Loading...
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/debug.h>
89#include <asm/fpu.h>
90#include <asm/fpu_emulator.h>
91#include <asm/inst.h>
92#include <asm/unaligned-emul.h>
93#include <asm/mmu_context.h>
94#include <linux/uaccess.h>
95
96#include "access-helper.h"
97
98enum {
99 UNALIGNED_ACTION_QUIET,
100 UNALIGNED_ACTION_SIGNAL,
101 UNALIGNED_ACTION_SHOW,
102};
103#ifdef CONFIG_DEBUG_FS
104static u32 unaligned_instructions;
105static u32 unaligned_action;
106#else
107#define unaligned_action UNALIGNED_ACTION_QUIET
108#endif
109extern void show_registers(struct pt_regs *regs);
110
111static void emulate_load_store_insn(struct pt_regs *regs,
112 void __user *addr, unsigned int *pc)
113{
114 unsigned long origpc, orig31, value;
115 union mips_instruction insn;
116 unsigned int res;
117 bool user = user_mode(regs);
118
119 origpc = (unsigned long)pc;
120 orig31 = regs->regs[31];
121
122 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
123
124 /*
125 * This load never faults.
126 */
127 __get_inst32(&insn.word, pc, user);
128
129 switch (insn.i_format.opcode) {
130 /*
131 * These are instructions that a compiler doesn't generate. We
132 * can assume therefore that the code is MIPS-aware and
133 * really buggy. Emulating these instructions would break the
134 * semantics anyway.
135 */
136 case ll_op:
137 case lld_op:
138 case sc_op:
139 case scd_op:
140
141 /*
142 * For these instructions the only way to create an address
143 * error is an attempted access to kernel/supervisor address
144 * space.
145 */
146 case ldl_op:
147 case ldr_op:
148 case lwl_op:
149 case lwr_op:
150 case sdl_op:
151 case sdr_op:
152 case swl_op:
153 case swr_op:
154 case lb_op:
155 case lbu_op:
156 case sb_op:
157 goto sigbus;
158
159 /*
160 * The remaining opcodes are the ones that are really of
161 * interest.
162 */
163 case spec3_op:
164 if (insn.dsp_format.func == lx_op) {
165 switch (insn.dsp_format.op) {
166 case lwx_op:
167 if (user && !access_ok(addr, 4))
168 goto sigbus;
169 LoadW(addr, value, res);
170 if (res)
171 goto fault;
172 compute_return_epc(regs);
173 regs->regs[insn.dsp_format.rd] = value;
174 break;
175 case lhx_op:
176 if (user && !access_ok(addr, 2))
177 goto sigbus;
178 LoadHW(addr, value, res);
179 if (res)
180 goto fault;
181 compute_return_epc(regs);
182 regs->regs[insn.dsp_format.rd] = value;
183 break;
184 default:
185 goto sigill;
186 }
187 }
188#ifdef CONFIG_EVA
189 else {
190 /*
191 * we can land here only from kernel accessing user
192 * memory, so we need to "switch" the address limit to
193 * user space, so that address check can work properly.
194 */
195 switch (insn.spec3_format.func) {
196 case lhe_op:
197 if (!access_ok(addr, 2))
198 goto sigbus;
199 LoadHWE(addr, value, res);
200 if (res)
201 goto fault;
202 compute_return_epc(regs);
203 regs->regs[insn.spec3_format.rt] = value;
204 break;
205 case lwe_op:
206 if (!access_ok(addr, 4))
207 goto sigbus;
208 LoadWE(addr, value, res);
209 if (res)
210 goto fault;
211 compute_return_epc(regs);
212 regs->regs[insn.spec3_format.rt] = value;
213 break;
214 case lhue_op:
215 if (!access_ok(addr, 2))
216 goto sigbus;
217 LoadHWUE(addr, value, res);
218 if (res)
219 goto fault;
220 compute_return_epc(regs);
221 regs->regs[insn.spec3_format.rt] = value;
222 break;
223 case she_op:
224 if (!access_ok(addr, 2))
225 goto sigbus;
226 compute_return_epc(regs);
227 value = regs->regs[insn.spec3_format.rt];
228 StoreHWE(addr, value, res);
229 if (res)
230 goto fault;
231 break;
232 case swe_op:
233 if (!access_ok(addr, 4))
234 goto sigbus;
235 compute_return_epc(regs);
236 value = regs->regs[insn.spec3_format.rt];
237 StoreWE(addr, value, res);
238 if (res)
239 goto fault;
240 break;
241 default:
242 goto sigill;
243 }
244 }
245#endif
246 break;
247 case lh_op:
248 if (user && !access_ok(addr, 2))
249 goto sigbus;
250
251 if (IS_ENABLED(CONFIG_EVA) && user)
252 LoadHWE(addr, value, res);
253 else
254 LoadHW(addr, value, res);
255
256 if (res)
257 goto fault;
258 compute_return_epc(regs);
259 regs->regs[insn.i_format.rt] = value;
260 break;
261
262 case lw_op:
263 if (user && !access_ok(addr, 4))
264 goto sigbus;
265
266 if (IS_ENABLED(CONFIG_EVA) && user)
267 LoadWE(addr, value, res);
268 else
269 LoadW(addr, value, res);
270
271 if (res)
272 goto fault;
273 compute_return_epc(regs);
274 regs->regs[insn.i_format.rt] = value;
275 break;
276
277 case lhu_op:
278 if (user && !access_ok(addr, 2))
279 goto sigbus;
280
281 if (IS_ENABLED(CONFIG_EVA) && user)
282 LoadHWUE(addr, value, res);
283 else
284 LoadHWU(addr, value, res);
285
286 if (res)
287 goto fault;
288 compute_return_epc(regs);
289 regs->regs[insn.i_format.rt] = value;
290 break;
291
292 case lwu_op:
293#ifdef CONFIG_64BIT
294 /*
295 * A 32-bit kernel might be running on a 64-bit processor. But
296 * if we're on a 32-bit processor and an i-cache incoherency
297 * or race makes us see a 64-bit instruction here the sdl/sdr
298 * would blow up, so for now we don't handle unaligned 64-bit
299 * instructions on 32-bit kernels.
300 */
301 if (user && !access_ok(addr, 4))
302 goto sigbus;
303
304 LoadWU(addr, value, res);
305 if (res)
306 goto fault;
307 compute_return_epc(regs);
308 regs->regs[insn.i_format.rt] = value;
309 break;
310#endif /* CONFIG_64BIT */
311
312 /* Cannot handle 64-bit instructions in 32-bit kernel */
313 goto sigill;
314
315 case ld_op:
316#ifdef CONFIG_64BIT
317 /*
318 * A 32-bit kernel might be running on a 64-bit processor. But
319 * if we're on a 32-bit processor and an i-cache incoherency
320 * or race makes us see a 64-bit instruction here the sdl/sdr
321 * would blow up, so for now we don't handle unaligned 64-bit
322 * instructions on 32-bit kernels.
323 */
324 if (user && !access_ok(addr, 8))
325 goto sigbus;
326
327 LoadDW(addr, value, res);
328 if (res)
329 goto fault;
330 compute_return_epc(regs);
331 regs->regs[insn.i_format.rt] = value;
332 break;
333#endif /* CONFIG_64BIT */
334
335 /* Cannot handle 64-bit instructions in 32-bit kernel */
336 goto sigill;
337
338 case sh_op:
339 if (user && !access_ok(addr, 2))
340 goto sigbus;
341
342 compute_return_epc(regs);
343 value = regs->regs[insn.i_format.rt];
344
345 if (IS_ENABLED(CONFIG_EVA) && user)
346 StoreHWE(addr, value, res);
347 else
348 StoreHW(addr, value, res);
349
350 if (res)
351 goto fault;
352 break;
353
354 case sw_op:
355 if (user && !access_ok(addr, 4))
356 goto sigbus;
357
358 compute_return_epc(regs);
359 value = regs->regs[insn.i_format.rt];
360
361 if (IS_ENABLED(CONFIG_EVA) && user)
362 StoreWE(addr, value, res);
363 else
364 StoreW(addr, value, res);
365
366 if (res)
367 goto fault;
368 break;
369
370 case sd_op:
371#ifdef CONFIG_64BIT
372 /*
373 * A 32-bit kernel might be running on a 64-bit processor. But
374 * if we're on a 32-bit processor and an i-cache incoherency
375 * or race makes us see a 64-bit instruction here the sdl/sdr
376 * would blow up, so for now we don't handle unaligned 64-bit
377 * instructions on 32-bit kernels.
378 */
379 if (user && !access_ok(addr, 8))
380 goto sigbus;
381
382 compute_return_epc(regs);
383 value = regs->regs[insn.i_format.rt];
384 StoreDW(addr, value, res);
385 if (res)
386 goto fault;
387 break;
388#endif /* CONFIG_64BIT */
389
390 /* Cannot handle 64-bit instructions in 32-bit kernel */
391 goto sigill;
392
393#ifdef CONFIG_MIPS_FP_SUPPORT
394
395 case lwc1_op:
396 case ldc1_op:
397 case swc1_op:
398 case sdc1_op:
399 case cop1x_op: {
400 void __user *fault_addr = NULL;
401
402 die_if_kernel("Unaligned FP access in kernel code", regs);
403 BUG_ON(!used_math());
404
405 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
406 &fault_addr);
407 own_fpu(1); /* Restore FPU state. */
408
409 /* Signal if something went wrong. */
410 process_fpemu_return(res, fault_addr, 0);
411
412 if (res == 0)
413 break;
414 return;
415 }
416#endif /* CONFIG_MIPS_FP_SUPPORT */
417
418#ifdef CONFIG_CPU_HAS_MSA
419
420 case msa_op: {
421 unsigned int wd, preempted;
422 enum msa_2b_fmt df;
423 union fpureg *fpr;
424
425 if (!cpu_has_msa)
426 goto sigill;
427
428 /*
429 * If we've reached this point then userland should have taken
430 * the MSA disabled exception & initialised vector context at
431 * some point in the past.
432 */
433 BUG_ON(!thread_msa_context_live());
434
435 df = insn.msa_mi10_format.df;
436 wd = insn.msa_mi10_format.wd;
437 fpr = ¤t->thread.fpu.fpr[wd];
438
439 switch (insn.msa_mi10_format.func) {
440 case msa_ld_op:
441 if (!access_ok(addr, sizeof(*fpr)))
442 goto sigbus;
443
444 do {
445 /*
446 * If we have live MSA context keep track of
447 * whether we get preempted in order to avoid
448 * the register context we load being clobbered
449 * by the live context as it's saved during
450 * preemption. If we don't have live context
451 * then it can't be saved to clobber the value
452 * we load.
453 */
454 preempted = test_thread_flag(TIF_USEDMSA);
455
456 res = __copy_from_user_inatomic(fpr, addr,
457 sizeof(*fpr));
458 if (res)
459 goto fault;
460
461 /*
462 * Update the hardware register if it is in use
463 * by the task in this quantum, in order to
464 * avoid having to save & restore the whole
465 * vector context.
466 */
467 preempt_disable();
468 if (test_thread_flag(TIF_USEDMSA)) {
469 write_msa_wr(wd, fpr, df);
470 preempted = 0;
471 }
472 preempt_enable();
473 } while (preempted);
474 break;
475
476 case msa_st_op:
477 if (!access_ok(addr, sizeof(*fpr)))
478 goto sigbus;
479
480 /*
481 * Update from the hardware register if it is in use by
482 * the task in this quantum, in order to avoid having to
483 * save & restore the whole vector context.
484 */
485 preempt_disable();
486 if (test_thread_flag(TIF_USEDMSA))
487 read_msa_wr(wd, fpr, df);
488 preempt_enable();
489
490 res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
491 if (res)
492 goto fault;
493 break;
494
495 default:
496 goto sigbus;
497 }
498
499 compute_return_epc(regs);
500 break;
501 }
502#endif /* CONFIG_CPU_HAS_MSA */
503
504#ifndef CONFIG_CPU_MIPSR6
505 /*
506 * COP2 is available to implementor for application specific use.
