Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
   1/*
   2 * This program is free software; you can redistribute it and/or
   3 * modify it under the terms of the GNU General Public License
   4 * as published by the Free Software Foundation; either version 2
   5 * of the License, or (at your option) any later version.
   6 *
   7 * This program is distributed in the hope that it will be useful,
   8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  10 * GNU General Public License for more details.
  11 *
  12 * You should have received a copy of the GNU General Public License
  13 * along with this program; if not, write to the Free Software
  14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  15 *
  16 * Copyright (C) 2004 Mips Technologies, Inc
  17 * Copyright (C) 2008 Kevin D. Kissell
  18 */
  19
  20#include <linux/clockchips.h>
  21#include <linux/kernel.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24#include <linux/cpumask.h>
  25#include <linux/interrupt.h>
  26#include <linux/kernel_stat.h>
  27#include <linux/module.h>
  28#include <linux/ftrace.h>
  29#include <linux/slab.h>
  30
  31#include <asm/cpu.h>
  32#include <asm/processor.h>
  33#include <linux/atomic.h>
  34#include <asm/hardirq.h>
  35#include <asm/hazards.h>
  36#include <asm/irq.h>
  37#include <asm/idle.h>
  38#include <asm/mmu_context.h>
  39#include <asm/mipsregs.h>
  40#include <asm/cacheflush.h>
  41#include <asm/time.h>
  42#include <asm/addrspace.h>
  43#include <asm/smtc.h>
  44#include <asm/smtc_proc.h>
  45#include <asm/setup.h>
  46
  47/*
  48 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  49 * in do_IRQ. These are passed in setup_irq_smtc() and stored
  50 * in this table.
  51 */
  52unsigned long irq_hwmask[NR_IRQS];
  53
  54#define LOCK_MT_PRA() \
  55	local_irq_save(flags); \
  56	mtflags = dmt()
  57
  58#define UNLOCK_MT_PRA() \
  59	emt(mtflags); \
  60	local_irq_restore(flags)
  61
  62#define LOCK_CORE_PRA() \
  63	local_irq_save(flags); \
  64	mtflags = dvpe()
  65
  66#define UNLOCK_CORE_PRA() \
  67	evpe(mtflags); \
  68	local_irq_restore(flags)
  69
  70/*
  71 * Data structures purely associated with SMTC parallelism
  72 */
  73
  74
  75/*
  76 * Table for tracking ASIDs whose lifetime is prolonged.
  77 */
  78
  79asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  80
  81/*
  82 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
  83 */
  84
  85#define IPIBUF_PER_CPU 4
  86
  87struct smtc_ipi_q IPIQ[NR_CPUS];
  88static struct smtc_ipi_q freeIPIq;
  89
  90
  91/*
  92 * Number of FPU contexts for each VPE
  93 */
  94
  95static int smtc_nconf1[MAX_SMTC_VPES];
  96
  97
  98/* Forward declarations */
  99
 100void ipi_decode(struct smtc_ipi *);
 101static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
 102static void setup_cross_vpe_interrupts(unsigned int nvpe);
 103void init_smtc_stats(void);
 104
 105/* Global SMTC Status */
 106
 107unsigned int smtc_status;
 108
 109/* Boot command line configuration overrides */
 110
 111static int vpe0limit;
 112static int ipibuffers;
 113static int nostlb;
 114static int asidmask;
 115unsigned long smtc_asid_mask = 0xff;
 116
 117static int __init vpe0tcs(char *str)
 118{
 119	get_option(&str, &vpe0limit);
 120
 121	return 1;
 122}
 123
 124static int __init ipibufs(char *str)
 125{
 126	get_option(&str, &ipibuffers);
 127	return 1;
 128}
 129
 130static int __init stlb_disable(char *s)
 131{
 132	nostlb = 1;
 133	return 1;
 134}
 135
 136static int __init asidmask_set(char *str)
 137{
 138	get_option(&str, &asidmask);
 139	switch (asidmask) {
 140	case 0x1:
 141	case 0x3:
 142	case 0x7:
 143	case 0xf:
 144	case 0x1f:
 145	case 0x3f:
 146	case 0x7f:
 147	case 0xff:
 148		smtc_asid_mask = (unsigned long)asidmask;
 149		break;
 150	default:
 151		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
 152	}
 153	return 1;
 154}
 155
 156__setup("vpe0tcs=", vpe0tcs);
 157__setup("ipibufs=", ipibufs);
 158__setup("nostlb", stlb_disable);
 159__setup("asidmask=", asidmask_set);
 160
 161#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 162
 163static int hang_trig;
 164
 165static int __init hangtrig_enable(char *s)
 166{
 167	hang_trig = 1;
 168	return 1;
 169}
 170
 171
 172__setup("hangtrig", hangtrig_enable);
 173
 174#define DEFAULT_BLOCKED_IPI_LIMIT 32
 175
 176static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
 177
 178static int __init tintq(char *str)
 179{
 180	get_option(&str, &timerq_limit);
 181	return 1;
 182}
 183
 184__setup("tintq=", tintq);
 185
 186static int imstuckcount[MAX_SMTC_VPES][8];
 187/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
 188static int vpemask[MAX_SMTC_VPES][8] = {
 189	{0, 0, 1, 0, 0, 0, 0, 1},
 190	{0, 0, 0, 0, 0, 0, 0, 1}
 191};
 192int tcnoprog[NR_CPUS];
 193static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
 194static int clock_hang_reported[NR_CPUS];
 195
 196#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 197
 198/*
 199 * Configure shared TLB - VPC configuration bit must be set by caller
 200 */
 201
 202static void smtc_configure_tlb(void)
 203{
 204	int i, tlbsiz, vpes;
 205	unsigned long mvpconf0;
 206	unsigned long config1val;
 207
 208	/* Set up ASID preservation table */
 209	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
 210	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
 211		smtc_live_asid[vpes][i] = 0;
 212	    }
 213	}
 214	mvpconf0 = read_c0_mvpconf0();
 215
 216	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
 217			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
 218	    /* If we have multiple VPEs, try to share the TLB */
 219	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
 220		/*
 221		 * If TLB sizing is programmable, shared TLB
 222		 * size is the total available complement.
