Loading...
Note: File does not exist in v3.15.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014 Intel Corporation
4 */
5
6#include "gen8_engine_cs.h"
7#include "i915_drv.h"
8#include "intel_lrc.h"
9#include "intel_gpu_commands.h"
10#include "intel_ring.h"
11
12int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
13{
14 bool vf_flush_wa = false, dc_flush_wa = false;
15 u32 *cs, flags = 0;
16 int len;
17
18 flags |= PIPE_CONTROL_CS_STALL;
19
20 if (mode & EMIT_FLUSH) {
21 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
22 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
23 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
24 flags |= PIPE_CONTROL_FLUSH_ENABLE;
25 }
26
27 if (mode & EMIT_INVALIDATE) {
28 flags |= PIPE_CONTROL_TLB_INVALIDATE;
29 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
30 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
31 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
32 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
33 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
34 flags |= PIPE_CONTROL_QW_WRITE;
35 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
36
37 /*
38 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
39 * pipe control.
40 */
41 if (GRAPHICS_VER(rq->engine->i915) == 9)
42 vf_flush_wa = true;
43
44 /* WaForGAMHang:kbl */
45 if (IS_KBL_GT_STEP(rq->engine->i915, 0, STEP_B0))
46 dc_flush_wa = true;
47 }
48
49 len = 6;
50
51 if (vf_flush_wa)
52 len += 6;
53
54 if (dc_flush_wa)
55 len += 12;
56
57 cs = intel_ring_begin(rq, len);
58 if (IS_ERR(cs))
59 return PTR_ERR(cs);
60
61 if (vf_flush_wa)
62 cs = gen8_emit_pipe_control(cs, 0, 0);
63
64 if (dc_flush_wa)
65 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
66 0);
67
68 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
69
70 if (dc_flush_wa)
71 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
72
73 intel_ring_advance(rq, cs);
74
75 return 0;
76}
77
78int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
79{
80 u32 cmd, *cs;
81
82 cs = intel_ring_begin(rq, 4);
83 if (IS_ERR(cs))
84 return PTR_ERR(cs);
85
86 cmd = MI_FLUSH_DW + 1;
87
88 /*
89 * We always require a command barrier so that subsequent
90 * commands, such as breadcrumb interrupts, are strictly ordered
91 * wrt the contents of the write cache being flushed to memory
92 * (and thus being coherent from the CPU).
93 */
94 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
95
96 if (mode & EMIT_INVALIDATE) {
97 cmd |= MI_INVALIDATE_TLB;
98 if (rq->engine->class == VIDEO_DECODE_CLASS)
99 cmd |= MI_INVALIDATE_BSD;
100 }
101
102 *cs++ = cmd;
103 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
104 *cs++ = 0; /* upper addr */
105 *cs++ = 0; /* value */
106 intel_ring_advance(rq, cs);
107
108 return 0;
109}
110
111int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
112{
113 if (mode & EMIT_FLUSH) {
114 u32 *cs;
115 u32 flags = 0;
116
117 flags |= PIPE_CONTROL_CS_STALL;
118
119 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
120 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
121 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
122 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
123 flags |= PIPE_CONTROL_FLUSH_ENABLE;
124 flags |= PIPE_CONTROL_QW_WRITE;
125 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
126
127 cs = intel_ring_begin(rq, 6);
128 if (IS_ERR(cs))
129 return PTR_ERR(cs);
130
131 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
132 intel_ring_advance(rq, cs);
133 }
134
135 if (mode & EMIT_INVALIDATE) {
136 u32 *cs;
137 u32 flags = 0;
138
139 flags |= PIPE_CONTROL_CS_STALL;
140
141 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
142 flags |= PIPE_CONTROL_TLB_INVALIDATE;
143 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
144 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
145 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
146 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
147 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
148 flags |= PIPE_CONTROL_QW_WRITE;
149 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
150
151 cs = intel_ring_begin(rq, 6);
152 if (IS_ERR(cs))
153 return PTR_ERR(cs);
154
155 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
156 intel_ring_advance(rq, cs);
157 }
158
159 return 0;
160}
161
162static u32 preparser_disable(bool state)
163{
164 return MI_ARB_CHECK | 1 << 8 | state;
165}
166
167static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
168{
169 static const i915_reg_t vd[] = {
170 GEN12_VD0_AUX_NV,
171 GEN12_VD1_AUX_NV,
172 GEN12_VD2_AUX_NV,
173 GEN12_VD3_AUX_NV,
174 };
175
176 static const i915_reg_t ve[] = {
177 GEN12_VE0_AUX_NV,
178 GEN12_VE1_AUX_NV,
179 };
180
181 if (engine->class == VIDEO_DECODE_CLASS)
182 return vd[engine->instance];
183
184 if (engine->class == VIDEO_ENHANCEMENT_CLASS)