507 * It's up to applications to register a notifier chain and do
508 * whatever they have to do, including possible sending of signals.
509 *
510 * This instruction has been reallocated in Release 6
511 */
512 case lwc2_op:
513 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
514 break;
515
516 case ldc2_op:
517 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
518 break;
519
520 case swc2_op:
521 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
522 break;
523
524 case sdc2_op:
525 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
526 break;
527#endif
528 default:
529 /*
530 * Pheeee... We encountered an yet unknown instruction or
531 * cache coherence problem. Die sucker, die ...
532 */
533 goto sigill;
534 }
535
536#ifdef CONFIG_DEBUG_FS
537 unaligned_instructions++;
538#endif
539
540 return;
541
542fault:
543 /* roll back jump/branch */
544 regs->cp0_epc = origpc;
545 regs->regs[31] = orig31;
546 /* Did we have an exception handler installed? */
547 if (fixup_exception(regs))
548 return;
549
550 die_if_kernel("Unhandled kernel unaligned access", regs);
551 force_sig(SIGSEGV);
552
553 return;
554
555sigbus:
556 die_if_kernel("Unhandled kernel unaligned access", regs);
557 force_sig(SIGBUS);
558
559 return;
560
561sigill:
562 die_if_kernel
563 ("Unhandled kernel unaligned access or invalid instruction", regs);
564 force_sig(SIGILL);
565}
566
567/* Recode table from 16-bit register notation to 32-bit GPR. */
568const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
569
570/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
571static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
572
573static void emulate_load_store_microMIPS(struct pt_regs *regs,
574 void __user *addr)
575{
576 unsigned long value;
577 unsigned int res;
578 int i;
579 unsigned int reg = 0, rvar;
580 unsigned long orig31;
581 u16 __user *pc16;
582 u16 halfword;
583 unsigned int word;
584 unsigned long origpc, contpc;
585 union mips_instruction insn;
586 struct mm_decoded_insn mminsn;
587 bool user = user_mode(regs);
588
589 origpc = regs->cp0_epc;
590 orig31 = regs->regs[31];
591
592 mminsn.micro_mips_mode = 1;
593
594 /*
595 * This load never faults.
596 */
597 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
598 __get_user(halfword, pc16);
599 pc16++;
600 contpc = regs->cp0_epc + 2;
601 word = ((unsigned int)halfword << 16);
602 mminsn.pc_inc = 2;
603
604 if (!mm_insn_16bit(halfword)) {
605 __get_user(halfword, pc16);
606 pc16++;
607 contpc = regs->cp0_epc + 4;
608 mminsn.pc_inc = 4;
609 word |= halfword;
610 }
611 mminsn.insn = word;
612
613 if (get_user(halfword, pc16))
614 goto fault;
615 mminsn.next_pc_inc = 2;
616 word = ((unsigned int)halfword << 16);
617
618 if (!mm_insn_16bit(halfword)) {
619 pc16++;
620 if (get_user(halfword, pc16))
621 goto fault;
622 mminsn.next_pc_inc = 4;
623 word |= halfword;
624 }
625 mminsn.next_insn = word;
626
627 insn = (union mips_instruction)(mminsn.insn);
628 if (mm_isBranchInstr(regs, mminsn, &contpc))
629 insn = (union mips_instruction)(mminsn.next_insn);
630
631 /* Parse instruction to find what to do */
632
633 switch (insn.mm_i_format.opcode) {
634
635 case mm_pool32a_op:
636 switch (insn.mm_x_format.func) {
637 case mm_lwxs_op:
638 reg = insn.mm_x_format.rd;
639 goto loadW;
640 }
641
642 goto sigbus;
643
644 case mm_pool32b_op:
645 switch (insn.mm_m_format.func) {
646 case mm_lwp_func:
647 reg = insn.mm_m_format.rd;
648 if (reg == 31)
649 goto sigbus;
650
651 if (user && !access_ok(addr, 8))
652 goto sigbus;
653
654 LoadW(addr, value, res);
655 if (res)
656 goto fault;
657 regs->regs[reg] = value;
658 addr += 4;
659 LoadW(addr, value, res);
660 if (res)
661 goto fault;
662 regs->regs[reg + 1] = value;
663 goto success;
664
665 case mm_swp_func:
666 reg = insn.mm_m_format.rd;
667 if (reg == 31)
668 goto sigbus;
669
670 if (user && !access_ok(addr, 8))
671 goto sigbus;
672
673 value = regs->regs[reg];
674 StoreW(addr, value, res);
675 if (res)
676 goto fault;
677 addr += 4;
678 value = regs->regs[reg + 1];
679 StoreW(addr, value, res);
680 if (res)
681 goto fault;
682 goto success;
683
684 case mm_ldp_func:
685#ifdef CONFIG_64BIT
686 reg = insn.mm_m_format.rd;
687 if (reg == 31)
688 goto sigbus;
689
690 if (user && !access_ok(addr, 16))
691 goto sigbus;
692
693 LoadDW(addr, value, res);
694 if (res)
695 goto fault;
696 regs->regs[reg] = value;
697 addr += 8;
698 LoadDW(addr, value, res);
699 if (res)
700 goto fault;
701 regs->regs[reg + 1] = value;
702 goto success;
703#endif /* CONFIG_64BIT */
704
705 goto sigill;
706
707 case mm_sdp_func:
708#ifdef CONFIG_64BIT
709 reg = insn.mm_m_format.rd;
710 if (reg == 31)
711 goto sigbus;
712
713 if (user && !access_ok(addr, 16))
714 goto sigbus;
715
716 value = regs->regs[reg];
717 StoreDW(addr, value, res);
718 if (res)
719 goto fault;
720 addr += 8;
721 value = regs->regs[reg + 1];
722 StoreDW(addr, value, res);
723 if (res)
724 goto fault;
725 goto success;
726#endif /* CONFIG_64BIT */
727
728 goto sigill;
729
730 case mm_lwm32_func:
731 reg = insn.mm_m_format.rd;
732 rvar = reg & 0xf;
733 if ((rvar > 9) || !reg)
734 goto sigill;
735 if (reg & 0x10) {
736 if (user && !access_ok(addr, 4 * (rvar + 1)))
737 goto sigbus;
738 } else {
739 if (user && !access_ok(addr, 4 * rvar))
740 goto sigbus;
741 }
742 if (rvar == 9)
743 rvar = 8;
744 for (i = 16; rvar; rvar--, i++) {
745 LoadW(addr, value, res);
746 if (res)
747 goto fault;
748 addr += 4;
749 regs->regs[i] = value;
750 }
751 if ((reg & 0xf) == 9) {
752 LoadW(addr, value, res);
753 if (res)
754 goto fault;
755 addr += 4;
756 regs->regs[30] = value;
757 }
758 if (reg & 0x10) {
759 LoadW(addr, value, res);
760 if (res)
761 goto fault;
762 regs->regs[31] = value;
763 }
764 goto success;
765
766 case mm_swm32_func:
767 reg = insn.mm_m_format.rd;
768 rvar = reg & 0xf;
769 if ((rvar > 9) || !reg)
770 goto sigill;
771 if (reg & 0x10) {
772 if (user && !access_ok(addr, 4 * (rvar + 1)))
773 goto sigbus;
774 } else {
775 if (user && !access_ok(addr, 4 * rvar))
776 goto sigbus;
777 }
778 if (rvar == 9)
779 rvar = 8;
780 for (i = 16; rvar; rvar--, i++) {
781 value = regs->regs[i];
782 StoreW(addr, value, res);
783 if (res)
784 goto fault;
785 addr += 4;
786 }
787 if ((reg & 0xf) == 9) {
788 value = regs->regs[30];
789 StoreW(addr, value, res);
790 if (res)
791 goto fault;
792 addr += 4;
793 }
794 if (reg & 0x10) {
795 value = regs->regs[31];
796 StoreW(addr, value, res);
797 if (res)
798 goto fault;
799 }
800 goto success;
801
802 case mm_ldm_func:
803#ifdef CONFIG_64BIT
804 reg = insn.mm_m_format.rd;
805 rvar = reg & 0xf;
806 if ((rvar > 9) || !reg)
807 goto sigill;
808 if (reg & 0x10) {
809 if (user && !access_ok(addr, 8 * (rvar + 1)))
810 goto sigbus;
811 } else {
812 if (user && !access_ok(addr, 8 * rvar))
813 goto sigbus;
814 }
815 if (rvar == 9)
816 rvar = 8;
817
818 for (i = 16; rvar; rvar--, i++) {
819 LoadDW(addr, value, res);
820 if (res)
821 goto fault;
822 addr += 4;
823 regs->regs[i] = value;
824 }
825 if ((reg & 0xf) == 9) {
826 LoadDW(addr, value, res);
827 if (res)
828 goto fault;
829 addr += 8;
830 regs->regs[30] = value;
831 }
832 if (reg & 0x10) {
833 LoadDW(addr, value, res);
834 if (res)
835 goto fault;
836 regs->regs[31] = value;
837 }
838 goto success;
839#endif /* CONFIG_64BIT */
840
841 goto sigill;
842
843 case mm_sdm_func:
844#ifdef CONFIG_64BIT
845 reg = insn.mm_m_format.rd;
846 rvar = reg & 0xf;
847 if ((rvar > 9) || !reg)
848 goto sigill;
849 if (reg & 0x10) {
850 if (user && !access_ok(addr, 8 * (rvar + 1)))
851 goto sigbus;
852 } else {
853 if (user && !access_ok(addr, 8 * rvar))
854 goto sigbus;
855 }
856 if (rvar == 9)
857 rvar = 8;
858
859 for (i = 16; rvar; rvar--, i++) {
860 value = regs->regs[i];
861 StoreDW(addr, value, res);
862 if (res)
863 goto fault;
864 addr += 8;
865 }
866 if ((reg & 0xf) == 9) {
867 value = regs->regs[30];
868 StoreDW(addr, value, res);
869 if (res)
870 goto fault;
871 addr += 8;
872 }
873 if (reg & 0x10) {
874 value = regs->regs[31];
875 StoreDW(addr, value, res);
876 if (res)
877 goto fault;
878 }
879 goto success;
880#endif /* CONFIG_64BIT */
881
882 goto sigill;
883
884 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
885 }
886
887 goto sigbus;
888
889 case mm_pool32c_op:
890 switch (insn.mm_m_format.func) {
891 case mm_lwu_func:
892 reg = insn.mm_m_format.rd;
893 goto loadWU;
894 }
895
896 /* LL,SC,LLD,SCD are not serviced */
897 goto sigbus;
898
899#ifdef CONFIG_MIPS_FP_SUPPORT
900 case mm_pool32f_op:
901 switch (insn.mm_x_format.func) {
902 case mm_lwxc1_func:
903 case mm_swxc1_func:
904 case mm_ldxc1_func:
905 case mm_sdxc1_func:
906 goto fpu_emul;
907 }
908
909 goto sigbus;
910
911 case mm_ldc132_op:
912 case mm_sdc132_op:
913 case mm_lwc132_op:
914 case mm_swc132_op: {
915 void __user *fault_addr = NULL;
916
917fpu_emul:
918 /* roll back jump/branch */
919 regs->cp0_epc = origpc;
920 regs->regs[31] = orig31;
921
922 die_if_kernel("Unaligned FP access in kernel code", regs);
923 BUG_ON(!used_math());
924 BUG_ON(!is_fpu_owner());
925
926 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
927 &fault_addr);
928 own_fpu(1); /* restore FPU state */
929
930 /* If something went wrong, signal */
931 process_fpemu_return(res, fault_addr, 0);
932
933 if (res == 0)
934 goto success;
935 return;
936 }
937#endif /* CONFIG_MIPS_FP_SUPPORT */
938
939 case mm_lh32_op:
940 reg = insn.mm_i_format.rt;
941 goto loadHW;
942
943 case mm_lhu32_op:
944 reg = insn.mm_i_format.rt;
