash();
1892		umount_tree(res, UMOUNT_SYNC);
1893		unlock_mount_hash();
1894	}
1895	return q;
1896}
1897
1898/* Caller should check returned pointer for errors */
1899
1900struct vfsmount *collect_mounts(const struct path *path)
1901{
1902	struct mount *tree;
1903	namespace_lock();
1904	if (!check_mnt(real_mount(path->mnt)))
1905		tree = ERR_PTR(-EINVAL);
1906	else
1907		tree = copy_tree(real_mount(path->mnt), path->dentry,
1908				 CL_COPY_ALL | CL_PRIVATE);
1909	namespace_unlock();
1910	if (IS_ERR(tree))
1911		return ERR_CAST(tree);
1912	return &tree->mnt;
1913}
1914
1915static void free_mnt_ns(struct mnt_namespace *);
1916static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1917
1918void dissolve_on_fput(struct vfsmount *mnt)
1919{
1920	struct mnt_namespace *ns;
1921	namespace_lock();
1922	lock_mount_hash();
1923	ns = real_mount(mnt)->mnt_ns;
1924	if (ns) {
1925		if (is_anon_ns(ns))
1926			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1927		else
1928			ns = NULL;
1929	}
1930	unlock_mount_hash();
1931	namespace_unlock();
1932	if (ns)
1933		free_mnt_ns(ns);
1934}
1935
1936void drop_collected_mounts(struct vfsmount *mnt)
1937{
1938	namespace_lock();
1939	lock_mount_hash();
1940	umount_tree(real_mount(mnt), 0);
1941	unlock_mount_hash();
1942	namespace_unlock();
1943}
1944
1945static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1946{
1947	struct mount *child;
1948
1949	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1950		if (!is_subdir(child->mnt_mountpoint, dentry))
1951			continue;
1952
1953		if (child->mnt.mnt_flags & MNT_LOCKED)
1954			return true;
1955	}
1956	return false;
1957}
1958
1959/**
1960 * clone_private_mount - create a private clone of a path
1961 * @path: path to clone
1962 *
1963 * This creates a new vfsmount, which will be the clone of @path.  The new mount
1964 * will not be attached anywhere in the namespace and will be private (i.e.
1965 * changes to the originating mount won't be propagated into this).
1966 *
1967 * Release with mntput().
1968 */
1969struct vfsmount *clone_private_mount(const struct path *path)
1970{
1971	struct mount *old_mnt = real_mount(path->mnt);
1972	struct mount *new_mnt;
1973
1974	down_read(&namespace_sem);
1975	if (IS_MNT_UNBINDABLE(old_mnt))
1976		goto invalid;
1977
1978	if (!check_mnt(old_mnt))
1979		goto invalid;
1980
1981	if (has_locked_children(old_mnt, path->dentry))
1982		goto invalid;
1983
1984	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1985	up_read(&namespace_sem);
1986
1987	if (IS_ERR(new_mnt))
1988		return ERR_CAST(new_mnt);
1989
1990	/* Longterm mount to be removed by kern_unmount*() */
1991	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1992
1993	return &new_mnt->mnt;
1994
1995invalid:
1996	up_read(&namespace_sem);
1997	return ERR_PTR(-EINVAL);
1998}
1999EXPORT_SYMBOL_GPL(clone_private_mount);
2000
2001int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2002		   struct vfsmount *root)
2003{
2004	struct mount *mnt;
2005	int res = f(root, arg);
2006	if (res)
2007		return res;
2008	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2009		res = f(&mnt->mnt, arg);
2010		if (res)
2011			return res;
2012	}
2013	return 0;
2014}
2015
2016static void lock_mnt_tree(struct mount *mnt)
2017{
2018	struct mount *p;
2019
2020	for (p = mnt; p; p = next_mnt(p, mnt)) {
2021		int flags = p->mnt.mnt_flags;
2022		/* Don't allow unprivileged users to change mount flags */
2023		flags |= MNT_LOCK_ATIME;
2024
2025		if (flags & MNT_READONLY)
2026			flags |= MNT_LOCK_READONLY;
2027
2028		if (flags & MNT_NODEV)
2029			flags |= MNT_LOCK_NODEV;
2030
2031		if (flags & MNT_NOSUID)
2032			flags |= MNT_LOCK_NOSUID;
2033
2034		if (flags & MNT_NOEXEC)
2035			flags |= MNT_LOCK_NOEXEC;
2036		/* Don't allow unprivileged users to reveal what is under a mount */
2037		if (list_empty(&p->mnt_expire))
2038			flags |= MNT_LOCKED;
2039		p->mnt.mnt_flags = flags;
2040	}
2041}
2042
2043static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2044{
2045	struct mount *p;
2046
2047	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2048		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2049			mnt_release_group_id(p);
2050	}
2051}
2052
2053static int invent_group_ids(struct mount *mnt, bool recurse)
2054{
2055	struct mount *p;
2056
2057	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2058		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2059			int err = mnt_alloc_group_id(p);
2060			if (err) {
2061				cleanup_group_ids(mnt, p);
2062				return err;
2063			}
2064		}
2065	}
2066
2067	return 0;
2068}
2069
2070int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2071{
2072	unsigned int max = READ_ONCE(sysctl_mount_max);
2073	unsigned int mounts = 0, old, pending, sum;
2074	struct mount *p;
2075
2076	for (p = mnt; p; p = next_mnt(p, mnt))
2077		mounts++;
2078
2079	old = ns->mounts;
2080	pending = ns->pending_mounts;
2081	sum = old + pending;
2082	if ((old > sum) ||
2083	    (pending > sum) ||
2084	    (max < sum) ||
2085	    (mounts > (max - sum)))
2086		return -ENOSPC;
2087
2088	ns->pending_mounts = pending + mounts;
2089	return 0;
2090}
2091
2092/*
2093 *  @source_mnt : mount tree to be attached
2094 *  @nd         : place the mount tree @source_mnt is attached
2095 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2096 *  		   store the parent mount and mountpoint dentry.
2097 *  		   (done when source_mnt is moved)
2098 *
2099 *  NOTE: in the table below explains the semantics when a source mount
2100 *  of a given type is attached to a destination mount of a given type.
2101 * ---------------------------------------------------------------------------
2102 * |         BIND MOUNT OPERATION                                            |
2103 * |**************************************************************************
2104 * | source-->| shared        |       private  |       slave    | unbindable |
2105 * | dest     |               |                |                |            |
2106 * |   |      |               |                |                |            |
2107 * |   v      |               |                |                |            |
2108 * |**************************************************************************
2109 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2110 * |          |               |                |                |            |
2111 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2112 * ***************************************************************************
2113 * A bind operation clones the source mount and mounts the clone on the
2114 * destination mount.
2115 *
2116 * (++)  the cloned mount is propagated to all the mounts in the propagation
2117 * 	 tree of the destination mount and the cloned mount is added to
2118 * 	 the peer group of the source mount.
2119 * (+)   the cloned mount is created under the destination mount and is marked
2120 *       as shared. The cloned mount is added to the peer group of the source
2121 *       mount.
2122 * (+++) the mount is propagated to all the mounts in the propagation tree
2123 *       of the destination mount and the cloned mount is made slave
2124 *       of the same master as that of the source mount. The cloned mount
2125 *       is marked as 'shared and slave'.
2126 * (*)   the cloned mount is made a slave of the same master as that of the
2127 * 	 source mount.
2128 *
2129 * ---------------------------------------------------------------------------
2130 * |         		MOVE MOUNT OPERATION                                 |
2131 * |**************************************************************************
2132 * | source-->| shared        |       private  |       slave    | unbindable |
2133 * | dest     |               |                |                |            |
2134 * |   |      |               |                |                |            |
2135 * |   v      |               |                |                |            |
2136 * |**************************************************************************
2137 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2138 * |          |               |                |                |            |
2139 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2140 * ***************************************************************************
2141 *
2142 * (+)  the mount is moved to the destination. And is then propagated to
2143 * 	all the mounts in the propagation tree of the destination mount.
2144 * (+*)  the mount is moved to the destination.
2145 * (+++)  the mount is moved to the destination and is then propagated to
2146 * 	all the mounts belonging to the destination mount's propagation tree.
2147 * 	the mount is marked as 'shared and slave'.
2148 * (*)	the mount continues to be a slave at the new location.
2149 *
2150 * if the source mount is a tree, the operations explained above is
2151 * applied to each mount in the tree.
2152 * Must be called without spinlocks held, since this function can sleep
2153 * in allocations.
2154 */
2155static int attach_recursive_mnt(struct mount *source_mnt,
2156			struct mount *dest_mnt,
2157			struct mountpoint *dest_mp,
2158			bool moving)
2159{
2160	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2161	HLIST_HEAD(tree_list);
2162	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2163	struct mountpoint *smp;
2164	struct mount *child, *p;
2165	struct hlist_node *n;
2166	int err;
2167
2168	/* Preallocate a mountpoint in case the new mounts need
2169	 * to be tucked under other mounts.
2170	 */
2171	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2172	if (IS_ERR(smp))
2173		return PTR_ERR(smp);
2174
2175	/* Is there space to add these mounts to the mount namespace? */
2176	if (!moving) {
2177		err = count_mounts(ns, source_mnt);
2178		if (err)
2179			goto out;
2180	}
2181
2182	if (IS_MNT_SHARED(dest_mnt)) {
2183		err = invent_group_ids(source_mnt, true);
2184		if (err)
2185			goto out;
2186		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2187		lock_mount_hash();
2188		if (err)
2189			goto out_cleanup_ids;
2190		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2191			set_mnt_shared(p);
2192	} else {
2193		lock_mount_hash();
2194	}
2195	if (moving) {
2196		unhash_mnt(source_mnt);
2197		attach_mnt(source_mnt, dest_mnt, dest_mp);
2198		touch_mnt_namespace(source_mnt->mnt_ns);
2199	} else {
2200		if (source_mnt->mnt_ns) {
2201			/* move from anon - the caller will destroy */
2202			list_del_init(&source_mnt->mnt_ns->list);
2203		}
2204		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2205		commit_tree(source_mnt);
2206	}
2207
2208	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2209		struct mount *q;
2210		hlist_del_init(&child->mnt_hash);
2211		q = __lookup_mnt(&child->mnt_parent->mnt,
2212				 child->mnt_mountpoint);
2213		if (q)
2214			mnt_change_mountpoint(child, smp, q);
2215		/* Notice when we are propagating across user namespaces */
2216		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2217			lock_mnt_tree(child);
2218		child->mnt.mnt_flags &= ~MNT_LOCKED;
2219		commit_tree(child);
2220	}
2221	put_mountpoint(smp);
2222	unlock_mount_hash();
2223
2224	return 0;
2225
2226 out_cleanup_ids:
2227	while (!hlist_empty(&tree_list)) {
2228		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2229		child->mnt_parent->mnt_ns->pending_mounts = 0;
2230		umount_tree(child, UMOUNT_SYNC);
2231	}
2232	unlock_mount_hash();
2233	cleanup_group_ids(source_mnt, NULL);
2234 out:
2235	ns->pending_mounts = 0;
2236
2237	read_seqlock_excl(&mount_lock);
2238	put_mountpoint(smp);
2239	read_sequnlock_excl(&mount_lock);
2240
2241	return err;
2242}
2243
2244static struct mountpoint *lock_mount(struct path *path)
2245{
2246	struct vfsmount *mnt;
2247	struct dentry *dentry = path->dentry;
2248retry:
2249	inode_lock(dentry->d_inode);
2250	if (unlikely(cant_mount(dentry))) {
2251		inode_unlock(dentry->d_inode);
2252		return ERR_PTR(-ENOENT);
2253	}
2254	namespace_lock();
2255	mnt = lookup_mnt(path);
2256	if (likely(!mnt)) {
2257		struct mountpoint *mp = get_mountpoint(dentry);
2258		if (IS_ERR(mp)) {
2259			namespace_unlock();
2260			inode_unlock(dentry->d_inode);
2261			return mp;
2262		}
2263		return mp;
2264	}
2265	namespace_unlock();
2266	inode_unlock(path->dentry->d_inode);
2267	path_put(path);
2268	path->mnt = mnt;
2269	dentry = path->dentry = dget(mnt->mnt_root);
2270	goto retry;
2271}
2272
2273static void unlock_mount(struct mountpoint *where)
2274{
2275	struct dentry *dentry = where->m_dentry;
2276
2277	read_seqlock_excl(&mount_lock);
2278	put_mountpoint(where);
2279	read_sequnlock_excl(&mount_lock);
2280
2281	namespace_unlock();
2282	inode_unlock(dentry->d_inode);
2283}
2284
2285static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2286{
2287	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2288		return -EINVAL;
2289
2290	if (d_is_dir(mp->m_dentry) !=
2291	      d_is_dir(mnt->mnt.mnt_root))
2292		return -ENOTDIR;
2293
2294	return attach_recursive_mnt(mnt, p, mp, false);
2295}
2296
2297/*
2298 * Sanity check the flags to change_mnt_propagation.
2299 */
2300
2301static int flags_to_propagation_type(int ms_flags)
2302{
2303	int type = ms_flags & ~(MS_REC | MS_SILENT);
2304
2305	/* Fail if any non-propagation flags are set */
2306	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2307		return 0;
2308	/* Only one propagation flag should be set */
2309	if (!is_power_of_2(type))
2310		return 0;
2311	return type;
2312}
2313
2314/*
2315 * recursively change the type of the mountpoint.
2316 */
2317static int do_change_type(struct path *path, int ms_flags)
2318{
2319	struct mount *m;
2320	struct mount *mnt = real_mount(path->mnt);
2321	int recurse = ms_flags & MS_REC;
2322	int type;
2323	int err = 0;
2324
2325	if (path->dentry != path->mnt->mnt_root)
2326		return -EINVAL;
2327
2328	type = flags_to_propagation_type(ms_flags);
2329	if (!type)
2330		return -EINVAL;
2331
2332	namespace_lock();
2333	if (type == MS_SHARED) {
2334		err = invent_group_ids(mnt, recurse);
2335		if (err)
2336			goto out_unlock;
2337	}
2338
2339	lock_mount_hash();
2340	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2341		change_mnt_propagation(m, type);
2342	unlock_mount_hash();
2343
2344 out_unlock:
2345	namespace_unlock();
2346	return err;
2347}
2348
2349static struct mount *__do_loopback(struct path *old_path, int recurse)
2350{
2351	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2352
2353	if (IS_MNT_UNBINDABLE(old))
2354		return mnt;
2355
2356	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2357		return mnt;
2358
2359	if (!recurse && has_locked_children(old, old_path->dentry))
2360		return mnt;
2361
2362	if (recurse)
2363		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2364	else
2365		mnt = clone_mnt(old, old_path->dentry, 0);
2366
2367	if (!IS_ERR(mnt))
2368		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2369
2370	return mnt;
 
 
 
2371}
2372
2373/*
2374 * do loopback mount.
2375 */
2376static int do_loopback(struct path *path, const char *old_name,
2377				int recurse)
2378{
2379	struct path old_path;
2380	struct mount *mnt = NULL, *parent;
2381	struct mountpoint *mp;
2382	int err;
2383	if (!old_name || !*old_name)
2384		return -EINVAL;
2385	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2386	if (err)
2387		return err;
2388
2389	err = -EINVAL;
2390	if (mnt_ns_loop(old_path.dentry))
2391		goto out;
2392
2393	mp = lock_mount(path);
2394	if (IS_ERR(mp)) {
2395		err = PTR_ERR(mp);
2396		goto out;
2397	}
2398
 
2399	parent = real_mount(path->mnt);
2400	if (!check_mnt(parent))
 
 
2401		goto out2;
2402
2403	mnt = __do_loopback(&old_path, recurse);
 
 
 
 
 
 
 
 
 
 
2404	if (IS_ERR(mnt)) {
2405		err = PTR_ERR(mnt);
2406		goto out2;
2407	}
2408
 
 
2409	err = graft_tree(mnt, parent, mp);
2410	if (err) {
2411		lock_mount_hash();
2412		umount_tree(mnt, UMOUNT_SYNC);
2413		unlock_mount_hash();
2414	}
2415out2:
2416	unlock_mount(mp);
2417out:
2418	path_put(&old_path);
2419	return err;
2420}
2421
2422static struct file *open_detached_copy(struct path *path, bool recursive)
2423{
2424	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2425	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2426	struct mount *mnt, *p;
2427	struct file *file;
2428
2429	if (IS_ERR(ns))
2430		return ERR_CAST(ns);
2431
2432	namespace_lock();
2433	mnt = __do_loopback(path, recursive);
2434	if (IS_ERR(mnt)) {
2435		namespace_unlock();
2436		free_mnt_ns(ns);
2437		return ERR_CAST(mnt);
2438	}
2439
2440	lock_mount_hash();
2441	for (p = mnt; p; p = next_mnt(p, mnt)) {
2442		p->mnt_ns = ns;
2443		ns->mounts++;
2444	}
2445	ns->root = mnt;
2446	list_add_tail(&ns->list, &mnt->mnt_list);
2447	mntget(&mnt->mnt);
2448	unlock_mount_hash();
2449	namespace_unlock();
2450
2451	mntput(path->mnt);
2452	path->mnt = &mnt->mnt;
2453	file = dentry_open(path, O_PATH, current_cred());
2454	if (IS_ERR(file))
2455		dissolve_on_fput(path->mnt);
2456	else
2457		file->f_mode |= FMODE_NEED_UNMOUNT;
2458	return file;
2459}
2460
2461SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2462{
2463	struct file *file;
2464	struct path path;
2465	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2466	bool detached = flags & OPEN_TREE_CLONE;
2467	int error;
2468	int fd;
2469
2470	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2471
2472	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2473		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2474		      OPEN_TREE_CLOEXEC))
2475		return -EINVAL;
2476
2477	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2478		return -EINVAL;
2479
2480	if (flags & AT_NO_AUTOMOUNT)
2481		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2482	if (flags & AT_SYMLINK_NOFOLLOW)
2483		lookup_flags &= ~LOOKUP_FOLLOW;
2484	if (flags & AT_EMPTY_PATH)
2485		lookup_flags |= LOOKUP_EMPTY;
2486
2487	if (detached && !may_mount())
2488		return -EPERM;
2489
2490	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2491	if (fd < 0)
2492		return fd;
2493
2494	error = user_path_at(dfd, filename, lookup_flags, &path);
2495	if (unlikely(error)) {
2496		file = ERR_PTR(error);
2497	} else {
2498		if (detached)
2499			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2500		else
2501			file = dentry_open(&path, O_PATH, current_cred());
2502		path_put(&path);
2503	}
2504	if (IS_ERR(file)) {
2505		put_unused_fd(fd);
2506		return PTR_ERR(file);
2507	}
2508	fd_install(fd, file);
2509	return fd;
2510}
2511
2512/*
2513 * Don't allow locked mount flags to be cleared.
2514 *
2515 * No locks need to be held here while testing the various MNT_LOCK
2516 * flags because those flags can never be cleared once they are set.
2517 */
2518static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2519{
2520	unsigned int fl = mnt->mnt.mnt_flags;
2521
2522	if ((fl & MNT_LOCK_READONLY) &&
2523	    !(mnt_flags & MNT_READONLY))
2524		return false;
2525
2526	if ((fl & MNT_LOCK_NODEV) &&
2527	    !(mnt_flags & MNT_NODEV))
2528		return false;
2529
2530	if ((fl & MNT_LOCK_NOSUID) &&
2531	    !(mnt_flags & MNT_NOSUID))
2532		return false;
2533
2534	if ((fl & MNT_LOCK_NOEXEC) &&
2535	    !(mnt_flags & MNT_NOEXEC))
2536		return false;
2537
2538	if ((fl & MNT_LOCK_ATIME) &&
2539	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2540		return false;
2541
2542	return true;
2543}
2544
2545static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2546{
2547	bool readonly_request = (mnt_flags & MNT_READONLY);
 
