Linux Audio

Check our new training course

Loading...
v5.14.15
    1// SPDX-License-Identifier: GPL-2.0
    2/*
    3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
    4 *
    5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
    6 *
    7 *  Interactivity improvements by Mike Galbraith
    8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
    9 *
   10 *  Various enhancements by Dmitry Adamushko.
   11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
   12 *
   13 *  Group scheduling enhancements by Srivatsa Vaddagiri
   14 *  Copyright IBM Corporation, 2007
   15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
   16 *
   17 *  Scaled math optimizations by Thomas Gleixner
   18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
   19 *
   20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
   21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   22 */
 
 
 
 
 
 
 
 
 
 
 
 
 
   23#include "sched.h"
   24
   25/*
   26 * Targeted preemption latency for CPU-bound tasks:
 
   27 *
   28 * NOTE: this latency value is not the same as the concept of
   29 * 'timeslice length' - timeslices in CFS are of variable length
   30 * and have no persistent notion like in traditional, time-slice
   31 * based scheduling concepts.
   32 *
   33 * (to see the precise effective timeslice length of your workload,
   34 *  run vmstat and monitor the context-switches (cs) field)
   35 *
   36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
   37 */
   38unsigned int sysctl_sched_latency			= 6000000ULL;
   39static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
   40
   41/*
   42 * The initial- and re-scaling of tunables is configurable
 
   43 *
   44 * Options are:
   45 *
   46 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
   47 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
   48 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
   49 *
   50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
   51 */
   52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
 
   53
   54/*
   55 * Minimal preemption granularity for CPU-bound tasks:
   56 *
   57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
   58 */
   59unsigned int sysctl_sched_min_granularity			= 750000ULL;
   60static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
   61
   62/*
   63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
   64 */
   65static unsigned int sched_nr_latency = 8;
   66
   67/*
   68 * After fork, child runs first. If set to 0 (default) then
   69 * parent will (try to) run first.
   70 */
   71unsigned int sysctl_sched_child_runs_first __read_mostly;
   72
   73/*
   74 * SCHED_OTHER wake-up granularity.
 
   75 *
   76 * This option delays the preemption effects of decoupled workloads
   77 * and reduces their over-scheduling. Synchronous workloads will still
   78 * have immediate wakeup/sleep latencies.
   79 *
   80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
   81 */
   82unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
   83static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
   84
   85const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
   86
   87int sched_thermal_decay_shift;
   88static int __init setup_sched_thermal_decay_shift(char *str)
   89{
   90	int _shift = 0;
   91
   92	if (kstrtoint(str, 0, &_shift))
   93		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
   94
   95	sched_thermal_decay_shift = clamp(_shift, 0, 10);
   96	return 1;
   97}
   98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
   99
  100#ifdef CONFIG_SMP
  101/*
  102 * For asym packing, by default the lower numbered CPU has higher priority.
  103 */
  104int __weak arch_asym_cpu_priority(int cpu)
  105{
  106	return -cpu;
  107}
  108
  109/*
  110 * The margin used when comparing utilization with CPU capacity.
  111 *
  112 * (default: ~20%)
  113 */
  114#define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
  115
  116/*
  117 * The margin used when comparing CPU capacities.
  118 * is 'cap1' noticeably greater than 'cap2'
  119 *
  120 * (default: ~5%)
  121 */
  122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
  123#endif
  124
  125#ifdef CONFIG_CFS_BANDWIDTH
  126/*
  127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  128 * each time a cfs_rq requests quota.
  129 *
  130 * Note: in the case that the slice exceeds the runtime remaining (either due
  131 * to consumption or the quota being specified to be smaller than the slice)
  132 * we will always only issue the remaining available time.
  133 *
  134 * (default: 5 msec, units: microseconds)
  135 */
  136unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
  137#endif
  138
  139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  140{
  141	lw->weight += inc;
  142	lw->inv_weight = 0;
  143}
  144
  145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  146{
  147	lw->weight -= dec;
  148	lw->inv_weight = 0;
  149}
  150
  151static inline void update_load_set(struct load_weight *lw, unsigned long w)
  152{
  153	lw->weight = w;
  154	lw->inv_weight = 0;
  155}
  156
  157/*
  158 * Increase the granularity value when there are more CPUs,
  159 * because with more CPUs the 'effective latency' as visible
  160 * to users decreases. But the relationship is not linear,
  161 * so pick a second-best guess by going with the log2 of the
  162 * number of CPUs.
  163 *
  164 * This idea comes from the SD scheduler of Con Kolivas:
  165 */
  166static unsigned int get_update_sysctl_factor(void)
  167{
  168	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  169	unsigned int factor;
  170
  171	switch (sysctl_sched_tunable_scaling) {
  172	case SCHED_TUNABLESCALING_NONE:
  173		factor = 1;
  174		break;
  175	case SCHED_TUNABLESCALING_LINEAR:
  176		factor = cpus;
  177		break;
  178	case SCHED_TUNABLESCALING_LOG:
  179	default:
  180		factor = 1 + ilog2(cpus);
  181		break;
  182	}
  183
  184	return factor;
  185}
  186
  187static void update_sysctl(void)
  188{
  189	unsigned int factor = get_update_sysctl_factor();
  190
  191#define SET_SYSCTL(name) \
  192	(sysctl_##name = (factor) * normalized_sysctl_##name)
  193	SET_SYSCTL(sched_min_granularity);
  194	SET_SYSCTL(sched_latency);
  195	SET_SYSCTL(sched_wakeup_granularity);
  196#undef SET_SYSCTL
  197}
  198
  199void __init sched_init_granularity(void)
  200{
  201	update_sysctl();
  202}
  203
  204#define WMULT_CONST	(~0U)
  205#define WMULT_SHIFT	32
  206
  207static void __update_inv_weight(struct load_weight *lw)
  208{
  209	unsigned long w;
  210
  211	if (likely(lw->inv_weight))
  212		return;
  213
  214	w = scale_load_down(lw->weight);
  215
  216	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  217		lw->inv_weight = 1;
  218	else if (unlikely(!w))
  219		lw->inv_weight = WMULT_CONST;
  220	else
  221		lw->inv_weight = WMULT_CONST / w;
  222}
  223
  224/*
  225 * delta_exec * weight / lw.weight
  226 *   OR
  227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  228 *
  229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
  230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
  231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  232 *
  233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
  235 */
  236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  237{
  238	u64 fact = scale_load_down(weight);
  239	u32 fact_hi = (u32)(fact >> 32);
  240	int shift = WMULT_SHIFT;
  241	int fs;
  242
  243	__update_inv_weight(lw);
  244
  245	if (unlikely(fact_hi)) {
  246		fs = fls(fact_hi);
  247		shift -= fs;
  248		fact >>= fs;
 
  249	}
  250
  251	fact = mul_u32_u32(fact, lw->inv_weight);
  252
  253	fact_hi = (u32)(fact >> 32);
  254	if (fact_hi) {
  255		fs = fls(fact_hi);
  256		shift -= fs;
  257		fact >>= fs;
  258	}
  259
  260	return mul_u64_u32_shr(delta_exec, fact, shift);
  261}
  262
  263
  264const struct sched_class fair_sched_class;
  265
  266/**************************************************************
  267 * CFS operations on generic schedulable entities:
  268 */
  269
  270#ifdef CONFIG_FAIR_GROUP_SCHED
  271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  272/* Walk up scheduling entities hierarchy */
  273#define for_each_sched_entity(se) \
  274		for (; se; se = se->parent)
  275
  276static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
  277{
  278	if (!path)
  279		return;
  280
  281	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
  282		autogroup_path(cfs_rq->tg, path, len);
  283	else if (cfs_rq && cfs_rq->tg->css.cgroup)
  284		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
  285	else
  286		strlcpy(path, "(null)", len);
  287}
  288
  289static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 
  290{
  291	struct rq *rq = rq_of(cfs_rq);
  292	int cpu = cpu_of(rq);
  293
  294	if (cfs_rq->on_list)
  295		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 
 
 
  296
  297	cfs_rq->on_list = 1;
 
  298
  299	/*
  300	 * Ensure we either appear before our parent (if already
  301	 * enqueued) or force our parent to appear after us when it is
  302	 * enqueued. The fact that we always enqueue bottom-up
  303	 * reduces this to two cases and a special case for the root
  304	 * cfs_rq. Furthermore, it also means that we will always reset
  305	 * tmp_alone_branch either when the branch is connected
  306	 * to a tree or when we reach the top of the tree
  307	 */
  308	if (cfs_rq->tg->parent &&
  309	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
  310		/*
  311		 * If parent is already on the list, we add the child
  312		 * just before. Thanks to circular linked property of
  313		 * the list, this means to put the child at the tail
  314		 * of the list that starts by parent.
  315		 */
  316		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  317			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
  318		/*
  319		 * The branch is now connected to its tree so we can
  320		 * reset tmp_alone_branch to the beginning of the
  321		 * list.
 
  322		 */
  323		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  324		return true;
  325	}
 
 
 
 
 
  326
  327	if (!cfs_rq->tg->parent) {
  328		/*
  329		 * cfs rq without parent should be put
  330		 * at the tail of the list.
  331		 */
  332		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  333			&rq->leaf_cfs_rq_list);
  334		/*
  335		 * We have reach the top of a tree so we can reset
  336		 * tmp_alone_branch to the beginning of the list.
  337		 */
  338		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  339		return true;
  340	}
  341
  342	/*
  343	 * The parent has not already been added so we want to
  344	 * make sure that it will be put after us.
  345	 * tmp_alone_branch points to the begin of the branch
  346	 * where we will add parent.
  347	 */
  348	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
  349	/*
  350	 * update tmp_alone_branch to points to the new begin
  351	 * of the branch
  352	 */
  353	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
  354	return false;
  355}
  356
  357static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  358{
  359	if (cfs_rq->on_list) {
  360		struct rq *rq = rq_of(cfs_rq);
  361
  362		/*
  363		 * With cfs_rq being unthrottled/throttled during an enqueue,
  364		 * it can happen the tmp_alone_branch points the a leaf that
  365		 * we finally want to del. In this case, tmp_alone_branch moves
  366		 * to the prev element but it will point to rq->leaf_cfs_rq_list
  367		 * at the end of the enqueue.
  368		 */
  369		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
  370			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
  371
  372		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  373		cfs_rq->on_list = 0;
  374	}
  375}
  376
  377static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  378{
  379	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
  380}
  381
  382/* Iterate thr' all leaf cfs_rq's on a runqueue */
  383#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
  384	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
  385				 leaf_cfs_rq_list)
  386
  387/* Do the two (enqueued) entities belong to the same group ? */
  388static inline struct cfs_rq *
  389is_same_group(struct sched_entity *se, struct sched_entity *pse)
  390{
  391	if (se->cfs_rq == pse->cfs_rq)
  392		return se->cfs_rq;
  393
  394	return NULL;
  395}
  396
  397static inline struct sched_entity *parent_entity(struct sched_entity *se)
  398{
  399	return se->parent;
  400}
  401
  402static void
  403find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  404{
  405	int se_depth, pse_depth;
  406
  407	/*
  408	 * preemption test can be made between sibling entities who are in the
  409	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  410	 * both tasks until we find their ancestors who are siblings of common
  411	 * parent.
  412	 */
  413
  414	/* First walk up until both entities are at same depth */
  415	se_depth = (*se)->depth;
  416	pse_depth = (*pse)->depth;
  417
  418	while (se_depth > pse_depth) {
  419		se_depth--;
  420		*se = parent_entity(*se);
  421	}
  422
  423	while (pse_depth > se_depth) {
  424		pse_depth--;
  425		*pse = parent_entity(*pse);
  426	}
  427
  428	while (!is_same_group(*se, *pse)) {
  429		*se = parent_entity(*se);
  430		*pse = parent_entity(*pse);
  431	}
  432}
  433
  434#else	/* !CONFIG_FAIR_GROUP_SCHED */
  435
 
 
 
 
 
 
 
 
 
 
 
 
  436#define for_each_sched_entity(se) \
  437		for (; se; se = NULL)
  438
  439static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
  440{
  441	if (path)
  442		strlcpy(path, "(null)", len);
  443}
  444
  445static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  446{
  447	return true;
 
 
 
  448}
  449
  450static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 
 
 
 
 
 
  451{
  452}
  453
  454static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  455{
  456}
  457
  458#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
  459		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
  460
  461static inline struct sched_entity *parent_entity(struct sched_entity *se)
  462{
  463	return NULL;
  464}
  465
  466static inline void
  467find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  468{
  469}
  470
  471#endif	/* CONFIG_FAIR_GROUP_SCHED */
  472
  473static __always_inline
  474void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  475
  476/**************************************************************
  477 * Scheduling class tree data structure manipulation methods:
  478 */
  479
  480static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  481{
  482	s64 delta = (s64)(vruntime - max_vruntime);
  483	if (delta > 0)
  484		max_vruntime = vruntime;
  485
  486	return max_vruntime;
  487}
  488
  489static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  490{
  491	s64 delta = (s64)(vruntime - min_vruntime);
  492	if (delta < 0)
  493		min_vruntime = vruntime;
  494
  495	return min_vruntime;
  496}
  497
  498static inline bool entity_before(struct sched_entity *a,
  499				struct sched_entity *b)
  500{
  501	return (s64)(a->vruntime - b->vruntime) < 0;
  502}
  503
  504#define __node_2_se(node) \
  505	rb_entry((node), struct sched_entity, run_node)
  506
  507static void update_min_vruntime(struct cfs_rq *cfs_rq)
  508{
  509	struct sched_entity *curr = cfs_rq->curr;
  510	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
  511
  512	u64 vruntime = cfs_rq->min_vruntime;
  513
  514	if (curr) {
  515		if (curr->on_rq)
  516			vruntime = curr->vruntime;
  517		else
  518			curr = NULL;
  519	}
  520
  521	if (leftmost) { /* non-empty tree */
  522		struct sched_entity *se = __node_2_se(leftmost);
 
 
  523
  524		if (!curr)
  525			vruntime = se->vruntime;
  526		else
  527			vruntime = min_vruntime(vruntime, se->vruntime);
  528	}
  529
  530	/* ensure we never gain time by being placed backwards. */
  531	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  532#ifndef CONFIG_64BIT
  533	smp_wmb();
  534	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  535#endif
  536}
  537
  538static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
  539{
  540	return entity_before(__node_2_se(a), __node_2_se(b));
  541}
  542
  543/*
  544 * Enqueue an entity into the rb-tree:
  545 */
  546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  547{
  548	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  549}
  550
  551static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  552{
  553	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 
 
 
 
 
 
 
  554}
  555
  556struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  557{
  558	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
  559
  560	if (!left)
  561		return NULL;
  562
  563	return __node_2_se(left);
  564}
  565
  566static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  567{
  568	struct rb_node *next = rb_next(&se->run_node);
  569
  570	if (!next)
  571		return NULL;
  572
  573	return __node_2_se(next);
  574}
  575
  576#ifdef CONFIG_SCHED_DEBUG
  577struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  578{
  579	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
  580
  581	if (!last)
  582		return NULL;
  583
  584	return __node_2_se(last);
  585}
  586
  587/**************************************************************
  588 * Scheduling class statistics methods:
  589 */
  590
  591int sched_update_scaling(void)
 
 
  592{
  593	unsigned int factor = get_update_sysctl_factor();
 
 
 
 
  594
  595	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  596					sysctl_sched_min_granularity);
  597
  598#define WRT_SYSCTL(name) \
  599	(normalized_sysctl_##name = sysctl_##name / (factor))
  600	WRT_SYSCTL(sched_min_granularity);
  601	WRT_SYSCTL(sched_latency);
  602	WRT_SYSCTL(sched_wakeup_granularity);
  603#undef WRT_SYSCTL
  604
  605	return 0;
  606}
  607#endif
  608
  609/*
  610 * delta /= w
  611 */
  612static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  613{
  614	if (unlikely(se->load.weight != NICE_0_LOAD))
  615		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  616
  617	return delta;
  618}
  619
  620/*
  621 * The idea is to set a period in which each task runs once.
  622 *
  623 * When there are too many tasks (sched_nr_latency) we have to stretch
  624 * this period because otherwise the slices get too small.
  625 *
  626 * p = (nr <= nl) ? l : l*nr/nl
  627 */
  628static u64 __sched_period(unsigned long nr_running)
  629{
  630	if (unlikely(nr_running > sched_nr_latency))
  631		return nr_running * sysctl_sched_min_granularity;
  632	else
  633		return sysctl_sched_latency;
 
 
 
 
 
  634}
  635
  636/*
  637 * We calculate the wall-time slice from the period by taking a part
  638 * proportional to the weight.
  639 *
  640 * s = p*P[w/rw]
  641 */
  642static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  643{
  644	unsigned int nr_running = cfs_rq->nr_running;
  645	u64 slice;
  646
  647	if (sched_feat(ALT_PERIOD))
  648		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
  649
  650	slice = __sched_period(nr_running + !se->on_rq);
  651
  652	for_each_sched_entity(se) {
  653		struct load_weight *load;
  654		struct load_weight lw;
  655
  656		cfs_rq = cfs_rq_of(se);
  657		load = &cfs_rq->load;
  658
  659		if (unlikely(!se->on_rq)) {
  660			lw = cfs_rq->load;
  661
  662			update_load_add(&lw, se->load.weight);
  663			load = &lw;
  664		}
  665		slice = __calc_delta(slice, se->load.weight, load);
  666	}
  667
  668	if (sched_feat(BASE_SLICE))
  669		slice = max(slice, (u64)sysctl_sched_min_granularity);
  670
  671	return slice;
  672}
  673
  674/*
  675 * We calculate the vruntime slice of a to-be-inserted task.
  676 *
  677 * vs = s/w
  678 */
  679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  680{
  681	return calc_delta_fair(sched_slice(cfs_rq, se), se);
  682}
  683
  684#include "pelt.h"
  685#ifdef CONFIG_SMP
  686
  687static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
  688static unsigned long task_h_load(struct task_struct *p);
  689static unsigned long capacity_of(int cpu);
  690
  691/* Give new sched_entity start runnable values to heavy its load in infant time */
  692void init_entity_runnable_average(struct sched_entity *se)
  693{
  694	struct sched_avg *sa = &se->avg;
  695
  696	memset(sa, 0, sizeof(*sa));
  697
  698	/*
  699	 * Tasks are initialized with full load to be seen as heavy tasks until
  700	 * they get a chance to stabilize to their real load level.
  701	 * Group entities are initialized with zero load to reflect the fact that
  702	 * nothing has been attached to the task group yet.
  703	 */
  704	if (entity_is_task(se))
  705		sa->load_avg = scale_load_down(se->load.weight);
  706
  707	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  708}
  709
  710static void attach_entity_cfs_rq(struct sched_entity *se);
  711
  712/*
  713 * With new tasks being created, their initial util_avgs are extrapolated
  714 * based on the cfs_rq's current util_avg:
  715 *
  716 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
  717 *
  718 * However, in many cases, the above util_avg does not give a desired
  719 * value. Moreover, the sum of the util_avgs may be divergent, such
  720 * as when the series is a harmonic series.
  721 *
  722 * To solve this problem, we also cap the util_avg of successive tasks to
  723 * only 1/2 of the left utilization budget:
  724 *
  725 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
  726 *
  727 * where n denotes the nth task and cpu_scale the CPU capacity.
  728 *
  729 * For example, for a CPU with 1024 of capacity, a simplest series from
  730 * the beginning would be like:
  731 *
  732 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
  733 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
  734 *
  735 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
  736 * if util_avg > util_avg_cap.
  737 */
  738void post_init_entity_util_avg(struct task_struct *p)
  739{
  740	struct sched_entity *se = &p->se;
  741	struct cfs_rq *cfs_rq = cfs_rq_of(se);
  742	struct sched_avg *sa = &se->avg;
  743	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
  744	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
  745
  746	if (cap > 0) {
  747		if (cfs_rq->avg.util_avg != 0) {
  748			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
  749			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
  750
  751			if (sa->util_avg > cap)
  752				sa->util_avg = cap;
  753		} else {
  754			sa->util_avg = cap;
  755		}
  756	}
  757
  758	sa->runnable_avg = sa->util_avg;
  759
  760	if (p->sched_class != &fair_sched_class) {
  761		/*
  762		 * For !fair tasks do:
  763		 *
  764		update_cfs_rq_load_avg(now, cfs_rq);
  765		attach_entity_load_avg(cfs_rq, se);
  766		switched_from_fair(rq, p);
  767		 *
  768		 * such that the next switched_to_fair() has the
  769		 * expected state.
  770		 */
  771		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
  772		return;
  773	}
  774
  775	attach_entity_cfs_rq(se);
  776}
  777
  778#else /* !CONFIG_SMP */
  779void init_entity_runnable_average(struct sched_entity *se)
  780{
  781}
  782void post_init_entity_util_avg(struct task_struct *p)
  783{
  784}
  785static void update_tg_load_avg(struct cfs_rq *cfs_rq)
 
  786{
  787}
  788#endif /* CONFIG_SMP */
  789
  790/*
  791 * Update the current task's runtime statistics.
  792 */
  793static void update_curr(struct cfs_rq *cfs_rq)
  794{
  795	struct sched_entity *curr = cfs_rq->curr;
  796	u64 now = rq_clock_task(rq_of(cfs_rq));
  797	u64 delta_exec;
  798
  799	if (unlikely(!curr))
  800		return;
  801
  802	delta_exec = now - curr->exec_start;
  803	if (unlikely((s64)delta_exec <= 0))
  804		return;
  805
  806	curr->exec_start = now;
  807
  808	schedstat_set(curr->statistics.exec_max,
  809		      max(delta_exec, curr->statistics.exec_max));
  810
  811	curr->sum_exec_runtime += delta_exec;
  812	schedstat_add(cfs_rq->exec_clock, delta_exec);
  813
  814	curr->vruntime += calc_delta_fair(delta_exec, curr);
  815	update_min_vruntime(cfs_rq);
  816
  817	if (entity_is_task(curr)) {
  818		struct task_struct *curtask = task_of(curr);
  819
  820		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  821		cgroup_account_cputime(curtask, delta_exec);
  822		account_group_exec_runtime(curtask, delta_exec);
  823	}
  824
  825	account_cfs_rq_runtime(cfs_rq, delta_exec);
  826}
  827
  828static void update_curr_fair(struct rq *rq)
  829{
  830	update_curr(cfs_rq_of(&rq->curr->se));
  831}
  832
  833static inline void
  834update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  835{
  836	u64 wait_start, prev_wait_start;
  837
  838	if (!schedstat_enabled())
  839		return;
  840
  841	wait_start = rq_clock(rq_of(cfs_rq));
  842	prev_wait_start = schedstat_val(se->statistics.wait_start);
  843
  844	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
  845	    likely(wait_start > prev_wait_start))
  846		wait_start -= prev_wait_start;
  847
  848	__schedstat_set(se->statistics.wait_start, wait_start);
  849}
  850
  851static inline void
  852update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  853{
  854	struct task_struct *p;
  855	u64 delta;
  856
  857	if (!schedstat_enabled())
  858		return;
  859
  860	/*
  861	 * When the sched_schedstat changes from 0 to 1, some sched se
  862	 * maybe already in the runqueue, the se->statistics.wait_start
  863	 * will be 0.So it will let the delta wrong. We need to avoid this
  864	 * scenario.
  865	 */
  866	if (unlikely(!schedstat_val(se->statistics.wait_start)))
  867		return;
  868
  869	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
  870
  871	if (entity_is_task(se)) {
  872		p = task_of(se);
  873		if (task_on_rq_migrating(p)) {
  874			/*
  875			 * Preserve migrating task's wait time so wait_start
  876			 * time stamp can be adjusted to accumulate wait time
  877			 * prior to migration.
  878			 */
  879			__schedstat_set(se->statistics.wait_start, delta);
  880			return;
  881		}
  882		trace_sched_stat_wait(p, delta);
  883	}
  884
  885	__schedstat_set(se->statistics.wait_max,
  886		      max(schedstat_val(se->statistics.wait_max), delta));
  887	__schedstat_inc(se->statistics.wait_count);
  888	__schedstat_add(se->statistics.wait_sum, delta);
  889	__schedstat_set(se->statistics.wait_start, 0);
  890}
  891
  892static inline void
  893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  894{
  895	struct task_struct *tsk = NULL;
  896	u64 sleep_start, block_start;
  897
  898	if (!schedstat_enabled())
  899		return;
  900
  901	sleep_start = schedstat_val(se->statistics.sleep_start);
  902	block_start = schedstat_val(se->statistics.block_start);
  903
  904	if (entity_is_task(se))
  905		tsk = task_of(se);
  906
  907	if (sleep_start) {
  908		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
  909
  910		if ((s64)delta < 0)
  911			delta = 0;
  912
  913		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
  914			__schedstat_set(se->statistics.sleep_max, delta);
  915
  916		__schedstat_set(se->statistics.sleep_start, 0);
  917		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
  918
  919		if (tsk) {
  920			account_scheduler_latency(tsk, delta >> 10, 1);
  921			trace_sched_stat_sleep(tsk, delta);
  922		}
  923	}
  924	if (block_start) {
  925		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
  926
  927		if ((s64)delta < 0)
  928			delta = 0;
  929
  930		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
  931			__schedstat_set(se->statistics.block_max, delta);
  932
  933		__schedstat_set(se->statistics.block_start, 0);
  934		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
  935
  936		if (tsk) {
  937			if (tsk->in_iowait) {
  938				__schedstat_add(se->statistics.iowait_sum, delta);
  939				__schedstat_inc(se->statistics.iowait_count);
  940				trace_sched_stat_iowait(tsk, delta);
  941			}
  942
  943			trace_sched_stat_blocked(tsk, delta);
  944
  945			/*
  946			 * Blocking time is in units of nanosecs, so shift by
  947			 * 20 to get a milliseconds-range estimation of the
  948			 * amount of time that the task spent sleeping:
  949			 */
  950			if (unlikely(prof_on == SLEEP_PROFILING)) {
  951				profile_hits(SLEEP_PROFILING,
  952						(void *)get_wchan(tsk),
  953						delta >> 20);
  954			}
  955			account_scheduler_latency(tsk, delta >> 10, 0);
  956		}
  957	}
  958}
  959
  960/*
  961 * Task is being enqueued - update stats:
  962 */
  963static inline void
  964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  965{
  966	if (!schedstat_enabled())
  967		return;
  968
  969	/*
  970	 * Are we enqueueing a waiting task? (for current tasks
  971	 * a dequeue/enqueue event is a NOP)
  972	 */
  973	if (se != cfs_rq->curr)
  974		update_stats_wait_start(cfs_rq, se);
 
  975
  976	if (flags & ENQUEUE_WAKEUP)
  977		update_stats_enqueue_sleeper(cfs_rq, se);
 
 
 
 
 
 
 
 
 
 
 
 
 
  978}
  979
  980static inline void
  981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  982{
  983
  984	if (!schedstat_enabled())
  985		return;
  986
  987	/*
  988	 * Mark the end of the wait period if dequeueing a
  989	 * waiting task:
  990	 */
  991	if (se != cfs_rq->curr)
  992		update_stats_wait_end(cfs_rq, se);
  993
  994	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
  995		struct task_struct *tsk = task_of(se);
  996		unsigned int state;
  997
  998		/* XXX racy against TTWU */
  999		state = READ_ONCE(tsk->__state);
 1000		if (state & TASK_INTERRUPTIBLE)
 1001			__schedstat_set(se->statistics.sleep_start,
 1002				      rq_clock(rq_of(cfs_rq)));
 1003		if (state & TASK_UNINTERRUPTIBLE)
 1004			__schedstat_set(se->statistics.block_start,
 1005				      rq_clock(rq_of(cfs_rq)));
 1006	}
 1007}
 1008
 1009/*
 1010 * We are picking a new current task - update its stats:
 1011 */
 1012static inline void
 1013update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 1014{
 1015	/*
 1016	 * We are starting a new run period:
 1017	 */
 1018	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 1019}
 1020
 1021/**************************************************
 1022 * Scheduling class queueing methods:
 1023 */
 1024
 1025#ifdef CONFIG_NUMA_BALANCING
 1026/*
 1027 * Approximate time to scan a full NUMA task in ms. The task scan period is
 1028 * calculated based on the tasks virtual memory size and
 1029 * numa_balancing_scan_size.
 1030 */
 1031unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 1032unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 1033
 1034/* Portion of address space to scan in MB */
 1035unsigned int sysctl_numa_balancing_scan_size = 256;
 1036
 1037/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 1038unsigned int sysctl_numa_balancing_scan_delay = 1000;
 1039
 1040struct numa_group {
 1041	refcount_t refcount;
 1042
 1043	spinlock_t lock; /* nr_tasks, tasks */
 1044	int nr_tasks;
 1045	pid_t gid;
 1046	int active_nodes;
 1047
 1048	struct rcu_head rcu;
 1049	unsigned long total_faults;
 1050	unsigned long max_faults_cpu;
 1051	/*
 1052	 * Faults_cpu is used to decide whether memory should move
 1053	 * towards the CPU. As a consequence, these stats are weighted
 1054	 * more by CPU use than by memory faults.
 1055	 */
 1056	unsigned long *faults_cpu;
 1057	unsigned long faults[];
 1058};
 1059
 1060/*
 1061 * For functions that can be called in multiple contexts that permit reading
 1062 * ->numa_group (see struct task_struct for locking rules).
 1063 */
 1064static struct numa_group *deref_task_numa_group(struct task_struct *p)
 1065{
 1066	return rcu_dereference_check(p->numa_group, p == current ||
 1067		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
 1068}
 1069
 1070static struct numa_group *deref_curr_numa_group(struct task_struct *p)
 1071{
 1072	return rcu_dereference_protected(p->numa_group, p == current);
 1073}
 1074
 1075static inline unsigned long group_faults_priv(struct numa_group *ng);
 1076static inline unsigned long group_faults_shared(struct numa_group *ng);
 1077
 1078static unsigned int task_nr_scan_windows(struct task_struct *p)
 1079{
 1080	unsigned long rss = 0;
 1081	unsigned long nr_scan_pages;
 1082
 1083	/*
 1084	 * Calculations based on RSS as non-present and empty pages are skipped
 1085	 * by the PTE scanner and NUMA hinting faults should be trapped based
 1086	 * on resident pages
 1087	 */
 1088	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 1089	rss = get_mm_rss(p->mm);
 1090	if (!rss)
 1091		rss = nr_scan_pages;
 1092
 1093	rss = round_up(rss, nr_scan_pages);
 1094	return rss / nr_scan_pages;
 1095}
 1096
 1097/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 1098#define MAX_SCAN_WINDOW 2560
 1099
 1100static unsigned int task_scan_min(struct task_struct *p)
 1101{
 1102	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 1103	unsigned int scan, floor;
 1104	unsigned int windows = 1;
 1105
 1106	if (scan_size < MAX_SCAN_WINDOW)
 1107		windows = MAX_SCAN_WINDOW / scan_size;
 1108	floor = 1000 / windows;
 1109
 1110	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 1111	return max_t(unsigned int, floor, scan);
 1112}
 1113
 1114static unsigned int task_scan_start(struct task_struct *p)
 1115{
 1116	unsigned long smin = task_scan_min(p);
 1117	unsigned long period = smin;
 1118	struct numa_group *ng;
 1119
 1120	/* Scale the maximum scan period with the amount of shared memory. */
 1121	rcu_read_lock();
 1122	ng = rcu_dereference(p->numa_group);
 1123	if (ng) {
 1124		unsigned long shared = group_faults_shared(ng);
 1125		unsigned long private = group_faults_priv(ng);
 1126
 1127		period *= refcount_read(&ng->refcount);
 1128		period *= shared + 1;
 1129		period /= private + shared + 1;
 1130	}
 1131	rcu_read_unlock();
 1132
 1133	return max(smin, period);
 1134}
 1135
 1136static unsigned int task_scan_max(struct task_struct *p)
 1137{
 1138	unsigned long smin = task_scan_min(p);
 1139	unsigned long smax;
 1140	struct numa_group *ng;
 1141
 1142	/* Watch for min being lower than max due to floor calculations */
 1143	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 1144
 1145	/* Scale the maximum scan period with the amount of shared memory. */
 1146	ng = deref_curr_numa_group(p);
 1147	if (ng) {
 1148		unsigned long shared = group_faults_shared(ng);
 1149		unsigned long private = group_faults_priv(ng);
 1150		unsigned long period = smax;
 1151
 1152		period *= refcount_read(&ng->refcount);
 1153		period *= shared + 1;
 1154		period /= private + shared + 1;
 1155
 1156		smax = max(smax, period);
 1157	}
 1158
 1159	return max(smin, smax);
 1160}
 1161
 1162static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 1163{
 1164	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
 1165	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 1166}
 1167
 1168static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 1169{
 1170	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
 1171	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 1172}
 1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1174/* Shared or private faults. */
 1175#define NR_NUMA_HINT_FAULT_TYPES 2
 1176
 1177/* Memory and CPU locality */
 1178#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 1179
 1180/* Averaged statistics, and temporary buffers. */
 1181#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 1182
 1183pid_t task_numa_group_id(struct task_struct *p)
 1184{
 1185	struct numa_group *ng;
 1186	pid_t gid = 0;
 1187
 1188	rcu_read_lock();
 1189	ng = rcu_dereference(p->numa_group);
 1190	if (ng)
 1191		gid = ng->gid;
 1192	rcu_read_unlock();
 1193
 1194	return gid;
 1195}
 1196
 1197/*
 1198 * The averaged statistics, shared & private, memory & CPU,
 1199 * occupy the first half of the array. The second half of the
 1200 * array is for current counters, which are averaged into the
 1201 * first set by task_numa_placement.
 1202 */
 1203static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 1204{
 1205	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 1206}
 1207
 1208static inline unsigned long task_faults(struct task_struct *p, int nid)
 1209{
 1210	if (!p->numa_faults)
 1211		return 0;
 1212
 1213	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 1214		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 1215}
 1216
 1217static inline unsigned long group_faults(struct task_struct *p, int nid)
 1218{
 1219	struct numa_group *ng = deref_task_numa_group(p);
 1220
 1221	if (!ng)
 1222		return 0;
 1223
 1224	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 1225		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 1226}
 1227
 1228static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 1229{
 1230	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 1231		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 1232}
 1233
 1234static inline unsigned long group_faults_priv(struct numa_group *ng)
 1235{
 1236	unsigned long faults = 0;
 1237	int node;
 1238
 1239	for_each_online_node(node) {
 1240		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
 1241	}
 1242
 1243	return faults;
 1244}
 1245
 1246static inline unsigned long group_faults_shared(struct numa_group *ng)
 1247{
 1248	unsigned long faults = 0;
 1249	int node;
 1250
 1251	for_each_online_node(node) {
 1252		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
 1253	}
 1254
 1255	return faults;
 1256}
 1257
 1258/*
 1259 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 1260 * considered part of a numa group's pseudo-interleaving set. Migrations
 1261 * between these nodes are slowed down, to allow things to settle down.
 1262 */
 1263#define ACTIVE_NODE_FRACTION 3
 1264
 1265static bool numa_is_active_node(int nid, struct numa_group *ng)
 1266{
 1267	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
 1268}
 1269
 1270/* Handle placement on systems where not all nodes are directly connected. */
 1271static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 1272					int maxdist, bool task)
 1273{
 1274	unsigned long score = 0;
 1275	int node;
 1276
 1277	/*
 1278	 * All nodes are directly connected, and the same distance
 1279	 * from each other. No need for fancy placement algorithms.
 1280	 */
 1281	if (sched_numa_topology_type == NUMA_DIRECT)
 1282		return 0;
 1283
 1284	/*
 1285	 * This code is called for each node, introducing N^2 complexity,
 1286	 * which should be ok given the number of nodes rarely exceeds 8.
 1287	 */
 1288	for_each_online_node(node) {
 1289		unsigned long faults;
 1290		int dist = node_distance(nid, node);
 1291
 1292		/*
 1293		 * The furthest away nodes in the system are not interesting
 1294		 * for placement; nid was already counted.
 1295		 */
 1296		if (dist == sched_max_numa_distance || node == nid)
 1297			continue;
 1298
 1299		/*
 1300		 * On systems with a backplane NUMA topology, compare groups
 1301		 * of nodes, and move tasks towards the group with the most
 1302		 * memory accesses. When comparing two nodes at distance
 1303		 * "hoplimit", only nodes closer by than "hoplimit" are part
 1304		 * of each group. Skip other nodes.
 1305		 */
 1306		if (sched_numa_topology_type == NUMA_BACKPLANE &&
 1307					dist >= maxdist)
 1308			continue;
 1309
 1310		/* Add up the faults from nearby nodes. */
 1311		if (task)
 1312			faults = task_faults(p, node);
 1313		else
 1314			faults = group_faults(p, node);
 1315
 1316		/*
 1317		 * On systems with a glueless mesh NUMA topology, there are
 1318		 * no fixed "groups of nodes". Instead, nodes that are not
 1319		 * directly connected bounce traffic through intermediate
 1320		 * nodes; a numa_group can occupy any set of nodes.
 1321		 * The further away a node is, the less the faults count.
 1322		 * This seems to result in good task placement.
 1323		 */
 1324		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 1325			faults *= (sched_max_numa_distance - dist);
 1326			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
 1327		}
 1328
 1329		score += faults;
 1330	}
 1331
 1332	return score;
 1333}
 1334
 1335/*
 1336 * These return the fraction of accesses done by a particular task, or
 1337 * task group, on a particular numa node.  The group weight is given a
 1338 * larger multiplier, in order to group tasks together that are almost
 1339 * evenly spread out between numa nodes.
 1340 */
 1341static inline unsigned long task_weight(struct task_struct *p, int nid,
 1342					int dist)
 1343{
 1344	unsigned long faults, total_faults;
 1345
 1346	if (!p->numa_faults)
 1347		return 0;
 1348
 1349	total_faults = p->total_numa_faults;
 1350
 1351	if (!total_faults)
 1352		return 0;
 1353
 1354	faults = task_faults(p, nid);
 1355	faults += score_nearby_nodes(p, nid, dist, true);
 1356
 1357	return 1000 * faults / total_faults;
 1358}
 1359
 1360static inline unsigned long group_weight(struct task_struct *p, int nid,
 1361					 int dist)
 1362{
 1363	struct numa_group *ng = deref_task_numa_group(p);
 1364	unsigned long faults, total_faults;
 1365
 1366	if (!ng)
 1367		return 0;
 1368
 1369	total_faults = ng->total_faults;
 1370
 1371	if (!total_faults)
 1372		return 0;
 1373
 1374	faults = group_faults(p, nid);
 1375	faults += score_nearby_nodes(p, nid, dist, false);
 1376
 1377	return 1000 * faults / total_faults;
 1378}
 1379
 1380bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 1381				int src_nid, int dst_cpu)
 1382{
 1383	struct numa_group *ng = deref_curr_numa_group(p);
 1384	int dst_nid = cpu_to_node(dst_cpu);
 1385	int last_cpupid, this_cpupid;
 1386
 1387	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 1388	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
 1389
 1390	/*
 1391	 * Allow first faults or private faults to migrate immediately early in
 1392	 * the lifetime of a task. The magic number 4 is based on waiting for
 1393	 * two full passes of the "multi-stage node selection" test that is
 1394	 * executed below.
 1395	 */
 1396	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
 1397	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
 1398		return true;
 1399
 1400	/*
 1401	 * Multi-stage node selection is used in conjunction with a periodic
 1402	 * migration fault to build a temporal task<->page relation. By using
 1403	 * a two-stage filter we remove short/unlikely relations.
 1404	 *
 1405	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 1406	 * a task's usage of a particular page (n_p) per total usage of this
 1407	 * page (n_t) (in a given time-span) to a probability.
 1408	 *
 1409	 * Our periodic faults will sample this probability and getting the
 1410	 * same result twice in a row, given these samples are fully
 1411	 * independent, is then given by P(n)^2, provided our sample period
 1412	 * is sufficiently short compared to the usage pattern.
 1413	 *
 1414	 * This quadric squishes small probabilities, making it less likely we
 1415	 * act on an unlikely task<->page relation.
 1416	 */
 