945 goto loadHWU;
946
947 case mm_lw32_op:
948 reg = insn.mm_i_format.rt;
949 goto loadW;
950
951 case mm_sh32_op:
952 reg = insn.mm_i_format.rt;
953 goto storeHW;
954
955 case mm_sw32_op:
956 reg = insn.mm_i_format.rt;
957 goto storeW;
958
959 case mm_ld32_op:
960 reg = insn.mm_i_format.rt;
961 goto loadDW;
962
963 case mm_sd32_op:
964 reg = insn.mm_i_format.rt;
965 goto storeDW;
966
967 case mm_pool16c_op:
968 switch (insn.mm16_m_format.func) {
969 case mm_lwm16_op:
970 reg = insn.mm16_m_format.rlist;
971 rvar = reg + 1;
972 if (user && !access_ok(addr, 4 * rvar))
973 goto sigbus;
974
975 for (i = 16; rvar; rvar--, i++) {
976 LoadW(addr, value, res);
977 if (res)
978 goto fault;
979 addr += 4;
980 regs->regs[i] = value;
981 }
982 LoadW(addr, value, res);
983 if (res)
984 goto fault;
985 regs->regs[31] = value;
986
987 goto success;
988
989 case mm_swm16_op:
990 reg = insn.mm16_m_format.rlist;
991 rvar = reg + 1;
992 if (user && !access_ok(addr, 4 * rvar))
993 goto sigbus;
994
995 for (i = 16; rvar; rvar--, i++) {
996 value = regs->regs[i];
997 StoreW(addr, value, res);
998 if (res)
999 goto fault;
1000 addr += 4;
1001 }
1002 value = regs->regs[31];
1003 StoreW(addr, value, res);
1004 if (res)
1005 goto fault;
1006
1007 goto success;
1008
1009 }
1010
1011 goto sigbus;
1012
1013 case mm_lhu16_op:
1014 reg = reg16to32[insn.mm16_rb_format.rt];
1015 goto loadHWU;
1016
1017 case mm_lw16_op:
1018 reg = reg16to32[insn.mm16_rb_format.rt];
1019 goto loadW;
1020
1021 case mm_sh16_op:
1022 reg = reg16to32st[insn.mm16_rb_format.rt];
1023 goto storeHW;
1024
1025 case mm_sw16_op:
1026 reg = reg16to32st[insn.mm16_rb_format.rt];
1027 goto storeW;
1028
1029 case mm_lwsp16_op:
1030 reg = insn.mm16_r5_format.rt;
1031 goto loadW;
1032
1033 case mm_swsp16_op:
1034 reg = insn.mm16_r5_format.rt;
1035 goto storeW;
1036
1037 case mm_lwgp16_op:
1038 reg = reg16to32[insn.mm16_r3_format.rt];
1039 goto loadW;
1040
1041 default:
1042 goto sigill;
1043 }
1044
1045loadHW:
1046 if (user && !access_ok(addr, 2))
1047 goto sigbus;
1048
1049 LoadHW(addr, value, res);
1050 if (res)
1051 goto fault;
1052 regs->regs[reg] = value;
1053 goto success;
1054
1055loadHWU:
1056 if (user && !access_ok(addr, 2))
1057 goto sigbus;
1058
1059 LoadHWU(addr, value, res);
1060 if (res)
1061 goto fault;
1062 regs->regs[reg] = value;
1063 goto success;
1064
1065loadW:
1066 if (user && !access_ok(addr, 4))
1067 goto sigbus;
1068
1069 LoadW(addr, value, res);
1070 if (res)
1071 goto fault;
1072 regs->regs[reg] = value;
1073 goto success;
1074
1075loadWU:
1076#ifdef CONFIG_64BIT
1077 /*
1078 * A 32-bit kernel might be running on a 64-bit processor. But
1079 * if we're on a 32-bit processor and an i-cache incoherency
1080 * or race makes us see a 64-bit instruction here the sdl/sdr
1081 * would blow up, so for now we don't handle unaligned 64-bit
1082 * instructions on 32-bit kernels.
1083 */
1084 if (user && !access_ok(addr, 4))
1085 goto sigbus;
1086
1087 LoadWU(addr, value, res);
1088 if (res)
1089 goto fault;
1090 regs->regs[reg] = value;
1091 goto success;
1092#endif /* CONFIG_64BIT */
1093
1094 /* Cannot handle 64-bit instructions in 32-bit kernel */
1095 goto sigill;
1096
1097loadDW:
1098#ifdef CONFIG_64BIT
1099 /*
1100 * A 32-bit kernel might be running on a 64-bit processor. But
1101 * if we're on a 32-bit processor and an i-cache incoherency
1102 * or race makes us see a 64-bit instruction here the sdl/sdr
1103 * would blow up, so for now we don't handle unaligned 64-bit
1104 * instructions on 32-bit kernels.
1105 */
1106 if (user && !access_ok(addr, 8))
1107 goto sigbus;
1108
1109 LoadDW(addr, value, res);
1110 if (res)
1111 goto fault;
1112 regs->regs[reg] = value;
1113 goto success;
1114#endif /* CONFIG_64BIT */
1115
1116 /* Cannot handle 64-bit instructions in 32-bit kernel */
1117 goto sigill;
1118
1119storeHW:
1120 if (user && !access_ok(addr, 2))
1121 goto sigbus;
1122
1123 value = regs->regs[reg];
1124 StoreHW(addr, value, res);
1125 if (res)
1126 goto fault;
1127 goto success;
1128
1129storeW:
1130 if (user && !access_ok(addr, 4))
1131 goto sigbus;
1132
1133 value = regs->regs[reg];
1134 StoreW(addr, value, res);
1135 if (res)
1136 goto fault;
1137 goto success;
1138
1139storeDW:
1140#ifdef CONFIG_64BIT
1141 /*
1142 * A 32-bit kernel might be running on a 64-bit processor. But
1143 * if we're on a 32-bit processor and an i-cache incoherency
1144 * or race makes us see a 64-bit instruction here the sdl/sdr
1145 * would blow up, so for now we don't handle unaligned 64-bit
1146 * instructions on 32-bit kernels.
1147 */
1148 if (user && !access_ok(addr, 8))
1149 goto sigbus;
1150
1151 value = regs->regs[reg];
1152 StoreDW(addr, value, res);
1153 if (res)
1154 goto fault;
1155 goto success;
1156#endif /* CONFIG_64BIT */
1157
1158 /* Cannot handle 64-bit instructions in 32-bit kernel */
1159 goto sigill;
1160
1161success:
1162 regs->cp0_epc = contpc; /* advance or branch */
1163
1164#ifdef CONFIG_DEBUG_FS
1165 unaligned_instructions++;
1166#endif
1167 return;
1168
1169fault:
1170 /* roll back jump/branch */
1171 regs->cp0_epc = origpc;
1172 regs->regs[31] = orig31;
1173 /* Did we have an exception handler installed? */
1174 if (fixup_exception(regs))
1175 return;
1176
1177 die_if_kernel("Unhandled kernel unaligned access", regs);
1178 force_sig(SIGSEGV);
1179
1180 return;
1181
1182sigbus:
1183 die_if_kernel("Unhandled kernel unaligned access", regs);
1184 force_sig(SIGBUS);
1185
1186 return;
1187
1188sigill:
1189 die_if_kernel
1190 ("Unhandled kernel unaligned access or invalid instruction", regs);
1191 force_sig(SIGILL);
1192}
1193
1194static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1195{
1196 unsigned long value;
1197 unsigned int res;
1198 int reg;
1199 unsigned long orig31;
1200 u16 __user *pc16;
1201 unsigned long origpc;
1202 union mips16e_instruction mips16inst, oldinst;
1203 unsigned int opcode;
1204 int extended = 0;
1205 bool user = user_mode(regs);
1206
1207 origpc = regs->cp0_epc;
1208 orig31 = regs->regs[31];
1209 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1210 /*
1211 * This load never faults.
1212 */
1213 __get_user(mips16inst.full, pc16);
1214 oldinst = mips16inst;
1215
1216 /* skip EXTEND instruction */
1217 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1218 extended = 1;
1219 pc16++;
1220 __get_user(mips16inst.full, pc16);
1221 } else if (delay_slot(regs)) {
1222 /* skip jump instructions */
1223 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1224 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1225 pc16++;
1226 pc16++;
1227 if (get_user(mips16inst.full, pc16))
1228 goto sigbus;
1229 }
1230
1231 opcode = mips16inst.ri.opcode;
1232 switch (opcode) {
1233 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1234 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1235 case MIPS16e_ldpc_func:
1236 case MIPS16e_ldsp_func:
1237 reg = reg16to32[mips16inst.ri64.ry];
1238 goto loadDW;
1239
1240 case MIPS16e_sdsp_func:
1241 reg = reg16to32[mips16inst.ri64.ry];
1242 goto writeDW;
1243
1244 case MIPS16e_sdrasp_func:
1245 reg = 29; /* GPRSP */
1246 goto writeDW;
1247 }
1248
1249 goto sigbus;
1250
1251 case MIPS16e_swsp_op:
1252 reg = reg16to32[mips16inst.ri.rx];
1253 if (extended && cpu_has_mips16e2)
1254 switch (mips16inst.ri.imm >> 5) {
1255 case 0: /* SWSP */
1256 case 1: /* SWGP */
1257 break;
1258 case 2: /* SHGP */
1259 opcode = MIPS16e_sh_op;
1260 break;
1261 default:
1262 goto sigbus;
1263 }
1264 break;
1265
1266 case MIPS16e_lwpc_op:
1267 reg = reg16to32[mips16inst.ri.rx];
1268 break;
1269
1270 case MIPS16e_lwsp_op:
1271 reg = reg16to32[mips16inst.ri.rx];
1272 if (extended && cpu_has_mips16e2)
1273 switch (mips16inst.ri.imm >> 5) {
1274 case 0: /* LWSP */
1275 case 1: /* LWGP */
1276 break;
1277 case 2: /* LHGP */
1278 opcode = MIPS16e_lh_op;
1279 break;
1280 case 4: /* LHUGP */
1281 opcode = MIPS16e_lhu_op;
1282 break;
1283 default:
1284 goto sigbus;
1285 }
1286 break;
1287
1288 case MIPS16e_i8_op:
1289 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1290 goto sigbus;
1291 reg = 29; /* GPRSP */
1292 break;
1293
1294 default:
1295 reg = reg16to32[mips16inst.rri.ry];
1296 break;
1297 }
1298
1299 switch (opcode) {
1300
1301 case MIPS16e_lb_op:
1302 case MIPS16e_lbu_op:
1303 case MIPS16e_sb_op:
1304 goto sigbus;
1305
1306 case MIPS16e_lh_op:
1307 if (user && !access_ok(addr, 2))
1308 goto sigbus;
1309
1310 LoadHW(addr, value, res);
1311 if (res)
1312 goto fault;
1313 MIPS16e_compute_return_epc(regs, &oldinst);
1314 regs->regs[reg] = value;
1315 break;
1316
1317 case MIPS16e_lhu_op:
1318 if (user && !access_ok(addr, 2))
1319 goto sigbus;
1320
1321 LoadHWU(addr, value, res);
1322 if (res)
1323 goto fault;
1324 MIPS16e_compute_return_epc(regs, &oldinst);
1325 regs->regs[reg] = value;
1326 break;
1327
1328 case MIPS16e_lw_op:
1329 case MIPS16e_lwpc_op:
1330 case MIPS16e_lwsp_op:
1331 if (user && !access_ok(addr, 4))
1332 goto sigbus;
1333
1334 LoadW(addr, value, res);
1335 if (res)
1336 goto fault;
1337 MIPS16e_compute_return_epc(regs, &oldinst);
1338 regs->regs[reg] = value;
1339 break;
1340
1341 case MIPS16e_lwu_op:
1342#ifdef CONFIG_64BIT
1343 /*
1344 * A 32-bit kernel might be running on a 64-bit processor. But
1345 * if we're on a 32-bit processor and an i-cache incoherency
1346 * or race makes us see a 64-bit instruction here the sdl/sdr
1347 * would blow up, so for now we don't handle unaligned 64-bit
1348 * instructions on 32-bit kernels.
