Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385}
386
387static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389{
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408}
409
410/**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
417int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419{
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447}
448
449/**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
456int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458{
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491}
492
493/**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
497static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498{
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524}
525
526/**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
532void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533{
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545}
546
547/**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
551static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552{
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607}
608
609/**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
616void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617{
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628}
629
630/**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
644static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647{
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688update_itr_done:
689 return retval;
690}
691
692static int igbvf_range_to_itr(enum latency_range current_range)
693{
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712}
713
714static void igbvf_set_itr(struct igbvf_adapter *adapter)
715{
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765}
766
767/**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
773static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774{
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851}
852
853static irqreturn_t igbvf_msix_other(int irq, void *data)
854{
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868}
869
870static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871{
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896}
897
898static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899{
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921}
922
923#define IGBVF_NO_QUEUE -1
924
925static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927{
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966}
967
968/**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
975static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976{
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001}
1002
1003static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004{
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010}
1011
1012/**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
1019static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041}
1042
1043/**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
1050static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051{
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto out;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto out;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090out:
1091 return err;
1092}
1093
1094/**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
1098static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099{
1100 struct net_device *netdev = adapter->netdev;
1101
1102 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->tx_ring)
1104 return -ENOMEM;
1105
1106 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->rx_ring) {
1108 kfree(adapter->tx_ring);
1109 return -ENOMEM;
1110 }
1111
1112 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1113
1114 return 0;
1115}
1116
1117/**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
1124static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125{
1126 int err = -1;
1127
1128 /* igbvf supports msi-x only */
1129 if (adapter->msix_entries)
1130 err = igbvf_request_msix(adapter);
1131
1132 if (!err)
1133 return err;
1134
1135 dev_err(&adapter->pdev->dev,
1136 "Unable to allocate interrupt, Error: %d\n", err);
1137
1138 return err;
1139}
1140
1141static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142{
1143 struct net_device *netdev = adapter->netdev;
1144 int vector;
1145
1146 if (adapter->msix_entries) {
1147 for (vector = 0; vector < 3; vector++)
1148 free_irq(adapter->msix_entries[vector].vector, netdev);
1149 }
1150}
1151
1152/**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
1156static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157{
1158 struct e1000_hw *hw = &adapter->hw;
1159
1160 ew32(EIMC, ~0);
1161
1162 if (adapter->msix_entries)
1163 ew32(EIAC, 0);
1164}
1165
1166/**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 if (work_done == budget)
1194 return budget;
1195
1196 /* Exit the polling mode, but don't re-enable interrupts if stack might
1197 * poll us due to busy-polling
1198 */
1199 if (likely(napi_complete_done(napi, work_done))) {
1200 if (adapter->requested_itr & 3)
1201 igbvf_set_itr(adapter);
1202
1203 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 ew32(EIMS, adapter->rx_ring->eims_value);
1205 }
1206
1207 return work_done;
1208}
1209
1210/**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
1216static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217{
1218 int max_frame_size;
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223 spin_lock_bh(&hw->mbx_lock);
1224
1225 e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227 spin_unlock_bh(&hw->mbx_lock);
1228}
1229
1230static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 __be16 proto, u16 vid)
1232{
1233 struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 spin_lock_bh(&hw->mbx_lock);
1237
1238 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 spin_unlock_bh(&hw->mbx_lock);
1241 return -EINVAL;
1242 }
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245
1246 set_bit(vid, adapter->active_vlans);
1247 return 0;
1248}
1249
1250static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 __be16 proto, u16 vid)
1252{
1253 struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255
1256 spin_lock_bh(&hw->mbx_lock);
1257
1258 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 dev_err(&adapter->pdev->dev,
1260 "Failed to remove vlan id %d\n", vid);
1261 spin_unlock_bh(&hw->mbx_lock);
1262 return -EINVAL;
1263 }
1264
1265 spin_unlock_bh(&hw->mbx_lock);
1266
1267 clear_bit(vid, adapter->active_vlans);
1268 return 0;
1269}
1270
1271static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272{
1273 u16 vid;
1274
1275 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277}
1278
1279/**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
1285static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286{
1287 struct e1000_hw *hw = &adapter->hw;
1288 struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 u64 tdba;
1290 u32 txdctl, dca_txctrl;
1291
1292 /* disable transmits */
1293 txdctl = er32(TXDCTL(0));
1294 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 e1e_flush();
1296 msleep(10);
1297
1298 /* Setup the HW Tx Head and Tail descriptor pointers */
1299 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 tdba = tx_ring->dma;
1301 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 ew32(TDBAH(0), (tdba >> 32));
1303 ew32(TDH(0), 0);
1304 ew32(TDT(0), 0);
1305 tx_ring->head = E1000_TDH(0);
1306 tx_ring->tail = E1000_TDT(0);
1307
1308 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1309 * MUST be delivered in order or it will completely screw up
1310 * our bookkeeping.
1311 */
1312 dca_txctrl = er32(DCA_TXCTRL(0));
1313 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316 /* enable transmits */
1317 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 ew32(TXDCTL(0), txdctl);
1319
1320 /* Setup Transmit Descriptor Settings for eop descriptor */
1321 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323 /* enable Report Status bit */
1324 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325}
1326
1327/**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
1331static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332{
1333 struct e1000_hw *hw = &adapter->hw;
1334 u32 srrctl = 0;
1335
1336 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 E1000_SRRCTL_BSIZEHDR_MASK |
1338 E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340 /* Enable queue drop to avoid head of line blocking */
1341 srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343 /* Setup buffer sizes */
1344 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347 if (adapter->rx_buffer_len < 2048) {
1348 adapter->rx_ps_hdr_size = 0;
1349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 } else {
1351 adapter->rx_ps_hdr_size = 128;
1352 srrctl |= adapter->rx_ps_hdr_size <<
1353 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 }
1356
1357 ew32(SRRCTL(0), srrctl);
1358}
1359
1360/**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
1366static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 u64 rdba;
1371 u32 rxdctl;
1372
1373 /* disable receives */
1374 rxdctl = er32(RXDCTL(0));
1375 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 e1e_flush();
1377 msleep(10);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 spin_lock_bh(&hw->mbx_lock);
1433
1434 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436 spin_unlock_bh(&hw->mbx_lock);
1437 kfree(mta_list);
1438}
1439
1440/**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
1447static int igbvf_set_uni(struct net_device *netdev)
1448{
1449 struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 pr_err("Too many unicast filters - No Space\n");
1454 return -ENOSPC;
1455 }
1456
1457 spin_lock_bh(&hw->mbx_lock);
1458
1459 /* Clear all unicast MAC filters */
1460 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462 spin_unlock_bh(&hw->mbx_lock);
1463
1464 if (!netdev_uc_empty(netdev)) {
1465 struct netdev_hw_addr *ha;
1466
1467 /* Add MAC filters one by one */
1468 netdev_for_each_uc_addr(ha, netdev) {
1469 spin_lock_bh(&hw->mbx_lock);
1470
1471 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 ha->addr);
1473
1474 spin_unlock_bh(&hw->mbx_lock);
1475 udelay(200);
1476 }
1477 }
1478
1479 return 0;
1480}
1481
1482static void igbvf_set_rx_mode(struct net_device *netdev)
1483{
1484 igbvf_set_multi(netdev);
1485 igbvf_set_uni(netdev);
1486}
1487
1488/**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
1492static void igbvf_configure(struct igbvf_adapter *adapter)
1493{
1494 igbvf_set_rx_mode(adapter->netdev);
1495
1496 igbvf_restore_vlan(adapter);
1497
1498 igbvf_configure_tx(adapter);
1499 igbvf_setup_srrctl(adapter);
1500 igbvf_configure_rx(adapter);
1501 igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 igbvf_desc_unused(adapter->rx_ring));
1503}
1504
1505/* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
1513static void igbvf_reset(struct igbvf_adapter *adapter)
1514{
1515 struct e1000_mac_info *mac = &adapter->hw.mac;
1516 struct net_device *netdev = adapter->netdev;
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 spin_lock_bh(&hw->mbx_lock);
1520
1521 /* Allow time for pending master requests to run */
1522 if (mac->ops.reset_hw(hw))
1523 dev_warn(&adapter->pdev->dev, "PF still resetting\n");
1524
1525 mac->ops.init_hw(hw);
1526
1527 spin_unlock_bh(&hw->mbx_lock);
1528
1529 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1531 netdev->addr_len);
1532 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1533 netdev->addr_len);
1534 }
1535
1536 adapter->last_reset = jiffies;
1537}
1538
1539int igbvf_up(struct igbvf_adapter *adapter)
1540{
1541 struct e1000_hw *hw = &adapter->hw;
1542
1543 /* hardware has been reset, we need to reload some things */
1544 igbvf_configure(adapter);
1545
1546 clear_bit(__IGBVF_DOWN, &adapter->state);
1547
1548 napi_enable(&adapter->rx_ring->napi);
1549 if (adapter->msix_entries)
1550 igbvf_configure_msix(adapter);
1551
1552 /* Clear any pending interrupts. */
1553 er32(EICR);
1554 igbvf_irq_enable(adapter);
1555
1556 /* start the watchdog */
1557 hw->mac.get_link_status = 1;
1558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1559
1560 return 0;
1561}
1562
1563void igbvf_down(struct igbvf_adapter *adapter)
1564{
1565 struct net_device *netdev = adapter->netdev;
1566 struct e1000_hw *hw = &adapter->hw;
1567 u32 rxdctl, txdctl;
1568
1569 /* signal that we're down so the interrupt handler does not
1570 * reschedule our watchdog timer
1571 */
1572 set_bit(__IGBVF_DOWN, &adapter->state);
1573
1574 /* disable receives in the hardware */
1575 rxdctl = er32(RXDCTL(0));
1576 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1577
1578 netif_carrier_off(netdev);
1579 netif_stop_queue(netdev);
1580
1581 /* disable transmits in the hardware */
1582 txdctl = er32(TXDCTL(0));
1583 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1584
1585 /* flush both disables and wait for them to finish */
1586 e1e_flush();
1587 msleep(10);
1588
1589 napi_disable(&adapter->rx_ring->napi);
1590
1591 igbvf_irq_disable(adapter);
1592
1593 del_timer_sync(&adapter->watchdog_timer);
1594
1595 /* record the stats before reset*/
1596 igbvf_update_stats(adapter);
1597
1598 adapter->link_speed = 0;
1599 adapter->link_duplex = 0;
1600
1601 igbvf_reset(adapter);
1602 igbvf_clean_tx_ring(adapter->tx_ring);
1603 igbvf_clean_rx_ring(adapter->rx_ring);
1604}
1605
1606void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1607{
1608 might_sleep();
1609 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1610 usleep_range(1000, 2000);
1611 igbvf_down(adapter);
1612 igbvf_up(adapter);
1613 clear_bit(__IGBVF_RESETTING, &adapter->state);
1614}
1615
1616/**
1617 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1618 * @adapter: board private structure to initialize
1619 *
1620 * igbvf_sw_init initializes the Adapter private data structure.
1621 * Fields are initialized based on PCI device information and
1622 * OS network device settings (MTU size).
1623 **/
1624static int igbvf_sw_init(struct igbvf_adapter *adapter)
1625{
1626 struct net_device *netdev = adapter->netdev;
1627 s32 rc;
1628
1629 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1630 adapter->rx_ps_hdr_size = 0;
1631 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1632 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1633
1634 adapter->tx_int_delay = 8;
1635 adapter->tx_abs_int_delay = 32;
1636 adapter->rx_int_delay = 0;
1637 adapter->rx_abs_int_delay = 8;
1638 adapter->requested_itr = 3;
1639 adapter->current_itr = IGBVF_START_ITR;
1640
1641 /* Set various function pointers */
1642 adapter->ei->init_ops(&adapter->hw);
1643
1644 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1645 if (rc)
1646 return rc;
1647
1648 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1649 if (rc)
1650 return rc;
1651
1652 igbvf_set_interrupt_capability(adapter);
1653
1654 if (igbvf_alloc_queues(adapter))
1655 return -ENOMEM;
1656
1657 spin_lock_init(&adapter->tx_queue_lock);
1658
1659 /* Explicitly disable IRQ since the NIC can be in any state. */
1660 igbvf_irq_disable(adapter);
1661
1662 spin_lock_init(&adapter->stats_lock);
1663 spin_lock_init(&adapter->hw.mbx_lock);
1664
1665 set_bit(__IGBVF_DOWN, &adapter->state);
1666 return 0;
1667}
1668
1669static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1670{
1671 struct e1000_hw *hw = &adapter->hw;
1672
1673 adapter->stats.last_gprc = er32(VFGPRC);
1674 adapter->stats.last_gorc = er32(VFGORC);
1675 adapter->stats.last_gptc = er32(VFGPTC);
1676 adapter->stats.last_gotc = er32(VFGOTC);
1677 adapter->stats.last_mprc = er32(VFMPRC);
1678 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1679 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1680 adapter->stats.last_gorlbc = er32(VFGORLBC);
1681 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1682
1683 adapter->stats.base_gprc = er32(VFGPRC);
1684 adapter->stats.base_gorc = er32(VFGORC);
1685 adapter->stats.base_gptc = er32(VFGPTC);
1686 adapter->stats.base_gotc = er32(VFGOTC);
1687 adapter->stats.base_mprc = er32(VFMPRC);
1688 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1689 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1690 adapter->stats.base_gorlbc = er32(VFGORLBC);
1691 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1692}
1693
1694/**
1695 * igbvf_open - Called when a network interface is made active
1696 * @netdev: network interface device structure
1697 *
1698 * Returns 0 on success, negative value on failure
1699 *
1700 * The open entry point is called when a network interface is made
1701 * active by the system (IFF_UP). At this point all resources needed
1702 * for transmit and receive operations are allocated, the interrupt
1703 * handler is registered with the OS, the watchdog timer is started,
1704 * and the stack is notified that the interface is ready.
