Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1995 Linus Torvalds
  7 * Copyright (C) 1995 Waldorf Electronics
  8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
  9 * Copyright (C) 1996 Stoned Elipot
 10 * Copyright (C) 1999 Silicon Graphics, Inc.
 11 * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
 12 */
 13#include <linux/init.h>
 14#include <linux/ioport.h>
 15#include <linux/export.h>
 16#include <linux/screen_info.h>
 17#include <linux/memblock.h>
 
 18#include <linux/initrd.h>
 19#include <linux/root_dev.h>
 20#include <linux/highmem.h>
 21#include <linux/console.h>
 22#include <linux/pfn.h>
 23#include <linux/debugfs.h>
 24#include <linux/kexec.h>
 25#include <linux/sizes.h>
 26#include <linux/device.h>
 27#include <linux/dma-map-ops.h>
 28#include <linux/decompress/generic.h>
 29#include <linux/of_fdt.h>
 30#include <linux/dmi.h>
 31#include <linux/crash_dump.h>
 32
 33#include <asm/addrspace.h>
 34#include <asm/bootinfo.h>
 35#include <asm/bugs.h>
 36#include <asm/cache.h>
 37#include <asm/cdmm.h>
 38#include <asm/cpu.h>
 39#include <asm/debug.h>
 40#include <asm/sections.h>
 41#include <asm/setup.h>
 42#include <asm/smp-ops.h>
 43#include <asm/prom.h>
 44
 45#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
 46char __section(".appended_dtb") __appended_dtb[0x100000];
 47#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
 48
 49struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
 50
 51EXPORT_SYMBOL(cpu_data);
 52
 53#ifdef CONFIG_VT
 54struct screen_info screen_info;
 55#endif
 56
 57/*
 
 
 
 
 
 
 
 58 * Setup information
 59 *
 60 * These are initialized so they are in the .data section
 61 */
 62unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
 63
 64EXPORT_SYMBOL(mips_machtype);
 65
 
 
 66static char __initdata command_line[COMMAND_LINE_SIZE];
 67char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
 68
 69#ifdef CONFIG_CMDLINE_BOOL
 70static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
 71#else
 72static const char builtin_cmdline[] __initconst = "";
 73#endif
 74
 75/*
 76 * mips_io_port_base is the begin of the address space to which x86 style
 77 * I/O ports are mapped.
 78 */
 79unsigned long mips_io_port_base = -1;
 80EXPORT_SYMBOL(mips_io_port_base);
 81
 82static struct resource code_resource = { .name = "Kernel code", };
 83static struct resource data_resource = { .name = "Kernel data", };
 84static struct resource bss_resource = { .name = "Kernel bss", };
 85
 86unsigned long __kaslr_offset __ro_after_init;
 87EXPORT_SYMBOL(__kaslr_offset);
 88
 89static void *detect_magic __initdata = detect_memory_region;
 90
 91#ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
 92unsigned long ARCH_PFN_OFFSET;
 93EXPORT_SYMBOL(ARCH_PFN_OFFSET);
 94#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95
 96void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
 97{
 98	void *dm = &detect_magic;
 99	phys_addr_t size;
100
101	for (size = sz_min; size < sz_max; size <<= 1) {
102		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
103			break;
104	}
105
106	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
107		((unsigned long long) size) / SZ_1M,
108		(unsigned long long) start,
109		((unsigned long long) sz_min) / SZ_1M,
110		((unsigned long long) sz_max) / SZ_1M);
111
112	memblock_add(start, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113}
114
115/*
116 * Manage initrd
117 */
118#ifdef CONFIG_BLK_DEV_INITRD
119
120static int __init rd_start_early(char *p)
121{
122	unsigned long start = memparse(p, &p);
123
124#ifdef CONFIG_64BIT
125	/* Guess if the sign extension was forgotten by bootloader */
126	if (start < XKPHYS)
127		start = (int)start;
128#endif
129	initrd_start = start;
130	initrd_end += start;
131	return 0;
132}
133early_param("rd_start", rd_start_early);
134
135static int __init rd_size_early(char *p)
136{
137	initrd_end += memparse(p, &p);
138	return 0;
139}
140early_param("rd_size", rd_size_early);
141
142/* it returns the next free pfn after initrd */
143static unsigned long __init init_initrd(void)
144{
145	unsigned long end;
146
147	/*
148	 * Board specific code or command line parser should have
149	 * already set up initrd_start and initrd_end. In these cases
150	 * perfom sanity checks and use them if all looks good.
151	 */
152	if (!initrd_start || initrd_end <= initrd_start)
153		goto disable;
154
155	if (initrd_start & ~PAGE_MASK) {
156		pr_err("initrd start must be page aligned\n");
157		goto disable;
158	}
159	if (initrd_start < PAGE_OFFSET) {
160		pr_err("initrd start < PAGE_OFFSET\n");
161		goto disable;
162	}
163
164	/*
165	 * Sanitize initrd addresses. For example firmware
166	 * can't guess if they need to pass them through
167	 * 64-bits values if the kernel has been built in pure
168	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
169	 * addresses now, so the code can now safely use __pa().
170	 */
171	end = __pa(initrd_end);
172	initrd_end = (unsigned long)__va(end);
173	initrd_start = (unsigned long)__va(__pa(initrd_start));
174
175	ROOT_DEV = Root_RAM0;
176	return PFN_UP(end);
177disable:
178	initrd_start = 0;
179	initrd_end = 0;
180	return 0;
181}
182
183/* In some conditions (e.g. big endian bootloader with a little endian
184   kernel), the initrd might appear byte swapped.  Try to detect this and
185   byte swap it if needed.  */
186static void __init maybe_bswap_initrd(void)
187{
188#if defined(CONFIG_CPU_CAVIUM_OCTEON)
189	u64 buf;
190
191	/* Check for CPIO signature */
192	if (!memcmp((void *)initrd_start, "070701", 6))
193		return;
194
195	/* Check for compressed initrd */
196	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
197		return;
198
199	/* Try again with a byte swapped header */
200	buf = swab64p((u64 *)initrd_start);
201	if (!memcmp(&buf, "070701", 6) ||
202	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
203		unsigned long i;
204
205		pr_info("Byteswapped initrd detected\n");
206		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
207			swab64s((u64 *)i);
208	}
209#endif
210}
211
212static void __init finalize_initrd(void)
213{
214	unsigned long size = initrd_end - initrd_start;
215
216	if (size == 0) {
217		printk(KERN_INFO "Initrd not found or empty");
218		goto disable;
219	}
220	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
221		printk(KERN_ERR "Initrd extends beyond end of memory");
222		goto disable;
223	}
224
225	maybe_bswap_initrd();
226
227	memblock_reserve(__pa(initrd_start), size);
228	initrd_below_start_ok = 1;
229
230	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
231		initrd_start, size);
232	return;
233disable:
234	printk(KERN_CONT " - disabling initrd\n");
235	initrd_start = 0;
236	initrd_end = 0;
237}
238
239#else  /* !CONFIG_BLK_DEV_INITRD */
240
241static unsigned long __init init_initrd(void)
242{
243	return 0;
244}
245
246#define finalize_initrd()	do {} while (0)
247
248#endif
249
250/*
251 * Initialize the bootmem allocator. It also setup initrd related data
252 * if needed.
253 */
254#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
255
256static void __init bootmem_init(void)
257{
258	init_initrd();
259	finalize_initrd();
260}
261
262#else  /* !CONFIG_SGI_IP27 */
263
264static void __init bootmem_init(void)
265{
266	phys_addr_t ramstart, ramend;
267	unsigned long start, end;
 