 1417	if (!cpupid_pid_unset(last_cpupid) &&
 1418				cpupid_to_nid(last_cpupid) != dst_nid)
 1419		return false;
 1420
 1421	/* Always allow migrate on private faults */
 1422	if (cpupid_match_pid(p, last_cpupid))
 1423		return true;
 1424
 1425	/* A shared fault, but p->numa_group has not been set up yet. */
 1426	if (!ng)
 1427		return true;
 1428
 1429	/*
 1430	 * Destination node is much more heavily used than the source
 1431	 * node? Allow migration.
 1432	 */
 1433	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
 1434					ACTIVE_NODE_FRACTION)
 1435		return true;
 1436
 1437	/*
 1438	 * Distribute memory according to CPU & memory use on each node,
 1439	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
 1440	 *
 1441	 * faults_cpu(dst)   3   faults_cpu(src)
 1442	 * --------------- * - > ---------------
 1443	 * faults_mem(dst)   4   faults_mem(src)
 1444	 */
 1445	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
 1446	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
 1447}
 1448
 1449/*
 1450 * 'numa_type' describes the node at the moment of load balancing.
 1451 */
 1452enum numa_type {
 1453	/* The node has spare capacity that can be used to run more tasks.  */
 1454	node_has_spare = 0,
 1455	/*
 1456	 * The node is fully used and the tasks don't compete for more CPU
 1457	 * cycles. Nevertheless, some tasks might wait before running.
 1458	 */
 1459	node_fully_busy,
 1460	/*
 1461	 * The node is overloaded and can't provide expected CPU cycles to all
 1462	 * tasks.
 1463	 */
 1464	node_overloaded
 1465};
 
 
 
 
 
 
 
 
 
 1466
 1467/* Cached statistics for all CPUs within a node */
 1468struct numa_stats {
 
 1469	unsigned long load;
 1470	unsigned long runnable;
 1471	unsigned long util;
 1472	/* Total compute capacity of CPUs on a node */
 1473	unsigned long compute_capacity;
 1474	unsigned int nr_running;
 1475	unsigned int weight;
 1476	enum numa_type node_type;
 1477	int idle_cpu;
 1478};
 1479
 1480static inline bool is_core_idle(int cpu)
 
 
 
 1481{
 1482#ifdef CONFIG_SCHED_SMT
 1483	int sibling;
 1484
 1485	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
 1486		if (cpu == sibling)
 1487			continue;
 
 
 
 
 1488
 1489		if (!idle_cpu(sibling))
 1490			return false;
 1491	}
 1492#endif
 1493
 1494	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 1495}
 1496
 1497struct task_numa_env {
 1498	struct task_struct *p;
 1499
 1500	int src_cpu, src_nid;
 1501	int dst_cpu, dst_nid;
 1502
 1503	struct numa_stats src_stats, dst_stats;
 1504
 1505	int imbalance_pct;
 1506	int dist;
 1507
 1508	struct task_struct *best_task;
 1509	long best_imp;
 1510	int best_cpu;
 1511};
 1512
 1513static unsigned long cpu_load(struct rq *rq);
 1514static unsigned long cpu_runnable(struct rq *rq);
 1515static unsigned long cpu_util(int cpu);
 1516static inline long adjust_numa_imbalance(int imbalance,
 1517					int dst_running, int dst_weight);
 1518
 1519static inline enum
 1520numa_type numa_classify(unsigned int imbalance_pct,
 1521			 struct numa_stats *ns)
 1522{
 1523	if ((ns->nr_running > ns->weight) &&
 1524	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
 1525	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
 1526		return node_overloaded;
 1527
 1528	if ((ns->nr_running < ns->weight) ||
 1529	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
 1530	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
 1531		return node_has_spare;
 1532
 1533	return node_fully_busy;
 1534}
 1535
 1536#ifdef CONFIG_SCHED_SMT
 1537/* Forward declarations of select_idle_sibling helpers */
 1538static inline bool test_idle_cores(int cpu, bool def);
 1539static inline int numa_idle_core(int idle_core, int cpu)
 1540{
 1541	if (!static_branch_likely(&sched_smt_present) ||
 1542	    idle_core >= 0 || !test_idle_cores(cpu, false))
 1543		return idle_core;
 1544
 1545	/*
 1546	 * Prefer cores instead of packing HT siblings
 1547	 * and triggering future load balancing.
 1548	 */
 1549	if (is_core_idle(cpu))
 1550		idle_core = cpu;
 1551
 1552	return idle_core;
 1553}
 1554#else
 1555static inline int numa_idle_core(int idle_core, int cpu)
 1556{
 1557	return idle_core;
 1558}
 1559#endif
 1560
 1561/*
 1562 * Gather all necessary information to make NUMA balancing placement
 1563 * decisions that are compatible with standard load balancer. This
 1564 * borrows code and logic from update_sg_lb_stats but sharing a
 1565 * common implementation is impractical.
 1566 */
 1567static void update_numa_stats(struct task_numa_env *env,
 1568			      struct numa_stats *ns, int nid,
 1569			      bool find_idle)
 1570{
 1571	int cpu, idle_core = -1;
 1572
 1573	memset(ns, 0, sizeof(*ns));
 1574	ns->idle_cpu = -1;
 1575
 1576	rcu_read_lock();
 1577	for_each_cpu(cpu, cpumask_of_node(nid)) {
 1578		struct rq *rq = cpu_rq(cpu);
 1579
 1580		ns->load += cpu_load(rq);
 1581		ns->runnable += cpu_runnable(rq);
 1582		ns->util += cpu_util(cpu);
 1583		ns->nr_running += rq->cfs.h_nr_running;
 1584		ns->compute_capacity += capacity_of(cpu);
 1585
 1586		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
 1587			if (READ_ONCE(rq->numa_migrate_on) ||
 1588			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
 1589				continue;
 1590
 1591			if (ns->idle_cpu == -1)
 1592				ns->idle_cpu = cpu;
 1593
 1594			idle_core = numa_idle_core(idle_core, cpu);
 1595		}
 1596	}
 1597	rcu_read_unlock();
 1598
 1599	ns->weight = cpumask_weight(cpumask_of_node(nid));
 1600
 1601	ns->node_type = numa_classify(env->imbalance_pct, ns);
 1602
 1603	if (idle_core >= 0)
 1604		ns->idle_cpu = idle_core;
 1605}
 1606
 1607static void task_numa_assign(struct task_numa_env *env,
 1608			     struct task_struct *p, long imp)
 1609{
 1610	struct rq *rq = cpu_rq(env->dst_cpu);
 1611
 1612	/* Check if run-queue part of active NUMA balance. */
 1613	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
 1614		int cpu;
 1615		int start = env->dst_cpu;
 1616
 1617		/* Find alternative idle CPU. */
 1618		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
 1619			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
 1620			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
 1621				continue;
 1622			}
 1623
 1624			env->dst_cpu = cpu;
 1625			rq = cpu_rq(env->dst_cpu);
 1626			if (!xchg(&rq->numa_migrate_on, 1))
 1627				goto assign;
 1628		}
 1629
 1630		/* Failed to find an alternative idle CPU */
 1631		return;
 1632	}
 1633
 1634assign:
 1635	/*
 1636	 * Clear previous best_cpu/rq numa-migrate flag, since task now
 1637	 * found a better CPU to move/swap.
 1638	 */
 1639	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
 1640		rq = cpu_rq(env->best_cpu);
 1641		WRITE_ONCE(rq->numa_migrate_on, 0);
 1642	}
 1643
 1644	if (env->best_task)
 1645		put_task_struct(env->best_task);
 1646	if (p)
 1647		get_task_struct(p);
 1648
 1649	env->best_task = p;
 1650	env->best_imp = imp;
 1651	env->best_cpu = env->dst_cpu;
 1652}
 1653
 1654static bool load_too_imbalanced(long src_load, long dst_load,
 1655				struct task_numa_env *env)
 1656{
 1657	long imb, old_imb;
 1658	long orig_src_load, orig_dst_load;
 1659	long src_capacity, dst_capacity;
 1660
 1661	/*
 1662	 * The load is corrected for the CPU capacity available on each node.
 1663	 *
 1664	 * src_load        dst_load
 1665	 * ------------ vs ---------
 1666	 * src_capacity    dst_capacity
 1667	 */
 1668	src_capacity = env->src_stats.compute_capacity;
 1669	dst_capacity = env->dst_stats.compute_capacity;
 1670
 1671	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
 1672
 1673	orig_src_load = env->src_stats.load;
 1674	orig_dst_load = env->dst_stats.load;
 1675
 1676	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
 1677
 1678	/* Would this change make things worse? */
 1679	return (imb > old_imb);
 1680}
 1681
 1682/*
 1683 * Maximum NUMA importance can be 1998 (2*999);
 1684 * SMALLIMP @ 30 would be close to 1998/64.
 1685 * Used to deter task migration.
 1686 */
 1687#define SMALLIMP	30
 1688
 1689/*
 1690 * This checks if the overall compute and NUMA accesses of the system would
 1691 * be improved if the source tasks was migrated to the target dst_cpu taking
 1692 * into account that it might be best if task running on the dst_cpu should
 1693 * be exchanged with the source task
 1694 */
 1695static bool task_numa_compare(struct task_numa_env *env,
 1696			      long taskimp, long groupimp, bool maymove)
 1697{
 1698	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
 1699	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 1700	long imp = p_ng ? groupimp : taskimp;
 1701	struct task_struct *cur;
 1702	long src_load, dst_load;
 1703	int dist = env->dist;
 1704	long moveimp = imp;
 1705	long load;
 1706	bool stopsearch = false;
 1707
 1708	if (READ_ONCE(dst_rq->numa_migrate_on))
 1709		return false;
 1710
 1711	rcu_read_lock();
 1712	cur = rcu_dereference(dst_rq->curr);
 1713	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
 1714		cur = NULL;
 1715
 1716	/*
 1717	 * Because we have preemption enabled we can get migrated around and
 1718	 * end try selecting ourselves (current == env->p) as a swap candidate.
 1719	 */
 1720	if (cur == env->p) {
 1721		stopsearch = true;
 1722		goto unlock;
 1723	}
 1724
 1725	if (!cur) {
 1726		if (maymove && moveimp >= env->best_imp)
 1727			goto assign;
 1728		else
 1729			goto unlock;
 1730	}
 1731
 1732	/* Skip this swap candidate if cannot move to the source cpu. */
 1733	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
 1734		goto unlock;
 1735
 1736	/*
 1737	 * Skip this swap candidate if it is not moving to its preferred
 1738	 * node and the best task is.
 1739	 */
 1740	if (env->best_task &&
 1741	    env->best_task->numa_preferred_nid == env->src_nid &&
 1742	    cur->numa_preferred_nid != env->src_nid) {
 1743		goto unlock;
 1744	}
 1745
 1746	/*
 1747	 * "imp" is the fault differential for the source task between the
 1748	 * source and destination node. Calculate the total differential for
 1749	 * the source task and potential destination task. The more negative
 1750	 * the value is, the more remote accesses that would be expected to
 1751	 * be incurred if the tasks were swapped.
 1752	 *
 1753	 * If dst and source tasks are in the same NUMA group, or not
 1754	 * in any group then look only at task weights.
 1755	 */
 1756	cur_ng = rcu_dereference(cur->numa_group);
 1757	if (cur_ng == p_ng) {
 1758		imp = taskimp + task_weight(cur, env->src_nid, dist) -
 1759		      task_weight(cur, env->dst_nid, dist);
 1760		/*
 1761		 * Add some hysteresis to prevent swapping the
 1762		 * tasks within a group over tiny differences.
 1763		 */
 1764		if (cur_ng)
 1765			imp -= imp / 16;
 1766	} else {
 1767		/*
 1768		 * Compare the group weights. If a task is all by itself
 1769		 * (not part of a group), use the task weight instead.
 1770		 */
 1771		if (cur_ng && p_ng)
 1772			imp += group_weight(cur, env->src_nid, dist) -
 1773			       group_weight(cur, env->dst_nid, dist);
 1774		else
 1775			imp += task_weight(cur, env->src_nid, dist) -
 1776			       task_weight(cur, env->dst_nid, dist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1777	}
 1778
 1779	/* Discourage picking a task already on its preferred node */
 1780	if (cur->numa_preferred_nid == env->dst_nid)
 1781		imp -= imp / 16;
 1782
 1783	/*
 1784	 * Encourage picking a task that moves to its preferred node.
 1785	 * This potentially makes imp larger than it's maximum of
 1786	 * 1998 (see SMALLIMP and task_weight for why) but in this
 1787	 * case, it does not matter.
 1788	 */
 1789	if (cur->numa_preferred_nid == env->src_nid)
 1790		imp += imp / 8;
 1791
 1792	if (maymove && moveimp > imp && moveimp > env->best_imp) {
 1793		imp = moveimp;
 1794		cur = NULL;
 1795		goto assign;
 1796	}
 1797
 1798	/*
 1799	 * Prefer swapping with a task moving to its preferred node over a
 1800	 * task that is not.
 1801	 */
 1802	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
 1803	    env->best_task->numa_preferred_nid != env->src_nid) {
 1804		goto assign;
 1805	}
 1806
 1807	/*
 1808	 * If the NUMA importance is less than SMALLIMP,
 1809	 * task migration might only result in ping pong
 1810	 * of tasks and also hurt performance due to cache
 1811	 * misses.
 1812	 */
 1813	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
 1814		goto unlock;
 1815
 1816	/*
 1817	 * In the overloaded case, try and keep the load balanced.
 1818	 */
 1819	load = task_h_load(env->p) - task_h_load(cur);
 1820	if (!load)
 1821		goto assign;
 1822
 1823	dst_load = env->dst_stats.load + load;
 1824	src_load = env->src_stats.load - load;
 
 
 
 
 
 
 
 
 
 
 
 
 1825
 1826	if (load_too_imbalanced(src_load, dst_load, env))
 1827		goto unlock;
 1828
 1829assign:
 1830	/* Evaluate an idle CPU for a task numa move. */
 1831	if (!cur) {
 1832		int cpu = env->dst_stats.idle_cpu;
 1833
 1834		/* Nothing cached so current CPU went idle since the search. */
 1835		if (cpu < 0)
 1836			cpu = env->dst_cpu;
 1837
 1838		/*
 1839		 * If the CPU is no longer truly idle and the previous best CPU
 1840		 * is, keep using it.
 1841		 */
 1842		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
 1843		    idle_cpu(env->best_cpu)) {
 1844			cpu = env->best_cpu;
 1845		}
 1846
 1847		env->dst_cpu = cpu;
 1848	}
 1849
 1850	task_numa_assign(env, cur, imp);
 1851
 1852	/*
 1853	 * If a move to idle is allowed because there is capacity or load
 1854	 * balance improves then stop the search. While a better swap
 1855	 * candidate may exist, a search is not free.
 1856	 */
 1857	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
 1858		stopsearch = true;
 1859
 1860	/*
 1861	 * If a swap candidate must be identified and the current best task
 1862	 * moves its preferred node then stop the search.
 1863	 */
 1864	if (!maymove && env->best_task &&
 1865	    env->best_task->numa_preferred_nid == env->src_nid) {
 1866		stopsearch = true;
 1867	}
 1868unlock:
 1869	rcu_read_unlock();
 1870
 1871	return stopsearch;
 1872}
 1873
 1874static void task_numa_find_cpu(struct task_numa_env *env,
 1875				long taskimp, long groupimp)
 1876{
 1877	bool maymove = false;
 1878	int cpu;
 1879
 1880	/*
 1881	 * If dst node has spare capacity, then check if there is an
 1882	 * imbalance that would be overruled by the load balancer.
 1883	 */
 1884	if (env->dst_stats.node_type == node_has_spare) {
 1885		unsigned int imbalance;
 1886		int src_running, dst_running;
 1887
 1888		/*
 1889		 * Would movement cause an imbalance? Note that if src has
 1890		 * more running tasks that the imbalance is ignored as the
 1891		 * move improves the imbalance from the perspective of the
 1892		 * CPU load balancer.
 1893		 * */
 1894		src_running = env->src_stats.nr_running - 1;
 1895		dst_running = env->dst_stats.nr_running + 1;
 1896		imbalance = max(0, dst_running - src_running);
 1897		imbalance = adjust_numa_imbalance(imbalance, dst_running,
 1898							env->dst_stats.weight);
 1899
 1900		/* Use idle CPU if there is no imbalance */
 1901		if (!imbalance) {
 1902			maymove = true;
 1903			if (env->dst_stats.idle_cpu >= 0) {
 1904				env->dst_cpu = env->dst_stats.idle_cpu;
 1905				task_numa_assign(env, NULL, 0);
 1906				return;
 1907			}
 1908		}
 1909	} else {
 1910		long src_load, dst_load, load;
 1911		/*
 1912		 * If the improvement from just moving env->p direction is better
 1913		 * than swapping tasks around, check if a move is possible.
 1914		 */
 1915		load = task_h_load(env->p);
 1916		dst_load = env->dst_stats.load + load;
 1917		src_load = env->src_stats.load - load;
 1918		maymove = !load_too_imbalanced(src_load, dst_load, env);
 1919	}
 1920
 1921	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
 1922		/* Skip this CPU if the source task cannot migrate */
 1923		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
 1924			continue;
 1925
 1926		env->dst_cpu = cpu;
 1927		if (task_numa_compare(env, taskimp, groupimp, maymove))
 1928			break;
 1929	}
 1930}
 1931
 1932static int task_numa_migrate(struct task_struct *p)
 1933{
 1934	struct task_numa_env env = {
 1935		.p = p,
 1936
 1937		.src_cpu = task_cpu(p),
 1938		.src_nid = task_node(p),
 1939
 1940		.imbalance_pct = 112,
 1941
 1942		.best_task = NULL,
 1943		.best_imp = 0,
 1944		.best_cpu = -1,
 1945	};
 1946	unsigned long taskweight, groupweight;
 1947	struct sched_domain *sd;
 
 
 1948	long taskimp, groupimp;
 1949	struct numa_group *ng;
 1950	struct rq *best_rq;
 1951	int nid, ret, dist;
 1952
 1953	/*
 1954	 * Pick the lowest SD_NUMA domain, as that would have the smallest
 1955	 * imbalance and would be the first to start moving tasks about.
 1956	 *
 1957	 * And we want to avoid any moving of tasks about, as that would create
 1958	 * random movement of tasks -- counter the numa conditions we're trying
 1959	 * to satisfy here.
 1960	 */
 1961	rcu_read_lock();
 1962	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
 1963	if (sd)
 1964		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
 1965	rcu_read_unlock();
 1966
 1967	/*
 1968	 * Cpusets can break the scheduler domain tree into smaller
 1969	 * balance domains, some of which do not cross NUMA boundaries.
 1970	 * Tasks that are "trapped" in such domains cannot be migrated
 1971	 * elsewhere, so there is no point in (re)trying.
 1972	 */
 1973	if (unlikely(!sd)) {
 1974		sched_setnuma(p, task_node(p));
 1975		return -EINVAL;
 1976	}
 1977
 
 
 
 1978	env.dst_nid = p->numa_preferred_nid;
 1979	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
 1980	taskweight = task_weight(p, env.src_nid, dist);
 1981	groupweight = group_weight(p, env.src_nid, dist);
 1982	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
 1983	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
 1984	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
 1985	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 1986
 1987	/* Try to find a spot on the preferred nid. */
 1988	task_numa_find_cpu(&env, taskimp, groupimp);
 1989
 1990	/*
 1991	 * Look at other nodes in these cases:
 1992	 * - there is no space available on the preferred_nid
 1993	 * - the task is part of a numa_group that is interleaved across
 1994	 *   multiple NUMA nodes; in order to better consolidate the group,
 1995	 *   we need to check other locations.
 1996	 */
 1997	ng = deref_curr_numa_group(p);
 1998	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
 1999		for_each_online_node(nid) {
 2000			if (nid == env.src_nid || nid == p->numa_preferred_nid)
 2001				continue;
 2002
 2003			dist = node_distance(env.src_nid, env.dst_nid);
 2004			if (sched_numa_topology_type == NUMA_BACKPLANE &&
 2005						dist != env.dist) {
 2006				taskweight = task_weight(p, env.src_nid, dist);
 2007				groupweight = group_weight(p, env.src_nid, dist);
 2008			}
 2009
 2010			/* Only consider nodes where both task and groups benefit */
 2011			taskimp = task_weight(p, nid, dist) - taskweight;
 2012			groupimp = group_weight(p, nid, dist) - groupweight;
 2013			if (taskimp < 0 && groupimp < 0)
 2014				continue;
 2015
 2016			env.dist = dist;
 2017			env.dst_nid = nid;
 2018			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 2019			task_numa_find_cpu(&env, taskimp, groupimp);
 2020		}
 2021	}
 2022
 2023	/*
 2024	 * If the task is part of a workload that spans multiple NUMA nodes,
 2025	 * and is migrating into one of the workload's active nodes, remember
 2026	 * this node as the task's preferred numa node, so the workload can
 2027	 * settle down.
 2028	 * A task that migrated to a second choice node will be better off
 2029	 * trying for a better one later. Do not set the preferred node here.
 2030	 */
 2031	if (ng) {
 2032		if (env.best_cpu == -1)
 2033			nid = env.src_nid;
 2034		else
 2035			nid = cpu_to_node(env.best_cpu);
 2036
 2037		if (nid != p->numa_preferred_nid)
 2038			sched_setnuma(p, nid);
 2039	}
 2040
 2041	/* No better CPU than the current one was found. */
 2042	if (env.best_cpu == -1) {
 2043		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
 2044		return -EAGAIN;
 2045	}
 2046
 2047	best_rq = cpu_rq(env.best_cpu);
 
 
 
 
 
 
 
 2048	if (env.best_task == NULL) {
 2049		ret = migrate_task_to(p, env.best_cpu);
 2050		WRITE_ONCE(best_rq->numa_migrate_on, 0);
 2051		if (ret != 0)
 2052			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
 2053		return ret;
 2054	}
 2055
 2056	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
 2057	WRITE_ONCE(best_rq->numa_migrate_on, 0);
 2058
 2059	if (ret != 0)
 2060		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
 2061	put_task_struct(env.best_task);
 2062	return ret;
 2063}
 2064
 2065/* Attempt to migrate a task to a CPU on the preferred node. */
 2066static void numa_migrate_preferred(struct task_struct *p)
 2067{
 2068	unsigned long interval = HZ;
 2069
 2070	/* This task has no NUMA fault statistics yet */
 2071	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
 2072		return;
 2073
 2074	/* Periodically retry migrating the task to the preferred node */
 2075	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
 2076	p->numa_migrate_retry = jiffies + interval;
 2077
 2078	/* Success if task is already running on preferred CPU */
 2079	if (task_node(p) == p->numa_preferred_nid)
 2080		return;
 2081
 2082	/* Otherwise, try migrate to a CPU on the preferred node */
 2083	task_numa_migrate(p);
 2084}
 2085
 2086/*
 2087 * Find out how many nodes on the workload is actively running on. Do this by
 2088 * tracking the nodes from which NUMA hinting faults are triggered. This can
 2089 * be different from the set of nodes where the workload's memory is currently
 2090 * located.
 
 
 
 
 
 2091 */
 2092static void numa_group_count_active_nodes(struct numa_group *numa_group)
 2093{
 2094	unsigned long faults, max_faults = 0;
 2095	int nid, active_nodes = 0;
 2096
 2097	for_each_online_node(nid) {
 2098		faults = group_faults_cpu(numa_group, nid);
 2099		if (faults > max_faults)
 2100			max_faults = faults;
 2101	}
 2102
 2103	for_each_online_node(nid) {
 2104		faults = group_faults_cpu(numa_group, nid);
 2105		if (faults * ACTIVE_NODE_FRACTION > max_faults)
 2106			active_nodes++;
 
 
 
 2107	}
 2108
 2109	numa_group->max_faults_cpu = max_faults;
 2110	numa_group->active_nodes = active_nodes;
 2111}
 2112
 2113/*
 2114 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 2115 * increments. The more local the fault statistics are, the higher the scan
 2116 * period will be for the next scan window. If local/(local+remote) ratio is
 2117 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 2118 * the scan period will decrease. Aim for 70% local accesses.
 2119 */
 2120#define NUMA_PERIOD_SLOTS 10
 2121#define NUMA_PERIOD_THRESHOLD 7
 2122
 2123/*
 2124 * Increase the scan period (slow down scanning) if the majority of
 2125 * our memory is already on our local node, or if the majority of
 2126 * the page accesses are shared with other processes.
 2127 * Otherwise, decrease the scan period.
 2128 */
 2129static void update_task_scan_period(struct task_struct *p,
 2130			unsigned long shared, unsigned long private)
 2131{
 2132	unsigned int period_slot;
 2133	int lr_ratio, ps_ratio;
 2134	int diff;
 2135
 2136	unsigned long remote = p->numa_faults_locality[0];
 2137	unsigned long local = p->numa_faults_locality[1];
 2138
 2139	/*
 2140	 * If there were no record hinting faults then either the task is
 2141	 * completely idle or all activity is areas that are not of interest
 2142	 * to automatic numa balancing. Related to that, if there were failed
 2143	 * migration then it implies we are migrating too quickly or the local
 2144	 * node is overloaded. In either case, scan slower
 2145	 */
 2146	if (local + shared == 0 || p->numa_faults_locality[2]) {
 2147		p->numa_scan_period = min(p->numa_scan_period_max,
 2148			p->numa_scan_period << 1);
 2149
 2150		p->mm->numa_next_scan = jiffies +
 2151			msecs_to_jiffies(p->numa_scan_period);
 2152
 2153		return;
 2154	}
 2155
 2156	/*
 2157	 * Prepare to scale scan period relative to the current period.
 2158	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
 2159	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
 2160	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
 2161	 */
 2162	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
 2163	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
 2164	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
 2165
 2166	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
 2167		/*
 2168		 * Most memory accesses are local. There is no need to
 2169		 * do fast NUMA scanning, since memory is already local.
 2170		 */
 2171		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
 2172		if (!slot)
 2173			slot = 1;
 2174		diff = slot * period_slot;
 2175	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
 2176		/*
 2177		 * Most memory accesses are shared with other tasks.
 2178		 * There is no point in continuing fast NUMA scanning,
 2179		 * since other tasks may just move the memory elsewhere.
 2180		 */
 2181		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
 2182		if (!slot)
 2183			slot = 1;
 2184		diff = slot * period_slot;
 2185	} else {
 
 
 2186		/*
 2187		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
 2188		 * yet they are not on the local NUMA node. Speed up
 2189		 * NUMA scanning to get the memory moved over.
 