 223		 * Otherwise, we have to take the sum of all
 224		 * static VPE TLB entries.
 225		 */
 226		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
 227				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
 228		    /*
 229		     * If there's more than one VPE, there had better
 230		     * be more than one TC, because we need one to bind
 231		     * to each VPE in turn to be able to read
 232		     * its configuration state!
 233		     */
 234		    settc(1);
 235		    /* Stop the TC from doing anything foolish */
 236		    write_tc_c0_tchalt(TCHALT_H);
 237		    mips_ihb();
 238		    /* No need to un-Halt - that happens later anyway */
 239		    for (i=0; i < vpes; i++) {
 240			write_tc_c0_tcbind(i);
 241			/*
 242			 * To be 100% sure we're really getting the right
 243			 * information, we exit the configuration state
 244			 * and do an IHB after each rebinding.
 245			 */
 246			write_c0_mvpcontrol(
 247				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 248			mips_ihb();
 249			/*
 250			 * Only count if the MMU Type indicated is TLB
 251			 */
 252			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
 253				config1val = read_vpe_c0_config1();
 254				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
 255			}
 256
 257			/* Put core back in configuration state */
 258			write_c0_mvpcontrol(
 259				read_c0_mvpcontrol() | MVPCONTROL_VPC );
 260			mips_ihb();
 261		    }
 262		}
 263		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
 264		ehb();
 265
 266		/*
 267		 * Setup kernel data structures to use software total,
 268		 * rather than read the per-VPE Config1 value. The values
 269		 * for "CPU 0" gets copied to all the other CPUs as part
 270		 * of their initialization in smtc_cpu_setup().
 271		 */
 272
 273		/* MIPS32 limits TLB indices to 64 */
 274		if (tlbsiz > 64)
 275			tlbsiz = 64;
 276		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
 277		smtc_status |= SMTC_TLB_SHARED;
 278		local_flush_tlb_all();
 279
 280		printk("TLB of %d entry pairs shared by %d VPEs\n",
 281			tlbsiz, vpes);
 282	    } else {
 283		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
 284	    }
 285	}
 286}
 287
 288
 289/*
 290 * Incrementally build the CPU map out of constituent MIPS MT cores,
 291 * using the specified available VPEs and TCs.	Plaform code needs
 292 * to ensure that each MIPS MT core invokes this routine on reset,
 293 * one at a time(!).
 294 *
 295 * This version of the build_cpu_map and prepare_cpus routines assumes
 296 * that *all* TCs of a MIPS MT core will be used for Linux, and that
 297 * they will be spread across *all* available VPEs (to minimise the
 298 * loss of efficiency due to exception service serialization).
 299 * An improved version would pick up configuration information and
 300 * possibly leave some TCs/VPEs as "slave" processors.
 301 *
 302 * Use c0_MVPConf0 to find out how many TCs are available, setting up
 303 * cpu_possible_mask and the logical/physical mappings.
 304 */
 305
 306int __init smtc_build_cpu_map(int start_cpu_slot)
 307{
 308	int i, ntcs;
 309
 310	/*
 311	 * The CPU map isn't actually used for anything at this point,
 312	 * so it's not clear what else we should do apart from set
 313	 * everything up so that "logical" = "physical".
 314	 */
 315	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 316	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
 317		set_cpu_possible(i, true);
 318		__cpu_number_map[i] = i;
 319		__cpu_logical_map[i] = i;
 320	}
 321#ifdef CONFIG_MIPS_MT_FPAFF
 322	/* Initialize map of CPUs with FPUs */
 323	cpus_clear(mt_fpu_cpumask);
 324#endif
 325
 326	/* One of those TC's is the one booting, and not a secondary... */
 327	printk("%i available secondary CPU TC(s)\n", i - 1);
 328
 329	return i;
 330}
 331
 332/*
 333 * Common setup before any secondaries are started
 334 * Make sure all CPUs are in a sensible state before we boot any of the
 335 * secondaries.
 336 *
 337 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 338 * as possible across the available VPEs.
 339 */
 340
 341static void smtc_tc_setup(int vpe, int tc, int cpu)
 342{
 343	static int cp1contexts[MAX_SMTC_VPES];
 344
 345	/*
 346	 * Make a local copy of the available FPU contexts in order
 347	 * to keep track of TCs that can have one.
 348	 */
 349	if (tc == 1)
 350	{
 351		/*
 352		 * FIXME: Multi-core SMTC hasn't been tested and the
 353		 *	  maximum number of VPEs may change.
 354		 */
 355		cp1contexts[0] = smtc_nconf1[0] - 1;
 356		cp1contexts[1] = smtc_nconf1[1];
 357	}
 358
 359	settc(tc);
 360	write_tc_c0_tchalt(TCHALT_H);
 361	mips_ihb();
 362	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
 363			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
 364			| TCSTATUS_A);
 365	/*
 366	 * TCContext gets an offset from the base of the IPIQ array
 367	 * to be used in low-level code to detect the presence of
 368	 * an active IPI queue.
 369	 */
 370	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
 371
 372	/* Bind TC to VPE. */
 373	write_tc_c0_tcbind(vpe);
 374
 375	/* In general, all TCs should have the same cpu_data indications. */
 376	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
 377
 378	/* Check to see if there is a FPU context available for this TC. */
 379	if (!cp1contexts[vpe])
 380		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
 381	else
 382		cp1contexts[vpe]--;
 383
 384	/* Store the TC and VPE into the cpu_data structure. */
 385	cpu_data[cpu].vpe_id = vpe;
 386	cpu_data[cpu].tc_id = tc;
 387
 388	/* FIXME: Multi-core SMTC hasn't been tested, but be prepared. */
 389	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
 390}
 391
 392/*
 393 * Tweak to get Count registers synced as closely as possible. The
 394 * value seems good for 34K-class cores.
 395 */
 396
 397#define CP0_SKEW 8
 398
 399void smtc_prepare_cpus(int cpus)
 400{
 401	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
 402	unsigned long flags;
 403	unsigned long val;
 404	int nipi;
 405	struct smtc_ipi *pipi;
 406
 407	/* disable interrupts so we can disable MT */
 408	local_irq_save(flags);
 409	/* disable MT so we can configure */
 410	dvpe();
 411	dmt();
 412
 413	spin_lock_init(&freeIPIq.lock);
 414
 415	/*
 416	 * We probably don't have as many VPEs as we do SMP "CPUs",
 417	 * but it's possible - and in any case we'll never use more!