185 return ve[engine->instance];
186
187 GEM_BUG_ON("unknown aux_inv reg\n");
188 return INVALID_MMIO_REG;
189}
190
191static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
192{
193 *cs++ = MI_LOAD_REGISTER_IMM(1);
194 *cs++ = i915_mmio_reg_offset(inv_reg);
195 *cs++ = AUX_INV;
196 *cs++ = MI_NOOP;
197
198 return cs;
199}
200
201int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
202{
203 if (mode & EMIT_FLUSH) {
204 u32 flags = 0;
205 u32 *cs;
206
207 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
208 flags |= PIPE_CONTROL_FLUSH_L3;
209 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
210 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
211 /* Wa_1409600907:tgl */
212 flags |= PIPE_CONTROL_DEPTH_STALL;
213 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
214 flags |= PIPE_CONTROL_FLUSH_ENABLE;
215
216 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
217 flags |= PIPE_CONTROL_QW_WRITE;
218
219 flags |= PIPE_CONTROL_CS_STALL;
220
221 cs = intel_ring_begin(rq, 6);
222 if (IS_ERR(cs))
223 return PTR_ERR(cs);
224
225 cs = gen12_emit_pipe_control(cs,
226 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
227 flags, LRC_PPHWSP_SCRATCH_ADDR);
228 intel_ring_advance(rq, cs);
229 }
230
231 if (mode & EMIT_INVALIDATE) {
232 u32 flags = 0;
233 u32 *cs;
234
235 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
236 flags |= PIPE_CONTROL_TLB_INVALIDATE;
237 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
238 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
242
243 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
244 flags |= PIPE_CONTROL_QW_WRITE;
245
246 flags |= PIPE_CONTROL_CS_STALL;
247
248 cs = intel_ring_begin(rq, 8 + 4);
249 if (IS_ERR(cs))
250 return PTR_ERR(cs);
251
252 /*
253 * Prevent the pre-parser from skipping past the TLB
254 * invalidate and loading a stale page for the batch
255 * buffer / request payload.
256 */
257 *cs++ = preparser_disable(true);
258
259 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
260
261 /* hsdes: 1809175790 */
262 cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
263
264 *cs++ = preparser_disable(false);
265 intel_ring_advance(rq, cs);
266 }
267
268 return 0;
269}
270
271int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
272{
273 intel_engine_mask_t aux_inv = 0;
274 u32 cmd, *cs;
275
276 cmd = 4;
277 if (mode & EMIT_INVALIDATE)
278 cmd += 2;
279 if (mode & EMIT_INVALIDATE)
280 aux_inv = rq->engine->mask & ~BIT(BCS0);
281 if (aux_inv)
282 cmd += 2 * hweight8(aux_inv) + 2;
283
284 cs = intel_ring_begin(rq, cmd);
285 if (IS_ERR(cs))
286 return PTR_ERR(cs);
287
288 if (mode & EMIT_INVALIDATE)
289 *cs++ = preparser_disable(true);
290
291 cmd = MI_FLUSH_DW + 1;
292
293 /*
294 * We always require a command barrier so that subsequent
295 * commands, such as breadcrumb interrupts, are strictly ordered
296 * wrt the contents of the write cache being flushed to memory
297 * (and thus being coherent from the CPU).
298 */
299 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
300
301 if (mode & EMIT_INVALIDATE) {
302 cmd |= MI_INVALIDATE_TLB;
303 if (rq->engine->class == VIDEO_DECODE_CLASS)
304 cmd |= MI_INVALIDATE_BSD;
305 }
306
307 *cs++ = cmd;
308 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
309 *cs++ = 0; /* upper addr */
310 *cs++ = 0; /* value */
311
312 if (aux_inv) { /* hsdes: 1809175790 */
313 struct intel_engine_cs *engine;
314 unsigned int tmp;
315
316 *cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
317 for_each_engine_masked(engine, rq->engine->gt,
318 aux_inv, tmp) {
319 *cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
320 *cs++ = AUX_INV;
321 }
322 *cs++ = MI_NOOP;
323 }
324
325 if (mode & EMIT_INVALIDATE)
326 *cs++ = preparser_disable(false);
327
328 intel_ring_advance(rq, cs);
329
330 return 0;
331}
332
333static u32 preempt_address(struct intel_engine_cs *engine)
334{
335 return (i915_ggtt_offset(engine->status_page.vma) +
336 I915_GEM_HWS_PREEMPT_ADDR);
337}
338
339static u32 hwsp_offset(const struct i915_request *rq)
340{
341 const struct intel_timeline *tl;
342
343 /* Before the request is executed, the timeline is fixed */
344 tl = rcu_dereference_protected(rq->timeline,
345 !i915_request_signaled(rq));
346
347 /* See the comment in i915_request_active_seqno(). */
348 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
349}
350
351int gen8_emit_init_breadcrumb(struct i915_request *rq)
352{
353 u32 *cs;
354
355 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
356 if (!i915_request_timeline(rq)->has_initial_breadcrumb)
357 return 0;
358
359 cs = intel_ring_begin(rq, 6);
360 if (IS_ERR(cs))
361 return PTR_ERR(cs);
362
363 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
364 *cs++ = hwsp_offset(rq);
365 *cs++ = 0;
366 *cs++ = rq->fence.seqno - 1;
367
368 /*
369 * Check if we have been preempted before we even get started.
