Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26 * Accesses to the metadata (e.g. count) are protected by this lock. Note
27 * that some members of this structure may be protected by other means
28 * (atomic or kmemleak_lock). This lock is also held when scanning the
29 * corresponding memory block to avoid the kernel freeing it via the
30 * kmemleak_free() callback. This is less heavyweight than holding a global
31 * lock like kmemleak_lock during scanning.
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
63#include <linux/sched/signal.h>
64#include <linux/sched/task.h>
65#include <linux/sched/task_stack.h>
66#include <linux/jiffies.h>
67#include <linux/delay.h>
68#include <linux/export.h>
69#include <linux/kthread.h>
70#include <linux/rbtree.h>
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
76#include <linux/module.h>
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
82#include <linux/memblock.h>
83#include <linux/pfn.h>
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
92#include <linux/workqueue.h>
93#include <linux/crc32.h>
94
95#include <asm/sections.h>
96#include <asm/processor.h>
97#include <linux/atomic.h>
98
99#include <linux/kasan.h>
100#include <linux/kfence.h>
101#include <linux/kmemleak.h>
102#include <linux/memory_hotplug.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120/* scanning area inside a memory block */
121struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125};
126
127#define KMEMLEAK_GREY 0
128#define KMEMLEAK_BLACK -1
129
130/*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * rb_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138struct kmemleak_object {
139 raw_spinlock_t lock;
140 unsigned int flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct rb_node rb_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* pass surplus references to this pointer */
150 unsigned long excess_ref;
151 /* minimum number of a pointers found before it is considered leak */
152 int min_count;
153 /* the total number of pointers found pointing to this object */
154 int count;
155 /* checksum for detecting modified objects */
156 u32 checksum;
157 /* memory ranges to be scanned inside an object (empty for all) */
158 struct hlist_head area_list;
159 unsigned long trace[MAX_TRACE];
160 unsigned int trace_len;
161 unsigned long jiffies; /* creation timestamp */
162 pid_t pid; /* pid of the current task */
163 char comm[TASK_COMM_LEN]; /* executable name */
164};
165
166/* flag representing the memory block allocation status */
167#define OBJECT_ALLOCATED (1 << 0)
168/* flag set after the first reporting of an unreference object */
169#define OBJECT_REPORTED (1 << 1)
170/* flag set to not scan the object */
171#define OBJECT_NO_SCAN (1 << 2)
172/* flag set to fully scan the object when scan_area allocation failed */
173#define OBJECT_FULL_SCAN (1 << 3)
174
175#define HEX_PREFIX " "
176/* number of bytes to print per line; must be 16 or 32 */
177#define HEX_ROW_SIZE 16
178/* number of bytes to print at a time (1, 2, 4, 8) */
179#define HEX_GROUP_SIZE 1
180/* include ASCII after the hex output */
181#define HEX_ASCII 1
182/* max number of lines to be printed */
183#define HEX_MAX_LINES 2
184
185/* the list of all allocated objects */
186static LIST_HEAD(object_list);
187/* the list of gray-colored objects (see color_gray comment below) */
188static LIST_HEAD(gray_list);
189/* memory pool allocation */
190static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
191static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
192static LIST_HEAD(mem_pool_free_list);
193/* search tree for object boundaries */
194static struct rb_root object_tree_root = RB_ROOT;
195/* protecting the access to object_list and object_tree_root */
196static DEFINE_RAW_SPINLOCK(kmemleak_lock);
197
198/* allocation caches for kmemleak internal data */
199static struct kmem_cache *object_cache;
200static struct kmem_cache *scan_area_cache;
201
202/* set if tracing memory operations is enabled */
203static int kmemleak_enabled = 1;
204/* same as above but only for the kmemleak_free() callback */
205static int kmemleak_free_enabled = 1;
206/* set in the late_initcall if there were no errors */
207static int kmemleak_initialized;
208/* set if a kmemleak warning was issued */
209static int kmemleak_warning;
210/* set if a fatal kmemleak error has occurred */
211static int kmemleak_error;
212
213/* minimum and maximum address that may be valid pointers */
214static unsigned long min_addr = ULONG_MAX;
215static unsigned long max_addr;
216
217static struct task_struct *scan_thread;
218/* used to avoid reporting of recently allocated objects */
219static unsigned long jiffies_min_age;
220static unsigned long jiffies_last_scan;
221/* delay between automatic memory scannings */
222static unsigned long jiffies_scan_wait;
223/* enables or disables the task stacks scanning */
224static int kmemleak_stack_scan = 1;
225/* protects the memory scanning, parameters and debug/kmemleak file access */
226static DEFINE_MUTEX(scan_mutex);
227/* setting kmemleak=on, will set this var, skipping the disable */
228static int kmemleak_skip_disable;
229/* If there are leaks that can be reported */
230static bool kmemleak_found_leaks;
231
232static bool kmemleak_verbose;
233module_param_named(verbose, kmemleak_verbose, bool, 0600);
234
235static void kmemleak_disable(void);
236
237/*
238 * Print a warning and dump the stack trace.
239 */
240#define kmemleak_warn(x...) do { \
241 pr_warn(x); \
242 dump_stack(); \
243 kmemleak_warning = 1; \
244} while (0)
245
246/*
247 * Macro invoked when a serious kmemleak condition occurred and cannot be
248 * recovered from. Kmemleak will be disabled and further allocation/freeing
249 * tracing no longer available.
250 */
251#define kmemleak_stop(x...) do { \
252 kmemleak_warn(x); \
253 kmemleak_disable(); \
254} while (0)
255
256#define warn_or_seq_printf(seq, fmt, ...) do { \
257 if (seq) \
258 seq_printf(seq, fmt, ##__VA_ARGS__); \
259 else \
260 pr_warn(fmt, ##__VA_ARGS__); \
261} while (0)
262
263static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
264 int rowsize, int groupsize, const void *buf,
265 size_t len, bool ascii)
266{
267 if (seq)
268 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
269 buf, len, ascii);
270 else
271 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
272 rowsize, groupsize, buf, len, ascii);
273}
274
275/*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
281static void hex_dump_object(struct seq_file *seq,
282 struct kmemleak_object *object)
283{
284 const u8 *ptr = (const u8 *)object->pointer;
285 size_t len;
286
287 /* limit the number of lines to HEX_MAX_LINES */
288 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
289
290 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
291 kasan_disable_current();
292 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
293 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
294 kasan_enable_current();
295}
296
297/*
298 * Object colors, encoded with count and min_count:
299 * - white - orphan object, not enough references to it (count < min_count)
300 * - gray - not orphan, not marked as false positive (min_count == 0) or
301 * sufficient references to it (count >= min_count)
302 * - black - ignore, it doesn't contain references (e.g. text section)
303 * (min_count == -1). No function defined for this color.
304 * Newly created objects don't have any color assigned (object->count == -1)
305 * before the next memory scan when they become white.
306 */
307static bool color_white(const struct kmemleak_object *object)
308{
309 return object->count != KMEMLEAK_BLACK &&
310 object->count < object->min_count;
311}
312
313static bool color_gray(const struct kmemleak_object *object)
314{
315 return object->min_count != KMEMLEAK_BLACK &&
316 object->count >= object->min_count;
317}
318
319/*
320 * Objects are considered unreferenced only if their color is white, they have
321 * not be deleted and have a minimum age to avoid false positives caused by
322 * pointers temporarily stored in CPU registers.
323 */
324static bool unreferenced_object(struct kmemleak_object *object)
325{
326 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
327 time_before_eq(object->jiffies + jiffies_min_age,
328 jiffies_last_scan);
329}
330
331/*
332 * Printing of the unreferenced objects information to the seq file. The
333 * print_unreferenced function must be called with the object->lock held.
334 */
335static void print_unreferenced(struct seq_file *seq,
336 struct kmemleak_object *object)
337{
338 int i;
339 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
340
341 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
342 object->pointer, object->size);
343 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
344 object->comm, object->pid, object->jiffies,
345 msecs_age / 1000, msecs_age % 1000);
346 hex_dump_object(seq, object);
347 warn_or_seq_printf(seq, " backtrace:\n");
348
349 for (i = 0; i < object->trace_len; i++) {
350 void *ptr = (void *)object->trace[i];
351 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
352 }
353}
354
355/*
356 * Print the kmemleak_object information. This function is used mainly for
357 * debugging special cases when kmemleak operations. It must be called with
358 * the object->lock held.
359 */
360static void dump_object_info(struct kmemleak_object *object)
361{
362 pr_notice("Object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 pr_notice(" min_count = %d\n", object->min_count);
367 pr_notice(" count = %d\n", object->count);
368 pr_notice(" flags = 0x%x\n", object->flags);
369 pr_notice(" checksum = %u\n", object->checksum);
370 pr_notice(" backtrace:\n");
371 stack_trace_print(object->trace, object->trace_len, 4);
372}
373
374/*
375 * Look-up a memory block metadata (kmemleak_object) in the object search
376 * tree based on a pointer value. If alias is 0, only values pointing to the
377 * beginning of the memory block are allowed. The kmemleak_lock must be held
378 * when calling this function.
379 */
380static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
381{
382 struct rb_node *rb = object_tree_root.rb_node;
383
384 while (rb) {
385 struct kmemleak_object *object =
386 rb_entry(rb, struct kmemleak_object, rb_node);
387 if (ptr < object->pointer)
388 rb = object->rb_node.rb_left;
389 else if (object->pointer + object->size <= ptr)
390 rb = object->rb_node.rb_right;
391 else if (object->pointer == ptr || alias)
392 return object;
393 else {
394 kmemleak_warn("Found object by alias at 0x%08lx\n",
395 ptr);
396 dump_object_info(object);
397 break;
398 }
399 }
400 return NULL;
401}
402
403/*
404 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
405 * that once an object's use_count reached 0, the RCU freeing was already
406 * registered and the object should no longer be used. This function must be
407 * called under the protection of rcu_read_lock().
408 */
409static int get_object(struct kmemleak_object *object)
410{
411 return atomic_inc_not_zero(&object->use_count);
412}
413
414/*
415 * Memory pool allocation and freeing. kmemleak_lock must not be held.
416 */
417static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
418{
419 unsigned long flags;
420 struct kmemleak_object *object;
421
422 /* try the slab allocator first */
423 if (object_cache) {
424 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
425 if (object)
426 return object;
427 }
428
429 /* slab allocation failed, try the memory pool */
430 raw_spin_lock_irqsave(&kmemleak_lock, flags);
431 object = list_first_entry_or_null(&mem_pool_free_list,
432 typeof(*object), object_list);
433 if (object)
434 list_del(&object->object_list);
435 else if (mem_pool_free_count)
436 object = &mem_pool[--mem_pool_free_count];
437 else
438 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
440
441 return object;
442}
443
444/*
445 * Return the object to either the slab allocator or the memory pool.
446 */
447static void mem_pool_free(struct kmemleak_object *object)
448{
449 unsigned long flags;
450
451 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
452 kmem_cache_free(object_cache, object);
453 return;
454 }
455
456 /* add the object to the memory pool free list */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 list_add(&object->object_list, &mem_pool_free_list);
459 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
460}
461
462/*
463 * RCU callback to free a kmemleak_object.
464 */
465static void free_object_rcu(struct rcu_head *rcu)
466{
467 struct hlist_node *tmp;
468 struct kmemleak_scan_area *area;
469 struct kmemleak_object *object =
470 container_of(rcu, struct kmemleak_object, rcu);
471
472 /*
473 * Once use_count is 0 (guaranteed by put_object), there is no other
474 * code accessing this object, hence no need for locking.
475 */
476 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
477 hlist_del(&area->node);
478 kmem_cache_free(scan_area_cache, area);
479 }
480 mem_pool_free(object);
481}
482
483/*
484 * Decrement the object use_count. Once the count is 0, free the object using
485 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
486 * delete_object() path, the delayed RCU freeing ensures that there is no
487 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
488 * is also possible.
489 */
490static void put_object(struct kmemleak_object *object)
491{
492 if (!atomic_dec_and_test(&object->use_count))
493 return;
494
495 /* should only get here after delete_object was called */
496 WARN_ON(object->flags & OBJECT_ALLOCATED);
497
498 /*
499 * It may be too early for the RCU callbacks, however, there is no
500 * concurrent object_list traversal when !object_cache and all objects
501 * came from the memory pool. Free the object directly.
502 */
503 if (object_cache)
504 call_rcu(&object->rcu, free_object_rcu);
505 else
506 free_object_rcu(&object->rcu);
507}
508
509/*
510 * Look up an object in the object search tree and increase its use_count.
511 */
512static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513{
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 rcu_read_lock();
518 raw_spin_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528}
529
530/*
531 * Remove an object from the object_tree_root and object_list. Must be called
532 * with the kmemleak_lock held _if_ kmemleak is still enabled.
533 */
534static void __remove_object(struct kmemleak_object *object)
535{
536 rb_erase(&object->rb_node, &object_tree_root);
537 list_del_rcu(&object->object_list);
538}
539
540/*
541 * Look up an object in the object search tree and remove it from both
542 * object_tree_root and object_list. The returned object's use_count should be
543 * at least 1, as initially set by create_object().
544 */
545static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
546{
547 unsigned long flags;
548 struct kmemleak_object *object;
549
550 raw_spin_lock_irqsave(&kmemleak_lock, flags);
551 object = lookup_object(ptr, alias);
552 if (object)
553 __remove_object(object);
554 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
555
556 return object;
557}
558
559/*
560 * Save stack trace to the given array of MAX_TRACE size.