2548
2549	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
 
 
2550		return 0;
2551
2552	if (readonly_request)
2553		return mnt_make_readonly(mnt);
2554
2555	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2556	return 0;
2557}
2558
2559static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2560{
2561	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2562	mnt->mnt.mnt_flags = mnt_flags;
2563	touch_mnt_namespace(mnt->mnt_ns);
2564}
2565
2566static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2567{
2568	struct super_block *sb = mnt->mnt_sb;
2569
2570	if (!__mnt_is_readonly(mnt) &&
2571	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2572		char *buf = (char *)__get_free_page(GFP_KERNEL);
2573		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2574		struct tm tm;
2575
2576		time64_to_tm(sb->s_time_max, 0, &tm);
2577
2578		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2579			sb->s_type->name,
2580			is_mounted(mnt) ? "remounted" : "mounted",
2581			mntpath,
2582			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2583
2584		free_page((unsigned long)buf);
2585	}
2586}
2587
2588/*
2589 * Handle reconfiguration of the mountpoint only without alteration of the
2590 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2591 * to mount(2).
2592 */
2593static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2594{
2595	struct super_block *sb = path->mnt->mnt_sb;
2596	struct mount *mnt = real_mount(path->mnt);
2597	int ret;
2598
2599	if (!check_mnt(mnt))
2600		return -EINVAL;
2601
2602	if (path->dentry != mnt->mnt.mnt_root)
2603		return -EINVAL;
2604
2605	if (!can_change_locked_flags(mnt, mnt_flags))
2606		return -EPERM;
2607
2608	/*
2609	 * We're only checking whether the superblock is read-only not
2610	 * changing it, so only take down_read(&sb->s_umount).
2611	 */
2612	down_read(&sb->s_umount);
2613	lock_mount_hash();
2614	ret = change_mount_ro_state(mnt, mnt_flags);
2615	if (ret == 0)
2616		set_mount_attributes(mnt, mnt_flags);
2617	unlock_mount_hash();
2618	up_read(&sb->s_umount);
2619
2620	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2621
2622	return ret;
2623}
2624
2625/*
2626 * change filesystem flags. dir should be a physical root of filesystem.
2627 * If you've mounted a non-root directory somewhere and want to do remount
2628 * on it - tough luck.
2629 */
2630static int do_remount(struct path *path, int ms_flags, int sb_flags,
2631		      int mnt_flags, void *data)
2632{
2633	int err;
2634	struct super_block *sb = path->mnt->mnt_sb;
2635	struct mount *mnt = real_mount(path->mnt);
2636	struct fs_context *fc;
2637
2638	if (!check_mnt(mnt))
2639		return -EINVAL;
2640
2641	if (path->dentry != path->mnt->mnt_root)
2642		return -EINVAL;
2643
2644	if (!can_change_locked_flags(mnt, mnt_flags))
2645		return -EPERM;
2646
2647	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2648	if (IS_ERR(fc))
2649		return PTR_ERR(fc);
2650
2651	fc->oldapi = true;
2652	err = parse_monolithic_mount_data(fc, data);
2653	if (!err) {
2654		down_write(&sb->s_umount);
2655		err = -EPERM;
2656		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2657			err = reconfigure_super(fc);
2658			if (!err) {
2659				lock_mount_hash();
2660				set_mount_attributes(mnt, mnt_flags);
2661				unlock_mount_hash();
2662			}
2663		}
2664		up_write(&sb->s_umount);
2665	}
2666
2667	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2668
2669	put_fs_context(fc);
2670	return err;
2671}
2672
2673static inline int tree_contains_unbindable(struct mount *mnt)
2674{
2675	struct mount *p;
2676	for (p = mnt; p; p = next_mnt(p, mnt)) {
2677		if (IS_MNT_UNBINDABLE(p))
2678			return 1;
2679	}
2680	return 0;
2681}
2682
2683/*
2684 * Check that there aren't references to earlier/same mount namespaces in the
2685 * specified subtree.  Such references can act as pins for mount namespaces
2686 * that aren't checked by the mount-cycle checking code, thereby allowing
2687 * cycles to be made.
2688 */
2689static bool check_for_nsfs_mounts(struct mount *subtree)
2690{
2691	struct mount *p;
2692	bool ret = false;
2693
2694	lock_mount_hash();
2695	for (p = subtree; p; p = next_mnt(p, subtree))
2696		if (mnt_ns_loop(p->mnt.mnt_root))
2697			goto out;
2698
2699	ret = true;
2700out:
2701	unlock_mount_hash();
2702	return ret;
2703}
2704
2705static int do_move_mount(struct path *old_path, struct path *new_path)
2706{
2707	struct mnt_namespace *ns;
2708	struct mount *p;
2709	struct mount *old;
2710	struct mount *parent;
2711	struct mountpoint *mp, *old_mp;
2712	int err;
2713	bool attached;
 
 
 
 
2714
2715	mp = lock_mount(new_path);
 
2716	if (IS_ERR(mp))
2717		return PTR_ERR(mp);
2718
2719	old = real_mount(old_path->mnt);
2720	p = real_mount(new_path->mnt);
2721	parent = old->mnt_parent;
2722	attached = mnt_has_parent(old);
2723	old_mp = old->mnt_mp;
2724	ns = old->mnt_ns;
2725
2726	err = -EINVAL;
2727	/* The mountpoint must be in our namespace. */
2728	if (!check_mnt(p))
2729		goto out;
2730
2731	/* The thing moved must be mounted... */
2732	if (!is_mounted(&old->mnt))
2733		goto out;
2734
2735	/* ... and either ours or the root of anon namespace */
2736	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2737		goto out;
2738
2739	if (old->mnt.mnt_flags & MNT_LOCKED)
2740		goto out;
2741
2742	if (old_path->dentry != old_path->mnt->mnt_root)
2743		goto out;
 
2744
2745	if (d_is_dir(new_path->dentry) !=
2746	    d_is_dir(old_path->dentry))
2747		goto out;
 
 
 
2748	/*
2749	 * Don't move a mount residing in a shared parent.
2750	 */
2751	if (attached && IS_MNT_SHARED(parent))
2752		goto out;
2753	/*
2754	 * Don't move a mount tree containing unbindable mounts to a destination
2755	 * mount which is shared.
2756	 */
2757	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2758		goto out;
2759	err = -ELOOP;
2760	if (!check_for_nsfs_mounts(old))
2761		goto out;
2762	for (; mnt_has_parent(p); p = p->mnt_parent)
2763		if (p == old)
2764			goto out;
2765
2766	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2767				   attached);
2768	if (err)
2769		goto out;
2770
2771	/* if the mount is moved, it should no longer be expire
2772	 * automatically */
2773	list_del_init(&old->mnt_expire);
2774	if (attached)
2775		put_mountpoint(old_mp);
2776out:
2777	unlock_mount(mp);
2778	if (!err) {
2779		if (attached)
2780			mntput_no_expire(parent);
2781		else
2782			free_mnt_ns(ns);
2783	}
2784	return err;
2785}
2786
2787static int do_move_mount_old(struct path *path, const char *old_name)
2788{
2789	struct path old_path;
2790	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791
2792	if (!old_name || !*old_name)
2793		return -EINVAL;
2794
2795	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2796	if (err)
2797		return err;
2798
2799	err = do_move_mount(&old_path, path);
2800	path_put(&old_path);
2801	return err;
2802}
2803
2804/*
2805 * add a mount into a namespace's mount tree
2806 */
2807static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2808			struct path *path, int mnt_flags)
2809{
2810	struct mount *parent = real_mount(path->mnt);
 
 
2811
2812	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2813
 
 
 
 
 
 
2814	if (unlikely(!check_mnt(parent))) {
2815		/* that's acceptable only for automounts done in private ns */
2816		if (!(mnt_flags & MNT_SHRINKABLE))
2817			return -EINVAL;
2818		/* ... and for those we'd better have mountpoint still alive */
2819		if (!parent->mnt_ns)
2820			return -EINVAL;
2821	}
2822
2823	/* Refuse the same filesystem on the same mount point */
 
2824	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2825	    path->mnt->mnt_root == path->dentry)
2826		return -EBUSY;
2827
2828	if (d_is_symlink(newmnt->mnt.mnt_root))
2829		return -EINVAL;
 
2830
2831	newmnt->mnt.mnt_flags = mnt_flags;
2832	return graft_tree(newmnt, parent, mp);
2833}
2834
2835static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2836
2837/*
2838 * Create a new mount using a superblock configuration and request it
2839 * be added to the namespace tree.
2840 */
2841static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2842			   unsigned int mnt_flags)
2843{
2844	struct vfsmount *mnt;
2845	struct mountpoint *mp;
2846	struct super_block *sb = fc->root->d_sb;
2847	int error;
2848
2849	error = security_sb_kern_mount(sb);
2850	if (!error && mount_too_revealing(sb, &mnt_flags))
2851		error = -EPERM;
2852
2853	if (unlikely(error)) {
2854		fc_drop_locked(fc);
2855		return error;
2856	}
2857
2858	up_write(&sb->s_umount);
2859
2860	mnt = vfs_create_mount(fc);
2861	if (IS_ERR(mnt))
2862		return PTR_ERR(mnt);
2863
2864	mnt_warn_timestamp_expiry(mountpoint, mnt);
2865
2866	mp = lock_mount(mountpoint);
2867	if (IS_ERR(mp)) {
2868		mntput(mnt);
2869		return PTR_ERR(mp);
2870	}
2871	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2872	unlock_mount(mp);
2873	if (error < 0)
2874		mntput(mnt);
2875	return error;
2876}
2877
2878/*
2879 * create a new mount for userspace and request it to be added into the
2880 * namespace's tree
2881 */
2882static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2883			int mnt_flags, const char *name, void *data)
2884{
2885	struct file_system_type *type;
2886	struct fs_context *fc;
2887	const char *subtype = NULL;
2888	int err = 0;
2889
2890	if (!fstype)
2891		return -EINVAL;
2892
2893	type = get_fs_type(fstype);
2894	if (!type)
2895		return -ENODEV;
2896
2897	if (type->fs_flags & FS_HAS_SUBTYPE) {
2898		subtype = strchr(fstype, '.');
2899		if (subtype) {
2900			subtype++;
2901			if (!*subtype) {
2902				put_filesystem(type);
2903				return -EINVAL;
2904			}
 
 
 
2905		}
2906	}
2907
2908	fc = fs_context_for_mount(type, sb_flags);
2909	put_filesystem(type);
2910	if (IS_ERR(fc))
2911		return PTR_ERR(fc);
2912
2913	if (subtype)
2914		err = vfs_parse_fs_string(fc, "subtype",
2915					  subtype, strlen(subtype));
2916	if (!err && name)
2917		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2918	if (!err)
2919		err = parse_monolithic_mount_data(fc, data);
2920	if (!err && !mount_capable(fc))
2921		err = -EPERM;
2922	if (!err)
2923		err = vfs_get_tree(fc);
2924	if (!err)
2925		err = do_new_mount_fc(fc, path, mnt_flags);
2926
2927	put_fs_context(fc);
 
 
2928	return err;
2929}
2930
2931int finish_automount(struct vfsmount *m, struct path *path)
2932{
2933	struct dentry *dentry = path->dentry;
2934	struct mountpoint *mp;
2935	struct mount *mnt;
2936	int err;
2937
2938	if (!m)
2939		return 0;
2940	if (IS_ERR(m))
2941		return PTR_ERR(m);
2942
2943	mnt = real_mount(m);
2944	/* The new mount record should have at least 2 refs to prevent it being
2945	 * expired before we get a chance to add it
2946	 */
2947	BUG_ON(mnt_get_count(mnt) < 2);
2948
2949	if (m->mnt_sb == path->mnt->mnt_sb &&
2950	    m->mnt_root == dentry) {
2951		err = -ELOOP;
2952		goto discard;
2953	}
2954
2955	/*
2956	 * we don't want to use lock_mount() - in this case finding something
2957	 * that overmounts our mountpoint to be means "quitely drop what we've
2958	 * got", not "try to mount it on top".
2959	 */
2960	inode_lock(dentry->d_inode);
2961	namespace_lock();
2962	if (unlikely(cant_mount(dentry))) {
2963		err = -ENOENT;
2964		goto discard_locked;
2965	}
2966	rcu_read_lock();
2967	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2968		rcu_read_unlock();
2969		err = 0;
2970		goto discard_locked;
2971	}
2972	rcu_read_unlock();
2973	mp = get_mountpoint(dentry);
2974	if (IS_ERR(mp)) {
2975		err = PTR_ERR(mp);
2976		goto discard_locked;
2977	}
2978
2979	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2980	unlock_mount(mp);
2981	if (unlikely(err))
2982		goto discard;
2983	mntput(m);
2984	return 0;
2985
2986discard_locked:
2987	namespace_unlock();
2988	inode_unlock(dentry->d_inode);
2989discard:
2990	/* remove m from any expiration list it may be on */
2991	if (!list_empty(&mnt->mnt_expire)) {
2992		namespace_lock();
2993		list_del_init(&mnt->mnt_expire);
2994		namespace_unlock();
2995	}
2996	mntput(m);
2997	mntput(m);
2998	return err;
2999}
3000
3001/**
3002 * mnt_set_expiry - Put a mount on an expiration list
3003 * @mnt: The mount to list.
3004 * @expiry_list: The list to add the mount to.
3005 */
3006void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3007{
3008	namespace_lock();
3009
3010	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3011
3012	namespace_unlock();
3013}
3014EXPORT_SYMBOL(mnt_set_expiry);
3015
3016/*
3017 * process a list of expirable mountpoints with the intent of discarding any
3018 * mountpoints that aren't in use and haven't been touched since last we came
3019 * here
3020 */
3021void mark_mounts_for_expiry(struct list_head *mounts)
3022{
3023	struct mount *mnt, *next;
3024	LIST_HEAD(graveyard);
3025
3026	if (list_empty(mounts))
3027		return;
3028
3029	namespace_lock();
3030	lock_mount_hash();
3031
3032	/* extract from the expiration list every vfsmount that matches the
3033	 * following criteria:
3034	 * - only referenced by its parent vfsmount
3035	 * - still marked for expiry (marked on the last call here; marks are
3036	 *   cleared by mntput())
3037	 */
3038	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3039		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3040			propagate_mount_busy(mnt, 1))
3041			continue;
3042		list_move(&mnt->mnt_expire, &graveyard);
3043	}
3044	while (!list_empty(&graveyard)) {
3045		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3046		touch_mnt_namespace(mnt->mnt_ns);
3047		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3048	}
3049	unlock_mount_hash();
3050	namespace_unlock();
3051}
3052
3053EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3054
3055/*
3056 * Ripoff of 'select_parent()'
3057 *
3058 * search the list of submounts for a given mountpoint, and move any
3059 * shrinkable submounts to the 'graveyard' list.
3060 */
3061static int select_submounts(struct mount *parent, struct list_head *graveyard)
3062{
3063	struct mount *this_parent = parent;
3064	struct list_head *next;
3065	int found = 0;
3066
3067repeat:
3068	next = this_parent->mnt_mounts.next;
3069resume:
3070	while (next != &this_parent->mnt_mounts) {
3071		struct list_head *tmp = next;
3072		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3073
3074		next = tmp->next;
3075		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3076			continue;
3077		/*
3078		 * Descend a level if the d_mounts list is non-empty.
3079		 */
3080		if (!list_empty(&mnt->mnt_mounts)) {
3081			this_parent = mnt;
3082			goto repeat;
3083		}
3084
3085		if (!propagate_mount_busy(mnt, 1)) {
3086			list_move_tail(&mnt->mnt_expire, graveyard);
3087			found++;
3088		}
3089	}
3090	/*
3091	 * All done at this level ... ascend and resume the search
3092	 */
3093	if (this_parent != parent) {
3094		next = this_parent->mnt_child.next;
3095		this_parent = this_parent->mnt_parent;
3096		goto resume;
3097	}
3098	return found;
3099}
3100
3101/*
3102 * process a list of expirable mountpoints with the intent of discarding any
3103 * submounts of a specific parent mountpoint
3104 *
3105 * mount_lock must be held for write
3106 */
3107static void shrink_submounts(struct mount *mnt)
3108{
3109	LIST_HEAD(graveyard);
3110	struct mount *m;
3111
3112	/* extract submounts of 'mountpoint' from the expiration list */
3113	while (select_submounts(mnt, &graveyard)) {
3114		while (!list_empty(&graveyard)) {
3115			m = list_first_entry(&graveyard, struct mount,
3116						mnt_expire);
3117			touch_mnt_namespace(m->mnt_ns);
3118			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3119		}
3120	}
3121}
3122
3123static void *copy_mount_options(const void __user * data)
 
 
 
 
 
 
 
3124{
3125	char *copy;
3126	unsigned left, offset;
 
3127
3128	if (!data)
3129		return NULL;
3130
3131	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3132	if (!copy)
3133		return ERR_PTR(-ENOMEM);
3134
3135	left = copy_from_user(copy, data, PAGE_SIZE);
3136
3137	/*
3138	 * Not all architectures have an exact copy_from_user(). Resort to
3139	 * byte at a time.
3140	 */
3141	offset = PAGE_SIZE - left;
3142	while (left) {
3143		char c;
3144		if (get_user(c, (const char __user *)data + offset))
3145			break;
3146		copy[offset] = c;
3147		left--;
3148		offset++;
 
3149	}
 
 
3150
3151	if (left == PAGE_SIZE) {
3152		kfree(copy);
3153		return ERR_PTR(-EFAULT);
3154	}
 
 
 
 
 
 
 
 
3155
3156	return copy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157}
3158
3159static char *copy_mount_string(const void __user *data)
3160{
3161	return data ? strndup_user(data, PATH_MAX) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
3162}
3163
3164/*
3165 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3166 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3167 *
3168 * data is a (void *) that can point to any structure up to
3169 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3170 * information (or be NULL).
3171 *
3172 * Pre-0.97 versions of mount() didn't have a flags word.
3173 * When the flags word was introduced its top half was required
3174 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3175 * Therefore, if this magic number is present, it carries no information
3176 * and must be discarded.
3177 */
3178int path_mount(const char *dev_name, struct path *path,
3179		const char *type_page, unsigned long flags, void *data_page)
3180{
3181	unsigned int mnt_flags = 0, sb_flags;
3182	int ret;
 
3183
3184	/* Discard magic */
3185	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3186		flags &= ~MS_MGC_MSK;
3187
3188	/* Basic sanity checks */
 
 
 
 
3189	if (data_page)
3190		((char *)data_page)[PAGE_SIZE - 1] = 0;
3191
3192	if (flags & MS_NOUSER)
3193		return -EINVAL;
 