1705 **/
1706static int igbvf_open(struct net_device *netdev)
1707{
1708 struct igbvf_adapter *adapter = netdev_priv(netdev);
1709 struct e1000_hw *hw = &adapter->hw;
1710 int err;
1711
1712 /* disallow open during test */
1713 if (test_bit(__IGBVF_TESTING, &adapter->state))
1714 return -EBUSY;
1715
1716 /* allocate transmit descriptors */
1717 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1718 if (err)
1719 goto err_setup_tx;
1720
1721 /* allocate receive descriptors */
1722 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1723 if (err)
1724 goto err_setup_rx;
1725
1726 /* before we allocate an interrupt, we must be ready to handle it.
1727 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1728 * as soon as we call pci_request_irq, so we have to setup our
1729 * clean_rx handler before we do so.
1730 */
1731 igbvf_configure(adapter);
1732
1733 err = igbvf_request_irq(adapter);
1734 if (err)
1735 goto err_req_irq;
1736
1737 /* From here on the code is the same as igbvf_up() */
1738 clear_bit(__IGBVF_DOWN, &adapter->state);
1739
1740 napi_enable(&adapter->rx_ring->napi);
1741
1742 /* clear any pending interrupts */
1743 er32(EICR);
1744
1745 igbvf_irq_enable(adapter);
1746
1747 /* start the watchdog */
1748 hw->mac.get_link_status = 1;
1749 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1750
1751 return 0;
1752
1753err_req_irq:
1754 igbvf_free_rx_resources(adapter->rx_ring);
1755err_setup_rx:
1756 igbvf_free_tx_resources(adapter->tx_ring);
1757err_setup_tx:
1758 igbvf_reset(adapter);
1759
1760 return err;
1761}
1762
1763/**
1764 * igbvf_close - Disables a network interface
1765 * @netdev: network interface device structure
1766 *
1767 * Returns 0, this is not allowed to fail
1768 *
1769 * The close entry point is called when an interface is de-activated
1770 * by the OS. The hardware is still under the drivers control, but
1771 * needs to be disabled. A global MAC reset is issued to stop the
1772 * hardware, and all transmit and receive resources are freed.
1773 **/
1774static int igbvf_close(struct net_device *netdev)
1775{
1776 struct igbvf_adapter *adapter = netdev_priv(netdev);
1777
1778 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1779 igbvf_down(adapter);
1780
1781 igbvf_free_irq(adapter);
1782
1783 igbvf_free_tx_resources(adapter->tx_ring);
1784 igbvf_free_rx_resources(adapter->rx_ring);
1785
1786 return 0;
1787}
1788
1789/**
1790 * igbvf_set_mac - Change the Ethernet Address of the NIC
1791 * @netdev: network interface device structure
1792 * @p: pointer to an address structure
1793 *
1794 * Returns 0 on success, negative on failure
1795 **/
1796static int igbvf_set_mac(struct net_device *netdev, void *p)
1797{
1798 struct igbvf_adapter *adapter = netdev_priv(netdev);
1799 struct e1000_hw *hw = &adapter->hw;
1800 struct sockaddr *addr = p;
1801
1802 if (!is_valid_ether_addr(addr->sa_data))
1803 return -EADDRNOTAVAIL;
1804
1805 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1806
1807 spin_lock_bh(&hw->mbx_lock);
1808
1809 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1810
1811 spin_unlock_bh(&hw->mbx_lock);
1812
1813 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1814 return -EADDRNOTAVAIL;
1815
1816 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1817
1818 return 0;
1819}
1820
1821#define UPDATE_VF_COUNTER(reg, name) \
1822{ \
1823 u32 current_counter = er32(reg); \
1824 if (current_counter < adapter->stats.last_##name) \
1825 adapter->stats.name += 0x100000000LL; \
1826 adapter->stats.last_##name = current_counter; \
1827 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1828 adapter->stats.name |= current_counter; \
1829}
1830
1831/**
1832 * igbvf_update_stats - Update the board statistics counters
1833 * @adapter: board private structure
1834**/
1835void igbvf_update_stats(struct igbvf_adapter *adapter)
1836{
1837 struct e1000_hw *hw = &adapter->hw;
1838 struct pci_dev *pdev = adapter->pdev;
1839
1840 /* Prevent stats update while adapter is being reset, link is down
1841 * or if the pci connection is down.
1842 */
1843 if (adapter->link_speed == 0)
1844 return;
1845
1846 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1847 return;
1848
1849 if (pci_channel_offline(pdev))
1850 return;
1851
1852 UPDATE_VF_COUNTER(VFGPRC, gprc);
1853 UPDATE_VF_COUNTER(VFGORC, gorc);
1854 UPDATE_VF_COUNTER(VFGPTC, gptc);
1855 UPDATE_VF_COUNTER(VFGOTC, gotc);
1856 UPDATE_VF_COUNTER(VFMPRC, mprc);
1857 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1858 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1859 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1860 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1861
1862 /* Fill out the OS statistics structure */
1863 adapter->netdev->stats.multicast = adapter->stats.mprc;
1864}
1865
1866static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1867{
1868 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1869 adapter->link_speed,
1870 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1871}
1872
1873static bool igbvf_has_link(struct igbvf_adapter *adapter)
1874{
1875 struct e1000_hw *hw = &adapter->hw;
1876 s32 ret_val = E1000_SUCCESS;
1877 bool link_active;
1878
1879 /* If interface is down, stay link down */
1880 if (test_bit(__IGBVF_DOWN, &adapter->state))
1881 return false;
1882
1883 spin_lock_bh(&hw->mbx_lock);
1884
1885 ret_val = hw->mac.ops.check_for_link(hw);
1886
1887 spin_unlock_bh(&hw->mbx_lock);
1888
1889 link_active = !hw->mac.get_link_status;
1890
1891 /* if check for link returns error we will need to reset */
1892 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1893 schedule_work(&adapter->reset_task);
1894
1895 return link_active;
1896}
1897
1898/**
1899 * igbvf_watchdog - Timer Call-back
1900 * @t: timer list pointer containing private struct
1901 **/
1902static void igbvf_watchdog(struct timer_list *t)
1903{
1904 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1905
1906 /* Do the rest outside of interrupt context */
1907 schedule_work(&adapter->watchdog_task);
1908}
1909
1910static void igbvf_watchdog_task(struct work_struct *work)
1911{
1912 struct igbvf_adapter *adapter = container_of(work,
1913 struct igbvf_adapter,
1914 watchdog_task);
1915 struct net_device *netdev = adapter->netdev;
1916 struct e1000_mac_info *mac = &adapter->hw.mac;
1917 struct igbvf_ring *tx_ring = adapter->tx_ring;
1918 struct e1000_hw *hw = &adapter->hw;
1919 u32 link;
1920 int tx_pending = 0;
1921
1922 link = igbvf_has_link(adapter);
1923
1924 if (link) {
1925 if (!netif_carrier_ok(netdev)) {
1926 mac->ops.get_link_up_info(&adapter->hw,
1927 &adapter->link_speed,
1928 &adapter->link_duplex);
1929 igbvf_print_link_info(adapter);
1930
1931 netif_carrier_on(netdev);
1932 netif_wake_queue(netdev);
1933 }
1934 } else {
1935 if (netif_carrier_ok(netdev)) {
1936 adapter->link_speed = 0;
1937 adapter->link_duplex = 0;
1938 dev_info(&adapter->pdev->dev, "Link is Down\n");
1939 netif_carrier_off(netdev);
1940 netif_stop_queue(netdev);
1941 }
1942 }
1943
1944 if (netif_carrier_ok(netdev)) {
1945 igbvf_update_stats(adapter);
1946 } else {
1947 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1948 tx_ring->count);
1949 if (tx_pending) {
1950 /* We've lost link, so the controller stops DMA,
1951 * but we've got queued Tx work that's never going
1952 * to get done, so reset controller to flush Tx.
1953 * (Do the reset outside of interrupt context).
1954 */
1955 adapter->tx_timeout_count++;
1956 schedule_work(&adapter->reset_task);
1957 }
1958 }
1959
1960 /* Cause software interrupt to ensure Rx ring is cleaned */
1961 ew32(EICS, adapter->rx_ring->eims_value);
1962
1963 /* Reset the timer */
1964 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1965 mod_timer(&adapter->watchdog_timer,
1966 round_jiffies(jiffies + (2 * HZ)));
1967}
1968
1969#define IGBVF_TX_FLAGS_CSUM 0x00000001
1970#define IGBVF_TX_FLAGS_VLAN 0x00000002
1971#define IGBVF_TX_FLAGS_TSO 0x00000004
1972#define IGBVF_TX_FLAGS_IPV4 0x00000008
1973#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1974#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1975
1976static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1977 u32 type_tucmd, u32 mss_l4len_idx)
1978{
1979 struct e1000_adv_tx_context_desc *context_desc;
1980 struct igbvf_buffer *buffer_info;
1981 u16 i = tx_ring->next_to_use;
1982
1983 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1984 buffer_info = &tx_ring->buffer_info[i];
1985
1986 i++;
1987 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988
1989 /* set bits to identify this as an advanced context descriptor */
1990 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1991
1992 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1993 context_desc->seqnum_seed = 0;
1994 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1995 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1996
1997 buffer_info->time_stamp = jiffies;
1998 buffer_info->dma = 0;
1999}
2000
2001static int igbvf_tso(struct igbvf_ring *tx_ring,
2002 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2003{
2004 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2005 union {
2006 struct iphdr *v4;
2007 struct ipv6hdr *v6;
2008 unsigned char *hdr;
2009 } ip;
2010 union {
2011 struct tcphdr *tcp;
2012 unsigned char *hdr;
2013 } l4;
2014 u32 paylen, l4_offset;
2015 int err;
2016
2017 if (skb->ip_summed != CHECKSUM_PARTIAL)
2018 return 0;
2019
2020 if (!skb_is_gso(skb))
2021 return 0;
2022
2023 err = skb_cow_head(skb, 0);
2024 if (err < 0)
2025 return err;
2026
2027 ip.hdr = skb_network_header(skb);
2028 l4.hdr = skb_checksum_start(skb);
2029
2030 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2031 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2032
2033 /* initialize outer IP header fields */
2034 if (ip.v4->version == 4) {
2035 unsigned char *csum_start = skb_checksum_start(skb);
2036 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2037
2038 /* IP header will have to cancel out any data that
2039 * is not a part of the outer IP header
2040 */
2041 ip.v4->check = csum_fold(csum_partial(trans_start,
2042 csum_start - trans_start,
2043 0));
2044 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2045
2046 ip.v4->tot_len = 0;
2047 } else {
2048 ip.v6->payload_len = 0;
2049 }
2050
2051 /* determine offset of inner transport header */
2052 l4_offset = l4.hdr - skb->data;
2053
2054 /* compute length of segmentation header */
2055 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2056
2057 /* remove payload length from inner checksum */
2058 paylen = skb->len - l4_offset;
2059 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2060
2061 /* MSS L4LEN IDX */
2062 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2063 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2064
2065 /* VLAN MACLEN IPLEN */
2066 vlan_macip_lens = l4.hdr - ip.hdr;
2067 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2068 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2069
2070 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2071
2072 return 1;
2073}
2074
2075static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2076 u32 tx_flags, __be16 protocol)
2077{
2078 u32 vlan_macip_lens = 0;
2079 u32 type_tucmd = 0;
2080
2081 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2082csum_failed:
2083 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2084 return false;
2085 goto no_csum;
2086 }
2087
2088 switch (skb->csum_offset) {
2089 case offsetof(struct tcphdr, check):
2090 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2091 fallthrough;
2092 case offsetof(struct udphdr, check):
2093 break;
2094 case offsetof(struct sctphdr, checksum):
2095 /* validate that this is actually an SCTP request */
2096 if (skb_csum_is_sctp(skb)) {
2097 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2098 break;
2099 }
2100 fallthrough;
2101 default:
2102 skb_checksum_help(skb);
2103 goto csum_failed;
2104 }
2105
2106 vlan_macip_lens = skb_checksum_start_offset(skb) -
2107 skb_network_offset(skb);
2108no_csum:
2109 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2110 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2111
2112 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2113 return true;
2114}
2115
2116static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2117{
2118 struct igbvf_adapter *adapter = netdev_priv(netdev);
2119
2120 /* there is enough descriptors then we don't need to worry */
2121 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2122 return 0;
2123
2124 netif_stop_queue(netdev);
2125
2126 /* Herbert's original patch had:
2127 * smp_mb__after_netif_stop_queue();
2128 * but since that doesn't exist yet, just open code it.