1349 */
1350 if (user && !access_ok(addr, 4))
1351 goto sigbus;
1352
1353 LoadWU(addr, value, res);
1354 if (res)
1355 goto fault;
1356 MIPS16e_compute_return_epc(regs, &oldinst);
1357 regs->regs[reg] = value;
1358 break;
1359#endif /* CONFIG_64BIT */
1360
1361 /* Cannot handle 64-bit instructions in 32-bit kernel */
1362 goto sigill;
1363
1364 case MIPS16e_ld_op:
1365loadDW:
1366#ifdef CONFIG_64BIT
1367 /*
1368 * A 32-bit kernel might be running on a 64-bit processor. But
1369 * if we're on a 32-bit processor and an i-cache incoherency
1370 * or race makes us see a 64-bit instruction here the sdl/sdr
1371 * would blow up, so for now we don't handle unaligned 64-bit
1372 * instructions on 32-bit kernels.
1373 */
1374 if (user && !access_ok(addr, 8))
1375 goto sigbus;
1376
1377 LoadDW(addr, value, res);
1378 if (res)
1379 goto fault;
1380 MIPS16e_compute_return_epc(regs, &oldinst);
1381 regs->regs[reg] = value;
1382 break;
1383#endif /* CONFIG_64BIT */
1384
1385 /* Cannot handle 64-bit instructions in 32-bit kernel */
1386 goto sigill;
1387
1388 case MIPS16e_sh_op:
1389 if (user && !access_ok(addr, 2))
1390 goto sigbus;
1391
1392 MIPS16e_compute_return_epc(regs, &oldinst);
1393 value = regs->regs[reg];
1394 StoreHW(addr, value, res);
1395 if (res)
1396 goto fault;
1397 break;
1398
1399 case MIPS16e_sw_op:
1400 case MIPS16e_swsp_op:
1401 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1402 if (user && !access_ok(addr, 4))
1403 goto sigbus;
1404
1405 MIPS16e_compute_return_epc(regs, &oldinst);
1406 value = regs->regs[reg];
1407 StoreW(addr, value, res);
1408 if (res)
1409 goto fault;
1410 break;
1411
1412 case MIPS16e_sd_op:
1413writeDW:
1414#ifdef CONFIG_64BIT
1415 /*
1416 * A 32-bit kernel might be running on a 64-bit processor. But
1417 * if we're on a 32-bit processor and an i-cache incoherency
1418 * or race makes us see a 64-bit instruction here the sdl/sdr
1419 * would blow up, so for now we don't handle unaligned 64-bit
1420 * instructions on 32-bit kernels.
1421 */
1422 if (user && !access_ok(addr, 8))
1423 goto sigbus;
1424
1425 MIPS16e_compute_return_epc(regs, &oldinst);
1426 value = regs->regs[reg];
1427 StoreDW(addr, value, res);
1428 if (res)
1429 goto fault;
1430 break;
1431#endif /* CONFIG_64BIT */
1432
1433 /* Cannot handle 64-bit instructions in 32-bit kernel */
1434 goto sigill;
1435
1436 default:
1437 /*
1438 * Pheeee... We encountered an yet unknown instruction or
1439 * cache coherence problem. Die sucker, die ...
1440 */
1441 goto sigill;
1442 }
1443
1444#ifdef CONFIG_DEBUG_FS
1445 unaligned_instructions++;
1446#endif
1447
1448 return;
1449
1450fault:
1451 /* roll back jump/branch */
1452 regs->cp0_epc = origpc;
1453 regs->regs[31] = orig31;
1454 /* Did we have an exception handler installed? */
1455 if (fixup_exception(regs))
1456 return;
1457
1458 die_if_kernel("Unhandled kernel unaligned access", regs);
1459 force_sig(SIGSEGV);
1460
1461 return;
1462
1463sigbus:
1464 die_if_kernel("Unhandled kernel unaligned access", regs);
1465 force_sig(SIGBUS);
1466
1467 return;
1468
1469sigill:
1470 die_if_kernel
1471 ("Unhandled kernel unaligned access or invalid instruction", regs);
1472 force_sig(SIGILL);
1473}
1474
1475asmlinkage void do_ade(struct pt_regs *regs)
1476{
1477 enum ctx_state prev_state;
1478 unsigned int *pc;
1479
1480 prev_state = exception_enter();
1481 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1482 1, regs, regs->cp0_badvaddr);
1483 /*
1484 * Did we catch a fault trying to load an instruction?
1485 */
1486 if (regs->cp0_badvaddr == regs->cp0_epc)
1487 goto sigbus;
1488
1489 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1490 goto sigbus;
1491 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1492 goto sigbus;
1493
1494 /*
1495 * Do branch emulation only if we didn't forward the exception.
1496 * This is all so but ugly ...
1497 */
1498
1499 /*
1500 * Are we running in microMIPS mode?
1501 */
1502 if (get_isa16_mode(regs->cp0_epc)) {
1503 /*
1504 * Did we catch a fault trying to load an instruction in
1505 * 16-bit mode?
1506 */
1507 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1508 goto sigbus;
1509 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1510 show_registers(regs);
1511
1512 if (cpu_has_mmips) {
1513 emulate_load_store_microMIPS(regs,
1514 (void __user *)regs->cp0_badvaddr);
1515 return;
1516 }
1517
1518 if (cpu_has_mips16) {
1519 emulate_load_store_MIPS16e(regs,
1520 (void __user *)regs->cp0_badvaddr);
1521 return;
1522 }
1523
1524 goto sigbus;
1525 }
1526
1527 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1528 show_registers(regs);
1529 pc = (unsigned int *)exception_epc(regs);
1530
1531 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1532
1533 return;
1534
1535sigbus:
1536 die_if_kernel("Kernel unaligned instruction access", regs);
1537 force_sig(SIGBUS);
1538
1539 /*
1540 * XXX On return from the signal handler we should advance the epc
1541 */
1542 exception_exit(prev_state);
1543}
1544
1545#ifdef CONFIG_DEBUG_FS
1546static int __init debugfs_unaligned(void)
1547{
1548 debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1549 &unaligned_instructions);
1550 debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1551 mips_debugfs_dir, &unaligned_action);
1552 return 0;
1553}
1554arch_initcall(debugfs_unaligned);
1555#endif
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/fpu.h>
89#include <asm/fpu_emulator.h>
90#include <asm/inst.h>
91#include <asm/uaccess.h>
92#include <asm/fpu.h>
93#include <asm/fpu_emulator.h>
94
95#define STR(x) __STR(x)
96#define __STR(x) #x
97
98enum {
99 UNALIGNED_ACTION_QUIET,
100 UNALIGNED_ACTION_SIGNAL,
101 UNALIGNED_ACTION_SHOW,
102};
103#ifdef CONFIG_DEBUG_FS
104static u32 unaligned_instructions;
105static u32 unaligned_action;
106#else
107#define unaligned_action UNALIGNED_ACTION_QUIET
108#endif
109extern void show_registers(struct pt_regs *regs);
110
111#ifdef __BIG_ENDIAN
112#define LoadHW(addr, value, res) \
113 __asm__ __volatile__ (".set\tnoat\n" \
114 "1:\t"user_lb("%0", "0(%2)")"\n" \
115 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
116 "sll\t%0, 0x8\n\t" \
117 "or\t%0, $1\n\t" \
118 "li\t%1, 0\n" \
119 "3:\t.set\tat\n\t" \
120 ".insn\n\t" \
121 ".section\t.fixup,\"ax\"\n\t" \
122 "4:\tli\t%1, %3\n\t" \
123 "j\t3b\n\t" \
124 ".previous\n\t" \
125 ".section\t__ex_table,\"a\"\n\t" \
126 STR(PTR)"\t1b, 4b\n\t" \
127 STR(PTR)"\t2b, 4b\n\t" \
128 ".previous" \
129 : "=&r" (value), "=r" (res) \
130 : "r" (addr), "i" (-EFAULT));
131
132#define LoadW(addr, value, res) \
133 __asm__ __volatile__ ( \
134 "1:\t"user_lwl("%0", "(%2)")"\n" \
135 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
136 "li\t%1, 0\n" \
137 "3:\n\t" \
138 ".insn\n\t" \
139 ".section\t.fixup,\"ax\"\n\t" \
140 "4:\tli\t%1, %3\n\t" \
141 "j\t3b\n\t" \
142 ".previous\n\t" \
143 ".section\t__ex_table,\"a\"\n\t" \
144 STR(PTR)"\t1b, 4b\n\t" \
145 STR(PTR)"\t2b, 4b\n\t" \
146 ".previous" \
147 : "=&r" (value), "=r" (res) \
148 : "r" (addr), "i" (-EFAULT));
149
150#define LoadHWU(addr, value, res) \
151 __asm__ __volatile__ ( \
152 ".set\tnoat\n" \
153 "1:\t"user_lbu("%0", "0(%2)")"\n" \
154 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
155 "sll\t%0, 0x8\n\t" \
156 "or\t%0, $1\n\t" \
157 "li\t%1, 0\n" \
158 "3:\n\t" \
159 ".insn\n\t" \
160 ".set\tat\n\t" \
161 ".section\t.fixup,\"ax\"\n\t" \
162 "4:\tli\t%1, %3\n\t" \
163 "j\t3b\n\t" \
164 ".previous\n\t" \
165 ".section\t__ex_table,\"a\"\n\t" \
166 STR(PTR)"\t1b, 4b\n\t" \
167 STR(PTR)"\t2b, 4b\n\t" \
168 ".previous" \
169 : "=&r" (value), "=r" (res) \
170 : "r" (addr), "i" (-EFAULT));
171
172#define LoadWU(addr, value, res) \
173 __asm__ __volatile__ ( \
174 "1:\t"user_lwl("%0", "(%2)")"\n" \
175 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
176 "dsll\t%0, %0, 32\n\t" \
177 "dsrl\t%0, %0, 32\n\t" \
178 "li\t%1, 0\n" \
179 "3:\n\t" \
180 ".insn\n\t" \
181 "\t.section\t.fixup,\"ax\"\n\t" \
182 "4:\tli\t%1, %3\n\t" \
183 "j\t3b\n\t" \
184 ".previous\n\t" \