561 */
562static int __save_stack_trace(unsigned long *trace)
563{
564 return stack_trace_save(trace, MAX_TRACE, 2);
565}
566
567/*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
571static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
573{
574 unsigned long flags;
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
577 unsigned long untagged_ptr;
578
579 object = mem_pool_alloc(gfp);
580 if (!object) {
581 pr_warn("Cannot allocate a kmemleak_object structure\n");
582 kmemleak_disable();
583 return NULL;
584 }
585
586 INIT_LIST_HEAD(&object->object_list);
587 INIT_LIST_HEAD(&object->gray_list);
588 INIT_HLIST_HEAD(&object->area_list);
589 raw_spin_lock_init(&object->lock);
590 atomic_set(&object->use_count, 1);
591 object->flags = OBJECT_ALLOCATED;
592 object->pointer = ptr;
593 object->size = kfence_ksize((void *)ptr) ?: size;
594 object->excess_ref = 0;
595 object->min_count = min_count;
596 object->count = 0; /* white color initially */
597 object->jiffies = jiffies;
598 object->checksum = 0;
599
600 /* task information */
601 if (in_irq()) {
602 object->pid = 0;
603 strncpy(object->comm, "hardirq", sizeof(object->comm));
604 } else if (in_serving_softirq()) {
605 object->pid = 0;
606 strncpy(object->comm, "softirq", sizeof(object->comm));
607 } else {
608 object->pid = current->pid;
609 /*
610 * There is a small chance of a race with set_task_comm(),
611 * however using get_task_comm() here may cause locking
612 * dependency issues with current->alloc_lock. In the worst
613 * case, the command line is not correct.
614 */
615 strncpy(object->comm, current->comm, sizeof(object->comm));
616 }
617
618 /* kernel backtrace */
619 object->trace_len = __save_stack_trace(object->trace);
620
621 raw_spin_lock_irqsave(&kmemleak_lock, flags);
622
623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624 min_addr = min(min_addr, untagged_ptr);
625 max_addr = max(max_addr, untagged_ptr + size);
626 link = &object_tree_root.rb_node;
627 rb_parent = NULL;
628 while (*link) {
629 rb_parent = *link;
630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631 if (ptr + size <= parent->pointer)
632 link = &parent->rb_node.rb_left;
633 else if (parent->pointer + parent->size <= ptr)
634 link = &parent->rb_node.rb_right;
635 else {
636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637 ptr);
638 /*
639 * No need for parent->lock here since "parent" cannot
640 * be freed while the kmemleak_lock is held.
641 */
642 dump_object_info(parent);
643 kmem_cache_free(object_cache, object);
644 object = NULL;
645 goto out;
646 }
647 }
648 rb_link_node(&object->rb_node, rb_parent, link);
649 rb_insert_color(&object->rb_node, &object_tree_root);
650
651 list_add_tail_rcu(&object->object_list, &object_list);
652out:
653 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
654 return object;
655}
656
657/*
658 * Mark the object as not allocated and schedule RCU freeing via put_object().
659 */
660static void __delete_object(struct kmemleak_object *object)
661{
662 unsigned long flags;
663
664 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
665 WARN_ON(atomic_read(&object->use_count) < 1);
666
667 /*
668 * Locking here also ensures that the corresponding memory block
669 * cannot be freed when it is being scanned.
670 */
671 raw_spin_lock_irqsave(&object->lock, flags);
672 object->flags &= ~OBJECT_ALLOCATED;
673 raw_spin_unlock_irqrestore(&object->lock, flags);
674 put_object(object);
675}
676
677/*
678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 * delete it.
680 */
681static void delete_object_full(unsigned long ptr)
682{
683 struct kmemleak_object *object;
684
685 object = find_and_remove_object(ptr, 0);
686 if (!object) {
687#ifdef DEBUG
688 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689 ptr);
690#endif
691 return;
692 }
693 __delete_object(object);
694}
695
696/*
697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698 * delete it. If the memory block is partially freed, the function may create
699 * additional metadata for the remaining parts of the block.
700 */
701static void delete_object_part(unsigned long ptr, size_t size)
702{
703 struct kmemleak_object *object;
704 unsigned long start, end;
705
706 object = find_and_remove_object(ptr, 1);
707 if (!object) {
708#ifdef DEBUG
709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710 ptr, size);
711#endif
712 return;
713 }
714
715 /*
716 * Create one or two objects that may result from the memory block
717 * split. Note that partial freeing is only done by free_bootmem() and
718 * this happens before kmemleak_init() is called.
719 */
720 start = object->pointer;
721 end = object->pointer + object->size;
722 if (ptr > start)
723 create_object(start, ptr - start, object->min_count,
724 GFP_KERNEL);
725 if (ptr + size < end)
726 create_object(ptr + size, end - ptr - size, object->min_count,
727 GFP_KERNEL);
728
729 __delete_object(object);
730}
731
732static void __paint_it(struct kmemleak_object *object, int color)
733{
734 object->min_count = color;
735 if (color == KMEMLEAK_BLACK)
736 object->flags |= OBJECT_NO_SCAN;
737}
738
739static void paint_it(struct kmemleak_object *object, int color)
740{
741 unsigned long flags;
742
743 raw_spin_lock_irqsave(&object->lock, flags);
744 __paint_it(object, color);
745 raw_spin_unlock_irqrestore(&object->lock, flags);
746}
747
748static void paint_ptr(unsigned long ptr, int color)
749{
750 struct kmemleak_object *object;
751
752 object = find_and_get_object(ptr, 0);
753 if (!object) {
754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 ptr,
756 (color == KMEMLEAK_GREY) ? "Grey" :
757 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758 return;
759 }
760 paint_it(object, color);
761 put_object(object);
762}
763
764/*
765 * Mark an object permanently as gray-colored so that it can no longer be
766 * reported as a leak. This is used in general to mark a false positive.
767 */
768static void make_gray_object(unsigned long ptr)
769{
770 paint_ptr(ptr, KMEMLEAK_GREY);
771}
772
773/*
774 * Mark the object as black-colored so that it is ignored from scans and
775 * reporting.
776 */
777static void make_black_object(unsigned long ptr)
778{
779 paint_ptr(ptr, KMEMLEAK_BLACK);
780}
781
782/*
783 * Add a scanning area to the object. If at least one such area is added,
784 * kmemleak will only scan these ranges rather than the whole memory block.
785 */
786static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787{
788 unsigned long flags;
789 struct kmemleak_object *object;
790 struct kmemleak_scan_area *area = NULL;
791
792 object = find_and_get_object(ptr, 1);
793 if (!object) {
794 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
795 ptr);
796 return;
797 }
798
799 if (scan_area_cache)
800 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
801
802 raw_spin_lock_irqsave(&object->lock, flags);
803 if (!area) {
804 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
805 /* mark the object for full scan to avoid false positives */
806 object->flags |= OBJECT_FULL_SCAN;
807 goto out_unlock;
808 }
809 if (size == SIZE_MAX) {
810 size = object->pointer + object->size - ptr;
811 } else if (ptr + size > object->pointer + object->size) {
812 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
813 dump_object_info(object);
814 kmem_cache_free(scan_area_cache, area);
815 goto out_unlock;
816 }
817
818 INIT_HLIST_NODE(&area->node);
819 area->start = ptr;
820 area->size = size;
821
822 hlist_add_head(&area->node, &object->area_list);
823out_unlock:
824 raw_spin_unlock_irqrestore(&object->lock, flags);
825 put_object(object);
826}
827
828/*
829 * Any surplus references (object already gray) to 'ptr' are passed to
830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
831 * vm_struct may be used as an alternative reference to the vmalloc'ed object
832 * (see free_thread_stack()).
833 */
834static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
835{
836 unsigned long flags;
837 struct kmemleak_object *object;
838
839 object = find_and_get_object(ptr, 0);
840 if (!object) {
841 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
842 ptr);
843 return;
844 }
845
846 raw_spin_lock_irqsave(&object->lock, flags);
847 object->excess_ref = excess_ref;
848 raw_spin_unlock_irqrestore(&object->lock, flags);
849 put_object(object);
850}
851
852/*
853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
854 * pointer. Such object will not be scanned by kmemleak but references to it
855 * are searched.
856 */
857static void object_no_scan(unsigned long ptr)
858{
859 unsigned long flags;
860 struct kmemleak_object *object;
861
862 object = find_and_get_object(ptr, 0);
863 if (!object) {
864 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
865 return;
866 }
867
868 raw_spin_lock_irqsave(&object->lock, flags);
869 object->flags |= OBJECT_NO_SCAN;
870 raw_spin_unlock_irqrestore(&object->lock, flags);
871 put_object(object);
872}
873
874/**
875 * kmemleak_alloc - register a newly allocated object
876 * @ptr: pointer to beginning of the object
877 * @size: size of the object
878 * @min_count: minimum number of references to this object. If during memory
879 * scanning a number of references less than @min_count is found,
880 * the object is reported as a memory leak. If @min_count is 0,
881 * the object is never reported as a leak. If @min_count is -1,
882 * the object is ignored (not scanned and not reported as a leak)
883 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
884 *
885 * This function is called from the kernel allocators when a new object
886 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
887 */
888void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
889 gfp_t gfp)
890{
891 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
892
893 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
894 create_object((unsigned long)ptr, size, min_count, gfp);
895}
896EXPORT_SYMBOL_GPL(kmemleak_alloc);
897
898/**
899 * kmemleak_alloc_percpu - register a newly allocated __percpu object
900 * @ptr: __percpu pointer to beginning of the object
901 * @size: size of the object
902 * @gfp: flags used for kmemleak internal memory allocations
903 *
904 * This function is called from the kernel percpu allocator when a new object
905 * (memory block) is allocated (alloc_percpu).
906 */
907void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
908 gfp_t gfp)
909{
910 unsigned int cpu;
911
912 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
913
914 /*
915 * Percpu allocations are only scanned and not reported as leaks
916 * (min_count is set to 0).
917 */
918 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
919 for_each_possible_cpu(cpu)
920 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
921 size, 0, gfp);
922}
923EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
924
925/**
926 * kmemleak_vmalloc - register a newly vmalloc'ed object
927 * @area: pointer to vm_struct
928 * @size: size of the object
929 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
930 *
931 * This function is called from the vmalloc() kernel allocator when a new
932 * object (memory block) is allocated.
933 */
934void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
935{
936 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
937
938 /*
939 * A min_count = 2 is needed because vm_struct contains a reference to
940 * the virtual address of the vmalloc'ed block.
941 */
942 if (kmemleak_enabled) {
943 create_object((unsigned long)area->addr, size, 2, gfp);
944 object_set_excess_ref((unsigned long)area,
945 (unsigned long)area->addr);
946 }
947}
948EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
949
950/**
951 * kmemleak_free - unregister a previously registered object
952 * @ptr: pointer to beginning of the object
953 *
954 * This function is called from the kernel allocators when an object (memory
955 * block) is freed (kmem_cache_free, kfree, vfree etc.).
956 */
957void __ref kmemleak_free(const void *ptr)
958{
959 pr_debug("%s(0x%p)\n", __func__, ptr);
960
961 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
962 delete_object_full((unsigned long)ptr);
963}
964EXPORT_SYMBOL_GPL(kmemleak_free);
965
966/**
967 * kmemleak_free_part - partially unregister a previously registered object
968 * @ptr: pointer to the beginning or inside the object. This also
969 * represents the start of the range to be freed
970 * @size: size to be unregistered
971 *
972 * This function is called when only a part of a memory block is freed
973 * (usually from the bootmem allocator).
974 */
975void __ref kmemleak_free_part(const void *ptr, size_t size)
976{
977 pr_debug("%s(0x%p)\n", __func__, ptr);
978
979 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
980 delete_object_part((unsigned long)ptr, size);
981}
982EXPORT_SYMBOL_GPL(kmemleak_free_part);
983
984/**
985 * kmemleak_free_percpu - unregister a previously registered __percpu object
986 * @ptr: __percpu pointer to beginning of the object
987 *
988 * This function is called from the kernel percpu allocator when an object
989 * (memory block) is freed (free_percpu).
990 */
991void __ref kmemleak_free_percpu(const void __percpu *ptr)
992{
993 unsigned int cpu;
994
995 pr_debug("%s(0x%p)\n", __func__, ptr);
996
997 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
998 for_each_possible_cpu(cpu)
999 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1000 cpu));
1001}
1002EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1003
1004/**
1005 * kmemleak_update_trace - update object allocation stack trace
1006 * @ptr: pointer to beginning of the object
1007 *
1008 * Override the object allocation stack trace for cases where the actual
1009 * allocation place is not always useful.
1010 */
1011void __ref kmemleak_update_trace(const void *ptr)
1012{
1013 struct kmemleak_object *object;
1014 unsigned long flags;
1015
1016 pr_debug("%s(0x%p)\n", __func__, ptr);
1017
1018 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1019 return;
1020
1021 object = find_and_get_object((unsigned long)ptr, 1);
1022 if (!object) {
1023#ifdef DEBUG
1024 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1025 ptr);
1026#endif
1027 return;
1028 }
1029
1030 raw_spin_lock_irqsave(&object->lock, flags);
1031 object->trace_len = __save_stack_trace(object->trace);
1032 raw_spin_unlock_irqrestore(&object->lock, flags);
1033
1034 put_object(object);
1035}
1036EXPORT_SYMBOL(kmemleak_update_trace);
1037
1038/**
1039 * kmemleak_not_leak - mark an allocated object as false positive
1040 * @ptr: pointer to beginning of the object
1041 *
1042 * Calling this function on an object will cause the memory block to no longer
1043 * be reported as leak and always be scanned.