 
 
 2190		 */
 2191		int ratio = max(lr_ratio, ps_ratio);
 2192		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
 2193	}
 2194
 2195	p->numa_scan_period = clamp(p->numa_scan_period + diff,
 2196			task_scan_min(p), task_scan_max(p));
 2197	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 2198}
 2199
 2200/*
 2201 * Get the fraction of time the task has been running since the last
 2202 * NUMA placement cycle. The scheduler keeps similar statistics, but
 2203 * decays those on a 32ms period, which is orders of magnitude off
 2204 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 2205 * stats only if the task is so new there are no NUMA statistics yet.
 2206 */
 2207static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
 2208{
 2209	u64 runtime, delta, now;
 2210	/* Use the start of this time slice to avoid calculations. */
 2211	now = p->se.exec_start;
 2212	runtime = p->se.sum_exec_runtime;
 2213
 2214	if (p->last_task_numa_placement) {
 2215		delta = runtime - p->last_sum_exec_runtime;
 2216		*period = now - p->last_task_numa_placement;
 2217
 2218		/* Avoid time going backwards, prevent potential divide error: */
 2219		if (unlikely((s64)*period < 0))
 2220			*period = 0;
 2221	} else {
 2222		delta = p->se.avg.load_sum;
 2223		*period = LOAD_AVG_MAX;
 2224	}
 2225
 2226	p->last_sum_exec_runtime = runtime;
 2227	p->last_task_numa_placement = now;
 2228
 2229	return delta;
 2230}
 2231
 2232/*
 2233 * Determine the preferred nid for a task in a numa_group. This needs to
 2234 * be done in a way that produces consistent results with group_weight,
 2235 * otherwise workloads might not converge.
 2236 */
 2237static int preferred_group_nid(struct task_struct *p, int nid)
 2238{
 2239	nodemask_t nodes;
 2240	int dist;
 2241
 2242	/* Direct connections between all NUMA nodes. */
 2243	if (sched_numa_topology_type == NUMA_DIRECT)
 2244		return nid;
 2245
 2246	/*
 2247	 * On a system with glueless mesh NUMA topology, group_weight
 2248	 * scores nodes according to the number of NUMA hinting faults on
 2249	 * both the node itself, and on nearby nodes.
 2250	 */
 2251	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 2252		unsigned long score, max_score = 0;
 2253		int node, max_node = nid;
 2254
 2255		dist = sched_max_numa_distance;
 2256
 2257		for_each_online_node(node) {
 2258			score = group_weight(p, node, dist);
 2259			if (score > max_score) {
 2260				max_score = score;
 2261				max_node = node;
 2262			}
 2263		}
 2264		return max_node;
 2265	}
 2266
 2267	/*
 2268	 * Finding the preferred nid in a system with NUMA backplane
 2269	 * interconnect topology is more involved. The goal is to locate
 2270	 * tasks from numa_groups near each other in the system, and
 2271	 * untangle workloads from different sides of the system. This requires
 2272	 * searching down the hierarchy of node groups, recursively searching
 2273	 * inside the highest scoring group of nodes. The nodemask tricks
 2274	 * keep the complexity of the search down.
 2275	 */
 2276	nodes = node_online_map;
 2277	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
 2278		unsigned long max_faults = 0;
 2279		nodemask_t max_group = NODE_MASK_NONE;
 2280		int a, b;
 2281
 2282		/* Are there nodes at this distance from each other? */
 2283		if (!find_numa_distance(dist))
 2284			continue;
 2285
 2286		for_each_node_mask(a, nodes) {
 2287			unsigned long faults = 0;
 2288			nodemask_t this_group;
 2289			nodes_clear(this_group);
 2290
 2291			/* Sum group's NUMA faults; includes a==b case. */
 2292			for_each_node_mask(b, nodes) {
 2293				if (node_distance(a, b) < dist) {
 2294					faults += group_faults(p, b);
 2295					node_set(b, this_group);
 2296					node_clear(b, nodes);
 2297				}
 2298			}
 2299
 2300			/* Remember the top group. */
 2301			if (faults > max_faults) {
 2302				max_faults = faults;
 2303				max_group = this_group;
 2304				/*
 2305				 * subtle: at the smallest distance there is
 2306				 * just one node left in each "group", the
 2307				 * winner is the preferred nid.
 2308				 */
 2309				nid = a;
 2310			}
 2311		}
 2312		/* Next round, evaluate the nodes within max_group. */
 2313		if (!max_faults)
 2314			break;
 2315		nodes = max_group;
 2316	}
 2317	return nid;
 2318}
 2319
 2320static void task_numa_placement(struct task_struct *p)
 2321{
 2322	int seq, nid, max_nid = NUMA_NO_NODE;
 2323	unsigned long max_faults = 0;
 2324	unsigned long fault_types[2] = { 0, 0 };
 2325	unsigned long total_faults;
 2326	u64 runtime, period;
 2327	spinlock_t *group_lock = NULL;
 2328	struct numa_group *ng;
 2329
 2330	/*
 2331	 * The p->mm->numa_scan_seq field gets updated without
 2332	 * exclusive access. Use READ_ONCE() here to ensure
 2333	 * that the field is read in a single access:
 2334	 */
 2335	seq = READ_ONCE(p->mm->numa_scan_seq);
 2336	if (p->numa_scan_seq == seq)
 2337		return;
 2338	p->numa_scan_seq = seq;
 2339	p->numa_scan_period_max = task_scan_max(p);
 2340
 2341	total_faults = p->numa_faults_locality[0] +
 2342		       p->numa_faults_locality[1];
 2343	runtime = numa_get_avg_runtime(p, &period);
 2344
 2345	/* If the task is part of a group prevent parallel updates to group stats */
 2346	ng = deref_curr_numa_group(p);
 2347	if (ng) {
 2348		group_lock = &ng->lock;
 2349		spin_lock_irq(group_lock);
 2350	}
 2351
 2352	/* Find the node with the highest number of faults */
 2353	for_each_online_node(nid) {
 2354		/* Keep track of the offsets in numa_faults array */
 2355		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
 2356		unsigned long faults = 0, group_faults = 0;
 2357		int priv;
 2358
 2359		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
 2360			long diff, f_diff, f_weight;
 2361
 2362			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
 2363			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
 2364			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
 2365			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
 2366
 2367			/* Decay existing window, copy faults since last scan */
 2368			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
 2369			fault_types[priv] += p->numa_faults[membuf_idx];
 2370			p->numa_faults[membuf_idx] = 0;
 2371
 2372			/*
 2373			 * Normalize the faults_from, so all tasks in a group
 2374			 * count according to CPU use, instead of by the raw
 2375			 * number of faults. Tasks with little runtime have
 2376			 * little over-all impact on throughput, and thus their
 2377			 * faults are less important.
 2378			 */
 2379			f_weight = div64_u64(runtime << 16, period + 1);
 2380			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
 2381				   (total_faults + 1);
 2382			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
 2383			p->numa_faults[cpubuf_idx] = 0;
 2384
 2385			p->numa_faults[mem_idx] += diff;
 2386			p->numa_faults[cpu_idx] += f_diff;
 2387			faults += p->numa_faults[mem_idx];
 2388			p->total_numa_faults += diff;
 2389			if (ng) {
 2390				/*
 2391				 * safe because we can only change our own group
 2392				 *
 2393				 * mem_idx represents the offset for a given
 2394				 * nid and priv in a specific region because it
 2395				 * is at the beginning of the numa_faults array.
 2396				 */
 2397				ng->faults[mem_idx] += diff;
 2398				ng->faults_cpu[mem_idx] += f_diff;
 2399				ng->total_faults += diff;
 2400				group_faults += ng->faults[mem_idx];
 2401			}
 2402		}
 2403
 2404		if (!ng) {
 2405			if (faults > max_faults) {
 2406				max_faults = faults;
 2407				max_nid = nid;
 2408			}
 2409		} else if (group_faults > max_faults) {
 2410			max_faults = group_faults;
 2411			max_nid = nid;
 2412		}
 
 
 
 
 
 2413	}
 2414
 2415	if (ng) {
 2416		numa_group_count_active_nodes(ng);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2417		spin_unlock_irq(group_lock);
 2418		max_nid = preferred_group_nid(p, max_nid);
 2419	}
 2420
 2421	if (max_faults) {
 2422		/* Set the new preferred node */
 2423		if (max_nid != p->numa_preferred_nid)
 2424			sched_setnuma(p, max_nid);
 
 2425	}
 2426
 2427	update_task_scan_period(p, fault_types[0], fault_types[1]);
 2428}
 2429
 2430static inline int get_numa_group(struct numa_group *grp)
 2431{
 2432	return refcount_inc_not_zero(&grp->refcount);
 2433}
 2434
 2435static inline void put_numa_group(struct numa_group *grp)
 2436{
 2437	if (refcount_dec_and_test(&grp->refcount))
 2438		kfree_rcu(grp, rcu);
 2439}
 2440
 2441static void task_numa_group(struct task_struct *p, int cpupid, int flags,
 2442			int *priv)
 2443{
 2444	struct numa_group *grp, *my_grp;
 2445	struct task_struct *tsk;
 2446	bool join = false;
 2447	int cpu = cpupid_to_cpu(cpupid);
 2448	int i;
 2449
 2450	if (unlikely(!deref_curr_numa_group(p))) {
 2451		unsigned int size = sizeof(struct numa_group) +
 2452				    4*nr_node_ids*sizeof(unsigned long);
 2453
 2454		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 2455		if (!grp)
 2456			return;
 2457
 2458		refcount_set(&grp->refcount, 1);
 2459		grp->active_nodes = 1;
 2460		grp->max_faults_cpu = 0;
 2461		spin_lock_init(&grp->lock);
 
 2462		grp->gid = p->pid;
 2463		/* Second half of the array tracks nids where faults happen */
 2464		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
 2465						nr_node_ids;
 2466
 
 
 2467		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2468			grp->faults[i] = p->numa_faults[i];
 2469
 2470		grp->total_faults = p->total_numa_faults;
 2471
 
 2472		grp->nr_tasks++;
 2473		rcu_assign_pointer(p->numa_group, grp);
 2474	}
 2475
 2476	rcu_read_lock();
 2477	tsk = READ_ONCE(cpu_rq(cpu)->curr);
 2478
 2479	if (!cpupid_match_pid(tsk, cpupid))
 2480		goto no_join;
 2481
 2482	grp = rcu_dereference(tsk->numa_group);
 2483	if (!grp)
 2484		goto no_join;
 2485
 2486	my_grp = deref_curr_numa_group(p);
 2487	if (grp == my_grp)
 2488		goto no_join;
 2489
 2490	/*
 2491	 * Only join the other group if its bigger; if we're the bigger group,
 2492	 * the other task will join us.
 2493	 */
 2494	if (my_grp->nr_tasks > grp->nr_tasks)
 2495		goto no_join;
 2496
 2497	/*
 2498	 * Tie-break on the grp address.
 2499	 */
 2500	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
 2501		goto no_join;
 2502
 2503	/* Always join threads in the same process. */
 2504	if (tsk->mm == current->mm)
 2505		join = true;
 2506
 2507	/* Simple filter to avoid false positives due to PID collisions */
 2508	if (flags & TNF_SHARED)
 2509		join = true;
 2510
 2511	/* Update priv based on whether false sharing was detected */
 2512	*priv = !join;
 2513
 2514	if (join && !get_numa_group(grp))
 2515		goto no_join;
 2516
 2517	rcu_read_unlock();
 2518
 2519	if (!join)
 2520		return;
 2521
 2522	BUG_ON(irqs_disabled());
 2523	double_lock_irq(&my_grp->lock, &grp->lock);
 2524
 2525	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
 2526		my_grp->faults[i] -= p->numa_faults[i];
 2527		grp->faults[i] += p->numa_faults[i];
 2528	}
 2529	my_grp->total_faults -= p->total_numa_faults;
 2530	grp->total_faults += p->total_numa_faults;
 2531
 
 2532	my_grp->nr_tasks--;
 2533	grp->nr_tasks++;
 2534
 2535	spin_unlock(&my_grp->lock);
 2536	spin_unlock_irq(&grp->lock);
 2537
 2538	rcu_assign_pointer(p->numa_group, grp);
 2539
 2540	put_numa_group(my_grp);
 2541	return;
 2542
 2543no_join:
 2544	rcu_read_unlock();
 2545	return;
 2546}
 2547
 2548/*
 2549 * Get rid of NUMA statistics associated with a task (either current or dead).
 2550 * If @final is set, the task is dead and has reached refcount zero, so we can
 2551 * safely free all relevant data structures. Otherwise, there might be
 2552 * concurrent reads from places like load balancing and procfs, and we should
 2553 * reset the data back to default state without freeing ->numa_faults.
 2554 */
 2555void task_numa_free(struct task_struct *p, bool final)
 2556{
 2557	/* safe: p either is current or is being freed by current */
 2558	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
 2559	unsigned long *numa_faults = p->numa_faults;
 2560	unsigned long flags;
 2561	int i;
 2562
 2563	if (!numa_faults)
 2564		return;
 2565
 2566	if (grp) {
 2567		spin_lock_irqsave(&grp->lock, flags);
 2568		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2569			grp->faults[i] -= p->numa_faults[i];
 2570		grp->total_faults -= p->total_numa_faults;
 2571
 
 2572		grp->nr_tasks--;
 2573		spin_unlock_irqrestore(&grp->lock, flags);
 2574		RCU_INIT_POINTER(p->numa_group, NULL);
 2575		put_numa_group(grp);
 2576	}
 2577
 2578	if (final) {
 2579		p->numa_faults = NULL;
 2580		kfree(numa_faults);
 2581	} else {
 2582		p->total_numa_faults = 0;
 2583		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2584			numa_faults[i] = 0;
 2585	}
 2586}
 2587
 2588/*
 2589 * Got a PROT_NONE fault for a page on @node.
 2590 */
 2591void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
 2592{
 2593	struct task_struct *p = current;
 2594	bool migrated = flags & TNF_MIGRATED;
 2595	int cpu_node = task_node(current);
 2596	int local = !!(flags & TNF_FAULT_LOCAL);
 2597	struct numa_group *ng;
 2598	int priv;
 2599
 2600	if (!static_branch_likely(&sched_numa_balancing))
 2601		return;
 2602
 2603	/* for example, ksmd faulting in a user's mm */
 2604	if (!p->mm)
 2605		return;
 2606
 
 
 
 
 2607	/* Allocate buffer to track faults on a per-node basis */
 2608	if (unlikely(!p->numa_faults)) {
 2609		int size = sizeof(*p->numa_faults) *
 2610			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
 2611
 2612		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
 2613		if (!p->numa_faults)
 2614			return;
 2615
 
 
 
 
 
 
 
 
 
 
 2616		p->total_numa_faults = 0;
 2617		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 2618	}
 2619
 2620	/*
 2621	 * First accesses are treated as private, otherwise consider accesses
 2622	 * to be private if the accessing pid has not changed
 2623	 */
 2624	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
 2625		priv = 1;
 2626	} else {
 2627		priv = cpupid_match_pid(p, last_cpupid);
 2628		if (!priv && !(flags & TNF_NO_GROUP))
 2629			task_numa_group(p, last_cpupid, flags, &priv);
 2630	}
 2631
 2632	/*
 2633	 * If a workload spans multiple NUMA nodes, a shared fault that
 2634	 * occurs wholly within the set of nodes that the workload is
 2635	 * actively using should be counted as local. This allows the
 2636	 * scan rate to slow down when a workload has settled down.
 2637	 */
 2638	ng = deref_curr_numa_group(p);
 2639	if (!priv && !local && ng && ng->active_nodes > 1 &&
 2640				numa_is_active_node(cpu_node, ng) &&
 2641				numa_is_active_node(mem_node, ng))
 2642		local = 1;
 2643
 2644	/*
 2645	 * Retry to migrate task to preferred node periodically, in case it
 2646	 * previously failed, or the scheduler moved us.
 2647	 */
 2648	if (time_after(jiffies, p->numa_migrate_retry)) {
 2649		task_numa_placement(p);
 2650		numa_migrate_preferred(p);
 2651	}
 2652
 2653	if (migrated)
 2654		p->numa_pages_migrated += pages;
 2655	if (flags & TNF_MIGRATE_FAIL)
 2656		p->numa_faults_locality[2] += pages;
 2657
 2658	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
 2659	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
 2660	p->numa_faults_locality[local] += pages;
 2661}
 2662
 2663static void reset_ptenuma_scan(struct task_struct *p)
 2664{
 2665	/*
 2666	 * We only did a read acquisition of the mmap sem, so
 2667	 * p->mm->numa_scan_seq is written to without exclusive access
 2668	 * and the update is not guaranteed to be atomic. That's not
 2669	 * much of an issue though, since this is just used for
 2670	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
 2671	 * expensive, to avoid any form of compiler optimizations:
 2672	 */
 2673	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
 2674	p->mm->numa_scan_offset = 0;
 2675}
 2676
 2677/*
 2678 * The expensive part of numa migration is done from task_work context.
 2679 * Triggered from task_tick_numa().
 2680 */
 2681static void task_numa_work(struct callback_head *work)
 2682{
 2683	unsigned long migrate, next_scan, now = jiffies;
 2684	struct task_struct *p = current;
 2685	struct mm_struct *mm = p->mm;
 2686	u64 runtime = p->se.sum_exec_runtime;
 2687	struct vm_area_struct *vma;
 2688	unsigned long start, end;
 2689	unsigned long nr_pte_updates = 0;
 2690	long pages, virtpages;
 2691
 2692	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
 2693
 2694	work->next = work;
 2695	/*
 2696	 * Who cares about NUMA placement when they're dying.
 2697	 *
 2698	 * NOTE: make sure not to dereference p->mm before this check,
 2699	 * exit_task_work() happens _after_ exit_mm() so we could be called
 2700	 * without p->mm even though we still had it when we enqueued this
 2701	 * work.
 2702	 */
 2703	if (p->flags & PF_EXITING)
 2704		return;
 2705
 2706	if (!mm->numa_next_scan) {
 2707		mm->numa_next_scan = now +
 2708			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 2709	}
 2710
 2711	/*
 2712	 * Enforce maximal scan/migration frequency..
 2713	 */
 2714	migrate = mm->numa_next_scan;
 2715	if (time_before(now, migrate))
 2716		return;
 2717
 2718	if (p->numa_scan_period == 0) {
 2719		p->numa_scan_period_max = task_scan_max(p);
 2720		p->numa_scan_period = task_scan_start(p);
 2721	}
 2722
 2723	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 2724	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
 2725		return;
 2726
 2727	/*
 2728	 * Delay this task enough that another task of this mm will likely win
 2729	 * the next time around.
 2730	 */
 2731	p->node_stamp += 2 * TICK_NSEC;
 2732
 2733	start = mm->numa_scan_offset;
 2734	pages = sysctl_numa_balancing_scan_size;
 2735	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 2736	virtpages = pages * 8;	   /* Scan up to this much virtual space */
 2737	if (!pages)
 2738		return;
 2739
 2740
 2741	if (!mmap_read_trylock(mm))
 2742		return;
 2743	vma = find_vma(mm, start);
 2744	if (!vma) {
 2745		reset_ptenuma_scan(p);
 2746		start = 0;
 2747		vma = mm->mmap;
 2748	}
 2749	for (; vma; vma = vma->vm_next) {
 2750		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
 2751			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
 2752			continue;
 2753		}
 2754
 2755		/*
 2756		 * Shared library pages mapped by multiple processes are not
 2757		 * migrated as it is expected they are cache replicated. Avoid
 2758		 * hinting faults in read-only file-backed mappings or the vdso
 2759		 * as migrating the pages will be of marginal benefit.
 2760		 */
 2761		if (!vma->vm_mm ||
 2762		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
 2763			continue;
 2764
 2765		/*
 2766		 * Skip inaccessible VMAs to avoid any confusion between
 2767		 * PROT_NONE and NUMA hinting ptes
 2768		 */
 2769		if (!vma_is_accessible(vma))
 2770			continue;
 2771
 2772		do {
 2773			start = max(start, vma->vm_start);
 2774			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 2775			end = min(end, vma->vm_end);
 2776			nr_pte_updates = change_prot_numa(vma, start, end);
 2777
 2778			/*
 2779			 * Try to scan sysctl_numa_balancing_size worth of
 2780			 * hpages that have at least one present PTE that
 2781			 * is not already pte-numa. If the VMA contains
 2782			 * areas that are unused or already full of prot_numa
 2783			 * PTEs, scan up to virtpages, to skip through those
 2784			 * areas faster.
 2785			 */
 2786			if (nr_pte_updates)
 2787				pages -= (end - start) >> PAGE_SHIFT;
 2788			virtpages -= (end - start) >> PAGE_SHIFT;
 2789
 2790			start = end;
 2791			if (pages <= 0 || virtpages <= 0)
 2792				goto out;
 2793
 2794			cond_resched();
 2795		} while (end != vma->vm_end);
 2796	}
 2797
 2798out:
 2799	/*
 2800	 * It is possible to reach the end of the VMA list but the last few
 2801	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
 2802	 * would find the !migratable VMA on the next scan but not reset the
 2803	 * scanner to the start so check it now.
 2804	 */
 2805	if (vma)
 2806		mm->numa_scan_offset = start;
 2807	else
 2808		reset_ptenuma_scan(p);
 2809	mmap_read_unlock(mm);
 2810
 2811	/*
 2812	 * Make sure tasks use at least 32x as much time to run other code
 2813	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
 2814	 * Usually update_task_scan_period slows down scanning enough; on an
 2815	 * overloaded system we need to limit overhead on a per task basis.
 2816	 */
 2817	if (unlikely(p->se.sum_exec_runtime != runtime)) {
 2818		u64 diff = p->se.sum_exec_runtime - runtime;
 2819		p->node_stamp += 32 * diff;
 2820	}
 2821}
 2822
 2823void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
 2824{
 2825	int mm_users = 0;
 2826	struct mm_struct *mm = p->mm;
 2827
 2828	if (mm) {
 2829		mm_users = atomic_read(&mm->mm_users);
 2830		if (mm_users == 1) {
 2831			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 2832			mm->numa_scan_seq = 0;
 2833		}
 2834	}
 2835	p->node_stamp			= 0;
 2836	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
 2837	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
 2838	/* Protect against double add, see task_tick_numa and task_numa_work */
 2839	p->numa_work.next		= &p->numa_work;
 2840	p->numa_faults			= NULL;
 2841	RCU_INIT_POINTER(p->numa_group, NULL);
 2842	p->last_task_numa_placement	= 0;
 2843	p->last_sum_exec_runtime	= 0;
 2844
 2845	init_task_work(&p->numa_work, task_numa_work);
 2846
 2847	/* New address space, reset the preferred nid */
 2848	if (!(clone_flags & CLONE_VM)) {
 2849		p->numa_preferred_nid = NUMA_NO_NODE;
 2850		return;
 2851	}
 2852
 2853	/*
 2854	 * New thread, keep existing numa_preferred_nid which should be copied
 2855	 * already by arch_dup_task_struct but stagger when scans start.
 2856	 */
 2857	if (mm) {
 2858		unsigned int delay;
 2859
 2860		delay = min_t(unsigned int, task_scan_max(current),
 2861			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
 2862		delay += 2 * TICK_NSEC;
 2863		p->node_stamp = delay;
 2864	}
 2865}
 2866
 2867/*
 2868 * Drive the periodic memory faults..
 2869 */
 2870static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 2871{
 2872	struct callback_head *work = &curr->numa_work;
 2873	u64 period, now;
 2874
 2875	/*
 2876	 * We don't care about NUMA placement if we don't have memory.
 2877	 */
 2878	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
 2879		return;
 2880
 2881	/*
 2882	 * Using runtime rather than walltime has the dual advantage that
 2883	 * we (mostly) drive the selection from busy threads and that the
 2884	 * task needs to have done some actual work before we bother with
 2885	 * NUMA placement.
 2886	 */
 2887	now = curr->se.sum_exec_runtime;
 2888	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
 2889
 2890	if (now > curr->node_stamp + period) {
 2891		if (!curr->node_stamp)
 2892			curr->numa_scan_period = task_scan_start(curr);
 2893		curr->node_stamp += period;
 2894
 2895		if (!time_before(jiffies, curr->mm->numa_next_scan))
 2896			task_work_add(curr, work, TWA_RESUME);
 
 
 2897	}
 2898}
 2899
 2900static void update_scan_period(struct task_struct *p, int new_cpu)
 2901{
 2902	int src_nid = cpu_to_node(task_cpu(p));
 2903	int dst_nid = cpu_to_node(new_cpu);
 2904
 2905	if (!static_branch_likely(&sched_numa_balancing))
 2906		return;
 2907
 2908	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
 2909		return;
 2910
 2911	if (src_nid == dst_nid)
 2912		return;
 2913
 2914	/*
 2915	 * Allow resets if faults have been trapped before one scan
 2916	 * has completed. This is most likely due to a new task that
 2917	 * is pulled cross-node due to wakeups or load balancing.
 2918	 */
 2919	if (p->numa_scan_seq) {
 2920		/*
 2921		 * Avoid scan adjustments if moving to the preferred
 2922		 * node or if the task was not previously running on
 2923		 * the preferred node.
 2924		 */
 2925		if (dst_nid == p->numa_preferred_nid ||
 2926		    (p->numa_preferred_nid != NUMA_NO_NODE &&
 2927			src_nid != p->numa_preferred_nid))
 2928			return;
 2929	}
 2930
 2931	p->numa_scan_period = task_scan_start(p);
 2932}
 2933
 2934#else
 2935static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 2936{
 2937}
 2938
 2939static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 2940{
 2941}
 2942
 2943static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 2944{
 2945}
 2946
 2947static inline void update_scan_period(struct task_struct *p, int new_cpu)
 2948{
 2949}
 2950
 2951#endif /* CONFIG_NUMA_BALANCING */
 2952
 2953static void
 2954account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 2955{
 2956	update_load_add(&cfs_rq->load, se->load.weight);
 
 
 2957#ifdef CONFIG_SMP
 2958	if (entity_is_task(se)) {
 2959		struct rq *rq = rq_of(cfs_rq);
 2960
 2961		account_numa_enqueue(rq, task_of(se));
 2962		list_add(&se->group_node, &rq->cfs_tasks);
 2963	}
 2964#endif
 2965	cfs_rq->nr_running++;
 2966}
 2967
 2968static void
 2969account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 2970{
 2971	update_load_sub(&cfs_rq->load, se->load.weight);
 2972#ifdef CONFIG_SMP
 
 2973	if (entity_is_task(se)) {
 2974		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
 2975		list_del_init(&se->group_node);
 2976	}
 2977#endif
 2978	cfs_rq->nr_running--;
 2979}
 2980
 2981/*
 2982 * Signed add and clamp on underflow.
 2983 *
 2984 * Explicitly do a load-store to ensure the intermediate value never hits
 2985 * memory. This allows lockless observations without ever seeing the negative
 2986 * values.
 2987 */
 2988#define add_positive(_ptr, _val) do {                           \
 2989	typeof(_ptr) ptr = (_ptr);                              \
 2990	typeof(_val) val = (_val);                              \
 2991	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
 2992								\
 2993	res = var + val;                                        \
 2994								\
 2995	if (val < 0 && res > var)                               \
 2996		res = 0;                                        \
 2997								\
 2998	WRITE_ONCE(*ptr, res);                                  \
 2999} while (0)
 3000
 3001/*
 3002 * Unsigned subtract and clamp on underflow.
 3003 *
 3004 * Explicitly do a load-store to ensure the intermediate value never hits
 3005 * memory. This allows lockless observations without ever seeing the negative
 3006 * values.
 3007 */
 3008#define sub_positive(_ptr, _val) do {				\
 3009	typeof(_ptr) ptr = (_ptr);				\
 3010	typeof(*ptr) val = (_val);				\
 3011	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
 3012	res = var - val;					\
 3013	if (res > var)						\
 3014		res = 0;					\
 3015	WRITE_ONCE(*ptr, res);					\
 3016} while (0)
 3017
 3018/*
 3019 * Remove and clamp on negative, from a local variable.
 3020 *
 3021 * A variant of sub_positive(), which does not use explicit load-store
 3022 * and is thus optimized for local variable updates.
 3023 */
 3024#define lsub_positive(_ptr, _val) do {				\
 3025	typeof(_ptr) ptr = (_ptr);				\
 3026	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
 3027} while (0)
 3028
 3029#ifdef CONFIG_SMP
 3030static inline void
 3031enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3032{
 3033	cfs_rq->avg.load_avg += se->avg.load_avg;
 3034	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
 
 
 
 
 
 
 
 
 
 
 3035}
 3036
 3037static inline void
 3038dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3039{
 3040	u32 divider = get_pelt_divider(&se->avg);
 3041	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
 3042	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
 3043}
 3044#else
 3045static inline void
 3046enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 3047static inline void
 3048dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 3049#endif
 
 
 
 3050
 
 
 
 
 
 
 
 
 3051static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 3052			    unsigned long weight)
 3053{
 3054	if (se->on_rq) {
 3055		/* commit outstanding execution time */
 3056		if (cfs_rq->curr == se)
 3057			update_curr(cfs_rq);
 3058		update_load_sub(&cfs_rq->load, se->load.weight);
 3059	}
 3060	dequeue_load_avg(cfs_rq, se);
 3061
 3062	update_load_set(&se->load, weight);
 3063
 3064#ifdef CONFIG_SMP
 3065	do {
 3066		u32 divider = get_pelt_divider(&se->avg);
 3067
 3068		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
 3069	} while (0);
 3070#endif
 3071
 3072	enqueue_load_avg(cfs_rq, se);
 3073	if (se->on_rq)
 3074		update_load_add(&cfs_rq->load, se->load.weight);
 3075
 3076}
 3077
 3078void reweight_task(struct task_struct *p, int prio)
 3079{
 3080	struct sched_entity *se = &p->se;
 3081	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3082	struct load_weight *load = &se->load;
 3083	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
 3084
 3085	reweight_entity(cfs_rq, se, weight);
 3086	load->inv_weight = sched_prio_to_wmult[prio];
 3087}
 3088
 3089#ifdef CONFIG_FAIR_GROUP_SCHED
 3090#ifdef CONFIG_SMP
 3091/*
 3092 * All this does is approximate the hierarchical proportion which includes that
 3093 * global sum we all love to hate.
 3094 *
 3095 * That is, the weight of a group entity, is the proportional share of the
 3096 * group weight based on the group runqueue weights. That is:
 3097 *
 3098 *                     tg->weight * grq->load.weight
 3099 *   ge->load.weight = -----------------------------               (1)
 3100 *                       \Sum grq->load.weight
 3101 *
 3102 * Now, because computing that sum is prohibitively expensive to compute (been
 3103 * there, done that) we approximate it with this average stuff. The average
 3104 * moves slower and therefore the approximation is cheaper and more stable.
 3105 *
 3106 * So instead of the above, we substitute:
 3107 *
 3108 *   grq->load.weight -> grq->avg.load_avg                         (2)
 3109 *
 3110 * which yields the following:
 3111 *
 3112 *                     tg->weight * grq->avg.load_avg
 3113 *   ge->load.weight = ------------------------------              (3)
 3114 *                             tg->load_avg
 3115 *
 3116 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 3117 *
 3118 * That is shares_avg, and it is right (given the approximation (2)).
 3119 *
 3120 * The problem with it is that because the average is slow -- it was designed
 3121 * to be exactly that of course -- this leads to transients in boundary
 3122 * conditions. In specific, the case where the group was idle and we start the
 3123 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 3124 * yielding bad latency etc..
 3125 *
 3126 * Now, in that special case (1) reduces to:
 3127 *
 3128 *                     tg->weight * grq->load.weight
 3129 *   ge->load.weight = ----------------------------- = tg->weight   (4)
 3130 *                         grp->load.weight
 3131 *
 3132 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 3133 *
 3134 * So what we do is modify our approximation (3) to approach (4) in the (near)
 3135 * UP case, like:
 3136 *
 3137 *   ge->load.weight =
 3138 *
 3139 *              tg->weight * grq->load.weight
 3140 *     ---------------------------------------------------         (5)
 3141 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 3142 *
 3143 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 3144 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 3145 *
 3146 *
 3147 *                     tg->weight * grq->load.weight
 3148 *   ge->load.weight = -----------------------------		   (6)
 3149 *                             tg_load_avg'
 3150 *
 3151 * Where:
 3152 *
 3153 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 3154 *                  max(grq->load.weight, grq->avg.load_avg)
 3155 *
 3156 * And that is shares_weight and is icky. In the (near) UP case it approaches
 3157 * (4) while in the normal case it approaches (3). It consistently
 3158 * overestimates the ge->load.weight and therefore:
 3159 *
 3160 *   \Sum ge->load.weight >= tg->weight
 3161 *
 3162 * hence icky!
 3163 */
 3164static long calc_group_shares(struct cfs_rq *cfs_rq)
 3165{
 3166	long tg_weight, tg_shares, load, shares;
 3167	struct task_group *tg = cfs_rq->tg;
 3168
 3169	tg_shares = READ_ONCE(tg->shares);
 3170
 3171	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
 3172
 3173	tg_weight = atomic_long_read(&tg->load_avg);
 3174
 3175	/* Ensure tg_weight >= load */
 3176	tg_weight -= cfs_rq->tg_load_avg_contrib;
 3177	tg_weight += load;
 3178
 3179	shares = (tg_shares * load);
 3180	if (tg_weight)
 3181		shares /= tg_weight;
 3182
 3183	/*
 3184	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
 3185	 * of a group with small tg->shares value. It is a floor value which is
 3186	 * assigned as a minimum load.weight to the sched_entity representing
 3187	 * the group on a CPU.
 3188	 *
 3189	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
 3190	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
 3191	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
 3192	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
 3193	 * instead of 0.
 3194	 */
 3195	return clamp_t(long, shares, MIN_SHARES, tg_shares);
 3196}
 3197#endif /* CONFIG_SMP */
 3198
 3199static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
 3200
 3201/*
 3202 * Recomputes the group entity based on the current state of its group
 3203 * runqueue.
 3204 */
 3205static void update_cfs_group(struct sched_entity *se)
 3206{
 3207	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 
 3208	long shares;
 3209
 3210	if (!gcfs_rq)
 3211		return;
 3212
 3213	if (throttled_hierarchy(gcfs_rq))
 3214		return;
 3215
 3216#ifndef CONFIG_SMP
 3217	shares = READ_ONCE(gcfs_rq->tg->shares);
 3218
 3219	if (likely(se->load.weight == shares))
 3220		return;
 3221#else
 3222	shares   = calc_group_shares(gcfs_rq);
 3223#endif
 
 3224
 3225	reweight_entity(cfs_rq_of(se), se, shares);
 3226}
 3227
 3228#else /* CONFIG_FAIR_GROUP_SCHED */
 3229static inline void update_cfs_group(struct sched_entity *se)
 3230{
 3231}
 3232#endif /* CONFIG_FAIR_GROUP_SCHED */
 3233
 3234static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
 3235{
 3236	struct rq *rq = rq_of(cfs_rq);
 3237
 3238	if (&rq->cfs == cfs_rq) {
 3239		/*
 3240		 * There are a few boundary cases this might miss but it should
 3241		 * get called often enough that that should (hopefully) not be
 3242		 * a real problem.
 3243		 *
 3244		 * It will not get called when we go idle, because the idle
 3245		 * thread is a different class (!fair), nor will the utilization
 3246		 * number include things like RT tasks.
 3247		 *
 3248		 * As is, the util number is not freq-invariant (we'd have to
 3249		 * implement arch_scale_freq_capacity() for that).
 3250		 *
 3251		 * See cpu_util().
 3252		 */
 3253		cpufreq_update_util(rq, flags);
 3254	}
 3255}
 3256
 3257#ifdef CONFIG_SMP
 3258#ifdef CONFIG_FAIR_GROUP_SCHED
 3259/*
 3260 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
 3261 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
 3262 * bottom-up, we only have to test whether the cfs_rq before us on the list
 3263 * is our child.
 3264 * If cfs_rq is not on the list, test whether a child needs its to be added to
 3265 * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
 3266 */
 3267static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
 3268{
 3269	struct cfs_rq *prev_cfs_rq;
 3270	struct list_head *prev;
 3271
 3272	if (cfs_rq->on_list) {
 3273		prev = cfs_rq->leaf_cfs_rq_list.prev;
 3274	} else {
 3275		struct rq *rq = rq_of(cfs_rq);
 3276
 3277		prev = rq->tmp_alone_branch;
 3278	}
 3279
 3280	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
 3281
 3282	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
 3283}
 
 
 
 
 
 
 
 3284
 3285static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
 
 
 
 
 3286{
 3287	if (cfs_rq->load.weight)
 3288		return false;
 3289
 3290	if (cfs_rq->avg.load_sum)
 3291		return false;
 3292
 3293	if (cfs_rq->avg.util_sum)
 3294		return false;
 3295
 3296	if (cfs_rq->avg.runnable_sum)
 3297		return false;
 3298
 3299	if (child_cfs_rq_on_list(cfs_rq))
 3300		return false;
 3301
 3302	/*
 3303	 * _avg must be null when _sum are null because _avg = _sum / divider
 3304	 * Make sure that rounding and/or propagation of PELT values never
 3305	 * break this.
 3306	 */
 3307	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
 3308		      cfs_rq->avg.util_avg ||
 3309		      cfs_rq->avg.runnable_avg);
 3310
 3311	return true;
 3312}
 3313
 3314/**
 3315 * update_tg_load_avg - update the tg's load avg
 3316 * @cfs_rq: the cfs_rq whose avg changed
 3317 *
 3318 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 3319 * However, because tg->load_avg is a global value there are performance
 3320 * considerations.
 3321 *
 3322 * In order to avoid having to look at the other cfs_rq's, we use a
 3323 * differential update where we store the last value we propagated. This in
 3324 * turn allows skipping updates if the differential is 'small'.
 3325 *
 3326 * Updating tg's load_avg is necessary before update_cfs_share().
 3327 */
 3328static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
 3329{
 3330	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
 3331
 3332	/*
 3333	 * No need to update load_avg for root_task_group as it is not used.
 
 
 
 
 3334	 */
 3335	if (cfs_rq->tg == &root_task_group)
 3336		return;
 3337
 3338	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
 3339		atomic_long_add(delta, &cfs_rq->tg->load_avg);
 3340		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
 3341	}
 
 
 
 
 3342}
 3343
 3344/*
 3345 * Called within set_task_rq() right before setting a task's CPU. The
 3346 * caller only guarantees p->pi_lock is held; no other assumptions,
 3347 * including the state of rq->lock, should be made.
 