268	int i;
269
270	ramstart = memblock_start_of_DRAM();
271	ramend = memblock_end_of_DRAM();
272
273	/*
274	 * Sanity check any INITRD first. We don't take it into account
275	 * for bootmem setup initially, rely on the end-of-kernel-code
276	 * as our memory range starting point. Once bootmem is inited we
277	 * will reserve the area used for the initrd.
278	 */
279	init_initrd();
 
280
281	/* Reserve memory occupied by kernel. */
282	memblock_reserve(__pa_symbol(&_text),
283			__pa_symbol(&_end) - __pa_symbol(&_text));
284
285	/* max_low_pfn is not a number of pages but the end pfn of low mem */
286
287#ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
288	ARCH_PFN_OFFSET = PFN_UP(ramstart);
289#else
290	/*
291	 * Reserve any memory between the start of RAM and PHYS_OFFSET
 
292	 */
293	if (ramstart > PHYS_OFFSET)
294		memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
295
296	if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
297		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
298			(unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
299			(unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
300	}
301#endif
302
303	min_low_pfn = ARCH_PFN_OFFSET;
304	max_pfn = PFN_DOWN(ramend);
305	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
306		/*
307		 * Skip highmem here so we get an accurate max_low_pfn if low
308		 * memory stops short of high memory.
309		 * If the region overlaps HIGHMEM_START, end is clipped so
310		 * max_pfn excludes the highmem portion.
311		 */
312		if (start >= PFN_DOWN(HIGHMEM_START))
313			continue;
314		if (end > PFN_DOWN(HIGHMEM_START))
315			end = PFN_DOWN(HIGHMEM_START);
 
 
 
316		if (end > max_low_pfn)
317			max_low_pfn = end;
 
 
 
 
 
 
 
318	}
319
320	if (min_low_pfn >= max_low_pfn)
321		panic("Incorrect memory mapping !!!");
 
 
 
 
 
 
 
 
 
322
323	if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
 
 
 
 
324#ifdef CONFIG_HIGHMEM
325		highstart_pfn = PFN_DOWN(HIGHMEM_START);
326		highend_pfn = max_pfn;
327#else
328		max_low_pfn = PFN_DOWN(HIGHMEM_START);
329		max_pfn = max_low_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330#endif
 
 
331	}
332
333	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334	 * Reserve initrd memory if needed.
335	 */
336	finalize_initrd();
337}
338
339#endif	/* CONFIG_SGI_IP27 */
340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341static int usermem __initdata;
342
343static int __init early_parse_mem(char *p)
344{
345	phys_addr_t start, size;
346
347	/*
348	 * If a user specifies memory size, we
349	 * blow away any automatically generated
350	 * size.
351	 */
352	if (usermem == 0) {
 
353		usermem = 1;
354		memblock_remove(memblock_start_of_DRAM(),
355			memblock_end_of_DRAM() - memblock_start_of_DRAM());
356	}
357	start = 0;
358	size = memparse(p, &p);
359	if (*p == '@')
360		start = memparse(p + 1, &p);
361
362	memblock_add(start, size);
363
364	return 0;
365}
366early_param("mem", early_parse_mem);
367
368static int __init early_parse_memmap(char *p)
 
 
369{
370	char *oldp;
371	u64 start_at, mem_size;
372
373	if (!p)
374		return -EINVAL;
375
376	if (!strncmp(p, "exactmap", 8)) {
377		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
378		return 0;
379	}
380
381	oldp = p;
382	mem_size = memparse(p, &p);
383	if (p == oldp)
384		return -EINVAL;
385
386	if (*p == '@') {
387		start_at = memparse(p+1, &p);
388		memblock_add(start_at, mem_size);
389	} else if (*p == '#') {
390		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
391		return -EINVAL;
392	} else if (*p == '$') {
393		start_at = memparse(p+1, &p);
394		memblock_add(start_at, mem_size);
395		memblock_reserve(start_at, mem_size);
396	} else {
397		pr_err("\"memmap\" invalid format!\n");
398		return -EINVAL;
399	}
400
401	if (*p == '\0') {
402		usermem = 1;
403		return 0;
404	} else
405		return -EINVAL;
406}
407early_param("memmap", early_parse_memmap);
 