1044 */
1045void __ref kmemleak_not_leak(const void *ptr)
1046{
1047 pr_debug("%s(0x%p)\n", __func__, ptr);
1048
1049 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1050 make_gray_object((unsigned long)ptr);
1051}
1052EXPORT_SYMBOL(kmemleak_not_leak);
1053
1054/**
1055 * kmemleak_ignore - ignore an allocated object
1056 * @ptr: pointer to beginning of the object
1057 *
1058 * Calling this function on an object will cause the memory block to be
1059 * ignored (not scanned and not reported as a leak). This is usually done when
1060 * it is known that the corresponding block is not a leak and does not contain
1061 * any references to other allocated memory blocks.
1062 */
1063void __ref kmemleak_ignore(const void *ptr)
1064{
1065 pr_debug("%s(0x%p)\n", __func__, ptr);
1066
1067 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1068 make_black_object((unsigned long)ptr);
1069}
1070EXPORT_SYMBOL(kmemleak_ignore);
1071
1072/**
1073 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1074 * @ptr: pointer to beginning or inside the object. This also
1075 * represents the start of the scan area
1076 * @size: size of the scan area
1077 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1078 *
1079 * This function is used when it is known that only certain parts of an object
1080 * contain references to other objects. Kmemleak will only scan these areas
1081 * reducing the number false negatives.
1082 */
1083void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1084{
1085 pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1088 add_scan_area((unsigned long)ptr, size, gfp);
1089}
1090EXPORT_SYMBOL(kmemleak_scan_area);
1091
1092/**
1093 * kmemleak_no_scan - do not scan an allocated object
1094 * @ptr: pointer to beginning of the object
1095 *
1096 * This function notifies kmemleak not to scan the given memory block. Useful
1097 * in situations where it is known that the given object does not contain any
1098 * references to other objects. Kmemleak will not scan such objects reducing
1099 * the number of false negatives.
1100 */
1101void __ref kmemleak_no_scan(const void *ptr)
1102{
1103 pr_debug("%s(0x%p)\n", __func__, ptr);
1104
1105 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1106 object_no_scan((unsigned long)ptr);
1107}
1108EXPORT_SYMBOL(kmemleak_no_scan);
1109
1110/**
1111 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1112 * address argument
1113 * @phys: physical address of the object
1114 * @size: size of the object
1115 * @min_count: minimum number of references to this object.
1116 * See kmemleak_alloc()
1117 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1118 */
1119void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1120 gfp_t gfp)
1121{
1122 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1123 kmemleak_alloc(__va(phys), size, min_count, gfp);
1124}
1125EXPORT_SYMBOL(kmemleak_alloc_phys);
1126
1127/**
1128 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1129 * physical address argument
1130 * @phys: physical address if the beginning or inside an object. This
1131 * also represents the start of the range to be freed
1132 * @size: size to be unregistered
1133 */
1134void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1135{
1136 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1137 kmemleak_free_part(__va(phys), size);
1138}
1139EXPORT_SYMBOL(kmemleak_free_part_phys);
1140
1141/**
1142 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1143 * address argument
1144 * @phys: physical address of the object
1145 */
1146void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1147{
1148 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1149 kmemleak_not_leak(__va(phys));
1150}
1151EXPORT_SYMBOL(kmemleak_not_leak_phys);
1152
1153/**
1154 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1155 * address argument
1156 * @phys: physical address of the object
1157 */
1158void __ref kmemleak_ignore_phys(phys_addr_t phys)
1159{
1160 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1161 kmemleak_ignore(__va(phys));
1162}
1163EXPORT_SYMBOL(kmemleak_ignore_phys);
1164
1165/*
1166 * Update an object's checksum and return true if it was modified.
1167 */
1168static bool update_checksum(struct kmemleak_object *object)
1169{
1170 u32 old_csum = object->checksum;
1171
1172 kasan_disable_current();
1173 kcsan_disable_current();
1174 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1175 kasan_enable_current();
1176 kcsan_enable_current();
1177
1178 return object->checksum != old_csum;
1179}
1180
1181/*
1182 * Update an object's references. object->lock must be held by the caller.
1183 */
1184static void update_refs(struct kmemleak_object *object)
1185{
1186 if (!color_white(object)) {
1187 /* non-orphan, ignored or new */
1188 return;
1189 }
1190
1191 /*
1192 * Increase the object's reference count (number of pointers to the
1193 * memory block). If this count reaches the required minimum, the
1194 * object's color will become gray and it will be added to the
1195 * gray_list.
1196 */
1197 object->count++;
1198 if (color_gray(object)) {
1199 /* put_object() called when removing from gray_list */
1200 WARN_ON(!get_object(object));
1201 list_add_tail(&object->gray_list, &gray_list);
1202 }
1203}
1204
1205/*
1206 * Memory scanning is a long process and it needs to be interruptible. This
1207 * function checks whether such interrupt condition occurred.
1208 */
1209static int scan_should_stop(void)
1210{
1211 if (!kmemleak_enabled)
1212 return 1;
1213
1214 /*
1215 * This function may be called from either process or kthread context,
1216 * hence the need to check for both stop conditions.
1217 */
1218 if (current->mm)
1219 return signal_pending(current);
1220 else
1221 return kthread_should_stop();
1222
1223 return 0;
1224}
1225
1226/*
1227 * Scan a memory block (exclusive range) for valid pointers and add those
1228 * found to the gray list.
1229 */
1230static void scan_block(void *_start, void *_end,
1231 struct kmemleak_object *scanned)
1232{
1233 unsigned long *ptr;
1234 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1235 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1236 unsigned long flags;
1237 unsigned long untagged_ptr;
1238
1239 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1240 for (ptr = start; ptr < end; ptr++) {
1241 struct kmemleak_object *object;
1242 unsigned long pointer;
1243 unsigned long excess_ref;
1244
1245 if (scan_should_stop())
1246 break;
1247
1248 kasan_disable_current();
1249 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1250 kasan_enable_current();
1251
1252 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1253 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1254 continue;
1255
1256 /*
1257 * No need for get_object() here since we hold kmemleak_lock.
1258 * object->use_count cannot be dropped to 0 while the object
1259 * is still present in object_tree_root and object_list
1260 * (with updates protected by kmemleak_lock).
1261 */
1262 object = lookup_object(pointer, 1);
1263 if (!object)
1264 continue;
1265 if (object == scanned)
1266 /* self referenced, ignore */
1267 continue;
1268
1269 /*
1270 * Avoid the lockdep recursive warning on object->lock being
1271 * previously acquired in scan_object(). These locks are
1272 * enclosed by scan_mutex.
1273 */
1274 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1275 /* only pass surplus references (object already gray) */
1276 if (color_gray(object)) {
1277 excess_ref = object->excess_ref;
1278 /* no need for update_refs() if object already gray */
1279 } else {
1280 excess_ref = 0;
1281 update_refs(object);
1282 }
1283 raw_spin_unlock(&object->lock);
1284
1285 if (excess_ref) {
1286 object = lookup_object(excess_ref, 0);
1287 if (!object)
1288 continue;
1289 if (object == scanned)
1290 /* circular reference, ignore */
1291 continue;
1292 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1293 update_refs(object);
1294 raw_spin_unlock(&object->lock);
1295 }
1296 }
1297 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1298}
1299
1300/*
1301 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1302 */
1303#ifdef CONFIG_SMP
1304static void scan_large_block(void *start, void *end)
1305{
1306 void *next;
1307
1308 while (start < end) {
1309 next = min(start + MAX_SCAN_SIZE, end);
1310 scan_block(start, next, NULL);
1311 start = next;
1312 cond_resched();
1313 }
1314}
1315#endif
1316
1317/*
1318 * Scan a memory block corresponding to a kmemleak_object. A condition is
1319 * that object->use_count >= 1.
1320 */
1321static void scan_object(struct kmemleak_object *object)
1322{
1323 struct kmemleak_scan_area *area;
1324 unsigned long flags;
1325
1326 /*
1327 * Once the object->lock is acquired, the corresponding memory block
1328 * cannot be freed (the same lock is acquired in delete_object).
1329 */
1330 raw_spin_lock_irqsave(&object->lock, flags);
1331 if (object->flags & OBJECT_NO_SCAN)
1332 goto out;
1333 if (!(object->flags & OBJECT_ALLOCATED))
1334 /* already freed object */
1335 goto out;
1336 if (hlist_empty(&object->area_list) ||
1337 object->flags & OBJECT_FULL_SCAN) {
1338 void *start = (void *)object->pointer;
1339 void *end = (void *)(object->pointer + object->size);
1340 void *next;
1341
1342 do {
1343 next = min(start + MAX_SCAN_SIZE, end);
1344 scan_block(start, next, object);
1345
1346 start = next;
1347 if (start >= end)
1348 break;
1349
1350 raw_spin_unlock_irqrestore(&object->lock, flags);
1351 cond_resched();
1352 raw_spin_lock_irqsave(&object->lock, flags);
1353 } while (object->flags & OBJECT_ALLOCATED);
1354 } else
1355 hlist_for_each_entry(area, &object->area_list, node)
1356 scan_block((void *)area->start,
1357 (void *)(area->start + area->size),
1358 object);
1359out:
1360 raw_spin_unlock_irqrestore(&object->lock, flags);
1361}
1362
1363/*
1364 * Scan the objects already referenced (gray objects). More objects will be
1365 * referenced and, if there are no memory leaks, all the objects are scanned.
1366 */
1367static void scan_gray_list(void)
1368{
1369 struct kmemleak_object *object, *tmp;
1370
1371 /*
1372 * The list traversal is safe for both tail additions and removals
1373 * from inside the loop. The kmemleak objects cannot be freed from
1374 * outside the loop because their use_count was incremented.
1375 */
1376 object = list_entry(gray_list.next, typeof(*object), gray_list);
1377 while (&object->gray_list != &gray_list) {
1378 cond_resched();
1379
1380 /* may add new objects to the list */
1381 if (!scan_should_stop())
1382 scan_object(object);
1383
1384 tmp = list_entry(object->gray_list.next, typeof(*object),
1385 gray_list);
1386
1387 /* remove the object from the list and release it */
1388 list_del(&object->gray_list);
1389 put_object(object);
1390
1391 object = tmp;
1392 }
1393 WARN_ON(!list_empty(&gray_list));
1394}
1395
1396/*
1397 * Scan data sections and all the referenced memory blocks allocated via the
1398 * kernel's standard allocators. This function must be called with the
1399 * scan_mutex held.
1400 */
1401static void kmemleak_scan(void)
1402{
1403 unsigned long flags;
1404 struct kmemleak_object *object;
1405 int i;
1406 int new_leaks = 0;
1407
1408 jiffies_last_scan = jiffies;
1409
1410 /* prepare the kmemleak_object's */
1411 rcu_read_lock();
1412 list_for_each_entry_rcu(object, &object_list, object_list) {
1413 raw_spin_lock_irqsave(&object->lock, flags);
1414#ifdef DEBUG
1415 /*
1416 * With a few exceptions there should be a maximum of
1417 * 1 reference to any object at this point.
1418 */
1419 if (atomic_read(&object->use_count) > 1) {
1420 pr_debug("object->use_count = %d\n",
1421 atomic_read(&object->use_count));
1422 dump_object_info(object);
1423 }
1424#endif
1425 /* reset the reference count (whiten the object) */
1426 object->count = 0;
1427 if (color_gray(object) && get_object(object))
1428 list_add_tail(&object->gray_list, &gray_list);
1429
1430 raw_spin_unlock_irqrestore(&object->lock, flags);
1431 }
1432 rcu_read_unlock();
1433
1434#ifdef CONFIG_SMP
1435 /* per-cpu sections scanning */
1436 for_each_possible_cpu(i)
1437 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1438 __per_cpu_end + per_cpu_offset(i));
1439#endif
1440
1441 /*
1442 * Struct page scanning for each node.
1443 */
1444 get_online_mems();
1445 for_each_online_node(i) {
1446 unsigned long start_pfn = node_start_pfn(i);
1447 unsigned long end_pfn = node_end_pfn(i);
1448 unsigned long pfn;
1449
1450 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1451 struct page *page = pfn_to_online_page(pfn);
1452
1453 if (!page)
1454 continue;
1455
1456 /* only scan pages belonging to this node */
1457 if (page_to_nid(page) != i)
1458 continue;
1459 /* only scan if page is in use */
1460 if (page_count(page) == 0)
1461 continue;
1462 scan_block(page, page + 1, NULL);
1463 if (!(pfn & 63))
1464 cond_resched();
1465 }
1466 }
1467 put_online_mems();
1468
1469 /*
1470 * Scanning the task stacks (may introduce false negatives).
1471 */
1472 if (kmemleak_stack_scan) {
1473 struct task_struct *p, *g;
1474
1475 rcu_read_lock();
1476 for_each_process_thread(g, p) {
1477 void *stack = try_get_task_stack(p);
1478 if (stack) {
1479 scan_block(stack, stack + THREAD_SIZE, NULL);
1480 put_task_stack(p);
1481 }
1482 }
1483 rcu_read_unlock();
1484 }
1485
1486 /*
1487 * Scan the objects already referenced from the sections scanned
1488 * above.
1489 */
1490 scan_gray_list();
1491
1492 /*
1493 * Check for new or unreferenced objects modified since the previous
1494 * scan and color them gray until the next scan.
1495 */
1496 rcu_read_lock();
1497 list_for_each_entry_rcu(object, &object_list, object_list) {
1498 raw_spin_lock_irqsave(&object->lock, flags);
1499 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1500 && update_checksum(object) && get_object(object)) {
1501 /* color it gray temporarily */
1502 object->count = object->min_count;
1503 list_add_tail(&object->gray_list, &gray_list);
1504 }
1505 raw_spin_unlock_irqrestore(&object->lock, flags);
1506 }
1507 rcu_read_unlock();
1508
1509 /*
1510 * Re-scan the gray list for modified unreferenced objects.