 
 3348 */
 3349void set_task_rq_fair(struct sched_entity *se,
 3350		      struct cfs_rq *prev, struct cfs_rq *next)
 3351{
 3352	u64 p_last_update_time;
 3353	u64 n_last_update_time;
 3354
 3355	if (!sched_feat(ATTACH_AGE_LOAD))
 3356		return;
 
 
 3357
 3358	/*
 3359	 * We are supposed to update the task to "current" time, then its up to
 3360	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
 3361	 * getting what current time is, so simply throw away the out-of-date
 3362	 * time. This will result in the wakee task is less decayed, but giving
 3363	 * the wakee more load sounds not bad.
 3364	 */
 3365	if (!(se->avg.last_update_time && prev))
 3366		return;
 3367
 3368#ifndef CONFIG_64BIT
 3369	{
 3370		u64 p_last_update_time_copy;
 3371		u64 n_last_update_time_copy;
 3372
 3373		do {
 3374			p_last_update_time_copy = prev->load_last_update_time_copy;
 3375			n_last_update_time_copy = next->load_last_update_time_copy;
 3376
 3377			smp_rmb();
 3378
 3379			p_last_update_time = prev->avg.last_update_time;
 3380			n_last_update_time = next->avg.last_update_time;
 3381
 3382		} while (p_last_update_time != p_last_update_time_copy ||
 3383			 n_last_update_time != n_last_update_time_copy);
 3384	}
 3385#else
 3386	p_last_update_time = prev->avg.last_update_time;
 3387	n_last_update_time = next->avg.last_update_time;
 3388#endif
 3389	__update_load_avg_blocked_se(p_last_update_time, se);
 3390	se->avg.last_update_time = n_last_update_time;
 3391}
 3392
 3393
 3394/*
 3395 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 3396 * propagate its contribution. The key to this propagation is the invariant
 3397 * that for each group:
 3398 *
 3399 *   ge->avg == grq->avg						(1)
 3400 *
 3401 * _IFF_ we look at the pure running and runnable sums. Because they
 3402 * represent the very same entity, just at different points in the hierarchy.
 3403 *
 3404 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
 3405 * and simply copies the running/runnable sum over (but still wrong, because
 3406 * the group entity and group rq do not have their PELT windows aligned).
 3407 *
 3408 * However, update_tg_cfs_load() is more complex. So we have:
 3409 *
 3410 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 
 
 3411 *
 3412 * And since, like util, the runnable part should be directly transferable,
 3413 * the following would _appear_ to be the straight forward approach:
 3414 *
 3415 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
 
 
 3416 *
 3417 * And per (1) we have:
 
 3418 *
 3419 *   ge->avg.runnable_avg == grq->avg.runnable_avg
 3420 *
 3421 * Which gives:
 3422 *
 3423 *                      ge->load.weight * grq->avg.load_avg
 3424 *   ge->avg.load_avg = -----------------------------------		(4)
 3425 *                               grq->load.weight
 3426 *
 3427 * Except that is wrong!
 3428 *
 3429 * Because while for entities historical weight is not important and we
 3430 * really only care about our future and therefore can consider a pure
 3431 * runnable sum, runqueues can NOT do this.
 3432 *
 3433 * We specifically want runqueues to have a load_avg that includes
 3434 * historical weights. Those represent the blocked load, the load we expect
 3435 * to (shortly) return to us. This only works by keeping the weights as
 3436 * integral part of the sum. We therefore cannot decompose as per (3).
 3437 *
 3438 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 3439 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 3440 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 3441 * runnable section of these tasks overlap (or not). If they were to perfectly
 3442 * align the rq as a whole would be runnable 2/3 of the time. If however we
 3443 * always have at least 1 runnable task, the rq as a whole is always runnable.
 3444 *
 3445 * So we'll have to approximate.. :/
 3446 *
 3447 * Given the constraint:
 3448 *
 3449 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
 3450 *
 3451 * We can construct a rule that adds runnable to a rq by assuming minimal
 3452 * overlap.
 3453 *
 3454 * On removal, we'll assume each task is equally runnable; which yields:
 3455 *
 3456 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
 3457 *
 3458 * XXX: only do this for the part of runnable > running ?
 3459 *
 
 
 
 
 3460 */
 3461
 3462static inline void
 3463update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3464{
 3465	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
 3466	u32 divider;
 3467
 3468	/* Nothing to update */
 3469	if (!delta)
 3470		return;
 3471
 3472	/*
 3473	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3474	 * See ___update_load_avg() for details.
 3475	 */
 3476	divider = get_pelt_divider(&cfs_rq->avg);
 3477
 3478	/* Set new sched_entity's utilization */
 3479	se->avg.util_avg = gcfs_rq->avg.util_avg;
 3480	se->avg.util_sum = se->avg.util_avg * divider;
 3481
 3482	/* Update parent cfs_rq utilization */
 3483	add_positive(&cfs_rq->avg.util_avg, delta);
 3484	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
 3485}
 3486
 3487static inline void
 3488update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3489{
 3490	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
 3491	u32 divider;
 3492
 3493	/* Nothing to update */
 3494	if (!delta)
 3495		return;
 3496
 3497	/*
 3498	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3499	 * See ___update_load_avg() for details.
 3500	 */
 3501	divider = get_pelt_divider(&cfs_rq->avg);
 3502
 3503	/* Set new sched_entity's runnable */
 3504	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
 3505	se->avg.runnable_sum = se->avg.runnable_avg * divider;
 3506
 3507	/* Update parent cfs_rq runnable */
 3508	add_positive(&cfs_rq->avg.runnable_avg, delta);
 3509	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
 3510}
 3511
 3512static inline void
 3513update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3514{
 3515	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
 3516	unsigned long load_avg;
 3517	u64 load_sum = 0;
 3518	u32 divider;
 3519
 3520	if (!runnable_sum)
 3521		return;
 3522
 3523	gcfs_rq->prop_runnable_sum = 0;
 3524
 
 3525	/*
 3526	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3527	 * See ___update_load_avg() for details.
 3528	 */
 3529	divider = get_pelt_divider(&cfs_rq->avg);
 3530
 3531	if (runnable_sum >= 0) {
 3532		/*
 3533		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
 3534		 * the CPU is saturated running == runnable.
 3535		 */
 3536		runnable_sum += se->avg.load_sum;
 3537		runnable_sum = min_t(long, runnable_sum, divider);
 3538	} else {
 3539		/*
 3540		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
 3541		 * assuming all tasks are equally runnable.
 3542		 */
 3543		if (scale_load_down(gcfs_rq->load.weight)) {
 3544			load_sum = div_s64(gcfs_rq->avg.load_sum,
 3545				scale_load_down(gcfs_rq->load.weight));
 3546		}
 3547
 3548		/* But make sure to not inflate se's runnable */
 3549		runnable_sum = min(se->avg.load_sum, load_sum);
 3550	}
 3551
 3552	/*
 3553	 * runnable_sum can't be lower than running_sum
 3554	 * Rescale running sum to be in the same range as runnable sum
 3555	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
 3556	 * runnable_sum is in [0 : LOAD_AVG_MAX]
 3557	 */
 3558	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
 3559	runnable_sum = max(runnable_sum, running_sum);
 3560
 3561	load_sum = (s64)se_weight(se) * runnable_sum;
 3562	load_avg = div_s64(load_sum, divider);
 3563
 3564	se->avg.load_sum = runnable_sum;
 3565
 3566	delta = load_avg - se->avg.load_avg;
 3567	if (!delta)
 3568		return;
 
 3569
 3570	se->avg.load_avg = load_avg;
 
 
 
 
 3571
 3572	add_positive(&cfs_rq->avg.load_avg, delta);
 3573	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
 3574}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3575
 3576static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
 3577{
 3578	cfs_rq->propagate = 1;
 3579	cfs_rq->prop_runnable_sum += runnable_sum;
 3580}
 3581
 3582/* Update task and its cfs_rq load average */
 3583static inline int propagate_entity_load_avg(struct sched_entity *se)
 3584{
 3585	struct cfs_rq *cfs_rq, *gcfs_rq;
 3586
 3587	if (entity_is_task(se))
 3588		return 0;
 3589
 3590	gcfs_rq = group_cfs_rq(se);
 3591	if (!gcfs_rq->propagate)
 3592		return 0;
 3593
 3594	gcfs_rq->propagate = 0;
 3595
 3596	cfs_rq = cfs_rq_of(se);
 3597
 3598	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
 
 3599
 3600	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
 3601	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
 3602	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
 
 
 
 3603
 3604	trace_pelt_cfs_tp(cfs_rq);
 3605	trace_pelt_se_tp(se);
 3606
 3607	return 1;
 
 
 
 3608}
 3609
 3610/*
 3611 * Check if we need to update the load and the utilization of a blocked
 3612 * group_entity:
 3613 */
 3614static inline bool skip_blocked_update(struct sched_entity *se)
 
 3615{
 3616	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 
 3617
 3618	/*
 3619	 * If sched_entity still have not zero load or utilization, we have to
 3620	 * decay it:
 3621	 */
 3622	if (se->avg.load_avg || se->avg.util_avg)
 3623		return false;
 3624
 3625	/*
 3626	 * If there is a pending propagation, we have to update the load and
 3627	 * the utilization of the sched_entity:
 3628	 */
 3629	if (gcfs_rq->propagate)
 3630		return false;
 
 
 
 
 
 
 
 
 
 
 
 3631
 3632	/*
 3633	 * Otherwise, the load and the utilization of the sched_entity is
 3634	 * already zero and there is no pending propagation, so it will be a
 3635	 * waste of time to try to decay it:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3636	 */
 3637	return true;
 
 
 
 
 3638}
 3639
 3640#else /* CONFIG_FAIR_GROUP_SCHED */
 3641
 3642static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
 3643
 3644static inline int propagate_entity_load_avg(struct sched_entity *se)
 3645{
 3646	return 0;
 
 3647}
 3648
 3649static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
 3650
 
 
 
 
 3651#endif /* CONFIG_FAIR_GROUP_SCHED */
 3652
 3653/**
 3654 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 3655 * @now: current time, as per cfs_rq_clock_pelt()
 3656 * @cfs_rq: cfs_rq to update
 3657 *
 3658 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 3659 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 3660 * post_init_entity_util_avg().
 3661 *
 3662 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 3663 *
 3664 * Returns true if the load decayed or we removed load.
 3665 *
 3666 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 3667 * call update_tg_load_avg() when this function returns true.
 3668 */
 3669static inline int
 3670update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
 3671{
 3672	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
 3673	struct sched_avg *sa = &cfs_rq->avg;
 3674	int decayed = 0;
 3675
 3676	if (cfs_rq->removed.nr) {
 3677		unsigned long r;
 3678		u32 divider = get_pelt_divider(&cfs_rq->avg);
 3679
 3680		raw_spin_lock(&cfs_rq->removed.lock);
 3681		swap(cfs_rq->removed.util_avg, removed_util);
 3682		swap(cfs_rq->removed.load_avg, removed_load);
 3683		swap(cfs_rq->removed.runnable_avg, removed_runnable);
 3684		cfs_rq->removed.nr = 0;
 3685		raw_spin_unlock(&cfs_rq->removed.lock);
 3686
 3687		r = removed_load;
 3688		sub_positive(&sa->load_avg, r);
 3689		sa->load_sum = sa->load_avg * divider;
 3690
 3691		r = removed_util;
 3692		sub_positive(&sa->util_avg, r);
 3693		sa->util_sum = sa->util_avg * divider;
 3694
 3695		r = removed_runnable;
 3696		sub_positive(&sa->runnable_avg, r);
 3697		sa->runnable_sum = sa->runnable_avg * divider;
 3698
 3699		/*
 3700		 * removed_runnable is the unweighted version of removed_load so we
 3701		 * can use it to estimate removed_load_sum.
 3702		 */
 3703		add_tg_cfs_propagate(cfs_rq,
 3704			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
 3705
 3706		decayed = 1;
 3707	}
 3708
 3709	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
 3710
 3711#ifndef CONFIG_64BIT
 3712	smp_wmb();
 3713	cfs_rq->load_last_update_time_copy = sa->last_update_time;
 3714#endif
 3715
 3716	return decayed;
 3717}
 3718
 3719/**
 3720 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 3721 * @cfs_rq: cfs_rq to attach to
 3722 * @se: sched_entity to attach
 3723 *
 3724 * Must call update_cfs_rq_load_avg() before this, since we rely on
 3725 * cfs_rq->avg.last_update_time being current.
 3726 */
 3727static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3728{
 3729	/*
 3730	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3731	 * See ___update_load_avg() for details.
 3732	 */
 3733	u32 divider = get_pelt_divider(&cfs_rq->avg);
 3734
 3735	/*
 3736	 * When we attach the @se to the @cfs_rq, we must align the decay
 3737	 * window because without that, really weird and wonderful things can
 3738	 * happen.
 3739	 *
 3740	 * XXX illustrate
 3741	 */
 3742	se->avg.last_update_time = cfs_rq->avg.last_update_time;
 3743	se->avg.period_contrib = cfs_rq->avg.period_contrib;
 3744
 3745	/*
 3746	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
 3747	 * period_contrib. This isn't strictly correct, but since we're
 3748	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
 3749	 * _sum a little.
 3750	 */
 3751	se->avg.util_sum = se->avg.util_avg * divider;
 3752
 3753	se->avg.runnable_sum = se->avg.runnable_avg * divider;
 3754
 3755	se->avg.load_sum = divider;
 3756	if (se_weight(se)) {
 3757		se->avg.load_sum =
 3758			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
 3759	}
 3760
 3761	enqueue_load_avg(cfs_rq, se);
 3762	cfs_rq->avg.util_avg += se->avg.util_avg;
 3763	cfs_rq->avg.util_sum += se->avg.util_sum;
 3764	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
 3765	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
 3766
 3767	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
 3768
 3769	cfs_rq_util_change(cfs_rq, 0);
 3770
 3771	trace_pelt_cfs_tp(cfs_rq);
 3772}
 3773
 3774/**
 3775 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 3776 * @cfs_rq: cfs_rq to detach from
 3777 * @se: sched_entity to detach
 3778 *
 3779 * Must call update_cfs_rq_load_avg() before this, since we rely on
 3780 * cfs_rq->avg.last_update_time being current.
 3781 */
 3782static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3783{
 3784	/*
 3785	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3786	 * See ___update_load_avg() for details.
 3787	 */
 3788	u32 divider = get_pelt_divider(&cfs_rq->avg);
 3789
 3790	dequeue_load_avg(cfs_rq, se);
 3791	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
 3792	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
 3793	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
 3794	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
 3795
 3796	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
 3797
 3798	cfs_rq_util_change(cfs_rq, 0);
 3799
 3800	trace_pelt_cfs_tp(cfs_rq);
 3801}
 3802
 3803/*
 3804 * Optional action to be done while updating the load average
 3805 */
 3806#define UPDATE_TG	0x1
 3807#define SKIP_AGE_LOAD	0x2
 3808#define DO_ATTACH	0x4
 3809
 3810/* Update task and its cfs_rq load average */
 3811static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 
 3812{
 3813	u64 now = cfs_rq_clock_pelt(cfs_rq);
 3814	int decayed;
 
 3815
 3816	/*
 3817	 * Track task load average for carrying it to new CPU after migrated, and
 3818	 * track group sched_entity load average for task_h_load calc in migration
 3819	 */
 3820	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
 3821		__update_load_avg_se(now, cfs_rq, se);
 3822
 3823	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
 3824	decayed |= propagate_entity_load_avg(se);
 3825
 3826	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
 3827
 3828		/*
 3829		 * DO_ATTACH means we're here from enqueue_entity().
 3830		 * !last_update_time means we've passed through
 3831		 * migrate_task_rq_fair() indicating we migrated.
 3832		 *
 3833		 * IOW we're enqueueing a task on a new CPU.
 3834		 */
 3835		attach_entity_load_avg(cfs_rq, se);
 3836		update_tg_load_avg(cfs_rq);
 3837
 3838	} else if (decayed) {
 3839		cfs_rq_util_change(cfs_rq, 0);
 3840
 3841		if (flags & UPDATE_TG)
 3842			update_tg_load_avg(cfs_rq);
 3843	}
 3844}
 3845
 3846#ifndef CONFIG_64BIT
 3847static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
 3848{
 3849	u64 last_update_time_copy;
 3850	u64 last_update_time;
 3851
 3852	do {
 3853		last_update_time_copy = cfs_rq->load_last_update_time_copy;
 3854		smp_rmb();
 3855		last_update_time = cfs_rq->avg.last_update_time;
 3856	} while (last_update_time != last_update_time_copy);
 3857
 3858	return last_update_time;
 3859}
 3860#else
 3861static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
 3862{
 3863	return cfs_rq->avg.last_update_time;
 3864}
 3865#endif
 3866
 3867/*
 3868 * Synchronize entity load avg of dequeued entity without locking
 3869 * the previous rq.
 3870 */
 3871static void sync_entity_load_avg(struct sched_entity *se)
 3872{
 3873	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3874	u64 last_update_time;
 3875
 3876	last_update_time = cfs_rq_last_update_time(cfs_rq);
 3877	__update_load_avg_blocked_se(last_update_time, se);
 
 
 3878}
 3879
 3880/*
 3881 * Task first catches up with cfs_rq, and then subtract
 3882 * itself from the cfs_rq (task must be off the queue now).
 3883 */
 3884static void remove_entity_load_avg(struct sched_entity *se)
 3885{
 3886	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3887	unsigned long flags;
 3888
 3889	/*
 3890	 * tasks cannot exit without having gone through wake_up_new_task() ->
 3891	 * post_init_entity_util_avg() which will have added things to the
 3892	 * cfs_rq, so we can remove unconditionally.
 3893	 */
 3894
 3895	sync_entity_load_avg(se);
 
 
 
 
 3896
 3897	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
 3898	++cfs_rq->removed.nr;
 3899	cfs_rq->removed.util_avg	+= se->avg.util_avg;
 3900	cfs_rq->removed.load_avg	+= se->avg.load_avg;
 3901	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
 3902	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
 3903}
 3904
 3905static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
 3906{
 3907	return cfs_rq->avg.runnable_avg;
 3908}
 3909
 3910static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
 
 
 
 3911{
 3912	return cfs_rq->avg.load_avg;
 3913}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3914
 3915static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
 
 
 
 
 3916
 3917static inline unsigned long task_util(struct task_struct *p)
 3918{
 3919	return READ_ONCE(p->se.avg.util_avg);
 3920}
 3921
 3922static inline unsigned long _task_util_est(struct task_struct *p)
 
 
 
 
 
 
 
 3923{
 3924	struct util_est ue = READ_ONCE(p->se.avg.util_est);
 
 
 3925
 3926	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
 
 
 
 
 3927}
 3928
 3929static inline unsigned long task_util_est(struct task_struct *p)
 
 
 
 
 
 3930{
 3931	return max(task_util(p), _task_util_est(p));
 3932}
 3933
 3934#ifdef CONFIG_UCLAMP_TASK
 3935static inline unsigned long uclamp_task_util(struct task_struct *p)
 3936{
 3937	return clamp(task_util_est(p),
 3938		     uclamp_eff_value(p, UCLAMP_MIN),
 3939		     uclamp_eff_value(p, UCLAMP_MAX));
 3940}
 3941#else
 3942static inline unsigned long uclamp_task_util(struct task_struct *p)
 3943{
 3944	return task_util_est(p);
 3945}
 3946#endif
 3947
 3948static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
 3949				    struct task_struct *p)
 3950{
 3951	unsigned int enqueued;
 3952
 3953	if (!sched_feat(UTIL_EST))
 3954		return;
 3955
 3956	/* Update root cfs_rq's estimated utilization */
 3957	enqueued  = cfs_rq->avg.util_est.enqueued;
 3958	enqueued += _task_util_est(p);
 3959	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
 3960
 3961	trace_sched_util_est_cfs_tp(cfs_rq);
 3962}
 
 
 
 
 
 
 
 
 
 3963
 3964static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
 3965				    struct task_struct *p)
 3966{
 3967	unsigned int enqueued;
 3968
 3969	if (!sched_feat(UTIL_EST))
 3970		return;
 3971
 3972	/* Update root cfs_rq's estimated utilization */
 3973	enqueued  = cfs_rq->avg.util_est.enqueued;
 3974	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
 3975	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
 3976
 3977	trace_sched_util_est_cfs_tp(cfs_rq);
 3978}
 3979
 3980#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
 3981
 3982/*
 3983 * Check if a (signed) value is within a specified (unsigned) margin,
 3984 * based on the observation that:
 3985 *
 3986 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 3987 *
 3988 * NOTE: this only works when value + margin < INT_MAX.
 3989 */
 3990static inline bool within_margin(int value, int margin)
 3991{
 3992	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
 3993}
 3994
 3995static inline void util_est_update(struct cfs_rq *cfs_rq,
 3996				   struct task_struct *p,
 3997				   bool task_sleep)
 3998{
 3999	long last_ewma_diff, last_enqueued_diff;
 4000	struct util_est ue;
 4001
 4002	if (!sched_feat(UTIL_EST))
 4003		return;
 4004
 4005	/*
 4006	 * Skip update of task's estimated utilization when the task has not
 4007	 * yet completed an activation, e.g. being migrated.
 4008	 */
 4009	if (!task_sleep)
 4010		return;
 4011
 4012	/*
 4013	 * If the PELT values haven't changed since enqueue time,
 4014	 * skip the util_est update.
 4015	 */
 4016	ue = p->se.avg.util_est;
 4017	if (ue.enqueued & UTIL_AVG_UNCHANGED)
 4018		return;
 4019
 4020	last_enqueued_diff = ue.enqueued;
 
 4021
 4022	/*
 4023	 * Reset EWMA on utilization increases, the moving average is used only
 4024	 * to smooth utilization decreases.
 4025	 */
 4026	ue.enqueued = task_util(p);
 4027	if (sched_feat(UTIL_EST_FASTUP)) {
 4028		if (ue.ewma < ue.enqueued) {
 4029			ue.ewma = ue.enqueued;
 4030			goto done;
 4031		}
 4032	}
 
 
 4033
 4034	/*
 4035	 * Skip update of task's estimated utilization when its members are
 4036	 * already ~1% close to its last activation value.
 4037	 */
 4038	last_ewma_diff = ue.enqueued - ue.ewma;
 4039	last_enqueued_diff -= ue.enqueued;
 4040	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
 4041		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
 4042			goto done;
 4043
 4044		return;
 4045	}
 4046
 4047	/*
 4048	 * To avoid overestimation of actual task utilization, skip updates if
 4049	 * we cannot grant there is idle time in this CPU.
 4050	 */
 4051	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
 4052		return;
 4053
 4054	/*
 4055	 * Update Task's estimated utilization
 4056	 *
 4057	 * When *p completes an activation we can consolidate another sample
 4058	 * of the task size. This is done by storing the current PELT value
 4059	 * as ue.enqueued and by using this value to update the Exponential
 4060	 * Weighted Moving Average (EWMA):
 4061	 *
 4062	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
 4063	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
 4064	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
 4065	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
 4066	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
 4067	 *
 4068	 * Where 'w' is the weight of new samples, which is configured to be
 4069	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
 4070	 */
 4071	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
 4072	ue.ewma  += last_ewma_diff;
 4073	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
 4074done:
 4075	ue.enqueued |= UTIL_AVG_UNCHANGED;
 4076	WRITE_ONCE(p->se.avg.util_est, ue);
 4077
 4078	trace_sched_util_est_se_tp(&p->se);
 4079}
 4080
 4081static inline int task_fits_capacity(struct task_struct *p, long capacity)
 4082{
 4083	return fits_capacity(uclamp_task_util(p), capacity);
 4084}
 4085
 4086static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
 4087{
 4088	if (!static_branch_unlikely(&sched_asym_cpucapacity))
 4089		return;
 
 
 4090
 4091	if (!p || p->nr_cpus_allowed == 1) {
 4092		rq->misfit_task_load = 0;
 4093		return;
 4094	}
 4095
 4096	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
 4097		rq->misfit_task_load = 0;
 4098		return;
 
 
 
 
 
 
 
 
 
 4099	}
 4100
 4101	/*
 4102	 * Make sure that misfit_task_load will not be null even if
 4103	 * task_h_load() returns 0.
 4104	 */
 4105	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
 4106}
 4107
 4108#else /* CONFIG_SMP */
 4109
 4110static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
 4111{
 4112	return true;
 4113}
 4114
 4115#define UPDATE_TG	0x0
 4116#define SKIP_AGE_LOAD	0x0
 4117#define DO_ATTACH	0x0
 4118
 4119static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
 4120{
 4121	cfs_rq_util_change(cfs_rq, 0);
 4122}
 4123
 4124static inline void remove_entity_load_avg(struct sched_entity *se) {}
 4125
 4126static inline void
 4127attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 4128static inline void
 4129detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 4130
 4131static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
 4132{
 4133	return 0;
 4134}
 4135
 4136static inline void
 4137util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
 4138
 4139static inline void
 4140util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
 4141
 4142static inline void
 4143util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
 4144		bool task_sleep) {}
 4145static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
 4146
 4147#endif /* CONFIG_SMP */
 4148
 4149static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4150{
 4151#ifdef CONFIG_SCHED_DEBUG
 4152	s64 d = se->vruntime - cfs_rq->min_vruntime;
 4153
 4154	if (d < 0)
 4155		d = -d;
 4156
 4157	if (d > 3*sysctl_sched_latency)
 4158		schedstat_inc(cfs_rq->nr_spread_over);
 4159#endif
 4160}
 4161
 4162static void
 4163place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 4164{
 4165	u64 vruntime = cfs_rq->min_vruntime;
 4166
 4167	/*
 4168	 * The 'current' period is already promised to the current tasks,
 4169	 * however the extra weight of the new task will slow them down a
 4170	 * little, place the new task so that it fits in the slot that
 4171	 * stays open at the end.
 4172	 */
 4173	if (initial && sched_feat(START_DEBIT))
 4174		vruntime += sched_vslice(cfs_rq, se);
 4175
 4176	/* sleeps up to a single latency don't count. */
 4177	if (!initial) {
 4178		unsigned long thresh = sysctl_sched_latency;
 4179
 4180		/*
 4181		 * Halve their sleep time's effect, to allow
 4182		 * for a gentler effect of sleepers:
 4183		 */
 4184		if (sched_feat(GENTLE_FAIR_SLEEPERS))
 4185			thresh >>= 1;
 4186
 4187		vruntime -= thresh;
 4188	}
 4189
 4190	/* ensure we never gain time by being placed backwards. */
 4191	se->vruntime = max_vruntime(se->vruntime, vruntime);
 4192}
 4193
 4194static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
 4195
 4196static inline void check_schedstat_required(void)
 4197{
 4198#ifdef CONFIG_SCHEDSTATS
 4199	if (schedstat_enabled())
 4200		return;
 4201
 4202	/* Force schedstat enabled if a dependent tracepoint is active */
 4203	if (trace_sched_stat_wait_enabled()    ||
 4204			trace_sched_stat_sleep_enabled()   ||
 4205			trace_sched_stat_iowait_enabled()  ||
 4206			trace_sched_stat_blocked_enabled() ||
 4207			trace_sched_stat_runtime_enabled())  {
 4208		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
 4209			     "stat_blocked and stat_runtime require the "
 4210			     "kernel parameter schedstats=enable or "
 4211			     "kernel.sched_schedstats=1\n");
 4212	}
 4213#endif
 4214}
 4215
 4216static inline bool cfs_bandwidth_used(void);
 4217
 4218/*
 4219 * MIGRATION
 4220 *
 4221 *	dequeue
 4222 *	  update_curr()
 4223 *	    update_min_vruntime()
 4224 *	  vruntime -= min_vruntime
 4225 *
 4226 *	enqueue
 4227 *	  update_curr()
 4228 *	    update_min_vruntime()
 4229 *	  vruntime += min_vruntime
 4230 *
 4231 * this way the vruntime transition between RQs is done when both
 4232 * min_vruntime are up-to-date.
 4233 *
 4234 * WAKEUP (remote)
 4235 *
 4236 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
 4237 *	  vruntime -= min_vruntime
 4238 *
 4239 *	enqueue
 4240 *	  update_curr()
 4241 *	    update_min_vruntime()
 4242 *	  vruntime += min_vruntime
 4243 *
 4244 * this way we don't have the most up-to-date min_vruntime on the originating
 4245 * CPU and an up-to-date min_vruntime on the destination CPU.
 4246 */
 4247
 4248static void
 4249enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 4250{
 4251	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
 4252	bool curr = cfs_rq->curr == se;
 4253
 4254	/*
 4255	 * If we're the current task, we must renormalise before calling
 4256	 * update_curr().
 4257	 */
 4258	if (renorm && curr)
 4259		se->vruntime += cfs_rq->min_vruntime;
 4260
 4261	update_curr(cfs_rq);
 4262
 4263	/*
 4264	 * Otherwise, renormalise after, such that we're placed at the current
 4265	 * moment in time, instead of some random moment in the past. Being
 4266	 * placed in the past could significantly boost this task to the
 4267	 * fairness detriment of existing tasks.
 4268	 */
 4269	if (renorm && !curr)
 4270		se->vruntime += cfs_rq->min_vruntime;
 4271
 4272	/*
 4273	 * When enqueuing a sched_entity, we must:
 4274	 *   - Update loads to have both entity and cfs_rq synced with now.
 4275	 *   - Add its load to cfs_rq->runnable_avg
 4276	 *   - For group_entity, update its weight to reflect the new share of
 4277	 *     its group cfs_rq
 4278	 *   - Add its new weight to cfs_rq->load.weight
 4279	 */
 4280	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
 4281	se_update_runnable(se);
 4282	update_cfs_group(se);
 4283	account_entity_enqueue(cfs_rq, se);
 
 4284
 4285	if (flags & ENQUEUE_WAKEUP)
 4286		place_entity(cfs_rq, se, 0);
 
 
 4287
 4288	check_schedstat_required();
 4289	update_stats_enqueue(cfs_rq, se, flags);
 4290	check_spread(cfs_rq, se);
 4291	if (!curr)
 4292		__enqueue_entity(cfs_rq, se);
 4293	se->on_rq = 1;
 4294
 4295	/*
 4296	 * When bandwidth control is enabled, cfs might have been removed
 4297	 * because of a parent been throttled but cfs->nr_running > 1. Try to
 4298	 * add it unconditionally.
 4299	 */
 4300	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
 4301		list_add_leaf_cfs_rq(cfs_rq);
 4302
 4303	if (cfs_rq->nr_running == 1)
 4304		check_enqueue_throttle(cfs_rq);
 
 4305}
 4306
 4307static void __clear_buddies_last(struct sched_entity *se)
 4308{
 4309	for_each_sched_entity(se) {
 4310		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4311		if (cfs_rq->last != se)
 4312			break;
 4313
 4314		cfs_rq->last = NULL;
 4315	}
 4316}
 4317
 4318static void __clear_buddies_next(struct sched_entity *se)
 4319{
 4320	for_each_sched_entity(se) {
 4321		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4322		if (cfs_rq->next != se)
 4323			break;
 4324
 4325		cfs_rq->next = NULL;
 4326	}
 4327}
 4328
 4329static void __clear_buddies_skip(struct sched_entity *se)
 4330{
 4331	for_each_sched_entity(se) {
 4332		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4333		if (cfs_rq->skip != se)
 4334			break;
 4335
 4336		cfs_rq->skip = NULL;
 4337	}
 4338}
 4339
 4340static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4341{
 4342	if (cfs_rq->last == se)
 4343		__clear_buddies_last(se);
 4344
 4345	if (cfs_rq->next == se)
 4346		__clear_buddies_next(se);
 4347
 4348	if (cfs_rq->skip == se)
 4349		__clear_buddies_skip(se);
 4350}
 4351
 4352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 4353
 4354static void
 4355dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 4356{
 4357	/*
 4358	 * Update run-time statistics of the 'current'.
 4359	 */
 4360	update_curr(cfs_rq);
 
 4361
 4362	/*
 4363	 * When dequeuing a sched_entity, we must:
 4364	 *   - Update loads to have both entity and cfs_rq synced with now.
 4365	 *   - Subtract its load from the cfs_rq->runnable_avg.
 4366	 *   - Subtract its previous weight from cfs_rq->load.weight.
 4367	 *   - For group entity, update its weight to reflect the new share
 4368	 *     of its group cfs_rq.
 4369	 */
 4370	update_load_avg(cfs_rq, se, UPDATE_TG);
 4371	se_update_runnable(se);
 4372
 4373	update_stats_dequeue(cfs_rq, se, flags);
 
 
 
 
 
 
 4374
 4375	clear_buddies(cfs_rq, se);
 4376
 4377	if (se != cfs_rq->curr)
 4378		__dequeue_entity(cfs_rq, se);
 4379	se->on_rq = 0;
 4380	account_entity_dequeue(cfs_rq, se);
 4381
 4382	/*
 4383	 * Normalize after update_curr(); which will also have moved
 4384	 * min_vruntime if @se is the one holding it back. But before doing
 4385	 * update_min_vruntime() again, which will discount @se's position and
 4386	 * can move min_vruntime forward still more.
 4387	 */
 4388	if (!(flags & DEQUEUE_SLEEP))
 4389		se->vruntime -= cfs_rq->min_vruntime;
 4390
 4391	/* return excess runtime on last dequeue */
 4392	return_cfs_rq_runtime(cfs_rq);
 4393
 4394	update_cfs_group(se);
 4395
 4396	/*
 4397	 * Now advance min_vruntime if @se was the entity holding it back,
 4398	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
 4399	 * put back on, and if we advance min_vruntime, we'll be placed back
 4400	 * further than we started -- ie. we'll be penalized.
 4401	 */
 4402	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
 4403		update_min_vruntime(cfs_rq);
 4404}
 4405
 4406/*
 4407 * Preempt the current task with a newly woken task if needed:
 4408 */
 4409static void
 4410check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 4411{
 4412	unsigned long ideal_runtime, delta_exec;
 4413	struct sched_entity *se;
 4414	s64 delta;
 4415
 4416	ideal_runtime = sched_slice(cfs_rq, curr);
 4417	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 4418	if (delta_exec > ideal_runtime) {
 4419		resched_curr(rq_of(cfs_rq));
 4420		/*
 4421		 * The current task ran long enough, ensure it doesn't get
 4422		 * re-elected due to buddy favours.
 4423		 */
 4424		clear_buddies(cfs_rq, curr);
 4425		return;
 4426	}
 4427
 4428	/*
 4429	 * Ensure that a task that missed wakeup preemption by a
 4430	 * narrow margin doesn't have to wait for a full slice.
 4431	 * This also mitigates buddy induced latencies under load.
 4432	 */
 4433	if (delta_exec < sysctl_sched_min_granularity)
 4434		return;
 4435
 4436	se = __pick_first_entity(cfs_rq);
 4437	delta = curr->vruntime - se->vruntime;
 4438
 4439	if (delta < 0)
 4440		return;
 4441
 4442	if (delta > ideal_runtime)
 4443		resched_curr(rq_of(cfs_rq));
 4444}
 4445
 4446static void
 4447set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4448{
 4449	clear_buddies(cfs_rq, se);
 4450
 4451	/* 'current' is not kept within the tree. */
 4452	if (se->on_rq) {
 4453		/*
 4454		 * Any task has to be enqueued before it get to execute on
 4455		 * a CPU. So account for the time it spent waiting on the
 4456		 * runqueue.
 4457		 */
 4458		update_stats_wait_end(cfs_rq, se);
 4459		__dequeue_entity(cfs_rq, se);
 4460		update_load_avg(cfs_rq, se, UPDATE_TG);
 4461	}
 4462
 4463	update_stats_curr_start(cfs_rq, se);
 4464	cfs_rq->curr = se;
 4465
 4466	/*
 4467	 * Track our maximum slice length, if the CPU's load is at
 4468	 * least twice that of our own weight (i.e. dont track it
 4469	 * when there are only lesser-weight tasks around):
 4470	 */
 4471	if (schedstat_enabled() &&
 4472	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
 4473		schedstat_set(se->statistics.slice_max,
 4474			max((u64)schedstat_val(se->statistics.slice_max),
 4475			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
 4476	}
 4477
 4478	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 4479}
 4480
 4481static int
 4482wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 4483
 4484/*
 4485 * Pick the next process, keeping these things in mind, in this order:
 4486 * 1) keep things fair between processes/task groups
 4487 * 2) pick the "next" process, since someone really wants that to run
 4488 * 3) pick the "last" process, for cache locality
 4489 * 4) do not run the "skip" process, if something else is available
 4490 */
 4491static struct sched_entity *
 4492pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 4493{
 4494	struct sched_entity *left = __pick_first_entity(cfs_rq);
 4495	struct sched_entity *se;
 4496
 4497	/*
 4498	 * If curr is set we have to see if its left of the leftmost entity
 4499	 * still in the tree, provided there was anything in the tree at all.
 4500	 */
 4501	if (!left || (curr && entity_before(curr, left)))
 4502		left = curr;
 4503
 4504	se = left; /* ideally we run the leftmost entity */
 4505
 4506	/*
 4507	 * Avoid running the skip buddy, if running something else can
 4508	 * be done without getting too unfair.
 4509	 */
 4510	if (cfs_rq->skip && cfs_rq->skip == se) {
 4511		struct sched_entity *second;
 4512
 4513		if (se == curr) {
 4514			second = __pick_first_entity(cfs_rq);
 4515		} else {
 4516			second = __pick_next_entity(se);
 4517			if (!second || (curr && entity_before(curr, second)))
 4518				second = curr;
 4519		}
 4520
 4521		if (second && wakeup_preempt_entity(second, left) < 1)
 4522			se = second;
 4523	}
 4524
 4525	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
 4526		/*
 4527		 * Someone really wants this to run. If it's not unfair, run it.
 4528		 */
 4529		se = cfs_rq->next;
 4530	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
 4531		/*
 4532		 * Prefer last buddy, try to return the CPU to a preempted task.
 4533		 */
 4534		se = cfs_rq->last;
 4535	}
 