408
409static void __init mips_reserve_vmcore(void)
410{
411#ifdef CONFIG_PROC_VMCORE
412	phys_addr_t start, end;
413	u64 i;
414
415	if (!elfcorehdr_size) {
416		for_each_mem_range(i, &start, &end) {
417			if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
418				/*
419				 * Reserve from the elf core header to the end of
420				 * the memory segment, that should all be kdump
421				 * reserved memory.
422				 */
423				elfcorehdr_size = end - elfcorehdr_addr;
424				break;
425			}
426		}
427	}
428
429	pr_info("Reserving %ldKB of memory at %ldKB for kdump\n",
430		(unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10);
 
431
432	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
433#endif
 
 
 
 
 
 
434}
435
436#ifdef CONFIG_KEXEC
 
 
 
437
438/* 64M alignment for crash kernel regions */
439#define CRASH_ALIGN	SZ_64M
440#define CRASH_ADDR_MAX	SZ_512M
441
442static void __init mips_parse_crashkernel(void)
443{
444	unsigned long long total_mem;
445	unsigned long long crash_size, crash_base;
446	int ret;
447
448	total_mem = memblock_phys_mem_size();
449	ret = parse_crashkernel(boot_command_line, total_mem,
450				&crash_size, &crash_base);
451	if (ret != 0 || crash_size <= 0)
452		return;
453
454	if (crash_base <= 0) {
455		crash_base = memblock_find_in_range(CRASH_ALIGN, CRASH_ADDR_MAX,
456							crash_size, CRASH_ALIGN);
457		if (!crash_base) {
458			pr_warn("crashkernel reservation failed - No suitable area found.\n");
459			return;
460		}
461	} else {
462		unsigned long long start;
463
464		start = memblock_find_in_range(crash_base, crash_base + crash_size,
465						crash_size, 1);
466		if (start != crash_base) {
467			pr_warn("Invalid memory region reserved for crash kernel\n");
468			return;
469		}
470	}
471
472	crashk_res.start = crash_base;
473	crashk_res.end	 = crash_base + crash_size - 1;
474}
475
476static void __init request_crashkernel(struct resource *res)
477{
478	int ret;
479
480	if (crashk_res.start == crashk_res.end)
481		return;
482
483	ret = request_resource(res, &crashk_res);
484	if (!ret)
485		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
486			(unsigned long)(resource_size(&crashk_res) >> 20),
 
487			(unsigned long)(crashk_res.start  >> 20));
488}
489#else /* !defined(CONFIG_KEXEC)		*/
490static void __init mips_parse_crashkernel(void)
491{
492}
493
494static void __init request_crashkernel(struct resource *res)
495{
496}
497#endif /* !defined(CONFIG_KEXEC)  */
498
499static void __init check_kernel_sections_mem(void)
500{
501	phys_addr_t start = __pa_symbol(&_text);
502	phys_addr_t size = __pa_symbol(&_end) - start;
503
504	if (!memblock_is_region_memory(start, size)) {
505		pr_info("Kernel sections are not in the memory maps\n");
506		memblock_add(start, size);
507	}
508}
509
510static void __init bootcmdline_append(const char *s, size_t max)
511{
512	if (!s[0] || !max)
513		return;
514
515	if (boot_command_line[0])
516		strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
517
518	strlcat(boot_command_line, s, max);
519}
520
521#ifdef CONFIG_OF_EARLY_FLATTREE
522
523static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
524					  int depth, void *data)
525{
526	bool *dt_bootargs = data;
527	const char *p;
528	int l;
529
530	if (depth != 1 || !data ||
531	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
532		return 0;
533
534	p = of_get_flat_dt_prop(node, "bootargs", &l);
535	if (p != NULL && l > 0) {
536		bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
537		*dt_bootargs = true;
538	}
539
540	return 1;
541}
542
543#endif /* CONFIG_OF_EARLY_FLATTREE */
544
545static void __init bootcmdline_init(void)
546{
547	bool dt_bootargs = false;
548
549	/*
550	 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
551	 * trivial - we simply use the built-in command line unconditionally &
552	 * unmodified.
553	 */
554	if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
555		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
556		return;
557	}
 
 
 
558
559	/*
560	 * If the user specified a built-in command line &
561	 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
562	 * prepended to arguments from the bootloader or DT so we'll copy them
563	 * to the start of boot_command_line here. Otherwise, empty
564	 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
565	 */
566	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
567		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
568	else
569		boot_command_line[0] = 0;
570
571#ifdef CONFIG_OF_EARLY_FLATTREE
572	/*
573	 * If we're configured to take boot arguments from DT, look for those
574	 * now.
575	 */
576	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
577	    IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
578		of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
 
 
 