1511 */
1512 scan_gray_list();
1513
1514 /*
1515 * If scanning was stopped do not report any new unreferenced objects.
1516 */
1517 if (scan_should_stop())
1518 return;
1519
1520 /*
1521 * Scanning result reporting.
1522 */
1523 rcu_read_lock();
1524 list_for_each_entry_rcu(object, &object_list, object_list) {
1525 raw_spin_lock_irqsave(&object->lock, flags);
1526 if (unreferenced_object(object) &&
1527 !(object->flags & OBJECT_REPORTED)) {
1528 object->flags |= OBJECT_REPORTED;
1529
1530 if (kmemleak_verbose)
1531 print_unreferenced(NULL, object);
1532
1533 new_leaks++;
1534 }
1535 raw_spin_unlock_irqrestore(&object->lock, flags);
1536 }
1537 rcu_read_unlock();
1538
1539 if (new_leaks) {
1540 kmemleak_found_leaks = true;
1541
1542 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1543 new_leaks);
1544 }
1545
1546}
1547
1548/*
1549 * Thread function performing automatic memory scanning. Unreferenced objects
1550 * at the end of a memory scan are reported but only the first time.
1551 */
1552static int kmemleak_scan_thread(void *arg)
1553{
1554 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1555
1556 pr_info("Automatic memory scanning thread started\n");
1557 set_user_nice(current, 10);
1558
1559 /*
1560 * Wait before the first scan to allow the system to fully initialize.
1561 */
1562 if (first_run) {
1563 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1564 first_run = 0;
1565 while (timeout && !kthread_should_stop())
1566 timeout = schedule_timeout_interruptible(timeout);
1567 }
1568
1569 while (!kthread_should_stop()) {
1570 signed long timeout = READ_ONCE(jiffies_scan_wait);
1571
1572 mutex_lock(&scan_mutex);
1573 kmemleak_scan();
1574 mutex_unlock(&scan_mutex);
1575
1576 /* wait before the next scan */
1577 while (timeout && !kthread_should_stop())
1578 timeout = schedule_timeout_interruptible(timeout);
1579 }
1580
1581 pr_info("Automatic memory scanning thread ended\n");
1582
1583 return 0;
1584}
1585
1586/*
1587 * Start the automatic memory scanning thread. This function must be called
1588 * with the scan_mutex held.
1589 */
1590static void start_scan_thread(void)
1591{
1592 if (scan_thread)
1593 return;
1594 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1595 if (IS_ERR(scan_thread)) {
1596 pr_warn("Failed to create the scan thread\n");
1597 scan_thread = NULL;
1598 }
1599}
1600
1601/*
1602 * Stop the automatic memory scanning thread.
1603 */
1604static void stop_scan_thread(void)
1605{
1606 if (scan_thread) {
1607 kthread_stop(scan_thread);
1608 scan_thread = NULL;
1609 }
1610}
1611
1612/*
1613 * Iterate over the object_list and return the first valid object at or after
1614 * the required position with its use_count incremented. The function triggers
1615 * a memory scanning when the pos argument points to the first position.
1616 */
1617static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1618{
1619 struct kmemleak_object *object;
1620 loff_t n = *pos;
1621 int err;
1622
1623 err = mutex_lock_interruptible(&scan_mutex);
1624 if (err < 0)
1625 return ERR_PTR(err);
1626
1627 rcu_read_lock();
1628 list_for_each_entry_rcu(object, &object_list, object_list) {
1629 if (n-- > 0)
1630 continue;
1631 if (get_object(object))
1632 goto out;
1633 }
1634 object = NULL;
1635out:
1636 return object;
1637}
1638
1639/*
1640 * Return the next object in the object_list. The function decrements the
1641 * use_count of the previous object and increases that of the next one.
1642 */
1643static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1644{
1645 struct kmemleak_object *prev_obj = v;
1646 struct kmemleak_object *next_obj = NULL;
1647 struct kmemleak_object *obj = prev_obj;
1648
1649 ++(*pos);
1650
1651 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1652 if (get_object(obj)) {
1653 next_obj = obj;
1654 break;
1655 }
1656 }
1657
1658 put_object(prev_obj);
1659 return next_obj;
1660}
1661
1662/*
1663 * Decrement the use_count of the last object required, if any.
1664 */
1665static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1666{
1667 if (!IS_ERR(v)) {
1668 /*
1669 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1670 * waiting was interrupted, so only release it if !IS_ERR.
1671 */
1672 rcu_read_unlock();
1673 mutex_unlock(&scan_mutex);
1674 if (v)
1675 put_object(v);
1676 }
1677}
1678
1679/*
1680 * Print the information for an unreferenced object to the seq file.
1681 */
1682static int kmemleak_seq_show(struct seq_file *seq, void *v)
1683{
1684 struct kmemleak_object *object = v;
1685 unsigned long flags;
1686
1687 raw_spin_lock_irqsave(&object->lock, flags);
1688 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1689 print_unreferenced(seq, object);
1690 raw_spin_unlock_irqrestore(&object->lock, flags);
1691 return 0;
1692}
1693
1694static const struct seq_operations kmemleak_seq_ops = {
1695 .start = kmemleak_seq_start,
1696 .next = kmemleak_seq_next,
1697 .stop = kmemleak_seq_stop,
1698 .show = kmemleak_seq_show,
1699};
1700
1701static int kmemleak_open(struct inode *inode, struct file *file)
1702{
1703 return seq_open(file, &kmemleak_seq_ops);
1704}
1705
1706static int dump_str_object_info(const char *str)
1707{
1708 unsigned long flags;
1709 struct kmemleak_object *object;
1710 unsigned long addr;
1711
1712 if (kstrtoul(str, 0, &addr))
1713 return -EINVAL;
1714 object = find_and_get_object(addr, 0);
1715 if (!object) {
1716 pr_info("Unknown object at 0x%08lx\n", addr);
1717 return -EINVAL;
1718 }
1719
1720 raw_spin_lock_irqsave(&object->lock, flags);
1721 dump_object_info(object);
1722 raw_spin_unlock_irqrestore(&object->lock, flags);
1723
1724 put_object(object);
1725 return 0;
1726}
1727
1728/*
1729 * We use grey instead of black to ensure we can do future scans on the same
1730 * objects. If we did not do future scans these black objects could
1731 * potentially contain references to newly allocated objects in the future and
1732 * we'd end up with false positives.
1733 */
1734static void kmemleak_clear(void)
1735{
1736 struct kmemleak_object *object;
1737 unsigned long flags;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(object, &object_list, object_list) {
1741 raw_spin_lock_irqsave(&object->lock, flags);
1742 if ((object->flags & OBJECT_REPORTED) &&
1743 unreferenced_object(object))
1744 __paint_it(object, KMEMLEAK_GREY);
1745 raw_spin_unlock_irqrestore(&object->lock, flags);
1746 }
1747 rcu_read_unlock();
1748
1749 kmemleak_found_leaks = false;
1750}
1751
1752static void __kmemleak_do_cleanup(void);
1753
1754/*
1755 * File write operation to configure kmemleak at run-time. The following
1756 * commands can be written to the /sys/kernel/debug/kmemleak file:
1757 * off - disable kmemleak (irreversible)
1758 * stack=on - enable the task stacks scanning
1759 * stack=off - disable the tasks stacks scanning
1760 * scan=on - start the automatic memory scanning thread
1761 * scan=off - stop the automatic memory scanning thread
1762 * scan=... - set the automatic memory scanning period in seconds (0 to
1763 * disable it)
1764 * scan - trigger a memory scan
1765 * clear - mark all current reported unreferenced kmemleak objects as
1766 * grey to ignore printing them, or free all kmemleak objects
1767 * if kmemleak has been disabled.
1768 * dump=... - dump information about the object found at the given address
1769 */
1770static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1771 size_t size, loff_t *ppos)
1772{
1773 char buf[64];
1774 int buf_size;
1775 int ret;
1776
1777 buf_size = min(size, (sizeof(buf) - 1));
1778 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1779 return -EFAULT;
1780 buf[buf_size] = 0;
1781
1782 ret = mutex_lock_interruptible(&scan_mutex);
1783 if (ret < 0)
1784 return ret;
1785
1786 if (strncmp(buf, "clear", 5) == 0) {
1787 if (kmemleak_enabled)
1788 kmemleak_clear();
1789 else
1790 __kmemleak_do_cleanup();
1791 goto out;
1792 }
1793
1794 if (!kmemleak_enabled) {
1795 ret = -EPERM;
1796 goto out;
1797 }
1798
1799 if (strncmp(buf, "off", 3) == 0)
1800 kmemleak_disable();
1801 else if (strncmp(buf, "stack=on", 8) == 0)
1802 kmemleak_stack_scan = 1;
1803 else if (strncmp(buf, "stack=off", 9) == 0)
1804 kmemleak_stack_scan = 0;
1805 else if (strncmp(buf, "scan=on", 7) == 0)
1806 start_scan_thread();
1807 else if (strncmp(buf, "scan=off", 8) == 0)
1808 stop_scan_thread();
1809 else if (strncmp(buf, "scan=", 5) == 0) {
1810 unsigned secs;
1811 unsigned long msecs;
1812
1813 ret = kstrtouint(buf + 5, 0, &secs);
1814 if (ret < 0)
1815 goto out;
1816
1817 msecs = secs * MSEC_PER_SEC;
1818 if (msecs > UINT_MAX)
1819 msecs = UINT_MAX;
1820
1821 stop_scan_thread();
1822 if (msecs) {
1823 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1824 start_scan_thread();
1825 }
1826 } else if (strncmp(buf, "scan", 4) == 0)
1827 kmemleak_scan();
1828 else if (strncmp(buf, "dump=", 5) == 0)
1829 ret = dump_str_object_info(buf + 5);
1830 else
1831 ret = -EINVAL;
1832
1833out:
1834 mutex_unlock(&scan_mutex);
1835 if (ret < 0)
1836 return ret;
1837
1838 /* ignore the rest of the buffer, only one command at a time */
1839 *ppos += size;
1840 return size;
1841}
1842
1843static const struct file_operations kmemleak_fops = {
1844 .owner = THIS_MODULE,
1845 .open = kmemleak_open,
1846 .read = seq_read,
1847 .write = kmemleak_write,
1848 .llseek = seq_lseek,
1849 .release = seq_release,
1850};
1851
1852static void __kmemleak_do_cleanup(void)
1853{
1854 struct kmemleak_object *object, *tmp;
1855
1856 /*
1857 * Kmemleak has already been disabled, no need for RCU list traversal
1858 * or kmemleak_lock held.
1859 */
1860 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1861 __remove_object(object);
1862 __delete_object(object);
1863 }
1864}
1865
1866/*
1867 * Stop the memory scanning thread and free the kmemleak internal objects if
1868 * no previous scan thread (otherwise, kmemleak may still have some useful
1869 * information on memory leaks).
1870 */
1871static void kmemleak_do_cleanup(struct work_struct *work)
1872{
1873 stop_scan_thread();
1874
1875 mutex_lock(&scan_mutex);
1876 /*
1877 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1878 * longer track object freeing. Ordering of the scan thread stopping and
1879 * the memory accesses below is guaranteed by the kthread_stop()
1880 * function.
1881 */
1882 kmemleak_free_enabled = 0;
1883 mutex_unlock(&scan_mutex);
1884
1885 if (!kmemleak_found_leaks)
1886 __kmemleak_do_cleanup();
1887 else
1888 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1889}
1890
1891static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1892
1893/*
1894 * Disable kmemleak. No memory allocation/freeing will be traced once this
1895 * function is called. Disabling kmemleak is an irreversible operation.
1896 */
1897static void kmemleak_disable(void)
1898{
1899 /* atomically check whether it was already invoked */
1900 if (cmpxchg(&kmemleak_error, 0, 1))
1901 return;
1902
1903 /* stop any memory operation tracing */
1904 kmemleak_enabled = 0;
1905
1906 /* check whether it is too early for a kernel thread */
1907 if (kmemleak_initialized)
1908 schedule_work(&cleanup_work);
1909 else
1910 kmemleak_free_enabled = 0;
1911
1912 pr_info("Kernel memory leak detector disabled\n");
1913}
1914
1915/*
1916 * Allow boot-time kmemleak disabling (enabled by default).
1917 */
1918static int __init kmemleak_boot_config(char *str)
1919{
1920 if (!str)
1921 return -EINVAL;
1922 if (strcmp(str, "off") == 0)
1923 kmemleak_disable();
1924 else if (strcmp(str, "on") == 0)
1925 kmemleak_skip_disable = 1;
1926 else
1927 return -EINVAL;
1928 return 0;
1929}
1930early_param("kmemleak", kmemleak_boot_config);
1931
1932/*
1933 * Kmemleak initialization.
1934 */
1935void __init kmemleak_init(void)
1936{
1937#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1938 if (!kmemleak_skip_disable) {
1939 kmemleak_disable();
1940 return;
1941 }
1942#endif
1943
1944 if (kmemleak_error)
1945 return;
1946
1947 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1948 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1949
1950 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1951 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1952
1953 /* register the data/bss sections */
1954 create_object((unsigned long)_sdata, _edata - _sdata,
1955 KMEMLEAK_GREY, GFP_ATOMIC);
1956 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1957 KMEMLEAK_GREY, GFP_ATOMIC);
1958 /* only register .data..ro_after_init if not within .data */
1959 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1960 create_object((unsigned long)__start_ro_after_init,
1961 __end_ro_after_init - __start_ro_after_init,
1962 KMEMLEAK_GREY, GFP_ATOMIC);
1963}
1964
1965/*
1966 * Late initialization function.