 
 
 
 
 
 
 4536
 4537	return se;
 4538}
 4539
 4540static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 4541
 4542static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 4543{
 4544	/*
 4545	 * If still on the runqueue then deactivate_task()
 4546	 * was not called and update_curr() has to be done:
 4547	 */
 4548	if (prev->on_rq)
 4549		update_curr(cfs_rq);
 4550
 4551	/* throttle cfs_rqs exceeding runtime */
 4552	check_cfs_rq_runtime(cfs_rq);
 4553
 4554	check_spread(cfs_rq, prev);
 4555
 4556	if (prev->on_rq) {
 4557		update_stats_wait_start(cfs_rq, prev);
 4558		/* Put 'current' back into the tree. */
 4559		__enqueue_entity(cfs_rq, prev);
 4560		/* in !on_rq case, update occurred at dequeue */
 4561		update_load_avg(cfs_rq, prev, 0);
 4562	}
 4563	cfs_rq->curr = NULL;
 4564}
 4565
 4566static void
 4567entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 4568{
 4569	/*
 4570	 * Update run-time statistics of the 'current'.
 4571	 */
 4572	update_curr(cfs_rq);
 4573
 4574	/*
 4575	 * Ensure that runnable average is periodically updated.
 4576	 */
 4577	update_load_avg(cfs_rq, curr, UPDATE_TG);
 4578	update_cfs_group(curr);
 
 4579
 4580#ifdef CONFIG_SCHED_HRTICK
 4581	/*
 4582	 * queued ticks are scheduled to match the slice, so don't bother
 4583	 * validating it and just reschedule.
 4584	 */
 4585	if (queued) {
 4586		resched_curr(rq_of(cfs_rq));
 4587		return;
 4588	}
 4589	/*
 4590	 * don't let the period tick interfere with the hrtick preemption
 4591	 */
 4592	if (!sched_feat(DOUBLE_TICK) &&
 4593			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 4594		return;
 4595#endif
 4596
 4597	if (cfs_rq->nr_running > 1)
 4598		check_preempt_tick(cfs_rq, curr);
 4599}
 4600
 4601
 4602/**************************************************
 4603 * CFS bandwidth control machinery
 4604 */
 4605
 4606#ifdef CONFIG_CFS_BANDWIDTH
 4607
 4608#ifdef CONFIG_JUMP_LABEL
 4609static struct static_key __cfs_bandwidth_used;
 4610
 4611static inline bool cfs_bandwidth_used(void)
 4612{
 4613	return static_key_false(&__cfs_bandwidth_used);
 4614}
 4615
 4616void cfs_bandwidth_usage_inc(void)
 4617{
 4618	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
 4619}
 4620
 4621void cfs_bandwidth_usage_dec(void)
 4622{
 4623	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
 4624}
 4625#else /* CONFIG_JUMP_LABEL */
 4626static bool cfs_bandwidth_used(void)
 4627{
 4628	return true;
 4629}
 4630
 4631void cfs_bandwidth_usage_inc(void) {}
 4632void cfs_bandwidth_usage_dec(void) {}
 4633#endif /* CONFIG_JUMP_LABEL */
 4634
 4635/*
 4636 * default period for cfs group bandwidth.
 4637 * default: 0.1s, units: nanoseconds
 4638 */
 4639static inline u64 default_cfs_period(void)
 4640{
 4641	return 100000000ULL;
 4642}
 4643
 4644static inline u64 sched_cfs_bandwidth_slice(void)
 4645{
 4646	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
 4647}
 4648
 4649/*
 4650 * Replenish runtime according to assigned quota. We use sched_clock_cpu
 4651 * directly instead of rq->clock to avoid adding additional synchronization
 4652 * around rq->lock.
 4653 *
 4654 * requires cfs_b->lock
 4655 */
 4656void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
 4657{
 4658	if (unlikely(cfs_b->quota == RUNTIME_INF))
 
 
 4659		return;
 4660
 4661	cfs_b->runtime += cfs_b->quota;
 4662	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
 
 4663}
 4664
 4665static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 4666{
 4667	return &tg->cfs_bandwidth;
 4668}
 4669
 4670/* returns 0 on failure to allocate runtime */
 4671static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
 4672				   struct cfs_rq *cfs_rq, u64 target_runtime)
 4673{
 4674	u64 min_amount, amount = 0;
 
 4675
 4676	lockdep_assert_held(&cfs_b->lock);
 
 
 
 
 
 
 
 
 4677
 4678	/* note: this is a positive sum as runtime_remaining <= 0 */
 4679	min_amount = target_runtime - cfs_rq->runtime_remaining;
 4680
 
 4681	if (cfs_b->quota == RUNTIME_INF)
 4682		amount = min_amount;
 4683	else {
 4684		start_cfs_bandwidth(cfs_b);
 
 
 
 
 
 
 
 
 
 4685
 4686		if (cfs_b->runtime > 0) {
 4687			amount = min(cfs_b->runtime, min_amount);
 4688			cfs_b->runtime -= amount;
 4689			cfs_b->idle = 0;
 4690		}
 4691	}
 
 
 4692
 4693	cfs_rq->runtime_remaining += amount;
 
 
 
 
 
 
 
 4694
 4695	return cfs_rq->runtime_remaining > 0;
 4696}
 4697
 4698/* returns 0 on failure to allocate runtime */
 4699static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 
 
 
 4700{
 4701	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4702	int ret;
 4703
 4704	raw_spin_lock(&cfs_b->lock);
 4705	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
 4706	raw_spin_unlock(&cfs_b->lock);
 4707
 4708	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4709}
 4710
 4711static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 4712{
 4713	/* dock delta_exec before expiring quota (as it could span periods) */
 4714	cfs_rq->runtime_remaining -= delta_exec;
 
 4715
 4716	if (likely(cfs_rq->runtime_remaining > 0))
 4717		return;
 4718
 4719	if (cfs_rq->throttled)
 4720		return;
 4721	/*
 4722	 * if we're unable to extend our runtime we resched so that the active
 4723	 * hierarchy can be throttled
 4724	 */
 4725	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
 4726		resched_curr(rq_of(cfs_rq));
 4727}
 4728
 4729static __always_inline
 4730void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 4731{
 4732	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
 4733		return;
 4734
 4735	__account_cfs_rq_runtime(cfs_rq, delta_exec);
 4736}
 4737
 4738static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 4739{
 4740	return cfs_bandwidth_used() && cfs_rq->throttled;
 4741}
 4742
 4743/* check whether cfs_rq, or any parent, is throttled */
 4744static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 4745{
 4746	return cfs_bandwidth_used() && cfs_rq->throttle_count;
 4747}
 4748
 4749/*
 4750 * Ensure that neither of the group entities corresponding to src_cpu or
 4751 * dest_cpu are members of a throttled hierarchy when performing group
 4752 * load-balance operations.
 4753 */
 4754static inline int throttled_lb_pair(struct task_group *tg,
 4755				    int src_cpu, int dest_cpu)
 4756{
 4757	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
 4758
 4759	src_cfs_rq = tg->cfs_rq[src_cpu];
 4760	dest_cfs_rq = tg->cfs_rq[dest_cpu];
 4761
 4762	return throttled_hierarchy(src_cfs_rq) ||
 4763	       throttled_hierarchy(dest_cfs_rq);
 4764}
 4765
 
 4766static int tg_unthrottle_up(struct task_group *tg, void *data)
 4767{
 4768	struct rq *rq = data;
 4769	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 4770
 4771	cfs_rq->throttle_count--;
 
 4772	if (!cfs_rq->throttle_count) {
 
 4773		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
 4774					     cfs_rq->throttled_clock_task;
 4775
 4776		/* Add cfs_rq with load or one or more already running entities to the list */
 4777		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
 4778			list_add_leaf_cfs_rq(cfs_rq);
 4779	}
 
 4780
 4781	return 0;
 4782}
 4783
 4784static int tg_throttle_down(struct task_group *tg, void *data)
 4785{
 4786	struct rq *rq = data;
 4787	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 4788
 4789	/* group is entering throttled state, stop time */
 4790	if (!cfs_rq->throttle_count) {
 4791		cfs_rq->throttled_clock_task = rq_clock_task(rq);
 4792		list_del_leaf_cfs_rq(cfs_rq);
 4793	}
 4794	cfs_rq->throttle_count++;
 4795
 4796	return 0;
 4797}
 4798
 4799static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
 4800{
 4801	struct rq *rq = rq_of(cfs_rq);
 4802	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4803	struct sched_entity *se;
 4804	long task_delta, idle_task_delta, dequeue = 1;
 4805
 4806	raw_spin_lock(&cfs_b->lock);
 4807	/* This will start the period timer if necessary */
 4808	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
 4809		/*
 4810		 * We have raced with bandwidth becoming available, and if we
 4811		 * actually throttled the timer might not unthrottle us for an
 4812		 * entire period. We additionally needed to make sure that any
 4813		 * subsequent check_cfs_rq_runtime calls agree not to throttle
 4814		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
 4815		 * for 1ns of runtime rather than just check cfs_b.
 4816		 */
 4817		dequeue = 0;
 4818	} else {
 4819		list_add_tail_rcu(&cfs_rq->throttled_list,
 4820				  &cfs_b->throttled_cfs_rq);
 4821	}
 4822	raw_spin_unlock(&cfs_b->lock);
 4823
 4824	if (!dequeue)
 4825		return false;  /* Throttle no longer required. */
 4826
 4827	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
 4828
 4829	/* freeze hierarchy runnable averages while throttled */
 4830	rcu_read_lock();
 4831	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
 4832	rcu_read_unlock();
 4833
 4834	task_delta = cfs_rq->h_nr_running;
 4835	idle_task_delta = cfs_rq->idle_h_nr_running;
 4836	for_each_sched_entity(se) {
 4837		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 4838		/* throttled entity or throttle-on-deactivate */
 4839		if (!se->on_rq)
 4840			goto done;
 4841
 4842		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
 4843
 4844		qcfs_rq->h_nr_running -= task_delta;
 4845		qcfs_rq->idle_h_nr_running -= idle_task_delta;
 4846
 4847		if (qcfs_rq->load.weight) {
 4848			/* Avoid re-evaluating load for this entity: */
 4849			se = parent_entity(se);
 4850			break;
 4851		}
 4852	}
 4853
 4854	for_each_sched_entity(se) {
 4855		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 4856		/* throttled entity or throttle-on-deactivate */
 4857		if (!se->on_rq)
 4858			goto done;
 4859
 4860		update_load_avg(qcfs_rq, se, 0);
 4861		se_update_runnable(se);
 4862
 
 
 4863		qcfs_rq->h_nr_running -= task_delta;
 4864		qcfs_rq->idle_h_nr_running -= idle_task_delta;
 
 
 4865	}
 4866
 4867	/* At this point se is NULL and we are at root level*/
 4868	sub_nr_running(rq, task_delta);
 4869
 4870done:
 4871	/*
 4872	 * Note: distribution will already see us throttled via the
 4873	 * throttled-list.  rq->lock protects completion.
 4874	 */
 4875	cfs_rq->throttled = 1;
 4876	cfs_rq->throttled_clock = rq_clock(rq);
 4877	return true;
 
 
 
 
 4878}
 4879
 4880void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
 4881{
 4882	struct rq *rq = rq_of(cfs_rq);
 4883	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4884	struct sched_entity *se;
 4885	long task_delta, idle_task_delta;
 
 4886
 4887	se = cfs_rq->tg->se[cpu_of(rq)];
 4888
 4889	cfs_rq->throttled = 0;
 4890
 4891	update_rq_clock(rq);
 4892
 4893	raw_spin_lock(&cfs_b->lock);
 4894	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
 4895	list_del_rcu(&cfs_rq->throttled_list);
 4896	raw_spin_unlock(&cfs_b->lock);
 4897
 4898	/* update hierarchical throttle state */
 4899	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
 4900
 4901	/* Nothing to run but something to decay (on_list)? Complete the branch */
 4902	if (!cfs_rq->load.weight) {
 4903		if (cfs_rq->on_list)
 4904			goto unthrottle_throttle;
 4905		return;
 4906	}
 4907
 4908	task_delta = cfs_rq->h_nr_running;
 4909	idle_task_delta = cfs_rq->idle_h_nr_running;
 4910	for_each_sched_entity(se) {
 4911		if (se->on_rq)
 4912			break;
 4913		cfs_rq = cfs_rq_of(se);
 4914		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
 4915
 4916		cfs_rq->h_nr_running += task_delta;
 4917		cfs_rq->idle_h_nr_running += idle_task_delta;
 4918
 4919		/* end evaluation on encountering a throttled cfs_rq */
 4920		if (cfs_rq_throttled(cfs_rq))
 4921			goto unthrottle_throttle;
 4922	}
 4923
 4924	for_each_sched_entity(se) {
 4925		cfs_rq = cfs_rq_of(se);
 4926
 4927		update_load_avg(cfs_rq, se, UPDATE_TG);
 4928		se_update_runnable(se);
 4929
 4930		cfs_rq->h_nr_running += task_delta;
 4931		cfs_rq->idle_h_nr_running += idle_task_delta;
 4932
 4933
 4934		/* end evaluation on encountering a throttled cfs_rq */
 4935		if (cfs_rq_throttled(cfs_rq))
 4936			goto unthrottle_throttle;
 4937
 4938		/*
 4939		 * One parent has been throttled and cfs_rq removed from the
 4940		 * list. Add it back to not break the leaf list.
 4941		 */
 4942		if (throttled_hierarchy(cfs_rq))
 4943			list_add_leaf_cfs_rq(cfs_rq);
 4944	}
 4945
 4946	/* At this point se is NULL and we are at root level*/
 4947	add_nr_running(rq, task_delta);
 4948
 4949unthrottle_throttle:
 4950	/*
 4951	 * The cfs_rq_throttled() breaks in the above iteration can result in
 4952	 * incomplete leaf list maintenance, resulting in triggering the
 4953	 * assertion below.
 4954	 */
 4955	for_each_sched_entity(se) {
 4956		cfs_rq = cfs_rq_of(se);
 4957
 4958		if (list_add_leaf_cfs_rq(cfs_rq))
 4959			break;
 4960	}
 4961
 4962	assert_list_leaf_cfs_rq(rq);
 
 4963
 4964	/* Determine whether we need to wake up potentially idle CPU: */
 4965	if (rq->curr == rq->idle && rq->cfs.nr_running)
 4966		resched_curr(rq);
 4967}
 4968
 4969static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
 
 4970{
 4971	struct cfs_rq *cfs_rq;
 4972	u64 runtime, remaining = 1;
 4973
 4974	rcu_read_lock();
 4975	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
 4976				throttled_list) {
 4977		struct rq *rq = rq_of(cfs_rq);
 4978		struct rq_flags rf;
 4979
 4980		rq_lock_irqsave(rq, &rf);
 4981		if (!cfs_rq_throttled(cfs_rq))
 4982			goto next;
 4983
 4984		/* By the above check, this should never be true */
 4985		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
 4986
 4987		raw_spin_lock(&cfs_b->lock);
 4988		runtime = -cfs_rq->runtime_remaining + 1;
 4989		if (runtime > cfs_b->runtime)
 4990			runtime = cfs_b->runtime;
 4991		cfs_b->runtime -= runtime;
 4992		remaining = cfs_b->runtime;
 4993		raw_spin_unlock(&cfs_b->lock);
 4994
 4995		cfs_rq->runtime_remaining += runtime;
 
 4996
 4997		/* we check whether we're throttled above */
 4998		if (cfs_rq->runtime_remaining > 0)
 4999			unthrottle_cfs_rq(cfs_rq);
 5000
 5001next:
 5002		rq_unlock_irqrestore(rq, &rf);
 5003
 5004		if (!remaining)
 5005			break;
 5006	}
 5007	rcu_read_unlock();
 
 
 5008}
 5009
 5010/*
 5011 * Responsible for refilling a task_group's bandwidth and unthrottling its
 5012 * cfs_rqs as appropriate. If there has been no activity within the last
 5013 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 5014 * used to track this state.
 5015 */
 5016static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
 5017{
 5018	int throttled;
 
 5019
 
 5020	/* no need to continue the timer with no bandwidth constraint */
 5021	if (cfs_b->quota == RUNTIME_INF)
 5022		goto out_deactivate;
 5023
 5024	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 
 
 5025	cfs_b->nr_periods += overrun;
 5026
 5027	/* Refill extra burst quota even if cfs_b->idle */
 5028	__refill_cfs_bandwidth_runtime(cfs_b);
 
 5029
 5030	/*
 5031	 * idle depends on !throttled (for the case of a large deficit), and if
 5032	 * we're going inactive then everything else can be deferred
 
 5033	 */
 5034	if (cfs_b->idle && !throttled)
 5035		goto out_deactivate;
 
 5036
 5037	if (!throttled) {
 5038		/* mark as potentially idle for the upcoming period */
 5039		cfs_b->idle = 1;
 5040		return 0;
 5041	}
 5042
 5043	/* account preceding periods in which throttling occurred */
 5044	cfs_b->nr_throttled += overrun;
 5045
 5046	/*
 5047	 * This check is repeated as we release cfs_b->lock while we unthrottle.
 
 
 
 5048	 */
 5049	while (throttled && cfs_b->runtime > 0) {
 5050		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 
 
 
 
 
 
 
 
 
 5051		/* we can't nest cfs_b->lock while distributing bandwidth */
 5052		distribute_cfs_runtime(cfs_b);
 5053		raw_spin_lock_irqsave(&cfs_b->lock, flags);
 
 5054
 5055		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 5056	}
 5057
 
 
 5058	/*
 5059	 * While we are ensured activity in the period following an
 5060	 * unthrottle, this also covers the case in which the new bandwidth is
 5061	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
 5062	 * timer to remain active while there are any throttled entities.)
 5063	 */
 5064	cfs_b->idle = 0;
 
 
 
 
 5065
 5066	return 0;
 5067
 5068out_deactivate:
 5069	return 1;
 5070}
 5071
 5072/* a cfs_rq won't donate quota below this amount */
 5073static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
 5074/* minimum remaining period time to redistribute slack quota */
 5075static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
 5076/* how long we wait to gather additional slack before distributing */
 5077static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
 5078
 5079/*
 5080 * Are we near the end of the current quota period?
 5081 *
 5082 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 5083 * hrtimer base being cleared by hrtimer_start. In the case of
 5084 * migrate_hrtimers, base is never cleared, so we are fine.
 5085 */
 5086static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
 5087{
 5088	struct hrtimer *refresh_timer = &cfs_b->period_timer;
 5089	s64 remaining;
 5090
 5091	/* if the call-back is running a quota refresh is already occurring */
 5092	if (hrtimer_callback_running(refresh_timer))
 5093		return 1;
 5094
 5095	/* is a quota refresh about to occur? */
 5096	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
 5097	if (remaining < (s64)min_expire)
 5098		return 1;
 5099
 5100	return 0;
 5101}
 5102
 5103static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
 5104{
 5105	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
 5106
 5107	/* if there's a quota refresh soon don't bother with slack */
 5108	if (runtime_refresh_within(cfs_b, min_left))
 5109		return;
 5110
 5111	/* don't push forwards an existing deferred unthrottle */
 5112	if (cfs_b->slack_started)
 5113		return;
 5114	cfs_b->slack_started = true;
 5115
 5116	hrtimer_start(&cfs_b->slack_timer,
 5117			ns_to_ktime(cfs_bandwidth_slack_period),
 5118			HRTIMER_MODE_REL);
 5119}
 5120
 5121/* we know any runtime found here is valid as update_curr() precedes return */
 5122static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5123{
 5124	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 5125	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
 5126
 5127	if (slack_runtime <= 0)
 5128		return;
 5129
 5130	raw_spin_lock(&cfs_b->lock);
 5131	if (cfs_b->quota != RUNTIME_INF) {
 
 5132		cfs_b->runtime += slack_runtime;
 5133
 5134		/* we are under rq->lock, defer unthrottling using a timer */
 5135		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
 5136		    !list_empty(&cfs_b->throttled_cfs_rq))
 5137			start_cfs_slack_bandwidth(cfs_b);
 5138	}
 5139	raw_spin_unlock(&cfs_b->lock);
 5140
 5141	/* even if it's not valid for return we don't want to try again */
 5142	cfs_rq->runtime_remaining -= slack_runtime;
 5143}
 5144
 5145static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5146{
 5147	if (!cfs_bandwidth_used())
 5148		return;
 5149
 5150	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
 5151		return;
 5152
 5153	__return_cfs_rq_runtime(cfs_rq);
 5154}
 5155
 5156/*
 5157 * This is done with a timer (instead of inline with bandwidth return) since
 5158 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 5159 */
 5160static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
 5161{
 5162	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
 5163	unsigned long flags;
 5164
 5165	/* confirm we're still not at a refresh boundary */
 5166	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 5167	cfs_b->slack_started = false;
 5168
 5169	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
 5170		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 5171		return;
 5172	}
 5173
 5174	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
 5175		runtime = cfs_b->runtime;
 5176
 5177	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 
 
 5178
 5179	if (!runtime)
 5180		return;
 5181
 5182	distribute_cfs_runtime(cfs_b);
 
 
 
 
 
 5183}
 5184
 5185/*
 5186 * When a group wakes up we want to make sure that its quota is not already
 5187 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 5188 * runtime as update_curr() throttling can not trigger until it's on-rq.
 5189 */
 5190static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
 5191{
 5192	if (!cfs_bandwidth_used())
 5193		return;
 5194
 5195	/* an active group must be handled by the update_curr()->put() path */
 5196	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
 5197		return;
 5198
 5199	/* ensure the group is not already throttled */
 5200	if (cfs_rq_throttled(cfs_rq))
 5201		return;
 5202
 5203	/* update runtime allocation */
 5204	account_cfs_rq_runtime(cfs_rq, 0);
 5205	if (cfs_rq->runtime_remaining <= 0)
 5206		throttle_cfs_rq(cfs_rq);
 5207}
 5208
 5209static void sync_throttle(struct task_group *tg, int cpu)
 5210{
 5211	struct cfs_rq *pcfs_rq, *cfs_rq;
 5212
 5213	if (!cfs_bandwidth_used())
 5214		return;
 5215
 5216	if (!tg->parent)
 5217		return;
 5218
 5219	cfs_rq = tg->cfs_rq[cpu];
 5220	pcfs_rq = tg->parent->cfs_rq[cpu];
 5221
 5222	cfs_rq->throttle_count = pcfs_rq->throttle_count;
 5223	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
 5224}
 5225
 5226/* conditionally throttle active cfs_rq's from put_prev_entity() */
 5227static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5228{
 5229	if (!cfs_bandwidth_used())
 5230		return false;
 5231
 5232	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
 5233		return false;
 5234
 5235	/*
 5236	 * it's possible for a throttled entity to be forced into a running
 5237	 * state (e.g. set_curr_task), in this case we're finished.
 5238	 */
 5239	if (cfs_rq_throttled(cfs_rq))
 5240		return true;
 5241
 5242	return throttle_cfs_rq(cfs_rq);
 
 5243}
 5244
 5245static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
 5246{
 5247	struct cfs_bandwidth *cfs_b =
 5248		container_of(timer, struct cfs_bandwidth, slack_timer);
 5249
 5250	do_sched_cfs_slack_timer(cfs_b);
 5251
 5252	return HRTIMER_NORESTART;
 5253}
 5254
 5255extern const u64 max_cfs_quota_period;
 5256
 5257static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
 5258{
 5259	struct cfs_bandwidth *cfs_b =
 5260		container_of(timer, struct cfs_bandwidth, period_timer);
 5261	unsigned long flags;
 5262	int overrun;
 5263	int idle = 0;
 5264	int count = 0;
 5265
 5266	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 5267	for (;;) {
 5268		overrun = hrtimer_forward_now(timer, cfs_b->period);
 
 
 5269		if (!overrun)
 5270			break;
 5271
 5272		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
 5273
 5274		if (++count > 3) {
 5275			u64 new, old = ktime_to_ns(cfs_b->period);
 5276
 5277			/*
 5278			 * Grow period by a factor of 2 to avoid losing precision.
 5279			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
 5280			 * to fail.
 5281			 */
 5282			new = old * 2;
 5283			if (new < max_cfs_quota_period) {
 5284				cfs_b->period = ns_to_ktime(new);
 5285				cfs_b->quota *= 2;
 5286				cfs_b->burst *= 2;
 5287
 5288				pr_warn_ratelimited(
 5289	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 5290					smp_processor_id(),
 5291					div_u64(new, NSEC_PER_USEC),
 5292					div_u64(cfs_b->quota, NSEC_PER_USEC));
 5293			} else {
 5294				pr_warn_ratelimited(
 5295	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 5296					smp_processor_id(),
 5297					div_u64(old, NSEC_PER_USEC),
 5298					div_u64(cfs_b->quota, NSEC_PER_USEC));
 5299			}
 5300
 5301			/* reset count so we don't come right back in here */
 5302			count = 0;
 5303		}
 5304	}
 5305	if (idle)
 5306		cfs_b->period_active = 0;
 5307	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 5308
 5309	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 5310}
 5311
 5312void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 5313{
 5314	raw_spin_lock_init(&cfs_b->lock);
 5315	cfs_b->runtime = 0;
 5316	cfs_b->quota = RUNTIME_INF;
 5317	cfs_b->period = ns_to_ktime(default_cfs_period());
 5318	cfs_b->burst = 0;
 5319
 5320	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
 5321	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
 5322	cfs_b->period_timer.function = sched_cfs_period_timer;
 5323	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 5324	cfs_b->slack_timer.function = sched_cfs_slack_timer;
 5325	cfs_b->slack_started = false;
 5326}
 5327
 5328static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5329{
 5330	cfs_rq->runtime_enabled = 0;
 5331	INIT_LIST_HEAD(&cfs_rq->throttled_list);
 5332}
 5333
 5334void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 
 5335{
 5336	lockdep_assert_held(&cfs_b->lock);
 5337
 5338	if (cfs_b->period_active)
 5339		return;
 
 
 
 
 
 
 
 
 
 
 
 
 5340
 5341	cfs_b->period_active = 1;
 5342	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
 5343	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
 5344}
 5345
 5346static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 5347{
 5348	/* init_cfs_bandwidth() was not called */
 5349	if (!cfs_b->throttled_cfs_rq.next)
 5350		return;
 5351
 5352	hrtimer_cancel(&cfs_b->period_timer);
 5353	hrtimer_cancel(&cfs_b->slack_timer);
 5354}
 5355
 5356/*
 5357 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
 5358 *
 5359 * The race is harmless, since modifying bandwidth settings of unhooked group
 5360 * bits doesn't do much.
 5361 */
 5362
 5363/* cpu online callback */
 5364static void __maybe_unused update_runtime_enabled(struct rq *rq)
 5365{
 5366	struct task_group *tg;
 5367
 5368	lockdep_assert_rq_held(rq);
 5369
 5370	rcu_read_lock();
 5371	list_for_each_entry_rcu(tg, &task_groups, list) {
 5372		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 5373		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 5374
 5375		raw_spin_lock(&cfs_b->lock);
 5376		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
 5377		raw_spin_unlock(&cfs_b->lock);
 5378	}
 5379	rcu_read_unlock();
 5380}
 5381
 5382/* cpu offline callback */
 5383static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
 5384{
 5385	struct task_group *tg;
 5386
 5387	lockdep_assert_rq_held(rq);
 5388
 5389	rcu_read_lock();
 5390	list_for_each_entry_rcu(tg, &task_groups, list) {
 5391		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 5392
 5393		if (!cfs_rq->runtime_enabled)
 5394			continue;
 5395
 5396		/*
 5397		 * clock_task is not advancing so we just need to make sure
 5398		 * there's some valid quota amount
 5399		 */
 5400		cfs_rq->runtime_remaining = 1;
 5401		/*
 5402		 * Offline rq is schedulable till CPU is completely disabled
 5403		 * in take_cpu_down(), so we prevent new cfs throttling here.
 5404		 */
 5405		cfs_rq->runtime_enabled = 0;
 5406
 5407		if (cfs_rq_throttled(cfs_rq))
 5408			unthrottle_cfs_rq(cfs_rq);
 5409	}
 5410	rcu_read_unlock();
 5411}
 5412
 5413#else /* CONFIG_CFS_BANDWIDTH */
 5414
 5415static inline bool cfs_bandwidth_used(void)
 5416{
 5417	return false;
 5418}
 5419
 5420static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
 5421static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
 5422static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 5423static inline void sync_throttle(struct task_group *tg, int cpu) {}
 5424static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 5425
 5426static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 5427{
 5428	return 0;
 5429}
 5430
 5431static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 5432{
 5433	return 0;
 5434}
 5435
 5436static inline int throttled_lb_pair(struct task_group *tg,
 5437				    int src_cpu, int dest_cpu)
 5438{
 5439	return 0;
 5440}
 5441
 5442void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 5443
 5444#ifdef CONFIG_FAIR_GROUP_SCHED
 5445static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 5446#endif
 5447
 5448static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 5449{
 5450	return NULL;
 5451}
 5452static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 5453static inline void update_runtime_enabled(struct rq *rq) {}
 5454static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
 5455
 5456#endif /* CONFIG_CFS_BANDWIDTH */
 5457
 5458/**************************************************
 5459 * CFS operations on tasks:
 5460 */
 5461
 5462#ifdef CONFIG_SCHED_HRTICK
 5463static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 5464{
 5465	struct sched_entity *se = &p->se;
 5466	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 5467
 5468	SCHED_WARN_ON(task_rq(p) != rq);
 5469
 5470	if (rq->cfs.h_nr_running > 1) {
 5471		u64 slice = sched_slice(cfs_rq, se);
 5472		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 5473		s64 delta = slice - ran;
 5474
 5475		if (delta < 0) {
 5476			if (task_current(rq, p))
 5477				resched_curr(rq);
 5478			return;
 5479		}
 
 
 
 
 
 
 
 
 5480		hrtick_start(rq, delta);
 5481	}
 5482}
 5483
 5484/*
 5485 * called from enqueue/dequeue and updates the hrtick when the
 5486 * current task is from our class and nr_running is low enough
 5487 * to matter.
 5488 */
 5489static void hrtick_update(struct rq *rq)
 5490{
 5491	struct task_struct *curr = rq->curr;
 5492
 5493	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
 5494		return;
 5495
 5496	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 5497		hrtick_start_fair(rq, curr);
 5498}
 5499#else /* !CONFIG_SCHED_HRTICK */
 5500static inline void
 5501hrtick_start_fair(struct rq *rq, struct task_struct *p)
 5502{
 5503}
 5504
 5505static inline void hrtick_update(struct rq *rq)
 5506{
 5507}
 5508#endif
 5509
 5510#ifdef CONFIG_SMP
 5511static inline unsigned long cpu_util(int cpu);
 5512
 5513static inline bool cpu_overutilized(int cpu)
 5514{
 5515	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
 5516}
 5517
 5518static inline void update_overutilized_status(struct rq *rq)
 5519{
 5520	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
 5521		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
 5522		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
 5523	}
 5524}
 5525#else
 5526static inline void update_overutilized_status(struct rq *rq) { }
 5527#endif
 5528
 5529/* Runqueue only has SCHED_IDLE tasks enqueued */
 5530static int sched_idle_rq(struct rq *rq)
 5531{
 5532	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
 5533			rq->nr_running);
 5534}
 5535
 5536#ifdef CONFIG_SMP
 5537static int sched_idle_cpu(int cpu)
 5538{
 5539	return sched_idle_rq(cpu_rq(cpu));
 5540}
 5541#endif
 5542
 5543/*
 5544 * The enqueue_task method is called before nr_running is
 5545 * increased. Here we update the fair scheduling stats and
 5546 * then put the task into the rbtree:
 5547 */
 5548static void
 5549enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 5550{
 5551	struct cfs_rq *cfs_rq;
 5552	struct sched_entity *se = &p->se;
 5553	int idle_h_nr_running = task_has_idle_policy(p);
 5554	int task_new = !(flags & ENQUEUE_WAKEUP);
 5555
 5556	/*
 5557	 * The code below (indirectly) updates schedutil which looks at
 5558	 * the cfs_rq utilization to select a frequency.
 5559	 * Let's add the task's estimated utilization to the cfs_rq's
 5560	 * estimated utilization, before we update schedutil.
 5561	 */
 5562	util_est_enqueue(&rq->cfs, p);
 5563
 5564	/*
 5565	 * If in_iowait is set, the code below may not trigger any cpufreq
 5566	 * utilization updates, so do it here explicitly with the IOWAIT flag
 5567	 * passed.
 5568	 */
 5569	if (p->in_iowait)
 5570		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
 5571
 5572	for_each_sched_entity(se) {
 5573		if (se->on_rq)
 5574			break;
 5575		cfs_rq = cfs_rq_of(se);
 5576		enqueue_entity(cfs_rq, se, flags);
 5577
 5578		cfs_rq->h_nr_running++;
 5579		cfs_rq->idle_h_nr_running += idle_h_nr_running;
 5580
 5581		/* end evaluation on encountering a throttled cfs_rq */
 
 
 5582		if (cfs_rq_throttled(cfs_rq))
 5583			goto enqueue_throttle;
 
 5584
 5585		flags = ENQUEUE_WAKEUP;
 5586	}
 5587
 5588	for_each_sched_entity(se) {
 5589		cfs_rq = cfs_rq_of(se);
 5590
 5591		update_load_avg(cfs_rq, se, UPDATE_TG);
 5592		se_update_runnable(se);
 5593		update_cfs_group(se);
 5594
 5595		cfs_rq->h_nr_running++;
 5596		cfs_rq->idle_h_nr_running += idle_h_nr_running;
 5597
 5598		/* end evaluation on encountering a throttled cfs_rq */
 5599		if (cfs_rq_throttled(cfs_rq))
 5600			goto enqueue_throttle;
 5601
 5602               /*
 5603                * One parent has been throttled and cfs_rq removed from the
 5604                * list. Add it back to not break the leaf list.
 5605                */
 5606               if (throttled_hierarchy(cfs_rq))
 5607                       list_add_leaf_cfs_rq(cfs_rq);
 5608	}
 5609
 5610	/* At this point se is NULL and we are at root level*/
 5611	add_nr_running(rq, 1);
 5612
 5613	/*
 5614	 * Since new tasks are assigned an initial util_avg equal to
 5615	 * half of the spare capacity of their CPU, tiny tasks have the
 5616	 * ability to cross the overutilized threshold, which will
 5617	 * result in the load balancer ruining all the task placement
 5618	 * done by EAS. As a way to mitigate that effect, do not account
 5619	 * for the first enqueue operation of new tasks during the
 5620	 * overutilized flag detection.
 5621	 *
 5622	 * A better way of solving this problem would be to wait for
 5623	 * the PELT signals of tasks to converge before taking them
 5624	 * into account, but that is not straightforward to implement,
 5625	 * and the following generally works well enough in practice.
 5626	 */
 5627	if (!task_new)
 5628		update_overutilized_status(rq);
 5629
 5630enqueue_throttle:
 5631	if (cfs_bandwidth_used()) {
 5632		/*
 5633		 * When bandwidth control is enabled; the cfs_rq_throttled()
 5634		 * breaks in the above iteration can result in incomplete
 5635		 * leaf list maintenance, resulting in triggering the assertion
 5636		 * below.
 5637		 */
 5638		for_each_sched_entity(se) {
 5639			cfs_rq = cfs_rq_of(se);
 5640
 5641			if (list_add_leaf_cfs_rq(cfs_rq))
 5642				break;
 5643		}
 5644	}
 5645
 5646	assert_list_leaf_cfs_rq(rq);
 5647
 