 418	 */
 419	for (i=0; i<NR_CPUS; i++) {
 420		IPIQ[i].head = IPIQ[i].tail = NULL;
 421		spin_lock_init(&IPIQ[i].lock);
 422		IPIQ[i].depth = 0;
 423		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
 424	}
 425
 426	/* cpu_data index starts at zero */
 427	cpu = 0;
 428	cpu_data[cpu].vpe_id = 0;
 429	cpu_data[cpu].tc_id = 0;
 430	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
 431	cpu++;
 432
 433	/* Report on boot-time options */
 434	mips_mt_set_cpuoptions();
 435	if (vpelimit > 0)
 436		printk("Limit of %d VPEs set\n", vpelimit);
 437	if (tclimit > 0)
 438		printk("Limit of %d TCs set\n", tclimit);
 439	if (nostlb) {
 440		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
 441	}
 442	if (asidmask)
 443		printk("ASID mask value override to 0x%x\n", asidmask);
 444
 445	/* Temporary */
 446#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 447	if (hang_trig)
 448		printk("Logic Analyser Trigger on suspected TC hang\n");
 449#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 450
 451	/* Put MVPE's into 'configuration state' */
 452	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
 453
 454	val = read_c0_mvpconf0();
 455	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 456	if (vpelimit > 0 && nvpe > vpelimit)
 457		nvpe = vpelimit;
 458	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 459	if (ntc > NR_CPUS)
 460		ntc = NR_CPUS;
 461	if (tclimit > 0 && ntc > tclimit)
 462		ntc = tclimit;
 463	slop = ntc % nvpe;
 464	for (i = 0; i < nvpe; i++) {
 465		tcpervpe[i] = ntc / nvpe;
 466		if (slop) {
 467			if((slop - i) > 0) tcpervpe[i]++;
 468		}
 469	}
 470	/* Handle command line override for VPE0 */
 471	if (vpe0limit > ntc) vpe0limit = ntc;
 472	if (vpe0limit > 0) {
 473		int slopslop;
 474		if (vpe0limit < tcpervpe[0]) {
 475		    /* Reducing TC count - distribute to others */
 476		    slop = tcpervpe[0] - vpe0limit;
 477		    slopslop = slop % (nvpe - 1);
 478		    tcpervpe[0] = vpe0limit;
 479		    for (i = 1; i < nvpe; i++) {
 480			tcpervpe[i] += slop / (nvpe - 1);
 481			if(slopslop && ((slopslop - (i - 1) > 0)))
 482				tcpervpe[i]++;
 483		    }
 484		} else if (vpe0limit > tcpervpe[0]) {
 485		    /* Increasing TC count - steal from others */
 486		    slop = vpe0limit - tcpervpe[0];
 487		    slopslop = slop % (nvpe - 1);
 488		    tcpervpe[0] = vpe0limit;
 489		    for (i = 1; i < nvpe; i++) {
 490			tcpervpe[i] -= slop / (nvpe - 1);
 491			if(slopslop && ((slopslop - (i - 1) > 0)))
 492				tcpervpe[i]--;
 493		    }
 494		}
 495	}
 496
 497	/* Set up shared TLB */
 498	smtc_configure_tlb();
 499
 500	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
 501		/* Get number of CP1 contexts for each VPE. */
 502		if (tc == 0)
 503		{
 504			/*
 505			 * Do not call settc() for TC0 or the FPU context
 506			 * value will be incorrect. Besides, we know that
 507			 * we are TC0 anyway.
 508			 */
 509			smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() &
 510				VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 511			if (nvpe == 2)
 512			{
 513				settc(1);
 514				smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() &
 515					VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 516				settc(0);
 517			}
 518		}
 519		if (tcpervpe[vpe] == 0)
 520			continue;
 521		if (vpe != 0)
 522			printk(", ");
 523		printk("VPE %d: TC", vpe);
 524		for (i = 0; i < tcpervpe[vpe]; i++) {
 525			/*
 526			 * TC 0 is bound to VPE 0 at reset,
 527			 * and is presumably executing this
 528			 * code.  Leave it alone!
 529			 */
 530			if (tc != 0) {
 531				smtc_tc_setup(vpe, tc, cpu);
 532				if (vpe != 0) {
 533					/*
 534					 * Set MVP bit (possibly again).  Do it
 535					 * here to catch CPUs that have no TCs
 536					 * bound to the VPE at reset.  In that
 537					 * case, a TC must be bound to the VPE
 538					 * before we can set VPEControl[MVP]
 539					 */
 540					write_vpe_c0_vpeconf0(
 541						read_vpe_c0_vpeconf0() |
 542						VPECONF0_MVP);
 543				}
 544				cpu++;
 545			}
 546			printk(" %d", tc);
 547			tc++;
 548		}
 549		if (vpe != 0) {
 550			/*
 551			 * Allow this VPE to control others.
 552			 */
 553			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
 554					      VPECONF0_MVP);
 555
 556			/*
 557			 * Clear any stale software interrupts from VPE's Cause
 558			 */
 559			write_vpe_c0_cause(0);
 560
 561			/*
 562			 * Clear ERL/EXL of VPEs other than 0
 563			 * and set restricted interrupt enable/mask.
 564			 */
 565			write_vpe_c0_status((read_vpe_c0_status()
 566				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
 567				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
 568				| ST0_IE));
 569			/*
 570			 * set config to be the same as vpe0,
 571			 *  particularly kseg0 coherency alg
 572			 */
 573			write_vpe_c0_config(read_c0_config());
 574			/* Clear any pending timer interrupt */
 575			write_vpe_c0_compare(0);
 576			/* Propagate Config7 */
 577			write_vpe_c0_config7(read_c0_config7());
 578			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
 579			ehb();
 580		}
 581		/* enable multi-threading within VPE */
 582		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
 583		/* enable the VPE */
 584		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 585	}
 586
 587	/*
 588	 * Pull any physically present but unused TCs out of circulation.