 
3194
3195	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3196	if (ret)
3197		return ret;
3198	if (!may_mount())
3199		return -EPERM;
3200	if ((flags & SB_MANDLOCK) && !may_mandlock())
3201		return -EPERM;
3202
3203	/* Default to relatime unless overriden */
3204	if (!(flags & MS_NOATIME))
3205		mnt_flags |= MNT_RELATIME;
3206
3207	/* Separate the per-mountpoint flags */
3208	if (flags & MS_NOSUID)
3209		mnt_flags |= MNT_NOSUID;
3210	if (flags & MS_NODEV)
3211		mnt_flags |= MNT_NODEV;
3212	if (flags & MS_NOEXEC)
3213		mnt_flags |= MNT_NOEXEC;
3214	if (flags & MS_NOATIME)
3215		mnt_flags |= MNT_NOATIME;
3216	if (flags & MS_NODIRATIME)
3217		mnt_flags |= MNT_NODIRATIME;
3218	if (flags & MS_STRICTATIME)
3219		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3220	if (flags & MS_RDONLY)
3221		mnt_flags |= MNT_READONLY;
3222	if (flags & MS_NOSYMFOLLOW)
3223		mnt_flags |= MNT_NOSYMFOLLOW;
3224
3225	/* The default atime for remount is preservation */
3226	if ((flags & MS_REMOUNT) &&
3227	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3228		       MS_STRICTATIME)) == 0)) {
3229		mnt_flags &= ~MNT_ATIME_MASK;
3230		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3231	}
3232
3233	sb_flags = flags & (SB_RDONLY |
3234			    SB_SYNCHRONOUS |
3235			    SB_MANDLOCK |
3236			    SB_DIRSYNC |
3237			    SB_SILENT |
3238			    SB_POSIXACL |
3239			    SB_LAZYTIME |
3240			    SB_I_VERSION);
3241
3242	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3243		return do_reconfigure_mnt(path, mnt_flags);
3244	if (flags & MS_REMOUNT)
3245		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3246	if (flags & MS_BIND)
3247		return do_loopback(path, dev_name, flags & MS_REC);
3248	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3249		return do_change_type(path, flags);
3250	if (flags & MS_MOVE)
3251		return do_move_mount_old(path, dev_name);
3252
3253	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3254			    data_page);
3255}
3256
3257long do_mount(const char *dev_name, const char __user *dir_name,
3258		const char *type_page, unsigned long flags, void *data_page)
3259{
3260	struct path path;
3261	int ret;
3262
3263	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3264	if (ret)
3265		return ret;
3266	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3267	path_put(&path);
3268	return ret;
3269}
3270
3271static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3272{
3273	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3274}
3275
3276static void dec_mnt_namespaces(struct ucounts *ucounts)
3277{
3278	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3279}
3280
3281static void free_mnt_ns(struct mnt_namespace *ns)
3282{
3283	if (!is_anon_ns(ns))
3284		ns_free_inum(&ns->ns);
3285	dec_mnt_namespaces(ns->ucounts);
3286	put_user_ns(ns->user_ns);
3287	kfree(ns);
3288}
3289
3290/*
3291 * Assign a sequence number so we can detect when we attempt to bind
3292 * mount a reference to an older mount namespace into the current
3293 * mount namespace, preventing reference counting loops.  A 64bit
3294 * number incrementing at 10Ghz will take 12,427 years to wrap which
3295 * is effectively never, so we can ignore the possibility.
3296 */
3297static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3298
3299static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3300{
3301	struct mnt_namespace *new_ns;
3302	struct ucounts *ucounts;
3303	int ret;
3304
3305	ucounts = inc_mnt_namespaces(user_ns);
3306	if (!ucounts)
3307		return ERR_PTR(-ENOSPC);
3308
3309	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3310	if (!new_ns) {
3311		dec_mnt_namespaces(ucounts);
3312		return ERR_PTR(-ENOMEM);
3313	}
3314	if (!anon) {
3315		ret = ns_alloc_inum(&new_ns->ns);
3316		if (ret) {
3317			kfree(new_ns);
3318			dec_mnt_namespaces(ucounts);
3319			return ERR_PTR(ret);
3320		}
3321	}
3322	new_ns->ns.ops = &mntns_operations;
3323	if (!anon)
3324		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3325	refcount_set(&new_ns->ns.count, 1);
3326	INIT_LIST_HEAD(&new_ns->list);
3327	init_waitqueue_head(&new_ns->poll);
3328	spin_lock_init(&new_ns->ns_lock);
3329	new_ns->user_ns = get_user_ns(user_ns);
3330	new_ns->ucounts = ucounts;
3331	return new_ns;
3332}
3333
3334__latent_entropy
3335struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3336		struct user_namespace *user_ns, struct fs_struct *new_fs)
3337{
3338	struct mnt_namespace *new_ns;
3339	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3340	struct mount *p, *q;
3341	struct mount *old;
3342	struct mount *new;
3343	int copy_flags;
3344
3345	BUG_ON(!ns);
3346
3347	if (likely(!(flags & CLONE_NEWNS))) {
3348		get_mnt_ns(ns);
3349		return ns;
3350	}
3351
3352	old = ns->root;
3353
3354	new_ns = alloc_mnt_ns(user_ns, false);
3355	if (IS_ERR(new_ns))
3356		return new_ns;
3357
3358	namespace_lock();
3359	/* First pass: copy the tree topology */
3360	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3361	if (user_ns != ns->user_ns)
3362		copy_flags |= CL_SHARED_TO_SLAVE;
3363	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3364	if (IS_ERR(new)) {
3365		namespace_unlock();
3366		free_mnt_ns(new_ns);
3367		return ERR_CAST(new);
3368	}
3369	if (user_ns != ns->user_ns) {
3370		lock_mount_hash();
3371		lock_mnt_tree(new);
3372		unlock_mount_hash();
3373	}
3374	new_ns->root = new;
3375	list_add_tail(&new_ns->list, &new->mnt_list);
3376
3377	/*
3378	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3379	 * as belonging to new namespace.  We have already acquired a private
3380	 * fs_struct, so tsk->fs->lock is not needed.
3381	 */
3382	p = old;
3383	q = new;
3384	while (p) {
3385		q->mnt_ns = new_ns;
3386		new_ns->mounts++;
3387		if (new_fs) {
3388			if (&p->mnt == new_fs->root.mnt) {
3389				new_fs->root.mnt = mntget(&q->mnt);
3390				rootmnt = &p->mnt;
3391			}
3392			if (&p->mnt == new_fs->pwd.mnt) {
3393				new_fs->pwd.mnt = mntget(&q->mnt);
3394				pwdmnt = &p->mnt;
3395			}
3396		}
3397		p = next_mnt(p, old);
3398		q = next_mnt(q, new);
3399		if (!q)
3400			break;
3401		while (p->mnt.mnt_root != q->mnt.mnt_root)
3402			p = next_mnt(p, old);
3403	}
3404	namespace_unlock();
3405
3406	if (rootmnt)
3407		mntput(rootmnt);
3408	if (pwdmnt)
3409		mntput(pwdmnt);
3410
3411	return new_ns;
3412}
3413
3414struct dentry *mount_subtree(struct vfsmount *m, const char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3415{
3416	struct mount *mnt = real_mount(m);
3417	struct mnt_namespace *ns;
3418	struct super_block *s;
3419	struct path path;
3420	int err;
3421
3422	ns = alloc_mnt_ns(&init_user_ns, true);
3423	if (IS_ERR(ns)) {
3424		mntput(m);
3425		return ERR_CAST(ns);
3426	}
3427	mnt->mnt_ns = ns;
3428	ns->root = mnt;
3429	ns->mounts++;
3430	list_add(&mnt->mnt_list, &ns->list);
3431
3432	err = vfs_path_lookup(m->mnt_root, m,
3433			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3434
3435	put_mnt_ns(ns);
3436
3437	if (err)
3438		return ERR_PTR(err);
3439
3440	/* trade a vfsmount reference for active sb one */
3441	s = path.mnt->mnt_sb;
3442	atomic_inc(&s->s_active);
3443	mntput(path.mnt);
3444	/* lock the sucker */
3445	down_write(&s->s_umount);
3446	/* ... and return the root of (sub)tree on it */
3447	return path.dentry;
3448}
3449EXPORT_SYMBOL(mount_subtree);
3450
3451SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3452		char __user *, type, unsigned long, flags, void __user *, data)
3453{
3454	int ret;
3455	char *kernel_type;
 
3456	char *kernel_dev;
3457	void *options;
3458
3459	kernel_type = copy_mount_string(type);
3460	ret = PTR_ERR(kernel_type);
3461	if (IS_ERR(kernel_type))
3462		goto out_type;
3463
3464	kernel_dev = copy_mount_string(dev_name);
3465	ret = PTR_ERR(kernel_dev);
3466	if (IS_ERR(kernel_dev))
 
 
 
 
 
3467		goto out_dev;
3468
3469	options = copy_mount_options(data);
3470	ret = PTR_ERR(options);
3471	if (IS_ERR(options))
3472		goto out_data;
3473
3474	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
 
3475
3476	kfree(options);
3477out_data:
3478	kfree(kernel_dev);
3479out_dev:
 
 
3480	kfree(kernel_type);
3481out_type:
3482	return ret;
3483}
3484
3485#define FSMOUNT_VALID_FLAGS                                                    \
3486	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3487	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3488	 MOUNT_ATTR_NOSYMFOLLOW)
3489
3490#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3491
3492#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3493	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3494
3495static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3496{
3497	unsigned int mnt_flags = 0;
3498
3499	if (attr_flags & MOUNT_ATTR_RDONLY)
3500		mnt_flags |= MNT_READONLY;
3501	if (attr_flags & MOUNT_ATTR_NOSUID)
3502		mnt_flags |= MNT_NOSUID;
3503	if (attr_flags & MOUNT_ATTR_NODEV)
3504		mnt_flags |= MNT_NODEV;
3505	if (attr_flags & MOUNT_ATTR_NOEXEC)
3506		mnt_flags |= MNT_NOEXEC;
3507	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3508		mnt_flags |= MNT_NODIRATIME;
3509	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3510		mnt_flags |= MNT_NOSYMFOLLOW;
3511
3512	return mnt_flags;
3513}
3514
3515/*
3516 * Create a kernel mount representation for a new, prepared superblock
3517 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3518 */
3519SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3520		unsigned int, attr_flags)
3521{
3522	struct mnt_namespace *ns;
3523	struct fs_context *fc;
3524	struct file *file;
3525	struct path newmount;
3526	struct mount *mnt;
3527	struct fd f;
3528	unsigned int mnt_flags = 0;
3529	long ret;
3530
3531	if (!may_mount())
3532		return -EPERM;
3533
3534	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3535		return -EINVAL;
3536
3537	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3538		return -EINVAL;
3539
3540	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3541
3542	switch (attr_flags & MOUNT_ATTR__ATIME) {
3543	case MOUNT_ATTR_STRICTATIME:
3544		break;
3545	case MOUNT_ATTR_NOATIME:
3546		mnt_flags |= MNT_NOATIME;
3547		break;
3548	case MOUNT_ATTR_RELATIME:
3549		mnt_flags |= MNT_RELATIME;
3550		break;
3551	default:
3552		return -EINVAL;
3553	}
3554
3555	f = fdget(fs_fd);
3556	if (!f.file)
3557		return -EBADF;
3558
3559	ret = -EINVAL;
3560	if (f.file->f_op != &fscontext_fops)
3561		goto err_fsfd;
3562
3563	fc = f.file->private_data;
3564
3565	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3566	if (ret < 0)
3567		goto err_fsfd;
3568
3569	/* There must be a valid superblock or we can't mount it */
3570	ret = -EINVAL;
3571	if (!fc->root)
3572		goto err_unlock;
3573
3574	ret = -EPERM;
3575	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3576		pr_warn("VFS: Mount too revealing\n");
3577		goto err_unlock;
3578	}
3579
3580	ret = -EBUSY;
3581	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3582		goto err_unlock;
3583
3584	ret = -EPERM;
3585	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3586		goto err_unlock;
3587
3588	newmount.mnt = vfs_create_mount(fc);
3589	if (IS_ERR(newmount.mnt)) {
3590		ret = PTR_ERR(newmount.mnt);
3591		goto err_unlock;
3592	}
3593	newmount.dentry = dget(fc->root);
3594	newmount.mnt->mnt_flags = mnt_flags;
3595
3596	/* We've done the mount bit - now move the file context into more or
3597	 * less the same state as if we'd done an fspick().  We don't want to
3598	 * do any memory allocation or anything like that at this point as we
3599	 * don't want to have to handle any errors incurred.
3600	 */
3601	vfs_clean_context(fc);
3602
3603	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3604	if (IS_ERR(ns)) {
3605		ret = PTR_ERR(ns);
3606		goto err_path;
3607	}
3608	mnt = real_mount(newmount.mnt);
3609	mnt->mnt_ns = ns;
3610	ns->root = mnt;
3611	ns->mounts = 1;
3612	list_add(&mnt->mnt_list, &ns->list);
3613	mntget(newmount.mnt);
3614
3615	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3616	 * it, not just simply put it.
3617	 */
3618	file = dentry_open(&newmount, O_PATH, fc->cred);
3619	if (IS_ERR(file)) {
3620		dissolve_on_fput(newmount.mnt);
3621		ret = PTR_ERR(file);
3622		goto err_path;
3623	}
3624	file->f_mode |= FMODE_NEED_UNMOUNT;
3625
3626	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3627	if (ret >= 0)
3628		fd_install(ret, file);
3629	else
3630		fput(file);
3631
3632err_path:
3633	path_put(&newmount);
3634err_unlock:
3635	mutex_unlock(&fc->uapi_mutex);
3636err_fsfd:
3637	fdput(f);
3638	return ret;
3639}
3640
3641/*
3642 * Move a mount from one place to another.  In combination with
3643 * fsopen()/fsmount() this is used to install a new mount and in combination
3644 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3645 * a mount subtree.
3646 *
3647 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3648 */
3649SYSCALL_DEFINE5(move_mount,
3650		int, from_dfd, const char __user *, from_pathname,
3651		int, to_dfd, const char __user *, to_pathname,
3652		unsigned int, flags)
3653{
3654	struct path from_path, to_path;
3655	unsigned int lflags;
3656	int ret = 0;
3657
3658	if (!may_mount())
3659		return -EPERM;
3660
3661	if (flags & ~MOVE_MOUNT__MASK)
3662		return -EINVAL;
3663
3664	/* If someone gives a pathname, they aren't permitted to move
3665	 * from an fd that requires unmount as we can't get at the flag
3666	 * to clear it afterwards.
3667	 */
3668	lflags = 0;
3669	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3670	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3671	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3672
3673	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3674	if (ret < 0)
3675		return ret;
3676
3677	lflags = 0;
3678	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3679	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3680	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3681
3682	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3683	if (ret < 0)
3684		goto out_from;
3685
3686	ret = security_move_mount(&from_path, &to_path);
3687	if (ret < 0)
3688		goto out_to;
3689
3690	ret = do_move_mount(&from_path, &to_path);
3691
3692out_to:
3693	path_put(&to_path);
3694out_from:
3695	path_put(&from_path);
3696	return ret;
3697}
3698
3699/*
3700 * Return true if path is reachable from root
3701 *
3702 * namespace_sem or mount_lock is held
3703 */
3704bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3705			 const struct path *root)
3706{
3707	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3708		dentry = mnt->mnt_mountpoint;
3709		mnt = mnt->mnt_parent;
3710	}
3711	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3712}
3713
3714bool path_is_under(const struct path *path1, const struct path *path2)
3715{
3716	bool res;
3717	read_seqlock_excl(&mount_lock);
3718	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3719	read_sequnlock_excl(&mount_lock);
3720	return res;
3721}
3722EXPORT_SYMBOL(path_is_under);
3723
3724/*
3725 * pivot_root Semantics:
3726 * Moves the root file system of the current process to the directory put_old,
3727 * makes new_root as the new root file system of the current process, and sets
3728 * root/cwd of all processes which had them on the current root to new_root.
3729 *
3730 * Restrictions:
3731 * The new_root and put_old must be directories, and  must not be on the
3732 * same file  system as the current process root. The put_old  must  be
3733 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3734 * pointed to by put_old must yield the same directory as new_root. No other
3735 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3736 *
3737 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3738 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3739 * in this situation.
3740 *
3741 * Notes:
3742 *  - we don't move root/cwd if they are not at the root (reason: if something
3743 *    cared enough to change them, it's probably wrong to force them elsewhere)
3744 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3745 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3746 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3747 *    first.
3748 */
3749SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3750		const char __user *, put_old)
3751{
3752	struct path new, old, root;
3753	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3754	struct mountpoint *old_mp, *root_mp;
3755	int error;
3756
3757	if (!may_mount())
3758		return -EPERM;
3759
3760	error = user_path_at(AT_FDCWD, new_root,
3761			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3762	if (error)
3763		goto out0;
3764
3765	error = user_path_at(AT_FDCWD, put_old,
3766			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3767	if (error)
3768		goto out1;
3769
3770	error = security_sb_pivotroot(&old, &new);
3771	if (error)
3772		goto out2;
3773
3774	get_fs_root(current->fs, &root);
3775	old_mp = lock_mount(&old);
3776	error = PTR_ERR(old_mp);
3777	if (IS_ERR(old_mp))
3778		goto out3;
3779
3780	error = -EINVAL;
3781	new_mnt = real_mount(new.mnt);
3782	root_mnt = real_mount(root.mnt);
3783	old_mnt = real_mount(old.mnt);
3784	ex_parent = new_mnt->mnt_parent;
3785	root_parent = root_mnt->mnt_parent;
3786	if (IS_MNT_SHARED(old_mnt) ||
3787		IS_MNT_SHARED(ex_parent) ||
3788		IS_MNT_SHARED(root_parent))
3789		goto out4;
3790	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3791		goto out4;
3792	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3793		goto out4;
3794	error = -ENOENT;
3795	if (d_unlinked(new.dentry))
3796		goto out4;
3797	error = -EBUSY;
3798	if (new_mnt == root_mnt || old_mnt == root_mnt)
3799		goto out4; /* loop, on the same file system  */
3800	error = -EINVAL;
3801	if (root.mnt->mnt_root != root.dentry)
3802		goto out4; /* not a mountpoint */
3803	if (!mnt_has_parent(root_mnt))
3804		goto out4; /* not attached */
 
3805	if (new.mnt->mnt_root != new.dentry)
3806		goto out4; /* not a mountpoint */
3807	if (!mnt_has_parent(new_mnt))
3808		goto out4; /* not attached */
3809	/* make sure we can reach put_old from new_root */
3810	if (!is_path_reachable(old_mnt, old.dentry, &new))
3811		goto out4;
3812	/* make certain new is below the root */
3813	if (!is_path_reachable(new_mnt, new.dentry, &root))
3814		goto out4;
3815	lock_mount_hash();
3816	umount_mnt(new_mnt);
3817	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3818	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3819		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3820		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3821	}
3822	/* mount old root on put_old */
3823	attach_mnt(root_mnt, old_mnt, old_mp);
3824	/* mount new_root on / */
3825	attach_mnt(new_mnt, root_parent, root_mp);
3826	mnt_add_count(root_parent, -1);
3827	touch_mnt_namespace(current->nsproxy->mnt_ns);
3828	/* A moved mount should not expire automatically */
3829	list_del_init(&new_mnt->mnt_expire);
3830	put_mountpoint(root_mp);
3831	unlock_mount_hash();
3832	chroot_fs_refs(&root, &new);
 
3833	error = 0;
3834out4:
3835	unlock_mount(old_mp);
3836	if (!error)
3837		mntput_no_expire(ex_parent);
 
 
3838out3:
3839	path_put(&root);
3840out2:
3841	path_put(&old);
3842out1:
3843	path_put(&new);
3844out0:
3845	return error;
3846}
3847
3848static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3849{
3850	unsigned int flags = mnt->mnt.mnt_flags;
3851
3852	/*  flags to clear */
3853	flags &= ~kattr->attr_clr;
3854	/* flags to raise */
3855	flags |= kattr->attr_set;
3856
3857	return flags;
3858}
3859
3860static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3861{
3862	struct vfsmount *m = &mnt->mnt;
3863
3864	if (!kattr->mnt_userns)
3865		return 0;
3866
3867	/*
3868	 * Once a mount has been idmapped we don't allow it to change its
3869	 * mapping. It makes things simpler and callers can just create
3870	 * another bind-mount they can idmap if they want to.
3871	 */
3872	if (mnt_user_ns(m) != &init_user_ns)
3873		return -EPERM;
3874
3875	/* The underlying filesystem doesn't support idmapped mounts yet. */
3876	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3877		return -EINVAL;
3878
3879	/* Don't yet support filesystem mountable in user namespaces. */
3880	if (m->mnt_sb->s_user_ns != &init_user_ns)
3881		return -EINVAL;
3882
3883	/* We're not controlling the superblock. */
3884	if (!capable(CAP_SYS_ADMIN))
3885		return -EPERM;
3886
3887	/* Mount has already been visible in the filesystem hierarchy. */
3888	if (!is_anon_ns(mnt->mnt_ns))
3889		return -EINVAL;
3890
3891	return 0;
3892}
3893
3894static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3895					   struct mount *mnt, int *err)
3896{
3897	struct mount *m = mnt, *last = NULL;
3898
3899	if (!is_mounted(&m->mnt)) {
3900		*err = -EINVAL;
3901		goto out;
3902	}
3903
3904	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3905		*err = -EINVAL;
3906		goto out;
3907	}
3908
3909	do {
3910		unsigned int flags;
3911
3912		flags = recalc_flags(kattr, m);
3913		if (!can_change_locked_flags(m, flags)) {
3914			*err = -EPERM;
3915			goto out;
3916		}
3917
3918		*err = can_idmap_mount(kattr, m);
3919		if (*err)
3920			goto out;
3921
3922		last = m;
3923
3924		if ((kattr->attr_set & MNT_READONLY) &&
3925		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3926			*err = mnt_hold_writers(m);
3927			if (*err)
3928				goto out;
3929		}
3930	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3931
3932out:
3933	return last;
3934}
3935
3936static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3937{
3938	struct user_namespace *mnt_userns;
3939
3940	if (!kattr->mnt_userns)
3941		return;
3942
3943	mnt_userns = get_user_ns(kattr->mnt_userns);
3944	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3945	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3946}
3947
3948static void mount_setattr_commit(struct mount_kattr *kattr,
3949				 struct mount *mnt, struct mount *last,
3950				 int err)
3951{
3952	struct mount *m = mnt;
3953
3954	do {
3955		if (!err) {
3956			unsigned int flags;
3957
3958			do_idmap_mount(kattr, m);
3959			flags = recalc_flags(kattr, m);
3960			WRITE_ONCE(m->mnt.mnt_flags, flags);
3961		}
3962
3963		/*
3964		 * We either set MNT_READONLY above so make it visible
3965		 * before ~MNT_WRITE_HOLD or we failed to recursively
3966		 * apply mount options.
3967		 */
3968		if ((kattr->attr_set & MNT_READONLY) &&
3969		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3970			mnt_unhold_writers(m);
3971
3972		if (!err && kattr->propagation)
3973			change_mnt_propagation(m, kattr->propagation);
3974
3975		/*
3976		 * On failure, only cleanup until we found the first mount
3977		 * we failed to handle.
3978		 */
3979		if (err && m == last)
3980			break;
3981	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3982
3983	if (!err)
3984		touch_mnt_namespace(mnt->mnt_ns);
3985}
3986
3987static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3988{
3989	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3990	int err = 0;
3991
3992	if (path->dentry != mnt->mnt.mnt_root)
3993		return -EINVAL;
3994
3995	if (kattr->propagation) {
3996		/*
3997		 * Only take namespace_lock() if we're actually changing
3998		 * propagation.
3999		 */
4000		namespace_lock();
4001		if (kattr->propagation == MS_SHARED) {
4002			err = invent_group_ids(mnt, kattr->recurse);
4003			if (err) {
4004				namespace_unlock();
4005				return err;
4006			}
4007		}
4008	}
4009
4010	lock_mount_hash();
4011
4012	/*
4013	 * Get the mount tree in a shape where we can change mount
4014	 * properties without failure.
4015	 */
4016	last = mount_setattr_prepare(kattr, mnt, &err);
4017	if (last) /* Commit all changes or revert to the old state. */
4018		mount_setattr_commit(kattr, mnt, last, err);
4019
4020	unlock_mount_hash();
4021
4022	if (kattr->propagation) {
4023		namespace_unlock();
4024		if (err)
4025			cleanup_group_ids(mnt, NULL);
4026	}
4027
4028	return err;
4029}
4030
4031static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4032				struct mount_kattr *kattr, unsigned int flags)
4033{
4034	int err = 0;
4035	struct ns_common *ns;
4036	struct user_namespace *mnt_userns;
4037	struct file *file;
4038
4039	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4040		return 0;
4041
4042	/*
4043	 * We currently do not support clearing an idmapped mount. If this ever
4044	 * is a use-case we can revisit this but for now let's keep it simple
4045	 * and not allow it.
4046	 */
4047	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4048		return -EINVAL;
4049
4050	if (attr->userns_fd > INT_MAX)
4051		return -EINVAL;
4052
4053	file = fget(attr->userns_fd);
4054	if (!file)
4055		return -EBADF;
4056
4057	if (!proc_ns_file(file)) {
4058		err = -EINVAL;
4059		goto out_fput;
4060	}
4061
4062	ns = get_proc_ns(file_inode(file));
4063	if (ns->ops->type != CLONE_NEWUSER) {
4064		err = -EINVAL;
4065		goto out_fput;
4066	}
4067
4068	/*
4069	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4070	 * This is simpler than just having to treat NULL as unmapped. Users
4071	 * wanting to idmap a mount to init_user_ns can just use a namespace
4072	 * with an identity mapping.
4073	 */
4074	mnt_userns = container_of(ns, struct user_namespace, ns);
4075	if (mnt_userns == &init_user_ns) {
4076		err = -EPERM;
4077		goto out_fput;
4078	}
4079	kattr->mnt_userns = get_user_ns(mnt_userns);
4080
4081out_fput:
4082	fput(file);
4083	return err;
4084}
4085
4086static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4087			     struct mount_kattr *kattr, unsigned int flags)
4088{
4089	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4090
4091	if (flags & AT_NO_AUTOMOUNT)
4092		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4093	if (flags & AT_SYMLINK_NOFOLLOW)
4094		lookup_flags &= ~LOOKUP_FOLLOW;
4095	if (flags & AT_EMPTY_PATH)
4096		lookup_flags |= LOOKUP_EMPTY;
4097
4098	*kattr = (struct mount_kattr) {
4099		.lookup_flags	= lookup_flags,
4100		.recurse	= !!(flags & AT_RECURSIVE),
4101	};
4102
4103	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4104		return -EINVAL;
4105	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4106		return -EINVAL;
4107	kattr->propagation = attr->propagation;
4108
4109	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4110		return -EINVAL;
4111
4112	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4113	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4114
4115	/*
4116	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4117	 * users wanting to transition to a different atime setting cannot
4118	 * simply specify the atime setting in @attr_set, but must also
4119	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4120	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4121	 * @attr_clr and that @attr_set can't have any atime bits set if
4122	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4123	 */
4124	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4125		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4126			return -EINVAL;
4127
4128		/*
4129		 * Clear all previous time settings as they are mutually
4130		 * exclusive.
4131		 */
4132		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4133		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4134		case MOUNT_ATTR_RELATIME:
4135			kattr->attr_set |= MNT_RELATIME;
4136			break;
4137		case MOUNT_ATTR_NOATIME:
4138			kattr->attr_set |= MNT_NOATIME;
4139			break;
4140		case MOUNT_ATTR_STRICTATIME:
4141			break;
4142		default:
4143			return -EINVAL;
4144		}
4145	} else {
4146		if (attr->attr_set & MOUNT_ATTR__ATIME)
4147			return -EINVAL;
4148	}
4149
4150	return build_mount_idmapped(attr, usize, kattr, flags);
4151}
4152
4153static void finish_mount_kattr(struct mount_kattr *kattr)
4154{
4155	put_user_ns(kattr->mnt_userns);
4156	kattr->mnt_userns = NULL;
4157}
4158
4159SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4160		unsigned int, flags, struct mount_attr __user *, uattr,
4161		size_t, usize)
4162{
4163	int err;
4164	struct path target;
4165	struct mount_attr attr;
4166	struct mount_kattr kattr;
4167
4168	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4169
4170	if (flags & ~(AT_EMPTY_PATH |
4171		      AT_RECURSIVE |
4172		      AT_SYMLINK_NOFOLLOW |
4173		      AT_NO_AUTOMOUNT))
4174		return -EINVAL;
4175
4176	if (unlikely(usize > PAGE_SIZE))
4177		return -E2BIG;
4178	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4179		return -EINVAL;
4180
4181	if (!may_mount())
4182		return -EPERM;
4183
4184	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4185	if (err)
4186		return err;
4187
4188	/* Don't bother walking through the mounts if this is a nop. */
4189	if (attr.attr_set == 0 &&
4190	    attr.attr_clr == 0 &&
4191	    attr.propagation == 0)
4192		return 0;
4193
4194	err = build_mount_kattr(&attr, usize, &kattr, flags);
4195	if (err)
4196		return err;
4197
4198	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4199	if (err)
4200		return err;
4201
4202	err = do_mount_setattr(&target, &kattr);
4203	finish_mount_kattr(&kattr);
4204	path_put(&target);
4205	return err;
4206}
4207
4208static void __init init_mount_tree(void)
4209{
4210	struct vfsmount *mnt;
4211	struct mount *m;
4212	struct mnt_namespace *ns;
4213	struct path root;
 