 
579#endif
580
581	/*
582	 * If we didn't get any arguments from DT (regardless of whether that's
583	 * because we weren't configured to look for them, or because we looked
584	 * & found none) then we'll take arguments from the bootloader.
585	 * plat_mem_setup() should have filled arcs_cmdline with arguments from
586	 * the bootloader.
587	 */
588	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
589		bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
590
591	/*
592	 * If the user specified a built-in command line & we didn't already
593	 * prepend it, we append it to boot_command_line here.
594	 */
595	if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
596	    !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
597		bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
598}
599
600/*
601 * arch_mem_init - initialize memory management subsystem
602 *
603 *  o plat_mem_setup() detects the memory configuration and will record detected
604 *    memory areas using memblock_add.
605 *
606 * At this stage the memory configuration of the system is known to the
607 * kernel but generic memory management system is still entirely uninitialized.
608 *
609 *  o bootmem_init()
610 *  o sparse_init()
611 *  o paging_init()
612 *  o dma_contiguous_reserve()
613 *
614 * At this stage the bootmem allocator is ready to use.
615 *
616 * NOTE: historically plat_mem_setup did the entire platform initialization.
617 *	 This was rather impractical because it meant plat_mem_setup had to
618 * get away without any kind of memory allocator.  To keep old code from
619 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
620 * initialization hook for anything else was introduced.
621 */
622static void __init arch_mem_init(char **cmdline_p)
623{
624	/* call board setup routine */
625	plat_mem_setup();
626	memblock_set_bottom_up(true);
627
628	bootcmdline_init();
629	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 
630	*cmdline_p = command_line;
631
632	parse_early_param();
633
634	if (usermem)
635		pr_info("User-defined physical RAM map overwrite\n");
636
637	check_kernel_sections_mem();
638
639	early_init_fdt_reserve_self();
640	early_init_fdt_scan_reserved_mem();
641
642#ifndef CONFIG_NUMA
643	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
644#endif
645	bootmem_init();
646
647	/*
648	 * Prevent memblock from allocating high memory.
649	 * This cannot be done before max_low_pfn is detected, so up
650	 * to this point is possible to only reserve physical memory
651	 * with memblock_reserve; memblock_alloc* can be used
652	 * only after this point
653	 */
654	memblock_set_current_limit(PFN_PHYS(max_low_pfn));
655
656	mips_reserve_vmcore();
657
658	mips_parse_crashkernel();
659#ifdef CONFIG_KEXEC
660	if (crashk_res.start != crashk_res.end)
661		memblock_reserve(crashk_res.start, resource_size(&crashk_res));
 
 
662#endif
663	device_tree_init();
664
665	/*
666	 * In order to reduce the possibility of kernel panic when failed to
667	 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
668	 * low memory as small as possible before plat_swiotlb_setup(), so
669	 * make sparse_init() using top-down allocation.
670	 */
671	memblock_set_bottom_up(false);
672	sparse_init();
673	memblock_set_bottom_up(true);
674
675	plat_swiotlb_setup();
676
677	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
678
679	/* Reserve for hibernation. */
680	memblock_reserve(__pa_symbol(&__nosave_begin),
681		__pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
682
683	early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
684}
685
686static void __init resource_init(void)
687{
688	phys_addr_t start, end;
689	u64 i;
690
691	if (UNCAC_BASE != IO_BASE)
692		return;
693
694	code_resource.start = __pa_symbol(&_text);
695	code_resource.end = __pa_symbol(&_etext) - 1;
696	data_resource.start = __pa_symbol(&_etext);
697	data_resource.end = __pa_symbol(&_edata) - 1;
698	bss_resource.start = __pa_symbol(&__bss_start);
699	bss_resource.end = __pa_symbol(&__bss_stop) - 1;
700
701	for_each_mem_range(i, &start, &end) {
702		struct resource *res;
 
703
704		res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
705		if (!res)
706			panic("%s: Failed to allocate %zu bytes\n", __func__,
707			      sizeof(struct resource));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708
709		res->start = start;
710		/*
711		 * In memblock, end points to the first byte after the
712		 * range while in resourses, end points to the last byte in
713		 * the range.
714		 */
715		res->end = end - 1;
716		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
717		res->name = "System RAM";
718
 
719		request_resource(&iomem_resource, res);
720
721		/*
722		 *  We don't know which RAM region contains kernel data,
723		 *  so we try it repeatedly and let the resource manager
724		 *  test it.
725		 */
726		request_resource(res, &code_resource);
727		request_resource(res, &data_resource);
728		request_resource(res, &bss_resource);
729		request_crashkernel(res);
730	}
731}
732
733#ifdef CONFIG_SMP
734static void __init prefill_possible_map(void)
735{
736	int i, possible = num_possible_cpus();
737
738	if (possible > nr_cpu_ids)
739		possible = nr_cpu_ids;
740
741	for (i = 0; i < possible; i++)
742		set_cpu_possible(i, true);
743	for (; i < NR_CPUS; i++)
744		set_cpu_possible(i, false);
745
746	nr_cpu_ids = possible;
747}
748#else
749static inline void prefill_possible_map(void) {}
750#endif
751
752void __init setup_arch(char **cmdline_p)
753{
754	cpu_probe();
755	mips_cm_probe();
756	prom_init();
757
758	setup_early_fdc_console();
759#ifdef CONFIG_EARLY_PRINTK
760	setup_early_printk();
761#endif
762	cpu_report();
763	check_bugs_early();
764
765#if defined(CONFIG_VT)
766#if defined(CONFIG_VGA_CONSOLE)
767	conswitchp = &vga_con;
 