 589	 */
 590	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
 591		set_cpu_possible(tc, false);
 592		set_cpu_present(tc, false);
 593		tc++;
 594	}
 595
 596	/* release config state */
 597	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 598
 599	printk("\n");
 600
 601	/* Set up coprocessor affinity CPU mask(s) */
 602
 603#ifdef CONFIG_MIPS_MT_FPAFF
 604	for (tc = 0; tc < ntc; tc++) {
 605		if (cpu_data[tc].options & MIPS_CPU_FPU)
 606			cpu_set(tc, mt_fpu_cpumask);
 607	}
 608#endif
 609
 610	/* set up ipi interrupts... */
 611
 612	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
 613
 614	setup_cross_vpe_interrupts(nvpe);
 615
 616	/* Set up queue of free IPI "messages". */
 617	nipi = NR_CPUS * IPIBUF_PER_CPU;
 618	if (ipibuffers > 0)
 619		nipi = ipibuffers;
 620
 621	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
 622	if (pipi == NULL)
 623		panic("kmalloc of IPI message buffers failed");
 624	else
 625		printk("IPI buffer pool of %d buffers\n", nipi);
 626	for (i = 0; i < nipi; i++) {
 627		smtc_ipi_nq(&freeIPIq, pipi);
 628		pipi++;
 629	}
 630
 631	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
 632	emt(EMT_ENABLE);
 633	evpe(EVPE_ENABLE);
 634	local_irq_restore(flags);
 635	/* Initialize SMTC /proc statistics/diagnostics */
 636	init_smtc_stats();
 637}
 638
 639
 640/*
 641 * Setup the PC, SP, and GP of a secondary processor and start it
 642 * running!
 643 * smp_bootstrap is the place to resume from
 644 * __KSTK_TOS(idle) is apparently the stack pointer
 645 * (unsigned long)idle->thread_info the gp
 646 *
 647 */
 648void smtc_boot_secondary(int cpu, struct task_struct *idle)
 649{
 650	extern u32 kernelsp[NR_CPUS];
 651	unsigned long flags;
 652	int mtflags;
 653
 654	LOCK_MT_PRA();
 655	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 656		dvpe();
 657	}
 658	settc(cpu_data[cpu].tc_id);
 659
 660	/* pc */
 661	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
 662
 663	/* stack pointer */
 664	kernelsp[cpu] = __KSTK_TOS(idle);
 665	write_tc_gpr_sp(__KSTK_TOS(idle));
 666
 667	/* global pointer */
 668	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
 669
 670	smtc_status |= SMTC_MTC_ACTIVE;
 671	write_tc_c0_tchalt(0);
 672	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 673		evpe(EVPE_ENABLE);
 674	}
 675	UNLOCK_MT_PRA();
 676}
 677
 678void smtc_init_secondary(void)
 679{
 680}
 681
 682void smtc_smp_finish(void)
 683{
 684	int cpu = smp_processor_id();
 685
 686	/*
 687	 * Lowest-numbered CPU per VPE starts a clock tick.
 688	 * Like per_cpu_trap_init() hack, this assumes that
 689	 * SMTC init code assigns TCs consdecutively and
 690	 * in ascending order across available VPEs.
 691	 */
 692	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
 693		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
 694
 695	local_irq_enable();
 696
 697	printk("TC %d going on-line as CPU %d\n",
 698		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
 699}
 700
 701void smtc_cpus_done(void)
 702{
 703}
 704
 705/*
 706 * Support for SMTC-optimized driver IRQ registration
 707 */
 708
 709/*
 710 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 711 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 712 * in this table.
 713 */
 714
 715int setup_irq_smtc(unsigned int irq, struct irqaction * new,
 716			unsigned long hwmask)
 717{
 718#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 719	unsigned int vpe = current_cpu_data.vpe_id;
 720
 721	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
 722#endif
 723	irq_hwmask[irq] = hwmask;
 724
 725	return setup_irq(irq, new);
 726}
 727
 728#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
 729/*
 730 * Support for IRQ affinity to TCs
 731 */
 732
 733void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
 734{
 735	/*
 736	 * If a "fast path" cache of quickly decodable affinity state
 737	 * is maintained, this is where it gets done, on a call up
 738	 * from the platform affinity code.
 739	 */
 740}
 741
 742void smtc_forward_irq(struct irq_data *d)
 743{
 744	unsigned int irq = d->irq;
 745	int target;
 746
 747	/*
 748	 * OK wise guy, now figure out how to get the IRQ
 749	 * to be serviced on an authorized "CPU".
 750	 *
 751	 * Ideally, to handle the situation where an IRQ has multiple
 752	 * eligible CPUS, we would maintain state per IRQ that would
 753	 * allow a fair distribution of service requests.  Since the
 754	 * expected use model is any-or-only-one, for simplicity
 755	 * and efficiency, we just pick the easiest one to find.
 756	 */
 757
 758	target = cpumask_first(d->affinity);
 759
 760	/*
 761	 * We depend on the platform code to have correctly processed
 762	 * IRQ affinity change requests to ensure that the IRQ affinity
 763	 * mask has been purged of bits corresponding to nonexistent and
 764	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
 765	 * connected to the physical interrupt input for the interrupt
 766	 * in question.	 Otherwise we have a nasty problem with interrupt
 767	 * mask management.  This is best handled in non-performance-critical
 768	 * platform IRQ affinity setting code,	to minimize interrupt-time
 769	 * checks.
 770	 */
 771
 772	/* If no one is eligible, service locally */
 773	if (target >= NR_CPUS)
 774		do_IRQ_no_affinity(irq);
 775	else
 776		smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
 777}
 778
 779#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
 780
 781/*
 782 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 783 * Within a VPE one TC can interrupt another by different approaches.
 784 * The easiest to get right would probably be to make all TCs except
 785 * the target IXMT and set a software interrupt, but an IXMT-based
 786 * scheme requires that a handler must run before a new IPI could
 787 * be sent, which would break the "broadcast" loops in MIPS MT.
 788 * A more gonzo approach within a VPE is to halt the TC, extract
 789 * its Restart, Status, and a couple of GPRs, and program the Restart
 790 * address to emulate an interrupt.