 
 5648	hrtick_update(rq);
 5649}
 5650
 5651static void set_next_buddy(struct sched_entity *se);
 5652
 5653/*
 5654 * The dequeue_task method is called before nr_running is
 5655 * decreased. We remove the task from the rbtree and
 5656 * update the fair scheduling stats:
 5657 */
 5658static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 5659{
 5660	struct cfs_rq *cfs_rq;
 5661	struct sched_entity *se = &p->se;
 5662	int task_sleep = flags & DEQUEUE_SLEEP;
 5663	int idle_h_nr_running = task_has_idle_policy(p);
 5664	bool was_sched_idle = sched_idle_rq(rq);
 5665
 5666	util_est_dequeue(&rq->cfs, p);
 5667
 5668	for_each_sched_entity(se) {
 5669		cfs_rq = cfs_rq_of(se);
 5670		dequeue_entity(cfs_rq, se, flags);
 5671
 5672		cfs_rq->h_nr_running--;
 5673		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
 5674
 5675		/* end evaluation on encountering a throttled cfs_rq */
 
 
 5676		if (cfs_rq_throttled(cfs_rq))
 5677			goto dequeue_throttle;
 
 5678
 5679		/* Don't dequeue parent if it has other entities besides us */
 5680		if (cfs_rq->load.weight) {
 5681			/* Avoid re-evaluating load for this entity: */
 5682			se = parent_entity(se);
 5683			/*
 5684			 * Bias pick_next to pick a task from this cfs_rq, as
 5685			 * p is sleeping when it is within its sched_slice.
 5686			 */
 5687			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
 5688				set_next_buddy(se);
 
 
 
 5689			break;
 5690		}
 5691		flags |= DEQUEUE_SLEEP;
 5692	}
 5693
 5694	for_each_sched_entity(se) {
 5695		cfs_rq = cfs_rq_of(se);
 5696
 5697		update_load_avg(cfs_rq, se, UPDATE_TG);
 5698		se_update_runnable(se);
 5699		update_cfs_group(se);
 5700
 5701		cfs_rq->h_nr_running--;
 5702		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
 5703
 5704		/* end evaluation on encountering a throttled cfs_rq */
 5705		if (cfs_rq_throttled(cfs_rq))
 5706			goto dequeue_throttle;
 5707
 
 
 5708	}
 5709
 5710	/* At this point se is NULL and we are at root level*/
 5711	sub_nr_running(rq, 1);
 5712
 5713	/* balance early to pull high priority tasks */
 5714	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
 5715		rq->next_balance = jiffies;
 5716
 5717dequeue_throttle:
 5718	util_est_update(&rq->cfs, p, task_sleep);
 5719	hrtick_update(rq);
 5720}
 5721
 5722#ifdef CONFIG_SMP
 5723
 5724/* Working cpumask for: load_balance, load_balance_newidle. */
 5725DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
 5726DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
 5727
 5728#ifdef CONFIG_NO_HZ_COMMON
 5729
 5730static struct {
 5731	cpumask_var_t idle_cpus_mask;
 5732	atomic_t nr_cpus;
 5733	int has_blocked;		/* Idle CPUS has blocked load */
 5734	unsigned long next_balance;     /* in jiffy units */
 5735	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
 5736} nohz ____cacheline_aligned;
 5737
 5738#endif /* CONFIG_NO_HZ_COMMON */
 5739
 5740static unsigned long cpu_load(struct rq *rq)
 5741{
 5742	return cfs_rq_load_avg(&rq->cfs);
 5743}
 5744
 5745/*
 5746 * cpu_load_without - compute CPU load without any contributions from *p
 5747 * @cpu: the CPU which load is requested
 5748 * @p: the task which load should be discounted
 5749 *
 5750 * The load of a CPU is defined by the load of tasks currently enqueued on that
 5751 * CPU as well as tasks which are currently sleeping after an execution on that
 5752 * CPU.
 5753 *
 5754 * This method returns the load of the specified CPU by discounting the load of
 5755 * the specified task, whenever the task is currently contributing to the CPU
 5756 * load.
 5757 */
 5758static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
 5759{
 5760	struct cfs_rq *cfs_rq;
 5761	unsigned int load;
 5762
 5763	/* Task has no contribution or is new */
 5764	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 5765		return cpu_load(rq);
 5766
 5767	cfs_rq = &rq->cfs;
 5768	load = READ_ONCE(cfs_rq->avg.load_avg);
 
 
 
 
 
 
 
 
 
 5769
 5770	/* Discount task's util from CPU's util */
 5771	lsub_positive(&load, task_h_load(p));
 5772
 5773	return load;
 5774}
 5775
 5776static unsigned long cpu_runnable(struct rq *rq)
 5777{
 5778	return cfs_rq_runnable_avg(&rq->cfs);
 5779}
 5780
 5781static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
 5782{
 5783	struct cfs_rq *cfs_rq;
 5784	unsigned int runnable;
 5785
 5786	/* Task has no contribution or is new */
 5787	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 5788		return cpu_runnable(rq);
 5789
 5790	cfs_rq = &rq->cfs;
 5791	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
 5792
 5793	/* Discount task's runnable from CPU's runnable */
 5794	lsub_positive(&runnable, p->se.avg.runnable_avg);
 5795
 5796	return runnable;
 5797}
 5798
 5799static unsigned long capacity_of(int cpu)
 5800{
 5801	return cpu_rq(cpu)->cpu_capacity;
 5802}
 5803
 5804static void record_wakee(struct task_struct *p)
 5805{
 5806	/*
 5807	 * Only decay a single time; tasks that have less then 1 wakeup per
 5808	 * jiffy will not have built up many flips.
 
 5809	 */
 5810	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
 5811		current->wakee_flips >>= 1;
 5812		current->wakee_flip_decay_ts = jiffies;
 5813	}
 5814
 5815	if (current->last_wakee != p) {
 5816		current->last_wakee = p;
 5817		current->wakee_flips++;
 5818	}
 5819}
 5820
 5821/*
 5822 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 5823 *
 5824 * A waker of many should wake a different task than the one last awakened
 5825 * at a frequency roughly N times higher than one of its wakees.
 5826 *
 5827 * In order to determine whether we should let the load spread vs consolidating
 5828 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 5829 * partner, and a factor of lls_size higher frequency in the other.
 5830 *
 5831 * With both conditions met, we can be relatively sure that the relationship is
 5832 * non-monogamous, with partner count exceeding socket size.
 5833 *
 5834 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 5835 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 5836 * socket size.
 5837 */
 5838static int wake_wide(struct task_struct *p)
 5839{
 5840	unsigned int master = current->wakee_flips;
 5841	unsigned int slave = p->wakee_flips;
 5842	int factor = __this_cpu_read(sd_llc_size);
 5843
 5844	if (master < slave)
 5845		swap(master, slave);
 5846	if (slave < factor || master < slave * factor)
 5847		return 0;
 5848	return 1;
 5849}
 5850
 5851/*
 5852 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 5853 * soonest. For the purpose of speed we only consider the waking and previous
 5854 * CPU.
 5855 *
 5856 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 5857 *			cache-affine and is (or	will be) idle.
 5858 *
 5859 * wake_affine_weight() - considers the weight to reflect the average
 5860 *			  scheduling latency of the CPUs. This seems to work
 5861 *			  for the overloaded case.
 5862 */
 5863static int
 5864wake_affine_idle(int this_cpu, int prev_cpu, int sync)
 5865{
 5866	/*
 5867	 * If this_cpu is idle, it implies the wakeup is from interrupt
 5868	 * context. Only allow the move if cache is shared. Otherwise an
 5869	 * interrupt intensive workload could force all tasks onto one
 5870	 * node depending on the IO topology or IRQ affinity settings.
 5871	 *
 5872	 * If the prev_cpu is idle and cache affine then avoid a migration.
 5873	 * There is no guarantee that the cache hot data from an interrupt
 5874	 * is more important than cache hot data on the prev_cpu and from
 5875	 * a cpufreq perspective, it's better to have higher utilisation
 5876	 * on one CPU.
 5877	 */
 5878	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
 5879		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
 5880
 5881	if (sync && cpu_rq(this_cpu)->nr_running == 1)
 5882		return this_cpu;
 5883
 5884	if (available_idle_cpu(prev_cpu))
 5885		return prev_cpu;
 5886
 5887	return nr_cpumask_bits;
 5888}
 5889
 5890static int
 5891wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
 5892		   int this_cpu, int prev_cpu, int sync)
 5893{
 5894	s64 this_eff_load, prev_eff_load;
 5895	unsigned long task_load;
 5896
 5897	this_eff_load = cpu_load(cpu_rq(this_cpu));
 5898
 5899	if (sync) {
 5900		unsigned long current_load = task_h_load(current);
 5901
 5902		if (current_load > this_eff_load)
 5903			return this_cpu;
 5904
 5905		this_eff_load -= current_load;
 5906	}
 5907
 5908	task_load = task_h_load(p);
 5909
 5910	this_eff_load += task_load;
 5911	if (sched_feat(WA_BIAS))
 5912		this_eff_load *= 100;
 5913	this_eff_load *= capacity_of(prev_cpu);
 5914
 5915	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
 5916	prev_eff_load -= task_load;
 5917	if (sched_feat(WA_BIAS))
 5918		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
 5919	prev_eff_load *= capacity_of(this_cpu);
 5920
 5921	/*
 5922	 * If sync, adjust the weight of prev_eff_load such that if
 5923	 * prev_eff == this_eff that select_idle_sibling() will consider
 5924	 * stacking the wakee on top of the waker if no other CPU is
 5925	 * idle.
 5926	 */
 5927	if (sync)
 5928		prev_eff_load += 1;
 5929
 5930	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
 5931}
 5932
 5933static int wake_affine(struct sched_domain *sd, struct task_struct *p,
 5934		       int this_cpu, int prev_cpu, int sync)
 5935{
 5936	int target = nr_cpumask_bits;
 5937
 5938	if (sched_feat(WA_IDLE))
 5939		target = wake_affine_idle(this_cpu, prev_cpu, sync);
 5940
 5941	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
 5942		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
 5943
 5944	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
 5945	if (target == nr_cpumask_bits)
 5946		return prev_cpu;
 5947
 5948	schedstat_inc(sd->ttwu_move_affine);
 5949	schedstat_inc(p->se.statistics.nr_wakeups_affine);
 5950	return target;
 5951}
 5952
 5953static struct sched_group *
 5954find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
 5955
 5956/*
 5957 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
 5958 */
 5959static int
 5960find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 5961{
 5962	unsigned long load, min_load = ULONG_MAX;
 5963	unsigned int min_exit_latency = UINT_MAX;
 5964	u64 latest_idle_timestamp = 0;
 5965	int least_loaded_cpu = this_cpu;
 5966	int shallowest_idle_cpu = -1;
 5967	int i;
 5968
 5969	/* Check if we have any choice: */
 5970	if (group->group_weight == 1)
 5971		return cpumask_first(sched_group_span(group));
 5972
 5973	/* Traverse only the allowed CPUs */
 5974	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
 5975		struct rq *rq = cpu_rq(i);
 5976
 5977		if (!sched_core_cookie_match(rq, p))
 5978			continue;
 5979
 5980		if (sched_idle_cpu(i))
 5981			return i;
 5982
 5983		if (available_idle_cpu(i)) {
 5984			struct cpuidle_state *idle = idle_get_state(rq);
 5985			if (idle && idle->exit_latency < min_exit_latency) {
 5986				/*
 5987				 * We give priority to a CPU whose idle state
 5988				 * has the smallest exit latency irrespective
 5989				 * of any idle timestamp.
 5990				 */
 5991				min_exit_latency = idle->exit_latency;
 5992				latest_idle_timestamp = rq->idle_stamp;
 5993				shallowest_idle_cpu = i;
 5994			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
 5995				   rq->idle_stamp > latest_idle_timestamp) {
 5996				/*
 5997				 * If equal or no active idle state, then
 5998				 * the most recently idled CPU might have
 5999				 * a warmer cache.
 6000				 */
 6001				latest_idle_timestamp = rq->idle_stamp;
 6002				shallowest_idle_cpu = i;
 6003			}
 6004		} else if (shallowest_idle_cpu == -1) {
 6005			load = cpu_load(cpu_rq(i));
 6006			if (load < min_load) {
 6007				min_load = load;
 6008				least_loaded_cpu = i;
 6009			}
 6010		}
 6011	}
 6012
 6013	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
 6014}
 6015
 6016static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
 6017				  int cpu, int prev_cpu, int sd_flag)
 6018{
 6019	int new_cpu = cpu;
 6020
 6021	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
 6022		return prev_cpu;
 6023
 6024	/*
 6025	 * We need task's util for cpu_util_without, sync it up to
 6026	 * prev_cpu's last_update_time.
 6027	 */
 6028	if (!(sd_flag & SD_BALANCE_FORK))
 6029		sync_entity_load_avg(&p->se);
 6030
 6031	while (sd) {
 6032		struct sched_group *group;
 6033		struct sched_domain *tmp;
 6034		int weight;
 6035
 6036		if (!(sd->flags & sd_flag)) {
 6037			sd = sd->child;
 6038			continue;
 6039		}
 6040
 6041		group = find_idlest_group(sd, p, cpu);
 6042		if (!group) {
 6043			sd = sd->child;
 6044			continue;
 6045		}
 6046
 6047		new_cpu = find_idlest_group_cpu(group, p, cpu);
 6048		if (new_cpu == cpu) {
 6049			/* Now try balancing at a lower domain level of 'cpu': */
 6050			sd = sd->child;
 6051			continue;
 6052		}
 6053
 6054		/* Now try balancing at a lower domain level of 'new_cpu': */
 6055		cpu = new_cpu;
 6056		weight = sd->span_weight;
 6057		sd = NULL;
 6058		for_each_domain(cpu, tmp) {
 6059			if (weight <= tmp->span_weight)
 6060				break;
 6061			if (tmp->flags & sd_flag)
 6062				sd = tmp;
 6063		}
 6064	}
 6065
 6066	return new_cpu;
 6067}
 6068
 6069static inline int __select_idle_cpu(int cpu, struct task_struct *p)
 6070{
 6071	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
 6072	    sched_cpu_cookie_match(cpu_rq(cpu), p))
 6073		return cpu;
 6074
 6075	return -1;
 6076}
 6077
 6078#ifdef CONFIG_SCHED_SMT
 6079DEFINE_STATIC_KEY_FALSE(sched_smt_present);
 6080EXPORT_SYMBOL_GPL(sched_smt_present);
 6081
 6082static inline void set_idle_cores(int cpu, int val)
 6083{
 6084	struct sched_domain_shared *sds;
 6085
 6086	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 6087	if (sds)
 6088		WRITE_ONCE(sds->has_idle_cores, val);
 6089}
 6090
 6091static inline bool test_idle_cores(int cpu, bool def)
 6092{
 6093	struct sched_domain_shared *sds;
 6094
 6095	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 6096	if (sds)
 6097		return READ_ONCE(sds->has_idle_cores);
 
 
 
 
 
 6098
 6099	return def;
 
 6100}
 6101
 
 6102/*
 6103 * Scans the local SMT mask to see if the entire core is idle, and records this
 6104 * information in sd_llc_shared->has_idle_cores.
 6105 *
 6106 * Since SMT siblings share all cache levels, inspecting this limited remote
 6107 * state should be fairly cheap.
 6108 */
 6109void __update_idle_core(struct rq *rq)
 6110{
 6111	int core = cpu_of(rq);
 6112	int cpu;
 6113
 6114	rcu_read_lock();
 6115	if (test_idle_cores(core, true))
 6116		goto unlock;
 6117
 6118	for_each_cpu(cpu, cpu_smt_mask(core)) {
 6119		if (cpu == core)
 6120			continue;
 6121
 6122		if (!available_idle_cpu(cpu))
 6123			goto unlock;
 6124	}
 6125
 6126	set_idle_cores(core, 1);
 6127unlock:
 6128	rcu_read_unlock();
 6129}
 6130
 6131/*
 6132 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 6133 * there are no idle cores left in the system; tracked through
 6134 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 6135 */
 6136static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
 6137{
 6138	bool idle = true;
 6139	int cpu;
 6140
 6141	if (!static_branch_likely(&sched_smt_present))
 6142		return __select_idle_cpu(core, p);
 6143
 6144	for_each_cpu(cpu, cpu_smt_mask(core)) {
 6145		if (!available_idle_cpu(cpu)) {
 6146			idle = false;
 6147			if (*idle_cpu == -1) {
 6148				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
 6149					*idle_cpu = cpu;
 6150					break;
 6151				}
 6152				continue;
 6153			}
 6154			break;
 6155		}
 6156		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
 6157			*idle_cpu = cpu;
 6158	}
 6159
 6160	if (idle)
 6161		return core;
 6162
 6163	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
 6164	return -1;
 6165}
 6166
 6167/*
 6168 * Scan the local SMT mask for idle CPUs.
 6169 */
 6170static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
 6171{
 6172	int cpu;
 6173
 6174	for_each_cpu(cpu, cpu_smt_mask(target)) {
 6175		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
 6176		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
 6177			continue;
 6178		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
 6179			return cpu;
 6180	}
 6181
 6182	return -1;
 6183}
 6184
 6185#else /* CONFIG_SCHED_SMT */
 6186
 6187static inline void set_idle_cores(int cpu, int val)
 6188{
 6189}
 6190
 6191static inline bool test_idle_cores(int cpu, bool def)
 6192{
 6193	return def;
 6194}
 6195
 6196static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
 6197{
 6198	return __select_idle_cpu(core, p);
 6199}
 6200
 6201static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
 6202{
 6203	return -1;
 6204}
 6205
 6206#endif /* CONFIG_SCHED_SMT */
 6207
 6208/*
 6209 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 6210 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 6211 * average idle time for this rq (as found in rq->avg_idle).
 6212 */
 6213static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
 6214{
 6215	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
 6216	int i, cpu, idle_cpu = -1, nr = INT_MAX;
 6217	struct rq *this_rq = this_rq();
 6218	int this = smp_processor_id();
 6219	struct sched_domain *this_sd;
 6220	u64 time = 0;
 6221
 6222	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
 6223	if (!this_sd)
 6224		return -1;
 6225
 6226	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 
 6227
 6228	if (sched_feat(SIS_PROP) && !has_idle_core) {
 6229		u64 avg_cost, avg_idle, span_avg;
 6230		unsigned long now = jiffies;
 6231
 6232		/*
 6233		 * If we're busy, the assumption that the last idle period
 6234		 * predicts the future is flawed; age away the remaining
 6235		 * predicted idle time.
 6236		 */
 6237		if (unlikely(this_rq->wake_stamp < now)) {
 6238			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
 6239				this_rq->wake_stamp++;
 6240				this_rq->wake_avg_idle >>= 1;
 6241			}
 6242		}
 6243
 6244		avg_idle = this_rq->wake_avg_idle;
 6245		avg_cost = this_sd->avg_scan_cost + 1;
 
 
 6246
 6247		span_avg = sd->span_weight * avg_idle;
 6248		if (span_avg > 4*avg_cost)
 6249			nr = div_u64(span_avg, avg_cost);
 
 
 6250		else
 6251			nr = 4;
 6252
 6253		time = cpu_clock(this);
 6254	}
 6255
 6256	for_each_cpu_wrap(cpu, cpus, target) {
 6257		if (has_idle_core) {
 6258			i = select_idle_core(p, cpu, cpus, &idle_cpu);
 6259			if ((unsigned int)i < nr_cpumask_bits)
 6260				return i;
 6261
 6262		} else {
 6263			if (!--nr)
 6264				return -1;
 6265			idle_cpu = __select_idle_cpu(cpu, p);
 6266			if ((unsigned int)idle_cpu < nr_cpumask_bits)
 6267				break;
 6268		}
 6269	}
 6270
 6271	if (has_idle_core)
 6272		set_idle_cores(target, false);
 6273
 6274	if (sched_feat(SIS_PROP) && !has_idle_core) {
 6275		time = cpu_clock(this) - time;
 
 
 6276
 6277		/*
 6278		 * Account for the scan cost of wakeups against the average
 6279		 * idle time.
 6280		 */
 6281		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
 6282
 6283		update_avg(&this_sd->avg_scan_cost, time);
 
 
 
 
 
 
 
 6284	}
 6285
 6286	return idle_cpu;
 6287}
 
 6288
 6289/*
 6290 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
 6291 * the task fits. If no CPU is big enough, but there are idle ones, try to
 6292 * maximize capacity.
 6293 */
 6294static int
 6295select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
 6296{
 6297	unsigned long task_util, best_cap = 0;
 6298	int cpu, best_cpu = -1;
 6299	struct cpumask *cpus;
 6300
 6301	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
 6302	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 6303
 6304	task_util = uclamp_task_util(p);
 6305
 6306	for_each_cpu_wrap(cpu, cpus, target) {
 6307		unsigned long cpu_cap = capacity_of(cpu);
 6308
 6309		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
 6310			continue;
 6311		if (fits_capacity(task_util, cpu_cap))
 6312			return cpu;
 6313
 6314		if (cpu_cap > best_cap) {
 6315			best_cap = cpu_cap;
 6316			best_cpu = cpu;
 6317		}
 
 
 
 
 
 
 
 
 
 6318	}
 6319
 6320	return best_cpu;
 6321}
 6322
 6323static inline bool asym_fits_capacity(int task_util, int cpu)
 6324{
 6325	if (static_branch_unlikely(&sched_asym_cpucapacity))
 6326		return fits_capacity(task_util, capacity_of(cpu));
 6327
 6328	return true;
 6329}
 6330
 6331/*
 6332 * Try and locate an idle core/thread in the LLC cache domain.
 6333 */
 6334static int select_idle_sibling(struct task_struct *p, int prev, int target)
 6335{
 6336	bool has_idle_core = false;
 6337	struct sched_domain *sd;
 6338	unsigned long task_util;
 6339	int i, recent_used_cpu;
 
 
 6340
 6341	/*
 6342	 * On asymmetric system, update task utilization because we will check
 6343	 * that the task fits with cpu's capacity.
 6344	 */
 6345	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
 6346		sync_entity_load_avg(&p->se);
 6347		task_util = uclamp_task_util(p);
 6348	}
 
 
 
 
 6349
 6350	/*
 6351	 * per-cpu select_idle_mask usage
 
 
 6352	 */
 6353	lockdep_assert_irqs_disabled();
 
 
 6354
 6355	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
 6356	    asym_fits_capacity(task_util, target))
 6357		return target;
 6358
 6359	/*
 6360	 * If the previous CPU is cache affine and idle, don't be stupid:
 6361	 */
 6362	if (prev != target && cpus_share_cache(prev, target) &&
 6363	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
 6364	    asym_fits_capacity(task_util, prev))
 6365		return prev;
 6366
 6367	/*
 6368	 * Allow a per-cpu kthread to stack with the wakee if the
 6369	 * kworker thread and the tasks previous CPUs are the same.
 6370	 * The assumption is that the wakee queued work for the
 6371	 * per-cpu kthread that is now complete and the wakeup is
 6372	 * essentially a sync wakeup. An obvious example of this
 6373	 * pattern is IO completions.
 
 6374	 */
 6375	if (is_per_cpu_kthread(current) &&
 6376	    prev == smp_processor_id() &&
 6377	    this_rq()->nr_running <= 1) {
 6378		return prev;
 6379	}
 6380
 6381	/* Check a recently used CPU as a potential idle candidate: */
 6382	recent_used_cpu = p->recent_used_cpu;
 6383	if (recent_used_cpu != prev &&
 6384	    recent_used_cpu != target &&
 6385	    cpus_share_cache(recent_used_cpu, target) &&
 6386	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
 6387	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
 6388	    asym_fits_capacity(task_util, recent_used_cpu)) {
 6389		/*
 6390		 * Replace recent_used_cpu with prev as it is a potential
 6391		 * candidate for the next wake:
 6392		 */
 6393		p->recent_used_cpu = prev;
 6394		return recent_used_cpu;
 6395	}
 6396
 6397	/*
 6398	 * For asymmetric CPU capacity systems, our domain of interest is
 6399	 * sd_asym_cpucapacity rather than sd_llc.
 
 6400	 */
 6401	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
 6402		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
 6403		/*
 6404		 * On an asymmetric CPU capacity system where an exclusive
 6405		 * cpuset defines a symmetric island (i.e. one unique
 6406		 * capacity_orig value through the cpuset), the key will be set
 6407		 * but the CPUs within that cpuset will not have a domain with
 6408		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
 6409		 * capacity path.
 6410		 */
 6411		if (sd) {
 6412			i = select_idle_capacity(p, sd, target);
 6413			return ((unsigned)i < nr_cpumask_bits) ? i : target;
 6414		}
 6415	}
 6416
 6417	sd = rcu_dereference(per_cpu(sd_llc, target));
 6418	if (!sd)
 6419		return target;
 6420
 6421	if (sched_smt_active()) {
 6422		has_idle_core = test_idle_cores(target, false);
 
 
 
 
 
 
 
 
 6423
 6424		if (!has_idle_core && cpus_share_cache(prev, target)) {
 6425			i = select_idle_smt(p, sd, prev);
 6426			if ((unsigned int)i < nr_cpumask_bits)
 6427				return i;
 6428		}
 6429	}
 6430
 6431	i = select_idle_cpu(p, sd, has_idle_core, target);
 6432	if ((unsigned)i < nr_cpumask_bits)
 6433		return i;
 6434
 6435	return target;
 6436}
 6437
 6438/**
 6439 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
 6440 * @cpu: the CPU to get the utilization of
 6441 *
 6442 * The unit of the return value must be the one of capacity so we can compare
 6443 * the utilization with the capacity of the CPU that is available for CFS task
 6444 * (ie cpu_capacity).
 6445 *
 6446 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 6447 * recent utilization of currently non-runnable tasks on a CPU. It represents
 6448 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 6449 * capacity_orig is the cpu_capacity available at the highest frequency
 6450 * (arch_scale_freq_capacity()).
 6451 * The utilization of a CPU converges towards a sum equal to or less than the
 6452 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 6453 * the running time on this CPU scaled by capacity_curr.
 6454 *
 6455 * The estimated utilization of a CPU is defined to be the maximum between its
 6456 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 6457 * currently RUNNABLE on that CPU.
 6458 * This allows to properly represent the expected utilization of a CPU which
 6459 * has just got a big task running since a long sleep period. At the same time
 6460 * however it preserves the benefits of the "blocked utilization" in
 6461 * describing the potential for other tasks waking up on the same CPU.
 6462 *
 6463 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 6464 * higher than capacity_orig because of unfortunate rounding in
 6465 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 6466 * the average stabilizes with the new running time. We need to check that the
 6467 * utilization stays within the range of [0..capacity_orig] and cap it if
 6468 * necessary. Without utilization capping, a group could be seen as overloaded
 6469 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 6470 * available capacity. We allow utilization to overshoot capacity_curr (but not
 6471 * capacity_orig) as it useful for predicting the capacity required after task
 6472 * migrations (scheduler-driven DVFS).
 6473 *
 6474 * Return: the (estimated) utilization for the specified CPU
 6475 */
 6476static inline unsigned long cpu_util(int cpu)
 
 
 6477{
 6478	struct cfs_rq *cfs_rq;
 6479	unsigned int util;
 
 
 6480
 6481	cfs_rq = &cpu_rq(cpu)->cfs;
 6482	util = READ_ONCE(cfs_rq->avg.util_avg);
 6483
 6484	if (sched_feat(UTIL_EST))
 6485		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
 
 
 6486
 6487	return min_t(unsigned long, util, capacity_orig_of(cpu));
 6488}
 
 
 6489
 6490/*
 6491 * cpu_util_without: compute cpu utilization without any contributions from *p
 6492 * @cpu: the CPU which utilization is requested
 6493 * @p: the task which utilization should be discounted
 6494 *
 6495 * The utilization of a CPU is defined by the utilization of tasks currently
 6496 * enqueued on that CPU as well as tasks which are currently sleeping after an
 6497 * execution on that CPU.
 6498 *
 6499 * This method returns the utilization of the specified CPU by discounting the
 6500 * utilization of the specified task, whenever the task is currently
 6501 * contributing to the CPU utilization.
 6502 */
 6503static unsigned long cpu_util_without(int cpu, struct task_struct *p)
 6504{
 6505	struct cfs_rq *cfs_rq;
 6506	unsigned int util;
 6507
 6508	/* Task has no contribution or is new */
 6509	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 6510		return cpu_util(cpu);
 6511
 6512	cfs_rq = &cpu_rq(cpu)->cfs;
 6513	util = READ_ONCE(cfs_rq->avg.util_avg);
 
 
 
 
 6514
 6515	/* Discount task's util from CPU's util */
 6516	lsub_positive(&util, task_util(p));
 6517
 6518	/*
 6519	 * Covered cases:
 6520	 *
 6521	 * a) if *p is the only task sleeping on this CPU, then:
 6522	 *      cpu_util (== task_util) > util_est (== 0)
 6523	 *    and thus we return:
 6524	 *      cpu_util_without = (cpu_util - task_util) = 0
 6525	 *
 6526	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
 6527	 *    IDLE, then:
 6528	 *      cpu_util >= task_util
 6529	 *      cpu_util > util_est (== 0)
 6530	 *    and thus we discount *p's blocked utilization to return:
 6531	 *      cpu_util_without = (cpu_util - task_util) >= 0
 6532	 *
 6533	 * c) if other tasks are RUNNABLE on that CPU and
 6534	 *      util_est > cpu_util
 6535	 *    then we use util_est since it returns a more restrictive
 6536	 *    estimation of the spare capacity on that CPU, by just
 6537	 *    considering the expected utilization of tasks already
 6538	 *    runnable on that CPU.
 6539	 *
 6540	 * Cases a) and b) are covered by the above code, while case c) is
 6541	 * covered by the following code when estimated utilization is
 6542	 * enabled.
 6543	 */
 6544	if (sched_feat(UTIL_EST)) {
 6545		unsigned int estimated =
 6546			READ_ONCE(cfs_rq->avg.util_est.enqueued);
 6547
 6548		/*
 6549		 * Despite the following checks we still have a small window
 6550		 * for a possible race, when an execl's select_task_rq_fair()
 6551		 * races with LB's detach_task():
 6552		 *
 6553		 *   detach_task()
 6554		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
 6555		 *     ---------------------------------- A
 6556		 *     deactivate_task()                   \
 6557		 *       dequeue_task()                     + RaceTime
 6558		 *         util_est_dequeue()              /
 6559		 *     ---------------------------------- B
 6560		 *
 6561		 * The additional check on "current == p" it's required to
 6562		 * properly fix the execl regression and it helps in further
 6563		 * reducing the chances for the above race.
 6564		 */
 6565		if (unlikely(task_on_rq_queued(p) || current == p))
 6566			lsub_positive(&estimated, _task_util_est(p));
 6567
 6568		util = max(util, estimated);
 6569	}
 6570
 6571	/*
 6572	 * Utilization (estimated) can exceed the CPU capacity, thus let's
 6573	 * clamp to the maximum CPU capacity to ensure consistency with
 6574	 * the cpu_util call.
 6575	 */
 6576	return min_t(unsigned long, util, capacity_orig_of(cpu));
 6577}
 6578
 6579/*
 6580 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
 6581 * to @dst_cpu.
 6582 */
 6583static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
 
 6584{
 6585	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
 6586	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
 6587
 6588	/*
 6589	 * If @p migrates from @cpu to another, remove its contribution. Or,
 6590	 * if @p migrates from another CPU to @cpu, add its contribution. In
 6591	 * the other cases, @cpu is not impacted by the migration, so the
 6592	 * util_avg should already be correct.
 6593	 */
 6594	if (task_cpu(p) == cpu && dst_cpu != cpu)
 6595		lsub_positive(&util, task_util(p));
 6596	else if (task_cpu(p) != cpu && dst_cpu == cpu)
 6597		util += task_util(p);
 6598
 6599	if (sched_feat(UTIL_EST)) {
 6600		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
 6601
 6602		/*
 6603		 * During wake-up, the task isn't enqueued yet and doesn't
 6604		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
 6605		 * so just add it (if needed) to "simulate" what will be
 6606		 * cpu_util() after the task has been enqueued.
 6607		 */
 6608		if (dst_cpu == cpu)
 6609			util_est += _task_util_est(p);
 6610
 6611		util = max(util, util_est);
 
 
 
 6612	}
 6613
 6614	return min(util, capacity_orig_of(cpu));
 6615}
 6616
 6617/*
 6618 * compute_energy(): Estimates the energy that @pd would consume if @p was
 6619 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
 6620 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
 6621 * to compute what would be the energy if we decided to actually migrate that
 6622 * task.
 6623 */
 6624static long
 6625compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
 6626{
 6627	struct cpumask *pd_mask = perf_domain_span(pd);
 6628	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
 6629	unsigned long max_util = 0, sum_util = 0;
 6630	unsigned long _cpu_cap = cpu_cap;
 6631	int cpu;
 6632
 6633	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
 