2129 */
2130 smp_mb();
2131
2132 /* We need to check again just in case room has been made available */
2133 if (igbvf_desc_unused(adapter->tx_ring) < size)
2134 return -EBUSY;
2135
2136 netif_wake_queue(netdev);
2137
2138 ++adapter->restart_queue;
2139 return 0;
2140}
2141
2142#define IGBVF_MAX_TXD_PWR 16
2143#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2144
2145static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2146 struct igbvf_ring *tx_ring,
2147 struct sk_buff *skb)
2148{
2149 struct igbvf_buffer *buffer_info;
2150 struct pci_dev *pdev = adapter->pdev;
2151 unsigned int len = skb_headlen(skb);
2152 unsigned int count = 0, i;
2153 unsigned int f;
2154
2155 i = tx_ring->next_to_use;
2156
2157 buffer_info = &tx_ring->buffer_info[i];
2158 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2159 buffer_info->length = len;
2160 /* set time_stamp *before* dma to help avoid a possible race */
2161 buffer_info->time_stamp = jiffies;
2162 buffer_info->mapped_as_page = false;
2163 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2164 DMA_TO_DEVICE);
2165 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2166 goto dma_error;
2167
2168 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2169 const skb_frag_t *frag;
2170
2171 count++;
2172 i++;
2173 if (i == tx_ring->count)
2174 i = 0;
2175
2176 frag = &skb_shinfo(skb)->frags[f];
2177 len = skb_frag_size(frag);
2178
2179 buffer_info = &tx_ring->buffer_info[i];
2180 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2181 buffer_info->length = len;
2182 buffer_info->time_stamp = jiffies;
2183 buffer_info->mapped_as_page = true;
2184 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2185 DMA_TO_DEVICE);
2186 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2187 goto dma_error;
2188 }
2189
2190 tx_ring->buffer_info[i].skb = skb;
2191
2192 return ++count;
2193
2194dma_error:
2195 dev_err(&pdev->dev, "TX DMA map failed\n");
2196
2197 /* clear timestamp and dma mappings for failed buffer_info mapping */
2198 buffer_info->dma = 0;
2199 buffer_info->time_stamp = 0;
2200 buffer_info->length = 0;
2201 buffer_info->mapped_as_page = false;
2202 if (count)
2203 count--;
2204
2205 /* clear timestamp and dma mappings for remaining portion of packet */
2206 while (count--) {
2207 if (i == 0)
2208 i += tx_ring->count;
2209 i--;
2210 buffer_info = &tx_ring->buffer_info[i];
2211 igbvf_put_txbuf(adapter, buffer_info);
2212 }
2213
2214 return 0;
2215}
2216
2217static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2218 struct igbvf_ring *tx_ring,
2219 int tx_flags, int count,
2220 unsigned int first, u32 paylen,
2221 u8 hdr_len)
2222{
2223 union e1000_adv_tx_desc *tx_desc = NULL;
2224 struct igbvf_buffer *buffer_info;
2225 u32 olinfo_status = 0, cmd_type_len;
2226 unsigned int i;
2227
2228 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2229 E1000_ADVTXD_DCMD_DEXT);
2230
2231 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2232 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2233
2234 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2235 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2236
2237 /* insert tcp checksum */
2238 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2239
2240 /* insert ip checksum */
2241 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2242 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2243
2244 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2245 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2246 }
2247
2248 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2249
2250 i = tx_ring->next_to_use;
2251 while (count--) {
2252 buffer_info = &tx_ring->buffer_info[i];
2253 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2254 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2255 tx_desc->read.cmd_type_len =
2256 cpu_to_le32(cmd_type_len | buffer_info->length);
2257 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2258 i++;
2259 if (i == tx_ring->count)
2260 i = 0;
2261 }
2262
2263 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2264 /* Force memory writes to complete before letting h/w
2265 * know there are new descriptors to fetch. (Only
2266 * applicable for weak-ordered memory model archs,
2267 * such as IA-64).
2268 */
2269 wmb();
2270
2271 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2272 tx_ring->next_to_use = i;
2273 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2274}
2275
2276static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2277 struct net_device *netdev,
2278 struct igbvf_ring *tx_ring)
2279{
2280 struct igbvf_adapter *adapter = netdev_priv(netdev);
2281 unsigned int first, tx_flags = 0;
2282 u8 hdr_len = 0;
2283 int count = 0;
2284 int tso = 0;
2285 __be16 protocol = vlan_get_protocol(skb);
2286
2287 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2288 dev_kfree_skb_any(skb);
2289 return NETDEV_TX_OK;
2290 }
2291
2292 if (skb->len <= 0) {
2293 dev_kfree_skb_any(skb);
2294 return NETDEV_TX_OK;
2295 }
2296
2297 /* need: count + 4 desc gap to keep tail from touching
2298 * + 2 desc gap to keep tail from touching head,
2299 * + 1 desc for skb->data,
2300 * + 1 desc for context descriptor,
2301 * head, otherwise try next time
2302 */
2303 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2304 /* this is a hard error */
2305 return NETDEV_TX_BUSY;
2306 }
2307
2308 if (skb_vlan_tag_present(skb)) {
2309 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2310 tx_flags |= (skb_vlan_tag_get(skb) <<
2311 IGBVF_TX_FLAGS_VLAN_SHIFT);
2312 }
2313
2314 if (protocol == htons(ETH_P_IP))
2315 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2316
2317 first = tx_ring->next_to_use;
2318
2319 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2320 if (unlikely(tso < 0)) {
2321 dev_kfree_skb_any(skb);
2322 return NETDEV_TX_OK;
2323 }
2324
2325 if (tso)
2326 tx_flags |= IGBVF_TX_FLAGS_TSO;
2327 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2328 (skb->ip_summed == CHECKSUM_PARTIAL))
2329 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2330
2331 /* count reflects descriptors mapped, if 0 then mapping error
2332 * has occurred and we need to rewind the descriptor queue
2333 */
2334 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2335
2336 if (count) {
2337 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2338 first, skb->len, hdr_len);
2339 /* Make sure there is space in the ring for the next send. */
2340 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2341 } else {
2342 dev_kfree_skb_any(skb);
2343 tx_ring->buffer_info[first].time_stamp = 0;
2344 tx_ring->next_to_use = first;
2345 }
2346
2347 return NETDEV_TX_OK;
2348}
2349
2350static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2351 struct net_device *netdev)
2352{
2353 struct igbvf_adapter *adapter = netdev_priv(netdev);
2354 struct igbvf_ring *tx_ring;
2355
2356 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2357 dev_kfree_skb_any(skb);
2358 return NETDEV_TX_OK;
2359 }
2360
2361 tx_ring = &adapter->tx_ring[0];
2362
2363 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2364}
2365
2366/**
2367 * igbvf_tx_timeout - Respond to a Tx Hang
2368 * @netdev: network interface device structure
2369 * @txqueue: queue timing out (unused)
2370 **/
2371static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2372{
2373 struct igbvf_adapter *adapter = netdev_priv(netdev);
2374
2375 /* Do the reset outside of interrupt context */
2376 adapter->tx_timeout_count++;
2377 schedule_work(&adapter->reset_task);
2378}
2379
2380static void igbvf_reset_task(struct work_struct *work)
2381{
2382 struct igbvf_adapter *adapter;
2383
2384 adapter = container_of(work, struct igbvf_adapter, reset_task);
2385
2386 igbvf_reinit_locked(adapter);
2387}
2388
2389/**
2390 * igbvf_change_mtu - Change the Maximum Transfer Unit
2391 * @netdev: network interface device structure
2392 * @new_mtu: new value for maximum frame size
2393 *
2394 * Returns 0 on success, negative on failure
2395 **/
2396static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2397{
2398 struct igbvf_adapter *adapter = netdev_priv(netdev);
2399 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2400
2401 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2402 usleep_range(1000, 2000);
2403 /* igbvf_down has a dependency on max_frame_size */
2404 adapter->max_frame_size = max_frame;
2405 if (netif_running(netdev))
2406 igbvf_down(adapter);
2407
2408 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2409 * means we reserve 2 more, this pushes us to allocate from the next
2410 * larger slab size.
2411 * i.e. RXBUFFER_2048 --> size-4096 slab
2412 * However with the new *_jumbo_rx* routines, jumbo receives will use
2413 * fragmented skbs
2414 */
2415
2416 if (max_frame <= 1024)
2417 adapter->rx_buffer_len = 1024;
2418 else if (max_frame <= 2048)
2419 adapter->rx_buffer_len = 2048;
2420 else
2421#if (PAGE_SIZE / 2) > 16384
2422 adapter->rx_buffer_len = 16384;
2423#else
2424 adapter->rx_buffer_len = PAGE_SIZE / 2;
2425#endif
2426
2427 /* adjust allocation if LPE protects us, and we aren't using SBP */
2428 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2429 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2430 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2431 ETH_FCS_LEN;
2432
2433 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2434 netdev->mtu, new_mtu);
2435 netdev->mtu = new_mtu;
2436
2437 if (netif_running(netdev))
2438 igbvf_up(adapter);
2439 else
2440 igbvf_reset(adapter);
2441
2442 clear_bit(__IGBVF_RESETTING, &adapter->state);
2443
2444 return 0;
2445}
2446
2447static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2448{
2449 switch (cmd) {
2450 default:
2451 return -EOPNOTSUPP;
2452 }
2453}
2454
2455static int igbvf_suspend(struct device *dev_d)
2456{
2457 struct net_device *netdev = dev_get_drvdata(dev_d);
2458 struct igbvf_adapter *adapter = netdev_priv(netdev);
2459
2460 netif_device_detach(netdev);
2461
2462 if (netif_running(netdev)) {
2463 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2464 igbvf_down(adapter);
2465 igbvf_free_irq(adapter);
2466 }
2467
2468 return 0;
2469}
2470
2471static int __maybe_unused igbvf_resume(struct device *dev_d)
2472{
2473 struct pci_dev *pdev = to_pci_dev(dev_d);
2474 struct net_device *netdev = pci_get_drvdata(pdev);
2475 struct igbvf_adapter *adapter = netdev_priv(netdev);
2476 u32 err;
2477
2478 pci_set_master(pdev);
2479
2480 if (netif_running(netdev)) {
2481 err = igbvf_request_irq(adapter);
2482 if (err)
2483 return err;
2484 }
2485
2486 igbvf_reset(adapter);
2487
2488 if (netif_running(netdev))
2489 igbvf_up(adapter);
2490
2491 netif_device_attach(netdev);
2492
2493 return 0;
2494}
2495
2496static void igbvf_shutdown(struct pci_dev *pdev)
2497{
2498 igbvf_suspend(&pdev->dev);
2499}
2500
2501#ifdef CONFIG_NET_POLL_CONTROLLER
2502/* Polling 'interrupt' - used by things like netconsole to send skbs
2503 * without having to re-enable interrupts. It's not called while
2504 * the interrupt routine is executing.
2505 */
2506static void igbvf_netpoll(struct net_device *netdev)
2507{
2508 struct igbvf_adapter *adapter = netdev_priv(netdev);
2509
2510 disable_irq(adapter->pdev->irq);
2511
2512 igbvf_clean_tx_irq(adapter->tx_ring);
2513
2514 enable_irq(adapter->pdev->irq);
2515}
2516#endif
2517
2518/**
2519 * igbvf_io_error_detected - called when PCI error is detected
2520 * @pdev: Pointer to PCI device
2521 * @state: The current pci connection state
2522 *
2523 * This function is called after a PCI bus error affecting
2524 * this device has been detected.
2525 */
2526static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2527 pci_channel_state_t state)
2528{
2529 struct net_device *netdev = pci_get_drvdata(pdev);
2530 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532 netif_device_detach(netdev);
2533
2534 if (state == pci_channel_io_perm_failure)
2535 return PCI_ERS_RESULT_DISCONNECT;
2536
2537 if (netif_running(netdev))
2538 igbvf_down(adapter);
2539 pci_disable_device(pdev);
2540
2541 /* Request a slot slot reset. */
2542 return PCI_ERS_RESULT_NEED_RESET;
2543}
2544
2545/**
2546 * igbvf_io_slot_reset - called after the pci bus has been reset.
2547 * @pdev: Pointer to PCI device
2548 *
2549 * Restart the card from scratch, as if from a cold-boot. Implementation
2550 * resembles the first-half of the igbvf_resume routine.
2551 */
2552static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2553{
2554 struct net_device *netdev = pci_get_drvdata(pdev);
2555 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557 if (pci_enable_device_mem(pdev)) {
2558 dev_err(&pdev->dev,
2559 "Cannot re-enable PCI device after reset.\n");
2560 return PCI_ERS_RESULT_DISCONNECT;
2561 }
2562 pci_set_master(pdev);
2563
2564 igbvf_reset(adapter);
2565
2566 return PCI_ERS_RESULT_RECOVERED;
2567}
2568
2569/**
2570 * igbvf_io_resume - called when traffic can start flowing again.
2571 * @pdev: Pointer to PCI device
2572 *
2573 * This callback is called when the error recovery driver tells us that
2574 * its OK to resume normal operation. Implementation resembles the
2575 * second-half of the igbvf_resume routine.
2576 */
2577static void igbvf_io_resume(struct pci_dev *pdev)
2578{
2579 struct net_device *netdev = pci_get_drvdata(pdev);
2580 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582 if (netif_running(netdev)) {
2583 if (igbvf_up(adapter)) {
2584 dev_err(&pdev->dev,
2585 "can't bring device back up after reset\n");
2586 return;
2587 }
2588 }
2589
2590 netif_device_attach(netdev);
2591}
2592
2593static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2594{
2595 struct e1000_hw *hw = &adapter->hw;
2596 struct net_device *netdev = adapter->netdev;
2597 struct pci_dev *pdev = adapter->pdev;
2598
2599 if (hw->mac.type == e1000_vfadapt_i350)
2600 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2601 else
2602 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2603 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2604}
2605
2606static int igbvf_set_features(struct net_device *netdev,
2607 netdev_features_t features)
2608{
2609 struct igbvf_adapter *adapter = netdev_priv(netdev);
2610
2611 if (features & NETIF_F_RXCSUM)
2612 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2613 else
2614 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2615
2616 return 0;
2617}
2618
2619#define IGBVF_MAX_MAC_HDR_LEN 127
2620#define IGBVF_MAX_NETWORK_HDR_LEN 511
2621
2622static netdev_features_t
2623igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2624 netdev_features_t features)
2625{
2626 unsigned int network_hdr_len, mac_hdr_len;
2627
2628 /* Make certain the headers can be described by a context descriptor */
2629 mac_hdr_len = skb_network_header(skb) - skb->data;
2630 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2631 return features & ~(NETIF_F_HW_CSUM |
2632 NETIF_F_SCTP_CRC |
2633 NETIF_F_HW_VLAN_CTAG_TX |
2634 NETIF_F_TSO |
2635 NETIF_F_TSO6);
2636
2637 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2638 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2639 return features & ~(NETIF_F_HW_CSUM |
2640 NETIF_F_SCTP_CRC |
2641 NETIF_F_TSO |
2642 NETIF_F_TSO6);
2643
2644 /* We can only support IPV4 TSO in tunnels if we can mangle the
2645 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2646 */
2647 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2648 features &= ~NETIF_F_TSO;
2649
2650 return features;
2651}
2652
2653static const struct net_device_ops igbvf_netdev_ops = {
2654 .ndo_open = igbvf_open,
2655 .ndo_stop = igbvf_close,
2656 .ndo_start_xmit = igbvf_xmit_frame,
2657 .ndo_set_rx_mode = igbvf_set_rx_mode,
2658 .ndo_set_mac_address = igbvf_set_mac,
2659 .ndo_change_mtu = igbvf_change_mtu,
2660 .ndo_do_ioctl = igbvf_ioctl,
2661 .ndo_tx_timeout = igbvf_tx_timeout,
2662 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2663 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2664#ifdef CONFIG_NET_POLL_CONTROLLER
2665 .ndo_poll_controller = igbvf_netpoll,
2666#endif
2667 .ndo_set_features = igbvf_set_features,
2668 .ndo_features_check = igbvf_features_check,
2669};
2670
2671/**
2672 * igbvf_probe - Device Initialization Routine
2673 * @pdev: PCI device information struct
2674 * @ent: entry in igbvf_pci_tbl
2675 *
2676 * Returns 0 on success, negative on failure
2677 *
2678 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2679 * The OS initialization, configuring of the adapter private structure,
2680 * and a hardware reset occur.
