Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 */
  5
  6#include <linux/slab.h> /* fault-inject.h is not standalone! */
  7
  8#include <linux/fault-inject.h>
  9
 10#include "gem/i915_gem_lmem.h"
 11#include "i915_trace.h"
 12#include "intel_gt.h"
 13#include "intel_gtt.h"
 14
 15struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
 16{
 17	struct drm_i915_gem_object *obj;
 18
 19	obj = i915_gem_object_create_lmem(vm->i915, sz, 0);
 20	/*
 21	 * Ensure all paging structures for this vm share the same dma-resv
 22	 * object underneath, with the idea that one object_lock() will lock
 23	 * them all at once.
 24	 */
 25	if (!IS_ERR(obj)) {
 26		obj->base.resv = i915_vm_resv_get(vm);
 27		obj->shares_resv_from = vm;
 28	}
 29
 30	return obj;
 31}
 32
 33struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
 34{
 35	struct drm_i915_gem_object *obj;
 36
 37	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
 38		i915_gem_shrink_all(vm->i915);
 39
 40	obj = i915_gem_object_create_internal(vm->i915, sz);
 41	/*
 42	 * Ensure all paging structures for this vm share the same dma-resv
 43	 * object underneath, with the idea that one object_lock() will lock
 44	 * them all at once.
 45	 */
 46	if (!IS_ERR(obj)) {
 47		obj->base.resv = i915_vm_resv_get(vm);
 48		obj->shares_resv_from = vm;
 49	}
 50
 51	return obj;
 52}
 53
 54int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
 55{
 56	enum i915_map_type type;
 57	void *vaddr;
 58
 59	type = i915_coherent_map_type(vm->i915, obj, true);
 60	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
 61	if (IS_ERR(vaddr))
 62		return PTR_ERR(vaddr);
 63
 64	i915_gem_object_make_unshrinkable(obj);
 65	return 0;
 66}
 67
 68int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
 69{
 70	enum i915_map_type type;
 71	void *vaddr;
 72
 73	type = i915_coherent_map_type(vm->i915, obj, true);
 74	vaddr = i915_gem_object_pin_map(obj, type);
 75	if (IS_ERR(vaddr))
 76		return PTR_ERR(vaddr);
 77
 78	i915_gem_object_make_unshrinkable(obj);
 79	return 0;
 80}
 81
 82void __i915_vm_close(struct i915_address_space *vm)
 83{
 84	struct i915_vma *vma, *vn;
 85
 86	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
 87		return;
 88
 89	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
 90		struct drm_i915_gem_object *obj = vma->obj;
 91
 92		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
 93		if (!kref_get_unless_zero(&obj->base.refcount))
 94			continue;
 95
 96		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
 97		WARN_ON(__i915_vma_unbind(vma));
 98		__i915_vma_put(vma);
 99
100		i915_gem_object_put(obj);
101	}
102	GEM_BUG_ON(!list_empty(&vm->bound_list));
103
104	mutex_unlock(&vm->mutex);
105}
106
107/* lock the vm into the current ww, if we lock one, we lock all */
108int i915_vm_lock_objects(struct i915_address_space *vm,
109			 struct i915_gem_ww_ctx *ww)
110{
111	if (vm->scratch[0]->base.resv == &vm->_resv) {
112		return i915_gem_object_lock(vm->scratch[0], ww);
113	} else {
114		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
115
116		/* We borrowed the scratch page from ggtt, take the top level object */
117		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
118	}
119}
120
121void i915_address_space_fini(struct i915_address_space *vm)
122{
123	drm_mm_takedown(&vm->mm);
124	mutex_destroy(&vm->mutex);
125}
126
127/**
128 * i915_vm_resv_release - Final struct i915_address_space destructor
129 * @kref: Pointer to the &i915_address_space.resv_ref member.
130 *
131 * This function is called when the last lock sharer no longer shares the
132 * &i915_address_space._resv lock.