 
768#endif
769#endif
770
771	arch_mem_init(cmdline_p);
772	dmi_setup();
773
774	resource_init();
775	plat_smp_setup();
776	prefill_possible_map();
777
778	cpu_cache_init();
779	paging_init();
780
781	memblock_dump_all();
782}
783
784unsigned long kernelsp[NR_CPUS];
785unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
786
787#ifdef CONFIG_DEBUG_FS
788struct dentry *mips_debugfs_dir;
789static int __init debugfs_mips(void)
790{
791	mips_debugfs_dir = debugfs_create_dir("mips", NULL);
792	return 0;
793}
794arch_initcall(debugfs_mips);
795#endif
796
797#ifdef CONFIG_DMA_NONCOHERENT
798static int __init setcoherentio(char *str)
799{
800	dma_default_coherent = true;
801	pr_info("Hardware DMA cache coherency (command line)\n");
802	return 0;
803}
804early_param("coherentio", setcoherentio);
805
806static int __init setnocoherentio(char *str)
807{
808	dma_default_coherent = true;
809	pr_info("Software DMA cache coherency (command line)\n");
810	return 0;
811}
812early_param("nocoherentio", setnocoherentio);
813#endif
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1995 Linus Torvalds
  7 * Copyright (C) 1995 Waldorf Electronics
  8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
  9 * Copyright (C) 1996 Stoned Elipot
 10 * Copyright (C) 1999 Silicon Graphics, Inc.
 11 * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
 12 */
 13#include <linux/init.h>
 14#include <linux/ioport.h>
 15#include <linux/export.h>
 16#include <linux/screen_info.h>
 17#include <linux/memblock.h>
 18#include <linux/bootmem.h>
 19#include <linux/initrd.h>
 20#include <linux/root_dev.h>
 21#include <linux/highmem.h>
 22#include <linux/console.h>
 23#include <linux/pfn.h>
 24#include <linux/debugfs.h>
 25#include <linux/kexec.h>
 26#include <linux/sizes.h>
 
 
 
 
 
 
 27
 28#include <asm/addrspace.h>
 29#include <asm/bootinfo.h>
 30#include <asm/bugs.h>
 31#include <asm/cache.h>
 
 32#include <asm/cpu.h>
 
 33#include <asm/sections.h>
 34#include <asm/setup.h>
 35#include <asm/smp-ops.h>
 36#include <asm/prom.h>
 37
 
 
 
 
 38struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
 39
 40EXPORT_SYMBOL(cpu_data);
 41
 42#ifdef CONFIG_VT
 43struct screen_info screen_info;
 44#endif
 45
 46/*
 47 * Despite it's name this variable is even if we don't have PCI
 48 */
 49unsigned int PCI_DMA_BUS_IS_PHYS;
 50
 51EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
 52
 53/*
 54 * Setup information
 55 *
 56 * These are initialized so they are in the .data section
 57 */
 58unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
 59
 60EXPORT_SYMBOL(mips_machtype);
 61
 62struct boot_mem_map boot_mem_map;
 63
 64static char __initdata command_line[COMMAND_LINE_SIZE];
 65char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
 66
 67#ifdef CONFIG_CMDLINE_BOOL
 68static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 
 
 69#endif
 70
 71/*
 72 * mips_io_port_base is the begin of the address space to which x86 style
 73 * I/O ports are mapped.
 74 */
 75const unsigned long mips_io_port_base = -1;
 76EXPORT_SYMBOL(mips_io_port_base);
 77
 78static struct resource code_resource = { .name = "Kernel code", };
 79static struct resource data_resource = { .name = "Kernel data", };
 
 
 
 
 80
 81static void *detect_magic __initdata = detect_memory_region;
 82
 83void __init add_memory_region(phys_t start, phys_t size, long type)
 84{
 85	int x = boot_mem_map.nr_map;
 86	int i;
 87
 88	/* Sanity check */
 89	if (start + size < start) {
 90		pr_warning("Trying to add an invalid memory region, skipped\n");
 91		return;
 92	}
 93
 94	/*
 95	 * Try to merge with existing entry, if any.
 96	 */
 97	for (i = 0; i < boot_mem_map.nr_map; i++) {
 98		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
 99		unsigned long top;
100
101		if (entry->type != type)
102			continue;
103
104		if (start + size < entry->addr)
105			continue;			/* no overlap */
106
107		if (entry->addr + entry->size < start)
108			continue;			/* no overlap */
109
110		top = max(entry->addr + entry->size, start + size);
111		entry->addr = min(entry->addr, start);
112		entry->size = top - entry->addr;
113
114		return;
115	}
116
117	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
118		pr_err("Ooops! Too many entries in the memory map!\n");
119		return;
120	}
121
122	boot_mem_map.map[x].addr = start;
123	boot_mem_map.map[x].size = size;
124	boot_mem_map.map[x].type = type;
125	boot_mem_map.nr_map++;
126}
127
128void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
129{
130	void *dm = &detect_magic;
131	phys_t size;
132
133	for (size = sz_min; size < sz_max; size <<= 1) {
134		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
135			break;
136	}
137
138	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
139		((unsigned long long) size) / SZ_1M,
140		(unsigned long long) start,
141		((unsigned long long) sz_min) / SZ_1M,
142		((unsigned long long) sz_max) / SZ_1M);
143
144	add_memory_region(start, size, BOOT_MEM_RAM);
145}
146
147static void __init print_memory_map(void)
148{
149	int i;
150	const int field = 2 * sizeof(unsigned long);
151
152	for (i = 0; i < boot_mem_map.nr_map; i++) {
153		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
154		       field, (unsigned long long) boot_mem_map.map[i].size,
155		       field, (unsigned long long) boot_mem_map.map[i].addr);
156
157		switch (boot_mem_map.map[i].type) {
158		case BOOT_MEM_RAM:
159			printk(KERN_CONT "(usable)\n");
160			break;
161		case BOOT_MEM_INIT_RAM:
162			printk(KERN_CONT "(usable after init)\n");
163			break;
164		case BOOT_MEM_ROM_DATA:
165			printk(KERN_CONT "(ROM data)\n");
166			break;
167		case BOOT_MEM_RESERVED:
168			printk(KERN_CONT "(reserved)\n");
169			break;
170		default:
171			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
172			break;
173		}
174	}
175}
176
177/*
178 * Manage initrd
179 */
180#ifdef CONFIG_BLK_DEV_INITRD
181
182static int __init rd_start_early(char *p)
183{
184	unsigned long start = memparse(p, &p);
185
186#ifdef CONFIG_64BIT
187	/* Guess if the sign extension was forgotten by bootloader */
188	if (start < XKPHYS)
189		start = (int)start;
190#endif
191	initrd_start = start;
192	initrd_end += start;
193	return 0;
194}
195early_param("rd_start", rd_start_early);
196
197static int __init rd_size_early(char *p)
198{
199	initrd_end += memparse(p, &p);
200	return 0;
201}
202early_param("rd_size", rd_size_early);
203
204/* it returns the next free pfn after initrd */
205static unsigned long __init init_initrd(void)
206{
207	unsigned long end;
208
209	/*
210	 * Board specific code or command line parser should have
211	 * already set up initrd_start and initrd_end. In these cases
212	 * perfom sanity checks and use them if all looks good.
213	 */
214	if (!initrd_start || initrd_end <= initrd_start)
215		goto disable;
216
217	if (initrd_start & ~PAGE_MASK) {
218		pr_err("initrd start must be page aligned\n");
219		goto disable;
220	}
221	if (initrd_start < PAGE_OFFSET) {
222		pr_err("initrd start < PAGE_OFFSET\n");
223		goto disable;
224	}
225
226	/*
227	 * Sanitize initrd addresses. For example firmware
228	 * can't guess if they need to pass them through
229	 * 64-bits values if the kernel has been built in pure
230	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
231	 * addresses now, so the code can now safely use __pa().
232	 */
233	end = __pa(initrd_end);
234	initrd_end = (unsigned long)__va(end);
235	initrd_start = (unsigned long)__va(__pa(initrd_start));
236
237	ROOT_DEV = Root_RAM0;
238	return PFN_UP(end);
239disable:
240	initrd_start = 0;
241	initrd_end = 0;
242	return 0;
243}
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245static void __init finalize_initrd(void)
246{
247	unsigned long size = initrd_end - initrd_start;
248
249	if (size == 0) {
250		printk(KERN_INFO "Initrd not found or empty");
251		goto disable;
252	}
253	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
254		printk(KERN_ERR "Initrd extends beyond end of memory");
255		goto disable;
256	}
257
258	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 
 