1967 */
1968static int __init kmemleak_late_init(void)
1969{
1970 kmemleak_initialized = 1;
1971
1972 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1973
1974 if (kmemleak_error) {
1975 /*
1976 * Some error occurred and kmemleak was disabled. There is a
1977 * small chance that kmemleak_disable() was called immediately
1978 * after setting kmemleak_initialized and we may end up with
1979 * two clean-up threads but serialized by scan_mutex.
1980 */
1981 schedule_work(&cleanup_work);
1982 return -ENOMEM;
1983 }
1984
1985 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1986 mutex_lock(&scan_mutex);
1987 start_scan_thread();
1988 mutex_unlock(&scan_mutex);
1989 }
1990
1991 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1992 mem_pool_free_count);
1993
1994 return 0;
1995}
1996late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/export.h>
73#include <linux/kthread.h>
74#include <linux/rbtree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103#include <linux/memory_hotplug.h>
104
105/*
106 * Kmemleak configuration and common defines.
107 */
108#define MAX_TRACE 16 /* stack trace length */
109#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110#define SECS_FIRST_SCAN 60 /* delay before the first scan */
111#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113
114#define BYTES_PER_POINTER sizeof(void *)
115
116/* GFP bitmask for kmemleak internal allocations */
117#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 __GFP_NOWARN)
120
121/* scanning area inside a memory block */
122struct kmemleak_scan_area {
123 struct hlist_node node;
124 unsigned long start;
125 size_t size;
126};
127
128#define KMEMLEAK_GREY 0
129#define KMEMLEAK_BLACK -1
130
131/*
132 * Structure holding the metadata for each allocated memory block.
133 * Modifications to such objects should be made while holding the
134 * object->lock. Insertions or deletions from object_list, gray_list or
135 * rb_node are already protected by the corresponding locks or mutex (see
136 * the notes on locking above). These objects are reference-counted
137 * (use_count) and freed using the RCU mechanism.
138 */
139struct kmemleak_object {
140 spinlock_t lock;
141 unsigned long flags; /* object status flags */
142 struct list_head object_list;
143 struct list_head gray_list;
144 struct rb_node rb_node;
145 struct rcu_head rcu; /* object_list lockless traversal */
146 /* object usage count; object freed when use_count == 0 */
147 atomic_t use_count;
148 unsigned long pointer;
149 size_t size;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
171
172/* number of bytes to print per line; must be 16 or 32 */
173#define HEX_ROW_SIZE 16
174/* number of bytes to print at a time (1, 2, 4, 8) */
175#define HEX_GROUP_SIZE 1
176/* include ASCII after the hex output */
177#define HEX_ASCII 1
178/* max number of lines to be printed */
179#define HEX_MAX_LINES 2
180
181/* the list of all allocated objects */
182static LIST_HEAD(object_list);
183/* the list of gray-colored objects (see color_gray comment below) */
184static LIST_HEAD(gray_list);
185/* search tree for object boundaries */
186static struct rb_root object_tree_root = RB_ROOT;
187/* rw_lock protecting the access to object_list and object_tree_root */
188static DEFINE_RWLOCK(kmemleak_lock);
189
190/* allocation caches for kmemleak internal data */
191static struct kmem_cache *object_cache;
192static struct kmem_cache *scan_area_cache;
193
194/* set if tracing memory operations is enabled */
195static int kmemleak_enabled;
196/* set in the late_initcall if there were no errors */
197static int kmemleak_initialized;
198/* enables or disables early logging of the memory operations */
199static int kmemleak_early_log = 1;
200/* set if a kmemleak warning was issued */
201static int kmemleak_warning;
202/* set if a fatal kmemleak error has occurred */
203static int kmemleak_error;
204
205/* minimum and maximum address that may be valid pointers */
206static unsigned long min_addr = ULONG_MAX;
207static unsigned long max_addr;
208
209static struct task_struct *scan_thread;
210/* used to avoid reporting of recently allocated objects */
211static unsigned long jiffies_min_age;
212static unsigned long jiffies_last_scan;
213/* delay between automatic memory scannings */
214static signed long jiffies_scan_wait;
215/* enables or disables the task stacks scanning */
216static int kmemleak_stack_scan = 1;
217/* protects the memory scanning, parameters and debug/kmemleak file access */
218static DEFINE_MUTEX(scan_mutex);
219/* setting kmemleak=on, will set this var, skipping the disable */
220static int kmemleak_skip_disable;
221/* If there are leaks that can be reported */
222static bool kmemleak_found_leaks;
223
224/*
225 * Early object allocation/freeing logging. Kmemleak is initialized after the
226 * kernel allocator. However, both the kernel allocator and kmemleak may
227 * allocate memory blocks which need to be tracked. Kmemleak defines an
228 * arbitrary buffer to hold the allocation/freeing information before it is
229 * fully initialized.
230 */
231
232/* kmemleak operation type for early logging */
233enum {
234 KMEMLEAK_ALLOC,
235 KMEMLEAK_ALLOC_PERCPU,
236 KMEMLEAK_FREE,
237 KMEMLEAK_FREE_PART,
238 KMEMLEAK_FREE_PERCPU,
239 KMEMLEAK_NOT_LEAK,
240 KMEMLEAK_IGNORE,
241 KMEMLEAK_SCAN_AREA,
242 KMEMLEAK_NO_SCAN
243};
244
245/*
246 * Structure holding the information passed to kmemleak callbacks during the
247 * early logging.
248 */
249struct early_log {
250 int op_type; /* kmemleak operation type */
251 const void *ptr; /* allocated/freed memory block */
252 size_t size; /* memory block size */
253 int min_count; /* minimum reference count */
254 unsigned long trace[MAX_TRACE]; /* stack trace */
255 unsigned int trace_len; /* stack trace length */
256};
257
258/* early logging buffer and current position */
259static struct early_log
260 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
261static int crt_early_log __initdata;
262
263static void kmemleak_disable(void);
264
265/*
266 * Print a warning and dump the stack trace.
267 */
268#define kmemleak_warn(x...) do { \
269 pr_warning(x); \
270 dump_stack(); \
271 kmemleak_warning = 1; \
272} while (0)
273
274/*
275 * Macro invoked when a serious kmemleak condition occurred and cannot be
276 * recovered from. Kmemleak will be disabled and further allocation/freeing
277 * tracing no longer available.
278 */
279#define kmemleak_stop(x...) do { \
280 kmemleak_warn(x); \
281 kmemleak_disable(); \
282} while (0)
283
284/*
285 * Printing of the objects hex dump to the seq file. The number of lines to be
286 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
287 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
288 * with the object->lock held.
289 */
290static void hex_dump_object(struct seq_file *seq,
291 struct kmemleak_object *object)
292{
293 const u8 *ptr = (const u8 *)object->pointer;
294 int i, len, remaining;
295 unsigned char linebuf[HEX_ROW_SIZE * 5];
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 remaining = len =
299 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
300
301 seq_printf(seq, " hex dump (first %d bytes):\n", len);
302 for (i = 0; i < len; i += HEX_ROW_SIZE) {
303 int linelen = min(remaining, HEX_ROW_SIZE);
304
305 remaining -= HEX_ROW_SIZE;
306 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
307 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
308 HEX_ASCII);
309 seq_printf(seq, " %s\n", linebuf);
310 }
311}
312
313/*
314 * Object colors, encoded with count and min_count:
315 * - white - orphan object, not enough references to it (count < min_count)
316 * - gray - not orphan, not marked as false positive (min_count == 0) or
317 * sufficient references to it (count >= min_count)
318 * - black - ignore, it doesn't contain references (e.g. text section)
319 * (min_count == -1). No function defined for this color.
320 * Newly created objects don't have any color assigned (object->count == -1)
321 * before the next memory scan when they become white.
322 */
323static bool color_white(const struct kmemleak_object *object)
324{
325 return object->count != KMEMLEAK_BLACK &&
326 object->count < object->min_count;
327}
328
329static bool color_gray(const struct kmemleak_object *object)
330{
331 return object->min_count != KMEMLEAK_BLACK &&
332 object->count >= object->min_count;
333}
334
335/*
336 * Objects are considered unreferenced only if their color is white, they have
337 * not be deleted and have a minimum age to avoid false positives caused by
338 * pointers temporarily stored in CPU registers.
339 */
340static bool unreferenced_object(struct kmemleak_object *object)
341{
342 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
343 time_before_eq(object->jiffies + jiffies_min_age,
344 jiffies_last_scan);
345}
346
347/*
348 * Printing of the unreferenced objects information to the seq file. The
349 * print_unreferenced function must be called with the object->lock held.
350 */
351static void print_unreferenced(struct seq_file *seq,
352 struct kmemleak_object *object)
353{
354 int i;
355 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
356
357 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
358 object->pointer, object->size);
359 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
360 object->comm, object->pid, object->jiffies,
361 msecs_age / 1000, msecs_age % 1000);
362 hex_dump_object(seq, object);
363 seq_printf(seq, " backtrace:\n");
364
365 for (i = 0; i < object->trace_len; i++) {
366 void *ptr = (void *)object->trace[i];
367 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
368 }
369}
370
371/*
372 * Print the kmemleak_object information. This function is used mainly for
373 * debugging special cases when kmemleak operations. It must be called with
374 * the object->lock held.
375 */
376static void dump_object_info(struct kmemleak_object *object)
377{
378 struct stack_trace trace;
379
380 trace.nr_entries = object->trace_len;
381 trace.entries = object->trace;
382
383 pr_notice("Object 0x%08lx (size %zu):\n",
384 object->pointer, object->size);
385 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
386 object->comm, object->pid, object->jiffies);
387 pr_notice(" min_count = %d\n", object->min_count);
388 pr_notice(" count = %d\n", object->count);
389 pr_notice(" flags = 0x%lx\n", object->flags);
390 pr_notice(" checksum = %d\n", object->checksum);
391 pr_notice(" backtrace:\n");
392 print_stack_trace(&trace, 4);
393}
394
395/*
396 * Look-up a memory block metadata (kmemleak_object) in the object search
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
401static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
402{
403 struct rb_node *rb = object_tree_root.rb_node;
404
405 while (rb) {
406 struct kmemleak_object *object =
407 rb_entry(rb, struct kmemleak_object, rb_node);
408 if (ptr < object->pointer)
409 rb = object->rb_node.rb_left;
410 else if (object->pointer + object->size <= ptr)
411 rb = object->rb_node.rb_right;
412 else if (object->pointer == ptr || alias)
413 return object;
414 else {
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
417 dump_object_info(object);
418 break;
419 }
420 }
421 return NULL;
422}
423
424/*
425 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
426 * that once an object's use_count reached 0, the RCU freeing was already
427 * registered and the object should no longer be used. This function must be
428 * called under the protection of rcu_read_lock().
429 */
430static int get_object(struct kmemleak_object *object)
431{
432 return atomic_inc_not_zero(&object->use_count);
433}
434
435/*
436 * RCU callback to free a kmemleak_object.
437 */
438static void free_object_rcu(struct rcu_head *rcu)
439{
440 struct hlist_node *tmp;
441 struct kmemleak_scan_area *area;
442 struct kmemleak_object *object =
443 container_of(rcu, struct kmemleak_object, rcu);
444
445 /*
446 * Once use_count is 0 (guaranteed by put_object), there is no other
447 * code accessing this object, hence no need for locking.
448 */
449 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
450 hlist_del(&area->node);
451 kmem_cache_free(scan_area_cache, area);
452 }
453 kmem_cache_free(object_cache, object);
454}
455
456/*
457 * Decrement the object use_count. Once the count is 0, free the object using
458 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
459 * delete_object() path, the delayed RCU freeing ensures that there is no
460 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
461 * is also possible.
462 */
463static void put_object(struct kmemleak_object *object)
464{
465 if (!atomic_dec_and_test(&object->use_count))
466 return;
467
468 /* should only get here after delete_object was called */
469 WARN_ON(object->flags & OBJECT_ALLOCATED);
470
471 call_rcu(&object->rcu, free_object_rcu);
472}
473
474/*
475 * Look up an object in the object search tree and increase its use_count.
476 */
477static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
478{
479 unsigned long flags;
480 struct kmemleak_object *object = NULL;
481
482 rcu_read_lock();
483 read_lock_irqsave(&kmemleak_lock, flags);
484 if (ptr >= min_addr && ptr < max_addr)
485 object = lookup_object(ptr, alias);
486 read_unlock_irqrestore(&kmemleak_lock, flags);
487
488 /* check whether the object is still available */
489 if (object && !get_object(object))
490 object = NULL;
491 rcu_read_unlock();
492
493 return object;
494}
495
496/*
497 * Save stack trace to the given array of MAX_TRACE size.
498 */
499static int __save_stack_trace(unsigned long *trace)
500{
501 struct stack_trace stack_trace;
502
503 stack_trace.max_entries = MAX_TRACE;
504 stack_trace.nr_entries = 0;
505 stack_trace.entries = trace;
506 stack_trace.skip = 2;
507 save_stack_trace(&stack_trace);
508
509 return stack_trace.nr_entries;
510}
511
512/*
513 * Create the metadata (struct kmemleak_object) corresponding to an allocated
514 * memory block and add it to the object_list and object_tree_root.