133 */
134void i915_vm_resv_release(struct kref *kref)
135{
136	struct i915_address_space *vm =
137		container_of(kref, typeof(*vm), resv_ref);
138
139	dma_resv_fini(&vm->_resv);
140	kfree(vm);
141}
142
143static void __i915_vm_release(struct work_struct *work)
144{
145	struct i915_address_space *vm =
146		container_of(work, struct i915_address_space, rcu.work);
147
148	vm->cleanup(vm);
149	i915_address_space_fini(vm);
150
151	i915_vm_resv_put(vm);
152}
153
154void i915_vm_release(struct kref *kref)
155{
156	struct i915_address_space *vm =
157		container_of(kref, struct i915_address_space, ref);
158
159	GEM_BUG_ON(i915_is_ggtt(vm));
160	trace_i915_ppgtt_release(vm);
161
162	queue_rcu_work(vm->i915->wq, &vm->rcu);
163}
164
165void i915_address_space_init(struct i915_address_space *vm, int subclass)
166{
167	kref_init(&vm->ref);
168
169	/*
170	 * Special case for GGTT that has already done an early
171	 * kref_init here.
172	 */
173	if (!kref_read(&vm->resv_ref))
174		kref_init(&vm->resv_ref);
175
176	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
177	atomic_set(&vm->open, 1);
178
179	/*
180	 * The vm->mutex must be reclaim safe (for use in the shrinker).
181	 * Do a dummy acquire now under fs_reclaim so that any allocation
182	 * attempt holding the lock is immediately reported by lockdep.
183	 */
184	mutex_init(&vm->mutex);
185	lockdep_set_subclass(&vm->mutex, subclass);
186
187	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
188		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
189	} else {
190		/*
191		 * CHV + BXT VTD workaround use stop_machine(),
192		 * which is allowed to allocate memory. This means &vm->mutex
193		 * is the outer lock, and in theory we can allocate memory inside
194		 * it through stop_machine().
195		 *
196		 * Add the annotation for this, we use trylock in shrinker.
197		 */
198		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
199		might_alloc(GFP_KERNEL);
200		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
201	}
202	dma_resv_init(&vm->_resv);
203
204	GEM_BUG_ON(!vm->total);
205	drm_mm_init(&vm->mm, 0, vm->total);
206	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
207
208	INIT_LIST_HEAD(&vm->bound_list);
209}
210
211void clear_pages(struct i915_vma *vma)
212{
213	GEM_BUG_ON(!vma->pages);
214
215	if (vma->pages != vma->obj->mm.pages) {
216		sg_free_table(vma->pages);
217		kfree(vma->pages);
218	}
219	vma->pages = NULL;
220
221	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
222}
223
224void *__px_vaddr(struct drm_i915_gem_object *p)
225{
226	enum i915_map_type type;
227
228	GEM_BUG_ON(!i915_gem_object_has_pages(p));
229	return page_unpack_bits(p->mm.mapping, &type);
230}
231
232dma_addr_t __px_dma(struct drm_i915_gem_object *p)
233{
234	GEM_BUG_ON(!i915_gem_object_has_pages(p));
235	return sg_dma_address(p->mm.pages->sgl);
236}
237
238struct page *__px_page(struct drm_i915_gem_object *p)
239{
240	GEM_BUG_ON(!i915_gem_object_has_pages(p));
241	return sg_page(p->mm.pages->sgl);
242}
243
244void
245fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
246{
247	void *vaddr = __px_vaddr(p);
248
249	memset64(vaddr, val, count);
250	clflush_cache_range(vaddr, PAGE_SIZE);
251}
252
253static void poison_scratch_page(struct drm_i915_gem_object *scratch)
254{
255	void *vaddr = __px_vaddr(scratch);
256	u8 val;
257
258	val = 0;
259	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
260		val = POISON_FREE;
261
262	memset(vaddr, val, scratch->base.size);
263}
264
265int setup_scratch_page(struct i915_address_space *vm)
266{
267	unsigned long size;
268
269	/*
270	 * In order to utilize 64K pages for an object with a size < 2M, we will
271	 * need to support a 64K scratch page, given that every 16th entry for a
272	 * page-table operating in 64K mode must point to a properly aligned 64K
273	 * region, including any PTEs which happen to point to scratch.