259	initrd_below_start_ok = 1;
260
261	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
262		initrd_start, size);
263	return;
264disable:
265	printk(KERN_CONT " - disabling initrd\n");
266	initrd_start = 0;
267	initrd_end = 0;
268}
269
270#else  /* !CONFIG_BLK_DEV_INITRD */
271
272static unsigned long __init init_initrd(void)
273{
274	return 0;
275}
276
277#define finalize_initrd()	do {} while (0)
278
279#endif
280
281/*
282 * Initialize the bootmem allocator. It also setup initrd related data
283 * if needed.
284 */
285#ifdef CONFIG_SGI_IP27
286
287static void __init bootmem_init(void)
288{
289	init_initrd();
290	finalize_initrd();
291}
292
293#else  /* !CONFIG_SGI_IP27 */
294
295static void __init bootmem_init(void)
296{
297	unsigned long reserved_end;
298	unsigned long mapstart = ~0UL;
299	unsigned long bootmap_size;
300	int i;
301
 
 
 
302	/*
303	 * Sanity check any INITRD first. We don't take it into account
304	 * for bootmem setup initially, rely on the end-of-kernel-code
305	 * as our memory range starting point. Once bootmem is inited we
306	 * will reserve the area used for the initrd.
307	 */
308	init_initrd();
309	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
310
 
 
 
 
 
 
 
 
 
311	/*
312	 * max_low_pfn is not a number of pages. The number of pages
313	 * of the system is given by 'max_low_pfn - min_low_pfn'.
314	 */
315	min_low_pfn = ~0UL;
316	max_low_pfn = 0;
317
318	/*
319	 * Find the highest page frame number we have available.
320	 */
321	for (i = 0; i < boot_mem_map.nr_map; i++) {
322		unsigned long start, end;
 
323
324		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 
 
 
 
 
 
 
 