 791 *
 792 * Within a VPE, one can be confident that the target TC isn't in
 793 * a critical EXL state when halted, since the write to the Halt
 794 * register could not have issued on the writing thread if the
 795 * halting thread had EXL set. So k0 and k1 of the target TC
 796 * can be used by the injection code.  Across VPEs, one can't
 797 * be certain that the target TC isn't in a critical exception
 798 * state. So we try a two-step process of sending a software
 799 * interrupt to the target VPE, which either handles the event
 800 * itself (if it was the target) or injects the event within
 801 * the VPE.
 802 */
 803
 804static void smtc_ipi_qdump(void)
 805{
 806	int i;
 807	struct smtc_ipi *temp;
 808
 809	for (i = 0; i < NR_CPUS ;i++) {
 810		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
 811			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
 812			IPIQ[i].depth);
 813		temp = IPIQ[i].head;
 814
 815		while (temp != IPIQ[i].tail) {
 816			pr_debug("%d %d %d: ", temp->type, temp->dest,
 817			       (int)temp->arg);
 818#ifdef	SMTC_IPI_DEBUG
 819		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
 820#else
 821		    pr_debug("\n");
 822#endif
 823		    temp = temp->flink;
 824		}
 825	}
 826}
 827
 828/*
 829 * The standard atomic.h primitives don't quite do what we want
 830 * here: We need an atomic add-and-return-previous-value (which
 831 * could be done with atomic_add_return and a decrement) and an
 832 * atomic set/zero-and-return-previous-value (which can't really
 833 * be done with the atomic.h primitives). And since this is
 834 * MIPS MT, we can assume that we have LL/SC.
 835 */
 836static inline int atomic_postincrement(atomic_t *v)
 837{
 838	unsigned long result;
 839
 840	unsigned long temp;
 841
 842	__asm__ __volatile__(
 843	"1:	ll	%0, %2					\n"
 844	"	addu	%1, %0, 1				\n"
 845	"	sc	%1, %2					\n"
 846	"	beqz	%1, 1b					\n"
 847	__WEAK_LLSC_MB
 848	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
 849	: "m" (v->counter)
 850	: "memory");
 851
 852	return result;
 853}
 854
 855void smtc_send_ipi(int cpu, int type, unsigned int action)
 856{
 857	int tcstatus;
 858	struct smtc_ipi *pipi;
 859	unsigned long flags;
 860	int mtflags;
 861	unsigned long tcrestart;
 862	int set_resched_flag = (type == LINUX_SMP_IPI &&
 863				action == SMP_RESCHEDULE_YOURSELF);
 864
 865	if (cpu == smp_processor_id()) {
 866		printk("Cannot Send IPI to self!\n");
 867		return;
 868	}
 869	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
 870		return; /* There is a reschedule queued already */
 871
 872	/* Set up a descriptor, to be delivered either promptly or queued */
 873	pipi = smtc_ipi_dq(&freeIPIq);
 874	if (pipi == NULL) {
 875		bust_spinlocks(1);
 876		mips_mt_regdump(dvpe());
 877		panic("IPI Msg. Buffers Depleted");
 878	}
 879	pipi->type = type;
 880	pipi->arg = (void *)action;
 881	pipi->dest = cpu;
 882	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 883		/* If not on same VPE, enqueue and send cross-VPE interrupt */
 884		IPIQ[cpu].resched_flag |= set_resched_flag;
 885		smtc_ipi_nq(&IPIQ[cpu], pipi);
 886		LOCK_CORE_PRA();
 887		settc(cpu_data[cpu].tc_id);
 888		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
 889		UNLOCK_CORE_PRA();
 890	} else {
 891		/*
 892		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
 893		 * since ASID shootdown on the other VPE may
 894		 * collide with this operation.
 895		 */
 896		LOCK_CORE_PRA();
 897		settc(cpu_data[cpu].tc_id);
 898		/* Halt the targeted TC */
 899		write_tc_c0_tchalt(TCHALT_H);
 900		mips_ihb();
 901
 902		/*
 903		 * Inspect TCStatus - if IXMT is set, we have to queue
 904		 * a message. Otherwise, we set up the "interrupt"
 905		 * of the other TC
 906		 */
 907		tcstatus = read_tc_c0_tcstatus();
 908
 909		if ((tcstatus & TCSTATUS_IXMT) != 0) {
 910			/*
 911			 * If we're in the the irq-off version of the wait
 912			 * loop, we need to force exit from the wait and
 913			 * do a direct post of the IPI.
 914			 */
 915			if (cpu_wait == r4k_wait_irqoff) {
 916				tcrestart = read_tc_c0_tcrestart();
 917				if (address_is_in_r4k_wait_irqoff(tcrestart)) {
 918					write_tc_c0_tcrestart(__pastwait);
 919					tcstatus &= ~TCSTATUS_IXMT;
 920					write_tc_c0_tcstatus(tcstatus);
 921					goto postdirect;
 922				}
 923			}
 924			/*
 925			 * Otherwise we queue the message for the target TC
 926			 * to pick up when he does a local_irq_restore()
 927			 */
 928			write_tc_c0_tchalt(0);
 929			UNLOCK_CORE_PRA();
 930			IPIQ[cpu].resched_flag |= set_resched_flag;
 931			smtc_ipi_nq(&IPIQ[cpu], pipi);
 932		} else {
 933postdirect:
 934			post_direct_ipi(cpu, pipi);
 935			write_tc_c0_tchalt(0);
 936			UNLOCK_CORE_PRA();
 937		}
 938	}
 939}
 940
 941/*
 942 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 943 */
 944static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
 945{
 946	struct pt_regs *kstack;
 947	unsigned long tcstatus;
 948	unsigned long tcrestart;
 949	extern u32 kernelsp[NR_CPUS];
 950	extern void __smtc_ipi_vector(void);
 951//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
 952
 953	/* Extract Status, EPC from halted TC */
 954	tcstatus = read_tc_c0_tcstatus();
 955	tcrestart = read_tc_c0_tcrestart();
 956	/* If TCRestart indicates a WAIT instruction, advance the PC */
 957	if ((tcrestart & 0x80000000)
 958	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
 959		tcrestart += 4;
 960	}
 961	/*
 962	 * Save on TC's future kernel stack
 963	 *
 964	 * CU bit of Status is indicator that TC was
 965	 * already running on a kernel stack...