4214
4215	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
 
 
 
 
4216	if (IS_ERR(mnt))
4217		panic("Can't create rootfs");
4218
4219	ns = alloc_mnt_ns(&init_user_ns, false);
4220	if (IS_ERR(ns))
4221		panic("Can't allocate initial namespace");
4222	m = real_mount(mnt);
4223	m->mnt_ns = ns;
4224	ns->root = m;
4225	ns->mounts = 1;
4226	list_add(&m->mnt_list, &ns->list);
4227	init_task.nsproxy->mnt_ns = ns;
4228	get_mnt_ns(ns);
4229
4230	root.mnt = mnt;
4231	root.dentry = mnt->mnt_root;
4232	mnt->mnt_flags |= MNT_LOCKED;
4233
4234	set_fs_pwd(current->fs, &root);
4235	set_fs_root(current->fs, &root);
4236}
4237
4238void __init mnt_init(void)
4239{
 
4240	int err;
4241
4242	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4243			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4244
4245	mount_hashtable = alloc_large_system_hash("Mount-cache",
4246				sizeof(struct hlist_head),
4247				mhash_entries, 19,
4248				HASH_ZERO,
4249				&m_hash_shift, &m_hash_mask, 0, 0);
4250	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4251				sizeof(struct hlist_head),
4252				mphash_entries, 19,
4253				HASH_ZERO,
4254				&mp_hash_shift, &mp_hash_mask, 0, 0);
4255
4256	if (!mount_hashtable || !mountpoint_hashtable)
4257		panic("Failed to allocate mount hash table\n");
4258
 
 
 
 
 
4259	kernfs_init();
4260
4261	err = sysfs_init();
4262	if (err)
4263		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4264			__func__, err);
4265	fs_kobj = kobject_create_and_add("fs", NULL);
4266	if (!fs_kobj)
4267		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4268	shmem_init();
4269	init_rootfs();
4270	init_mount_tree();
4271}
4272
4273void put_mnt_ns(struct mnt_namespace *ns)
4274{
4275	if (!refcount_dec_and_test(&ns->ns.count))
4276		return;
4277	drop_collected_mounts(&ns->root->mnt);
4278	free_mnt_ns(ns);
4279}
4280
4281struct vfsmount *kern_mount(struct file_system_type *type)
4282{
4283	struct vfsmount *mnt;
4284	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4285	if (!IS_ERR(mnt)) {
4286		/*
4287		 * it is a longterm mount, don't release mnt until
4288		 * we unmount before file sys is unregistered
4289		*/
4290		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4291	}
4292	return mnt;
4293}
4294EXPORT_SYMBOL_GPL(kern_mount);
4295
4296void kern_unmount(struct vfsmount *mnt)
4297{
4298	/* release long term mount so mount point can be released */
4299	if (!IS_ERR_OR_NULL(mnt)) {
4300		real_mount(mnt)->mnt_ns = NULL;
4301		synchronize_rcu();	/* yecchhh... */
4302		mntput(mnt);
4303	}
4304}
4305EXPORT_SYMBOL(kern_unmount);
4306
4307void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4308{
4309	unsigned int i;
4310
4311	for (i = 0; i < num; i++)
4312		if (mnt[i])
4313			real_mount(mnt[i])->mnt_ns = NULL;
4314	synchronize_rcu_expedited();
4315	for (i = 0; i < num; i++)
4316		mntput(mnt[i]);
4317}
4318EXPORT_SYMBOL(kern_unmount_array);
4319
4320bool our_mnt(struct vfsmount *mnt)
4321{
4322	return check_mnt(real_mount(mnt));
4323}
4324
4325bool current_chrooted(void)
4326{
4327	/* Does the current process have a non-standard root */
4328	struct path ns_root;
4329	struct path fs_root;
4330	bool chrooted;
4331
4332	/* Find the namespace root */
4333	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4334	ns_root.dentry = ns_root.mnt->mnt_root;
4335	path_get(&ns_root);
4336	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4337		;
4338
4339	get_fs_root(current->fs, &fs_root);
4340
4341	chrooted = !path_equal(&fs_root, &ns_root);
4342
4343	path_put(&fs_root);
4344	path_put(&ns_root);
4345
4346	return chrooted;
4347}
4348
4349static bool mnt_already_visible(struct mnt_namespace *ns,
4350				const struct super_block *sb,
4351				int *new_mnt_flags)
4352{
4353	int new_flags = *new_mnt_flags;
4354	struct mount *mnt;
4355	bool visible = false;
4356
 
 
 
4357	down_read(&namespace_sem);
4358	lock_ns_list(ns);
4359	list_for_each_entry(mnt, &ns->list, mnt_list) {
4360		struct mount *child;
4361		int mnt_flags;
4362
4363		if (mnt_is_cursor(mnt))
4364			continue;
4365
4366		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4367			continue;
4368
4369		/* This mount is not fully visible if it's root directory
4370		 * is not the root directory of the filesystem.
4371		 */
4372		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4373			continue;
4374
4375		/* A local view of the mount flags */
4376		mnt_flags = mnt->mnt.mnt_flags;
4377
4378		/* Don't miss readonly hidden in the superblock flags */
4379		if (sb_rdonly(mnt->mnt.mnt_sb))
4380			mnt_flags |= MNT_LOCK_READONLY;
4381
4382		/* Verify the mount flags are equal to or more permissive
4383		 * than the proposed new mount.
4384		 */
4385		if ((mnt_flags & MNT_LOCK_READONLY) &&
4386		    !(new_flags & MNT_READONLY))
4387			continue;
4388		if ((mnt_flags & MNT_LOCK_ATIME) &&
4389		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4390			continue;
4391
4392		/* This mount is not fully visible if there are any
4393		 * locked child mounts that cover anything except for
4394		 * empty directories.
4395		 */
4396		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4397			struct inode *inode = child->mnt_mountpoint->d_inode;
4398			/* Only worry about locked mounts */
4399			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4400				continue;
4401			/* Is the directory permanetly empty? */
4402			if (!is_empty_dir_inode(inode))
4403				goto next;
4404		}
4405		/* Preserve the locked attributes */
4406		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4407					       MNT_LOCK_ATIME);
4408		visible = true;
4409		goto found;
4410	next:	;
4411	}
4412found:
4413	unlock_ns_list(ns);
4414	up_read(&namespace_sem);
4415	return visible;
4416}
4417
4418static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4419{
4420	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4421	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4422	unsigned long s_iflags;
4423
4424	if (ns->user_ns == &init_user_ns)
4425		return false;
4426
4427	/* Can this filesystem be too revealing? */
4428	s_iflags = sb->s_iflags;
4429	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4430		return false;
4431
4432	if ((s_iflags & required_iflags) != required_iflags) {
4433		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4434			  required_iflags);
4435		return true;
4436	}
4437
4438	return !mnt_already_visible(ns, sb, new_mnt_flags);
4439}
4440
4441bool mnt_may_suid(struct vfsmount *mnt)
4442{
4443	/*
4444	 * Foreign mounts (accessed via fchdir or through /proc
4445	 * symlinks) are always treated as if they are nosuid.  This
4446	 * prevents namespaces from trusting potentially unsafe
4447	 * suid/sgid bits, file caps, or security labels that originate
4448	 * in other namespaces.
4449	 */
4450	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4451	       current_in_userns(mnt->mnt_sb->s_user_ns);
4452}
4453
4454static struct ns_common *mntns_get(struct task_struct *task)
4455{
4456	struct ns_common *ns = NULL;
4457	struct nsproxy *nsproxy;
4458
4459	task_lock(task);
4460	nsproxy = task->nsproxy;
4461	if (nsproxy) {
4462		ns = &nsproxy->mnt_ns->ns;
4463		get_mnt_ns(to_mnt_ns(ns));
4464	}
4465	task_unlock(task);
4466
4467	return ns;
4468}
4469
4470static void mntns_put(struct ns_common *ns)
4471{
4472	put_mnt_ns(to_mnt_ns(ns));
4473}
4474
4475static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4476{
4477	struct nsproxy *nsproxy = nsset->nsproxy;
4478	struct fs_struct *fs = nsset->fs;
4479	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4480	struct user_namespace *user_ns = nsset->cred->user_ns;
4481	struct path root;
4482	int err;
4483
4484	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4485	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4486	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4487		return -EPERM;
4488
4489	if (is_anon_ns(mnt_ns))
4490		return -EINVAL;
4491
4492	if (fs->users != 1)
4493		return -EINVAL;
4494
4495	get_mnt_ns(mnt_ns);
4496	old_mnt_ns = nsproxy->mnt_ns;
4497	nsproxy->mnt_ns = mnt_ns;
4498
4499	/* Find the root */
4500	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4501				"/", LOOKUP_DOWN, &root);
4502	if (err) {
4503		/* revert to old namespace */
4504		nsproxy->mnt_ns = old_mnt_ns;
4505		put_mnt_ns(mnt_ns);
4506		return err;
4507	}
4508
4509	put_mnt_ns(old_mnt_ns);
4510
4511	/* Update the pwd and root */
4512	set_fs_pwd(fs, &root);
4513	set_fs_root(fs, &root);
4514
4515	path_put(&root);
4516	return 0;
4517}
4518
4519static struct user_namespace *mntns_owner(struct ns_common *ns)
4520{
4521	return to_mnt_ns(ns)->user_ns;
 
4522}
4523
4524const struct proc_ns_operations mntns_operations = {
4525	.name		= "mnt",
4526	.type		= CLONE_NEWNS,
4527	.get		= mntns_get,
4528	.put		= mntns_put,
4529	.install	= mntns_install,
4530	.owner		= mntns_owner,
4531};
v3.15
 
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *	Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
 
  18#include <linux/idr.h>
  19#include <linux/acct.h>		/* acct_auto_close_mnt */
  20#include <linux/init.h>		/* init_rootfs */
  21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
  22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
 
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
 
 
 
 
 
 
 
  27#include "pnode.h"
  28#include "internal.h"
  29
 
 
 
  30static unsigned int m_hash_mask __read_mostly;
  31static unsigned int m_hash_shift __read_mostly;
  32static unsigned int mp_hash_mask __read_mostly;
  33static unsigned int mp_hash_shift __read_mostly;
  34
  35static __initdata unsigned long mhash_entries;
  36static int __init set_mhash_entries(char *str)
  37{
  38	if (!str)
  39		return 0;
  40	mhash_entries = simple_strtoul(str, &str, 0);
  41	return 1;
  42}
  43__setup("mhash_entries=", set_mhash_entries);
  44
  45static __initdata unsigned long mphash_entries;
  46static int __init set_mphash_entries(char *str)
  47{
  48	if (!str)
  49		return 0;
  50	mphash_entries = simple_strtoul(str, &str, 0);
  51	return 1;
  52}
  53__setup("mphash_entries=", set_mphash_entries);
  54
  55static u64 event;
  56static DEFINE_IDA(mnt_id_ida);
  57static DEFINE_IDA(mnt_group_ida);
  58static DEFINE_SPINLOCK(mnt_id_lock);
  59static int mnt_id_start = 0;
  60static int mnt_group_start = 1;
  61
  62static struct hlist_head *mount_hashtable __read_mostly;
  63static struct hlist_head *mountpoint_hashtable __read_mostly;
  64static struct kmem_cache *mnt_cache __read_mostly;
  65static DECLARE_RWSEM(namespace_sem);
 
 
 
 
 
 
 
 
 
 
 
  66
  67/* /sys/fs */
  68struct kobject *fs_kobj;
  69EXPORT_SYMBOL_GPL(fs_kobj);
  70
  71/*
  72 * vfsmount lock may be taken for read to prevent changes to the
  73 * vfsmount hash, ie. during mountpoint lookups or walking back
  74 * up the tree.
  75 *
  76 * It should be taken for write in all cases where the vfsmount
  77 * tree or hash is modified or when a vfsmount structure is modified.
  78 */
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  80
 
 
 
 
 
 
 
 
 
 
  81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  82{
  83	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  84	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  85	tmp = tmp + (tmp >> m_hash_shift);
  86	return &mount_hashtable[tmp & m_hash_mask];
  87}
  88
  89static inline struct hlist_head *mp_hash(struct dentry *dentry)
  90{
  91	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  92	tmp = tmp + (tmp >> mp_hash_shift);
  93	return &mountpoint_hashtable[tmp & mp_hash_mask];
  94}
  95
  96/*
  97 * allocation is serialized by namespace_sem, but we need the spinlock to
  98 * serialize with freeing.
  99 */
 100static int mnt_alloc_id(struct mount *mnt)
 101{
 102	int res;
 103
 104retry:
 105	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 106	spin_lock(&mnt_id_lock);
 107	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 108	if (!res)
 109		mnt_id_start = mnt->mnt_id + 1;
 110	spin_unlock(&mnt_id_lock);
 111	if (res == -EAGAIN)
 112		goto retry;
 113
 114	return res;
 115}
 116
 117static void mnt_free_id(struct mount *mnt)
 118{
 119	int id = mnt->mnt_id;
 120	spin_lock(&mnt_id_lock);
 121	ida_remove(&mnt_id_ida, id);
 122	if (mnt_id_start > id)
 123		mnt_id_start = id;
 124	spin_unlock(&mnt_id_lock);
 125}
 126
 127/*
 128 * Allocate a new peer group ID
 129 *
 130 * mnt_group_ida is protected by namespace_sem
 131 */
 132static int mnt_alloc_group_id(struct mount *mnt)
 133{
 134	int res;
 135
 136	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 137		return -ENOMEM;
 138
 139	res = ida_get_new_above(&mnt_group_ida,
 140				mnt_group_start,
 141				&mnt->mnt_group_id);
 142	if (!res)
 143		mnt_group_start = mnt->mnt_group_id + 1;
 144
 145	return res;
 146}
 147
 148/*
 149 * Release a peer group ID
 150 */
 151void mnt_release_group_id(struct mount *mnt)
 152{
 153	int id = mnt->mnt_group_id;
 154	ida_remove(&mnt_group_ida, id);
 155	if (mnt_group_start > id)
 156		mnt_group_start = id;
 157	mnt->mnt_group_id = 0;
 158}
 159
 160/*
 161 * vfsmount lock must be held for read
 162 */
 163static inline void mnt_add_count(struct mount *mnt, int n)
 164{
 165#ifdef CONFIG_SMP
 166	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 167#else
 168	preempt_disable();
 169	mnt->mnt_count += n;
 170	preempt_enable();
 171#endif
 172}
 173
 174/*
 175 * vfsmount lock must be held for write
 176 */
 177unsigned int mnt_get_count(struct mount *mnt)
 178{
 179#ifdef CONFIG_SMP
 180	unsigned int count = 0;
 181	int cpu;
 182
 183	for_each_possible_cpu(cpu) {
 184		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 185	}
 186
 187	return count;
 188#else
 189	return mnt->mnt_count;
 190#endif
 191}
 192
 193static struct mount *alloc_vfsmnt(const char *name)
 194{
 195	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 196	if (mnt) {
 197		int err;
 198
 199		err = mnt_alloc_id(mnt);
 200		if (err)
 201			goto out_free_cache;
 202
 203		if (name) {
 204			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 205			if (!mnt->mnt_devname)
 206				goto out_free_id;
 207		}
 208
 209#ifdef CONFIG_SMP
 210		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 211		if (!mnt->mnt_pcp)
 212			goto out_free_devname;
 213
 214		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 215#else
 216		mnt->mnt_count = 1;
 217		mnt->mnt_writers = 0;
 218#endif
 219
 220		INIT_HLIST_NODE(&mnt->mnt_hash);
 221		INIT_LIST_HEAD(&mnt->mnt_child);
 222		INIT_LIST_HEAD(&mnt->mnt_mounts);
 223		INIT_LIST_HEAD(&mnt->mnt_list);
 224		INIT_LIST_HEAD(&mnt->mnt_expire);
 225		INIT_LIST_HEAD(&mnt->mnt_share);
 226		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 227		INIT_LIST_HEAD(&mnt->mnt_slave);
 228#ifdef CONFIG_FSNOTIFY
 229		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
 230#endif
 