 6634
 6635	/*
 6636	 * The capacity state of CPUs of the current rd can be driven by CPUs
 6637	 * of another rd if they belong to the same pd. So, account for the
 6638	 * utilization of these CPUs too by masking pd with cpu_online_mask
 6639	 * instead of the rd span.
 6640	 *
 6641	 * If an entire pd is outside of the current rd, it will not appear in
 6642	 * its pd list and will not be accounted by compute_energy().
 6643	 */
 6644	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
 6645		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
 6646		unsigned long cpu_util, util_running = util_freq;
 6647		struct task_struct *tsk = NULL;
 6648
 6649		/*
 6650		 * When @p is placed on @cpu:
 6651		 *
 6652		 * util_running = max(cpu_util, cpu_util_est) +
 6653		 *		  max(task_util, _task_util_est)
 6654		 *
 6655		 * while cpu_util_next is: max(cpu_util + task_util,
 6656		 *			       cpu_util_est + _task_util_est)
 6657		 */
 6658		if (cpu == dst_cpu) {
 6659			tsk = p;
 6660			util_running =
 6661				cpu_util_next(cpu, p, -1) + task_util_est(p);
 6662		}
 6663
 6664		/*
 6665		 * Busy time computation: utilization clamping is not
 6666		 * required since the ratio (sum_util / cpu_capacity)
 6667		 * is already enough to scale the EM reported power
 6668		 * consumption at the (eventually clamped) cpu_capacity.
 6669		 */
 6670		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
 6671					      ENERGY_UTIL, NULL);
 6672
 6673		sum_util += min(cpu_util, _cpu_cap);
 6674
 6675		/*
 6676		 * Performance domain frequency: utilization clamping
 6677		 * must be considered since it affects the selection
 6678		 * of the performance domain frequency.
 6679		 * NOTE: in case RT tasks are running, by default the
 6680		 * FREQUENCY_UTIL's utilization can be max OPP.
 6681		 */
 6682		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
 6683					      FREQUENCY_UTIL, tsk);
 6684		max_util = max(max_util, min(cpu_util, _cpu_cap));
 6685	}
 6686
 6687	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
 6688}
 6689
 6690/*
 6691 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
 6692 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
 6693 * spare capacity in each performance domain and uses it as a potential
 6694 * candidate to execute the task. Then, it uses the Energy Model to figure
 6695 * out which of the CPU candidates is the most energy-efficient.
 6696 *
 6697 * The rationale for this heuristic is as follows. In a performance domain,
 6698 * all the most energy efficient CPU candidates (according to the Energy
 6699 * Model) are those for which we'll request a low frequency. When there are
 6700 * several CPUs for which the frequency request will be the same, we don't
 6701 * have enough data to break the tie between them, because the Energy Model
 6702 * only includes active power costs. With this model, if we assume that
 6703 * frequency requests follow utilization (e.g. using schedutil), the CPU with
 6704 * the maximum spare capacity in a performance domain is guaranteed to be among
 6705 * the best candidates of the performance domain.
 6706 *
 6707 * In practice, it could be preferable from an energy standpoint to pack
 6708 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
 6709 * but that could also hurt our chances to go cluster idle, and we have no
 6710 * ways to tell with the current Energy Model if this is actually a good
 6711 * idea or not. So, find_energy_efficient_cpu() basically favors
 6712 * cluster-packing, and spreading inside a cluster. That should at least be
 6713 * a good thing for latency, and this is consistent with the idea that most
 6714 * of the energy savings of EAS come from the asymmetry of the system, and
 6715 * not so much from breaking the tie between identical CPUs. That's also the
 6716 * reason why EAS is enabled in the topology code only for systems where
 6717 * SD_ASYM_CPUCAPACITY is set.
 6718 *
 6719 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
 6720 * they don't have any useful utilization data yet and it's not possible to
 6721 * forecast their impact on energy consumption. Consequently, they will be
 6722 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
 6723 * to be energy-inefficient in some use-cases. The alternative would be to
 6724 * bias new tasks towards specific types of CPUs first, or to try to infer
 6725 * their util_avg from the parent task, but those heuristics could hurt
 6726 * other use-cases too. So, until someone finds a better way to solve this,
 6727 * let's keep things simple by re-using the existing slow path.
 6728 */
 6729static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 6730{
 6731	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
 6732	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 6733	int cpu, best_energy_cpu = prev_cpu, target = -1;
 6734	unsigned long cpu_cap, util, base_energy = 0;
 6735	struct sched_domain *sd;
 6736	struct perf_domain *pd;
 6737
 6738	rcu_read_lock();
 6739	pd = rcu_dereference(rd->pd);
 6740	if (!pd || READ_ONCE(rd->overutilized))
 6741		goto unlock;
 6742
 6743	/*
 6744	 * Energy-aware wake-up happens on the lowest sched_domain starting
 6745	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
 6746	 */
 6747	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
 6748	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
 6749		sd = sd->parent;
 6750	if (!sd)
 6751		goto unlock;
 6752
 6753	target = prev_cpu;
 6754
 6755	sync_entity_load_avg(&p->se);
 6756	if (!task_util_est(p))
 6757		goto unlock;
 6758
 6759	for (; pd; pd = pd->next) {
 6760		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
 6761		bool compute_prev_delta = false;
 6762		unsigned long base_energy_pd;
 6763		int max_spare_cap_cpu = -1;
 6764
 6765		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
 6766			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 6767				continue;
 6768
 6769			util = cpu_util_next(cpu, p, cpu);
 6770			cpu_cap = capacity_of(cpu);
 6771			spare_cap = cpu_cap;
 6772			lsub_positive(&spare_cap, util);
 6773
 6774			/*
 6775			 * Skip CPUs that cannot satisfy the capacity request.
 6776			 * IOW, placing the task there would make the CPU
 6777			 * overutilized. Take uclamp into account to see how
 6778			 * much capacity we can get out of the CPU; this is
 6779			 * aligned with sched_cpu_util().
 6780			 */
 6781			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
 6782			if (!fits_capacity(util, cpu_cap))
 6783				continue;
 6784
 6785			if (cpu == prev_cpu) {
 6786				/* Always use prev_cpu as a candidate. */
 6787				compute_prev_delta = true;
 6788			} else if (spare_cap > max_spare_cap) {
 6789				/*
 6790				 * Find the CPU with the maximum spare capacity
 6791				 * in the performance domain.
 6792				 */
 6793				max_spare_cap = spare_cap;
 6794				max_spare_cap_cpu = cpu;
 6795			}
 6796		}
 6797
 6798		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
 6799			continue;
 6800
 6801		/* Compute the 'base' energy of the pd, without @p */
 6802		base_energy_pd = compute_energy(p, -1, pd);
 6803		base_energy += base_energy_pd;
 6804
 6805		/* Evaluate the energy impact of using prev_cpu. */
 6806		if (compute_prev_delta) {
 6807			prev_delta = compute_energy(p, prev_cpu, pd);
 6808			if (prev_delta < base_energy_pd)
 6809				goto unlock;
 6810			prev_delta -= base_energy_pd;
 6811			best_delta = min(best_delta, prev_delta);
 6812		}
 6813
 6814		/* Evaluate the energy impact of using max_spare_cap_cpu. */
 6815		if (max_spare_cap_cpu >= 0) {
 6816			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
 6817			if (cur_delta < base_energy_pd)
 6818				goto unlock;
 6819			cur_delta -= base_energy_pd;
 6820			if (cur_delta < best_delta) {
 6821				best_delta = cur_delta;
 6822				best_energy_cpu = max_spare_cap_cpu;
 6823			}
 6824		}
 6825	}
 6826	rcu_read_unlock();
 6827
 6828	/*
 6829	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
 6830	 * least 6% of the energy used by prev_cpu.
 6831	 */
 6832	if ((prev_delta == ULONG_MAX) ||
 6833	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
 6834		target = best_energy_cpu;
 6835
 6836	return target;
 6837
 6838unlock:
 6839	rcu_read_unlock();
 6840
 6841	return target;
 6842}
 6843
 6844/*
 6845 * select_task_rq_fair: Select target runqueue for the waking task in domains
 6846 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
 6847 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
 6848 *
 6849 * Balances load by selecting the idlest CPU in the idlest group, or under
 6850 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
 6851 *
 6852 * Returns the target CPU number.
 
 
 6853 */
 6854static int
 6855select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
 6856{
 6857	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
 6858	struct sched_domain *tmp, *sd = NULL;
 6859	int cpu = smp_processor_id();
 6860	int new_cpu = prev_cpu;
 6861	int want_affine = 0;
 6862	/* SD_flags and WF_flags share the first nibble */
 6863	int sd_flag = wake_flags & 0xF;
 6864
 6865	/*
 6866	 * required for stable ->cpus_allowed
 6867	 */
 6868	lockdep_assert_held(&p->pi_lock);
 6869	if (wake_flags & WF_TTWU) {
 6870		record_wakee(p);
 6871
 6872		if (sched_energy_enabled()) {
 6873			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
 6874			if (new_cpu >= 0)
 6875				return new_cpu;
 6876			new_cpu = prev_cpu;
 6877		}
 6878
 6879		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
 
 
 
 6880	}
 6881
 6882	rcu_read_lock();
 6883	for_each_domain(cpu, tmp) {
 
 
 
 6884		/*
 6885		 * If both 'cpu' and 'prev_cpu' are part of this domain,
 6886		 * cpu is a valid SD_WAKE_AFFINE target.
 6887		 */
 6888		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
 6889		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
 6890			if (cpu != prev_cpu)
 6891				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
 6892
 6893			sd = NULL; /* Prefer wake_affine over balance flags */
 6894			break;
 6895		}
 6896
 6897		if (tmp->flags & sd_flag)
 6898			sd = tmp;
 6899		else if (!want_affine)
 6900			break;
 6901	}
 6902
 6903	if (unlikely(sd)) {
 6904		/* Slow path */
 6905		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
 6906	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
 6907		/* Fast path */
 6908		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
 
 
 
 
 
 6909
 6910		if (want_affine)
 6911			current->recent_used_cpu = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6912	}
 
 6913	rcu_read_unlock();
 6914
 6915	return new_cpu;
 6916}
 6917
 6918static void detach_entity_cfs_rq(struct sched_entity *se);
 6919
 6920/*
 6921 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
 6922 * cfs_rq_of(p) references at time of call are still valid and identify the
 6923 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
 
 6924 */
 6925static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
 
 6926{
 6927	/*
 6928	 * As blocked tasks retain absolute vruntime the migration needs to
 6929	 * deal with this by subtracting the old and adding the new
 6930	 * min_vruntime -- the latter is done by enqueue_entity() when placing
 6931	 * the task on the new runqueue.
 6932	 */
 6933	if (READ_ONCE(p->__state) == TASK_WAKING) {
 6934		struct sched_entity *se = &p->se;
 6935		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 6936		u64 min_vruntime;
 6937
 6938#ifndef CONFIG_64BIT
 6939		u64 min_vruntime_copy;
 6940
 6941		do {
 6942			min_vruntime_copy = cfs_rq->min_vruntime_copy;
 6943			smp_rmb();
 6944			min_vruntime = cfs_rq->min_vruntime;
 6945		} while (min_vruntime != min_vruntime_copy);
 6946#else
 6947		min_vruntime = cfs_rq->min_vruntime;
 6948#endif
 6949
 6950		se->vruntime -= min_vruntime;
 6951	}
 6952
 6953	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
 6954		/*
 6955		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
 6956		 * rq->lock and can modify state directly.
 6957		 */
 6958		lockdep_assert_rq_held(task_rq(p));
 6959		detach_entity_cfs_rq(&p->se);
 6960
 6961	} else {
 6962		/*
 6963		 * We are supposed to update the task to "current" time, then
 6964		 * its up to date and ready to go to new CPU/cfs_rq. But we
 6965		 * have difficulty in getting what current time is, so simply
 6966		 * throw away the out-of-date time. This will result in the
 6967		 * wakee task is less decayed, but giving the wakee more load
 6968		 * sounds not bad.
 6969		 */
 6970		remove_entity_load_avg(&p->se);
 6971	}
 6972
 6973	/* Tell new CPU we are migrated */
 6974	p->se.avg.last_update_time = 0;
 6975
 6976	/* We have migrated, no longer consider this task hot */
 6977	p->se.exec_start = 0;
 6978
 6979	update_scan_period(p, new_cpu);
 6980}
 6981
 6982static void task_dead_fair(struct task_struct *p)
 6983{
 6984	remove_entity_load_avg(&p->se);
 6985}
 6986
 6987static int
 6988balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6989{
 6990	if (rq->nr_running)
 6991		return 1;
 6992
 6993	return newidle_balance(rq, rf) != 0;
 6994}
 6995#endif /* CONFIG_SMP */
 6996
 6997static unsigned long wakeup_gran(struct sched_entity *se)
 
 6998{
 6999	unsigned long gran = sysctl_sched_wakeup_granularity;
 7000
 7001	/*
 7002	 * Since its curr running now, convert the gran from real-time
 7003	 * to virtual-time in his units.
 7004	 *
 7005	 * By using 'se' instead of 'curr' we penalize light tasks, so
 7006	 * they get preempted easier. That is, if 'se' < 'curr' then
 7007	 * the resulting gran will be larger, therefore penalizing the
 7008	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
 7009	 * be smaller, again penalizing the lighter task.
 7010	 *
 7011	 * This is especially important for buddies when the leftmost
 7012	 * task is higher priority than the buddy.
 7013	 */
 7014	return calc_delta_fair(gran, se);
 7015}
 7016
 7017/*
 7018 * Should 'se' preempt 'curr'.
 7019 *
 7020 *             |s1
 7021 *        |s2
 7022 *   |s3
 7023 *         g
 7024 *      |<--->|c
 7025 *
 7026 *  w(c, s1) = -1
 7027 *  w(c, s2) =  0
 7028 *  w(c, s3) =  1
 7029 *
 7030 */
 7031static int
 7032wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 7033{
 7034	s64 gran, vdiff = curr->vruntime - se->vruntime;
 7035
 7036	if (vdiff <= 0)
 7037		return -1;
 7038
 7039	gran = wakeup_gran(se);
 7040	if (vdiff > gran)
 7041		return 1;
 7042
 7043	return 0;
 7044}
 7045
 7046static void set_last_buddy(struct sched_entity *se)
 7047{
 7048	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
 7049		return;
 7050
 7051	for_each_sched_entity(se) {
 7052		if (SCHED_WARN_ON(!se->on_rq))
 7053			return;
 7054		cfs_rq_of(se)->last = se;
 7055	}
 7056}
 7057
 7058static void set_next_buddy(struct sched_entity *se)
 7059{
 7060	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
 7061		return;
 7062
 7063	for_each_sched_entity(se) {
 7064		if (SCHED_WARN_ON(!se->on_rq))
 7065			return;
 7066		cfs_rq_of(se)->next = se;
 7067	}
 7068}
 7069
 7070static void set_skip_buddy(struct sched_entity *se)
 7071{
 7072	for_each_sched_entity(se)
 7073		cfs_rq_of(se)->skip = se;
 7074}
 7075
 7076/*
 7077 * Preempt the current task with a newly woken task if needed:
 7078 */
 7079static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 7080{
 7081	struct task_struct *curr = rq->curr;
 7082	struct sched_entity *se = &curr->se, *pse = &p->se;
 7083	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 7084	int scale = cfs_rq->nr_running >= sched_nr_latency;
 7085	int next_buddy_marked = 0;
 7086
 7087	if (unlikely(se == pse))
 7088		return;
 7089
 7090	/*
 7091	 * This is possible from callers such as attach_tasks(), in which we
 7092	 * unconditionally check_preempt_curr() after an enqueue (which may have
 7093	 * lead to a throttle).  This both saves work and prevents false
 7094	 * next-buddy nomination below.
 7095	 */
 7096	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
 7097		return;
 7098
 7099	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
 7100		set_next_buddy(pse);
 7101		next_buddy_marked = 1;
 7102	}
 7103
 7104	/*
 7105	 * We can come here with TIF_NEED_RESCHED already set from new task
 7106	 * wake up path.
 7107	 *
 7108	 * Note: this also catches the edge-case of curr being in a throttled
 7109	 * group (e.g. via set_curr_task), since update_curr() (in the
 7110	 * enqueue of curr) will have resulted in resched being set.  This
 7111	 * prevents us from potentially nominating it as a false LAST_BUDDY
 7112	 * below.
 7113	 */
 7114	if (test_tsk_need_resched(curr))
 7115		return;
 7116
 7117	/* Idle tasks are by definition preempted by non-idle tasks. */
 7118	if (unlikely(task_has_idle_policy(curr)) &&
 7119	    likely(!task_has_idle_policy(p)))
 7120		goto preempt;
 7121
 7122	/*
 7123	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
 7124	 * is driven by the tick):
 7125	 */
 7126	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
 7127		return;
 7128
 7129	find_matching_se(&se, &pse);
 7130	update_curr(cfs_rq_of(se));
 7131	BUG_ON(!pse);
 7132	if (wakeup_preempt_entity(se, pse) == 1) {
 7133		/*
 7134		 * Bias pick_next to pick the sched entity that is
 7135		 * triggering this preemption.
 7136		 */
 7137		if (!next_buddy_marked)
 7138			set_next_buddy(pse);
 7139		goto preempt;
 7140	}
 7141
 7142	return;
 7143
 7144preempt:
 7145	resched_curr(rq);
 7146	/*
 7147	 * Only set the backward buddy when the current task is still
 7148	 * on the rq. This can happen when a wakeup gets interleaved
 7149	 * with schedule on the ->pre_schedule() or idle_balance()
 7150	 * point, either of which can * drop the rq lock.
 7151	 *
 7152	 * Also, during early boot the idle thread is in the fair class,
 7153	 * for obvious reasons its a bad idea to schedule back to it.
 7154	 */
 7155	if (unlikely(!se->on_rq || curr == rq->idle))
 7156		return;
 7157
 7158	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
 7159		set_last_buddy(se);
 7160}
 7161
 7162#ifdef CONFIG_SMP
 7163static struct task_struct *pick_task_fair(struct rq *rq)
 7164{
 7165	struct sched_entity *se;
 7166	struct cfs_rq *cfs_rq;
 7167
 7168again:
 7169	cfs_rq = &rq->cfs;
 7170	if (!cfs_rq->nr_running)
 7171		return NULL;
 7172
 7173	do {
 7174		struct sched_entity *curr = cfs_rq->curr;
 7175
 7176		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
 7177		if (curr) {
 7178			if (curr->on_rq)
 7179				update_curr(cfs_rq);
 7180			else
 7181				curr = NULL;
 7182
 7183			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
 7184				goto again;
 7185		}
 7186
 7187		se = pick_next_entity(cfs_rq, curr);
 7188		cfs_rq = group_cfs_rq(se);
 7189	} while (cfs_rq);
 7190
 7191	return task_of(se);
 7192}
 7193#endif
 7194
 7195struct task_struct *
 7196pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 7197{
 7198	struct cfs_rq *cfs_rq = &rq->cfs;
 7199	struct sched_entity *se;
 7200	struct task_struct *p;
 7201	int new_tasks;
 7202
 7203again:
 7204	if (!sched_fair_runnable(rq))
 
 7205		goto idle;
 7206
 7207#ifdef CONFIG_FAIR_GROUP_SCHED
 7208	if (!prev || prev->sched_class != &fair_sched_class)
 7209		goto simple;
 7210
 7211	/*
 7212	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
 7213	 * likely that a next task is from the same cgroup as the current.
 7214	 *
 7215	 * Therefore attempt to avoid putting and setting the entire cgroup
 7216	 * hierarchy, only change the part that actually changes.
 7217	 */
 7218
 7219	do {
 7220		struct sched_entity *curr = cfs_rq->curr;
 7221
 7222		/*
 7223		 * Since we got here without doing put_prev_entity() we also
 7224		 * have to consider cfs_rq->curr. If it is still a runnable
 7225		 * entity, update_curr() will update its vruntime, otherwise
 7226		 * forget we've ever seen it.
 7227		 */
 7228		if (curr) {
 7229			if (curr->on_rq)
 7230				update_curr(cfs_rq);
 7231			else
 7232				curr = NULL;
 7233
 7234			/*
 7235			 * This call to check_cfs_rq_runtime() will do the
 7236			 * throttle and dequeue its entity in the parent(s).
 7237			 * Therefore the nr_running test will indeed
 7238			 * be correct.
 7239			 */
 7240			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
 7241				cfs_rq = &rq->cfs;
 7242
 7243				if (!cfs_rq->nr_running)
 7244					goto idle;
 7245
 7246				goto simple;
 7247			}
 7248		}
 
 
 
 
 7249
 7250		se = pick_next_entity(cfs_rq, curr);
 7251		cfs_rq = group_cfs_rq(se);
 7252	} while (cfs_rq);
 7253
 7254	p = task_of(se);
 7255
 7256	/*
 7257	 * Since we haven't yet done put_prev_entity and if the selected task
 7258	 * is a different task than we started out with, try and touch the
 7259	 * least amount of cfs_rqs.
 7260	 */
 7261	if (prev != p) {
 7262		struct sched_entity *pse = &prev->se;
 7263
 7264		while (!(cfs_rq = is_same_group(se, pse))) {
 7265			int se_depth = se->depth;
 7266			int pse_depth = pse->depth;
 7267
 7268			if (se_depth <= pse_depth) {
 7269				put_prev_entity(cfs_rq_of(pse), pse);
 7270				pse = parent_entity(pse);
 7271			}
 7272			if (se_depth >= pse_depth) {
 7273				set_next_entity(cfs_rq_of(se), se);
 7274				se = parent_entity(se);
 7275			}
 7276		}
 7277
 7278		put_prev_entity(cfs_rq, pse);
 7279		set_next_entity(cfs_rq, se);
 7280	}
 7281
 7282	goto done;
 
 
 
 7283simple:
 
 7284#endif
 7285	if (prev)
 7286		put_prev_task(rq, prev);
 
 
 
 7287
 7288	do {
 7289		se = pick_next_entity(cfs_rq, NULL);
 7290		set_next_entity(cfs_rq, se);
 7291		cfs_rq = group_cfs_rq(se);
 7292	} while (cfs_rq);
 7293
 7294	p = task_of(se);
 7295
 7296done: __maybe_unused;
 7297#ifdef CONFIG_SMP
 7298	/*
 7299	 * Move the next running task to the front of
 7300	 * the list, so our cfs_tasks list becomes MRU
 7301	 * one.
 7302	 */
 7303	list_move(&p->se.group_node, &rq->cfs_tasks);
 7304#endif
 7305
 7306	if (hrtick_enabled_fair(rq))
 7307		hrtick_start_fair(rq, p);
 7308
 7309	update_misfit_status(p, rq);
 7310
 7311	return p;
 7312
 7313idle:
 7314	if (!rf)
 7315		return NULL;
 7316
 7317	new_tasks = newidle_balance(rq, rf);
 7318
 7319	/*
 7320	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
 7321	 * possible for any higher priority task to appear. In that case we
 7322	 * must re-start the pick_next_entity() loop.
 7323	 */
 7324	if (new_tasks < 0)
 7325		return RETRY_TASK;
 7326
 7327	if (new_tasks > 0)
 7328		goto again;
 7329
 7330	/*
 7331	 * rq is about to be idle, check if we need to update the
 7332	 * lost_idle_time of clock_pelt
 7333	 */
 7334	update_idle_rq_clock_pelt(rq);
 7335
 7336	return NULL;
 7337}
 7338
 7339static struct task_struct *__pick_next_task_fair(struct rq *rq)
 7340{
 7341	return pick_next_task_fair(rq, NULL, NULL);
 7342}
 7343
 7344/*
 7345 * Account for a descheduled task:
 7346 */
 7347static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 7348{
 7349	struct sched_entity *se = &prev->se;
 7350	struct cfs_rq *cfs_rq;
 7351
 7352	for_each_sched_entity(se) {
 7353		cfs_rq = cfs_rq_of(se);
 7354		put_prev_entity(cfs_rq, se);
 7355	}
 7356}
 7357
 7358/*
 7359 * sched_yield() is very simple
 7360 *
 7361 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 7362 */
 7363static void yield_task_fair(struct rq *rq)
 7364{
 7365	struct task_struct *curr = rq->curr;
 7366	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 7367	struct sched_entity *se = &curr->se;
 7368
 7369	/*
 7370	 * Are we the only task in the tree?
 7371	 */
 7372	if (unlikely(rq->nr_running == 1))
 7373		return;
 7374
 7375	clear_buddies(cfs_rq, se);
 7376
 7377	if (curr->policy != SCHED_BATCH) {
 7378		update_rq_clock(rq);
 7379		/*
 7380		 * Update run-time statistics of the 'current'.
 7381		 */
 7382		update_curr(cfs_rq);
 7383		/*
 7384		 * Tell update_rq_clock() that we've just updated,
 7385		 * so we don't do microscopic update in schedule()
 7386		 * and double the fastpath cost.
 7387		 */
 7388		rq_clock_skip_update(rq);
 7389	}
 7390
 7391	set_skip_buddy(se);
 7392}
 7393
 7394static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
 7395{
 7396	struct sched_entity *se = &p->se;
 7397
 7398	/* throttled hierarchies are not runnable */
 7399	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
 7400		return false;
 7401
 7402	/* Tell the scheduler that we'd really like pse to run next. */
 7403	set_next_buddy(se);
 7404
 7405	yield_task_fair(rq);
 7406
 7407	return true;
 7408}
 7409
 7410#ifdef CONFIG_SMP
 7411/**************************************************
 7412 * Fair scheduling class load-balancing methods.
 7413 *
 7414 * BASICS
 7415 *
 7416 * The purpose of load-balancing is to achieve the same basic fairness the
 7417 * per-CPU scheduler provides, namely provide a proportional amount of compute
 7418 * time to each task. This is expressed in the following equation:
 7419 *
 7420 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 7421 *
 7422 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
 7423 * W_i,0 is defined as:
 7424 *
 7425 *   W_i,0 = \Sum_j w_i,j                                             (2)
 7426 *
 7427 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
 7428 * is derived from the nice value as per sched_prio_to_weight[].
 7429 *
 7430 * The weight average is an exponential decay average of the instantaneous
 7431 * weight:
 7432 *
 7433 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 7434 *
 7435 * C_i is the compute capacity of CPU i, typically it is the
 7436 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 7437 * can also include other factors [XXX].
 7438 *
 7439 * To achieve this balance we define a measure of imbalance which follows
 7440 * directly from (1):
 7441 *
 7442 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
 7443 *
 7444 * We them move tasks around to minimize the imbalance. In the continuous
 7445 * function space it is obvious this converges, in the discrete case we get
 7446 * a few fun cases generally called infeasible weight scenarios.
 7447 *
 7448 * [XXX expand on:
 7449 *     - infeasible weights;
 7450 *     - local vs global optima in the discrete case. ]
 7451 *
 7452 *
 7453 * SCHED DOMAINS
 7454 *
 7455 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 7456 * for all i,j solution, we create a tree of CPUs that follows the hardware
 7457 * topology where each level pairs two lower groups (or better). This results
 7458 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
 7459 * tree to only the first of the previous level and we decrease the frequency
 7460 * of load-balance at each level inv. proportional to the number of CPUs in
 7461 * the groups.
 7462 *
 7463 * This yields:
 7464 *
 7465 *     log_2 n     1     n
 7466 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 7467 *     i = 0      2^i   2^i
 7468 *                               `- size of each group
 7469 *         |         |     `- number of CPUs doing load-balance
 7470 *         |         `- freq
 7471 *         `- sum over all levels
 7472 *
 7473 * Coupled with a limit on how many tasks we can migrate every balance pass,
 7474 * this makes (5) the runtime complexity of the balancer.
 7475 *
 7476 * An important property here is that each CPU is still (indirectly) connected
 7477 * to every other CPU in at most O(log n) steps:
 7478 *
 7479 * The adjacency matrix of the resulting graph is given by:
 7480 *
 7481 *             log_2 n
 7482 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 7483 *             k = 0
 7484 *
 7485 * And you'll find that:
 7486 *
 7487 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 7488 *
 7489 * Showing there's indeed a path between every CPU in at most O(log n) steps.
 7490 * The task movement gives a factor of O(m), giving a convergence complexity
 7491 * of:
 7492 *
 7493 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 7494 *
 7495 *
 7496 * WORK CONSERVING
 7497 *
 7498 * In order to avoid CPUs going idle while there's still work to do, new idle
 7499 * balancing is more aggressive and has the newly idle CPU iterate up the domain
 7500 * tree itself instead of relying on other CPUs to bring it work.
 7501 *
 7502 * This adds some complexity to both (5) and (8) but it reduces the total idle
 7503 * time.
 7504 *
 7505 * [XXX more?]
 7506 *
 7507 *
 7508 * CGROUPS
 7509 *
 7510 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 7511 *
 7512 *                                s_k,i
 7513 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 7514 *                                 S_k
 7515 *
 7516 * Where
 7517 *
 7518 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 7519 *
 7520 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
 7521 *
 7522 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 7523 * property.
 7524 *
 7525 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 7526 *      rewrite all of this once again.]
 7527 */
 7528
 7529static unsigned long __read_mostly max_load_balance_interval = HZ/10;
 7530
 7531enum fbq_type { regular, remote, all };
 7532
 7533/*
 7534 * 'group_type' describes the group of CPUs at the moment of load balancing.
 7535 *
 7536 * The enum is ordered by pulling priority, with the group with lowest priority
 7537 * first so the group_type can simply be compared when selecting the busiest
 7538 * group. See update_sd_pick_busiest().
 7539 */
 7540enum group_type {
 7541	/* The group has spare capacity that can be used to run more tasks.  */
 7542	group_has_spare = 0,
 7543	/*
 7544	 * The group is fully used and the tasks don't compete for more CPU
 7545	 * cycles. Nevertheless, some tasks might wait before running.
 7546	 */
 7547	group_fully_busy,
 7548	/*
 7549	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
 7550	 * and must be migrated to a more powerful CPU.
 7551	 */
 7552	group_misfit_task,
 7553	/*
 7554	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
 7555	 * and the task should be migrated to it instead of running on the
 7556	 * current CPU.
 7557	 */
 7558	group_asym_packing,
 7559	/*
 7560	 * The tasks' affinity constraints previously prevented the scheduler
 7561	 * from balancing the load across the system.
 7562	 */
 7563	group_imbalanced,
 7564	/*
 7565	 * The CPU is overloaded and can't provide expected CPU cycles to all
 7566	 * tasks.
 7567	 */
 7568	group_overloaded
 7569};
 7570
 7571enum migration_type {
 7572	migrate_load = 0,
 7573	migrate_util,
 7574	migrate_task,
 7575	migrate_misfit
 7576};
 7577
 7578#define LBF_ALL_PINNED	0x01
 7579#define LBF_NEED_BREAK	0x02
 7580#define LBF_DST_PINNED  0x04
 7581#define LBF_SOME_PINNED	0x08
 7582#define LBF_ACTIVE_LB	0x10
 7583
 7584struct lb_env {
 7585	struct sched_domain	*sd;
 7586
 7587	struct rq		*src_rq;
 7588	int			src_cpu;
 7589
 7590	int			dst_cpu;
 7591	struct rq		*dst_rq;
 7592
 7593	struct cpumask		*dst_grpmask;
 7594	int			new_dst_cpu;
 7595	enum cpu_idle_type	idle;
 7596	long			imbalance;
 7597	/* The set of CPUs under consideration for load-balancing */
 7598	struct cpumask		*cpus;
 7599
 7600	unsigned int		flags;
 7601
 7602	unsigned int		loop;
 7603	unsigned int		loop_break;
 7604	unsigned int		loop_max;
 7605
 7606	enum fbq_type		fbq_type;
 7607	enum migration_type	migration_type;
 7608	struct list_head	tasks;
 7609};
 7610
 7611/*
 
 
 
 
 
 
 
 
 
 
 
 
 7612 * Is this task likely cache-hot:
 7613 */
 7614static int task_hot(struct task_struct *p, struct lb_env *env)
 
 7615{
 7616	s64 delta;
 7617
 7618	lockdep_assert_rq_held(env->src_rq);
 7619
 7620	if (p->sched_class != &fair_sched_class)
 7621		return 0;
 7622
 7623	if (unlikely(task_has_idle_policy(p)))
 7624		return 0;
 7625
 7626	/* SMT siblings share cache */
 7627	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
 7628		return 0;
 7629
 7630	/*
 7631	 * Buddy candidates are cache hot:
 7632	 */
 7633	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
 7634			(&p->se == cfs_rq_of(&p->se)->next ||
 7635			 &p->se == cfs_rq_of(&p->se)->last))
 7636		return 1;
 7637
 7638	if (sysctl_sched_migration_cost == -1)
 7639		return 1;
 7640
 7641	/*
 7642	 * Don't migrate task if the task's cookie does not match
 7643	 * with the destination CPU's core cookie.
 7644	 */
 7645	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
 7646		return 1;
 7647
 7648	if (sysctl_sched_migration_cost == 0)
 7649		return 0;
 7650
 7651	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
 7652
 7653	return delta < (s64)sysctl_sched_migration_cost;
 7654}
 7655
 7656#ifdef CONFIG_NUMA_BALANCING
 7657/*
 7658 * Returns 1, if task migration degrades locality
 7659 * Returns 0, if task migration improves locality i.e migration preferred.
 7660 * Returns -1, if task migration is not affected by locality.
 7661 */
 7662static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
 7663{
 7664	struct numa_group *numa_group = rcu_dereference(p->numa_group);
 7665	unsigned long src_weight, dst_weight;
 7666	int src_nid, dst_nid, dist;
 7667
 7668	if (!static_branch_likely(&sched_numa_balancing))
 7669		return -1;
 7670
 7671	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
 7672		return -1;
 
 
 7673
 7674	src_nid = cpu_to_node(env->src_cpu);
 7675	dst_nid = cpu_to_node(env->dst_cpu);
 7676
 7677	if (src_nid == dst_nid)
 7678		return -1;
 7679
 7680	/* Migrating away from the preferred node is always bad. */
 7681	if (src_nid == p->numa_preferred_nid) {
 7682		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
 7683			return 1;
 7684		else
 7685			return -1;
 7686	}
 7687
 7688	/* Encourage migration to the preferred node. */
 7689	if (dst_nid == p->numa_preferred_nid)
 7690		return 0;
 7691
 7692	/* Leaving a core idle is often worse than degrading locality. */
 7693	if (env->idle == CPU_IDLE)
 7694		return -1;
 
 7695
 7696	dist = node_distance(src_nid, dst_nid);
 7697	if (numa_group) {
 7698		src_weight = group_weight(p, src_nid, dist);
 7699		dst_weight = group_weight(p, dst_nid, dist);
 7700	} else {
 7701		src_weight = task_weight(p, src_nid, dist);
 7702		dst_weight = task_weight(p, dst_nid, dist);
 7703	}
 
 
 
 
 
 
 
 
 7704
 7705	return dst_weight < src_weight;
 
 
 
 
 
 
 
 
 
 
 
 
 7706}
 7707
 7708#else
 7709static inline int migrate_degrades_locality(struct task_struct *p,
 
 
 
 
 
 
 7710					     struct lb_env *env)
 7711{
 7712	return -1;
 7713}
 7714#endif
 7715
 7716/*
 7717 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 7718 */
 7719static
 7720int can_migrate_task(struct task_struct *p, struct lb_env *env)
 7721{
 7722	int tsk_cache_hot;
 7723
 7724	lockdep_assert_rq_held(env->src_rq);
 7725
 7726	/*
 7727	 * We do not migrate tasks that are:
 7728	 * 1) throttled_lb_pair, or
 7729	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
 7730	 * 3) running (obviously), or
 7731	 * 4) are cache-hot on their current CPU.
 7732	 */
 7733	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
 7734		return 0;
 7735
 7736	/* Disregard pcpu kthreads; they are where they need to be. */
 7737	if (kthread_is_per_cpu(p))
 7738		return 0;
 7739
 7740	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
 7741		int cpu;
 7742
 7743		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
 7744
 7745		env->flags |= LBF_SOME_PINNED;
 7746
 7747		/*
 7748		 * Remember if this task can be migrated to any other CPU in
 7749		 * our sched_group. We may want to revisit it if we couldn't
 7750		 * meet load balance goals by pulling other tasks on src_cpu.
 7751		 *
 7752		 * Avoid computing new_dst_cpu
 7753		 * - for NEWLY_IDLE
 7754		 * - if we have already computed one in current iteration
 7755		 * - if it's an active balance
 7756		 */
 7757		if (env->idle == CPU_NEWLY_IDLE ||
 7758		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
 7759			return 0;
 7760
 7761		/* Prevent to re-select dst_cpu via env's CPUs: */
 7762		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
 7763			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
 7764				env->flags |= LBF_DST_PINNED;
 7765				env->new_dst_cpu = cpu;
 7766				break;
 7767			}
 7768		}
 7769
 7770		return 0;
 7771	}
 7772
 7773	/* Record that we found at least one task that could run on dst_cpu */
 7774	env->flags &= ~LBF_ALL_PINNED;
 7775
 7776	if (task_running(env->src_rq, p)) {
 7777		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
 7778		return 0;
 7779	}
 7780
 7781	/*
 7782	 * Aggressive migration if:
 7783	 * 1) active balance
 7784	 * 2) destination numa is preferred
 7785	 * 3) task is cache cold, or
 7786	 * 4) too many balance attempts have failed.
 7787	 */
 7788	if (env->flags & LBF_ACTIVE_LB)
 7789		return 1;
 7790
 7791	tsk_cache_hot = migrate_degrades_locality(p, env);
 7792	if (tsk_cache_hot == -1)
 7793		tsk_cache_hot = task_hot(p, env);
 7794
 7795	if (tsk_cache_hot <= 0 ||
 7796	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
 7797		if (tsk_cache_hot == 1) {
 7798			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
 7799			schedstat_inc(p->se.statistics.nr_forced_migrations);
 7800		}
 
 7801		return 1;
 7802	}
 7803
 7804	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
 7805	return 0;
 7806}
 7807
 7808/*
 7809 * detach_task() -- detach the task for the migration specified in env
 7810 */
 7811static void detach_task(struct task_struct *p, struct lb_env *env)
 7812{
 7813	lockdep_assert_rq_held(env->src_rq);
 7814
 7815	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
 7816	set_task_cpu(p, env->dst_cpu);
 
 
 
 7817}
 7818
 7819/*
 7820 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
 7821 * part of active balancing operations within "domain".
 