 966	 */
 967	if (tcstatus & ST0_CU0)	 {
 968		/* Note that this "- 1" is pointer arithmetic */
 969		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
 970	} else {
 971		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
 972	}
 973
 974	kstack->cp0_epc = (long)tcrestart;
 975	/* Save TCStatus */
 976	kstack->cp0_tcstatus = tcstatus;
 977	/* Pass token of operation to be performed kernel stack pad area */
 978	kstack->pad0[4] = (unsigned long)pipi;
 979	/* Pass address of function to be called likewise */
 980	kstack->pad0[5] = (unsigned long)&ipi_decode;
 981	/* Set interrupt exempt and kernel mode */
 982	tcstatus |= TCSTATUS_IXMT;
 983	tcstatus &= ~TCSTATUS_TKSU;
 984	write_tc_c0_tcstatus(tcstatus);
 985	ehb();
 986	/* Set TC Restart address to be SMTC IPI vector */
 987	write_tc_c0_tcrestart(__smtc_ipi_vector);
 988}
 989
 990static void ipi_resched_interrupt(void)
 991{
 992	scheduler_ipi();
 993}
 994
 995static void ipi_call_interrupt(void)
 996{
 997	/* Invoke generic function invocation code in smp.c */
 998	smp_call_function_interrupt();
 999}
1000
1001DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
1002
1003static void __irq_entry smtc_clock_tick_interrupt(void)
1004{
1005	unsigned int cpu = smp_processor_id();
1006	struct clock_event_device *cd;
1007	int irq = MIPS_CPU_IRQ_BASE + 1;
1008
1009	irq_enter();
1010	kstat_incr_irq_this_cpu(irq);
1011	cd = &per_cpu(mips_clockevent_device, cpu);
1012	cd->event_handler(cd);
1013	irq_exit();
1014}
1015
1016void ipi_decode(struct smtc_ipi *pipi)
1017{
1018	void *arg_copy = pipi->arg;
1019	int type_copy = pipi->type;
1020
1021	smtc_ipi_nq(&freeIPIq, pipi);
1022
1023	switch (type_copy) {
1024	case SMTC_CLOCK_TICK:
1025		smtc_clock_tick_interrupt();
1026		break;
1027
1028	case LINUX_SMP_IPI:
1029		switch ((int)arg_copy) {
1030		case SMP_RESCHEDULE_YOURSELF:
1031			ipi_resched_interrupt();
1032			break;
1033		case SMP_CALL_FUNCTION:
1034			ipi_call_interrupt();
1035			break;
1036		default:
1037			printk("Impossible SMTC IPI Argument %p\n", arg_copy);
1038			break;
1039		}
1040		break;
1041#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1042	case IRQ_AFFINITY_IPI:
1043		/*
1044		 * Accept a "forwarded" interrupt that was initially
1045		 * taken by a TC who doesn't have affinity for the IRQ.
1046		 */
1047		do_IRQ_no_affinity((int)arg_copy);
1048		break;
1049#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1050	default:
1051		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
1052		break;
1053	}
1054}
1055
1056/*
1057 * Similar to smtc_ipi_replay(), but invoked from context restore,
1058 * so it reuses the current exception frame rather than set up a
1059 * new one with self_ipi.
1060 */
1061
1062void deferred_smtc_ipi(void)
1063{
1064	int cpu = smp_processor_id();
1065
1066	/*
1067	 * Test is not atomic, but much faster than a dequeue,
1068	 * and the vast majority of invocations will have a null queue.
1069	 * If irq_disabled when this was called, then any IPIs queued
1070	 * after we test last will be taken on the next irq_enable/restore.
1071	 * If interrupts were enabled, then any IPIs added after the
1072	 * last test will be taken directly.
1073	 */
1074
1075	while (IPIQ[cpu].head != NULL) {
1076		struct smtc_ipi_q *q = &IPIQ[cpu];
1077		struct smtc_ipi *pipi;
1078		unsigned long flags;
1079
1080		/*
1081		 * It may be possible we'll come in with interrupts
1082		 * already enabled.
1083		 */
1084		local_irq_save(flags);
1085		spin_lock(&q->lock);
1086		pipi = __smtc_ipi_dq(q);
1087		spin_unlock(&q->lock);
1088		if (pipi != NULL) {
1089			if (pipi->type == LINUX_SMP_IPI &&
1090			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1091				IPIQ[cpu].resched_flag = 0;
1092			ipi_decode(pipi);
1093		}
1094		/*
1095		 * The use of the __raw_local restore isn't
1096		 * as obviously necessary here as in smtc_ipi_replay(),
1097		 * but it's more efficient, given that we're already
1098		 * running down the IPI queue.
1099		 */
1100		__arch_local_irq_restore(flags);
1101	}
1102}
1103
1104/*
1105 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1106 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1107 * in some regards preferable to have external logic for "doorbell" hardware
1108 * interrupts.
1109 */
1110
1111static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1112
1113static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1114{
1115	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1116	int my_tc = cpu_data[smp_processor_id()].tc_id;
1117	int cpu;
1118	struct smtc_ipi *pipi;
1119	unsigned long tcstatus;
1120	int sent;
1121	unsigned long flags;
1122	unsigned int mtflags;
1123	unsigned int vpflags;
1124
1125	/*
1126	 * So long as cross-VPE interrupts are done via
1127	 * MFTR/MTTR read-modify-writes of Cause, we need
1128	 * to stop other VPEs whenever the local VPE does
1129	 * anything similar.
1130	 */
1131	local_irq_save(flags);
1132	vpflags = dvpe();
1133	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1134	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1135	irq_enable_hazard();
1136	evpe(vpflags);
1137	local_irq_restore(flags);
1138
1139	/*
1140	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1141	 * queued for TCs on this VPE other than the current one.
1142	 * Return-from-interrupt should cause us to drain the queue
1143	 * for the current TC, so we ought not to have to do it explicitly here.