 
325			continue;
326
327		start = PFN_UP(boot_mem_map.map[i].addr);
328		end = PFN_DOWN(boot_mem_map.map[i].addr
329				+ boot_mem_map.map[i].size);
330
331		if (end > max_low_pfn)
332			max_low_pfn = end;
333		if (start < min_low_pfn)
334			min_low_pfn = start;
335		if (end <= reserved_end)
336			continue;
337		if (start >= mapstart)
338			continue;
339		mapstart = max(reserved_end, start);
340	}
341
342	if (min_low_pfn >= max_low_pfn)
343		panic("Incorrect memory mapping !!!");
344	if (min_low_pfn > ARCH_PFN_OFFSET) {
345		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
346			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
347			min_low_pfn - ARCH_PFN_OFFSET);
348	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
349		pr_info("%lu free pages won't be used\n",
350			ARCH_PFN_OFFSET - min_low_pfn);
351	}
352	min_low_pfn = ARCH_PFN_OFFSET;
353
354	/*
355	 * Determine low and high memory ranges
356	 */
357	max_pfn = max_low_pfn;
358	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
359#ifdef CONFIG_HIGHMEM
360		highstart_pfn = PFN_DOWN(HIGHMEM_START);
361		highend_pfn = max_low_pfn;
362#endif
363		max_low_pfn = PFN_DOWN(HIGHMEM_START);
364	}
365
366#ifdef CONFIG_BLK_DEV_INITRD
367	/*
368	 * mapstart should be after initrd_end
369	 */
370	if (initrd_end)
371		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
372#endif
373
374	/*
375	 * Initialize the boot-time allocator with low memory only.
376	 */
377	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
378					 min_low_pfn, max_low_pfn);
379
380
381	for (i = 0; i < boot_mem_map.nr_map; i++) {
382		unsigned long start, end;
383
384		start = PFN_UP(boot_mem_map.map[i].addr);
385		end = PFN_DOWN(boot_mem_map.map[i].addr
386				+ boot_mem_map.map[i].size);
387
388		if (start <= min_low_pfn)
389			start = min_low_pfn;
390		if (start >= end)
391			continue;
392
393#ifndef CONFIG_HIGHMEM
394		if (end > max_low_pfn)
395			end = max_low_pfn;
396
397		/*
398		 * ... finally, is the area going away?
399		 */
400		if (end <= start)
401			continue;
402#endif
403
404		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
405	}
406
407	/*
408	 * Register fully available low RAM pages with the bootmem allocator.
409	 */
410	for (i = 0; i < boot_mem_map.nr_map; i++) {
411		unsigned long start, end, size;
412
413		start = PFN_UP(boot_mem_map.map[i].addr);
414		end   = PFN_DOWN(boot_mem_map.map[i].addr
415				    + boot_mem_map.map[i].size);
416
417		/*
418		 * Reserve usable memory.
419		 */
420		switch (boot_mem_map.map[i].type) {
421		case BOOT_MEM_RAM:
422			break;
423		case BOOT_MEM_INIT_RAM:
424			memory_present(0, start, end);
425			continue;
426		default:
427			/* Not usable memory */
428			continue;
429		}
430
431		/*
432		 * We are rounding up the start address of usable memory
433		 * and at the end of the usable range downwards.
434		 */
435		if (start >= max_low_pfn)
436			continue;
437		if (start < reserved_end)
438			start = reserved_end;
439		if (end > max_low_pfn)
440			end = max_low_pfn;
441
442		/*
443		 * ... finally, is the area going away?
444		 */
445		if (end <= start)
446			continue;
447		size = end - start;
448
449		/* Register lowmem ranges */
450		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
451		memory_present(0, start, end);
452	}
453
454	/*
455	 * Reserve the bootmap memory.
456	 */
457	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
458
459	/*
460	 * Reserve initrd memory if needed.
461	 */
462	finalize_initrd();
463}
464
465#endif	/* CONFIG_SGI_IP27 */
466
467/*
468 * arch_mem_init - initialize memory management subsystem
469 *
470 *  o plat_mem_setup() detects the memory configuration and will record detected
471 *    memory areas using add_memory_region.
472 *
473 * At this stage the memory configuration of the system is known to the
474 * kernel but generic memory management system is still entirely uninitialized.
475 *
476 *  o bootmem_init()
477 *  o sparse_init()
478 *  o paging_init()
479 *
480 * At this stage the bootmem allocator is ready to use.
481 *
482 * NOTE: historically plat_mem_setup did the entire platform initialization.
483 *	 This was rather impractical because it meant plat_mem_setup had to
484 * get away without any kind of memory allocator.  To keep old code from
485 * breaking plat_setup was just renamed to plat_setup and a second platform
486 * initialization hook for anything else was introduced.
487 */
488
489static int usermem __initdata;
490
491static int __init early_parse_mem(char *p)
492{
493	unsigned long start, size;
494
495	/*
496	 * If a user specifies memory size, we
497	 * blow away any automatically generated
498	 * size.
499	 */
500	if (usermem == 0) {
501		boot_mem_map.nr_map = 0;
502		usermem = 1;
 
 
503	}
504	start = 0;
505	size = memparse(p, &p);
506	if (*p == '@')
507		start = memparse(p + 1, &p);
508
509	add_memory_region(start, size, BOOT_MEM_RAM);
 
510	return 0;
511}
512early_param("mem", early_parse_mem);
513
514#ifdef CONFIG_PROC_VMCORE
515unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
516static int __init early_parse_elfcorehdr(char *p)
517{
518	int i;
 
519
520	setup_elfcorehdr = memparse(p, &p);
 
521
522	for (i = 0; i < boot_mem_map.nr_map; i++) {
523		unsigned long start = boot_mem_map.map[i].addr;
524		unsigned long end = (boot_mem_map.map[i].addr +
525				     boot_mem_map.map[i].size);
526		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
527			/*
528			 * Reserve from the elf core header to the end of
529			 * the memory segment, that should all be kdump
530			 * reserved memory.
531			 */
532			setup_elfcorehdr_size = end - setup_elfcorehdr;
533			break;
534		}
 
 
 
 
 
 
 
 
 
 
535	}
536	/*
537	 * If we don't find it in the memory map, then we shouldn't
538	 * have to worry about it, as the new kernel won't use it.
539	 */
540	return 0;
 
541}
542early_param("elfcorehdr", early_parse_elfcorehdr);
543#endif
544
545static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
546{
547	phys_t size;
548	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549
550	size = end - mem;
551	if (!size)
552		return;
553
554	/* Make sure it is in the boot_mem_map */
555	for (i = 0; i < boot_mem_map.nr_map; i++) {
556		if (mem >= boot_mem_map.map[i].addr &&
557		    mem < (boot_mem_map.map[i].addr +
558			   boot_mem_map.map[i].size))
559			return;
560	}
561	add_memory_region(mem, size, type);
562}
563
564#ifdef CONFIG_KEXEC
565static inline unsigned long long get_total_mem(void)
566{
567	unsigned long long total;
568
569	total = max_pfn - min_low_pfn;
570	return total << PAGE_SHIFT;
571}
572
573static void __init mips_parse_crashkernel(void)
574{
575	unsigned long long total_mem;
576	unsigned long long crash_size, crash_base;
577	int ret;
578
579	total_mem = get_total_mem();
580	ret = parse_crashkernel(boot_command_line, total_mem,
581				&crash_size, &crash_base);
582	if (ret != 0 || crash_size <= 0)
583		return;
584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585	crashk_res.start = crash_base;
586	crashk_res.end	 = crash_base + crash_size - 1;
587}
588
589static void __init request_crashkernel(struct resource *res)
590{
591	int ret;
592
 