 231	}
 232	return mnt;
 233
 234#ifdef CONFIG_SMP
 235out_free_devname:
 236	kfree(mnt->mnt_devname);
 237#endif
 238out_free_id:
 239	mnt_free_id(mnt);
 240out_free_cache:
 241	kmem_cache_free(mnt_cache, mnt);
 242	return NULL;
 243}
 244
 245/*
 246 * Most r/o checks on a fs are for operations that take
 247 * discrete amounts of time, like a write() or unlink().
 248 * We must keep track of when those operations start
 249 * (for permission checks) and when they end, so that
 250 * we can determine when writes are able to occur to
 251 * a filesystem.
 252 */
 253/*
 254 * __mnt_is_readonly: check whether a mount is read-only
 255 * @mnt: the mount to check for its write status
 256 *
 257 * This shouldn't be used directly ouside of the VFS.
 258 * It does not guarantee that the filesystem will stay
 259 * r/w, just that it is right *now*.  This can not and
 260 * should not be used in place of IS_RDONLY(inode).
 261 * mnt_want/drop_write() will _keep_ the filesystem
 262 * r/w.
 263 */
 264int __mnt_is_readonly(struct vfsmount *mnt)
 265{
 266	if (mnt->mnt_flags & MNT_READONLY)
 267		return 1;
 268	if (mnt->mnt_sb->s_flags & MS_RDONLY)
 269		return 1;
 270	return 0;
 271}
 272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 273
 274static inline void mnt_inc_writers(struct mount *mnt)
 275{
 276#ifdef CONFIG_SMP
 277	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 278#else
 279	mnt->mnt_writers++;
 280#endif
 281}
 282
 283static inline void mnt_dec_writers(struct mount *mnt)
 284{
 285#ifdef CONFIG_SMP
 286	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 287#else
 288	mnt->mnt_writers--;
 289#endif
 290}
 291
 292static unsigned int mnt_get_writers(struct mount *mnt)
 293{
 294#ifdef CONFIG_SMP
 295	unsigned int count = 0;
 296	int cpu;
 297
 298	for_each_possible_cpu(cpu) {
 299		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 300	}
 301
 302	return count;
 303#else
 304	return mnt->mnt_writers;
 305#endif
 306}
 307
 308static int mnt_is_readonly(struct vfsmount *mnt)
 309{
 310	if (mnt->mnt_sb->s_readonly_remount)
 311		return 1;
 312	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 313	smp_rmb();
 314	return __mnt_is_readonly(mnt);
 315}
 316
 317/*
 318 * Most r/o & frozen checks on a fs are for operations that take discrete
 319 * amounts of time, like a write() or unlink().  We must keep track of when
 320 * those operations start (for permission checks) and when they end, so that we
 321 * can determine when writes are able to occur to a filesystem.
 322 */
 323/**
 324 * __mnt_want_write - get write access to a mount without freeze protection
 325 * @m: the mount on which to take a write
 326 *
 327 * This tells the low-level filesystem that a write is about to be performed to
 328 * it, and makes sure that writes are allowed (mnt it read-write) before
 329 * returning success. This operation does not protect against filesystem being
 330 * frozen. When the write operation is finished, __mnt_drop_write() must be
 331 * called. This is effectively a refcount.
 332 */
 333int __mnt_want_write(struct vfsmount *m)
 334{
 335	struct mount *mnt = real_mount(m);
 336	int ret = 0;
 337
 338	preempt_disable();
 339	mnt_inc_writers(mnt);
 340	/*
 341	 * The store to mnt_inc_writers must be visible before we pass
 342	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 343	 * incremented count after it has set MNT_WRITE_HOLD.
 344	 */
 345	smp_mb();
 346	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 347		cpu_relax();
 348	/*
 349	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 350	 * be set to match its requirements. So we must not load that until
 351	 * MNT_WRITE_HOLD is cleared.
 352	 */
 353	smp_rmb();
 354	if (mnt_is_readonly(m)) {
 355		mnt_dec_writers(mnt);
 356		ret = -EROFS;
 357	}
 358	preempt_enable();
 359
 360	return ret;
 361}
 362
 363/**
 364 * mnt_want_write - get write access to a mount
 365 * @m: the mount on which to take a write
 366 *
 367 * This tells the low-level filesystem that a write is about to be performed to
 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 369 * is not frozen) before returning success.  When the write operation is
 370 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 371 */
 372int mnt_want_write(struct vfsmount *m)
 373{
 374	int ret;
 375
 376	sb_start_write(m->mnt_sb);
 377	ret = __mnt_want_write(m);
 378	if (ret)
 379		sb_end_write(m->mnt_sb);
 380	return ret;
 381}
 382EXPORT_SYMBOL_GPL(mnt_want_write);
 383
 384/**
 385 * mnt_clone_write - get write access to a mount
 386 * @mnt: the mount on which to take a write
 387 *
 388 * This is effectively like mnt_want_write, except
 389 * it must only be used to take an extra write reference
 390 * on a mountpoint that we already know has a write reference
 391 * on it. This allows some optimisation.
 392 *
 393 * After finished, mnt_drop_write must be called as usual to
 394 * drop the reference.
 395 */
 396int mnt_clone_write(struct vfsmount *mnt)
 397{
 398	/* superblock may be r/o */
 399	if (__mnt_is_readonly(mnt))
 400		return -EROFS;
 401	preempt_disable();
 402	mnt_inc_writers(real_mount(mnt));
 403	preempt_enable();
 404	return 0;
 405}
 406EXPORT_SYMBOL_GPL(mnt_clone_write);
 407
 408/**
 409 * __mnt_want_write_file - get write access to a file's mount
 410 * @file: the file who's mount on which to take a write
 411 *
 412 * This is like __mnt_want_write, but it takes a file and can
 413 * do some optimisations if the file is open for write already
 
 
 414 */
 415int __mnt_want_write_file(struct file *file)
 416{
 417	if (!(file->f_mode & FMODE_WRITER))
 418		return __mnt_want_write(file->f_path.mnt);
 419	else
 420		return mnt_clone_write(file->f_path.mnt);
 
 
 
 
 
 
 421}
 422
 423/**
 424 * mnt_want_write_file - get write access to a file's mount
 425 * @file: the file who's mount on which to take a write
 426 *
 427 * This is like mnt_want_write, but it takes a file and can
 428 * do some optimisations if the file is open for write already
 
 
 429 */
 430int mnt_want_write_file(struct file *file)
 431{
 432	int ret;
 433
 434	sb_start_write(file->f_path.mnt->mnt_sb);
 435	ret = __mnt_want_write_file(file);
 436	if (ret)
 437		sb_end_write(file->f_path.mnt->mnt_sb);
 438	return ret;
 439}
 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
 441
 442/**
 443 * __mnt_drop_write - give up write access to a mount
 444 * @mnt: the mount on which to give up write access
 445 *
 446 * Tells the low-level filesystem that we are done
 447 * performing writes to it.  Must be matched with
 448 * __mnt_want_write() call above.
 449 */
 450void __mnt_drop_write(struct vfsmount *mnt)
 451{
 452	preempt_disable();
 453	mnt_dec_writers(real_mount(mnt));
 454	preempt_enable();
 455}
 456
 457/**
 458 * mnt_drop_write - give up write access to a mount
 459 * @mnt: the mount on which to give up write access
 460 *
 461 * Tells the low-level filesystem that we are done performing writes to it and
 462 * also allows filesystem to be frozen again.  Must be matched with
 463 * mnt_want_write() call above.
 464 */
 465void mnt_drop_write(struct vfsmount *mnt)
 466{
 467	__mnt_drop_write(mnt);
 468	sb_end_write(mnt->mnt_sb);
 469}
 470EXPORT_SYMBOL_GPL(mnt_drop_write);
 471
 472void __mnt_drop_write_file(struct file *file)
 473{
 474	__mnt_drop_write(file->f_path.mnt);
 
 475}
 476
 477void mnt_drop_write_file(struct file *file)
 478{
 479	mnt_drop_write(file->f_path.mnt);
 
 480}
 481EXPORT_SYMBOL(mnt_drop_write_file);
 482
 483static int mnt_make_readonly(struct mount *mnt)
 484{
 485	int ret = 0;
 486
 487	lock_mount_hash();
 488	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 489	/*
 490	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 491	 * should be visible before we do.
 492	 */
 493	smp_mb();
 494
 495	/*
 496	 * With writers on hold, if this value is zero, then there are
 497	 * definitely no active writers (although held writers may subsequently
 498	 * increment the count, they'll have to wait, and decrement it after
 499	 * seeing MNT_READONLY).
 500	 *
 501	 * It is OK to have counter incremented on one CPU and decremented on
 502	 * another: the sum will add up correctly. The danger would be when we
 503	 * sum up each counter, if we read a counter before it is incremented,
 504	 * but then read another CPU's count which it has been subsequently
 505	 * decremented from -- we would see more decrements than we should.
 506	 * MNT_WRITE_HOLD protects against this scenario, because
 507	 * mnt_want_write first increments count, then smp_mb, then spins on
 508	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 509	 * we're counting up here.
 510	 */
 511	if (mnt_get_writers(mnt) > 0)
 512		ret = -EBUSY;
 513	else
 514		mnt->mnt.mnt_flags |= MNT_READONLY;
 
 
 
 
 515	/*
 516	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 517	 * that become unheld will see MNT_READONLY.
 518	 */
 519	smp_wmb();
 520	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 521	unlock_mount_hash();
 522	return ret;
 523}
 524
 525static void __mnt_unmake_readonly(struct mount *mnt)
 526{
 527	lock_mount_hash();
 528	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 529	unlock_mount_hash();
 
 
 
 
 530}
 531
 532int sb_prepare_remount_readonly(struct super_block *sb)
 533{
 534	struct mount *mnt;
 535	int err = 0;
 536
 537	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 538	if (atomic_long_read(&sb->s_remove_count))
 539		return -EBUSY;
 540
 541	lock_mount_hash();
 542	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 543		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 544			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 545			smp_mb();
 546			if (mnt_get_writers(mnt) > 0) {
 547				err = -EBUSY;
 548				break;
 549			}
 550		}
 551	}
 552	if (!err && atomic_long_read(&sb->s_remove_count))
 553		err = -EBUSY;
 554
 555	if (!err) {
 556		sb->s_readonly_remount = 1;
 557		smp_wmb();
 558	}
 559	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 560		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 561			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 562	}
 563	unlock_mount_hash();
 564
 565	return err;
 566}
 567
 568static void free_vfsmnt(struct mount *mnt)
 569{
 570	kfree(mnt->mnt_devname);
 
 
 
 
 
 571#ifdef CONFIG_SMP
 572	free_percpu(mnt->mnt_pcp);
 573#endif
 574	kmem_cache_free(mnt_cache, mnt);
 575}
 576
 577static void delayed_free_vfsmnt(struct rcu_head *head)
 578{
 579	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 580}
 581
 582/* call under rcu_read_lock */
 583bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 584{
 585	struct mount *mnt;
 586	if (read_seqretry(&mount_lock, seq))
 587		return false;
 588	if (bastard == NULL)
 589		return true;
 590	mnt = real_mount(bastard);
 591	mnt_add_count(mnt, 1);
 
 592	if (likely(!read_seqretry(&mount_lock, seq)))
 593		return true;
 594	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 595		mnt_add_count(mnt, -1);
 596		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 598	rcu_read_unlock();
 599	mntput(bastard);
 600	rcu_read_lock();
 601	return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610	struct hlist_head *head = m_hash(mnt, dentry);
 611	struct mount *p;
 612
 613	hlist_for_each_entry_rcu(p, head, mnt_hash)
 614		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615			return p;
 616	return NULL;
 617}
 618
 619/*
 620 * find the last mount at @dentry on vfsmount @mnt.
 621 * mount_lock must be held.
 622 */
 623struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
 624{
 625	struct mount *p, *res;
 626	res = p = __lookup_mnt(mnt, dentry);
 627	if (!p)
 628		goto out;
 629	hlist_for_each_entry_continue(p, mnt_hash) {
 630		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
 631			break;
 632		res = p;
 633	}
 634out:
 635	return res;
 636}
 637
 638/*
 639 * lookup_mnt - Return the first child mount mounted at path
 640 *
 641 * "First" means first mounted chronologically.  If you create the
 642 * following mounts:
 643 *
 644 * mount /dev/sda1 /mnt
 645 * mount /dev/sda2 /mnt
 646 * mount /dev/sda3 /mnt
 647 *
 648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 649 * return successively the root dentry and vfsmount of /dev/sda1, then
 650 * /dev/sda2, then /dev/sda3, then NULL.
 651 *
 652 * lookup_mnt takes a reference to the found vfsmount.
 653 */
 654struct vfsmount *lookup_mnt(struct path *path)
 655{
 656	struct mount *child_mnt;
 657	struct vfsmount *m;
 658	unsigned seq;
 659
 660	rcu_read_lock();
 661	do {
 662		seq = read_seqbegin(&mount_lock);
 663		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 664		m = child_mnt ? &child_mnt->mnt : NULL;
 665	} while (!legitimize_mnt(m, seq));
 666	rcu_read_unlock();
 667	return m;
 668}
 669
 670static struct mountpoint *new_mountpoint(struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671{
 672	struct hlist_head *chain = mp_hash(dentry);
 673	struct mountpoint *mp;
 674	int ret;
 675
 676	hlist_for_each_entry(mp, chain, m_hash) {
 677		if (mp->m_dentry == dentry) {
 678			/* might be worth a WARN_ON() */
 679			if (d_unlinked(dentry))
 680				return ERR_PTR(-ENOENT);
 681			mp->m_count++;
 682			return mp;
 683		}
 684	}
 
 
 
 
 
 
 
 685
 686	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 687	if (!mp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 688		return ERR_PTR(-ENOMEM);
 689
 
 
 690	ret = d_set_mounted(dentry);
 691	if (ret) {
 692		kfree(mp);
 693		return ERR_PTR(ret);
 694	}
 695
 696	mp->m_dentry = dentry;
 697	mp->m_count = 1;
 698	hlist_add_head(&mp->m_hash, chain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	return mp;
 700}
 701
 702static void put_mountpoint(struct mountpoint *mp)
 
 
 
 
 703{
 704	if (!--mp->m_count) {
 705		struct dentry *dentry = mp->m_dentry;
 
 706		spin_lock(&dentry->d_lock);
 707		dentry->d_flags &= ~DCACHE_MOUNTED;
 708		spin_unlock(&dentry->d_lock);
 
 709		hlist_del(&mp->m_hash);
 710		kfree(mp);
 711	}
 712}
 713
 
 
 
 
 
 
 714static inline int check_mnt(struct mount *mnt)
 715{
 716	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 717}
 718
 719/*
 720 * vfsmount lock must be held for write
 721 */
 722static void touch_mnt_namespace(struct mnt_namespace *ns)
 723{
 724	if (ns) {
 725		ns->event = ++event;
 726		wake_up_interruptible(&ns->poll);
 727	}
 728}
 729
 730/*
 731 * vfsmount lock must be held for write
 732 */
 733static void __touch_mnt_namespace(struct mnt_namespace *ns)
 734{
 735	if (ns && ns->event != event) {
 736		ns->event = event;
 737		wake_up_interruptible(&ns->poll);
 738	}
 739}
 740
 741/*
 742 * vfsmount lock must be held for write
 743 */
 744static void detach_mnt(struct mount *mnt, struct path *old_path)
 745{
 746	old_path->dentry = mnt->mnt_mountpoint;
 747	old_path->mnt = &mnt->mnt_parent->mnt;
 748	mnt->mnt_parent = mnt;
 749	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 750	list_del_init(&mnt->mnt_child);
 751	hlist_del_init_rcu(&mnt->mnt_hash);
 752	put_mountpoint(mnt->mnt_mp);
 
 753	mnt->mnt_mp = NULL;
 
 
 
 
 
 
 
 
 
 754}
 755
 756/*
 757 * vfsmount lock must be held for write
 758 */
 759void mnt_set_mountpoint(struct mount *mnt,
 760			struct mountpoint *mp,
 761			struct mount *child_mnt)
 762{
 763	mp->m_count++;
 764	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 765	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 766	child_mnt->mnt_parent = mnt;
 767	child_mnt->mnt_mp = mp;
 
 
 
 
 
 
 
 
 768}
 769
 770/*
 771 * vfsmount lock must be held for write
 772 */
 773static void attach_mnt(struct mount *mnt,
 774			struct mount *parent,
 775			struct mountpoint *mp)
 776{
 777	mnt_set_mountpoint(parent, mp, mnt);
 778	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
 779	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782/*
 783 * vfsmount lock must be held for write
 784 */
 785static void commit_tree(struct mount *mnt, struct mount *shadows)
 786{
 787	struct mount *parent = mnt->mnt_parent;
 788	struct mount *m;
 789	LIST_HEAD(head);
 790	struct mnt_namespace *n = parent->mnt_ns;
 791
 792	BUG_ON(parent == mnt);
 793
 794	list_add_tail(&head, &mnt->mnt_list);
 795	list_for_each_entry(m, &head, mnt_list)
 796		m->mnt_ns = n;
 797
 798	list_splice(&head, n->list.prev);
 799
 800	if (shadows)
 801		hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
 802	else
 803		hlist_add_head_rcu(&mnt->mnt_hash,
 804				m_hash(&parent->mnt, mnt->mnt_mountpoint));
 805	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 806	touch_mnt_namespace(n);
 807}
 808
 809static struct mount *next_mnt(struct mount *p, struct mount *root)
 810{
 811	struct list_head *next = p->mnt_mounts.next;
 812	if (next == &p->mnt_mounts) {
 813		while (1) {
 814			if (p == root)
 815				return NULL;
 816			next = p->mnt_child.next;
 817			if (next != &p->mnt_parent->mnt_mounts)
 818				break;
 819			p = p->mnt_parent;
 820		}
 821	}
 822	return list_entry(next, struct mount, mnt_child);
 823}
 824
 825static struct mount *skip_mnt_tree(struct mount *p)
 826{
 827	struct list_head *prev = p->mnt_mounts.prev;
 828	while (prev != &p->mnt_mounts) {
 829		p = list_entry(prev, struct mount, mnt_child);
 830		prev = p->mnt_mounts.prev;
 831	}
 832	return p;
 833}
 834
 835struct vfsmount *
 836vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 
 
 
 
 
 
 
 
 837{
 838	struct mount *mnt;
 839	struct dentry *root;
 840
 841	if (!type)
 842		return ERR_PTR(-ENODEV);
 843
 844	mnt = alloc_vfsmnt(name);
 845	if (!mnt)
 846		return ERR_PTR(-ENOMEM);
 847
 848	if (flags & MS_KERNMOUNT)
 849		mnt->mnt.mnt_flags = MNT_INTERNAL;
 850
 851	root = mount_fs(type, flags, name, data);
 852	if (IS_ERR(root)) {
 853		mnt_free_id(mnt);
 854		free_vfsmnt(mnt);
 855		return ERR_CAST(root);
 856	}
 857
 858	mnt->mnt.mnt_root = root;
 859	mnt->mnt.mnt_sb = root->d_sb;
 860	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 861	mnt->mnt_parent = mnt;
 862	lock_mount_hash();
 863	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
 864	unlock_mount_hash();
 865	return &mnt->mnt;
 866}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867EXPORT_SYMBOL_GPL(vfs_kern_mount);
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 870					int flag)
 871{
 872	struct super_block *sb = old->mnt.mnt_sb;
 873	struct mount *mnt;
 874	int err;
 875
 876	mnt = alloc_vfsmnt(old->mnt_devname);
 877	if (!mnt)
 878		return ERR_PTR(-ENOMEM);
 879
 880	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
 881		mnt->mnt_group_id = 0; /* not a peer of original */
 882	else
 883		mnt->mnt_group_id = old->mnt_group_id;
 884
 885	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 886		err = mnt_alloc_group_id(mnt);
 887		if (err)
 888			goto out_free;
 889	}
 890
 891	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
 892	/* Don't allow unprivileged users to change mount flags */
 893	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
 894		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
 895
 896	/* Don't allow unprivileged users to reveal what is under a mount */
 897	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
 898		mnt->mnt.mnt_flags |= MNT_LOCKED;
 899
 900	atomic_inc(&sb->s_active);
 
 
 
 901	mnt->mnt.mnt_sb = sb;
 902	mnt->mnt.mnt_root = dget(root);
 903	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 904	mnt->mnt_parent = mnt;
 905	lock_mount_hash();
 906	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
 907	unlock_mount_hash();
 908
 909	if ((flag & CL_SLAVE) ||
 910	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
 911		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 912		mnt->mnt_master = old;
 913		CLEAR_MNT_SHARED(mnt);
 914	} else if (!(flag & CL_PRIVATE)) {
 915		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
 916			list_add(&mnt->mnt_share, &old->mnt_share);
 917		if (IS_MNT_SLAVE(old))
 918			list_add(&mnt->mnt_slave, &old->mnt_slave);
 919		mnt->mnt_master = old->mnt_master;
 
 
 920	}
 921	if (flag & CL_MAKE_SHARED)
 922		set_mnt_shared(mnt);
 923
 924	/* stick the duplicate mount on the same expiry list
 925	 * as the original if that was on one */
 926	if (flag & CL_EXPIRE) {
 927		if (!list_empty(&old->mnt_expire))
 928			list_add(&mnt->mnt_expire, &old->mnt_expire);
 929	}
 930
 931	return mnt;
 932
 933 out_free:
 934	mnt_free_id(mnt);
 935	free_vfsmnt(mnt);
 936	return ERR_PTR(err);
 937}
 938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939static void mntput_no_expire(struct mount *mnt)
 940{
 941put_again:
 
 
 942	rcu_read_lock();
 943	mnt_add_count(mnt, -1);
 944	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
 