1144	 */
1145
1146	for_each_online_cpu(cpu) {
1147		if (cpu_data[cpu].vpe_id != my_vpe)
1148			continue;
1149
1150		pipi = smtc_ipi_dq(&IPIQ[cpu]);
1151		if (pipi != NULL) {
1152			if (cpu_data[cpu].tc_id != my_tc) {
1153				sent = 0;
1154				LOCK_MT_PRA();
1155				settc(cpu_data[cpu].tc_id);
1156				write_tc_c0_tchalt(TCHALT_H);
1157				mips_ihb();
1158				tcstatus = read_tc_c0_tcstatus();
1159				if ((tcstatus & TCSTATUS_IXMT) == 0) {
1160					post_direct_ipi(cpu, pipi);
1161					sent = 1;
1162				}
1163				write_tc_c0_tchalt(0);
1164				UNLOCK_MT_PRA();
1165				if (!sent) {
1166					smtc_ipi_req(&IPIQ[cpu], pipi);
1167				}
1168			} else {
1169				/*
1170				 * ipi_decode() should be called
1171				 * with interrupts off
1172				 */
1173				local_irq_save(flags);
1174				if (pipi->type == LINUX_SMP_IPI &&
1175				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1176					IPIQ[cpu].resched_flag = 0;
1177				ipi_decode(pipi);
1178				local_irq_restore(flags);
1179			}
1180		}
1181	}
1182
1183	return IRQ_HANDLED;
1184}
1185
1186static void ipi_irq_dispatch(void)
1187{
1188	do_IRQ(cpu_ipi_irq);
1189}
1190
1191static struct irqaction irq_ipi = {
1192	.handler	= ipi_interrupt,
1193	.flags		= IRQF_PERCPU,
1194	.name		= "SMTC_IPI"
1195};
1196
1197static void setup_cross_vpe_interrupts(unsigned int nvpe)
1198{
1199	if (nvpe < 1)
1200		return;
1201
1202	if (!cpu_has_vint)
1203		panic("SMTC Kernel requires Vectored Interrupt support");
1204
1205	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1206
1207	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1208
1209	irq_set_handler(cpu_ipi_irq, handle_percpu_irq);
1210}
1211
1212/*
1213 * SMTC-specific hacks invoked from elsewhere in the kernel.
1214 */
1215
1216 /*
1217  * smtc_ipi_replay is called from raw_local_irq_restore
1218  */
1219
1220void smtc_ipi_replay(void)
1221{
1222	unsigned int cpu = smp_processor_id();
1223
1224	/*
1225	 * To the extent that we've ever turned interrupts off,
1226	 * we may have accumulated deferred IPIs.  This is subtle.
1227	 * we should be OK:  If we pick up something and dispatch
1228	 * it here, that's great. If we see nothing, but concurrent
1229	 * with this operation, another TC sends us an IPI, IXMT
1230	 * is clear, and we'll handle it as a real pseudo-interrupt
1231	 * and not a pseudo-pseudo interrupt.  The important thing
1232	 * is to do the last check for queued message *after* the
1233	 * re-enabling of interrupts.
1234	 */
1235	while (IPIQ[cpu].head != NULL) {
1236		struct smtc_ipi_q *q = &IPIQ[cpu];
1237		struct smtc_ipi *pipi;
1238		unsigned long flags;
1239
1240		/*
1241		 * It's just possible we'll come in with interrupts
1242		 * already enabled.
1243		 */
1244		local_irq_save(flags);
1245
1246		spin_lock(&q->lock);
1247		pipi = __smtc_ipi_dq(q);
1248		spin_unlock(&q->lock);
1249		/*
1250		 ** But use a raw restore here to avoid recursion.
1251		 */
1252		__arch_local_irq_restore(flags);
1253
1254		if (pipi) {
1255			self_ipi(pipi);
1256			smtc_cpu_stats[cpu].selfipis++;
1257		}
1258	}
1259}
1260
1261EXPORT_SYMBOL(smtc_ipi_replay);
1262
1263void smtc_idle_loop_hook(void)
1264{
1265#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1266	int im;
1267	int flags;
1268	int mtflags;
1269	int bit;
1270	int vpe;
1271	int tc;
1272	int hook_ntcs;
1273	/*
1274	 * printk within DMT-protected regions can deadlock,
1275	 * so buffer diagnostic messages for later output.
1276	 */
1277	char *pdb_msg;
1278	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1279
1280	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1281		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1282			int mvpconf0;
1283			/* Tedious stuff to just do once */
1284			mvpconf0 = read_c0_mvpconf0();
1285			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1286			if (hook_ntcs > NR_CPUS)
1287				hook_ntcs = NR_CPUS;
1288			for (tc = 0; tc < hook_ntcs; tc++) {
1289				tcnoprog[tc] = 0;
1290				clock_hang_reported[tc] = 0;
1291			}
1292			for (vpe = 0; vpe < 2; vpe++)
1293				for (im = 0; im < 8; im++)
1294					imstuckcount[vpe][im] = 0;
1295			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1296			atomic_set(&idle_hook_initialized, 1000);
1297		} else {
1298			/* Someone else is initializing in parallel - let 'em finish */
1299			while (atomic_read(&idle_hook_initialized) < 1000)
1300				;
1301		}
1302	}
1303
1304	/* Have we stupidly left IXMT set somewhere? */
1305	if (read_c0_tcstatus() & 0x400) {
1306		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1307		ehb();
1308		printk("Dangling IXMT in cpu_idle()\n");
1309	}
1310
1311	/* Have we stupidly left an IM bit turned off? */
1312#define IM_LIMIT 2000
1313	local_irq_save(flags);
1314	mtflags = dmt();
1315	pdb_msg = &id_ho_db_msg[0];
1316	im = read_c0_status();
1317	vpe = current_cpu_data.vpe_id;
1318	for (bit = 0; bit < 8; bit++) {
1319		/*
1320		 * In current prototype, I/O interrupts
1321		 * are masked for VPE > 0
1322		 */
1323		if (vpemask[vpe][bit]) {
1324			if (!(im & (0x100 << bit)))
1325				imstuckcount[vpe][bit]++;
1326			else
1327				imstuckcount[vpe][bit] = 0;
1328			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1329				set_c0_status(0x100 << bit);
1330				ehb();
1331				imstuckcount[vpe][bit] = 0;
1332				pdb_msg += sprintf(pdb_msg,
1333					"Dangling IM %d fixed for VPE %d\n", bit,
1334					vpe);
1335			}
1336		}
1337	}
1338
1339	emt(mtflags);
1340	local_irq_restore(flags);
1341	if (pdb_msg != &id_ho_db_msg[0])
1342		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1343#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1344
1345	smtc_ipi_replay();
1346}
1347
1348void smtc_soft_dump(void)
1349{
1350	int i;
1351
1352	printk("Counter Interrupts taken per CPU (TC)\n");
1353	for (i=0; i < NR_CPUS; i++) {
1354		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1355	}
1356	printk("Self-IPI invocations:\n");
1357	for (i=0; i < NR_CPUS; i++) {
1358		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1359	}
1360	smtc_ipi_qdump();
1361	printk("%d Recoveries of \"stolen\" FPU\n",
1362	       atomic_read(&smtc_fpu_recoveries));
1363}
1364
1365
1366/*
1367 * TLB management routines special to SMTC
1368 */
1369
1370void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1371{
1372	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1373	int tlb, i;
1374
1375	/*
1376	 * It would be nice to be able to use a spinlock here,
1377	 * but this is invoked from within TLB flush routines
1378	 * that protect themselves with DVPE, so if a lock is
1379	 * held by another TC, it'll never be freed.