2681 **/
2682static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2683{
2684 struct net_device *netdev;
2685 struct igbvf_adapter *adapter;
2686 struct e1000_hw *hw;
2687 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2688
2689 static int cards_found;
2690 int err, pci_using_dac;
2691
2692 err = pci_enable_device_mem(pdev);
2693 if (err)
2694 return err;
2695
2696 pci_using_dac = 0;
2697 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2698 if (!err) {
2699 pci_using_dac = 1;
2700 } else {
2701 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2702 if (err) {
2703 dev_err(&pdev->dev,
2704 "No usable DMA configuration, aborting\n");
2705 goto err_dma;
2706 }
2707 }
2708
2709 err = pci_request_regions(pdev, igbvf_driver_name);
2710 if (err)
2711 goto err_pci_reg;
2712
2713 pci_set_master(pdev);
2714
2715 err = -ENOMEM;
2716 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2717 if (!netdev)
2718 goto err_alloc_etherdev;
2719
2720 SET_NETDEV_DEV(netdev, &pdev->dev);
2721
2722 pci_set_drvdata(pdev, netdev);
2723 adapter = netdev_priv(netdev);
2724 hw = &adapter->hw;
2725 adapter->netdev = netdev;
2726 adapter->pdev = pdev;
2727 adapter->ei = ei;
2728 adapter->pba = ei->pba;
2729 adapter->flags = ei->flags;
2730 adapter->hw.back = adapter;
2731 adapter->hw.mac.type = ei->mac;
2732 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2733
2734 /* PCI config space info */
2735
2736 hw->vendor_id = pdev->vendor;
2737 hw->device_id = pdev->device;
2738 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2739 hw->subsystem_device_id = pdev->subsystem_device;
2740 hw->revision_id = pdev->revision;
2741
2742 err = -EIO;
2743 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2744 pci_resource_len(pdev, 0));
2745
2746 if (!adapter->hw.hw_addr)
2747 goto err_ioremap;
2748
2749 if (ei->get_variants) {
2750 err = ei->get_variants(adapter);
2751 if (err)
2752 goto err_get_variants;
2753 }
2754
2755 /* setup adapter struct */
2756 err = igbvf_sw_init(adapter);
2757 if (err)
2758 goto err_sw_init;
2759
2760 /* construct the net_device struct */
2761 netdev->netdev_ops = &igbvf_netdev_ops;
2762
2763 igbvf_set_ethtool_ops(netdev);
2764 netdev->watchdog_timeo = 5 * HZ;
2765 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2766
2767 adapter->bd_number = cards_found++;
2768
2769 netdev->hw_features = NETIF_F_SG |
2770 NETIF_F_TSO |
2771 NETIF_F_TSO6 |
2772 NETIF_F_RXCSUM |
2773 NETIF_F_HW_CSUM |
2774 NETIF_F_SCTP_CRC;
2775
2776#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2777 NETIF_F_GSO_GRE_CSUM | \
2778 NETIF_F_GSO_IPXIP4 | \
2779 NETIF_F_GSO_IPXIP6 | \
2780 NETIF_F_GSO_UDP_TUNNEL | \
2781 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2782
2783 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2784 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2785 IGBVF_GSO_PARTIAL_FEATURES;
2786
2787 netdev->features = netdev->hw_features;
2788
2789 if (pci_using_dac)
2790 netdev->features |= NETIF_F_HIGHDMA;
2791
2792 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2793 netdev->mpls_features |= NETIF_F_HW_CSUM;
2794 netdev->hw_enc_features |= netdev->vlan_features;
2795
2796 /* set this bit last since it cannot be part of vlan_features */
2797 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2798 NETIF_F_HW_VLAN_CTAG_RX |
2799 NETIF_F_HW_VLAN_CTAG_TX;
2800
2801 /* MTU range: 68 - 9216 */
2802 netdev->min_mtu = ETH_MIN_MTU;
2803 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2804
2805 spin_lock_bh(&hw->mbx_lock);
2806
2807 /*reset the controller to put the device in a known good state */
2808 err = hw->mac.ops.reset_hw(hw);
2809 if (err) {
2810 dev_info(&pdev->dev,
2811 "PF still in reset state. Is the PF interface up?\n");
2812 } else {
2813 err = hw->mac.ops.read_mac_addr(hw);
2814 if (err)
2815 dev_info(&pdev->dev, "Error reading MAC address.\n");
2816 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2817 dev_info(&pdev->dev,
2818 "MAC address not assigned by administrator.\n");
2819 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2820 netdev->addr_len);
2821 }
2822
2823 spin_unlock_bh(&hw->mbx_lock);
2824
2825 if (!is_valid_ether_addr(netdev->dev_addr)) {
2826 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2827 eth_hw_addr_random(netdev);
2828 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2829 netdev->addr_len);
2830 }
2831
2832 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2833
2834 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2835 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2836
2837 /* ring size defaults */
2838 adapter->rx_ring->count = 1024;
2839 adapter->tx_ring->count = 1024;
2840
2841 /* reset the hardware with the new settings */
2842 igbvf_reset(adapter);
2843
2844 /* set hardware-specific flags */
2845 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2846 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2847
2848 strcpy(netdev->name, "eth%d");
2849 err = register_netdev(netdev);
2850 if (err)
2851 goto err_hw_init;
2852
2853 /* tell the stack to leave us alone until igbvf_open() is called */
2854 netif_carrier_off(netdev);
2855 netif_stop_queue(netdev);
2856
2857 igbvf_print_device_info(adapter);
2858
2859 igbvf_initialize_last_counter_stats(adapter);
2860
2861 return 0;
2862
2863err_hw_init:
2864 kfree(adapter->tx_ring);
2865 kfree(adapter->rx_ring);
2866err_sw_init:
2867 igbvf_reset_interrupt_capability(adapter);
2868err_get_variants:
2869 iounmap(adapter->hw.hw_addr);
2870err_ioremap:
2871 free_netdev(netdev);
2872err_alloc_etherdev:
2873 pci_release_regions(pdev);
2874err_pci_reg:
2875err_dma:
2876 pci_disable_device(pdev);
2877 return err;
2878}
2879
2880/**
2881 * igbvf_remove - Device Removal Routine
2882 * @pdev: PCI device information struct
2883 *
2884 * igbvf_remove is called by the PCI subsystem to alert the driver
2885 * that it should release a PCI device. The could be caused by a
2886 * Hot-Plug event, or because the driver is going to be removed from
2887 * memory.
2888 **/
2889static void igbvf_remove(struct pci_dev *pdev)
2890{
2891 struct net_device *netdev = pci_get_drvdata(pdev);
2892 struct igbvf_adapter *adapter = netdev_priv(netdev);
2893 struct e1000_hw *hw = &adapter->hw;
2894
2895 /* The watchdog timer may be rescheduled, so explicitly
2896 * disable it from being rescheduled.
2897 */
2898 set_bit(__IGBVF_DOWN, &adapter->state);
2899 del_timer_sync(&adapter->watchdog_timer);
2900
2901 cancel_work_sync(&adapter->reset_task);
2902 cancel_work_sync(&adapter->watchdog_task);
2903
2904 unregister_netdev(netdev);
2905
2906 igbvf_reset_interrupt_capability(adapter);
2907
2908 /* it is important to delete the NAPI struct prior to freeing the
2909 * Rx ring so that you do not end up with null pointer refs
2910 */
2911 netif_napi_del(&adapter->rx_ring->napi);
2912 kfree(adapter->tx_ring);
2913 kfree(adapter->rx_ring);
2914
2915 iounmap(hw->hw_addr);
2916 if (hw->flash_address)
2917 iounmap(hw->flash_address);
2918 pci_release_regions(pdev);
2919
2920 free_netdev(netdev);
2921
2922 pci_disable_device(pdev);
2923}
2924
2925/* PCI Error Recovery (ERS) */
2926static const struct pci_error_handlers igbvf_err_handler = {
2927 .error_detected = igbvf_io_error_detected,
2928 .slot_reset = igbvf_io_slot_reset,
2929 .resume = igbvf_io_resume,
2930};
2931
2932static const struct pci_device_id igbvf_pci_tbl[] = {
2933 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2934 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2935 { } /* terminate list */
2936};
2937MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2938
2939static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2940
2941/* PCI Device API Driver */
2942static struct pci_driver igbvf_driver = {
2943 .name = igbvf_driver_name,
2944 .id_table = igbvf_pci_tbl,
2945 .probe = igbvf_probe,
2946 .remove = igbvf_remove,
2947 .driver.pm = &igbvf_pm_ops,
2948 .shutdown = igbvf_shutdown,
2949 .err_handler = &igbvf_err_handler
2950};
2951
2952/**
2953 * igbvf_init_module - Driver Registration Routine
2954 *
2955 * igbvf_init_module is the first routine called when the driver is
2956 * loaded. All it does is register with the PCI subsystem.
2957 **/
2958static int __init igbvf_init_module(void)
2959{
2960 int ret;
2961
2962 pr_info("%s\n", igbvf_driver_string);
2963 pr_info("%s\n", igbvf_copyright);
2964
2965 ret = pci_register_driver(&igbvf_driver);
2966
2967 return ret;
2968}
2969module_init(igbvf_init_module);
2970
2971/**
2972 * igbvf_exit_module - Driver Exit Cleanup Routine
2973 *
2974 * igbvf_exit_module is called just before the driver is removed
2975 * from memory.
2976 **/
2977static void __exit igbvf_exit_module(void)
2978{
2979 pci_unregister_driver(&igbvf_driver);
2980}
2981module_exit(igbvf_exit_module);
2982
2983MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2984MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2985MODULE_LICENSE("GPL v2");
2986
2987/* netdev.c */
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.2-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static int igbvf_poll(struct napi_struct *napi, int budget);
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
75static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80};
81
82static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109{
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127{
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157{
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254}
255
256/**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265{
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
308 dma_unmap_single(&pdev->dev, buffer_info->dma,
309 adapter->rx_buffer_len,
310 DMA_FROM_DEVICE);
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
317 dma_unmap_single(&pdev->dev, buffer_info->dma,
318 adapter->rx_ps_hdr_size,
319 DMA_FROM_DEVICE);
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 PAGE_SIZE / 2,
326 DMA_FROM_DEVICE);
327 buffer_info->page_dma = 0;
328
329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
342 skb->truesize += PAGE_SIZE / 2;
343 }
344send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
375next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402}
403
404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406{
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
409 dma_unmap_page(&adapter->pdev->dev,
410 buffer_info->dma,
411 buffer_info->length,
412 DMA_TO_DEVICE);
413 else
414 dma_unmap_single(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 buffer_info->dma = 0;
419 }
420 if (buffer_info->skb) {
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425}
426
427/**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435{
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 tx_ring->buffer_info = vzalloc(size);
441 if (!tx_ring->buffer_info)
442 goto err;
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
450 if (!tx_ring->desc)
451 goto err;
452
453 tx_ring->adapter = adapter;
454 tx_ring->next_to_use = 0;
455 tx_ring->next_to_clean = 0;
456
457 return 0;
458err:
459 vfree(tx_ring->buffer_info);
460 dev_err(&adapter->pdev->dev,
461 "Unable to allocate memory for the transmit descriptor ring\n");
462 return -ENOMEM;
463}
464
465/**
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
468 *
469 * Returns 0 on success, negative on failure
470 **/
471int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472 struct igbvf_ring *rx_ring)
473{
474 struct pci_dev *pdev = adapter->pdev;
475 int size, desc_len;
476
477 size = sizeof(struct igbvf_buffer) * rx_ring->count;
478 rx_ring->buffer_info = vzalloc(size);
479 if (!rx_ring->buffer_info)
480 goto err;
481
482 desc_len = sizeof(union e1000_adv_rx_desc);
483
484 /* Round up to nearest 4K */
485 rx_ring->size = rx_ring->count * desc_len;
486 rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489 &rx_ring->dma, GFP_KERNEL);
490 if (!rx_ring->desc)
491 goto err;
492
493 rx_ring->next_to_clean = 0;
494 rx_ring->next_to_use = 0;
495
496 rx_ring->adapter = adapter;
497
498 return 0;
499
500err:
501 vfree(rx_ring->buffer_info);
502 rx_ring->buffer_info = NULL;
503 dev_err(&adapter->pdev->dev,
504 "Unable to allocate memory for the receive descriptor ring\n");
505 return -ENOMEM;
506}
507
508/**
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
511 **/
512static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513{
514 struct igbvf_adapter *adapter = tx_ring->adapter;
515 struct igbvf_buffer *buffer_info;
516 unsigned long size;
517 unsigned int i;
518
519 if (!tx_ring->buffer_info)
520 return;
521
522 /* Free all the Tx ring sk_buffs */
523 for (i = 0; i < tx_ring->count; i++) {
524 buffer_info = &tx_ring->buffer_info[i];
525 igbvf_put_txbuf(adapter, buffer_info);
526 }
527
528 size = sizeof(struct igbvf_buffer) * tx_ring->count;
529 memset(tx_ring->buffer_info, 0, size);
530
531 /* Zero out the descriptor ring */
532 memset(tx_ring->desc, 0, tx_ring->size);
533
534 tx_ring->next_to_use = 0;
535 tx_ring->next_to_clean = 0;
536
537 writel(0, adapter->hw.hw_addr + tx_ring->head);
538 writel(0, adapter->hw.hw_addr + tx_ring->tail);
539}
540
541/**
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
544 *
545 * Free all transmit software resources
546 **/
547void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548{
549 struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551 igbvf_clean_tx_ring(tx_ring);
552
553 vfree(tx_ring->buffer_info);
554 tx_ring->buffer_info = NULL;
555
556 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557 tx_ring->dma);
558
559 tx_ring->desc = NULL;
560}
561
562/**
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
565 **/
566static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567{
568 struct igbvf_adapter *adapter = rx_ring->adapter;
569 struct igbvf_buffer *buffer_info;
570 struct pci_dev *pdev = adapter->pdev;
571 unsigned long size;
572 unsigned int i;
573
574 if (!rx_ring->buffer_info)
575 return;
576
577 /* Free all the Rx ring sk_buffs */
578 for (i = 0; i < rx_ring->count; i++) {
579 buffer_info = &rx_ring->buffer_info[i];
580 if (buffer_info->dma) {
581 if (adapter->rx_ps_hdr_size){
582 dma_unmap_single(&pdev->dev, buffer_info->dma,
583 adapter->rx_ps_hdr_size,
584 DMA_FROM_DEVICE);
585 } else {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_buffer_len,
588 DMA_FROM_DEVICE);
589 }
590 buffer_info->dma = 0;
591 }
592
593 if (buffer_info->skb) {
594 dev_kfree_skb(buffer_info->skb);
595 buffer_info->skb = NULL;
596 }
597
598 if (buffer_info->page) {
599 if (buffer_info->page_dma)
600 dma_unmap_page(&pdev->dev,
601 buffer_info->page_dma,
602 PAGE_SIZE / 2,
603 DMA_FROM_DEVICE);
604 put_page(buffer_info->page);
605 buffer_info->page = NULL;
606 buffer_info->page_dma = 0;
607 buffer_info->page_offset = 0;
608 }
609 }
610
611 size = sizeof(struct igbvf_buffer) * rx_ring->count;
612 memset(rx_ring->buffer_info, 0, size);
613
614 /* Zero out the descriptor ring */
615 memset(rx_ring->desc, 0, rx_ring->size);
616
617 rx_ring->next_to_clean = 0;
618 rx_ring->next_to_use = 0;
619
620 writel(0, adapter->hw.hw_addr + rx_ring->head);
621 writel(0, adapter->hw.hw_addr + rx_ring->tail);
622}
623
624/**
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
627 *
628 * Free all receive software resources
629 **/
630
631void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632{
633 struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635 igbvf_clean_rx_ring(rx_ring);
636
637 vfree(rx_ring->buffer_info);
638 rx_ring->buffer_info = NULL;
639
640 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641 rx_ring->dma);
642 rx_ring->desc = NULL;
643}
644
645/**
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
651 *
652 * Stores a new ITR value based on packets and byte
653 * counts during the last interrupt. The advantage of per interrupt
654 * computation is faster updates and more accurate ITR for the current
655 * traffic pattern. Constants in this function were computed
656 * based on theoretical maximum wire speed and thresholds were set based
657 * on testing data as well as attempting to minimize response time
658 * while increasing bulk throughput.