185 ".section\t__ex_table,\"a\"\n\t" \
186 STR(PTR)"\t1b, 4b\n\t" \
187 STR(PTR)"\t2b, 4b\n\t" \
188 ".previous" \
189 : "=&r" (value), "=r" (res) \
190 : "r" (addr), "i" (-EFAULT));
191
192#define LoadDW(addr, value, res) \
193 __asm__ __volatile__ ( \
194 "1:\tldl\t%0, (%2)\n" \
195 "2:\tldr\t%0, 7(%2)\n\t" \
196 "li\t%1, 0\n" \
197 "3:\n\t" \
198 ".insn\n\t" \
199 "\t.section\t.fixup,\"ax\"\n\t" \
200 "4:\tli\t%1, %3\n\t" \
201 "j\t3b\n\t" \
202 ".previous\n\t" \
203 ".section\t__ex_table,\"a\"\n\t" \
204 STR(PTR)"\t1b, 4b\n\t" \
205 STR(PTR)"\t2b, 4b\n\t" \
206 ".previous" \
207 : "=&r" (value), "=r" (res) \
208 : "r" (addr), "i" (-EFAULT));
209
210#define StoreHW(addr, value, res) \
211 __asm__ __volatile__ ( \
212 ".set\tnoat\n" \
213 "1:\t"user_sb("%1", "1(%2)")"\n" \
214 "srl\t$1, %1, 0x8\n" \
215 "2:\t"user_sb("$1", "0(%2)")"\n" \
216 ".set\tat\n\t" \
217 "li\t%0, 0\n" \
218 "3:\n\t" \
219 ".insn\n\t" \
220 ".section\t.fixup,\"ax\"\n\t" \
221 "4:\tli\t%0, %3\n\t" \
222 "j\t3b\n\t" \
223 ".previous\n\t" \
224 ".section\t__ex_table,\"a\"\n\t" \
225 STR(PTR)"\t1b, 4b\n\t" \
226 STR(PTR)"\t2b, 4b\n\t" \
227 ".previous" \
228 : "=r" (res) \
229 : "r" (value), "r" (addr), "i" (-EFAULT));
230
231#define StoreW(addr, value, res) \
232 __asm__ __volatile__ ( \
233 "1:\t"user_swl("%1", "(%2)")"\n" \
234 "2:\t"user_swr("%1", "3(%2)")"\n\t" \
235 "li\t%0, 0\n" \
236 "3:\n\t" \
237 ".insn\n\t" \
238 ".section\t.fixup,\"ax\"\n\t" \
239 "4:\tli\t%0, %3\n\t" \
240 "j\t3b\n\t" \
241 ".previous\n\t" \
242 ".section\t__ex_table,\"a\"\n\t" \
243 STR(PTR)"\t1b, 4b\n\t" \
244 STR(PTR)"\t2b, 4b\n\t" \
245 ".previous" \
246 : "=r" (res) \
247 : "r" (value), "r" (addr), "i" (-EFAULT));
248
249#define StoreDW(addr, value, res) \
250 __asm__ __volatile__ ( \
251 "1:\tsdl\t%1,(%2)\n" \
252 "2:\tsdr\t%1, 7(%2)\n\t" \
253 "li\t%0, 0\n" \
254 "3:\n\t" \
255 ".insn\n\t" \
256 ".section\t.fixup,\"ax\"\n\t" \
257 "4:\tli\t%0, %3\n\t" \
258 "j\t3b\n\t" \
259 ".previous\n\t" \
260 ".section\t__ex_table,\"a\"\n\t" \
261 STR(PTR)"\t1b, 4b\n\t" \
262 STR(PTR)"\t2b, 4b\n\t" \
263 ".previous" \
264 : "=r" (res) \
265 : "r" (value), "r" (addr), "i" (-EFAULT));
266#endif
267
268#ifdef __LITTLE_ENDIAN
269#define LoadHW(addr, value, res) \
270 __asm__ __volatile__ (".set\tnoat\n" \
271 "1:\t"user_lb("%0", "1(%2)")"\n" \
272 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
273 "sll\t%0, 0x8\n\t" \
274 "or\t%0, $1\n\t" \
275 "li\t%1, 0\n" \
276 "3:\t.set\tat\n\t" \
277 ".insn\n\t" \
278 ".section\t.fixup,\"ax\"\n\t" \
279 "4:\tli\t%1, %3\n\t" \
280 "j\t3b\n\t" \
281 ".previous\n\t" \
282 ".section\t__ex_table,\"a\"\n\t" \
283 STR(PTR)"\t1b, 4b\n\t" \
284 STR(PTR)"\t2b, 4b\n\t" \
285 ".previous" \
286 : "=&r" (value), "=r" (res) \
287 : "r" (addr), "i" (-EFAULT));
288
289#define LoadW(addr, value, res) \
290 __asm__ __volatile__ ( \
291 "1:\t"user_lwl("%0", "3(%2)")"\n" \
292 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
293 "li\t%1, 0\n" \
294 "3:\n\t" \
295 ".insn\n\t" \
296 ".section\t.fixup,\"ax\"\n\t" \
297 "4:\tli\t%1, %3\n\t" \
298 "j\t3b\n\t" \
299 ".previous\n\t" \
300 ".section\t__ex_table,\"a\"\n\t" \
301 STR(PTR)"\t1b, 4b\n\t" \
302 STR(PTR)"\t2b, 4b\n\t" \
303 ".previous" \
304 : "=&r" (value), "=r" (res) \
305 : "r" (addr), "i" (-EFAULT));
306
307#define LoadHWU(addr, value, res) \
308 __asm__ __volatile__ ( \
309 ".set\tnoat\n" \
310 "1:\t"user_lbu("%0", "1(%2)")"\n" \
311 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
312 "sll\t%0, 0x8\n\t" \
313 "or\t%0, $1\n\t" \
314 "li\t%1, 0\n" \
315 "3:\n\t" \
316 ".insn\n\t" \
317 ".set\tat\n\t" \
318 ".section\t.fixup,\"ax\"\n\t" \
319 "4:\tli\t%1, %3\n\t" \
320 "j\t3b\n\t" \
321 ".previous\n\t" \
322 ".section\t__ex_table,\"a\"\n\t" \
323 STR(PTR)"\t1b, 4b\n\t" \
324 STR(PTR)"\t2b, 4b\n\t" \
325 ".previous" \
326 : "=&r" (value), "=r" (res) \
327 : "r" (addr), "i" (-EFAULT));
328
329#define LoadWU(addr, value, res) \
330 __asm__ __volatile__ ( \
331 "1:\t"user_lwl("%0", "3(%2)")"\n" \
332 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
333 "dsll\t%0, %0, 32\n\t" \
334 "dsrl\t%0, %0, 32\n\t" \
335 "li\t%1, 0\n" \
336 "3:\n\t" \
337 ".insn\n\t" \
338 "\t.section\t.fixup,\"ax\"\n\t" \
339 "4:\tli\t%1, %3\n\t" \
340 "j\t3b\n\t" \
341 ".previous\n\t" \
342 ".section\t__ex_table,\"a\"\n\t" \
343 STR(PTR)"\t1b, 4b\n\t" \
344 STR(PTR)"\t2b, 4b\n\t" \
345 ".previous" \
346 : "=&r" (value), "=r" (res) \
347 : "r" (addr), "i" (-EFAULT));
348
349#define LoadDW(addr, value, res) \
350 __asm__ __volatile__ ( \
351 "1:\tldl\t%0, 7(%2)\n" \
352 "2:\tldr\t%0, (%2)\n\t" \
353 "li\t%1, 0\n" \
354 "3:\n\t" \
355 ".insn\n\t" \
356 "\t.section\t.fixup,\"ax\"\n\t" \
357 "4:\tli\t%1, %3\n\t" \
358 "j\t3b\n\t" \
359 ".previous\n\t" \
360 ".section\t__ex_table,\"a\"\n\t" \
361 STR(PTR)"\t1b, 4b\n\t" \
362 STR(PTR)"\t2b, 4b\n\t" \
363 ".previous" \
364 : "=&r" (value), "=r" (res) \
365 : "r" (addr), "i" (-EFAULT));
366
367#define StoreHW(addr, value, res) \
368 __asm__ __volatile__ ( \
369 ".set\tnoat\n" \
370 "1:\t"user_sb("%1", "0(%2)")"\n" \
371 "srl\t$1,%1, 0x8\n" \
372 "2:\t"user_sb("$1", "1(%2)")"\n" \
373 ".set\tat\n\t" \
374 "li\t%0, 0\n" \
375 "3:\n\t" \
376 ".insn\n\t" \
377 ".section\t.fixup,\"ax\"\n\t" \
378 "4:\tli\t%0, %3\n\t" \
379 "j\t3b\n\t" \
380 ".previous\n\t" \
381 ".section\t__ex_table,\"a\"\n\t" \
382 STR(PTR)"\t1b, 4b\n\t" \
383 STR(PTR)"\t2b, 4b\n\t" \
384 ".previous" \
385 : "=r" (res) \
386 : "r" (value), "r" (addr), "i" (-EFAULT));
387
388#define StoreW(addr, value, res) \
389 __asm__ __volatile__ ( \
390 "1:\t"user_swl("%1", "3(%2)")"\n" \
391 "2:\t"user_swr("%1", "(%2)")"\n\t" \
392 "li\t%0, 0\n" \
393 "3:\n\t" \
394 ".insn\n\t" \
395 ".section\t.fixup,\"ax\"\n\t" \
396 "4:\tli\t%0, %3\n\t" \
397 "j\t3b\n\t" \
398 ".previous\n\t" \
399 ".section\t__ex_table,\"a\"\n\t" \
400 STR(PTR)"\t1b, 4b\n\t" \
401 STR(PTR)"\t2b, 4b\n\t" \
402 ".previous" \
403 : "=r" (res) \
404 : "r" (value), "r" (addr), "i" (-EFAULT));
405
406#define StoreDW(addr, value, res) \
407 __asm__ __volatile__ ( \
408 "1:\tsdl\t%1, 7(%2)\n" \
409 "2:\tsdr\t%1, (%2)\n\t" \
410 "li\t%0, 0\n" \
411 "3:\n\t" \
412 ".insn\n\t" \
413 ".section\t.fixup,\"ax\"\n\t" \
414 "4:\tli\t%0, %3\n\t" \
415 "j\t3b\n\t" \
416 ".previous\n\t" \
417 ".section\t__ex_table,\"a\"\n\t" \
418 STR(PTR)"\t1b, 4b\n\t" \
419 STR(PTR)"\t2b, 4b\n\t" \
420 ".previous" \
421 : "=r" (res) \
422 : "r" (value), "r" (addr), "i" (-EFAULT));
423#endif
424
425static void emulate_load_store_insn(struct pt_regs *regs,
426 void __user *addr, unsigned int __user *pc)
427{
428 union mips_instruction insn;
429 unsigned long value;
430 unsigned int res;
431 unsigned long origpc;
432 unsigned long orig31;
433 void __user *fault_addr = NULL;
434#ifdef CONFIG_EVA
435 mm_segment_t seg;
436#endif
437 origpc = (unsigned long)pc;
438 orig31 = regs->regs[31];
439
440 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
441
442 /*
443 * This load never faults.
444 */
445 __get_user(insn.word, pc);
446
447 switch (insn.i_format.opcode) {
448 /*
449 * These are instructions that a compiler doesn't generate. We
450 * can assume therefore that the code is MIPS-aware and
451 * really buggy. Emulating these instructions would break the
452 * semantics anyway.
453 */
454 case ll_op:
455 case lld_op:
456 case sc_op:
457 case scd_op:
458
459 /*
460 * For these instructions the only way to create an address
461 * error is an attempted access to kernel/supervisor address
462 * space.
463 */
464 case ldl_op:
465 case ldr_op:
466 case lwl_op:
467 case lwr_op:
468 case sdl_op:
469 case sdr_op:
470 case swl_op:
471 case swr_op:
472 case lb_op:
473 case lbu_op:
474 case sb_op:
475 goto sigbus;
476
477 /*
478 * The remaining opcodes are the ones that are really of
479 * interest.
480 */
481#ifdef CONFIG_EVA
482 case spec3_op:
483 /*
484 * we can land here only from kernel accessing user memory,
485 * so we need to "switch" the address limit to user space, so
486 * address check can work properly.