1380	 *
1381	 * DVPE/DMT must not be done with interrupts enabled,
1382	 * so even so most callers will already have disabled
1383	 * them, let's be really careful...
1384	 */
1385
1386	local_irq_save(flags);
1387	if (smtc_status & SMTC_TLB_SHARED) {
1388		mtflags = dvpe();
1389		tlb = 0;
1390	} else {
1391		mtflags = dmt();
1392		tlb = cpu_data[cpu].vpe_id;
1393	}
1394	asid = asid_cache(cpu);
1395
1396	do {
1397		if (!((asid += ASID_INC) & ASID_MASK) ) {
1398			if (cpu_has_vtag_icache)
1399				flush_icache_all();
1400			/* Traverse all online CPUs (hack requires contiguous range) */
1401			for_each_online_cpu(i) {
1402				/*
1403				 * We don't need to worry about our own CPU, nor those of
1404				 * CPUs who don't share our TLB.
1405				 */
1406				if ((i != smp_processor_id()) &&
1407				    ((smtc_status & SMTC_TLB_SHARED) ||
1408				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1409					settc(cpu_data[i].tc_id);
1410					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1411					if (!prevhalt) {
1412						write_tc_c0_tchalt(TCHALT_H);
1413						mips_ihb();
1414					}
1415					tcstat = read_tc_c0_tcstatus();
1416					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1417					if (!prevhalt)
1418						write_tc_c0_tchalt(0);
1419				}
1420			}
1421			if (!asid)		/* fix version if needed */
1422				asid = ASID_FIRST_VERSION;
1423			local_flush_tlb_all();	/* start new asid cycle */
1424		}
1425	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1426
1427	/*
1428	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1429	 */
1430	for_each_online_cpu(i) {
1431		if ((smtc_status & SMTC_TLB_SHARED) ||
1432		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1433			cpu_context(i, mm) = asid_cache(i) = asid;
1434	}
1435
1436	if (smtc_status & SMTC_TLB_SHARED)
1437		evpe(mtflags);
1438	else
1439		emt(mtflags);
1440	local_irq_restore(flags);
1441}
1442
1443/*
1444 * Invoked from macros defined in mmu_context.h
1445 * which must already have disabled interrupts
1446 * and done a DVPE or DMT as appropriate.
1447 */
1448
1449void smtc_flush_tlb_asid(unsigned long asid)
1450{
1451	int entry;
1452	unsigned long ehi;
1453
1454	entry = read_c0_wired();
1455
1456	/* Traverse all non-wired entries */
1457	while (entry < current_cpu_data.tlbsize) {
1458		write_c0_index(entry);
1459		ehb();
1460		tlb_read();
1461		ehb();
1462		ehi = read_c0_entryhi();
1463		if ((ehi & ASID_MASK) == asid) {
1464		    /*
1465		     * Invalidate only entries with specified ASID,
1466		     * makiing sure all entries differ.
1467		     */
1468		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1469		    write_c0_entrylo0(0);
1470		    write_c0_entrylo1(0);
1471		    mtc0_tlbw_hazard();
1472		    tlb_write_indexed();
1473		}
1474		entry++;
1475	}
1476	write_c0_index(PARKED_INDEX);
1477	tlbw_use_hazard();
1478}
1479
1480/*
1481 * Support for single-threading cache flush operations.
1482 */
1483
1484static int halt_state_save[NR_CPUS];
1485
1486/*
1487 * To really, really be sure that nothing is being done
1488 * by other TCs, halt them all.	 This code assumes that
1489 * a DVPE has already been done, so while their Halted
1490 * state is theoretically architecturally unstable, in
1491 * practice, it's not going to change while we're looking
1492 * at it.
1493 */
1494
1495void smtc_cflush_lockdown(void)
1496{
1497	int cpu;
1498
1499	for_each_online_cpu(cpu) {
1500		if (cpu != smp_processor_id()) {
1501			settc(cpu_data[cpu].tc_id);
1502			halt_state_save[cpu] = read_tc_c0_tchalt();
1503			write_tc_c0_tchalt(TCHALT_H);
1504		}
1505	}
1506	mips_ihb();
1507}
1508
1509/* It would be cheating to change the cpu_online states during a flush! */
1510
1511void smtc_cflush_release(void)
1512{
1513	int cpu;
1514
1515	/*
1516	 * Start with a hazard barrier to ensure
1517	 * that all CACHE ops have played through.
1518	 */
1519	mips_ihb();
1520
1521	for_each_online_cpu(cpu) {
1522		if (cpu != smp_processor_id()) {
1523			settc(cpu_data[cpu].tc_id);
1524			write_tc_c0_tchalt(halt_state_save[cpu]);
1525		}
1526	}
1527	mips_ihb();
1528}