659 **/
660static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661 enum latency_range itr_setting,
662 int packets, int bytes)
663{
664 enum latency_range retval = itr_setting;
665
666 if (packets == 0)
667 goto update_itr_done;
668
669 switch (itr_setting) {
670 case lowest_latency:
671 /* handle TSO and jumbo frames */
672 if (bytes/packets > 8000)
673 retval = bulk_latency;
674 else if ((packets < 5) && (bytes > 512))
675 retval = low_latency;
676 break;
677 case low_latency: /* 50 usec aka 20000 ints/s */
678 if (bytes > 10000) {
679 /* this if handles the TSO accounting */
680 if (bytes/packets > 8000)
681 retval = bulk_latency;
682 else if ((packets < 10) || ((bytes/packets) > 1200))
683 retval = bulk_latency;
684 else if ((packets > 35))
685 retval = lowest_latency;
686 } else if (bytes/packets > 2000) {
687 retval = bulk_latency;
688 } else if (packets <= 2 && bytes < 512) {
689 retval = lowest_latency;
690 }
691 break;
692 case bulk_latency: /* 250 usec aka 4000 ints/s */
693 if (bytes > 25000) {
694 if (packets > 35)
695 retval = low_latency;
696 } else if (bytes < 6000) {
697 retval = low_latency;
698 }
699 break;
700 default:
701 break;
702 }
703
704update_itr_done:
705 return retval;
706}
707
708static int igbvf_range_to_itr(enum latency_range current_range)
709{
710 int new_itr;
711
712 switch (current_range) {
713 /* counts and packets in update_itr are dependent on these numbers */
714 case lowest_latency:
715 new_itr = IGBVF_70K_ITR;
716 break;
717 case low_latency:
718 new_itr = IGBVF_20K_ITR;
719 break;
720 case bulk_latency:
721 new_itr = IGBVF_4K_ITR;
722 break;
723 default:
724 new_itr = IGBVF_START_ITR;
725 break;
726 }
727 return new_itr;
728}
729
730static void igbvf_set_itr(struct igbvf_adapter *adapter)
731{
732 u32 new_itr;
733
734 adapter->tx_ring->itr_range =
735 igbvf_update_itr(adapter,
736 adapter->tx_ring->itr_val,
737 adapter->total_tx_packets,
738 adapter->total_tx_bytes);
739
740 /* conservative mode (itr 3) eliminates the lowest_latency setting */
741 if (adapter->requested_itr == 3 &&
742 adapter->tx_ring->itr_range == lowest_latency)
743 adapter->tx_ring->itr_range = low_latency;
744
745 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748 if (new_itr != adapter->tx_ring->itr_val) {
749 u32 current_itr = adapter->tx_ring->itr_val;
750 /*
751 * this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
753 * increasing
754 */
755 new_itr = new_itr > current_itr ?
756 min(current_itr + (new_itr >> 2), new_itr) :
757 new_itr;
758 adapter->tx_ring->itr_val = new_itr;
759
760 adapter->tx_ring->set_itr = 1;
761 }
762
763 adapter->rx_ring->itr_range =
764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765 adapter->total_rx_packets,
766 adapter->total_rx_bytes);
767 if (adapter->requested_itr == 3 &&
768 adapter->rx_ring->itr_range == lowest_latency)
769 adapter->rx_ring->itr_range = low_latency;
770
771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773 if (new_itr != adapter->rx_ring->itr_val) {
774 u32 current_itr = adapter->rx_ring->itr_val;
775 new_itr = new_itr > current_itr ?
776 min(current_itr + (new_itr >> 2), new_itr) :
777 new_itr;
778 adapter->rx_ring->itr_val = new_itr;
779
780 adapter->rx_ring->set_itr = 1;
781 }
782}
783
784/**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791{
792 struct igbvf_adapter *adapter = tx_ring->adapter;
793 struct net_device *netdev = adapter->netdev;
794 struct igbvf_buffer *buffer_info;
795 struct sk_buff *skb;
796 union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 unsigned int total_bytes = 0, total_packets = 0;
798 unsigned int i, count = 0;
799 bool cleaned = false;
800
801 i = tx_ring->next_to_clean;
802 buffer_info = &tx_ring->buffer_info[i];
803 eop_desc = buffer_info->next_to_watch;
804
805 do {
806 /* if next_to_watch is not set then there is no work pending */
807 if (!eop_desc)
808 break;
809
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
812
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 break;
816
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info->next_to_watch = NULL;
819
820 for (cleaned = false; !cleaned; count++) {
821 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 cleaned = (tx_desc == eop_desc);
823 skb = buffer_info->skb;
824
825 if (skb) {
826 unsigned int segs, bytecount;
827
828 /* gso_segs is currently only valid for tcp */
829 segs = skb_shinfo(skb)->gso_segs ?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount = ((segs - 1) * skb_headlen(skb)) +
832 skb->len;
833 total_packets += segs;
834 total_bytes += bytecount;
835 }
836
837 igbvf_put_txbuf(adapter, buffer_info);
838 tx_desc->wb.status = 0;
839
840 i++;
841 if (i == tx_ring->count)
842 i = 0;
843
844 buffer_info = &tx_ring->buffer_info[i];
845 }
846
847 eop_desc = buffer_info->next_to_watch;
848 } while (count < tx_ring->count);
849
850 tx_ring->next_to_clean = i;
851
852 if (unlikely(count &&
853 netif_carrier_ok(netdev) &&
854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
857 */
858 smp_mb();
859 if (netif_queue_stopped(netdev) &&
860 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861 netif_wake_queue(netdev);
862 ++adapter->restart_queue;
863 }
864 }
865
866 adapter->net_stats.tx_bytes += total_bytes;
867 adapter->net_stats.tx_packets += total_packets;
868 return count < tx_ring->count;
869}
870
871static irqreturn_t igbvf_msix_other(int irq, void *data)
872{
873 struct net_device *netdev = data;
874 struct igbvf_adapter *adapter = netdev_priv(netdev);
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->int_counter1++;
878
879 netif_carrier_off(netdev);
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887}
888
889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890{
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically reenable the interrupt when we write
906 * EICS */
907 if (!igbvf_clean_tx_irq(tx_ring))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS, tx_ring->eims_value);
910 else
911 ew32(EIMS, tx_ring->eims_value);
912
913 return IRQ_HANDLED;
914}
915
916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917{
918 struct net_device *netdev = data;
919 struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921 adapter->int_counter0++;
922
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
925 */
926 if (adapter->rx_ring->set_itr) {
927 writel(adapter->rx_ring->itr_val,
928 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 adapter->rx_ring->set_itr = 0;
930 }
931
932 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 adapter->total_rx_bytes = 0;
934 adapter->total_rx_packets = 0;
935 __napi_schedule(&adapter->rx_ring->napi);
936 }
937
938 return IRQ_HANDLED;
939}
940
941#define IGBVF_NO_QUEUE -1
942
943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 int tx_queue, int msix_vector)
945{
946 struct e1000_hw *hw = &adapter->hw;
947 u32 ivar, index;
948
949 /* 82576 uses a table-based method for assigning vectors.
950 Each queue has a single entry in the table to which we write
951 a vector number along with a "valid" bit. Sadly, the layout
952 of the table is somewhat counterintuitive. */
953 if (rx_queue > IGBVF_NO_QUEUE) {
954 index = (rx_queue >> 1);
955 ivar = array_er32(IVAR0, index);
956 if (rx_queue & 0x1) {
957 /* vector goes into third byte of register */
958 ivar = ivar & 0xFF00FFFF;
959 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960 } else {
961 /* vector goes into low byte of register */
962 ivar = ivar & 0xFFFFFF00;
963 ivar |= msix_vector | E1000_IVAR_VALID;
964 }
965 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966 array_ew32(IVAR0, index, ivar);
967 }
968 if (tx_queue > IGBVF_NO_QUEUE) {
969 index = (tx_queue >> 1);
970 ivar = array_er32(IVAR0, index);
971 if (tx_queue & 0x1) {
972 /* vector goes into high byte of register */
973 ivar = ivar & 0x00FFFFFF;
974 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975 } else {
976 /* vector goes into second byte of register */
977 ivar = ivar & 0xFFFF00FF;
978 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979 }
980 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981 array_ew32(IVAR0, index, ivar);
982 }
983}
984
985/**
986 * igbvf_configure_msix - Configure MSI-X hardware
987 *
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
990 **/
991static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992{
993 u32 tmp;
994 struct e1000_hw *hw = &adapter->hw;
995 struct igbvf_ring *tx_ring = adapter->tx_ring;
996 struct igbvf_ring *rx_ring = adapter->rx_ring;
997 int vector = 0;
998
999 adapter->eims_enable_mask = 0;
1000
1001 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002 adapter->eims_enable_mask |= tx_ring->eims_value;
1003 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005 adapter->eims_enable_mask |= rx_ring->eims_value;
1006 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008 /* set vector for other causes, i.e. link changes */
1009
1010 tmp = (vector++ | E1000_IVAR_VALID);
1011
1012 ew32(IVAR_MISC, tmp);
1013
1014 adapter->eims_enable_mask = (1 << (vector)) - 1;
1015 adapter->eims_other = 1 << (vector - 1);
1016 e1e_flush();
1017}
1018
1019static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 if (adapter->msix_entries) {
1022 pci_disable_msix(adapter->pdev);
1023 kfree(adapter->msix_entries);
1024 adapter->msix_entries = NULL;
1025 }
1026}
1027
1028/**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035{
1036 int err = -ENOMEM;
1037 int i;
1038
1039 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041 GFP_KERNEL);
1042 if (adapter->msix_entries) {
1043 for (i = 0; i < 3; i++)
1044 adapter->msix_entries[i].entry = i;
1045
1046 err = pci_enable_msix_range(adapter->pdev,
1047 adapter->msix_entries, 3, 3);
1048 }
1049
1050 if (err < 0) {
1051 /* MSI-X failed */
1052 dev_err(&adapter->pdev->dev,
1053 "Failed to initialize MSI-X interrupts.\n");
1054 igbvf_reset_interrupt_capability(adapter);
1055 }
1056}
1057
1058/**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065{
1066 struct net_device *netdev = adapter->netdev;
1067 int err = 0, vector = 0;
1068
1069 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072 } else {
1073 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075 }
1076
1077 err = request_irq(adapter->msix_entries[vector].vector,
1078 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079 netdev);
1080 if (err)
1081 goto out;
1082
1083 adapter->tx_ring->itr_register = E1000_EITR(vector);
1084 adapter->tx_ring->itr_val = adapter->current_itr;
1085 vector++;
1086
1087 err = request_irq(adapter->msix_entries[vector].vector,
1088 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089 netdev);
1090 if (err)
1091 goto out;
1092
1093 adapter->rx_ring->itr_register = E1000_EITR(vector);
1094 adapter->rx_ring->itr_val = adapter->current_itr;
1095 vector++;
1096
1097 err = request_irq(adapter->msix_entries[vector].vector,
1098 igbvf_msix_other, 0, netdev->name, netdev);
1099 if (err)
1100 goto out;
1101
1102 igbvf_configure_msix(adapter);
1103 return 0;
1104out:
1105 return err;
1106}
1107
1108/**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113{
1114 struct net_device *netdev = adapter->netdev;
1115
1116 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117 if (!adapter->tx_ring)
1118 return -ENOMEM;
1119
1120 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 if (!adapter->rx_ring) {
1122 kfree(adapter->tx_ring);
1123 return -ENOMEM;
1124 }
1125
1126 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128 return 0;
1129}
1130
1131/**
1132 * igbvf_request_irq - initialize interrupts
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138{
1139 int err = -1;
1140
1141 /* igbvf supports msi-x only */
1142 if (adapter->msix_entries)
1143 err = igbvf_request_msix(adapter);
1144
1145 if (!err)
1146 return err;
1147
1148 dev_err(&adapter->pdev->dev,
1149 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151 return err;
1152}
1153
1154static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155{
1156 struct net_device *netdev = adapter->netdev;
1157 int vector;
1158
1159 if (adapter->msix_entries) {
1160 for (vector = 0; vector < 3; vector++)
1161 free_irq(adapter->msix_entries[vector].vector, netdev);
1162 }
1163}
1164
1165/**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167 **/
1168static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169{
1170 struct e1000_hw *hw = &adapter->hw;
1171
1172 ew32(EIMC, ~0);
1173
1174 if (adapter->msix_entries)
1175 ew32(EIAC, 0);
1176}
1177
1178/**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1180 **/
1181static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182{
1183 struct e1000_hw *hw = &adapter->hw;
1184
1185 ew32(EIAC, adapter->eims_enable_mask);
1186 ew32(EIAM, adapter->eims_enable_mask);
1187 ew32(EIMS, adapter->eims_enable_mask);
1188}
1189
1190/**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195static int igbvf_poll(struct napi_struct *napi, int budget)
1196{
1197 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198 struct igbvf_adapter *adapter = rx_ring->adapter;
1199 struct e1000_hw *hw = &adapter->hw;
1200 int work_done = 0;
1201
1202 igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204 /* If not enough Rx work done, exit the polling mode */
1205 if (work_done < budget) {
1206 napi_complete(napi);
1207
1208 if (adapter->requested_itr & 3)
1209 igbvf_set_itr(adapter);
1210
1211 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212 ew32(EIMS, adapter->rx_ring->eims_value);
1213 }
1214
1215 return work_done;
1216}
1217
1218/**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225{
1226 int max_frame_size;
1227 struct e1000_hw *hw = &adapter->hw;
1228
1229 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230 e1000_rlpml_set_vf(hw, max_frame_size);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235{
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241 return -EINVAL;
1242 }
1243 set_bit(vid, adapter->active_vlans);
1244 return 0;
1245}
1246
1247static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249{
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254 dev_err(&adapter->pdev->dev,
1255 "Failed to remove vlan id %d\n", vid);
1256 return -EINVAL;
1257 }
1258 clear_bit(vid, adapter->active_vlans);
1259 return 0;
1260}
1261
1262static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263{
1264 u16 vid;
1265
1266 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268}
1269
1270/**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277{
1278 struct e1000_hw *hw = &adapter->hw;
1279 struct igbvf_ring *tx_ring = adapter->tx_ring;
1280 u64 tdba;
1281 u32 txdctl, dca_txctrl;
1282
1283 /* disable transmits */
1284 txdctl = er32(TXDCTL(0));
1285 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286 e1e_flush();
1287 msleep(10);
1288
1289 /* Setup the HW Tx Head and Tail descriptor pointers */
1290 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291 tdba = tx_ring->dma;
1292 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293 ew32(TDBAH(0), (tdba >> 32));
1294 ew32(TDH(0), 0);
1295 ew32(TDT(0), 0);
1296 tx_ring->head = E1000_TDH(0);
1297 tx_ring->tail = E1000_TDT(0);
1298
1299 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1300 * MUST be delivered in order or it will completely screw up
1301 * our bookeeping.