515 */
516static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
517 int min_count, gfp_t gfp)
518{
519 unsigned long flags;
520 struct kmemleak_object *object, *parent;
521 struct rb_node **link, *rb_parent;
522
523 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
524 if (!object) {
525 pr_warning("Cannot allocate a kmemleak_object structure\n");
526 kmemleak_disable();
527 return NULL;
528 }
529
530 INIT_LIST_HEAD(&object->object_list);
531 INIT_LIST_HEAD(&object->gray_list);
532 INIT_HLIST_HEAD(&object->area_list);
533 spin_lock_init(&object->lock);
534 atomic_set(&object->use_count, 1);
535 object->flags = OBJECT_ALLOCATED;
536 object->pointer = ptr;
537 object->size = size;
538 object->min_count = min_count;
539 object->count = 0; /* white color initially */
540 object->jiffies = jiffies;
541 object->checksum = 0;
542
543 /* task information */
544 if (in_irq()) {
545 object->pid = 0;
546 strncpy(object->comm, "hardirq", sizeof(object->comm));
547 } else if (in_softirq()) {
548 object->pid = 0;
549 strncpy(object->comm, "softirq", sizeof(object->comm));
550 } else {
551 object->pid = current->pid;
552 /*
553 * There is a small chance of a race with set_task_comm(),
554 * however using get_task_comm() here may cause locking
555 * dependency issues with current->alloc_lock. In the worst
556 * case, the command line is not correct.
557 */
558 strncpy(object->comm, current->comm, sizeof(object->comm));
559 }
560
561 /* kernel backtrace */
562 object->trace_len = __save_stack_trace(object->trace);
563
564 write_lock_irqsave(&kmemleak_lock, flags);
565
566 min_addr = min(min_addr, ptr);
567 max_addr = max(max_addr, ptr + size);
568 link = &object_tree_root.rb_node;
569 rb_parent = NULL;
570 while (*link) {
571 rb_parent = *link;
572 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
573 if (ptr + size <= parent->pointer)
574 link = &parent->rb_node.rb_left;
575 else if (parent->pointer + parent->size <= ptr)
576 link = &parent->rb_node.rb_right;
577 else {
578 kmemleak_stop("Cannot insert 0x%lx into the object "
579 "search tree (overlaps existing)\n",
580 ptr);
581 kmem_cache_free(object_cache, object);
582 object = parent;
583 spin_lock(&object->lock);
584 dump_object_info(object);
585 spin_unlock(&object->lock);
586 goto out;
587 }
588 }
589 rb_link_node(&object->rb_node, rb_parent, link);
590 rb_insert_color(&object->rb_node, &object_tree_root);
591
592 list_add_tail_rcu(&object->object_list, &object_list);
593out:
594 write_unlock_irqrestore(&kmemleak_lock, flags);
595 return object;
596}
597
598/*
599 * Remove the metadata (struct kmemleak_object) for a memory block from the
600 * object_list and object_tree_root and decrement its use_count.
601 */
602static void __delete_object(struct kmemleak_object *object)
603{
604 unsigned long flags;
605
606 write_lock_irqsave(&kmemleak_lock, flags);
607 rb_erase(&object->rb_node, &object_tree_root);
608 list_del_rcu(&object->object_list);
609 write_unlock_irqrestore(&kmemleak_lock, flags);
610
611 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
612 WARN_ON(atomic_read(&object->use_count) < 2);
613
614 /*
615 * Locking here also ensures that the corresponding memory block
616 * cannot be freed when it is being scanned.
617 */
618 spin_lock_irqsave(&object->lock, flags);
619 object->flags &= ~OBJECT_ALLOCATED;
620 spin_unlock_irqrestore(&object->lock, flags);
621 put_object(object);
622}
623
624/*
625 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626 * delete it.
627 */
628static void delete_object_full(unsigned long ptr)
629{
630 struct kmemleak_object *object;
631
632 object = find_and_get_object(ptr, 0);
633 if (!object) {
634#ifdef DEBUG
635 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
636 ptr);
637#endif
638 return;
639 }
640 __delete_object(object);
641 put_object(object);
642}
643
644/*
645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646 * delete it. If the memory block is partially freed, the function may create
647 * additional metadata for the remaining parts of the block.
648 */
649static void delete_object_part(unsigned long ptr, size_t size)
650{
651 struct kmemleak_object *object;
652 unsigned long start, end;
653
654 object = find_and_get_object(ptr, 1);
655 if (!object) {
656#ifdef DEBUG
657 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
658 "(size %zu)\n", ptr, size);
659#endif
660 return;
661 }
662 __delete_object(object);
663
664 /*
665 * Create one or two objects that may result from the memory block
666 * split. Note that partial freeing is only done by free_bootmem() and
667 * this happens before kmemleak_init() is called. The path below is
668 * only executed during early log recording in kmemleak_init(), so
669 * GFP_KERNEL is enough.
670 */
671 start = object->pointer;
672 end = object->pointer + object->size;
673 if (ptr > start)
674 create_object(start, ptr - start, object->min_count,
675 GFP_KERNEL);
676 if (ptr + size < end)
677 create_object(ptr + size, end - ptr - size, object->min_count,
678 GFP_KERNEL);
679
680 put_object(object);
681}
682
683static void __paint_it(struct kmemleak_object *object, int color)
684{
685 object->min_count = color;
686 if (color == KMEMLEAK_BLACK)
687 object->flags |= OBJECT_NO_SCAN;
688}
689
690static void paint_it(struct kmemleak_object *object, int color)
691{
692 unsigned long flags;
693
694 spin_lock_irqsave(&object->lock, flags);
695 __paint_it(object, color);
696 spin_unlock_irqrestore(&object->lock, flags);
697}
698
699static void paint_ptr(unsigned long ptr, int color)
700{
701 struct kmemleak_object *object;
702
703 object = find_and_get_object(ptr, 0);
704 if (!object) {
705 kmemleak_warn("Trying to color unknown object "
706 "at 0x%08lx as %s\n", ptr,
707 (color == KMEMLEAK_GREY) ? "Grey" :
708 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
709 return;
710 }
711 paint_it(object, color);
712 put_object(object);
713}
714
715/*
716 * Mark an object permanently as gray-colored so that it can no longer be
717 * reported as a leak. This is used in general to mark a false positive.
718 */
719static void make_gray_object(unsigned long ptr)
720{
721 paint_ptr(ptr, KMEMLEAK_GREY);
722}
723
724/*
725 * Mark the object as black-colored so that it is ignored from scans and
726 * reporting.
727 */
728static void make_black_object(unsigned long ptr)
729{
730 paint_ptr(ptr, KMEMLEAK_BLACK);
731}
732
733/*
734 * Add a scanning area to the object. If at least one such area is added,
735 * kmemleak will only scan these ranges rather than the whole memory block.
736 */
737static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
738{
739 unsigned long flags;
740 struct kmemleak_object *object;
741 struct kmemleak_scan_area *area;
742
743 object = find_and_get_object(ptr, 1);
744 if (!object) {
745 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
746 ptr);
747 return;
748 }
749
750 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
751 if (!area) {
752 pr_warning("Cannot allocate a scan area\n");
753 goto out;
754 }
755
756 spin_lock_irqsave(&object->lock, flags);
757 if (size == SIZE_MAX) {
758 size = object->pointer + object->size - ptr;
759 } else if (ptr + size > object->pointer + object->size) {
760 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
761 dump_object_info(object);
762 kmem_cache_free(scan_area_cache, area);
763 goto out_unlock;
764 }
765
766 INIT_HLIST_NODE(&area->node);
767 area->start = ptr;
768 area->size = size;
769
770 hlist_add_head(&area->node, &object->area_list);
771out_unlock:
772 spin_unlock_irqrestore(&object->lock, flags);
773out:
774 put_object(object);
775}
776
777/*
778 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
779 * pointer. Such object will not be scanned by kmemleak but references to it
780 * are searched.
781 */
782static void object_no_scan(unsigned long ptr)
783{
784 unsigned long flags;
785 struct kmemleak_object *object;
786
787 object = find_and_get_object(ptr, 0);
788 if (!object) {
789 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
790 return;
791 }
792
793 spin_lock_irqsave(&object->lock, flags);
794 object->flags |= OBJECT_NO_SCAN;
795 spin_unlock_irqrestore(&object->lock, flags);
796 put_object(object);
797}
798
799/*
800 * Log an early kmemleak_* call to the early_log buffer. These calls will be
801 * processed later once kmemleak is fully initialized.
802 */
803static void __init log_early(int op_type, const void *ptr, size_t size,
804 int min_count)
805{
806 unsigned long flags;
807 struct early_log *log;
808
809 if (kmemleak_error) {
810 /* kmemleak stopped recording, just count the requests */
811 crt_early_log++;
812 return;
813 }
814
815 if (crt_early_log >= ARRAY_SIZE(early_log)) {
816 kmemleak_disable();
817 return;
818 }
819
820 /*
821 * There is no need for locking since the kernel is still in UP mode
822 * at this stage. Disabling the IRQs is enough.
823 */
824 local_irq_save(flags);
825 log = &early_log[crt_early_log];
826 log->op_type = op_type;
827 log->ptr = ptr;
828 log->size = size;
829 log->min_count = min_count;
830 log->trace_len = __save_stack_trace(log->trace);
831 crt_early_log++;
832 local_irq_restore(flags);
833}
834
835/*
836 * Log an early allocated block and populate the stack trace.
837 */
838static void early_alloc(struct early_log *log)
839{
840 struct kmemleak_object *object;
841 unsigned long flags;
842 int i;
843
844 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
845 return;
846
847 /*
848 * RCU locking needed to ensure object is not freed via put_object().
849 */
850 rcu_read_lock();
851 object = create_object((unsigned long)log->ptr, log->size,
852 log->min_count, GFP_ATOMIC);
853 if (!object)
854 goto out;
855 spin_lock_irqsave(&object->lock, flags);
856 for (i = 0; i < log->trace_len; i++)
857 object->trace[i] = log->trace[i];
858 object->trace_len = log->trace_len;
859 spin_unlock_irqrestore(&object->lock, flags);
860out:
861 rcu_read_unlock();
862}
863
864/*
865 * Log an early allocated block and populate the stack trace.
866 */
867static void early_alloc_percpu(struct early_log *log)
868{
869 unsigned int cpu;
870 const void __percpu *ptr = log->ptr;
871
872 for_each_possible_cpu(cpu) {
873 log->ptr = per_cpu_ptr(ptr, cpu);
874 early_alloc(log);
875 }
876}
877
878/**
879 * kmemleak_alloc - register a newly allocated object
880 * @ptr: pointer to beginning of the object
881 * @size: size of the object
882 * @min_count: minimum number of references to this object. If during memory
883 * scanning a number of references less than @min_count is found,
884 * the object is reported as a memory leak. If @min_count is 0,
885 * the object is never reported as a leak. If @min_count is -1,
886 * the object is ignored (not scanned and not reported as a leak)
887 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
888 *
889 * This function is called from the kernel allocators when a new object
890 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
891 */
892void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 gfp_t gfp)
894{
895 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896
897 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 create_object((unsigned long)ptr, size, min_count, gfp);
899 else if (kmemleak_early_log)
900 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
901}
902EXPORT_SYMBOL_GPL(kmemleak_alloc);
903
904/**
905 * kmemleak_alloc_percpu - register a newly allocated __percpu object
906 * @ptr: __percpu pointer to beginning of the object
907 * @size: size of the object
908 *
909 * This function is called from the kernel percpu allocator when a new object
910 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
911 * allocation.
912 */
913void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
914{
915 unsigned int cpu;
916
917 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918
919 /*
920 * Percpu allocations are only scanned and not reported as leaks
921 * (min_count is set to 0).
922 */
923 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924 for_each_possible_cpu(cpu)
925 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926 size, 0, GFP_KERNEL);
927 else if (kmemleak_early_log)
928 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
929}
930EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
931
932/**
933 * kmemleak_free - unregister a previously registered object
934 * @ptr: pointer to beginning of the object
935 *
936 * This function is called from the kernel allocators when an object (memory
937 * block) is freed (kmem_cache_free, kfree, vfree etc.).
938 */
939void __ref kmemleak_free(const void *ptr)
940{
941 pr_debug("%s(0x%p)\n", __func__, ptr);
942
943 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 delete_object_full((unsigned long)ptr);
945 else if (kmemleak_early_log)
946 log_early(KMEMLEAK_FREE, ptr, 0, 0);
947}
948EXPORT_SYMBOL_GPL(kmemleak_free);
949
950/**
951 * kmemleak_free_part - partially unregister a previously registered object
952 * @ptr: pointer to the beginning or inside the object. This also
953 * represents the start of the range to be freed
954 * @size: size to be unregistered
955 *
956 * This function is called when only a part of a memory block is freed
957 * (usually from the bootmem allocator).
958 */
959void __ref kmemleak_free_part(const void *ptr, size_t size)
960{
961 pr_debug("%s(0x%p)\n", __func__, ptr);
962
963 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
964 delete_object_part((unsigned long)ptr, size);
965 else if (kmemleak_early_log)
966 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
967}
968EXPORT_SYMBOL_GPL(kmemleak_free_part);
969
970/**
971 * kmemleak_free_percpu - unregister a previously registered __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 *
974 * This function is called from the kernel percpu allocator when an object
975 * (memory block) is freed (free_percpu).
976 */
977void __ref kmemleak_free_percpu(const void __percpu *ptr)
978{
979 unsigned int cpu;
980
981 pr_debug("%s(0x%p)\n", __func__, ptr);
982
983 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 for_each_possible_cpu(cpu)
985 delete_object_full((unsigned long)per_cpu_ptr(ptr,
986 cpu));
987 else if (kmemleak_early_log)
988 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
989}
990EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
991
992/**
993 * kmemleak_not_leak - mark an allocated object as false positive
994 * @ptr: pointer to beginning of the object
995 *
996 * Calling this function on an object will cause the memory block to no longer
997 * be reported as leak and always be scanned.