274	 *
275	 * This is only relevant for the 48b PPGTT where we support
276	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
277	 * scratch (read-only) between all vm, we create one 64k scratch page
278	 * for all.
279	 */
280	size = I915_GTT_PAGE_SIZE_4K;
281	if (i915_vm_is_4lvl(vm) &&
282	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
283		size = I915_GTT_PAGE_SIZE_64K;
284
285	do {
286		struct drm_i915_gem_object *obj;
287
288		obj = vm->alloc_pt_dma(vm, size);
289		if (IS_ERR(obj))
290			goto skip;
291
292		if (map_pt_dma(vm, obj))
293			goto skip_obj;
294
295		/* We need a single contiguous page for our scratch */
296		if (obj->mm.page_sizes.sg < size)
297			goto skip_obj;
298
299		/* And it needs to be correspondingly aligned */
300		if (__px_dma(obj) & (size - 1))
301			goto skip_obj;
302
303		/*
304		 * Use a non-zero scratch page for debugging.
305		 *
306		 * We want a value that should be reasonably obvious
307		 * to spot in the error state, while also causing a GPU hang
308		 * if executed. We prefer using a clear page in production, so
309		 * should it ever be accidentally used, the effect should be
310		 * fairly benign.
311		 */
312		poison_scratch_page(obj);
313
314		vm->scratch[0] = obj;
315		vm->scratch_order = get_order(size);
316		return 0;
317
318skip_obj:
319		i915_gem_object_put(obj);
320skip:
321		if (size == I915_GTT_PAGE_SIZE_4K)
322			return -ENOMEM;
323
324		size = I915_GTT_PAGE_SIZE_4K;
325	} while (1);
326}
327
328void free_scratch(struct i915_address_space *vm)
329{
330	int i;
331
332	for (i = 0; i <= vm->top; i++)
333		i915_gem_object_put(vm->scratch[i]);
334}
335
336void gtt_write_workarounds(struct intel_gt *gt)
337{
338	struct drm_i915_private *i915 = gt->i915;
339	struct intel_uncore *uncore = gt->uncore;
340
341	/*
342	 * This function is for gtt related workarounds. This function is
343	 * called on driver load and after a GPU reset, so you can place
344	 * workarounds here even if they get overwritten by GPU reset.
345	 */
346	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
347	if (IS_BROADWELL(i915))
348		intel_uncore_write(uncore,
349				   GEN8_L3_LRA_1_GPGPU,
350				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
351	else if (IS_CHERRYVIEW(i915))
352		intel_uncore_write(uncore,
353				   GEN8_L3_LRA_1_GPGPU,
354				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
355	else if (IS_GEN9_LP(i915))
356		intel_uncore_write(uncore,
357				   GEN8_L3_LRA_1_GPGPU,
358				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
359	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
360		intel_uncore_write(uncore,
361				   GEN8_L3_LRA_1_GPGPU,
362				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
363
364	/*
365	 * To support 64K PTEs we need to first enable the use of the
366	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
367	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
368	 * shouldn't be needed after GEN10.
369	 *
370	 * 64K pages were first introduced from BDW+, although technically they
371	 * only *work* from gen9+. For pre-BDW we instead have the option for
372	 * 32K pages, but we don't currently have any support for it in our
373	 * driver.
374	 */
375	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
376	    GRAPHICS_VER(i915) <= 10)
377		intel_uncore_rmw(uncore,
378				 GEN8_GAMW_ECO_DEV_RW_IA,
379				 0,
380				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
381
382	if (IS_GRAPHICS_VER(i915, 8, 11)) {
383		bool can_use_gtt_cache = true;
384
385		/*
386		 * According to the BSpec if we use 2M/1G pages then we also
387		 * need to disable the GTT cache. At least on BDW we can see
388		 * visual corruption when using 2M pages, and not disabling the
389		 * GTT cache.