370 *
371 * After this point i915_request_started() reports true, even if
372 * we get preempted and so are no longer running.
373 *
374 * i915_request_started() is used during preemption processing
375 * to decide if the request is currently inside the user payload
376 * or spinning on a kernel semaphore (or earlier). For no-preemption
377 * requests, we do allow preemption on the semaphore before the user
378 * payload, but do not allow preemption once the request is started.
379 *
380 * i915_request_started() is similarly used during GPU hangs to
381 * determine if the user's payload was guilty, and if so, the
382 * request is banned. Before the request is started, it is assumed
383 * to be unharmed and an innocent victim of another's hang.
384 */
385 *cs++ = MI_NOOP;
386 *cs++ = MI_ARB_CHECK;
387
388 intel_ring_advance(rq, cs);
389
390 /* Record the updated position of the request's payload */
391 rq->infix = intel_ring_offset(rq, cs);
392
393 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
394
395 return 0;
396}
397
398int gen8_emit_bb_start_noarb(struct i915_request *rq,
399 u64 offset, u32 len,
400 const unsigned int flags)
401{
402 u32 *cs;
403
404 cs = intel_ring_begin(rq, 4);
405 if (IS_ERR(cs))
406 return PTR_ERR(cs);
407
408 /*
409 * WaDisableCtxRestoreArbitration:bdw,chv
410 *
411 * We don't need to perform MI_ARB_ENABLE as often as we do (in
412 * particular all the gen that do not need the w/a at all!), if we
413 * took care to make sure that on every switch into this context
414 * (both ordinary and for preemption) that arbitrartion was enabled
415 * we would be fine. However, for gen8 there is another w/a that
416 * requires us to not preempt inside GPGPU execution, so we keep
417 * arbitration disabled for gen8 batches. Arbitration will be
418 * re-enabled before we close the request
419 * (engine->emit_fini_breadcrumb).
420 */
421 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
422
423 /* FIXME(BDW+): Address space and security selectors. */
424 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
425 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
426 *cs++ = lower_32_bits(offset);
427 *cs++ = upper_32_bits(offset);
428
429 intel_ring_advance(rq, cs);
430
431 return 0;
432}
433
434int gen8_emit_bb_start(struct i915_request *rq,
435 u64 offset, u32 len,
436 const unsigned int flags)
437{
438 u32 *cs;
439
440 if (unlikely(i915_request_has_nopreempt(rq)))
441 return gen8_emit_bb_start_noarb(rq, offset, len, flags);
442
443 cs = intel_ring_begin(rq, 6);
444 if (IS_ERR(cs))
445 return PTR_ERR(cs);
446
447 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
448
449 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
450 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
451 *cs++ = lower_32_bits(offset);
452 *cs++ = upper_32_bits(offset);
453
454 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
455 *cs++ = MI_NOOP;
456
457 intel_ring_advance(rq, cs);
458
459 return 0;
460}
461
462static void assert_request_valid(struct i915_request *rq)
463{
464 struct intel_ring *ring __maybe_unused = rq->ring;
465
466 /* Can we unwind this request without appearing to go forwards? */
467 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
468}
469
470/*
471 * Reserve space for 2 NOOPs at the end of each request to be
472 * used as a workaround for not being allowed to do lite
473 * restore with HEAD==TAIL (WaIdleLiteRestore).