1302 */
1303 dca_txctrl = er32(DCA_TXCTRL(0));
1304 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305 ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307 /* enable transmits */
1308 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309 ew32(TXDCTL(0), txdctl);
1310
1311 /* Setup Transmit Descriptor Settings for eop descriptor */
1312 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314 /* enable Report Status bit */
1315 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316}
1317
1318/**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 srrctl = 0;
1326
1327 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328 E1000_SRRCTL_BSIZEHDR_MASK |
1329 E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331 /* Enable queue drop to avoid head of line blocking */
1332 srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334 /* Setup buffer sizes */
1335 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336 E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338 if (adapter->rx_buffer_len < 2048) {
1339 adapter->rx_ps_hdr_size = 0;
1340 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341 } else {
1342 adapter->rx_ps_hdr_size = 128;
1343 srrctl |= adapter->rx_ps_hdr_size <<
1344 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346 }
1347
1348 ew32(SRRCTL(0), srrctl);
1349}
1350
1351/**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358{
1359 struct e1000_hw *hw = &adapter->hw;
1360 struct igbvf_ring *rx_ring = adapter->rx_ring;
1361 u64 rdba;
1362 u32 rdlen, rxdctl;
1363
1364 /* disable receives */
1365 rxdctl = er32(RXDCTL(0));
1366 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 e1e_flush();
1368 msleep(10);
1369
1370 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372 /*
1373 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1375 */
1376 rdba = rx_ring->dma;
1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba >> 32));
1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 rx_ring->head = E1000_RDH(0);
1381 rx_ring->tail = E1000_RDT(0);
1382 ew32(RDH(0), 0);
1383 ew32(RDT(0), 0);
1384
1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 rxdctl &= 0xFFF00000;
1387 rxdctl |= IGBVF_RX_PTHRESH;
1388 rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391 igbvf_set_rlpml(adapter);
1392
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408 struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct netdev_hw_addr *ha;
1411 u8 *mta_list = NULL;
1412 int i;
1413
1414 if (!netdev_mc_empty(netdev)) {
1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416 GFP_ATOMIC);
1417 if (!mta_list)
1418 return;
1419 }
1420
1421 /* prepare a packed array of only addresses. */
1422 i = 0;
1423 netdev_for_each_mc_addr(ha, netdev)
1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428}
1429
1430/**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454static void igbvf_reset(struct igbvf_adapter *adapter)
1455{
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
1472
1473 adapter->last_reset = jiffies;
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter);
1482
1483 clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485 napi_enable(&adapter->rx_ring->napi);
1486 if (adapter->msix_entries)
1487 igbvf_configure_msix(adapter);
1488
1489 /* Clear any pending interrupts. */
1490 er32(EICR);
1491 igbvf_irq_enable(adapter);
1492
1493 /* start the watchdog */
1494 hw->mac.get_link_status = 1;
1495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498 return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503 struct net_device *netdev = adapter->netdev;
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 rxdctl, txdctl;
1506
1507 /*
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1510 */
1511 set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513 /* disable receives in the hardware */
1514 rxdctl = er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517 netif_stop_queue(netdev);
1518
1519 /* disable transmits in the hardware */
1520 txdctl = er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523 /* flush both disables and wait for them to finish */
1524 e1e_flush();
1525 msleep(10);
1526
1527 napi_disable(&adapter->rx_ring->napi);
1528
1529 igbvf_irq_disable(adapter);
1530
1531 del_timer_sync(&adapter->watchdog_timer);
1532
1533 netif_carrier_off(netdev);
1534
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter);
1537
1538 adapter->link_speed = 0;
1539 adapter->link_duplex = 0;
1540
1541 igbvf_reset(adapter);
1542 igbvf_clean_tx_ring(adapter->tx_ring);
1543 igbvf_clean_rx_ring(adapter->rx_ring);
1544}
1545
1546void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547{
1548 might_sleep();
1549 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550 msleep(1);
1551 igbvf_down(adapter);
1552 igbvf_up(adapter);
1553 clear_bit(__IGBVF_RESETTING, &adapter->state);
1554}
1555
1556/**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565{
1566 struct net_device *netdev = adapter->netdev;
1567 s32 rc;
1568
1569 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570 adapter->rx_ps_hdr_size = 0;
1571 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574 adapter->tx_int_delay = 8;
1575 adapter->tx_abs_int_delay = 32;
1576 adapter->rx_int_delay = 0;
1577 adapter->rx_abs_int_delay = 8;
1578 adapter->requested_itr = 3;
1579 adapter->current_itr = IGBVF_START_ITR;
1580
1581 /* Set various function pointers */
1582 adapter->ei->init_ops(&adapter->hw);
1583
1584 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585 if (rc)
1586 return rc;
1587
1588 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 igbvf_set_interrupt_capability(adapter);
1593
1594 if (igbvf_alloc_queues(adapter))
1595 return -ENOMEM;
1596
1597 spin_lock_init(&adapter->tx_queue_lock);
1598
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter);
1601
1602 spin_lock_init(&adapter->stats_lock);
1603
1604 set_bit(__IGBVF_DOWN, &adapter->state);
1605 return 0;
1606}
1607
1608static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609{
1610 struct e1000_hw *hw = &adapter->hw;
1611
1612 adapter->stats.last_gprc = er32(VFGPRC);
1613 adapter->stats.last_gorc = er32(VFGORC);
1614 adapter->stats.last_gptc = er32(VFGPTC);
1615 adapter->stats.last_gotc = er32(VFGOTC);
1616 adapter->stats.last_mprc = er32(VFMPRC);
1617 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619 adapter->stats.last_gorlbc = er32(VFGORLBC);
1620 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622 adapter->stats.base_gprc = er32(VFGPRC);
1623 adapter->stats.base_gorc = er32(VFGORC);
1624 adapter->stats.base_gptc = er32(VFGPTC);
1625 adapter->stats.base_gotc = er32(VFGOTC);
1626 adapter->stats.base_mprc = er32(VFMPRC);
1627 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629 adapter->stats.base_gorlbc = er32(VFGORLBC);
1630 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631}
1632
1633/**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645static int igbvf_open(struct net_device *netdev)
1646{
1647 struct igbvf_adapter *adapter = netdev_priv(netdev);
1648 struct e1000_hw *hw = &adapter->hw;
1649 int err;
1650
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING, &adapter->state))
1653 return -EBUSY;
1654
1655 /* allocate transmit descriptors */
1656 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657 if (err)
1658 goto err_setup_tx;
1659
1660 /* allocate receive descriptors */
1661 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662 if (err)
1663 goto err_setup_rx;
1664
1665 /*
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1670 */
1671 igbvf_configure(adapter);
1672
1673 err = igbvf_request_irq(adapter);
1674 if (err)
1675 goto err_req_irq;
1676
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680 napi_enable(&adapter->rx_ring->napi);
1681
1682 /* clear any pending interrupts */
1683 er32(EICR);
1684
1685 igbvf_irq_enable(adapter);
1686
1687 /* start the watchdog */
1688 hw->mac.get_link_status = 1;
1689 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691 return 0;
1692
1693err_req_irq:
1694 igbvf_free_rx_resources(adapter->rx_ring);
1695err_setup_rx:
1696 igbvf_free_tx_resources(adapter->tx_ring);
1697err_setup_tx:
1698 igbvf_reset(adapter);
1699
1700 return err;
1701}
1702
1703/**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714static int igbvf_close(struct net_device *netdev)
1715{
1716 struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719 igbvf_down(adapter);
1720
1721 igbvf_free_irq(adapter);
1722
1723 igbvf_free_tx_resources(adapter->tx_ring);
1724 igbvf_free_rx_resources(adapter->rx_ring);
1725
1726 return 0;
1727}
1728/**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735static int igbvf_set_mac(struct net_device *netdev, void *p)
1736{
1737 struct igbvf_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 struct sockaddr *addr = p;
1740
1741 if (!is_valid_ether_addr(addr->sa_data))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749 return -EADDRNOTAVAIL;
1750
1751 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753 return 0;
1754}
1755
1756#define UPDATE_VF_COUNTER(reg, name) \
1757 { \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1764 }
1765
1766/**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769**/
1770void igbvf_update_stats(struct igbvf_adapter *adapter)
1771{
1772 struct e1000_hw *hw = &adapter->hw;
1773 struct pci_dev *pdev = adapter->pdev;
1774
1775 /*
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1778 */
1779 if (adapter->link_speed == 0)
1780 return;
1781
1782 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783 return;
1784
1785 if (pci_channel_offline(pdev))
1786 return;
1787
1788 UPDATE_VF_COUNTER(VFGPRC, gprc);
1789 UPDATE_VF_COUNTER(VFGORC, gorc);
1790 UPDATE_VF_COUNTER(VFGPTC, gptc);
1791 UPDATE_VF_COUNTER(VFGOTC, gotc);
1792 UPDATE_VF_COUNTER(VFMPRC, mprc);
1793 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798 /* Fill out the OS statistics structure */
1799 adapter->net_stats.multicast = adapter->stats.mprc;
1800}
1801
1802static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803{
1804 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805 adapter->link_speed,
1806 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807}
1808
1809static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810{
1811 struct e1000_hw *hw = &adapter->hw;
1812 s32 ret_val = E1000_SUCCESS;
1813 bool link_active;
1814
1815 /* If interface is down, stay link down */
1816 if (test_bit(__IGBVF_DOWN, &adapter->state))
1817 return false;
1818
1819 ret_val = hw->mac.ops.check_for_link(hw);
1820 link_active = !hw->mac.get_link_status;
1821
1822 /* if check for link returns error we will need to reset */
1823 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824 schedule_work(&adapter->reset_task);
1825
1826 return link_active;
1827}
1828
1829/**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833static void igbvf_watchdog(unsigned long data)
1834{
1835 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837 /* Do the rest outside of interrupt context */
1838 schedule_work(&adapter->watchdog_task);
1839}
1840
1841static void igbvf_watchdog_task(struct work_struct *work)
1842{
1843 struct igbvf_adapter *adapter = container_of(work,
1844 struct igbvf_adapter,
1845 watchdog_task);
1846 struct net_device *netdev = adapter->netdev;
1847 struct e1000_mac_info *mac = &adapter->hw.mac;
1848 struct igbvf_ring *tx_ring = adapter->tx_ring;
1849 struct e1000_hw *hw = &adapter->hw;
1850 u32 link;
1851 int tx_pending = 0;
1852
1853 link = igbvf_has_link(adapter);
1854
1855 if (link) {
1856 if (!netif_carrier_ok(netdev)) {
1857 mac->ops.get_link_up_info(&adapter->hw,
1858 &adapter->link_speed,
1859 &adapter->link_duplex);
1860 igbvf_print_link_info(adapter);
1861
1862 netif_carrier_on(netdev);
1863 netif_wake_queue(netdev);
1864 }
1865 } else {
1866 if (netif_carrier_ok(netdev)) {
1867 adapter->link_speed = 0;
1868 adapter->link_duplex = 0;
1869 dev_info(&adapter->pdev->dev, "Link is Down\n");
1870 netif_carrier_off(netdev);
1871 netif_stop_queue(netdev);
1872 }
1873 }
1874
1875 if (netif_carrier_ok(netdev)) {
1876 igbvf_update_stats(adapter);
1877 } else {
1878 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879 tx_ring->count);
1880 if (tx_pending) {
1881 /*
1882 * We've lost link, so the controller stops DMA,
1883 * but we've got queued Tx work that's never going
1884 * to get done, so reset controller to flush Tx.