390		 */
391		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
392			can_use_gtt_cache = false;
393
394		/* WaGttCachingOffByDefault */
395		intel_uncore_write(uncore,
396				   HSW_GTT_CACHE_EN,
397				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
398		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
399				 intel_uncore_read(uncore,
400						   HSW_GTT_CACHE_EN) == 0);
401	}
402}
403
404static void tgl_setup_private_ppat(struct intel_uncore *uncore)
405{
406	/* TGL doesn't support LLC or AGE settings */
407	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
408	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
409	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
410	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
411	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
412	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
413	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
414	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
415}
416
417static void cnl_setup_private_ppat(struct intel_uncore *uncore)
418{
419	intel_uncore_write(uncore,
420			   GEN10_PAT_INDEX(0),
421			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
422	intel_uncore_write(uncore,
423			   GEN10_PAT_INDEX(1),
424			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
425	intel_uncore_write(uncore,
426			   GEN10_PAT_INDEX(2),
427			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
428	intel_uncore_write(uncore,
429			   GEN10_PAT_INDEX(3),
430			   GEN8_PPAT_UC);
431	intel_uncore_write(uncore,
432			   GEN10_PAT_INDEX(4),
433			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
434	intel_uncore_write(uncore,
435			   GEN10_PAT_INDEX(5),
436			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
437	intel_uncore_write(uncore,
438			   GEN10_PAT_INDEX(6),
439			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
440	intel_uncore_write(uncore,
441			   GEN10_PAT_INDEX(7),
442			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
443}
444
445/*
446 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
447 * bits. When using advanced contexts each context stores its own PAT, but
448 * writing this data shouldn't be harmful even in those cases.
449 */
450static void bdw_setup_private_ppat(struct intel_uncore *uncore)
451{
452	struct drm_i915_private *i915 = uncore->i915;
453	u64 pat;
454
455	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
456	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
457	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
458	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
459	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
460	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
461	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
462
463	/* for scanout with eLLC */
464	if (GRAPHICS_VER(i915) >= 9)
465		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
466	else
467		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
468
469	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
470	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
471}
472
473static void chv_setup_private_ppat(struct intel_uncore *uncore)
474{
475	u64 pat;
476
477	/*
478	 * Map WB on BDW to snooped on CHV.
479	 *
480	 * Only the snoop bit has meaning for CHV, the rest is
481	 * ignored.
482	 *
483	 * The hardware will never snoop for certain types of accesses:
484	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
485	 * - PPGTT page tables
486	 * - some other special cycles
487	 *
488	 * As with BDW, we also need to consider the following for GT accesses:
489	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
490	 * so RTL will always use the value corresponding to
491	 * pat_sel = 000".
492	 * Which means we must set the snoop bit in PAT entry 0
493	 * in order to keep the global status page working.
494	 */
495
496	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
497	      GEN8_PPAT(1, 0) |
498	      GEN8_PPAT(2, 0) |
499	      GEN8_PPAT(3, 0) |
500	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
501	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
502	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
503	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
504
505	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
506	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
507}
508
509void setup_private_pat(struct intel_uncore *uncore)
510{
511	struct drm_i915_private *i915 = uncore->i915;
512
513	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
514
515	if (GRAPHICS_VER(i915) >= 12)
516		tgl_setup_private_ppat(uncore);
517	else if (GRAPHICS_VER(i915) >= 10)
518		cnl_setup_private_ppat(uncore);
519	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
520		chv_setup_private_ppat(uncore);
521	else
522		bdw_setup_private_ppat(uncore);
523}
524
525struct i915_vma *
526__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
527{
528	struct drm_i915_gem_object *obj;
529	struct i915_vma *vma;
530
531	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
532	if (IS_ERR(obj))
533		return ERR_CAST(obj);
534
535	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
536
537	vma = i915_vma_instance(obj, vm, NULL);
538	if (IS_ERR(vma)) {
539		i915_gem_object_put(obj);
540		return vma;
541	}
542
543	return vma;
544}
545
546struct i915_vma *
547__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
548{
549	struct i915_vma *vma;
550	int err;
551
552	vma = __vm_create_scratch_for_read(vm, size);
553	if (IS_ERR(vma))
554		return vma;
555
556	err = i915_vma_pin(vma, 0, 0,
557			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
558	if (err) {
559		i915_vma_put(vma);
560		return ERR_PTR(err);
561	}
562
563	return vma;
564}
565
566#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
567#include "selftests/mock_gtt.c"
568#endif