487 */
488 seg = get_fs();
489 set_fs(USER_DS);
490 switch (insn.spec3_format.func) {
491 case lhe_op:
492 if (!access_ok(VERIFY_READ, addr, 2)) {
493 set_fs(seg);
494 goto sigbus;
495 }
496 LoadHW(addr, value, res);
497 if (res) {
498 set_fs(seg);
499 goto fault;
500 }
501 compute_return_epc(regs);
502 regs->regs[insn.spec3_format.rt] = value;
503 break;
504 case lwe_op:
505 if (!access_ok(VERIFY_READ, addr, 4)) {
506 set_fs(seg);
507 goto sigbus;
508 }
509 LoadW(addr, value, res);
510 if (res) {
511 set_fs(seg);
512 goto fault;
513 }
514 compute_return_epc(regs);
515 regs->regs[insn.spec3_format.rt] = value;
516 break;
517 case lhue_op:
518 if (!access_ok(VERIFY_READ, addr, 2)) {
519 set_fs(seg);
520 goto sigbus;
521 }
522 LoadHWU(addr, value, res);
523 if (res) {
524 set_fs(seg);
525 goto fault;
526 }
527 compute_return_epc(regs);
528 regs->regs[insn.spec3_format.rt] = value;
529 break;
530 case she_op:
531 if (!access_ok(VERIFY_WRITE, addr, 2)) {
532 set_fs(seg);
533 goto sigbus;
534 }
535 compute_return_epc(regs);
536 value = regs->regs[insn.spec3_format.rt];
537 StoreHW(addr, value, res);
538 if (res) {
539 set_fs(seg);
540 goto fault;
541 }
542 break;
543 case swe_op:
544 if (!access_ok(VERIFY_WRITE, addr, 4)) {
545 set_fs(seg);
546 goto sigbus;
547 }
548 compute_return_epc(regs);
549 value = regs->regs[insn.spec3_format.rt];
550 StoreW(addr, value, res);
551 if (res) {
552 set_fs(seg);
553 goto fault;
554 }
555 break;
556 default:
557 set_fs(seg);
558 goto sigill;
559 }
560 set_fs(seg);
561 break;
562#endif
563 case lh_op:
564 if (!access_ok(VERIFY_READ, addr, 2))
565 goto sigbus;
566
567 LoadHW(addr, value, res);
568 if (res)
569 goto fault;
570 compute_return_epc(regs);
571 regs->regs[insn.i_format.rt] = value;
572 break;
573
574 case lw_op:
575 if (!access_ok(VERIFY_READ, addr, 4))
576 goto sigbus;
577
578 LoadW(addr, value, res);
579 if (res)
580 goto fault;
581 compute_return_epc(regs);
582 regs->regs[insn.i_format.rt] = value;
583 break;
584
585 case lhu_op:
586 if (!access_ok(VERIFY_READ, addr, 2))
587 goto sigbus;
588
589 LoadHWU(addr, value, res);
590 if (res)
591 goto fault;
592 compute_return_epc(regs);
593 regs->regs[insn.i_format.rt] = value;
594 break;
595
596 case lwu_op:
597#ifdef CONFIG_64BIT
598 /*
599 * A 32-bit kernel might be running on a 64-bit processor. But
600 * if we're on a 32-bit processor and an i-cache incoherency
601 * or race makes us see a 64-bit instruction here the sdl/sdr
602 * would blow up, so for now we don't handle unaligned 64-bit
603 * instructions on 32-bit kernels.
604 */
605 if (!access_ok(VERIFY_READ, addr, 4))
606 goto sigbus;
607
608 LoadWU(addr, value, res);
609 if (res)
610 goto fault;
611 compute_return_epc(regs);
612 regs->regs[insn.i_format.rt] = value;
613 break;
614#endif /* CONFIG_64BIT */
615
616 /* Cannot handle 64-bit instructions in 32-bit kernel */
617 goto sigill;
618
619 case ld_op:
620#ifdef CONFIG_64BIT
621 /*
622 * A 32-bit kernel might be running on a 64-bit processor. But
623 * if we're on a 32-bit processor and an i-cache incoherency
624 * or race makes us see a 64-bit instruction here the sdl/sdr
625 * would blow up, so for now we don't handle unaligned 64-bit
626 * instructions on 32-bit kernels.
627 */
628 if (!access_ok(VERIFY_READ, addr, 8))
629 goto sigbus;
630
631 LoadDW(addr, value, res);
632 if (res)
633 goto fault;
634 compute_return_epc(regs);
635 regs->regs[insn.i_format.rt] = value;
636 break;
637#endif /* CONFIG_64BIT */
638
639 /* Cannot handle 64-bit instructions in 32-bit kernel */
640 goto sigill;
641
642 case sh_op:
643 if (!access_ok(VERIFY_WRITE, addr, 2))
644 goto sigbus;
645
646 compute_return_epc(regs);
647 value = regs->regs[insn.i_format.rt];
648 StoreHW(addr, value, res);
649 if (res)
650 goto fault;
651 break;
652
653 case sw_op:
654 if (!access_ok(VERIFY_WRITE, addr, 4))
655 goto sigbus;
656
657 compute_return_epc(regs);
658 value = regs->regs[insn.i_format.rt];
659 StoreW(addr, value, res);
660 if (res)
661 goto fault;
662 break;
663
664 case sd_op:
665#ifdef CONFIG_64BIT
666 /*
667 * A 32-bit kernel might be running on a 64-bit processor. But
668 * if we're on a 32-bit processor and an i-cache incoherency
669 * or race makes us see a 64-bit instruction here the sdl/sdr
670 * would blow up, so for now we don't handle unaligned 64-bit
671 * instructions on 32-bit kernels.
672 */
673 if (!access_ok(VERIFY_WRITE, addr, 8))
674 goto sigbus;
675
676 compute_return_epc(regs);
677 value = regs->regs[insn.i_format.rt];
678 StoreDW(addr, value, res);
679 if (res)
680 goto fault;
681 break;
682#endif /* CONFIG_64BIT */
683
684 /* Cannot handle 64-bit instructions in 32-bit kernel */
685 goto sigill;
686
687 case lwc1_op:
688 case ldc1_op:
689 case swc1_op:
690 case sdc1_op:
691 die_if_kernel("Unaligned FP access in kernel code", regs);
692 BUG_ON(!used_math());
693 BUG_ON(!is_fpu_owner());
694
695 lose_fpu(1); /* Save FPU state for the emulator. */
696 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
697 &fault_addr);
698 own_fpu(1); /* Restore FPU state. */
699
700 /* Signal if something went wrong. */
701 process_fpemu_return(res, fault_addr);
702
703 if (res == 0)
704 break;
705 return;
706
707 /*
708 * COP2 is available to implementor for application specific use.
709 * It's up to applications to register a notifier chain and do
710 * whatever they have to do, including possible sending of signals.
711 */
712 case lwc2_op:
713 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
714 break;
715
716 case ldc2_op:
717 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
718 break;
719
720 case swc2_op:
721 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
722 break;
723
724 case sdc2_op:
725 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
726 break;
727
728 default:
729 /*
730 * Pheeee... We encountered an yet unknown instruction or
731 * cache coherence problem. Die sucker, die ...
732 */
733 goto sigill;
734 }
735
736#ifdef CONFIG_DEBUG_FS
737 unaligned_instructions++;
738#endif
739
740 return;
741
742fault:
743 /* roll back jump/branch */
744 regs->cp0_epc = origpc;
745 regs->regs[31] = orig31;
746 /* Did we have an exception handler installed? */
747 if (fixup_exception(regs))
748 return;
749
750 die_if_kernel("Unhandled kernel unaligned access", regs);
751 force_sig(SIGSEGV, current);
752
753 return;
754
755sigbus:
756 die_if_kernel("Unhandled kernel unaligned access", regs);
757 force_sig(SIGBUS, current);
758
759 return;
760
761sigill:
762 die_if_kernel
763 ("Unhandled kernel unaligned access or invalid instruction", regs);
764 force_sig(SIGILL, current);
765}
766
767/* Recode table from 16-bit register notation to 32-bit GPR. */
768const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
769
770/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
771const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
772
773static void emulate_load_store_microMIPS(struct pt_regs *regs,
774 void __user *addr)
775{
776 unsigned long value;
777 unsigned int res;
778 int i;
779 unsigned int reg = 0, rvar;
780 unsigned long orig31;
781 u16 __user *pc16;
782 u16 halfword;
783 unsigned int word;
784 unsigned long origpc, contpc;
785 union mips_instruction insn;
786 struct mm_decoded_insn mminsn;
787 void __user *fault_addr = NULL;
788
789 origpc = regs->cp0_epc;
790 orig31 = regs->regs[31];
791
792 mminsn.micro_mips_mode = 1;
793
794 /*
795 * This load never faults.
796 */
797 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
798 __get_user(halfword, pc16);
799 pc16++;
800 contpc = regs->cp0_epc + 2;
801 word = ((unsigned int)halfword << 16);
802 mminsn.pc_inc = 2;
803
804 if (!mm_insn_16bit(halfword)) {
805 __get_user(halfword, pc16);
806 pc16++;
807 contpc = regs->cp0_epc + 4;
808 mminsn.pc_inc = 4;
809 word |= halfword;
810 }
811 mminsn.insn = word;
812
813 if (get_user(halfword, pc16))
814 goto fault;
815 mminsn.next_pc_inc = 2;
816 word = ((unsigned int)halfword << 16);
817
818 if (!mm_insn_16bit(halfword)) {
819 pc16++;
820 if (get_user(halfword, pc16))
821 goto fault;
822 mminsn.next_pc_inc = 4;
823 word |= halfword;
824 }
825 mminsn.next_insn = word;
826
827 insn = (union mips_instruction)(mminsn.insn);
828 if (mm_isBranchInstr(regs, mminsn, &contpc))
829 insn = (union mips_instruction)(mminsn.next_insn);
830
831 /* Parse instruction to find what to do */
832
833 switch (insn.mm_i_format.opcode) {
834
835 case mm_pool32a_op:
836 switch (insn.mm_x_format.func) {
837 case mm_lwxs_op:
838 reg = insn.mm_x_format.rd;
839 goto loadW;
840 }
841
842 goto sigbus;
843
844 case mm_pool32b_op:
845 switch (insn.mm_m_format.func) {
846 case mm_lwp_func:
847 reg = insn.mm_m_format.rd;
848 if (reg == 31)
849 goto sigbus;
850
851 if (!access_ok(VERIFY_READ, addr, 8))
852 goto sigbus;
853
854 LoadW(addr, value, res);
855 if (res)
856 goto fault;
857 regs->regs[reg] = value;
858 addr += 4;
859 LoadW(addr, value, res);
860 if (res)
861 goto fault;
862 regs->regs[reg + 1] = value;
863 goto success;
864
865 case mm_swp_func:
866 reg = insn.mm_m_format.rd;
867 if (reg == 31)
868 goto sigbus;
869
870 if (!access_ok(VERIFY_WRITE, addr, 8))
871 goto sigbus;
872
873 value = regs->regs[reg];
874 StoreW(addr, value, res);
875 if (res)
876 goto fault;
877 addr += 4;
878 value = regs->regs[reg + 1];
879 StoreW(addr, value, res);
880 if (res)
881 goto fault;
882 goto success;
883
884 case mm_ldp_func:
885#ifdef CONFIG_64BIT
886 reg = insn.mm_m_format.rd;
887 if (reg == 31)
888 goto sigbus;
889
890 if (!access_ok(VERIFY_READ, addr, 16))
891 goto sigbus;
892
893 LoadDW(addr, value, res);
894 if (res)
895 goto fault;
896 regs->regs[reg] = value;
897 addr += 8;
898 LoadDW(addr, value, res);
899 if (res)
900 goto fault;
901 regs->regs[reg + 1] = value;
902 goto success;
903#endif /* CONFIG_64BIT */
904