474 */
475static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
476{
477 /* Ensure there's always at least one preemption point per-request. */
478 *cs++ = MI_ARB_CHECK;
479 *cs++ = MI_NOOP;
480 rq->wa_tail = intel_ring_offset(rq, cs);
481
482 /* Check that entire request is less than half the ring */
483 assert_request_valid(rq);
484
485 return cs;
486}
487
488static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
489{
490 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
491 *cs++ = MI_SEMAPHORE_WAIT |
492 MI_SEMAPHORE_GLOBAL_GTT |
493 MI_SEMAPHORE_POLL |
494 MI_SEMAPHORE_SAD_EQ_SDD;
495 *cs++ = 0;
496 *cs++ = preempt_address(rq->engine);
497 *cs++ = 0;
498 *cs++ = MI_NOOP;
499
500 return cs;
501}
502
503static __always_inline u32*
504gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
505{
506 *cs++ = MI_USER_INTERRUPT;
507
508 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
509 if (intel_engine_has_semaphores(rq->engine))
510 cs = emit_preempt_busywait(rq, cs);
511
512 rq->tail = intel_ring_offset(rq, cs);
513 assert_ring_tail_valid(rq->ring, rq->tail);
514
515 return gen8_emit_wa_tail(rq, cs);
516}
517
518static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
519{
520 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
521}
522
523u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
524{
525 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
526}
527
528u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
529{
530 cs = gen8_emit_pipe_control(cs,
531 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
532 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
533 PIPE_CONTROL_DC_FLUSH_ENABLE,
534 0);
535
536 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
537 cs = gen8_emit_ggtt_write_rcs(cs,
538 rq->fence.seqno,
539 hwsp_offset(rq),
540 PIPE_CONTROL_FLUSH_ENABLE |
541 PIPE_CONTROL_CS_STALL);
542
543 return gen8_emit_fini_breadcrumb_tail(rq, cs);
544}
545
546u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
547{
548 cs = gen8_emit_ggtt_write_rcs(cs,
549 rq->fence.seqno,
550 hwsp_offset(rq),
551 PIPE_CONTROL_CS_STALL |
552 PIPE_CONTROL_TILE_CACHE_FLUSH |
553 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
554 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
555 PIPE_CONTROL_DC_FLUSH_ENABLE |
556 PIPE_CONTROL_FLUSH_ENABLE);
557
558 return gen8_emit_fini_breadcrumb_tail(rq, cs);
559}
560
561/*
562 * Note that the CS instruction pre-parser will not stall on the breadcrumb
563 * flush and will continue pre-fetching the instructions after it before the
564 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
565 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
566 * of the next request before the memory has been flushed, we're guaranteed that
567 * we won't access the batch itself too early.
568 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
569 * so, if the current request is modifying an instruction in the next request on
570 * the same intel_context, we might pre-fetch and then execute the pre-update
571 * instruction. To avoid this, the users of self-modifying code should either
572 * disable the parser around the code emitting the memory writes, via a new flag
573 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
574 * the in-kernel use-cases we've opted to use a separate context, see
575 * reloc_gpu() as an example.
576 * All the above applies only to the instructions themselves. Non-inline data
577 * used by the instructions is not pre-fetched.
578 */
579
580static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
581{
582 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
583 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
584 MI_SEMAPHORE_GLOBAL_GTT |
585 MI_SEMAPHORE_POLL |
586 MI_SEMAPHORE_SAD_EQ_SDD;
587 *cs++ = 0;
588 *cs++ = preempt_address(rq->engine);
589 *cs++ = 0;
590 *cs++ = 0;
591
592 return cs;
593}
594
595static __always_inline u32*
596gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
597{
598 *cs++ = MI_USER_INTERRUPT;
599
600 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
601 if (intel_engine_has_semaphores(rq->engine))
602 cs = gen12_emit_preempt_busywait(rq, cs);
603
604 rq->tail = intel_ring_offset(rq, cs);
605 assert_ring_tail_valid(rq->ring, rq->tail);
606
607 return gen8_emit_wa_tail(rq, cs);
608}
609
610u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
611{
612 /* XXX Stalling flush before seqno write; post-sync not */
613 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
614 return gen12_emit_fini_breadcrumb_tail(rq, cs);
615}
616
617u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
618{
619 cs = gen12_emit_ggtt_write_rcs(cs,
620 rq->fence.seqno,
621 hwsp_offset(rq),
622 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
623 PIPE_CONTROL_CS_STALL |
624 PIPE_CONTROL_TILE_CACHE_FLUSH |
625 PIPE_CONTROL_FLUSH_L3 |
626 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
627 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
628 /* Wa_1409600907:tgl */
629 PIPE_CONTROL_DEPTH_STALL |
630 PIPE_CONTROL_DC_FLUSH_ENABLE |
631 PIPE_CONTROL_FLUSH_ENABLE);
632
633 return gen12_emit_fini_breadcrumb_tail(rq, cs);
634}