 
 
593	ret = request_resource(res, &crashk_res);
594	if (!ret)
595		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
596			(unsigned long)((crashk_res.end -
597					 crashk_res.start + 1) >> 20),
598			(unsigned long)(crashk_res.start  >> 20));
599}
600#else /* !defined(CONFIG_KEXEC)		*/
601static void __init mips_parse_crashkernel(void)
602{
603}
604
605static void __init request_crashkernel(struct resource *res)
606{
607}
608#endif /* !defined(CONFIG_KEXEC)  */
609
610static void __init arch_mem_init(char **cmdline_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611{
612	extern void plat_mem_setup(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613
614	/* call board setup routine */
615	plat_mem_setup();
 
 
 
616
617	/*
618	 * Make sure all kernel memory is in the maps.  The "UP" and
619	 * "DOWN" are opposite for initdata since if it crosses over
620	 * into another memory section you don't want that to be
621	 * freed when the initdata is freed.
622	 */
623	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
624			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
625			 BOOT_MEM_RAM);
626	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
627			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
628			 BOOT_MEM_INIT_RAM);
629
630	pr_info("Determined physical RAM map:\n");
631	print_memory_map();
 
 
 
 
 
 
 
 
 
632
633#ifdef CONFIG_CMDLINE_BOOL
634#ifdef CONFIG_CMDLINE_OVERRIDE
635	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
636#else
637	if (builtin_cmdline[0]) {
638		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
639		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
640	}
641	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
642#endif
643#else
644	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
645#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
647
648	*cmdline_p = command_line;
649
650	parse_early_param();
651
652	if (usermem) {
653		pr_info("User-defined physical RAM map:\n");
654		print_memory_map();
655	}
 
 
 
656
 
 
 
657	bootmem_init();
658#ifdef CONFIG_PROC_VMCORE
659	if (setup_elfcorehdr && setup_elfcorehdr_size) {
660		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
661		       setup_elfcorehdr, setup_elfcorehdr_size);
662		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
663				BOOTMEM_DEFAULT);
664	}
665#endif
 
 
 
666
667	mips_parse_crashkernel();
668#ifdef CONFIG_KEXEC
669	if (crashk_res.start != crashk_res.end)
670		reserve_bootmem(crashk_res.start,
671				crashk_res.end - crashk_res.start + 1,
672				BOOTMEM_DEFAULT);
673#endif
674	device_tree_init();
 
 
 
 
 
 
 
 
675	sparse_init();
 
 
676	plat_swiotlb_setup();
677	paging_init();
 
 
 
 
 
 
 
678}
679
680static void __init resource_init(void)
681{
682	int i;
 
683
684	if (UNCAC_BASE != IO_BASE)
685		return;
686
687	code_resource.start = __pa_symbol(&_text);
688	code_resource.end = __pa_symbol(&_etext) - 1;
689	data_resource.start = __pa_symbol(&_etext);
690	data_resource.end = __pa_symbol(&_edata) - 1;
 
 
691
692	for (i = 0; i < boot_mem_map.nr_map; i++) {
693		struct resource *res;
694		unsigned long start, end;
695
696		start = boot_mem_map.map[i].addr;
697		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
698		if (start >= HIGHMEM_START)
699			continue;
700		if (end >= HIGHMEM_START)
701			end = HIGHMEM_START - 1;
702
703		res = alloc_bootmem(sizeof(struct resource));
704		switch (boot_mem_map.map[i].type) {
705		case BOOT_MEM_RAM:
706		case BOOT_MEM_INIT_RAM:
707		case BOOT_MEM_ROM_DATA:
708			res->name = "System RAM";
709			break;
710		case BOOT_MEM_RESERVED:
711		default:
712			res->name = "reserved";
713		}
714
715		res->start = start;
716		res->end = end;
 
 
 
 
 
 
 
717
718		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
719		request_resource(&iomem_resource, res);
720
721		/*
722		 *  We don't know which RAM region contains kernel data,
723		 *  so we try it repeatedly and let the resource manager
724		 *  test it.
725		 */
726		request_resource(res, &code_resource);
727		request_resource(res, &data_resource);
 
728		request_crashkernel(res);
729	}
730}
731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732void __init setup_arch(char **cmdline_p)
733{
734	cpu_probe();
 
735	prom_init();
736
 
737#ifdef CONFIG_EARLY_PRINTK
738	setup_early_printk();
739#endif
740	cpu_report();
741	check_bugs_early();
742
743#if defined(CONFIG_VT)
744#if defined(CONFIG_VGA_CONSOLE)
745	conswitchp = &vga_con;
746#elif defined(CONFIG_DUMMY_CONSOLE)
747	conswitchp = &dummy_con;
748#endif
749#endif
750
751	arch_mem_init(cmdline_p);
 
752
753	resource_init();
754	plat_smp_setup();
 
755
756	cpu_cache_init();
 
 
 
757}
758
759unsigned long kernelsp[NR_CPUS];
760unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
761
762#ifdef CONFIG_DEBUG_FS
763struct dentry *mips_debugfs_dir;
764static int __init debugfs_mips(void)
765{
766	struct dentry *d;
 
 
 
 
 
 
 
 
 
 
 
 
 
767
768	d = debugfs_create_dir("mips", NULL);
769	if (!d)
770		return -ENOMEM;
771	mips_debugfs_dir = d;
772	return 0;
773}
774arch_initcall(debugfs_mips);
775#endif