905 goto sigill;
906
907 case mm_sdp_func:
908#ifdef CONFIG_64BIT
909 reg = insn.mm_m_format.rd;
910 if (reg == 31)
911 goto sigbus;
912
913 if (!access_ok(VERIFY_WRITE, addr, 16))
914 goto sigbus;
915
916 value = regs->regs[reg];
917 StoreDW(addr, value, res);
918 if (res)
919 goto fault;
920 addr += 8;
921 value = regs->regs[reg + 1];
922 StoreDW(addr, value, res);
923 if (res)
924 goto fault;
925 goto success;
926#endif /* CONFIG_64BIT */
927
928 goto sigill;
929
930 case mm_lwm32_func:
931 reg = insn.mm_m_format.rd;
932 rvar = reg & 0xf;
933 if ((rvar > 9) || !reg)
934 goto sigill;
935 if (reg & 0x10) {
936 if (!access_ok
937 (VERIFY_READ, addr, 4 * (rvar + 1)))
938 goto sigbus;
939 } else {
940 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
941 goto sigbus;
942 }
943 if (rvar == 9)
944 rvar = 8;
945 for (i = 16; rvar; rvar--, i++) {
946 LoadW(addr, value, res);
947 if (res)
948 goto fault;
949 addr += 4;
950 regs->regs[i] = value;
951 }
952 if ((reg & 0xf) == 9) {
953 LoadW(addr, value, res);
954 if (res)
955 goto fault;
956 addr += 4;
957 regs->regs[30] = value;
958 }
959 if (reg & 0x10) {
960 LoadW(addr, value, res);
961 if (res)
962 goto fault;
963 regs->regs[31] = value;
964 }
965 goto success;
966
967 case mm_swm32_func:
968 reg = insn.mm_m_format.rd;
969 rvar = reg & 0xf;
970 if ((rvar > 9) || !reg)
971 goto sigill;
972 if (reg & 0x10) {
973 if (!access_ok
974 (VERIFY_WRITE, addr, 4 * (rvar + 1)))
975 goto sigbus;
976 } else {
977 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
978 goto sigbus;
979 }
980 if (rvar == 9)
981 rvar = 8;
982 for (i = 16; rvar; rvar--, i++) {
983 value = regs->regs[i];
984 StoreW(addr, value, res);
985 if (res)
986 goto fault;
987 addr += 4;
988 }
989 if ((reg & 0xf) == 9) {
990 value = regs->regs[30];
991 StoreW(addr, value, res);
992 if (res)
993 goto fault;
994 addr += 4;
995 }
996 if (reg & 0x10) {
997 value = regs->regs[31];
998 StoreW(addr, value, res);
999 if (res)
1000 goto fault;
1001 }
1002 goto success;
1003
1004 case mm_ldm_func:
1005#ifdef CONFIG_64BIT
1006 reg = insn.mm_m_format.rd;
1007 rvar = reg & 0xf;
1008 if ((rvar > 9) || !reg)
1009 goto sigill;
1010 if (reg & 0x10) {
1011 if (!access_ok
1012 (VERIFY_READ, addr, 8 * (rvar + 1)))
1013 goto sigbus;
1014 } else {
1015 if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1016 goto sigbus;
1017 }
1018 if (rvar == 9)
1019 rvar = 8;
1020
1021 for (i = 16; rvar; rvar--, i++) {
1022 LoadDW(addr, value, res);
1023 if (res)
1024 goto fault;
1025 addr += 4;
1026 regs->regs[i] = value;
1027 }
1028 if ((reg & 0xf) == 9) {
1029 LoadDW(addr, value, res);
1030 if (res)
1031 goto fault;
1032 addr += 8;
1033 regs->regs[30] = value;
1034 }
1035 if (reg & 0x10) {
1036 LoadDW(addr, value, res);
1037 if (res)
1038 goto fault;
1039 regs->regs[31] = value;
1040 }
1041 goto success;
1042#endif /* CONFIG_64BIT */
1043
1044 goto sigill;
1045
1046 case mm_sdm_func:
1047#ifdef CONFIG_64BIT
1048 reg = insn.mm_m_format.rd;
1049 rvar = reg & 0xf;
1050 if ((rvar > 9) || !reg)
1051 goto sigill;
1052 if (reg & 0x10) {
1053 if (!access_ok
1054 (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1055 goto sigbus;
1056 } else {
1057 if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1058 goto sigbus;
1059 }
1060 if (rvar == 9)
1061 rvar = 8;
1062
1063 for (i = 16; rvar; rvar--, i++) {
1064 value = regs->regs[i];
1065 StoreDW(addr, value, res);
1066 if (res)
1067 goto fault;
1068 addr += 8;
1069 }
1070 if ((reg & 0xf) == 9) {
1071 value = regs->regs[30];
1072 StoreDW(addr, value, res);
1073 if (res)
1074 goto fault;
1075 addr += 8;
1076 }
1077 if (reg & 0x10) {
1078 value = regs->regs[31];
1079 StoreDW(addr, value, res);
1080 if (res)
1081 goto fault;
1082 }
1083 goto success;
1084#endif /* CONFIG_64BIT */
1085
1086 goto sigill;
1087
1088 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1089 }
1090
1091 goto sigbus;
1092
1093 case mm_pool32c_op:
1094 switch (insn.mm_m_format.func) {
1095 case mm_lwu_func:
1096 reg = insn.mm_m_format.rd;
1097 goto loadWU;
1098 }
1099
1100 /* LL,SC,LLD,SCD are not serviced */
1101 goto sigbus;
1102
1103 case mm_pool32f_op:
1104 switch (insn.mm_x_format.func) {
1105 case mm_lwxc1_func:
1106 case mm_swxc1_func:
1107 case mm_ldxc1_func:
1108 case mm_sdxc1_func:
1109 goto fpu_emul;
1110 }
1111
1112 goto sigbus;
1113
1114 case mm_ldc132_op:
1115 case mm_sdc132_op:
1116 case mm_lwc132_op:
1117 case mm_swc132_op:
1118fpu_emul:
1119 /* roll back jump/branch */
1120 regs->cp0_epc = origpc;
1121 regs->regs[31] = orig31;
1122
1123 die_if_kernel("Unaligned FP access in kernel code", regs);
1124 BUG_ON(!used_math());
1125 BUG_ON(!is_fpu_owner());
1126
1127 lose_fpu(1); /* save the FPU state for the emulator */
1128 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
1129 &fault_addr);
1130 own_fpu(1); /* restore FPU state */
1131
1132 /* If something went wrong, signal */
1133 process_fpemu_return(res, fault_addr);
1134
1135 if (res == 0)
1136 goto success;
1137 return;
1138
1139 case mm_lh32_op:
1140 reg = insn.mm_i_format.rt;
1141 goto loadHW;
1142
1143 case mm_lhu32_op:
1144 reg = insn.mm_i_format.rt;
1145 goto loadHWU;
1146
1147 case mm_lw32_op:
1148 reg = insn.mm_i_format.rt;
1149 goto loadW;
1150
1151 case mm_sh32_op:
1152 reg = insn.mm_i_format.rt;
1153 goto storeHW;
1154
1155 case mm_sw32_op:
1156 reg = insn.mm_i_format.rt;
1157 goto storeW;
1158
1159 case mm_ld32_op:
1160 reg = insn.mm_i_format.rt;
1161 goto loadDW;
1162
1163 case mm_sd32_op:
1164 reg = insn.mm_i_format.rt;
1165 goto storeDW;
1166
1167 case mm_pool16c_op:
1168 switch (insn.mm16_m_format.func) {
1169 case mm_lwm16_op:
1170 reg = insn.mm16_m_format.rlist;
1171 rvar = reg + 1;
1172 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1173 goto sigbus;
1174
1175 for (i = 16; rvar; rvar--, i++) {
1176 LoadW(addr, value, res);
1177 if (res)
1178 goto fault;
1179 addr += 4;
1180 regs->regs[i] = value;
1181 }
1182 LoadW(addr, value, res);
1183 if (res)
1184 goto fault;
1185 regs->regs[31] = value;
1186
1187 goto success;
1188
1189 case mm_swm16_op:
1190 reg = insn.mm16_m_format.rlist;
1191 rvar = reg + 1;
1192 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1193 goto sigbus;
1194
1195 for (i = 16; rvar; rvar--, i++) {
1196 value = regs->regs[i];
1197 StoreW(addr, value, res);
1198 if (res)
1199 goto fault;
1200 addr += 4;
1201 }
1202 value = regs->regs[31];
1203 StoreW(addr, value, res);
1204 if (res)
1205 goto fault;
1206
1207 goto success;
1208
1209 }
1210
1211 goto sigbus;
1212
1213 case mm_lhu16_op:
1214 reg = reg16to32[insn.mm16_rb_format.rt];
1215 goto loadHWU;
1216
1217 case mm_lw16_op:
1218 reg = reg16to32[insn.mm16_rb_format.rt];
1219 goto loadW;
1220
1221 case mm_sh16_op:
1222 reg = reg16to32st[insn.mm16_rb_format.rt];
1223 goto storeHW;
1224
1225 case mm_sw16_op:
1226 reg = reg16to32st[insn.mm16_rb_format.rt];
1227 goto storeW;
1228
1229 case mm_lwsp16_op:
1230 reg = insn.mm16_r5_format.rt;
1231 goto loadW;
1232
1233 case mm_swsp16_op:
1234 reg = insn.mm16_r5_format.rt;
1235 goto storeW;
1236
1237 case mm_lwgp16_op:
1238 reg = reg16to32[insn.mm16_r3_format.rt];
1239 goto loadW;
1240
1241 default:
1242 goto sigill;
1243 }
1244
1245loadHW:
1246 if (!access_ok(VERIFY_READ, addr, 2))
1247 goto sigbus;
1248
1249 LoadHW(addr, value, res);
1250 if (res)
1251 goto fault;
1252 regs->regs[reg] = value;
1253 goto success;
1254
1255loadHWU:
1256 if (!access_ok(VERIFY_READ, addr, 2))
1257 goto sigbus;
1258
1259 LoadHWU(addr, value, res);
1260 if (res)
1261 goto fault;
1262 regs->regs[reg] = value;
1263 goto success;
1264
1265loadW:
1266 if (!access_ok(VERIFY_READ, addr, 4))
1267 goto sigbus;
1268
1269 LoadW(addr, value, res);
1270 if (res)
1271 goto fault;
1272 regs->regs[reg] = value;
1273 goto success;
1274
1275loadWU:
1276#ifdef CONFIG_64BIT
1277 /*
1278 * A 32-bit kernel might be running on a 64-bit processor. But
1279 * if we're on a 32-bit processor and an i-cache incoherency
1280 * or race makes us see a 64-bit instruction here the sdl/sdr
1281 * would blow up, so for now we don't handle unaligned 64-bit
1282 * instructions on 32-bit kernels.
1283 */
1284 if (!access_ok(VERIFY_READ, addr, 4))
1285 goto sigbus;
1286
1287 LoadWU(addr, value, res);
1288 if (res)
1289 goto fault;
1290 regs->regs[reg] = value;
1291 goto success;
1292#endif /* CONFIG_64BIT */
1293
1294 /* Cannot handle 64-bit instructions in 32-bit kernel */
1295 goto sigill;
1296
1297loadDW:
1298#ifdef CONFIG_64BIT
1299 /*
1300 * A 32-bit kernel might be running on a 64-bit processor. But
1301 * if we're on a 32-bit processor and an i-cache incoherency
1302 * or race makes us see a 64-bit instruction here the sdl/sdr
1303 * would blow up, so for now we don't handle unaligned 64-bit
1304 * instructions on 32-bit kernels.
1305 */
1306 if (!access_ok(VERIFY_READ, addr, 8))
1307 goto sigbus;
1308
1309 LoadDW(addr, value, res);
1310 if (res)
1311 goto fault;
1312 regs->regs[reg] = value;
1313 goto success;
1314#endif /* CONFIG_64BIT */
1315
1316 /* Cannot handle 64-bit instructions in 32-bit kernel */
1317 goto sigill;
1318
1319storeHW:
1320 if (!access_ok(VERIFY_WRITE, addr, 2))
1321 goto sigbus;
1322
1323 value = regs->regs[reg];
1324 StoreHW(addr, value, res);
1325 if (res)
1326 goto fault;
1327 goto success;
1328
1329storeW:
1330 if (!access_ok(VERIFY_WRITE, addr, 4))
1331 goto sigbus;
1332
1333 value = regs->regs[reg];
1334 StoreW(addr, value, res);
1335 if (res)
1336 goto fault;
1337 goto success;
1338
1339storeDW:
1340#ifdef CONFIG_64BIT
1341 /*
1342 * A 32-bit kernel might be running on a 64-bit processor. But
1343 * if we're on a 32-bit processor and an i-cache incoherency
1344 * or race makes us see a 64-bit instruction here the sdl/sdr
1345 * would blow up, so for now we don't handle unaligned 64-bit
1346 * instructions on 32-bit kernels.