 
 
 
 
 
 
 
 
 945		rcu_read_unlock();
 946		return;
 947	}
 948	lock_mount_hash();
 949	if (mnt_get_count(mnt)) {
 
 
 
 
 
 
 
 
 950		rcu_read_unlock();
 951		unlock_mount_hash();
 952		return;
 953	}
 954	if (unlikely(mnt->mnt_pinned)) {
 955		mnt_add_count(mnt, mnt->mnt_pinned + 1);
 956		mnt->mnt_pinned = 0;
 957		rcu_read_unlock();
 958		unlock_mount_hash();
 959		acct_auto_close_mnt(&mnt->mnt);
 960		goto put_again;
 961	}
 962	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
 963		rcu_read_unlock();
 964		unlock_mount_hash();
 965		return;
 966	}
 967	mnt->mnt.mnt_flags |= MNT_DOOMED;
 968	rcu_read_unlock();
 969
 970	list_del(&mnt->mnt_instance);
 
 
 
 
 
 
 
 
 971	unlock_mount_hash();
 
 972
 973	/*
 974	 * This probably indicates that somebody messed
 975	 * up a mnt_want/drop_write() pair.  If this
 976	 * happens, the filesystem was probably unable
 977	 * to make r/w->r/o transitions.
 978	 */
 979	/*
 980	 * The locking used to deal with mnt_count decrement provides barriers,
 981	 * so mnt_get_writers() below is safe.
 982	 */
 983	WARN_ON(mnt_get_writers(mnt));
 984	fsnotify_vfsmount_delete(&mnt->mnt);
 985	dput(mnt->mnt.mnt_root);
 986	deactivate_super(mnt->mnt.mnt_sb);
 987	mnt_free_id(mnt);
 988	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
 989}
 990
 991void mntput(struct vfsmount *mnt)
 992{
 993	if (mnt) {
 994		struct mount *m = real_mount(mnt);
 995		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
 996		if (unlikely(m->mnt_expiry_mark))
 997			m->mnt_expiry_mark = 0;
 998		mntput_no_expire(m);
 999	}
1000}
1001EXPORT_SYMBOL(mntput);
1002
1003struct vfsmount *mntget(struct vfsmount *mnt)
1004{
1005	if (mnt)
1006		mnt_add_count(real_mount(mnt), 1);
1007	return mnt;
1008}
1009EXPORT_SYMBOL(mntget);
1010
1011void mnt_pin(struct vfsmount *mnt)
1012{
1013	lock_mount_hash();
1014	real_mount(mnt)->mnt_pinned++;
1015	unlock_mount_hash();
1016}
1017EXPORT_SYMBOL(mnt_pin);
1018
1019void mnt_unpin(struct vfsmount *m)
1020{
1021	struct mount *mnt = real_mount(m);
1022	lock_mount_hash();
1023	if (mnt->mnt_pinned) {
1024		mnt_add_count(mnt, 1);
1025		mnt->mnt_pinned--;
1026	}
1027	unlock_mount_hash();
1028}
1029EXPORT_SYMBOL(mnt_unpin);
1030
1031static inline void mangle(struct seq_file *m, const char *s)
1032{
1033	seq_escape(m, s, " \t\n\\");
1034}
1035
1036/*
1037 * Simple .show_options callback for filesystems which don't want to
1038 * implement more complex mount option showing.
1039 *
1040 * See also save_mount_options().
 
 
 
 
 
1041 */
1042int generic_show_options(struct seq_file *m, struct dentry *root)
1043{
1044	const char *options;
 
 
 
 
1045
1046	rcu_read_lock();
1047	options = rcu_dereference(root->d_sb->s_options);
1048
1049	if (options != NULL && options[0]) {
1050		seq_putc(m, ',');
1051		mangle(m, options);
1052	}
1053	rcu_read_unlock();
1054
1055	return 0;
1056}
1057EXPORT_SYMBOL(generic_show_options);
1058
1059/*
1060 * If filesystem uses generic_show_options(), this function should be
1061 * called from the fill_super() callback.
1062 *
1063 * The .remount_fs callback usually needs to be handled in a special
1064 * way, to make sure, that previous options are not overwritten if the
1065 * remount fails.
1066 *
1067 * Also note, that if the filesystem's .remount_fs function doesn't
1068 * reset all options to their default value, but changes only newly
1069 * given options, then the displayed options will not reflect reality
1070 * any more.
1071 */
1072void save_mount_options(struct super_block *sb, char *options)
1073{
1074	BUG_ON(sb->s_options);
1075	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
 
 
 
 
1076}
1077EXPORT_SYMBOL(save_mount_options);
1078
1079void replace_mount_options(struct super_block *sb, char *options)
 
 
1080{
1081	char *old = sb->s_options;
1082	rcu_assign_pointer(sb->s_options, options);
1083	if (old) {
1084		synchronize_rcu();
1085		kfree(old);
 
 
 
 
1086	}
 
 
 
1087}
1088EXPORT_SYMBOL(replace_mount_options);
1089
1090#ifdef CONFIG_PROC_FS
1091/* iterator; we want it to have access to namespace_sem, thus here... */
1092static void *m_start(struct seq_file *m, loff_t *pos)
1093{
1094	struct proc_mounts *p = proc_mounts(m);
 
1095
1096	down_read(&namespace_sem);
1097	if (p->cached_event == p->ns->event) {
1098		void *v = p->cached_mount;
1099		if (*pos == p->cached_index)
1100			return v;
1101		if (*pos == p->cached_index + 1) {
1102			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1103			return p->cached_mount = v;
1104		}
1105	}
1106
1107	p->cached_event = p->ns->event;
1108	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1109	p->cached_index = *pos;
1110	return p->cached_mount;
1111}
1112
1113static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1114{
1115	struct proc_mounts *p = proc_mounts(m);
 
1116
1117	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1118	p->cached_index = *pos;
1119	return p->cached_mount;
1120}
1121
1122static void m_stop(struct seq_file *m, void *v)
1123{
 
 
 
 
 
 
 
 
 
1124	up_read(&namespace_sem);
1125}
1126
1127static int m_show(struct seq_file *m, void *v)
1128{
1129	struct proc_mounts *p = proc_mounts(m);
1130	struct mount *r = list_entry(v, struct mount, mnt_list);
1131	return p->show(m, &r->mnt);
1132}
1133
1134const struct seq_operations mounts_op = {
1135	.start	= m_start,
1136	.next	= m_next,
1137	.stop	= m_stop,
1138	.show	= m_show,
1139};
 
 
 
 
 
 
 
 
 
1140#endif  /* CONFIG_PROC_FS */
1141
1142/**
1143 * may_umount_tree - check if a mount tree is busy
1144 * @mnt: root of mount tree
1145 *
1146 * This is called to check if a tree of mounts has any
1147 * open files, pwds, chroots or sub mounts that are
1148 * busy.
1149 */
1150int may_umount_tree(struct vfsmount *m)
1151{
1152	struct mount *mnt = real_mount(m);
1153	int actual_refs = 0;
1154	int minimum_refs = 0;
1155	struct mount *p;
1156	BUG_ON(!m);
1157
1158	/* write lock needed for mnt_get_count */
1159	lock_mount_hash();
1160	for (p = mnt; p; p = next_mnt(p, mnt)) {
1161		actual_refs += mnt_get_count(p);
1162		minimum_refs += 2;
1163	}
1164	unlock_mount_hash();
1165
1166	if (actual_refs > minimum_refs)
1167		return 0;
1168
1169	return 1;
1170}
1171
1172EXPORT_SYMBOL(may_umount_tree);
1173
1174/**
1175 * may_umount - check if a mount point is busy
1176 * @mnt: root of mount
1177 *
1178 * This is called to check if a mount point has any
1179 * open files, pwds, chroots or sub mounts. If the
1180 * mount has sub mounts this will return busy
1181 * regardless of whether the sub mounts are busy.
1182 *
1183 * Doesn't take quota and stuff into account. IOW, in some cases it will
1184 * give false negatives. The main reason why it's here is that we need
1185 * a non-destructive way to look for easily umountable filesystems.
1186 */
1187int may_umount(struct vfsmount *mnt)
1188{
1189	int ret = 1;
1190	down_read(&namespace_sem);
1191	lock_mount_hash();
1192	if (propagate_mount_busy(real_mount(mnt), 2))
1193		ret = 0;
1194	unlock_mount_hash();
1195	up_read(&namespace_sem);
1196	return ret;
1197}
1198
1199EXPORT_SYMBOL(may_umount);
1200
1201static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1202
1203static void namespace_unlock(void)
1204{
1205	struct mount *mnt;
1206	struct hlist_head head = unmounted;
 
 
 
 
 
1207
1208	if (likely(hlist_empty(&head))) {
1209		up_write(&namespace_sem);
1210		return;
1211	}
1212
1213	head.first->pprev = &head.first;
1214	INIT_HLIST_HEAD(&unmounted);
1215
1216	up_write(&namespace_sem);
 
1217
1218	synchronize_rcu();
1219
1220	while (!hlist_empty(&head)) {
1221		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1222		hlist_del_init(&mnt->mnt_hash);
1223		if (mnt->mnt_ex_mountpoint.mnt)
1224			path_put(&mnt->mnt_ex_mountpoint);
1225		mntput(&mnt->mnt);
1226	}
1227}
1228
1229static inline void namespace_lock(void)
1230{
1231	down_write(&namespace_sem);
1232}
1233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234/*
1235 * mount_lock must be held
1236 * namespace_sem must be held for write
1237 * how = 0 => just this tree, don't propagate
1238 * how = 1 => propagate; we know that nobody else has reference to any victims
1239 * how = 2 => lazy umount
1240 */
1241void umount_tree(struct mount *mnt, int how)
1242{
1243	HLIST_HEAD(tmp_list);
1244	struct mount *p;
1245	struct mount *last = NULL;
1246
 
 
 
 
1247	for (p = mnt; p; p = next_mnt(p, mnt)) {
1248		hlist_del_init_rcu(&p->mnt_hash);
1249		hlist_add_head(&p->mnt_hash, &tmp_list);
1250	}
1251
1252	if (how)
 
 
 
 
 
 
1253		propagate_umount(&tmp_list);
1254
1255	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
 
 
 
1256		list_del_init(&p->mnt_expire);
1257		list_del_init(&p->mnt_list);
1258		__touch_mnt_namespace(p->mnt_ns);
 
 
 
 
1259		p->mnt_ns = NULL;
1260		if (how < 2)
1261			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1262		list_del_init(&p->mnt_child);
 
1263		if (mnt_has_parent(p)) {
1264			put_mountpoint(p->mnt_mp);
1265			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1266			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1267			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1268			p->mnt_mountpoint = p->mnt.mnt_root;
1269			p->mnt_parent = p;
1270			p->mnt_mp = NULL;
1271		}
1272		change_mnt_propagation(p, MS_PRIVATE);
1273		last = p;
1274	}
1275	if (last) {
1276		last->mnt_hash.next = unmounted.first;
1277		unmounted.first = tmp_list.first;
1278		unmounted.first->pprev = &unmounted.first;
1279	}
1280}
1281
1282static void shrink_submounts(struct mount *mnt);
1283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284static int do_umount(struct mount *mnt, int flags)
1285{
1286	struct super_block *sb = mnt->mnt.mnt_sb;
1287	int retval;
1288
1289	retval = security_sb_umount(&mnt->mnt, flags);
1290	if (retval)
1291		return retval;
1292
1293	/*
1294	 * Allow userspace to request a mountpoint be expired rather than
1295	 * unmounting unconditionally. Unmount only happens if:
1296	 *  (1) the mark is already set (the mark is cleared by mntput())
1297	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1298	 */
1299	if (flags & MNT_EXPIRE) {
1300		if (&mnt->mnt == current->fs->root.mnt ||
1301		    flags & (MNT_FORCE | MNT_DETACH))
1302			return -EINVAL;
1303
1304		/*
1305		 * probably don't strictly need the lock here if we examined
1306		 * all race cases, but it's a slowpath.
1307		 */
1308		lock_mount_hash();
1309		if (mnt_get_count(mnt) != 2) {
1310			unlock_mount_hash();
1311			return -EBUSY;
1312		}
1313		unlock_mount_hash();
1314
1315		if (!xchg(&mnt->mnt_expiry_mark, 1))
1316			return -EAGAIN;
1317	}
1318
1319	/*
1320	 * If we may have to abort operations to get out of this
1321	 * mount, and they will themselves hold resources we must
1322	 * allow the fs to do things. In the Unix tradition of
1323	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1324	 * might fail to complete on the first run through as other tasks
1325	 * must return, and the like. Thats for the mount program to worry
1326	 * about for the moment.
1327	 */
1328
1329	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1330		sb->s_op->umount_begin(sb);
1331	}
1332
1333	/*
1334	 * No sense to grab the lock for this test, but test itself looks
1335	 * somewhat bogus. Suggestions for better replacement?
1336	 * Ho-hum... In principle, we might treat that as umount + switch
1337	 * to rootfs. GC would eventually take care of the old vfsmount.
1338	 * Actually it makes sense, especially if rootfs would contain a
1339	 * /reboot - static binary that would close all descriptors and
1340	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1341	 */
1342	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1343		/*
1344		 * Special case for "unmounting" root ...
1345		 * we just try to remount it readonly.
1346		 */
1347		down_write(&sb->s_umount);
1348		if (!(sb->s_flags & MS_RDONLY))
1349			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1350		up_write(&sb->s_umount);
1351		return retval;
1352	}
1353
1354	namespace_lock();
1355	lock_mount_hash();
 
 
 
 
 
 
1356	event++;
1357
1358	if (flags & MNT_DETACH) {
1359		if (!list_empty(&mnt->mnt_list))
1360			umount_tree(mnt, 2);
1361		retval = 0;
1362	} else {
1363		shrink_submounts(mnt);
1364		retval = -EBUSY;
1365		if (!propagate_mount_busy(mnt, 2)) {
1366			if (!list_empty(&mnt->mnt_list))
1367				umount_tree(mnt, 1);
1368			retval = 0;
1369		}
1370	}
 
1371	unlock_mount_hash();
1372	namespace_unlock();
1373	return retval;
1374}
1375
1376/* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377 * Is the caller allowed to modify his namespace?
1378 */
1379static inline bool may_mount(void)
1380{
1381	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1382}
1383
1384/*
1385 * Now umount can handle mount points as well as block devices.
1386 * This is important for filesystems which use unnamed block devices.
1387 *
1388 * We now support a flag for forced unmount like the other 'big iron'
1389 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1390 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1393{
 
1394	struct path path;
1395	struct mount *mnt;
1396	int retval;
1397	int lookup_flags = 0;
1398
 
1399	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1400		return -EINVAL;
1401
1402	if (!may_mount())
1403		return -EPERM;
1404
1405	if (!(flags & UMOUNT_NOFOLLOW))
1406		lookup_flags |= LOOKUP_FOLLOW;
 
 
 
 
 
1407
1408	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1409	if (retval)
1410		goto out;
1411	mnt = real_mount(path.mnt);
1412	retval = -EINVAL;
1413	if (path.dentry != path.mnt->mnt_root)
1414		goto dput_and_out;
1415	if (!check_mnt(mnt))
1416		goto dput_and_out;
1417	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1418		goto dput_and_out;
1419
1420	retval = do_umount(mnt, flags);
1421dput_and_out:
1422	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1423	dput(path.dentry);
1424	mntput_no_expire(mnt);
1425out:
1426	return retval;
1427}
1428
1429#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1430
1431/*
1432 *	The 2.0 compatible umount. No flags.
1433 */
1434SYSCALL_DEFINE1(oldumount, char __user *, name)
1435{
1436	return sys_umount(name, 0);
1437}
1438
1439#endif
1440
1441static bool is_mnt_ns_file(struct dentry *dentry)
1442{
1443	/* Is this a proxy for a mount namespace? */
1444	struct inode *inode = dentry->d_inode;
1445	struct proc_ns *ei;
 
1446
1447	if (!proc_ns_inode(inode))
1448		return false;
 
 
1449
1450	ei = get_proc_ns(inode);
1451	if (ei->ns_ops != &mntns_operations)
1452		return false;
1453
1454	return true;
1455}
1456
1457static bool mnt_ns_loop(struct dentry *dentry)
1458{
1459	/* Could bind mounting the mount namespace inode cause a
1460	 * mount namespace loop?
1461	 */
1462	struct mnt_namespace *mnt_ns;
1463	if (!is_mnt_ns_file(dentry))
1464		return false;
1465
1466	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1467	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1468}
1469
1470struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1471					int flag)
1472{
1473	struct mount *res, *p, *q, *r, *parent;
1474
1475	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1476		return ERR_PTR(-EINVAL);
1477
1478	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1479		return ERR_PTR(-EINVAL);
1480
1481	res = q = clone_mnt(mnt, dentry, flag);
1482	if (IS_ERR(q))
1483		return q;
1484
1485	q->mnt.mnt_flags &= ~MNT_LOCKED;
1486	q->mnt_mountpoint = mnt->mnt_mountpoint;
1487
1488	p = mnt;
1489	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1490		struct mount *s;
1491		if (!is_subdir(r->mnt_mountpoint, dentry))
1492			continue;
1493
1494		for (s = r; s; s = next_mnt(s, r)) {
1495			if (!(flag & CL_COPY_UNBINDABLE) &&
1496			    IS_MNT_UNBINDABLE(s)) {
1497				s = skip_mnt_tree(s);
1498				continue;
 
 
 
 
 
 
1499			}
1500			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1501			    is_mnt_ns_file(s->mnt.mnt_root)) {
1502				s = skip_mnt_tree(s);
1503				continue;
1504			}
1505			while (p != s->mnt_parent) {
1506				p = p->mnt_parent;
1507				q = q->mnt_parent;
1508			}
1509			p = s;
1510			parent = q;
1511			q = clone_mnt(p, p->mnt.mnt_root, flag);
1512			if (IS_ERR(q))
1513				goto out;
1514			lock_mount_hash();
1515			list_add_tail(&q->mnt_list, &res->mnt_list);
1516			attach_mnt(q, parent, p->mnt_mp);
1517			unlock_mount_hash();
1518		}
1519	}
1520	return res;
1521out:
1522	if (res) {
1523		lock_mount_hash();
1524		umount_tree(res, 0);
1525		unlock_mount_hash();
1526	}
1527	return q;
1528}
1529
1530/* Caller should check returned pointer for errors */
1531
1532struct vfsmount *collect_mounts(struct path *path)
1533{
1534	struct mount *tree;
1535	namespace_lock();
1536	tree = copy_tree(real_mount(path->mnt), path->dentry,
1537			 CL_COPY_ALL | CL_PRIVATE);
 
 
 
1538	namespace_unlock();
1539	if (IS_ERR(tree))
1540		return ERR_CAST(tree);
1541	return &tree->mnt;
1542}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544void drop_collected_mounts(struct vfsmount *mnt)
1545{
1546	namespace_lock();
1547	lock_mount_hash();
1548	umount_tree(real_mount(mnt), 0);
1549	unlock_mount_hash();
1550	namespace_unlock();
1551}
1552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1554		   struct vfsmount *root)
1555{
1556	struct mount *mnt;
1557	int res = f(root, arg);
1558	if (res)
1559		return res;
1560	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1561		res = f(&mnt->mnt, arg);
1562		if (res)
1563			return res;
1564	}
1565	return 0;
1566}
1567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1569{
1570	struct mount *p;
1571
1572	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1573		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1574			mnt_release_group_id(p);
1575	}
1576}
1577
1578static int invent_group_ids(struct mount *mnt, bool recurse)
1579{
1580	struct mount *p;
1581
1582	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1583		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1584			int err = mnt_alloc_group_id(p);
1585			if (err) {
1586				cleanup_group_ids(mnt, p);
1587				return err;
1588			}
1589		}
1590	}
1591
1592	return 0;
1593}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595/*
1596 *  @source_mnt : mount tree to be attached
1597 *  @nd         : place the mount tree @source_mnt is attached
1598 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1599 *  		   store the parent mount and mountpoint dentry.
1600 *  		   (done when source_mnt is moved)
1601 *
1602 *  NOTE: in the table below explains the semantics when a source mount
1603 *  of a given type is attached to a destination mount of a given type.
1604 * ---------------------------------------------------------------------------
1605 * |         BIND MOUNT OPERATION                                            |
1606 * |**************************************************************************
1607 * | source-->| shared        |       private  |       slave    | unbindable |
1608 * | dest     |               |                |                |            |
1609 * |   |      |               |                |                |            |
1610 * |   v      |               |                |                |            |
1611 * |**************************************************************************
1612 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1613 * |          |               |                |                |            |
1614 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1615 * ***************************************************************************
1616 * A bind operation clones the source mount and mounts the clone on the
1617 * destination mount.
1618 *
1619 * (++)  the cloned mount is propagated to all the mounts in the propagation
1620 * 	 tree of the destination mount and the cloned mount is added to
1621 * 	 the peer group of the source mount.
1622 * (+)   the cloned mount is created under the destination mount and is marked
1623 *       as shared. The cloned mount is added to the peer group of the source
1624 *       mount.
1625 * (+++) the mount is propagated to all the mounts in the propagation tree
1626 *       of the destination mount and the cloned mount is made slave
1627 *       of the same master as that of the source mount. The cloned mount
1628 *       is marked as 'shared and slave'.
1629 * (*)   the cloned mount is made a slave of the same master as that of the
1630 * 	 source mount.
1631 *
1632 * ---------------------------------------------------------------------------
1633 * |         		MOVE MOUNT OPERATION                                 |
1634 * |**************************************************************************
1635 * | source-->| shared        |       private  |       slave    | unbindable |
1636 * | dest     |               |                |                |            |
1637 * |   |      |               |                |                |            |
1638 * |   v      |               |                |                |            |
1639 * |**************************************************************************
1640 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1641 * |          |               |                |                |            |
1642 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1643 * ***************************************************************************
1644 *
1645 * (+)  the mount is moved to the destination. And is then propagated to
1646 * 	all the mounts in the propagation tree of the destination mount.
1647 * (+*)  the mount is moved to the destination.
1648 * (+++)  the mount is moved to the destination and is then propagated to
1649 * 	all the mounts belonging to the destination mount's propagation tree.
1650 * 	the mount is marked as 'shared and slave'.
1651 * (*)	the mount continues to be a slave at the new location.
1652 *
1653 * if the source mount is a tree, the operations explained above is
1654 * applied to each mount in the tree.
1655 * Must be called without spinlocks held, since this function can sleep
1656 * in allocations.
1657 */
1658static int attach_recursive_mnt(struct mount *source_mnt,
1659			struct mount *dest_mnt,
1660			struct mountpoint *dest_mp,
1661			struct path *parent_path)
1662{
 