998 */
999void __ref kmemleak_not_leak(const void *ptr)
1000{
1001 pr_debug("%s(0x%p)\n", __func__, ptr);
1002
1003 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1004 make_gray_object((unsigned long)ptr);
1005 else if (kmemleak_early_log)
1006 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1007}
1008EXPORT_SYMBOL(kmemleak_not_leak);
1009
1010/**
1011 * kmemleak_ignore - ignore an allocated object
1012 * @ptr: pointer to beginning of the object
1013 *
1014 * Calling this function on an object will cause the memory block to be
1015 * ignored (not scanned and not reported as a leak). This is usually done when
1016 * it is known that the corresponding block is not a leak and does not contain
1017 * any references to other allocated memory blocks.
1018 */
1019void __ref kmemleak_ignore(const void *ptr)
1020{
1021 pr_debug("%s(0x%p)\n", __func__, ptr);
1022
1023 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1024 make_black_object((unsigned long)ptr);
1025 else if (kmemleak_early_log)
1026 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1027}
1028EXPORT_SYMBOL(kmemleak_ignore);
1029
1030/**
1031 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1032 * @ptr: pointer to beginning or inside the object. This also
1033 * represents the start of the scan area
1034 * @size: size of the scan area
1035 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1036 *
1037 * This function is used when it is known that only certain parts of an object
1038 * contain references to other objects. Kmemleak will only scan these areas
1039 * reducing the number false negatives.
1040 */
1041void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1042{
1043 pr_debug("%s(0x%p)\n", __func__, ptr);
1044
1045 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1046 add_scan_area((unsigned long)ptr, size, gfp);
1047 else if (kmemleak_early_log)
1048 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1049}
1050EXPORT_SYMBOL(kmemleak_scan_area);
1051
1052/**
1053 * kmemleak_no_scan - do not scan an allocated object
1054 * @ptr: pointer to beginning of the object
1055 *
1056 * This function notifies kmemleak not to scan the given memory block. Useful
1057 * in situations where it is known that the given object does not contain any
1058 * references to other objects. Kmemleak will not scan such objects reducing
1059 * the number of false negatives.
1060 */
1061void __ref kmemleak_no_scan(const void *ptr)
1062{
1063 pr_debug("%s(0x%p)\n", __func__, ptr);
1064
1065 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1066 object_no_scan((unsigned long)ptr);
1067 else if (kmemleak_early_log)
1068 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1069}
1070EXPORT_SYMBOL(kmemleak_no_scan);
1071
1072/*
1073 * Update an object's checksum and return true if it was modified.
1074 */
1075static bool update_checksum(struct kmemleak_object *object)
1076{
1077 u32 old_csum = object->checksum;
1078
1079 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1080 return false;
1081
1082 object->checksum = crc32(0, (void *)object->pointer, object->size);
1083 return object->checksum != old_csum;
1084}
1085
1086/*
1087 * Memory scanning is a long process and it needs to be interruptable. This
1088 * function checks whether such interrupt condition occurred.
1089 */
1090static int scan_should_stop(void)
1091{
1092 if (!kmemleak_enabled)
1093 return 1;
1094
1095 /*
1096 * This function may be called from either process or kthread context,
1097 * hence the need to check for both stop conditions.
1098 */
1099 if (current->mm)
1100 return signal_pending(current);
1101 else
1102 return kthread_should_stop();
1103
1104 return 0;
1105}
1106
1107/*
1108 * Scan a memory block (exclusive range) for valid pointers and add those
1109 * found to the gray list.
1110 */
1111static void scan_block(void *_start, void *_end,
1112 struct kmemleak_object *scanned, int allow_resched)
1113{
1114 unsigned long *ptr;
1115 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1116 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1117
1118 for (ptr = start; ptr < end; ptr++) {
1119 struct kmemleak_object *object;
1120 unsigned long flags;
1121 unsigned long pointer;
1122
1123 if (allow_resched)
1124 cond_resched();
1125 if (scan_should_stop())
1126 break;
1127
1128 /* don't scan uninitialized memory */
1129 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1130 BYTES_PER_POINTER))
1131 continue;
1132
1133 pointer = *ptr;
1134
1135 object = find_and_get_object(pointer, 1);
1136 if (!object)
1137 continue;
1138 if (object == scanned) {
1139 /* self referenced, ignore */
1140 put_object(object);
1141 continue;
1142 }
1143
1144 /*
1145 * Avoid the lockdep recursive warning on object->lock being
1146 * previously acquired in scan_object(). These locks are
1147 * enclosed by scan_mutex.
1148 */
1149 spin_lock_irqsave_nested(&object->lock, flags,
1150 SINGLE_DEPTH_NESTING);
1151 if (!color_white(object)) {
1152 /* non-orphan, ignored or new */
1153 spin_unlock_irqrestore(&object->lock, flags);
1154 put_object(object);
1155 continue;
1156 }
1157
1158 /*
1159 * Increase the object's reference count (number of pointers
1160 * to the memory block). If this count reaches the required
1161 * minimum, the object's color will become gray and it will be
1162 * added to the gray_list.
1163 */
1164 object->count++;
1165 if (color_gray(object)) {
1166 list_add_tail(&object->gray_list, &gray_list);
1167 spin_unlock_irqrestore(&object->lock, flags);
1168 continue;
1169 }
1170
1171 spin_unlock_irqrestore(&object->lock, flags);
1172 put_object(object);
1173 }
1174}
1175
1176/*
1177 * Scan a memory block corresponding to a kmemleak_object. A condition is
1178 * that object->use_count >= 1.
1179 */
1180static void scan_object(struct kmemleak_object *object)
1181{
1182 struct kmemleak_scan_area *area;
1183 unsigned long flags;
1184
1185 /*
1186 * Once the object->lock is acquired, the corresponding memory block
1187 * cannot be freed (the same lock is acquired in delete_object).
1188 */
1189 spin_lock_irqsave(&object->lock, flags);
1190 if (object->flags & OBJECT_NO_SCAN)
1191 goto out;
1192 if (!(object->flags & OBJECT_ALLOCATED))
1193 /* already freed object */
1194 goto out;
1195 if (hlist_empty(&object->area_list)) {
1196 void *start = (void *)object->pointer;
1197 void *end = (void *)(object->pointer + object->size);
1198
1199 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1200 !(object->flags & OBJECT_NO_SCAN)) {
1201 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1202 object, 0);
1203 start += MAX_SCAN_SIZE;
1204
1205 spin_unlock_irqrestore(&object->lock, flags);
1206 cond_resched();
1207 spin_lock_irqsave(&object->lock, flags);
1208 }
1209 } else
1210 hlist_for_each_entry(area, &object->area_list, node)
1211 scan_block((void *)area->start,
1212 (void *)(area->start + area->size),
1213 object, 0);
1214out:
1215 spin_unlock_irqrestore(&object->lock, flags);
1216}
1217
1218/*
1219 * Scan the objects already referenced (gray objects). More objects will be
1220 * referenced and, if there are no memory leaks, all the objects are scanned.
1221 */
1222static void scan_gray_list(void)
1223{
1224 struct kmemleak_object *object, *tmp;
1225
1226 /*
1227 * The list traversal is safe for both tail additions and removals
1228 * from inside the loop. The kmemleak objects cannot be freed from
1229 * outside the loop because their use_count was incremented.
1230 */
1231 object = list_entry(gray_list.next, typeof(*object), gray_list);
1232 while (&object->gray_list != &gray_list) {
1233 cond_resched();
1234
1235 /* may add new objects to the list */
1236 if (!scan_should_stop())
1237 scan_object(object);
1238
1239 tmp = list_entry(object->gray_list.next, typeof(*object),
1240 gray_list);
1241
1242 /* remove the object from the list and release it */
1243 list_del(&object->gray_list);
1244 put_object(object);
1245
1246 object = tmp;
1247 }
1248 WARN_ON(!list_empty(&gray_list));
1249}
1250
1251/*
1252 * Scan data sections and all the referenced memory blocks allocated via the
1253 * kernel's standard allocators. This function must be called with the
1254 * scan_mutex held.
1255 */
1256static void kmemleak_scan(void)
1257{
1258 unsigned long flags;
1259 struct kmemleak_object *object;
1260 int i;
1261 int new_leaks = 0;
1262
1263 jiffies_last_scan = jiffies;
1264
1265 /* prepare the kmemleak_object's */
1266 rcu_read_lock();
1267 list_for_each_entry_rcu(object, &object_list, object_list) {
1268 spin_lock_irqsave(&object->lock, flags);
1269#ifdef DEBUG
1270 /*
1271 * With a few exceptions there should be a maximum of
1272 * 1 reference to any object at this point.
1273 */
1274 if (atomic_read(&object->use_count) > 1) {
1275 pr_debug("object->use_count = %d\n",
1276 atomic_read(&object->use_count));
1277 dump_object_info(object);
1278 }
1279#endif
1280 /* reset the reference count (whiten the object) */
1281 object->count = 0;
1282 if (color_gray(object) && get_object(object))
1283 list_add_tail(&object->gray_list, &gray_list);
1284
1285 spin_unlock_irqrestore(&object->lock, flags);
1286 }
1287 rcu_read_unlock();
1288
1289 /* data/bss scanning */
1290 scan_block(_sdata, _edata, NULL, 1);
1291 scan_block(__bss_start, __bss_stop, NULL, 1);
1292
1293#ifdef CONFIG_SMP
1294 /* per-cpu sections scanning */
1295 for_each_possible_cpu(i)
1296 scan_block(__per_cpu_start + per_cpu_offset(i),
1297 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1298#endif
1299
1300 /*
1301 * Struct page scanning for each node.
1302 */
1303 lock_memory_hotplug();
1304 for_each_online_node(i) {
1305 unsigned long start_pfn = node_start_pfn(i);
1306 unsigned long end_pfn = node_end_pfn(i);
1307 unsigned long pfn;
1308
1309 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1310 struct page *page;
1311
1312 if (!pfn_valid(pfn))
1313 continue;
1314 page = pfn_to_page(pfn);
1315 /* only scan if page is in use */
1316 if (page_count(page) == 0)
1317 continue;
1318 scan_block(page, page + 1, NULL, 1);
1319 }
1320 }
1321 unlock_memory_hotplug();
1322
1323 /*
1324 * Scanning the task stacks (may introduce false negatives).
1325 */
1326 if (kmemleak_stack_scan) {
1327 struct task_struct *p, *g;
1328
1329 read_lock(&tasklist_lock);
1330 do_each_thread(g, p) {
1331 scan_block(task_stack_page(p), task_stack_page(p) +
1332 THREAD_SIZE, NULL, 0);
1333 } while_each_thread(g, p);
1334 read_unlock(&tasklist_lock);
1335 }
1336
1337 /*
1338 * Scan the objects already referenced from the sections scanned
1339 * above.
1340 */
1341 scan_gray_list();
1342
1343 /*
1344 * Check for new or unreferenced objects modified since the previous
1345 * scan and color them gray until the next scan.
1346 */
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(object, &object_list, object_list) {
1349 spin_lock_irqsave(&object->lock, flags);
1350 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1351 && update_checksum(object) && get_object(object)) {
1352 /* color it gray temporarily */
1353 object->count = object->min_count;
1354 list_add_tail(&object->gray_list, &gray_list);
1355 }
1356 spin_unlock_irqrestore(&object->lock, flags);
1357 }
1358 rcu_read_unlock();
1359
1360 /*
1361 * Re-scan the gray list for modified unreferenced objects.
1362 */
1363 scan_gray_list();
1364
1365 /*
1366 * If scanning was stopped do not report any new unreferenced objects.
1367 */
1368 if (scan_should_stop())
1369 return;
1370
1371 /*
1372 * Scanning result reporting.
1373 */
1374 rcu_read_lock();
1375 list_for_each_entry_rcu(object, &object_list, object_list) {
1376 spin_lock_irqsave(&object->lock, flags);
1377 if (unreferenced_object(object) &&
1378 !(object->flags & OBJECT_REPORTED)) {
1379 object->flags |= OBJECT_REPORTED;
1380 new_leaks++;
1381 }
1382 spin_unlock_irqrestore(&object->lock, flags);
1383 }
1384 rcu_read_unlock();
1385
1386 if (new_leaks) {
1387 kmemleak_found_leaks = true;
1388
1389 pr_info("%d new suspected memory leaks (see "
1390 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1391 }
1392
1393}
1394
1395/*
1396 * Thread function performing automatic memory scanning. Unreferenced objects
1397 * at the end of a memory scan are reported but only the first time.
1398 */
1399static int kmemleak_scan_thread(void *arg)
1400{
1401 static int first_run = 1;
1402
1403 pr_info("Automatic memory scanning thread started\n");
1404 set_user_nice(current, 10);
1405
1406 /*
1407 * Wait before the first scan to allow the system to fully initialize.
1408 */
1409 if (first_run) {
1410 first_run = 0;
1411 ssleep(SECS_FIRST_SCAN);
1412 }
1413
1414 while (!kthread_should_stop()) {
1415 signed long timeout = jiffies_scan_wait;
1416
1417 mutex_lock(&scan_mutex);
1418 kmemleak_scan();
1419 mutex_unlock(&scan_mutex);
1420
1421 /* wait before the next scan */
1422 while (timeout && !kthread_should_stop())
1423 timeout = schedule_timeout_interruptible(timeout);
1424 }
1425
1426 pr_info("Automatic memory scanning thread ended\n");
1427
1428 return 0;
1429}
1430
1431/*
1432 * Start the automatic memory scanning thread. This function must be called
1433 * with the scan_mutex held.