1347 */
1348 if (!access_ok(VERIFY_WRITE, addr, 8))
1349 goto sigbus;
1350
1351 value = regs->regs[reg];
1352 StoreDW(addr, value, res);
1353 if (res)
1354 goto fault;
1355 goto success;
1356#endif /* CONFIG_64BIT */
1357
1358 /* Cannot handle 64-bit instructions in 32-bit kernel */
1359 goto sigill;
1360
1361success:
1362 regs->cp0_epc = contpc; /* advance or branch */
1363
1364#ifdef CONFIG_DEBUG_FS
1365 unaligned_instructions++;
1366#endif
1367 return;
1368
1369fault:
1370 /* roll back jump/branch */
1371 regs->cp0_epc = origpc;
1372 regs->regs[31] = orig31;
1373 /* Did we have an exception handler installed? */
1374 if (fixup_exception(regs))
1375 return;
1376
1377 die_if_kernel("Unhandled kernel unaligned access", regs);
1378 force_sig(SIGSEGV, current);
1379
1380 return;
1381
1382sigbus:
1383 die_if_kernel("Unhandled kernel unaligned access", regs);
1384 force_sig(SIGBUS, current);
1385
1386 return;
1387
1388sigill:
1389 die_if_kernel
1390 ("Unhandled kernel unaligned access or invalid instruction", regs);
1391 force_sig(SIGILL, current);
1392}
1393
1394static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1395{
1396 unsigned long value;
1397 unsigned int res;
1398 int reg;
1399 unsigned long orig31;
1400 u16 __user *pc16;
1401 unsigned long origpc;
1402 union mips16e_instruction mips16inst, oldinst;
1403
1404 origpc = regs->cp0_epc;
1405 orig31 = regs->regs[31];
1406 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1407 /*
1408 * This load never faults.
1409 */
1410 __get_user(mips16inst.full, pc16);
1411 oldinst = mips16inst;
1412
1413 /* skip EXTEND instruction */
1414 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1415 pc16++;
1416 __get_user(mips16inst.full, pc16);
1417 } else if (delay_slot(regs)) {
1418 /* skip jump instructions */
1419 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1420 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1421 pc16++;
1422 pc16++;
1423 if (get_user(mips16inst.full, pc16))
1424 goto sigbus;
1425 }
1426
1427 switch (mips16inst.ri.opcode) {
1428 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1429 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1430 case MIPS16e_ldpc_func:
1431 case MIPS16e_ldsp_func:
1432 reg = reg16to32[mips16inst.ri64.ry];
1433 goto loadDW;
1434
1435 case MIPS16e_sdsp_func:
1436 reg = reg16to32[mips16inst.ri64.ry];
1437 goto writeDW;
1438
1439 case MIPS16e_sdrasp_func:
1440 reg = 29; /* GPRSP */
1441 goto writeDW;
1442 }
1443
1444 goto sigbus;
1445
1446 case MIPS16e_swsp_op:
1447 case MIPS16e_lwpc_op:
1448 case MIPS16e_lwsp_op:
1449 reg = reg16to32[mips16inst.ri.rx];
1450 break;
1451
1452 case MIPS16e_i8_op:
1453 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1454 goto sigbus;
1455 reg = 29; /* GPRSP */
1456 break;
1457
1458 default:
1459 reg = reg16to32[mips16inst.rri.ry];
1460 break;
1461 }
1462
1463 switch (mips16inst.ri.opcode) {
1464
1465 case MIPS16e_lb_op:
1466 case MIPS16e_lbu_op:
1467 case MIPS16e_sb_op:
1468 goto sigbus;
1469
1470 case MIPS16e_lh_op:
1471 if (!access_ok(VERIFY_READ, addr, 2))
1472 goto sigbus;
1473
1474 LoadHW(addr, value, res);
1475 if (res)
1476 goto fault;
1477 MIPS16e_compute_return_epc(regs, &oldinst);
1478 regs->regs[reg] = value;
1479 break;
1480
1481 case MIPS16e_lhu_op:
1482 if (!access_ok(VERIFY_READ, addr, 2))
1483 goto sigbus;
1484
1485 LoadHWU(addr, value, res);
1486 if (res)
1487 goto fault;
1488 MIPS16e_compute_return_epc(regs, &oldinst);
1489 regs->regs[reg] = value;
1490 break;
1491
1492 case MIPS16e_lw_op:
1493 case MIPS16e_lwpc_op:
1494 case MIPS16e_lwsp_op:
1495 if (!access_ok(VERIFY_READ, addr, 4))
1496 goto sigbus;
1497
1498 LoadW(addr, value, res);
1499 if (res)
1500 goto fault;
1501 MIPS16e_compute_return_epc(regs, &oldinst);
1502 regs->regs[reg] = value;
1503 break;
1504
1505 case MIPS16e_lwu_op:
1506#ifdef CONFIG_64BIT
1507 /*
1508 * A 32-bit kernel might be running on a 64-bit processor. But
1509 * if we're on a 32-bit processor and an i-cache incoherency
1510 * or race makes us see a 64-bit instruction here the sdl/sdr
1511 * would blow up, so for now we don't handle unaligned 64-bit
1512 * instructions on 32-bit kernels.
1513 */
1514 if (!access_ok(VERIFY_READ, addr, 4))
1515 goto sigbus;
1516
1517 LoadWU(addr, value, res);
1518 if (res)
1519 goto fault;
1520 MIPS16e_compute_return_epc(regs, &oldinst);
1521 regs->regs[reg] = value;
1522 break;
1523#endif /* CONFIG_64BIT */
1524
1525 /* Cannot handle 64-bit instructions in 32-bit kernel */
1526 goto sigill;
1527
1528 case MIPS16e_ld_op:
1529loadDW:
1530#ifdef CONFIG_64BIT
1531 /*
1532 * A 32-bit kernel might be running on a 64-bit processor. But
1533 * if we're on a 32-bit processor and an i-cache incoherency
1534 * or race makes us see a 64-bit instruction here the sdl/sdr
1535 * would blow up, so for now we don't handle unaligned 64-bit
1536 * instructions on 32-bit kernels.
1537 */
1538 if (!access_ok(VERIFY_READ, addr, 8))
1539 goto sigbus;
1540
1541 LoadDW(addr, value, res);
1542 if (res)
1543 goto fault;
1544 MIPS16e_compute_return_epc(regs, &oldinst);
1545 regs->regs[reg] = value;
1546 break;
1547#endif /* CONFIG_64BIT */
1548
1549 /* Cannot handle 64-bit instructions in 32-bit kernel */
1550 goto sigill;
1551
1552 case MIPS16e_sh_op:
1553 if (!access_ok(VERIFY_WRITE, addr, 2))
1554 goto sigbus;
1555
1556 MIPS16e_compute_return_epc(regs, &oldinst);
1557 value = regs->regs[reg];
1558 StoreHW(addr, value, res);
1559 if (res)
1560 goto fault;
1561 break;
1562
1563 case MIPS16e_sw_op:
1564 case MIPS16e_swsp_op:
1565 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1566 if (!access_ok(VERIFY_WRITE, addr, 4))
1567 goto sigbus;
1568
1569 MIPS16e_compute_return_epc(regs, &oldinst);
1570 value = regs->regs[reg];
1571 StoreW(addr, value, res);
1572 if (res)
1573 goto fault;
1574 break;
1575
1576 case MIPS16e_sd_op:
1577writeDW:
1578#ifdef CONFIG_64BIT
1579 /*
1580 * A 32-bit kernel might be running on a 64-bit processor. But
1581 * if we're on a 32-bit processor and an i-cache incoherency
1582 * or race makes us see a 64-bit instruction here the sdl/sdr
1583 * would blow up, so for now we don't handle unaligned 64-bit
1584 * instructions on 32-bit kernels.
1585 */
1586 if (!access_ok(VERIFY_WRITE, addr, 8))
1587 goto sigbus;
1588
1589 MIPS16e_compute_return_epc(regs, &oldinst);
1590 value = regs->regs[reg];
1591 StoreDW(addr, value, res);
1592 if (res)
1593 goto fault;
1594 break;
1595#endif /* CONFIG_64BIT */
1596
1597 /* Cannot handle 64-bit instructions in 32-bit kernel */
1598 goto sigill;
1599
1600 default:
1601 /*
1602 * Pheeee... We encountered an yet unknown instruction or
1603 * cache coherence problem. Die sucker, die ...
1604 */
1605 goto sigill;
1606 }
1607
1608#ifdef CONFIG_DEBUG_FS
1609 unaligned_instructions++;
1610#endif
1611
1612 return;
1613
1614fault:
1615 /* roll back jump/branch */
1616 regs->cp0_epc = origpc;
1617 regs->regs[31] = orig31;
1618 /* Did we have an exception handler installed? */
1619 if (fixup_exception(regs))
1620 return;
1621
1622 die_if_kernel("Unhandled kernel unaligned access", regs);
1623 force_sig(SIGSEGV, current);
1624
1625 return;
1626
1627sigbus:
1628 die_if_kernel("Unhandled kernel unaligned access", regs);
1629 force_sig(SIGBUS, current);
1630
1631 return;
1632
1633sigill:
1634 die_if_kernel
1635 ("Unhandled kernel unaligned access or invalid instruction", regs);
1636 force_sig(SIGILL, current);
1637}
1638
1639asmlinkage void do_ade(struct pt_regs *regs)
1640{
1641 enum ctx_state prev_state;
1642 unsigned int __user *pc;
1643 mm_segment_t seg;
1644
1645 prev_state = exception_enter();
1646 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1647 1, regs, regs->cp0_badvaddr);
1648 /*
1649 * Did we catch a fault trying to load an instruction?
1650 */
1651 if (regs->cp0_badvaddr == regs->cp0_epc)
1652 goto sigbus;
1653
1654 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1655 goto sigbus;
1656 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1657 goto sigbus;
1658
1659 /*
1660 * Do branch emulation only if we didn't forward the exception.
1661 * This is all so but ugly ...
1662 */
1663
1664 /*
1665 * Are we running in microMIPS mode?
1666 */
1667 if (get_isa16_mode(regs->cp0_epc)) {
1668 /*
1669 * Did we catch a fault trying to load an instruction in
1670 * 16-bit mode?
1671 */
1672 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1673 goto sigbus;
1674 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1675 show_registers(regs);
1676
1677 if (cpu_has_mmips) {
1678 seg = get_fs();
1679 if (!user_mode(regs))
1680 set_fs(KERNEL_DS);
1681 emulate_load_store_microMIPS(regs,
1682 (void __user *)regs->cp0_badvaddr);
1683 set_fs(seg);
1684
1685 return;
1686 }
1687
1688 if (cpu_has_mips16) {
1689 seg = get_fs();
1690 if (!user_mode(regs))
1691 set_fs(KERNEL_DS);
1692 emulate_load_store_MIPS16e(regs,
1693 (void __user *)regs->cp0_badvaddr);
1694 set_fs(seg);
1695
1696 return;
1697 }
1698
1699 goto sigbus;
1700 }
1701
1702 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1703 show_registers(regs);
1704 pc = (unsigned int __user *)exception_epc(regs);
1705
1706 seg = get_fs();
1707 if (!user_mode(regs))
1708 set_fs(KERNEL_DS);
1709 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1710 set_fs(seg);
1711
1712 return;
1713
1714sigbus:
1715 die_if_kernel("Kernel unaligned instruction access", regs);
1716 force_sig(SIGBUS, current);
1717
1718 /*
1719 * XXX On return from the signal handler we should advance the epc
1720 */
1721 exception_exit(prev_state);
1722}
1723
1724#ifdef CONFIG_DEBUG_FS
1725extern struct dentry *mips_debugfs_dir;
1726static int __init debugfs_unaligned(void)
1727{
1728 struct dentry *d;
1729
1730 if (!mips_debugfs_dir)
1731 return -ENODEV;
1732 d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
1733 mips_debugfs_dir, &unaligned_instructions);
1734 if (!d)
1735 return -ENOMEM;
1736 d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1737 mips_debugfs_dir, &unaligned_action);
1738 if (!d)
1739 return -ENOMEM;
1740 return 0;
1741}
1742__initcall(debugfs_unaligned);
1743#endif