1663	HLIST_HEAD(tree_list);
 
 
1664	struct mount *child, *p;
1665	struct hlist_node *n;
1666	int err;
1667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668	if (IS_MNT_SHARED(dest_mnt)) {
1669		err = invent_group_ids(source_mnt, true);
1670		if (err)
1671			goto out;
1672		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1673		lock_mount_hash();
1674		if (err)
1675			goto out_cleanup_ids;
1676		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1677			set_mnt_shared(p);
1678	} else {
1679		lock_mount_hash();
1680	}
1681	if (parent_path) {
1682		detach_mnt(source_mnt, parent_path);
1683		attach_mnt(source_mnt, dest_mnt, dest_mp);
1684		touch_mnt_namespace(source_mnt->mnt_ns);
1685	} else {
 
 
 
 
1686		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1687		commit_tree(source_mnt, NULL);
1688	}
1689
1690	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1691		struct mount *q;
1692		hlist_del_init(&child->mnt_hash);
1693		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1694				      child->mnt_mountpoint);
1695		commit_tree(child, q);
 
 
 
 
 
 
1696	}
 
1697	unlock_mount_hash();
1698
1699	return 0;
1700
1701 out_cleanup_ids:
1702	while (!hlist_empty(&tree_list)) {
1703		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1704		umount_tree(child, 0);
 
1705	}
1706	unlock_mount_hash();
1707	cleanup_group_ids(source_mnt, NULL);
1708 out:
 
 
 
 
 
 
1709	return err;
1710}
1711
1712static struct mountpoint *lock_mount(struct path *path)
1713{
1714	struct vfsmount *mnt;
1715	struct dentry *dentry = path->dentry;
1716retry:
1717	mutex_lock(&dentry->d_inode->i_mutex);
1718	if (unlikely(cant_mount(dentry))) {
1719		mutex_unlock(&dentry->d_inode->i_mutex);
1720		return ERR_PTR(-ENOENT);
1721	}
1722	namespace_lock();
1723	mnt = lookup_mnt(path);
1724	if (likely(!mnt)) {
1725		struct mountpoint *mp = new_mountpoint(dentry);
1726		if (IS_ERR(mp)) {
1727			namespace_unlock();
1728			mutex_unlock(&dentry->d_inode->i_mutex);
1729			return mp;
1730		}
1731		return mp;
1732	}
1733	namespace_unlock();
1734	mutex_unlock(&path->dentry->d_inode->i_mutex);
1735	path_put(path);
1736	path->mnt = mnt;
1737	dentry = path->dentry = dget(mnt->mnt_root);
1738	goto retry;
1739}
1740
1741static void unlock_mount(struct mountpoint *where)
1742{
1743	struct dentry *dentry = where->m_dentry;
 
 
1744	put_mountpoint(where);
 
 
1745	namespace_unlock();
1746	mutex_unlock(&dentry->d_inode->i_mutex);
1747}
1748
1749static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1750{
1751	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1752		return -EINVAL;
1753
1754	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1755	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1756		return -ENOTDIR;
1757
1758	return attach_recursive_mnt(mnt, p, mp, NULL);
1759}
1760
1761/*
1762 * Sanity check the flags to change_mnt_propagation.
1763 */
1764
1765static int flags_to_propagation_type(int flags)
1766{
1767	int type = flags & ~(MS_REC | MS_SILENT);
1768
1769	/* Fail if any non-propagation flags are set */
1770	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1771		return 0;
1772	/* Only one propagation flag should be set */
1773	if (!is_power_of_2(type))
1774		return 0;
1775	return type;
1776}
1777
1778/*
1779 * recursively change the type of the mountpoint.
1780 */
1781static int do_change_type(struct path *path, int flag)
1782{
1783	struct mount *m;
1784	struct mount *mnt = real_mount(path->mnt);
1785	int recurse = flag & MS_REC;
1786	int type;
1787	int err = 0;
1788
1789	if (path->dentry != path->mnt->mnt_root)
1790		return -EINVAL;
1791
1792	type = flags_to_propagation_type(flag);
1793	if (!type)
1794		return -EINVAL;
1795
1796	namespace_lock();
1797	if (type == MS_SHARED) {
1798		err = invent_group_ids(mnt, recurse);
1799		if (err)
1800			goto out_unlock;
1801	}
1802
1803	lock_mount_hash();
1804	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1805		change_mnt_propagation(m, type);
1806	unlock_mount_hash();
1807
1808 out_unlock:
1809	namespace_unlock();
1810	return err;
1811}
1812
1813static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1814{
1815	struct mount *child;
1816	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1817		if (!is_subdir(child->mnt_mountpoint, dentry))
1818			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819
1820		if (child->mnt.mnt_flags & MNT_LOCKED)
1821			return true;
1822	}
1823	return false;
1824}
1825
1826/*
1827 * do loopback mount.
1828 */
1829static int do_loopback(struct path *path, const char *old_name,
1830				int recurse)
1831{
1832	struct path old_path;
1833	struct mount *mnt = NULL, *old, *parent;
1834	struct mountpoint *mp;
1835	int err;
1836	if (!old_name || !*old_name)
1837		return -EINVAL;
1838	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1839	if (err)
1840		return err;
1841
1842	err = -EINVAL;
1843	if (mnt_ns_loop(old_path.dentry))
1844		goto out; 
1845
1846	mp = lock_mount(path);
1847	err = PTR_ERR(mp);
1848	if (IS_ERR(mp))
1849		goto out;
 
1850
1851	old = real_mount(old_path.mnt);
1852	parent = real_mount(path->mnt);
1853
1854	err = -EINVAL;
1855	if (IS_MNT_UNBINDABLE(old))
1856		goto out2;
1857
1858	if (!check_mnt(parent) || !check_mnt(old))
1859		goto out2;
1860
1861	if (!recurse && has_locked_children(old, old_path.dentry))
1862		goto out2;
1863
1864	if (recurse)
1865		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1866	else
1867		mnt = clone_mnt(old, old_path.dentry, 0);
1868
1869	if (IS_ERR(mnt)) {
1870		err = PTR_ERR(mnt);
1871		goto out2;
1872	}
1873
1874	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1875
1876	err = graft_tree(mnt, parent, mp);
1877	if (err) {
1878		lock_mount_hash();
1879		umount_tree(mnt, 0);
1880		unlock_mount_hash();
1881	}
1882out2:
1883	unlock_mount(mp);
1884out:
1885	path_put(&old_path);
1886	return err;
1887}
1888
1889static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890{
1891	int error = 0;
1892	int readonly_request = 0;
1893
1894	if (ms_flags & MS_RDONLY)
1895		readonly_request = 1;
1896	if (readonly_request == __mnt_is_readonly(mnt))
1897		return 0;
1898
1899	if (mnt->mnt_flags & MNT_LOCK_READONLY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900		return -EPERM;
1901
1902	if (readonly_request)
1903		error = mnt_make_readonly(real_mount(mnt));
1904	else
1905		__mnt_unmake_readonly(real_mount(mnt));
1906	return error;
 
 
 
 
 
 
 
 
 
 
1907}
1908
1909/*
1910 * change filesystem flags. dir should be a physical root of filesystem.
1911 * If you've mounted a non-root directory somewhere and want to do remount
1912 * on it - tough luck.
1913 */
1914static int do_remount(struct path *path, int flags, int mnt_flags,
1915		      void *data)
1916{
1917	int err;
1918	struct super_block *sb = path->mnt->mnt_sb;
1919	struct mount *mnt = real_mount(path->mnt);
 
1920
1921	if (!check_mnt(mnt))
1922		return -EINVAL;
1923
1924	if (path->dentry != path->mnt->mnt_root)
1925		return -EINVAL;
1926
1927	err = security_sb_remount(sb, data);
1928	if (err)
1929		return err;
 
 
 
1930
1931	down_write(&sb->s_umount);
1932	if (flags & MS_BIND)
1933		err = change_mount_flags(path->mnt, flags);
1934	else if (!capable(CAP_SYS_ADMIN))
1935		err = -EPERM;
1936	else
1937		err = do_remount_sb(sb, flags, data, 0);
1938	if (!err) {
1939		lock_mount_hash();
1940		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1941		mnt->mnt.mnt_flags = mnt_flags;
1942		touch_mnt_namespace(mnt->mnt_ns);
1943		unlock_mount_hash();
 
1944	}
1945	up_write(&sb->s_umount);
 
 
 
1946	return err;
1947}
1948
1949static inline int tree_contains_unbindable(struct mount *mnt)
1950{
1951	struct mount *p;
1952	for (p = mnt; p; p = next_mnt(p, mnt)) {
1953		if (IS_MNT_UNBINDABLE(p))
1954			return 1;
1955	}
1956	return 0;
1957}
1958
1959static int do_move_mount(struct path *path, const char *old_name)
 
 
 
 
 
 
1960{
1961	struct path old_path, parent_path;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	struct mount *p;
1963	struct mount *old;
1964	struct mountpoint *mp;
 
1965	int err;
1966	if (!old_name || !*old_name)
1967		return -EINVAL;
1968	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1969	if (err)
1970		return err;
1971
1972	mp = lock_mount(path);
1973	err = PTR_ERR(mp);
1974	if (IS_ERR(mp))
 
 
 
 
 
 
 
 
 
 
 
 
1975		goto out;
1976
1977	old = real_mount(old_path.mnt);
1978	p = real_mount(path->mnt);
 
1979
1980	err = -EINVAL;
1981	if (!check_mnt(p) || !check_mnt(old))
1982		goto out1;
1983
1984	if (old->mnt.mnt_flags & MNT_LOCKED)
1985		goto out1;
1986
1987	err = -EINVAL;
1988	if (old_path.dentry != old_path.mnt->mnt_root)
1989		goto out1;
1990
1991	if (!mnt_has_parent(old))
1992		goto out1;
1993
1994	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1995	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1996		goto out1;
1997	/*
1998	 * Don't move a mount residing in a shared parent.
1999	 */
2000	if (IS_MNT_SHARED(old->mnt_parent))
2001		goto out1;
2002	/*
2003	 * Don't move a mount tree containing unbindable mounts to a destination
2004	 * mount which is shared.
2005	 */
2006	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2007		goto out1;
2008	err = -ELOOP;
 
 
2009	for (; mnt_has_parent(p); p = p->mnt_parent)
2010		if (p == old)
2011			goto out1;
2012
2013	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
 
2014	if (err)
2015		goto out1;
2016
2017	/* if the mount is moved, it should no longer be expire
2018	 * automatically */
2019	list_del_init(&old->mnt_expire);
2020out1:
 
 
2021	unlock_mount(mp);
2022out:
2023	if (!err)
2024		path_put(&parent_path);
2025	path_put(&old_path);
 
 
2026	return err;
2027}
2028
2029static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2030{
 
2031	int err;
2032	const char *subtype = strchr(fstype, '.');
2033	if (subtype) {
2034		subtype++;
2035		err = -EINVAL;
2036		if (!subtype[0])
2037			goto err;
2038	} else
2039		subtype = "";
2040
2041	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2042	err = -ENOMEM;
2043	if (!mnt->mnt_sb->s_subtype)
2044		goto err;
2045	return mnt;
2046
2047 err:
2048	mntput(mnt);
2049	return ERR_PTR(err);
 
 
 
 
 
 
 
2050}
2051
2052/*
2053 * add a mount into a namespace's mount tree
2054 */
2055static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
 
2056{
2057	struct mountpoint *mp;
2058	struct mount *parent;
2059	int err;
2060
2061	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2062
2063	mp = lock_mount(path);
2064	if (IS_ERR(mp))
2065		return PTR_ERR(mp);
2066
2067	parent = real_mount(path->mnt);
2068	err = -EINVAL;
2069	if (unlikely(!check_mnt(parent))) {
2070		/* that's acceptable only for automounts done in private ns */
2071		if (!(mnt_flags & MNT_SHRINKABLE))
2072			goto unlock;
2073		/* ... and for those we'd better have mountpoint still alive */
2074		if (!parent->mnt_ns)
2075			goto unlock;
2076	}
2077
2078	/* Refuse the same filesystem on the same mount point */
2079	err = -EBUSY;
2080	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2081	    path->mnt->mnt_root == path->dentry)
2082		goto unlock;
2083
2084	err = -EINVAL;
2085	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2086		goto unlock;
2087
2088	newmnt->mnt.mnt_flags = mnt_flags;
2089	err = graft_tree(newmnt, parent, mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090
2091unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092	unlock_mount(mp);
2093	return err;
 
 
2094}
2095
2096/*
2097 * create a new mount for userspace and request it to be added into the
2098 * namespace's tree
2099 */
2100static int do_new_mount(struct path *path, const char *fstype, int flags,
2101			int mnt_flags, const char *name, void *data)
2102{
2103	struct file_system_type *type;
2104	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2105	struct vfsmount *mnt;
2106	int err;
2107
2108	if (!fstype)
2109		return -EINVAL;
2110
2111	type = get_fs_type(fstype);
2112	if (!type)
2113		return -ENODEV;
2114
2115	if (user_ns != &init_user_ns) {
2116		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2117			put_filesystem(type);
2118			return -EPERM;
2119		}
2120		/* Only in special cases allow devices from mounts
2121		 * created outside the initial user namespace.
2122		 */
2123		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2124			flags |= MS_NODEV;
2125			mnt_flags |= MNT_NODEV;
2126		}
2127	}
2128
2129	mnt = vfs_kern_mount(type, flags, name, data);
2130	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2131	    !mnt->mnt_sb->s_subtype)
2132		mnt = fs_set_subtype(mnt, fstype);
2133
2134	put_filesystem(type);
2135	if (IS_ERR(mnt))
2136		return PTR_ERR(mnt);
 
 
 
 
 
 
 
 
 
 
2137
2138	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2139	if (err)
2140		mntput(mnt);
2141	return err;
2142}
2143
2144int finish_automount(struct vfsmount *m, struct path *path)
2145{
2146	struct mount *mnt = real_mount(m);
 
 
2147	int err;
 
 
 
 
 
 
 
2148	/* The new mount record should have at least 2 refs to prevent it being
2149	 * expired before we get a chance to add it
2150	 */
2151	BUG_ON(mnt_get_count(mnt) < 2);
2152
2153	if (m->mnt_sb == path->mnt->mnt_sb &&
2154	    m->mnt_root == path->dentry) {
2155		err = -ELOOP;
2156		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157	}
2158
2159	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2160	if (!err)
2161		return 0;
2162fail:
 
 
 
 
 
 
 
2163	/* remove m from any expiration list it may be on */
2164	if (!list_empty(&mnt->mnt_expire)) {
2165		namespace_lock();
2166		list_del_init(&mnt->mnt_expire);
2167		namespace_unlock();
2168	}
2169	mntput(m);
2170	mntput(m);
2171	return err;
2172}
2173
2174/**
2175 * mnt_set_expiry - Put a mount on an expiration list
2176 * @mnt: The mount to list.
2177 * @expiry_list: The list to add the mount to.
2178 */
2179void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2180{
2181	namespace_lock();
2182
2183	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2184
2185	namespace_unlock();
2186}
2187EXPORT_SYMBOL(mnt_set_expiry);
2188
2189/*
2190 * process a list of expirable mountpoints with the intent of discarding any
2191 * mountpoints that aren't in use and haven't been touched since last we came
2192 * here
2193 */
2194void mark_mounts_for_expiry(struct list_head *mounts)
2195{
2196	struct mount *mnt, *next;
2197	LIST_HEAD(graveyard);
2198
2199	if (list_empty(mounts))
2200		return;
2201
2202	namespace_lock();
2203	lock_mount_hash();
2204
2205	/* extract from the expiration list every vfsmount that matches the
2206	 * following criteria:
2207	 * - only referenced by its parent vfsmount
2208	 * - still marked for expiry (marked on the last call here; marks are
2209	 *   cleared by mntput())
2210	 */
2211	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2212		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2213			propagate_mount_busy(mnt, 1))
2214			continue;
2215		list_move(&mnt->mnt_expire, &graveyard);
2216	}
2217	while (!list_empty(&graveyard)) {
2218		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2219		touch_mnt_namespace(mnt->mnt_ns);
2220		umount_tree(mnt, 1);
2221	}
2222	unlock_mount_hash();
2223	namespace_unlock();
2224}
2225
2226EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2227
2228/*
2229 * Ripoff of 'select_parent()'
2230 *
2231 * search the list of submounts for a given mountpoint, and move any
2232 * shrinkable submounts to the 'graveyard' list.
2233 */
2234static int select_submounts(struct mount *parent, struct list_head *graveyard)
2235{
2236	struct mount *this_parent = parent;
2237	struct list_head *next;
2238	int found = 0;
2239
2240repeat:
2241	next = this_parent->mnt_mounts.next;
2242resume:
2243	while (next != &this_parent->mnt_mounts) {
2244		struct list_head *tmp = next;
2245		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2246
2247		next = tmp->next;
2248		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2249			continue;
2250		/*
2251		 * Descend a level if the d_mounts list is non-empty.
2252		 */
2253		if (!list_empty(&mnt->mnt_mounts)) {
2254			this_parent = mnt;
2255			goto repeat;
2256		}
2257
2258		if (!propagate_mount_busy(mnt, 1)) {
2259			list_move_tail(&mnt->mnt_expire, graveyard);
2260			found++;
2261		}
2262	}
2263	/*
2264	 * All done at this level ... ascend and resume the search
2265	 */
2266	if (this_parent != parent) {
2267		next = this_parent->mnt_child.next;
2268		this_parent = this_parent->mnt_parent;
2269		goto resume;
2270	}
2271	return found;
2272}
2273
2274/*
2275 * process a list of expirable mountpoints with the intent of discarding any
2276 * submounts of a specific parent mountpoint
2277 *
2278 * mount_lock must be held for write
2279 */
2280static void shrink_submounts(struct mount *mnt)
2281{
2282	LIST_HEAD(graveyard);
2283	struct mount *m;
2284
2285	/* extract submounts of 'mountpoint' from the expiration list */
2286	while (select_submounts(mnt, &graveyard)) {
2287		while (!list_empty(&graveyard)) {
2288			m = list_first_entry(&graveyard, struct mount,
2289						mnt_expire);
2290			touch_mnt_namespace(m->mnt_ns);
2291			umount_tree(m, 1);
2292		}
2293	}
2294}
2295
2296/*
2297 * Some copy_from_user() implementations do not return the exact number of
2298 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2299 * Note that this function differs from copy_from_user() in that it will oops
2300 * on bad values of `to', rather than returning a short copy.
2301 */
2302static long exact_copy_from_user(void *to, const void __user * from,
2303				 unsigned long n)
2304{
2305	char *t = to;
2306	const char __user *f = from;
2307	char c;
2308
2309	if (!access_ok(VERIFY_READ, from, n))
2310		return n;
 
 
 
 
2311
2312	while (n) {
2313		if (__get_user(c, f)) {
2314			memset(t, 0, n);
 
 
 
 
 
 
 