1885 * (Do the reset outside of interrupt context).
1886 */
1887 adapter->tx_timeout_count++;
1888 schedule_work(&adapter->reset_task);
1889 }
1890 }
1891
1892 /* Cause software interrupt to ensure Rx ring is cleaned */
1893 ew32(EICS, adapter->rx_ring->eims_value);
1894
1895 /* Reset the timer */
1896 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897 mod_timer(&adapter->watchdog_timer,
1898 round_jiffies(jiffies + (2 * HZ)));
1899}
1900
1901#define IGBVF_TX_FLAGS_CSUM 0x00000001
1902#define IGBVF_TX_FLAGS_VLAN 0x00000002
1903#define IGBVF_TX_FLAGS_TSO 0x00000004
1904#define IGBVF_TX_FLAGS_IPV4 0x00000008
1905#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1906#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1907
1908static int igbvf_tso(struct igbvf_adapter *adapter,
1909 struct igbvf_ring *tx_ring,
1910 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911{
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u32 info = 0, tu_cmd = 0;
1915 u32 mss_l4len_idx, l4len;
1916 unsigned int i;
1917 int err;
1918
1919 *hdr_len = 0;
1920
1921 err = skb_cow_head(skb, 0);
1922 if (err < 0) {
1923 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924 return err;
1925 }
1926
1927 l4len = tcp_hdrlen(skb);
1928 *hdr_len += l4len;
1929
1930 if (skb->protocol == htons(ETH_P_IP)) {
1931 struct iphdr *iph = ip_hdr(skb);
1932 iph->tot_len = 0;
1933 iph->check = 0;
1934 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935 iph->daddr, 0,
1936 IPPROTO_TCP,
1937 0);
1938 } else if (skb_is_gso_v6(skb)) {
1939 ipv6_hdr(skb)->payload_len = 0;
1940 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941 &ipv6_hdr(skb)->daddr,
1942 0, IPPROTO_TCP, 0);
1943 }
1944
1945 i = tx_ring->next_to_use;
1946
1947 buffer_info = &tx_ring->buffer_info[i];
1948 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949 /* VLAN MACLEN IPLEN */
1950 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 *hdr_len += skb_network_offset(skb);
1954 info |= (skb_transport_header(skb) - skb_network_header(skb));
1955 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956 context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961 if (skb->protocol == htons(ETH_P_IP))
1962 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967 /* MSS L4LEN IDX */
1968 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972 context_desc->seqnum_seed = 0;
1973
1974 buffer_info->time_stamp = jiffies;
1975 buffer_info->dma = 0;
1976 i++;
1977 if (i == tx_ring->count)
1978 i = 0;
1979
1980 tx_ring->next_to_use = i;
1981
1982 return true;
1983}
1984
1985static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986 struct igbvf_ring *tx_ring,
1987 struct sk_buff *skb, u32 tx_flags)
1988{
1989 struct e1000_adv_tx_context_desc *context_desc;
1990 unsigned int i;
1991 struct igbvf_buffer *buffer_info;
1992 u32 info = 0, tu_cmd = 0;
1993
1994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996 i = tx_ring->next_to_use;
1997 buffer_info = &tx_ring->buffer_info[i];
1998 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004 if (skb->ip_summed == CHECKSUM_PARTIAL)
2005 info |= (skb_transport_header(skb) -
2006 skb_network_header(skb));
2007
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014 switch (skb->protocol) {
2015 case htons(ETH_P_IP):
2016 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019 break;
2020 case htons(ETH_P_IPV6):
2021 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 break;
2024 default:
2025 break;
2026 }
2027 }
2028
2029 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030 context_desc->seqnum_seed = 0;
2031 context_desc->mss_l4len_idx = 0;
2032
2033 buffer_info->time_stamp = jiffies;
2034 buffer_info->dma = 0;
2035 i++;
2036 if (i == tx_ring->count)
2037 i = 0;
2038 tx_ring->next_to_use = i;
2039
2040 return true;
2041 }
2042
2043 return false;
2044}
2045
2046static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047{
2048 struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050 /* there is enough descriptors then we don't need to worry */
2051 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052 return 0;
2053
2054 netif_stop_queue(netdev);
2055
2056 smp_mb();
2057
2058 /* We need to check again just in case room has been made available */
2059 if (igbvf_desc_unused(adapter->tx_ring) < size)
2060 return -EBUSY;
2061
2062 netif_wake_queue(netdev);
2063
2064 ++adapter->restart_queue;
2065 return 0;
2066}
2067
2068#define IGBVF_MAX_TXD_PWR 16
2069#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2070
2071static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072 struct igbvf_ring *tx_ring,
2073 struct sk_buff *skb)
2074{
2075 struct igbvf_buffer *buffer_info;
2076 struct pci_dev *pdev = adapter->pdev;
2077 unsigned int len = skb_headlen(skb);
2078 unsigned int count = 0, i;
2079 unsigned int f;
2080
2081 i = tx_ring->next_to_use;
2082
2083 buffer_info = &tx_ring->buffer_info[i];
2084 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085 buffer_info->length = len;
2086 /* set time_stamp *before* dma to help avoid a possible race */
2087 buffer_info->time_stamp = jiffies;
2088 buffer_info->mapped_as_page = false;
2089 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090 DMA_TO_DEVICE);
2091 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092 goto dma_error;
2093
2094
2095 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096 const struct skb_frag_struct *frag;
2097
2098 count++;
2099 i++;
2100 if (i == tx_ring->count)
2101 i = 0;
2102
2103 frag = &skb_shinfo(skb)->frags[f];
2104 len = skb_frag_size(frag);
2105
2106 buffer_info = &tx_ring->buffer_info[i];
2107 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108 buffer_info->length = len;
2109 buffer_info->time_stamp = jiffies;
2110 buffer_info->mapped_as_page = true;
2111 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112 DMA_TO_DEVICE);
2113 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114 goto dma_error;
2115 }
2116
2117 tx_ring->buffer_info[i].skb = skb;
2118
2119 return ++count;
2120
2121dma_error:
2122 dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124 /* clear timestamp and dma mappings for failed buffer_info mapping */
2125 buffer_info->dma = 0;
2126 buffer_info->time_stamp = 0;
2127 buffer_info->length = 0;
2128 buffer_info->mapped_as_page = false;
2129 if (count)
2130 count--;
2131
2132 /* clear timestamp and dma mappings for remaining portion of packet */
2133 while (count--) {
2134 if (i==0)
2135 i += tx_ring->count;
2136 i--;
2137 buffer_info = &tx_ring->buffer_info[i];
2138 igbvf_put_txbuf(adapter, buffer_info);
2139 }
2140
2141 return 0;
2142}
2143
2144static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 int tx_flags, int count,
2147 unsigned int first, u32 paylen,
2148 u8 hdr_len)
2149{
2150 union e1000_adv_tx_desc *tx_desc = NULL;
2151 struct igbvf_buffer *buffer_info;
2152 u32 olinfo_status = 0, cmd_type_len;
2153 unsigned int i;
2154
2155 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156 E1000_ADVTXD_DCMD_DEXT);
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164 /* insert tcp checksum */
2165 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167 /* insert ip checksum */
2168 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 }
2174
2175 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177 i = tx_ring->next_to_use;
2178 while (count--) {
2179 buffer_info = &tx_ring->buffer_info[i];
2180 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182 tx_desc->read.cmd_type_len =
2183 cpu_to_le32(cmd_type_len | buffer_info->length);
2184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185 i++;
2186 if (i == tx_ring->count)
2187 i = 0;
2188 }
2189
2190 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191 /* Force memory writes to complete before letting h/w
2192 * know there are new descriptors to fetch. (Only
2193 * applicable for weak-ordered memory model archs,
2194 * such as IA-64). */
2195 wmb();
2196
2197 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198 tx_ring->next_to_use = i;
2199 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200 /* we need this if more than one processor can write to our tail
2201 * at a time, it syncronizes IO on IA64/Altix systems */
2202 mmiowb();
2203}
2204
2205static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206 struct net_device *netdev,
2207 struct igbvf_ring *tx_ring)
2208{
2209 struct igbvf_adapter *adapter = netdev_priv(netdev);
2210 unsigned int first, tx_flags = 0;
2211 u8 hdr_len = 0;
2212 int count = 0;
2213 int tso = 0;
2214
2215 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216 dev_kfree_skb_any(skb);
2217 return NETDEV_TX_OK;
2218 }
2219
2220 if (skb->len <= 0) {
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223 }
2224
2225 /*
2226 * need: count + 4 desc gap to keep tail from touching
2227 * + 2 desc gap to keep tail from touching head,
2228 * + 1 desc for skb->data,
2229 * + 1 desc for context descriptor,
2230 * head, otherwise try next time
2231 */
2232 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233 /* this is a hard error */
2234 return NETDEV_TX_BUSY;
2235 }
2236
2237 if (vlan_tx_tag_present(skb)) {
2238 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2240 }
2241
2242 if (skb->protocol == htons(ETH_P_IP))
2243 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245 first = tx_ring->next_to_use;
2246
2247 tso = skb_is_gso(skb) ?
2248 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249 if (unlikely(tso < 0)) {
2250 dev_kfree_skb_any(skb);
2251 return NETDEV_TX_OK;
2252 }
2253
2254 if (tso)
2255 tx_flags |= IGBVF_TX_FLAGS_TSO;
2256 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257 (skb->ip_summed == CHECKSUM_PARTIAL))
2258 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260 /*
2261 * count reflects descriptors mapped, if 0 then mapping error
2262 * has occurred and we need to rewind the descriptor queue
2263 */
2264 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266 if (count) {
2267 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268 first, skb->len, hdr_len);
2269 /* Make sure there is space in the ring for the next send. */
2270 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271 } else {
2272 dev_kfree_skb_any(skb);
2273 tx_ring->buffer_info[first].time_stamp = 0;
2274 tx_ring->next_to_use = first;
2275 }
2276
2277 return NETDEV_TX_OK;
2278}
2279
2280static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281 struct net_device *netdev)
2282{
2283 struct igbvf_adapter *adapter = netdev_priv(netdev);
2284 struct igbvf_ring *tx_ring;
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 tx_ring = &adapter->tx_ring[0];
2292
2293 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294}
2295
2296/**
2297 * igbvf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void igbvf_tx_timeout(struct net_device *netdev)
2301{
2302 struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304 /* Do the reset outside of interrupt context */
2305 adapter->tx_timeout_count++;
2306 schedule_work(&adapter->reset_task);
2307}
2308
2309static void igbvf_reset_task(struct work_struct *work)
2310{
2311 struct igbvf_adapter *adapter;
2312 adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314 igbvf_reinit_locked(adapter);
2315}
2316
2317/**
2318 * igbvf_get_stats - Get System Network Statistics
2319 * @netdev: network interface device structure
2320 *
2321 * Returns the address of the device statistics structure.
2322 * The statistics are actually updated from the timer callback.
2323 **/
2324static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325{
2326 struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328 /* only return the current stats */
2329 return &adapter->net_stats;
2330}
2331
2332/**
2333 * igbvf_change_mtu - Change the Maximum Transfer Unit
2334 * @netdev: network interface device structure
2335 * @new_mtu: new value for maximum frame size
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340{
2341 struct igbvf_adapter *adapter = netdev_priv(netdev);
2342 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2345 max_frame > MAX_JUMBO_FRAME_SIZE)
2346 return -EINVAL;
2347
2348#define MAX_STD_JUMBO_FRAME_SIZE 9234
2349 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2350 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2351 return -EINVAL;
2352 }
2353
2354 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2355 msleep(1);
2356 /* igbvf_down has a dependency on max_frame_size */
2357 adapter->max_frame_size = max_frame;
2358 if (netif_running(netdev))
2359 igbvf_down(adapter);
2360
2361 /*
2362 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2363 * means we reserve 2 more, this pushes us to allocate from the next
2364 * larger slab size.