1434 */
1435static void start_scan_thread(void)
1436{
1437 if (scan_thread)
1438 return;
1439 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1440 if (IS_ERR(scan_thread)) {
1441 pr_warning("Failed to create the scan thread\n");
1442 scan_thread = NULL;
1443 }
1444}
1445
1446/*
1447 * Stop the automatic memory scanning thread. This function must be called
1448 * with the scan_mutex held.
1449 */
1450static void stop_scan_thread(void)
1451{
1452 if (scan_thread) {
1453 kthread_stop(scan_thread);
1454 scan_thread = NULL;
1455 }
1456}
1457
1458/*
1459 * Iterate over the object_list and return the first valid object at or after
1460 * the required position with its use_count incremented. The function triggers
1461 * a memory scanning when the pos argument points to the first position.
1462 */
1463static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1464{
1465 struct kmemleak_object *object;
1466 loff_t n = *pos;
1467 int err;
1468
1469 err = mutex_lock_interruptible(&scan_mutex);
1470 if (err < 0)
1471 return ERR_PTR(err);
1472
1473 rcu_read_lock();
1474 list_for_each_entry_rcu(object, &object_list, object_list) {
1475 if (n-- > 0)
1476 continue;
1477 if (get_object(object))
1478 goto out;
1479 }
1480 object = NULL;
1481out:
1482 return object;
1483}
1484
1485/*
1486 * Return the next object in the object_list. The function decrements the
1487 * use_count of the previous object and increases that of the next one.
1488 */
1489static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1490{
1491 struct kmemleak_object *prev_obj = v;
1492 struct kmemleak_object *next_obj = NULL;
1493 struct kmemleak_object *obj = prev_obj;
1494
1495 ++(*pos);
1496
1497 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1498 if (get_object(obj)) {
1499 next_obj = obj;
1500 break;
1501 }
1502 }
1503
1504 put_object(prev_obj);
1505 return next_obj;
1506}
1507
1508/*
1509 * Decrement the use_count of the last object required, if any.
1510 */
1511static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1512{
1513 if (!IS_ERR(v)) {
1514 /*
1515 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1516 * waiting was interrupted, so only release it if !IS_ERR.
1517 */
1518 rcu_read_unlock();
1519 mutex_unlock(&scan_mutex);
1520 if (v)
1521 put_object(v);
1522 }
1523}
1524
1525/*
1526 * Print the information for an unreferenced object to the seq file.
1527 */
1528static int kmemleak_seq_show(struct seq_file *seq, void *v)
1529{
1530 struct kmemleak_object *object = v;
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&object->lock, flags);
1534 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1535 print_unreferenced(seq, object);
1536 spin_unlock_irqrestore(&object->lock, flags);
1537 return 0;
1538}
1539
1540static const struct seq_operations kmemleak_seq_ops = {
1541 .start = kmemleak_seq_start,
1542 .next = kmemleak_seq_next,
1543 .stop = kmemleak_seq_stop,
1544 .show = kmemleak_seq_show,
1545};
1546
1547static int kmemleak_open(struct inode *inode, struct file *file)
1548{
1549 return seq_open(file, &kmemleak_seq_ops);
1550}
1551
1552static int dump_str_object_info(const char *str)
1553{
1554 unsigned long flags;
1555 struct kmemleak_object *object;
1556 unsigned long addr;
1557
1558 if (kstrtoul(str, 0, &addr))
1559 return -EINVAL;
1560 object = find_and_get_object(addr, 0);
1561 if (!object) {
1562 pr_info("Unknown object at 0x%08lx\n", addr);
1563 return -EINVAL;
1564 }
1565
1566 spin_lock_irqsave(&object->lock, flags);
1567 dump_object_info(object);
1568 spin_unlock_irqrestore(&object->lock, flags);
1569
1570 put_object(object);
1571 return 0;
1572}
1573
1574/*
1575 * We use grey instead of black to ensure we can do future scans on the same
1576 * objects. If we did not do future scans these black objects could
1577 * potentially contain references to newly allocated objects in the future and
1578 * we'd end up with false positives.
1579 */
1580static void kmemleak_clear(void)
1581{
1582 struct kmemleak_object *object;
1583 unsigned long flags;
1584
1585 rcu_read_lock();
1586 list_for_each_entry_rcu(object, &object_list, object_list) {
1587 spin_lock_irqsave(&object->lock, flags);
1588 if ((object->flags & OBJECT_REPORTED) &&
1589 unreferenced_object(object))
1590 __paint_it(object, KMEMLEAK_GREY);
1591 spin_unlock_irqrestore(&object->lock, flags);
1592 }
1593 rcu_read_unlock();
1594
1595 kmemleak_found_leaks = false;
1596}
1597
1598static void __kmemleak_do_cleanup(void);
1599
1600/*
1601 * File write operation to configure kmemleak at run-time. The following
1602 * commands can be written to the /sys/kernel/debug/kmemleak file:
1603 * off - disable kmemleak (irreversible)
1604 * stack=on - enable the task stacks scanning
1605 * stack=off - disable the tasks stacks scanning
1606 * scan=on - start the automatic memory scanning thread
1607 * scan=off - stop the automatic memory scanning thread
1608 * scan=... - set the automatic memory scanning period in seconds (0 to
1609 * disable it)
1610 * scan - trigger a memory scan
1611 * clear - mark all current reported unreferenced kmemleak objects as
1612 * grey to ignore printing them, or free all kmemleak objects
1613 * if kmemleak has been disabled.
1614 * dump=... - dump information about the object found at the given address
1615 */
1616static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1617 size_t size, loff_t *ppos)
1618{
1619 char buf[64];
1620 int buf_size;
1621 int ret;
1622
1623 buf_size = min(size, (sizeof(buf) - 1));
1624 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1625 return -EFAULT;
1626 buf[buf_size] = 0;
1627
1628 ret = mutex_lock_interruptible(&scan_mutex);
1629 if (ret < 0)
1630 return ret;
1631
1632 if (strncmp(buf, "clear", 5) == 0) {
1633 if (kmemleak_enabled)
1634 kmemleak_clear();
1635 else
1636 __kmemleak_do_cleanup();
1637 goto out;
1638 }
1639
1640 if (!kmemleak_enabled) {
1641 ret = -EBUSY;
1642 goto out;
1643 }
1644
1645 if (strncmp(buf, "off", 3) == 0)
1646 kmemleak_disable();
1647 else if (strncmp(buf, "stack=on", 8) == 0)
1648 kmemleak_stack_scan = 1;
1649 else if (strncmp(buf, "stack=off", 9) == 0)
1650 kmemleak_stack_scan = 0;
1651 else if (strncmp(buf, "scan=on", 7) == 0)
1652 start_scan_thread();
1653 else if (strncmp(buf, "scan=off", 8) == 0)
1654 stop_scan_thread();
1655 else if (strncmp(buf, "scan=", 5) == 0) {
1656 unsigned long secs;
1657
1658 ret = kstrtoul(buf + 5, 0, &secs);
1659 if (ret < 0)
1660 goto out;
1661 stop_scan_thread();
1662 if (secs) {
1663 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1664 start_scan_thread();
1665 }
1666 } else if (strncmp(buf, "scan", 4) == 0)
1667 kmemleak_scan();
1668 else if (strncmp(buf, "dump=", 5) == 0)
1669 ret = dump_str_object_info(buf + 5);
1670 else
1671 ret = -EINVAL;
1672
1673out:
1674 mutex_unlock(&scan_mutex);
1675 if (ret < 0)
1676 return ret;
1677
1678 /* ignore the rest of the buffer, only one command at a time */
1679 *ppos += size;
1680 return size;
1681}
1682
1683static const struct file_operations kmemleak_fops = {
1684 .owner = THIS_MODULE,
1685 .open = kmemleak_open,
1686 .read = seq_read,
1687 .write = kmemleak_write,
1688 .llseek = seq_lseek,
1689 .release = seq_release,
1690};
1691
1692static void __kmemleak_do_cleanup(void)
1693{
1694 struct kmemleak_object *object;
1695
1696 rcu_read_lock();
1697 list_for_each_entry_rcu(object, &object_list, object_list)
1698 delete_object_full(object->pointer);
1699 rcu_read_unlock();
1700}
1701
1702/*
1703 * Stop the memory scanning thread and free the kmemleak internal objects if
1704 * no previous scan thread (otherwise, kmemleak may still have some useful
1705 * information on memory leaks).
1706 */
1707static void kmemleak_do_cleanup(struct work_struct *work)
1708{
1709 mutex_lock(&scan_mutex);
1710 stop_scan_thread();
1711
1712 if (!kmemleak_found_leaks)
1713 __kmemleak_do_cleanup();
1714 else
1715 pr_info("Kmemleak disabled without freeing internal data. "
1716 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1717 mutex_unlock(&scan_mutex);
1718}
1719
1720static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1721
1722/*
1723 * Disable kmemleak. No memory allocation/freeing will be traced once this
1724 * function is called. Disabling kmemleak is an irreversible operation.
1725 */
1726static void kmemleak_disable(void)
1727{
1728 /* atomically check whether it was already invoked */
1729 if (cmpxchg(&kmemleak_error, 0, 1))
1730 return;
1731
1732 /* stop any memory operation tracing */
1733 kmemleak_enabled = 0;
1734
1735 /* check whether it is too early for a kernel thread */
1736 if (kmemleak_initialized)
1737 schedule_work(&cleanup_work);
1738
1739 pr_info("Kernel memory leak detector disabled\n");
1740}
1741
1742/*
1743 * Allow boot-time kmemleak disabling (enabled by default).
1744 */
1745static int kmemleak_boot_config(char *str)
1746{
1747 if (!str)
1748 return -EINVAL;
1749 if (strcmp(str, "off") == 0)
1750 kmemleak_disable();
1751 else if (strcmp(str, "on") == 0)
1752 kmemleak_skip_disable = 1;
1753 else
1754 return -EINVAL;
1755 return 0;
1756}
1757early_param("kmemleak", kmemleak_boot_config);
1758
1759static void __init print_log_trace(struct early_log *log)
1760{
1761 struct stack_trace trace;
1762
1763 trace.nr_entries = log->trace_len;
1764 trace.entries = log->trace;
1765
1766 pr_notice("Early log backtrace:\n");
1767 print_stack_trace(&trace, 2);
1768}
1769
1770/*
1771 * Kmemleak initialization.
1772 */
1773void __init kmemleak_init(void)
1774{
1775 int i;
1776 unsigned long flags;
1777
1778#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1779 if (!kmemleak_skip_disable) {
1780 kmemleak_early_log = 0;
1781 kmemleak_disable();
1782 return;
1783 }
1784#endif
1785
1786 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1787 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1788
1789 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1790 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1791
1792 if (crt_early_log >= ARRAY_SIZE(early_log))
1793 pr_warning("Early log buffer exceeded (%d), please increase "
1794 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1795
1796 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1797 local_irq_save(flags);
1798 kmemleak_early_log = 0;
1799 if (kmemleak_error) {
1800 local_irq_restore(flags);
1801 return;
1802 } else
1803 kmemleak_enabled = 1;
1804 local_irq_restore(flags);
1805
1806 /*
1807 * This is the point where tracking allocations is safe. Automatic
1808 * scanning is started during the late initcall. Add the early logged
1809 * callbacks to the kmemleak infrastructure.
1810 */
1811 for (i = 0; i < crt_early_log; i++) {
1812 struct early_log *log = &early_log[i];
1813
1814 switch (log->op_type) {
1815 case KMEMLEAK_ALLOC:
1816 early_alloc(log);
1817 break;
1818 case KMEMLEAK_ALLOC_PERCPU:
1819 early_alloc_percpu(log);
1820 break;
1821 case KMEMLEAK_FREE:
1822 kmemleak_free(log->ptr);
1823 break;
1824 case KMEMLEAK_FREE_PART:
1825 kmemleak_free_part(log->ptr, log->size);
1826 break;
1827 case KMEMLEAK_FREE_PERCPU:
1828 kmemleak_free_percpu(log->ptr);
1829 break;
1830 case KMEMLEAK_NOT_LEAK:
1831 kmemleak_not_leak(log->ptr);
1832 break;
1833 case KMEMLEAK_IGNORE:
1834 kmemleak_ignore(log->ptr);
1835 break;
1836 case KMEMLEAK_SCAN_AREA:
1837 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1838 break;
1839 case KMEMLEAK_NO_SCAN:
1840 kmemleak_no_scan(log->ptr);
1841 break;
1842 default:
1843 kmemleak_warn("Unknown early log operation: %d\n",
1844 log->op_type);
1845 }
1846
1847 if (kmemleak_warning) {
1848 print_log_trace(log);
1849 kmemleak_warning = 0;
1850 }
1851 }
1852}
1853
1854/*
1855 * Late initialization function.
1856 */
1857static int __init kmemleak_late_init(void)
1858{
1859 struct dentry *dentry;
1860
1861 kmemleak_initialized = 1;
1862
1863 if (kmemleak_error) {
1864 /*
1865 * Some error occurred and kmemleak was disabled. There is a
1866 * small chance that kmemleak_disable() was called immediately
1867 * after setting kmemleak_initialized and we may end up with
1868 * two clean-up threads but serialized by scan_mutex.
1869 */
1870 schedule_work(&cleanup_work);
1871 return -ENOMEM;
1872 }
1873
1874 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1875 &kmemleak_fops);
1876 if (!dentry)
1877 pr_warning("Failed to create the debugfs kmemleak file\n");
1878 mutex_lock(&scan_mutex);
1879 start_scan_thread();
1880 mutex_unlock(&scan_mutex);
1881
1882 pr_info("Kernel memory leak detector initialized\n");
1883
1884 return 0;
1885}
1886late_initcall(kmemleak_late_init);