2315			break;
2316		}
2317		*t++ = c;
2318		f++;
2319		n--;
2320	}
2321	return n;
2322}
2323
2324int copy_mount_options(const void __user * data, unsigned long *where)
2325{
2326	int i;
2327	unsigned long page;
2328	unsigned long size;
2329
2330	*where = 0;
2331	if (!data)
2332		return 0;
2333
2334	if (!(page = __get_free_page(GFP_KERNEL)))
2335		return -ENOMEM;
2336
2337	/* We only care that *some* data at the address the user
2338	 * gave us is valid.  Just in case, we'll zero
2339	 * the remainder of the page.
2340	 */
2341	/* copy_from_user cannot cross TASK_SIZE ! */
2342	size = TASK_SIZE - (unsigned long)data;
2343	if (size > PAGE_SIZE)
2344		size = PAGE_SIZE;
2345
2346	i = size - exact_copy_from_user((void *)page, data, size);
2347	if (!i) {
2348		free_page(page);
2349		return -EFAULT;
2350	}
2351	if (i != PAGE_SIZE)
2352		memset((char *)page + i, 0, PAGE_SIZE - i);
2353	*where = page;
2354	return 0;
2355}
2356
2357int copy_mount_string(const void __user *data, char **where)
2358{
2359	char *tmp;
2360
2361	if (!data) {
2362		*where = NULL;
2363		return 0;
2364	}
2365
2366	tmp = strndup_user(data, PAGE_SIZE);
2367	if (IS_ERR(tmp))
2368		return PTR_ERR(tmp);
2369
2370	*where = tmp;
2371	return 0;
2372}
2373
2374/*
2375 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2376 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2377 *
2378 * data is a (void *) that can point to any structure up to
2379 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2380 * information (or be NULL).
2381 *
2382 * Pre-0.97 versions of mount() didn't have a flags word.
2383 * When the flags word was introduced its top half was required
2384 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2385 * Therefore, if this magic number is present, it carries no information
2386 * and must be discarded.
2387 */
2388long do_mount(const char *dev_name, const char *dir_name,
2389		const char *type_page, unsigned long flags, void *data_page)
2390{
2391	struct path path;
2392	int retval = 0;
2393	int mnt_flags = 0;
2394
2395	/* Discard magic */
2396	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2397		flags &= ~MS_MGC_MSK;
2398
2399	/* Basic sanity checks */
2400
2401	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2402		return -EINVAL;
2403
2404	if (data_page)
2405		((char *)data_page)[PAGE_SIZE - 1] = 0;
2406
2407	/* ... and get the mountpoint */
2408	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2409	if (retval)
2410		return retval;
2411
2412	retval = security_sb_mount(dev_name, &path,
2413				   type_page, flags, data_page);
2414	if (!retval && !may_mount())
2415		retval = -EPERM;
2416	if (retval)
2417		goto dput_out;
 
2418
2419	/* Default to relatime unless overriden */
2420	if (!(flags & MS_NOATIME))
2421		mnt_flags |= MNT_RELATIME;
2422
2423	/* Separate the per-mountpoint flags */
2424	if (flags & MS_NOSUID)
2425		mnt_flags |= MNT_NOSUID;
2426	if (flags & MS_NODEV)
2427		mnt_flags |= MNT_NODEV;
2428	if (flags & MS_NOEXEC)
2429		mnt_flags |= MNT_NOEXEC;
2430	if (flags & MS_NOATIME)
2431		mnt_flags |= MNT_NOATIME;
2432	if (flags & MS_NODIRATIME)
2433		mnt_flags |= MNT_NODIRATIME;
2434	if (flags & MS_STRICTATIME)
2435		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2436	if (flags & MS_RDONLY)
2437		mnt_flags |= MNT_READONLY;
 
 
2438
2439	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2440		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2441		   MS_STRICTATIME);
 
 
 
 
 
 
 
 
 
 
 
 
 
2442
 
 
2443	if (flags & MS_REMOUNT)
2444		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2445				    data_page);
2446	else if (flags & MS_BIND)
2447		retval = do_loopback(&path, dev_name, flags & MS_REC);
2448	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2449		retval = do_change_type(&path, flags);
2450	else if (flags & MS_MOVE)
2451		retval = do_move_mount(&path, dev_name);
2452	else
2453		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2454				      dev_name, data_page);
2455dput_out:
 
 
 
 
 
 
 
 
 
 
2456	path_put(&path);
2457	return retval;
 
 
 
 
 
 
 
 
 
 
2458}
2459
2460static void free_mnt_ns(struct mnt_namespace *ns)
2461{
2462	proc_free_inum(ns->proc_inum);
 
 
2463	put_user_ns(ns->user_ns);
2464	kfree(ns);
2465}
2466
2467/*
2468 * Assign a sequence number so we can detect when we attempt to bind
2469 * mount a reference to an older mount namespace into the current
2470 * mount namespace, preventing reference counting loops.  A 64bit
2471 * number incrementing at 10Ghz will take 12,427 years to wrap which
2472 * is effectively never, so we can ignore the possibility.
2473 */
2474static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2475
2476static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2477{
2478	struct mnt_namespace *new_ns;
 
2479	int ret;
2480
2481	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2482	if (!new_ns)
 
 
 
 
 
2483		return ERR_PTR(-ENOMEM);
2484	ret = proc_alloc_inum(&new_ns->proc_inum);
2485	if (ret) {
2486		kfree(new_ns);
2487		return ERR_PTR(ret);
2488	}
2489	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2490	atomic_set(&new_ns->count, 1);
2491	new_ns->root = NULL;
 
 
 
 
 
2492	INIT_LIST_HEAD(&new_ns->list);
2493	init_waitqueue_head(&new_ns->poll);
2494	new_ns->event = 0;
2495	new_ns->user_ns = get_user_ns(user_ns);
 
2496	return new_ns;
2497}
2498
 
2499struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2500		struct user_namespace *user_ns, struct fs_struct *new_fs)
2501{
2502	struct mnt_namespace *new_ns;
2503	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2504	struct mount *p, *q;
2505	struct mount *old;
2506	struct mount *new;
2507	int copy_flags;
2508
2509	BUG_ON(!ns);
2510
2511	if (likely(!(flags & CLONE_NEWNS))) {
2512		get_mnt_ns(ns);
2513		return ns;
2514	}
2515
2516	old = ns->root;
2517
2518	new_ns = alloc_mnt_ns(user_ns);
2519	if (IS_ERR(new_ns))
2520		return new_ns;
2521
2522	namespace_lock();
2523	/* First pass: copy the tree topology */
2524	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2525	if (user_ns != ns->user_ns)
2526		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2527	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2528	if (IS_ERR(new)) {
2529		namespace_unlock();
2530		free_mnt_ns(new_ns);
2531		return ERR_CAST(new);
2532	}
 
 
 
 
 
2533	new_ns->root = new;
2534	list_add_tail(&new_ns->list, &new->mnt_list);
2535
2536	/*
2537	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2538	 * as belonging to new namespace.  We have already acquired a private
2539	 * fs_struct, so tsk->fs->lock is not needed.
2540	 */
2541	p = old;
2542	q = new;
2543	while (p) {
2544		q->mnt_ns = new_ns;
 
2545		if (new_fs) {
2546			if (&p->mnt == new_fs->root.mnt) {
2547				new_fs->root.mnt = mntget(&q->mnt);
2548				rootmnt = &p->mnt;
2549			}
2550			if (&p->mnt == new_fs->pwd.mnt) {
2551				new_fs->pwd.mnt = mntget(&q->mnt);
2552				pwdmnt = &p->mnt;
2553			}
2554		}
2555		p = next_mnt(p, old);
2556		q = next_mnt(q, new);
2557		if (!q)
2558			break;
2559		while (p->mnt.mnt_root != q->mnt.mnt_root)
2560			p = next_mnt(p, old);
2561	}
2562	namespace_unlock();
2563
2564	if (rootmnt)
2565		mntput(rootmnt);
2566	if (pwdmnt)
2567		mntput(pwdmnt);
2568
2569	return new_ns;
2570}
2571
2572/**
2573 * create_mnt_ns - creates a private namespace and adds a root filesystem
2574 * @mnt: pointer to the new root filesystem mountpoint
2575 */
2576static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2577{
2578	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2579	if (!IS_ERR(new_ns)) {
2580		struct mount *mnt = real_mount(m);
2581		mnt->mnt_ns = new_ns;
2582		new_ns->root = mnt;
2583		list_add(&mnt->mnt_list, &new_ns->list);
2584	} else {
2585		mntput(m);
2586	}
2587	return new_ns;
2588}
2589
2590struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2591{
 
2592	struct mnt_namespace *ns;
2593	struct super_block *s;
2594	struct path path;
2595	int err;
2596
2597	ns = create_mnt_ns(mnt);
2598	if (IS_ERR(ns))
 
2599		return ERR_CAST(ns);
 
 
 
 
 
2600
2601	err = vfs_path_lookup(mnt->mnt_root, mnt,
2602			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2603
2604	put_mnt_ns(ns);
2605
2606	if (err)
2607		return ERR_PTR(err);
2608
2609	/* trade a vfsmount reference for active sb one */
2610	s = path.mnt->mnt_sb;
2611	atomic_inc(&s->s_active);
2612	mntput(path.mnt);
2613	/* lock the sucker */
2614	down_write(&s->s_umount);
2615	/* ... and return the root of (sub)tree on it */
2616	return path.dentry;
2617}
2618EXPORT_SYMBOL(mount_subtree);
2619
2620SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2621		char __user *, type, unsigned long, flags, void __user *, data)
2622{
2623	int ret;
2624	char *kernel_type;
2625	struct filename *kernel_dir;
2626	char *kernel_dev;
2627	unsigned long data_page;
2628
2629	ret = copy_mount_string(type, &kernel_type);
2630	if (ret < 0)
 
2631		goto out_type;
2632
2633	kernel_dir = getname(dir_name);
2634	if (IS_ERR(kernel_dir)) {
2635		ret = PTR_ERR(kernel_dir);
2636		goto out_dir;
2637	}
2638
2639	ret = copy_mount_string(dev_name, &kernel_dev);
2640	if (ret < 0)
2641		goto out_dev;
2642
2643	ret = copy_mount_options(data, &data_page);
2644	if (ret < 0)
 
2645		goto out_data;
2646
2647	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2648		(void *) data_page);
2649
2650	free_page(data_page);
2651out_data:
2652	kfree(kernel_dev);
2653out_dev:
2654	putname(kernel_dir);
2655out_dir:
2656	kfree(kernel_type);
2657out_type:
2658	return ret;
2659}
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661/*
2662 * Return true if path is reachable from root
2663 *
2664 * namespace_sem or mount_lock is held
2665 */
2666bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2667			 const struct path *root)
2668{
2669	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2670		dentry = mnt->mnt_mountpoint;
2671		mnt = mnt->mnt_parent;
2672	}
2673	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2674}
2675
2676int path_is_under(struct path *path1, struct path *path2)
2677{
2678	int res;
2679	read_seqlock_excl(&mount_lock);
2680	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2681	read_sequnlock_excl(&mount_lock);
2682	return res;
2683}
2684EXPORT_SYMBOL(path_is_under);
2685
2686/*
2687 * pivot_root Semantics:
2688 * Moves the root file system of the current process to the directory put_old,
2689 * makes new_root as the new root file system of the current process, and sets
2690 * root/cwd of all processes which had them on the current root to new_root.
2691 *
2692 * Restrictions:
2693 * The new_root and put_old must be directories, and  must not be on the
2694 * same file  system as the current process root. The put_old  must  be
2695 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2696 * pointed to by put_old must yield the same directory as new_root. No other
2697 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2698 *
2699 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2700 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2701 * in this situation.
2702 *
2703 * Notes:
2704 *  - we don't move root/cwd if they are not at the root (reason: if something
2705 *    cared enough to change them, it's probably wrong to force them elsewhere)
2706 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2707 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2708 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2709 *    first.
2710 */
2711SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2712		const char __user *, put_old)
2713{
2714	struct path new, old, parent_path, root_parent, root;
2715	struct mount *new_mnt, *root_mnt, *old_mnt;
2716	struct mountpoint *old_mp, *root_mp;
2717	int error;
2718
2719	if (!may_mount())
2720		return -EPERM;
2721
2722	error = user_path_dir(new_root, &new);
 
2723	if (error)
2724		goto out0;
2725
2726	error = user_path_dir(put_old, &old);
 
2727	if (error)
2728		goto out1;
2729
2730	error = security_sb_pivotroot(&old, &new);
2731	if (error)
2732		goto out2;
2733
2734	get_fs_root(current->fs, &root);
2735	old_mp = lock_mount(&old);
2736	error = PTR_ERR(old_mp);
2737	if (IS_ERR(old_mp))
2738		goto out3;
2739
2740	error = -EINVAL;
2741	new_mnt = real_mount(new.mnt);
2742	root_mnt = real_mount(root.mnt);
2743	old_mnt = real_mount(old.mnt);
 
 
2744	if (IS_MNT_SHARED(old_mnt) ||
2745		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2746		IS_MNT_SHARED(root_mnt->mnt_parent))
2747		goto out4;
2748	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2749		goto out4;
2750	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2751		goto out4;
2752	error = -ENOENT;
2753	if (d_unlinked(new.dentry))
2754		goto out4;
2755	error = -EBUSY;
2756	if (new_mnt == root_mnt || old_mnt == root_mnt)
2757		goto out4; /* loop, on the same file system  */
2758	error = -EINVAL;
2759	if (root.mnt->mnt_root != root.dentry)
2760		goto out4; /* not a mountpoint */
2761	if (!mnt_has_parent(root_mnt))
2762		goto out4; /* not attached */
2763	root_mp = root_mnt->mnt_mp;
2764	if (new.mnt->mnt_root != new.dentry)
2765		goto out4; /* not a mountpoint */
2766	if (!mnt_has_parent(new_mnt))
2767		goto out4; /* not attached */
2768	/* make sure we can reach put_old from new_root */
2769	if (!is_path_reachable(old_mnt, old.dentry, &new))
2770		goto out4;
2771	root_mp->m_count++; /* pin it so it won't go away */
 
 
2772	lock_mount_hash();
2773	detach_mnt(new_mnt, &parent_path);
2774	detach_mnt(root_mnt, &root_parent);
2775	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2776		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2777		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2778	}
2779	/* mount old root on put_old */
2780	attach_mnt(root_mnt, old_mnt, old_mp);
2781	/* mount new_root on / */
2782	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
 
2783	touch_mnt_namespace(current->nsproxy->mnt_ns);
 
 
 
2784	unlock_mount_hash();
2785	chroot_fs_refs(&root, &new);
2786	put_mountpoint(root_mp);
2787	error = 0;
2788out4:
2789	unlock_mount(old_mp);
2790	if (!error) {
2791		path_put(&root_parent);
2792		path_put(&parent_path);
2793	}
2794out3:
2795	path_put(&root);
2796out2:
2797	path_put(&old);
2798out1:
2799	path_put(&new);
2800out0:
2801	return error;
2802}
2803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804static void __init init_mount_tree(void)
2805{
2806	struct vfsmount *mnt;
 
2807	struct mnt_namespace *ns;
2808	struct path root;
2809	struct file_system_type *type;
2810
2811	type = get_fs_type("rootfs");
2812	if (!type)
2813		panic("Can't find rootfs type");
2814	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2815	put_filesystem(type);
2816	if (IS_ERR(mnt))
2817		panic("Can't create rootfs");
2818
2819	ns = create_mnt_ns(mnt);
2820	if (IS_ERR(ns))
2821		panic("Can't allocate initial namespace");
2822
 
 
 
 
2823	init_task.nsproxy->mnt_ns = ns;
2824	get_mnt_ns(ns);
2825
2826	root.mnt = mnt;
2827	root.dentry = mnt->mnt_root;
 
2828
2829	set_fs_pwd(current->fs, &root);
2830	set_fs_root(current->fs, &root);
2831}
2832
2833void __init mnt_init(void)
2834{
2835	unsigned u;
2836	int err;
2837
2838	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2839			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2840
2841	mount_hashtable = alloc_large_system_hash("Mount-cache",
2842				sizeof(struct hlist_head),
2843				mhash_entries, 19,
2844				0,
2845				&m_hash_shift, &m_hash_mask, 0, 0);
2846	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2847				sizeof(struct hlist_head),
2848				mphash_entries, 19,
2849				0,
2850				&mp_hash_shift, &mp_hash_mask, 0, 0);
2851
2852	if (!mount_hashtable || !mountpoint_hashtable)
2853		panic("Failed to allocate mount hash table\n");
2854
2855	for (u = 0; u <= m_hash_mask; u++)
2856		INIT_HLIST_HEAD(&mount_hashtable[u]);
2857	for (u = 0; u <= mp_hash_mask; u++)
2858		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2859
2860	kernfs_init();
2861
2862	err = sysfs_init();
2863	if (err)
2864		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2865			__func__, err);
2866	fs_kobj = kobject_create_and_add("fs", NULL);
2867	if (!fs_kobj)
2868		printk(KERN_WARNING "%s: kobj create error\n", __func__);
 
2869	init_rootfs();
2870	init_mount_tree();
2871}
2872
2873void put_mnt_ns(struct mnt_namespace *ns)
2874{
2875	if (!atomic_dec_and_test(&ns->count))
2876		return;
2877	drop_collected_mounts(&ns->root->mnt);
2878	free_mnt_ns(ns);
2879}
2880
2881struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2882{
2883	struct vfsmount *mnt;
2884	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2885	if (!IS_ERR(mnt)) {
2886		/*
2887		 * it is a longterm mount, don't release mnt until
2888		 * we unmount before file sys is unregistered
2889		*/
2890		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2891	}
2892	return mnt;
2893}
2894EXPORT_SYMBOL_GPL(kern_mount_data);
2895
2896void kern_unmount(struct vfsmount *mnt)
2897{
2898	/* release long term mount so mount point can be released */
2899	if (!IS_ERR_OR_NULL(mnt)) {
2900		real_mount(mnt)->mnt_ns = NULL;
2901		synchronize_rcu();	/* yecchhh... */
2902		mntput(mnt);
2903	}
2904}
2905EXPORT_SYMBOL(kern_unmount);
2906
 
 
 
 
 
 
 
 
 
 
 
 
 
2907bool our_mnt(struct vfsmount *mnt)
2908{
2909	return check_mnt(real_mount(mnt));
2910}
2911
2912bool current_chrooted(void)
2913{
2914	/* Does the current process have a non-standard root */
2915	struct path ns_root;
2916	struct path fs_root;
2917	bool chrooted;
2918
2919	/* Find the namespace root */
2920	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2921	ns_root.dentry = ns_root.mnt->mnt_root;
2922	path_get(&ns_root);
2923	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2924		;
2925
2926	get_fs_root(current->fs, &fs_root);
2927
2928	chrooted = !path_equal(&fs_root, &ns_root);
2929
2930	path_put(&fs_root);
2931	path_put(&ns_root);
2932
2933	return chrooted;
2934}
2935
2936bool fs_fully_visible(struct file_system_type *type)
 
 
2937{
2938	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2939	struct mount *mnt;
2940	bool visible = false;
2941
2942	if (unlikely(!ns))
2943		return false;
2944
2945	down_read(&namespace_sem);
 
2946	list_for_each_entry(mnt, &ns->list, mnt_list) {
2947		struct mount *child;
2948		if (mnt->mnt.mnt_sb->s_type != type)
 
 
2949			continue;
2950
2951		/* This mount is not fully visible if there are any child mounts
2952		 * that cover anything except for empty directories.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2953		 */
2954		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2955			struct inode *inode = child->mnt_mountpoint->d_inode;
2956			if (!S_ISDIR(inode->i_mode))
2957				goto next;
2958			if (inode->i_nlink > 2)
 
 
2959				goto next;
2960		}
 
 
 
2961		visible = true;
2962		goto found;
2963	next:	;
2964	}
2965found:
 
2966	up_read(&namespace_sem);
2967	return visible;
2968}
2969
2970static void *mntns_get(struct task_struct *task)
2971{
2972	struct mnt_namespace *ns = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973	struct nsproxy *nsproxy;
2974
2975	rcu_read_lock();
2976	nsproxy = task_nsproxy(task);
2977	if (nsproxy) {
2978		ns = nsproxy->mnt_ns;
2979		get_mnt_ns(ns);
2980	}
2981	rcu_read_unlock();
2982
2983	return ns;
2984}
2985
2986static void mntns_put(void *ns)
2987{
2988	put_mnt_ns(ns);
2989}
2990
2991static int mntns_install(struct nsproxy *nsproxy, void *ns)
2992{
2993	struct fs_struct *fs = current->fs;
2994	struct mnt_namespace *mnt_ns = ns;
 
 
2995	struct path root;
 
2996
2997	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2998	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2999	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3000		return -EPERM;
3001
 
 
 
3002	if (fs->users != 1)
3003		return -EINVAL;
3004
3005	get_mnt_ns(mnt_ns);
3006	put_mnt_ns(nsproxy->mnt_ns);
3007	nsproxy->mnt_ns = mnt_ns;
3008
3009	/* Find the root */
3010	root.mnt    = &mnt_ns->root->mnt;
3011	root.dentry = mnt_ns->root->mnt.mnt_root;
3012	path_get(&root);
3013	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3014		;
 
 
 
 
 
3015
3016	/* Update the pwd and root */
3017	set_fs_pwd(fs, &root);
3018	set_fs_root(fs, &root);
3019
3020	path_put(&root);
3021	return 0;
3022}
3023
3024static unsigned int mntns_inum(void *ns)
3025{
3026	struct mnt_namespace *mnt_ns = ns;
3027	return mnt_ns->proc_inum;
3028}
3029
3030const struct proc_ns_operations mntns_operations = {
3031	.name		= "mnt",
3032	.type		= CLONE_NEWNS,
3033	.get		= mntns_get,
3034	.put		= mntns_put,
3035	.install	= mntns_install,
3036	.inum		= mntns_inum,
3037};