2365 * i.e. RXBUFFER_2048 --> size-4096 slab
2366 * However with the new *_jumbo_rx* routines, jumbo receives will use
2367 * fragmented skbs
2368 */
2369
2370 if (max_frame <= 1024)
2371 adapter->rx_buffer_len = 1024;
2372 else if (max_frame <= 2048)
2373 adapter->rx_buffer_len = 2048;
2374 else
2375#if (PAGE_SIZE / 2) > 16384
2376 adapter->rx_buffer_len = 16384;
2377#else
2378 adapter->rx_buffer_len = PAGE_SIZE / 2;
2379#endif
2380
2381
2382 /* adjust allocation if LPE protects us, and we aren't using SBP */
2383 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2384 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2385 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2386 ETH_FCS_LEN;
2387
2388 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2389 netdev->mtu, new_mtu);
2390 netdev->mtu = new_mtu;
2391
2392 if (netif_running(netdev))
2393 igbvf_up(adapter);
2394 else
2395 igbvf_reset(adapter);
2396
2397 clear_bit(__IGBVF_RESETTING, &adapter->state);
2398
2399 return 0;
2400}
2401
2402static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2403{
2404 switch (cmd) {
2405 default:
2406 return -EOPNOTSUPP;
2407 }
2408}
2409
2410static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2411{
2412 struct net_device *netdev = pci_get_drvdata(pdev);
2413 struct igbvf_adapter *adapter = netdev_priv(netdev);
2414#ifdef CONFIG_PM
2415 int retval = 0;
2416#endif
2417
2418 netif_device_detach(netdev);
2419
2420 if (netif_running(netdev)) {
2421 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2422 igbvf_down(adapter);
2423 igbvf_free_irq(adapter);
2424 }
2425
2426#ifdef CONFIG_PM
2427 retval = pci_save_state(pdev);
2428 if (retval)
2429 return retval;
2430#endif
2431
2432 pci_disable_device(pdev);
2433
2434 return 0;
2435}
2436
2437#ifdef CONFIG_PM
2438static int igbvf_resume(struct pci_dev *pdev)
2439{
2440 struct net_device *netdev = pci_get_drvdata(pdev);
2441 struct igbvf_adapter *adapter = netdev_priv(netdev);
2442 u32 err;
2443
2444 pci_restore_state(pdev);
2445 err = pci_enable_device_mem(pdev);
2446 if (err) {
2447 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2448 return err;
2449 }
2450
2451 pci_set_master(pdev);
2452
2453 if (netif_running(netdev)) {
2454 err = igbvf_request_irq(adapter);
2455 if (err)
2456 return err;
2457 }
2458
2459 igbvf_reset(adapter);
2460
2461 if (netif_running(netdev))
2462 igbvf_up(adapter);
2463
2464 netif_device_attach(netdev);
2465
2466 return 0;
2467}
2468#endif
2469
2470static void igbvf_shutdown(struct pci_dev *pdev)
2471{
2472 igbvf_suspend(pdev, PMSG_SUSPEND);
2473}
2474
2475#ifdef CONFIG_NET_POLL_CONTROLLER
2476/*
2477 * Polling 'interrupt' - used by things like netconsole to send skbs
2478 * without having to re-enable interrupts. It's not called while
2479 * the interrupt routine is executing.
2480 */
2481static void igbvf_netpoll(struct net_device *netdev)
2482{
2483 struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485 disable_irq(adapter->pdev->irq);
2486
2487 igbvf_clean_tx_irq(adapter->tx_ring);
2488
2489 enable_irq(adapter->pdev->irq);
2490}
2491#endif
2492
2493/**
2494 * igbvf_io_error_detected - called when PCI error is detected
2495 * @pdev: Pointer to PCI device
2496 * @state: The current pci connection state
2497 *
2498 * This function is called after a PCI bus error affecting
2499 * this device has been detected.
2500 */
2501static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2502 pci_channel_state_t state)
2503{
2504 struct net_device *netdev = pci_get_drvdata(pdev);
2505 struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507 netif_device_detach(netdev);
2508
2509 if (state == pci_channel_io_perm_failure)
2510 return PCI_ERS_RESULT_DISCONNECT;
2511
2512 if (netif_running(netdev))
2513 igbvf_down(adapter);
2514 pci_disable_device(pdev);
2515
2516 /* Request a slot slot reset. */
2517 return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * igbvf_io_slot_reset - called after the pci bus has been reset.
2522 * @pdev: Pointer to PCI device
2523 *
2524 * Restart the card from scratch, as if from a cold-boot. Implementation
2525 * resembles the first-half of the igbvf_resume routine.
2526 */
2527static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2528{
2529 struct net_device *netdev = pci_get_drvdata(pdev);
2530 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532 if (pci_enable_device_mem(pdev)) {
2533 dev_err(&pdev->dev,
2534 "Cannot re-enable PCI device after reset.\n");
2535 return PCI_ERS_RESULT_DISCONNECT;
2536 }
2537 pci_set_master(pdev);
2538
2539 igbvf_reset(adapter);
2540
2541 return PCI_ERS_RESULT_RECOVERED;
2542}
2543
2544/**
2545 * igbvf_io_resume - called when traffic can start flowing again.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * This callback is called when the error recovery driver tells us that
2549 * its OK to resume normal operation. Implementation resembles the
2550 * second-half of the igbvf_resume routine.
2551 */
2552static void igbvf_io_resume(struct pci_dev *pdev)
2553{
2554 struct net_device *netdev = pci_get_drvdata(pdev);
2555 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557 if (netif_running(netdev)) {
2558 if (igbvf_up(adapter)) {
2559 dev_err(&pdev->dev,
2560 "can't bring device back up after reset\n");
2561 return;
2562 }
2563 }
2564
2565 netif_device_attach(netdev);
2566}
2567
2568static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2569{
2570 struct e1000_hw *hw = &adapter->hw;
2571 struct net_device *netdev = adapter->netdev;
2572 struct pci_dev *pdev = adapter->pdev;
2573
2574 if (hw->mac.type == e1000_vfadapt_i350)
2575 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2576 else
2577 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2578 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2579}
2580
2581static int igbvf_set_features(struct net_device *netdev,
2582 netdev_features_t features)
2583{
2584 struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586 if (features & NETIF_F_RXCSUM)
2587 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2588 else
2589 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2590
2591 return 0;
2592}
2593
2594static const struct net_device_ops igbvf_netdev_ops = {
2595 .ndo_open = igbvf_open,
2596 .ndo_stop = igbvf_close,
2597 .ndo_start_xmit = igbvf_xmit_frame,
2598 .ndo_get_stats = igbvf_get_stats,
2599 .ndo_set_rx_mode = igbvf_set_multi,
2600 .ndo_set_mac_address = igbvf_set_mac,
2601 .ndo_change_mtu = igbvf_change_mtu,
2602 .ndo_do_ioctl = igbvf_ioctl,
2603 .ndo_tx_timeout = igbvf_tx_timeout,
2604 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2605 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2606#ifdef CONFIG_NET_POLL_CONTROLLER
2607 .ndo_poll_controller = igbvf_netpoll,
2608#endif
2609 .ndo_set_features = igbvf_set_features,
2610};
2611
2612/**
2613 * igbvf_probe - Device Initialization Routine
2614 * @pdev: PCI device information struct
2615 * @ent: entry in igbvf_pci_tbl
2616 *
2617 * Returns 0 on success, negative on failure
2618 *
2619 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2620 * The OS initialization, configuring of the adapter private structure,
2621 * and a hardware reset occur.
2622 **/
2623static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2624{
2625 struct net_device *netdev;
2626 struct igbvf_adapter *adapter;
2627 struct e1000_hw *hw;
2628 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2629
2630 static int cards_found;
2631 int err, pci_using_dac;
2632
2633 err = pci_enable_device_mem(pdev);
2634 if (err)
2635 return err;
2636
2637 pci_using_dac = 0;
2638 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2639 if (!err) {
2640 pci_using_dac = 1;
2641 } else {
2642 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2643 if (err) {
2644 dev_err(&pdev->dev, "No usable DMA "
2645 "configuration, aborting\n");
2646 goto err_dma;
2647 }
2648 }
2649
2650 err = pci_request_regions(pdev, igbvf_driver_name);
2651 if (err)
2652 goto err_pci_reg;
2653
2654 pci_set_master(pdev);
2655
2656 err = -ENOMEM;
2657 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2658 if (!netdev)
2659 goto err_alloc_etherdev;
2660
2661 SET_NETDEV_DEV(netdev, &pdev->dev);
2662
2663 pci_set_drvdata(pdev, netdev);
2664 adapter = netdev_priv(netdev);
2665 hw = &adapter->hw;
2666 adapter->netdev = netdev;
2667 adapter->pdev = pdev;
2668 adapter->ei = ei;
2669 adapter->pba = ei->pba;
2670 adapter->flags = ei->flags;
2671 adapter->hw.back = adapter;
2672 adapter->hw.mac.type = ei->mac;
2673 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2674
2675 /* PCI config space info */
2676
2677 hw->vendor_id = pdev->vendor;
2678 hw->device_id = pdev->device;
2679 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2680 hw->subsystem_device_id = pdev->subsystem_device;
2681 hw->revision_id = pdev->revision;
2682
2683 err = -EIO;
2684 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685 pci_resource_len(pdev, 0));
2686
2687 if (!adapter->hw.hw_addr)
2688 goto err_ioremap;
2689
2690 if (ei->get_variants) {
2691 err = ei->get_variants(adapter);
2692 if (err)
2693 goto err_get_variants;
2694 }
2695
2696 /* setup adapter struct */
2697 err = igbvf_sw_init(adapter);
2698 if (err)
2699 goto err_sw_init;
2700
2701 /* construct the net_device struct */
2702 netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704 igbvf_set_ethtool_ops(netdev);
2705 netdev->watchdog_timeo = 5 * HZ;
2706 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708 adapter->bd_number = cards_found++;
2709
2710 netdev->hw_features = NETIF_F_SG |
2711 NETIF_F_IP_CSUM |
2712 NETIF_F_IPV6_CSUM |
2713 NETIF_F_TSO |
2714 NETIF_F_TSO6 |
2715 NETIF_F_RXCSUM;
2716
2717 netdev->features = netdev->hw_features |
2718 NETIF_F_HW_VLAN_CTAG_TX |
2719 NETIF_F_HW_VLAN_CTAG_RX |
2720 NETIF_F_HW_VLAN_CTAG_FILTER;
2721
2722 if (pci_using_dac)
2723 netdev->features |= NETIF_F_HIGHDMA;
2724
2725 netdev->vlan_features |= NETIF_F_TSO;
2726 netdev->vlan_features |= NETIF_F_TSO6;
2727 netdev->vlan_features |= NETIF_F_IP_CSUM;
2728 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2729 netdev->vlan_features |= NETIF_F_SG;
2730
2731 /*reset the controller to put the device in a known good state */
2732 err = hw->mac.ops.reset_hw(hw);
2733 if (err) {
2734 dev_info(&pdev->dev,
2735 "PF still in reset state. Is the PF interface up?\n");
2736 } else {
2737 err = hw->mac.ops.read_mac_addr(hw);
2738 if (err)
2739 dev_info(&pdev->dev, "Error reading MAC address.\n");
2740 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2741 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2742 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2743 netdev->addr_len);
2744 }
2745
2746 if (!is_valid_ether_addr(netdev->dev_addr)) {
2747 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2748 eth_hw_addr_random(netdev);
2749 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2750 netdev->addr_len);
2751 }
2752
2753 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2754 (unsigned long) adapter);
2755
2756 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2757 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2758
2759 /* ring size defaults */
2760 adapter->rx_ring->count = 1024;
2761 adapter->tx_ring->count = 1024;
2762
2763 /* reset the hardware with the new settings */
2764 igbvf_reset(adapter);
2765
2766 /* set hardware-specific flags */
2767 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2768 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2769
2770 strcpy(netdev->name, "eth%d");
2771 err = register_netdev(netdev);
2772 if (err)
2773 goto err_hw_init;
2774
2775 /* tell the stack to leave us alone until igbvf_open() is called */
2776 netif_carrier_off(netdev);
2777 netif_stop_queue(netdev);
2778
2779 igbvf_print_device_info(adapter);
2780
2781 igbvf_initialize_last_counter_stats(adapter);
2782
2783 return 0;
2784
2785err_hw_init:
2786 kfree(adapter->tx_ring);
2787 kfree(adapter->rx_ring);
2788err_sw_init:
2789 igbvf_reset_interrupt_capability(adapter);
2790err_get_variants:
2791 iounmap(adapter->hw.hw_addr);
2792err_ioremap:
2793 free_netdev(netdev);
2794err_alloc_etherdev:
2795 pci_release_regions(pdev);
2796err_pci_reg:
2797err_dma:
2798 pci_disable_device(pdev);
2799 return err;
2800}
2801
2802/**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device. The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811static void igbvf_remove(struct pci_dev *pdev)
2812{
2813 struct net_device *netdev = pci_get_drvdata(pdev);
2814 struct igbvf_adapter *adapter = netdev_priv(netdev);
2815 struct e1000_hw *hw = &adapter->hw;
2816
2817 /*
2818 * The watchdog timer may be rescheduled, so explicitly
2819 * disable it from being rescheduled.
2820 */
2821 set_bit(__IGBVF_DOWN, &adapter->state);
2822 del_timer_sync(&adapter->watchdog_timer);
2823
2824 cancel_work_sync(&adapter->reset_task);
2825 cancel_work_sync(&adapter->watchdog_task);
2826
2827 unregister_netdev(netdev);
2828
2829 igbvf_reset_interrupt_capability(adapter);
2830
2831 /*
2832 * it is important to delete the napi struct prior to freeing the
2833 * rx ring so that you do not end up with null pointer refs
2834 */
2835 netif_napi_del(&adapter->rx_ring->napi);
2836 kfree(adapter->tx_ring);
2837 kfree(adapter->rx_ring);
2838
2839 iounmap(hw->hw_addr);
2840 if (hw->flash_address)
2841 iounmap(hw->flash_address);
2842 pci_release_regions(pdev);
2843
2844 free_netdev(netdev);
2845
2846 pci_disable_device(pdev);
2847}
2848
2849/* PCI Error Recovery (ERS) */
2850static const struct pci_error_handlers igbvf_err_handler = {
2851 .error_detected = igbvf_io_error_detected,
2852 .slot_reset = igbvf_io_slot_reset,
2853 .resume = igbvf_io_resume,
2854};
2855
2856static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859 { } /* terminate list */
2860};
2861MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863/* PCI Device API Driver */
2864static struct pci_driver igbvf_driver = {
2865 .name = igbvf_driver_name,
2866 .id_table = igbvf_pci_tbl,
2867 .probe = igbvf_probe,
2868 .remove = igbvf_remove,
2869#ifdef CONFIG_PM
2870 /* Power Management Hooks */
2871 .suspend = igbvf_suspend,
2872 .resume = igbvf_resume,
2873#endif
2874 .shutdown = igbvf_shutdown,
2875 .err_handler = &igbvf_err_handler
2876};
2877
2878/**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884static int __init igbvf_init_module(void)
2885{
2886 int ret;
2887 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888 pr_info("%s\n", igbvf_copyright);
2889
2890 ret = pci_register_driver(&igbvf_driver);
2891
2892 return ret;
2893}
2894module_init(igbvf_init_module);
2895
2896/**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902static void __exit igbvf_exit_module(void)
2903{
2904 pci_unregister_driver(&igbvf_driver);
2905}
2906module_exit(igbvf_exit_module);
2907
2908
2909MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911MODULE_LICENSE("GPL");
2912MODULE_VERSION(DRV_VERSION);
2913
2914/* netdev.c */