 7822 *
 7823 * Returns a task if successful and NULL otherwise.
 7824 */
 7825static struct task_struct *detach_one_task(struct lb_env *env)
 7826{
 7827	struct task_struct *p;
 7828
 7829	lockdep_assert_rq_held(env->src_rq);
 7830
 7831	list_for_each_entry_reverse(p,
 7832			&env->src_rq->cfs_tasks, se.group_node) {
 7833		if (!can_migrate_task(p, env))
 7834			continue;
 7835
 7836		detach_task(p, env);
 7837
 7838		/*
 7839		 * Right now, this is only the second place where
 7840		 * lb_gained[env->idle] is updated (other is detach_tasks)
 7841		 * so we can safely collect stats here rather than
 7842		 * inside detach_tasks().
 7843		 */
 7844		schedstat_inc(env->sd->lb_gained[env->idle]);
 7845		return p;
 7846	}
 7847	return NULL;
 7848}
 7849
 7850static const unsigned int sched_nr_migrate_break = 32;
 7851
 7852/*
 7853 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
 7854 * busiest_rq, as part of a balancing operation within domain "sd".
 
 7855 *
 7856 * Returns number of detached tasks if successful and 0 otherwise.
 7857 */
 7858static int detach_tasks(struct lb_env *env)
 7859{
 7860	struct list_head *tasks = &env->src_rq->cfs_tasks;
 7861	unsigned long util, load;
 7862	struct task_struct *p;
 7863	int detached = 0;
 7864
 7865	lockdep_assert_rq_held(env->src_rq);
 7866
 7867	/*
 7868	 * Source run queue has been emptied by another CPU, clear
 7869	 * LBF_ALL_PINNED flag as we will not test any task.
 7870	 */
 7871	if (env->src_rq->nr_running <= 1) {
 7872		env->flags &= ~LBF_ALL_PINNED;
 7873		return 0;
 7874	}
 7875
 7876	if (env->imbalance <= 0)
 7877		return 0;
 7878
 7879	while (!list_empty(tasks)) {
 7880		/*
 7881		 * We don't want to steal all, otherwise we may be treated likewise,
 7882		 * which could at worst lead to a livelock crash.
 7883		 */
 7884		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
 7885			break;
 7886
 7887		p = list_last_entry(tasks, struct task_struct, se.group_node);
 7888
 7889		env->loop++;
 7890		/* We've more or less seen every task there is, call it quits */
 7891		if (env->loop > env->loop_max)
 7892			break;
 7893
 7894		/* take a breather every nr_migrate tasks */
 7895		if (env->loop > env->loop_break) {
 7896			env->loop_break += sched_nr_migrate_break;
 7897			env->flags |= LBF_NEED_BREAK;
 7898			break;
 7899		}
 7900
 7901		if (!can_migrate_task(p, env))
 7902			goto next;
 7903
 7904		switch (env->migration_type) {
 7905		case migrate_load:
 7906			/*
 7907			 * Depending of the number of CPUs and tasks and the
 7908			 * cgroup hierarchy, task_h_load() can return a null
 7909			 * value. Make sure that env->imbalance decreases
 7910			 * otherwise detach_tasks() will stop only after
 7911			 * detaching up to loop_max tasks.
 7912			 */
 7913			load = max_t(unsigned long, task_h_load(p), 1);
 7914
 7915			if (sched_feat(LB_MIN) &&
 7916			    load < 16 && !env->sd->nr_balance_failed)
 7917				goto next;
 7918
 7919			/*
 7920			 * Make sure that we don't migrate too much load.
 7921			 * Nevertheless, let relax the constraint if
 7922			 * scheduler fails to find a good waiting task to
 7923			 * migrate.
 7924			 */
 7925			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
 7926				goto next;
 7927
 7928			env->imbalance -= load;
 7929			break;
 7930
 7931		case migrate_util:
 7932			util = task_util_est(p);
 7933
 7934			if (util > env->imbalance)
 7935				goto next;
 7936
 7937			env->imbalance -= util;
 7938			break;
 7939
 7940		case migrate_task:
 7941			env->imbalance--;
 7942			break;
 7943
 7944		case migrate_misfit:
 7945			/* This is not a misfit task */
 7946			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
 7947				goto next;
 7948
 7949			env->imbalance = 0;
 7950			break;
 7951		}
 7952
 7953		detach_task(p, env);
 7954		list_add(&p->se.group_node, &env->tasks);
 7955
 7956		detached++;
 
 
 7957
 7958#ifdef CONFIG_PREEMPTION
 7959		/*
 7960		 * NEWIDLE balancing is a source of latency, so preemptible
 7961		 * kernels will stop after the first task is detached to minimize
 7962		 * the critical section.
 7963		 */
 7964		if (env->idle == CPU_NEWLY_IDLE)
 7965			break;
 7966#endif
 7967
 7968		/*
 7969		 * We only want to steal up to the prescribed amount of
 7970		 * load/util/tasks.
 7971		 */
 7972		if (env->imbalance <= 0)
 7973			break;
 7974
 7975		continue;
 7976next:
 7977		list_move(&p->se.group_node, tasks);
 7978	}
 7979
 7980	/*
 7981	 * Right now, this is one of only two places we collect this stat
 7982	 * so we can safely collect detach_one_task() stats here rather
 7983	 * than inside detach_one_task().
 7984	 */
 7985	schedstat_add(env->sd->lb_gained[env->idle], detached);
 7986
 7987	return detached;
 7988}
 7989
 7990/*
 7991 * attach_task() -- attach the task detached by detach_task() to its new rq.
 7992 */
 7993static void attach_task(struct rq *rq, struct task_struct *p)
 7994{
 7995	lockdep_assert_rq_held(rq);
 7996
 7997	BUG_ON(task_rq(p) != rq);
 7998	activate_task(rq, p, ENQUEUE_NOCLOCK);
 7999	check_preempt_curr(rq, p, 0);
 8000}
 8001
 
 8002/*
 8003 * attach_one_task() -- attaches the task returned from detach_one_task() to
 8004 * its new rq.
 8005 */
 8006static void attach_one_task(struct rq *rq, struct task_struct *p)
 8007{
 8008	struct rq_flags rf;
 8009
 8010	rq_lock(rq, &rf);
 8011	update_rq_clock(rq);
 8012	attach_task(rq, p);
 8013	rq_unlock(rq, &rf);
 8014}
 8015
 8016/*
 8017 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 8018 * new rq.
 8019 */
 8020static void attach_tasks(struct lb_env *env)
 8021{
 8022	struct list_head *tasks = &env->tasks;
 8023	struct task_struct *p;
 8024	struct rq_flags rf;
 8025
 8026	rq_lock(env->dst_rq, &rf);
 8027	update_rq_clock(env->dst_rq);
 
 8028
 8029	while (!list_empty(tasks)) {
 8030		p = list_first_entry(tasks, struct task_struct, se.group_node);
 8031		list_del_init(&p->se.group_node);
 8032
 8033		attach_task(env->dst_rq, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8034	}
 8035
 8036	rq_unlock(env->dst_rq, &rf);
 8037}
 8038
 8039#ifdef CONFIG_NO_HZ_COMMON
 8040static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
 8041{
 8042	if (cfs_rq->avg.load_avg)
 8043		return true;
 8044
 8045	if (cfs_rq->avg.util_avg)
 8046		return true;
 8047
 8048	return false;
 8049}
 8050
 8051static inline bool others_have_blocked(struct rq *rq)
 8052{
 8053	if (READ_ONCE(rq->avg_rt.util_avg))
 8054		return true;
 8055
 8056	if (READ_ONCE(rq->avg_dl.util_avg))
 8057		return true;
 8058
 8059	if (thermal_load_avg(rq))
 8060		return true;
 8061
 8062#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 8063	if (READ_ONCE(rq->avg_irq.util_avg))
 8064		return true;
 8065#endif
 8066
 8067	return false;
 8068}
 8069
 8070static inline void update_blocked_load_tick(struct rq *rq)
 8071{
 8072	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
 8073}
 8074
 8075static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
 8076{
 8077	if (!has_blocked)
 8078		rq->has_blocked_load = 0;
 8079}
 8080#else
 8081static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
 8082static inline bool others_have_blocked(struct rq *rq) { return false; }
 8083static inline void update_blocked_load_tick(struct rq *rq) {}
 8084static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
 8085#endif
 8086
 8087static bool __update_blocked_others(struct rq *rq, bool *done)
 8088{
 8089	const struct sched_class *curr_class;
 8090	u64 now = rq_clock_pelt(rq);
 8091	unsigned long thermal_pressure;
 8092	bool decayed;
 8093
 8094	/*
 8095	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
 8096	 * DL and IRQ signals have been updated before updating CFS.
 8097	 */
 8098	curr_class = rq->curr->sched_class;
 8099
 8100	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 8101
 8102	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
 8103		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
 8104		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
 8105		  update_irq_load_avg(rq, 0);
 8106
 8107	if (others_have_blocked(rq))
 8108		*done = false;
 8109
 8110	return decayed;
 8111}
 8112
 8113#ifdef CONFIG_FAIR_GROUP_SCHED
 8114
 8115static bool __update_blocked_fair(struct rq *rq, bool *done)
 8116{
 8117	struct cfs_rq *cfs_rq, *pos;
 8118	bool decayed = false;
 8119	int cpu = cpu_of(rq);
 8120
 
 
 8121	/*
 8122	 * Iterates the task_group tree in a bottom up fashion, see
 8123	 * list_add_leaf_cfs_rq() for details.
 8124	 */
 8125	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
 8126		struct sched_entity *se;
 8127
 8128		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
 8129			update_tg_load_avg(cfs_rq);
 8130
 8131			if (cfs_rq == &rq->cfs)
 8132				decayed = true;
 8133		}
 8134
 8135		/* Propagate pending load changes to the parent, if any: */
 8136		se = cfs_rq->tg->se[cpu];
 8137		if (se && !skip_blocked_update(se))
 8138			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
 8139
 8140		/*
 8141		 * There can be a lot of idle CPU cgroups.  Don't let fully
 8142		 * decayed cfs_rqs linger on the list.
 
 8143		 */
 8144		if (cfs_rq_is_decayed(cfs_rq))
 8145			list_del_leaf_cfs_rq(cfs_rq);
 8146
 8147		/* Don't need periodic decay once load/util_avg are null */
 8148		if (cfs_rq_has_blocked(cfs_rq))
 8149			*done = false;
 8150	}
 8151
 8152	return decayed;
 8153}
 8154
 8155/*
 8156 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
 8157 * This needs to be done in a top-down fashion because the load of a child
 8158 * group is a fraction of its parents load.
 8159 */
 8160static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
 8161{
 8162	struct rq *rq = rq_of(cfs_rq);
 8163	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
 8164	unsigned long now = jiffies;
 8165	unsigned long load;
 8166
 8167	if (cfs_rq->last_h_load_update == now)
 8168		return;
 8169
 8170	WRITE_ONCE(cfs_rq->h_load_next, NULL);
 8171	for_each_sched_entity(se) {
 8172		cfs_rq = cfs_rq_of(se);
 8173		WRITE_ONCE(cfs_rq->h_load_next, se);
 8174		if (cfs_rq->last_h_load_update == now)
 8175			break;
 8176	}
 8177
 8178	if (!se) {
 8179		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
 8180		cfs_rq->last_h_load_update = now;
 8181	}
 8182
 8183	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
 8184		load = cfs_rq->h_load;
 8185		load = div64_ul(load * se->avg.load_avg,
 8186			cfs_rq_load_avg(cfs_rq) + 1);
 8187		cfs_rq = group_cfs_rq(se);
 8188		cfs_rq->h_load = load;
 8189		cfs_rq->last_h_load_update = now;
 8190	}
 8191}
 8192
 8193static unsigned long task_h_load(struct task_struct *p)
 8194{
 8195	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 8196
 8197	update_cfs_rq_h_load(cfs_rq);
 8198	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
 8199			cfs_rq_load_avg(cfs_rq) + 1);
 8200}
 8201#else
 8202static bool __update_blocked_fair(struct rq *rq, bool *done)
 8203{
 8204	struct cfs_rq *cfs_rq = &rq->cfs;
 8205	bool decayed;
 8206
 8207	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
 8208	if (cfs_rq_has_blocked(cfs_rq))
 8209		*done = false;
 8210
 8211	return decayed;
 8212}
 8213
 8214static unsigned long task_h_load(struct task_struct *p)
 8215{
 8216	return p->se.avg.load_avg;
 8217}
 8218#endif
 8219
 8220static void update_blocked_averages(int cpu)
 8221{
 8222	bool decayed = false, done = true;
 8223	struct rq *rq = cpu_rq(cpu);
 8224	struct rq_flags rf;
 8225
 8226	rq_lock_irqsave(rq, &rf);
 8227	update_blocked_load_tick(rq);
 8228	update_rq_clock(rq);
 8229
 8230	decayed |= __update_blocked_others(rq, &done);
 8231	decayed |= __update_blocked_fair(rq, &done);
 8232
 8233	update_blocked_load_status(rq, !done);
 8234	if (decayed)
 8235		cpufreq_update_util(rq, 0);
 8236	rq_unlock_irqrestore(rq, &rf);
 8237}
 8238
 8239/********** Helpers for find_busiest_group ************************/
 8240
 8241/*
 8242 * sg_lb_stats - stats of a sched_group required for load_balancing
 8243 */
 8244struct sg_lb_stats {
 8245	unsigned long avg_load; /*Avg load across the CPUs of the group */
 8246	unsigned long group_load; /* Total load over the CPUs of the group */
 8247	unsigned long group_capacity;
 8248	unsigned long group_util; /* Total utilization over the CPUs of the group */
 8249	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
 8250	unsigned int sum_nr_running; /* Nr of tasks running in the group */
 8251	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
 8252	unsigned int idle_cpus;
 8253	unsigned int group_weight;
 8254	enum group_type group_type;
 8255	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
 8256	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
 8257#ifdef CONFIG_NUMA_BALANCING
 8258	unsigned int nr_numa_running;
 8259	unsigned int nr_preferred_running;
 8260#endif
 8261};
 8262
 8263/*
 8264 * sd_lb_stats - Structure to store the statistics of a sched_domain
 8265 *		 during load balancing.
 8266 */
 8267struct sd_lb_stats {
 8268	struct sched_group *busiest;	/* Busiest group in this sd */
 8269	struct sched_group *local;	/* Local group in this sd */
 8270	unsigned long total_load;	/* Total load of all groups in sd */
 8271	unsigned long total_capacity;	/* Total capacity of all groups in sd */
 8272	unsigned long avg_load;	/* Average load across all groups in sd */
 8273	unsigned int prefer_sibling; /* tasks should go to sibling first */
 8274
 8275	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
 8276	struct sg_lb_stats local_stat;	/* Statistics of the local group */
 8277};
 8278
 8279static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
 8280{
 8281	/*
 8282	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
 8283	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
 8284	 * We must however set busiest_stat::group_type and
 8285	 * busiest_stat::idle_cpus to the worst busiest group because
 8286	 * update_sd_pick_busiest() reads these before assignment.
 8287	 */
 8288	*sds = (struct sd_lb_stats){
 8289		.busiest = NULL,
 8290		.local = NULL,
 8291		.total_load = 0UL,
 8292		.total_capacity = 0UL,
 8293		.busiest_stat = {
 8294			.idle_cpus = UINT_MAX,
 8295			.group_type = group_has_spare,
 8296		},
 8297	};
 8298}
 8299
 8300static unsigned long scale_rt_capacity(int cpu)
 
 
 
 
 
 
 
 
 8301{
 8302	struct rq *rq = cpu_rq(cpu);
 8303	unsigned long max = arch_scale_cpu_capacity(cpu);
 8304	unsigned long used, free;
 8305	unsigned long irq;
 8306
 8307	irq = cpu_util_irq(rq);
 
 
 
 8308
 8309	if (unlikely(irq >= max))
 8310		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8311
 8312	/*
 8313	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
 8314	 * (running and not running) with weights 0 and 1024 respectively.
 8315	 * avg_thermal.load_avg tracks thermal pressure and the weighted
 8316	 * average uses the actual delta max capacity(load).
 8317	 */
 8318	used = READ_ONCE(rq->avg_rt.util_avg);
 8319	used += READ_ONCE(rq->avg_dl.util_avg);
 8320	used += thermal_load_avg(rq);
 8321
 8322	if (unlikely(used >= max))
 8323		return 1;
 
 
 
 
 
 
 
 
 
 8324
 8325	free = max - used;
 8326
 8327	return scale_irq_capacity(free, irq, max);
 8328}
 8329
 8330static void update_cpu_capacity(struct sched_domain *sd, int cpu)
 8331{
 8332	unsigned long capacity = scale_rt_capacity(cpu);
 
 8333	struct sched_group *sdg = sd->groups;
 8334
 8335	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
 
 
 
 
 8336
 8337	if (!capacity)
 8338		capacity = 1;
 
 
 
 
 
 
 
 
 
 8339
 8340	cpu_rq(cpu)->cpu_capacity = capacity;
 8341	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
 8342
 8343	sdg->sgc->capacity = capacity;
 8344	sdg->sgc->min_capacity = capacity;
 8345	sdg->sgc->max_capacity = capacity;
 
 
 8346}
 8347
 8348void update_group_capacity(struct sched_domain *sd, int cpu)
 8349{
 8350	struct sched_domain *child = sd->child;
 8351	struct sched_group *group, *sdg = sd->groups;
 8352	unsigned long capacity, min_capacity, max_capacity;
 8353	unsigned long interval;
 8354
 8355	interval = msecs_to_jiffies(sd->balance_interval);
 8356	interval = clamp(interval, 1UL, max_load_balance_interval);
 8357	sdg->sgc->next_update = jiffies + interval;
 8358
 8359	if (!child) {
 8360		update_cpu_capacity(sd, cpu);
 8361		return;
 8362	}
 8363
 8364	capacity = 0;
 8365	min_capacity = ULONG_MAX;
 8366	max_capacity = 0;
 8367
 8368	if (child->flags & SD_OVERLAP) {
 8369		/*
 8370		 * SD_OVERLAP domains cannot assume that child groups
 8371		 * span the current group.
 8372		 */
 8373
 8374		for_each_cpu(cpu, sched_group_span(sdg)) {
 8375			unsigned long cpu_cap = capacity_of(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8376
 8377			capacity += cpu_cap;
 8378			min_capacity = min(cpu_cap, min_capacity);
 8379			max_capacity = max(cpu_cap, max_capacity);
 8380		}
 8381	} else  {
 8382		/*
 8383		 * !SD_OVERLAP domains can assume that child groups
 8384		 * span the current group.
 8385		 */
 8386
 8387		group = child->groups;
 8388		do {
 8389			struct sched_group_capacity *sgc = group->sgc;
 8390
 8391			capacity += sgc->capacity;
 8392			min_capacity = min(sgc->min_capacity, min_capacity);
 8393			max_capacity = max(sgc->max_capacity, max_capacity);
 8394			group = group->next;
 8395		} while (group != child->groups);
 8396	}
 8397
 8398	sdg->sgc->capacity = capacity;
 8399	sdg->sgc->min_capacity = min_capacity;
 8400	sdg->sgc->max_capacity = max_capacity;
 8401}
 8402
 8403/*
 8404 * Check whether the capacity of the rq has been noticeably reduced by side
 8405 * activity. The imbalance_pct is used for the threshold.
 8406 * Return true is the capacity is reduced
 
 
 8407 */
 8408static inline int
 8409check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
 8410{
 8411	return ((rq->cpu_capacity * sd->imbalance_pct) <
 8412				(rq->cpu_capacity_orig * 100));
 8413}
 
 
 8414
 8415/*
 8416 * Check whether a rq has a misfit task and if it looks like we can actually
 8417 * help that task: we can migrate the task to a CPU of higher capacity, or
 8418 * the task's current CPU is heavily pressured.
 8419 */
 8420static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
 8421{
 8422	return rq->misfit_task_load &&
 8423		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
 8424		 check_cpu_capacity(rq, sd));
 8425}
 8426
 8427/*
 8428 * Group imbalance indicates (and tries to solve) the problem where balancing
 8429 * groups is inadequate due to ->cpus_ptr constraints.
 8430 *
 8431 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 8432 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
 8433 * Something like:
 8434 *
 8435 *	{ 0 1 2 3 } { 4 5 6 7 }
 8436 *	        *     * * *
 8437 *
 8438 * If we were to balance group-wise we'd place two tasks in the first group and
 8439 * two tasks in the second group. Clearly this is undesired as it will overload
 8440 * cpu 3 and leave one of the CPUs in the second group unused.
 8441 *
 8442 * The current solution to this issue is detecting the skew in the first group
 8443 * by noticing the lower domain failed to reach balance and had difficulty
 8444 * moving tasks due to affinity constraints.
 8445 *
 8446 * When this is so detected; this group becomes a candidate for busiest; see
 8447 * update_sd_pick_busiest(). And calculate_imbalance() and
 8448 * find_busiest_group() avoid some of the usual balance conditions to allow it
 8449 * to create an effective group imbalance.
 8450 *
 8451 * This is a somewhat tricky proposition since the next run might not find the
 8452 * group imbalance and decide the groups need to be balanced again. A most
 8453 * subtle and fragile situation.
 8454 */
 8455
 8456static inline int sg_imbalanced(struct sched_group *group)
 8457{
 8458	return group->sgc->imbalance;
 8459}
 8460
 8461/*
 8462 * group_has_capacity returns true if the group has spare capacity that could
 8463 * be used by some tasks.
 8464 * We consider that a group has spare capacity if the  * number of task is
 8465 * smaller than the number of CPUs or if the utilization is lower than the
 8466 * available capacity for CFS tasks.
 8467 * For the latter, we use a threshold to stabilize the state, to take into
 8468 * account the variance of the tasks' load and to return true if the available
 8469 * capacity in meaningful for the load balancer.
 8470 * As an example, an available capacity of 1% can appear but it doesn't make
 8471 * any benefit for the load balance.
 8472 */
 8473static inline bool
 8474group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 8475{
 8476	if (sgs->sum_nr_running < sgs->group_weight)
 8477		return true;
 8478
 8479	if ((sgs->group_capacity * imbalance_pct) <
 8480			(sgs->group_runnable * 100))
 8481		return false;
 8482
 8483	if ((sgs->group_capacity * 100) >
 8484			(sgs->group_util * imbalance_pct))
 8485		return true;
 8486
 8487	return false;
 8488}
 8489
 8490/*
 8491 *  group_is_overloaded returns true if the group has more tasks than it can
 8492 *  handle.
 8493 *  group_is_overloaded is not equals to !group_has_capacity because a group
 8494 *  with the exact right number of tasks, has no more spare capacity but is not
 8495 *  overloaded so both group_has_capacity and group_is_overloaded return
 8496 *  false.
 8497 */
 8498static inline bool
 8499group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 8500{
 8501	if (sgs->sum_nr_running <= sgs->group_weight)
 8502		return false;
 8503
 8504	if ((sgs->group_capacity * 100) <
 8505			(sgs->group_util * imbalance_pct))
 8506		return true;
 8507
 8508	if ((sgs->group_capacity * imbalance_pct) <
 8509			(sgs->group_runnable * 100))
 8510		return true;
 8511
 8512	return false;
 8513}
 8514
 8515static inline enum
 8516group_type group_classify(unsigned int imbalance_pct,
 8517			  struct sched_group *group,
 8518			  struct sg_lb_stats *sgs)
 8519{
 8520	if (group_is_overloaded(imbalance_pct, sgs))
 8521		return group_overloaded;
 8522
 8523	if (sg_imbalanced(group))
 8524		return group_imbalanced;
 8525
 8526	if (sgs->group_asym_packing)
 8527		return group_asym_packing;
 
 8528
 8529	if (sgs->group_misfit_task_load)
 8530		return group_misfit_task;
 
 8531
 8532	if (!group_has_capacity(imbalance_pct, sgs))
 8533		return group_fully_busy;
 
 8534
 8535	return group_has_spare;
 8536}
 8537
 8538/**
 8539 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 8540 * @env: The load balancing environment.
 8541 * @group: sched_group whose statistics are to be updated.
 
 
 8542 * @sgs: variable to hold the statistics for this group.
 8543 * @sg_status: Holds flag indicating the status of the sched_group
 8544 */
 8545static inline void update_sg_lb_stats(struct lb_env *env,
 8546				      struct sched_group *group,
 8547				      struct sg_lb_stats *sgs,
 8548				      int *sg_status)
 8549{
 8550	int i, nr_running, local_group;
 
 8551
 8552	memset(sgs, 0, sizeof(*sgs));
 8553
 8554	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
 8555
 8556	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 8557		struct rq *rq = cpu_rq(i);
 8558
 8559		sgs->group_load += cpu_load(rq);
 8560		sgs->group_util += cpu_util(i);
 8561		sgs->group_runnable += cpu_runnable(rq);
 8562		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
 8563
 8564		nr_running = rq->nr_running;
 8565		sgs->sum_nr_running += nr_running;
 8566
 8567		if (nr_running > 1)
 8568			*sg_status |= SG_OVERLOAD;
 8569
 8570		if (cpu_overutilized(i))
 8571			*sg_status |= SG_OVERUTILIZED;
 8572
 
 
 8573#ifdef CONFIG_NUMA_BALANCING
 8574		sgs->nr_numa_running += rq->nr_numa_running;
 8575		sgs->nr_preferred_running += rq->nr_preferred_running;
 8576#endif
 8577		/*
 8578		 * No need to call idle_cpu() if nr_running is not 0
 8579		 */
 8580		if (!nr_running && idle_cpu(i)) {
 8581			sgs->idle_cpus++;
 8582			/* Idle cpu can't have misfit task */
 8583			continue;
 8584		}
 8585
 8586		if (local_group)
 8587			continue;
 8588
 8589		/* Check for a misfit task on the cpu */
 8590		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
 8591		    sgs->group_misfit_task_load < rq->misfit_task_load) {
 8592			sgs->group_misfit_task_load = rq->misfit_task_load;
 8593			*sg_status |= SG_OVERLOAD;
 8594		}
 8595	}
 8596
 8597	/* Check if dst CPU is idle and preferred to this group */
 8598	if (env->sd->flags & SD_ASYM_PACKING &&
 8599	    env->idle != CPU_NOT_IDLE &&
 8600	    sgs->sum_h_nr_running &&
 8601	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
 8602		sgs->group_asym_packing = 1;
 8603	}
 8604
 8605	sgs->group_capacity = group->sgc->capacity;
 
 8606
 8607	sgs->group_weight = group->group_weight;
 8608
 8609	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
 
 8610
 8611	/* Computing avg_load makes sense only when group is overloaded */
 8612	if (sgs->group_type == group_overloaded)
 8613		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 8614				sgs->group_capacity;
 8615}
 8616
 8617/**
 8618 * update_sd_pick_busiest - return 1 on busiest group
 8619 * @env: The load balancing environment.
 8620 * @sds: sched_domain statistics
 8621 * @sg: sched_group candidate to be checked for being the busiest
 8622 * @sgs: sched_group statistics
 8623 *
 8624 * Determine if @sg is a busier group than the previously selected
 8625 * busiest group.
 8626 *
 8627 * Return: %true if @sg is a busier group than the previously selected
 8628 * busiest group. %false otherwise.
 8629 */
 8630static bool update_sd_pick_busiest(struct lb_env *env,
 8631				   struct sd_lb_stats *sds,
 8632				   struct sched_group *sg,
 8633				   struct sg_lb_stats *sgs)
 8634{
 8635	struct sg_lb_stats *busiest = &sds->busiest_stat;
 8636
 8637	/* Make sure that there is at least one task to pull */
 8638	if (!sgs->sum_h_nr_running)
 8639		return false;
 8640
 8641	/*
 8642	 * Don't try to pull misfit tasks we can't help.
 8643	 * We can use max_capacity here as reduction in capacity on some
 8644	 * CPUs in the group should either be possible to resolve
 8645	 * internally or be covered by avg_load imbalance (eventually).
 8646	 */
 8647	if (sgs->group_type == group_misfit_task &&
 8648	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
 8649	     sds->local_stat.group_type != group_has_spare))
 8650		return false;
 8651
 8652	if (sgs->group_type > busiest->group_type)
 8653		return true;
 8654
 8655	if (sgs->group_type < busiest->group_type)
 8656		return false;
 8657
 8658	/*
 8659	 * The candidate and the current busiest group are the same type of
 8660	 * group. Let check which one is the busiest according to the type.
 8661	 */
 8662
 8663	switch (sgs->group_type) {
 8664	case group_overloaded:
 8665		/* Select the overloaded group with highest avg_load. */
 8666		if (sgs->avg_load <= busiest->avg_load)
 8667			return false;
 8668		break;
 8669
 8670	case group_imbalanced:
 8671		/*
 8672		 * Select the 1st imbalanced group as we don't have any way to
 8673		 * choose one more than another.
 8674		 */
 8675		return false;
 8676
 8677	case group_asym_packing:
 8678		/* Prefer to move from lowest priority CPU's work */
 8679		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
 8680			return false;
 8681		break;
 8682
 8683	case group_misfit_task:
 8684		/*
 8685		 * If we have more than one misfit sg go with the biggest
 8686		 * misfit.
 8687		 */
 8688		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
 8689			return false;
 8690		break;
 8691
 8692	case group_fully_busy:
 8693		/*
 8694		 * Select the fully busy group with highest avg_load. In
 8695		 * theory, there is no need to pull task from such kind of
 8696		 * group because tasks have all compute capacity that they need
 8697		 * but we can still improve the overall throughput by reducing
 8698		 * contention when accessing shared HW resources.
 8699		 *
 8700		 * XXX for now avg_load is not computed and always 0 so we
 8701		 * select the 1st one.
 8702		 */
 8703		if (sgs->avg_load <= busiest->avg_load)
 8704			return false;
 8705		break;
 8706
 8707	case group_has_spare:
 8708		/*
 8709		 * Select not overloaded group with lowest number of idle cpus
 8710		 * and highest number of running tasks. We could also compare
 8711		 * the spare capacity which is more stable but it can end up
 8712		 * that the group has less spare capacity but finally more idle
 8713		 * CPUs which means less opportunity to pull tasks.
 8714		 */
 8715		if (sgs->idle_cpus > busiest->idle_cpus)
 8716			return false;
 8717		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
 8718			 (sgs->sum_nr_running <= busiest->sum_nr_running))
 8719			return false;
 8720
 8721		break;
 
 8722	}
 8723
 8724	/*
 8725	 * Candidate sg has no more than one task per CPU and has higher
 8726	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
 8727	 * throughput. Maximize throughput, power/energy consequences are not
 8728	 * considered.
 8729	 */
 8730	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
 8731	    (sgs->group_type <= group_fully_busy) &&
 8732	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
 8733		return false;
 8734
 8735	return true;
 8736}
 8737
 8738#ifdef CONFIG_NUMA_BALANCING
 8739static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 8740{
 8741	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
 8742		return regular;
 8743	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
 8744		return remote;
 8745	return all;
 8746}
 8747
 8748static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 8749{
 8750	if (rq->nr_running > rq->nr_numa_running)
 8751		return regular;
 8752	if (rq->nr_running > rq->nr_preferred_running)
 8753		return remote;
 8754	return all;
 8755}
 8756#else
 8757static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 8758{
 8759	return all;
 8760}
 8761
 8762static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 8763{
 8764	return regular;
 8765}
 8766#endif /* CONFIG_NUMA_BALANCING */
 8767
 8768
 8769struct sg_lb_stats;
 8770
 8771/*
 8772 * task_running_on_cpu - return 1 if @p is running on @cpu.
 8773 */
 8774
 8775static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
 8776{
 8777	/* Task has no contribution or is new */
 8778	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 8779		return 0;
 8780
 8781	if (task_on_rq_queued(p))
 8782		return 1;
 8783
 8784	return 0;
 8785}
 8786
 8787/**
 8788 * idle_cpu_without - would a given CPU be idle without p ?
 8789 * @cpu: the processor on which idleness is tested.
 8790 * @p: task which should be ignored.
 8791 *
 8792 * Return: 1 if the CPU would be idle. 0 otherwise.
 8793 */
 8794static int idle_cpu_without(int cpu, struct task_struct *p)
 8795{
 8796	struct rq *rq = cpu_rq(cpu);
 8797
 8798	if (rq->curr != rq->idle && rq->curr != p)
 8799		return 0;
 8800
 8801	/*
 8802	 * rq->nr_running can't be used but an updated version without the
 8803	 * impact of p on cpu must be used instead. The updated nr_running
 8804	 * be computed and tested before calling idle_cpu_without().
 8805	 */
 8806
 8807#ifdef CONFIG_SMP
 8808	if (rq->ttwu_pending)
 8809		return 0;
 8810#endif
 8811
 8812	return 1;
 8813}
 8814
 8815/*
 8816 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
 8817 * @sd: The sched_domain level to look for idlest group.
 8818 * @group: sched_group whose statistics are to be updated.
 8819 * @sgs: variable to hold the statistics for this group.
 8820 * @p: The task for which we look for the idlest group/CPU.
 8821 */
 8822static inline void update_sg_wakeup_stats(struct sched_domain *sd,
 8823					  struct sched_group *group,
 8824					  struct sg_lb_stats *sgs,
 8825					  struct task_struct *p)
 8826{
 8827	int i, nr_running;
 8828
 8829	memset(sgs, 0, sizeof(*sgs));
 8830
 8831	for_each_cpu(i, sched_group_span(group)) {
 8832		struct rq *rq = cpu_rq(i);
 8833		unsigned int local;
 8834
 8835		sgs->group_load += cpu_load_without(rq, p);
 8836		sgs->group_util += cpu_util_without(i, p);
 8837		sgs->group_runnable += cpu_runnable_without(rq, p);
 8838		local = task_running_on_cpu(i, p);
 8839		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
 8840
 8841		nr_running = rq->nr_running - local;
 8842		sgs->sum_nr_running += nr_running;
 8843
 8844		/*
 8845		 * No need to call idle_cpu_without() if nr_running is not 0
 8846		 */
 8847		if (!nr_running && idle_cpu_without(i, p))
 8848			sgs->idle_cpus++;
 8849
 8850	}
 8851
 8852	/* Check if task fits in the group */
 8853	if (sd->flags & SD_ASYM_CPUCAPACITY &&
 8854	    !task_fits_capacity(p, group->sgc->max_capacity)) {
 8855		sgs->group_misfit_task_load = 1;
 8856	}
 8857
 8858	sgs->group_capacity = group->sgc->capacity;
 8859
 8860	sgs->group_weight = group->group_weight;
 8861
 8862	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
 8863
 8864	/*
 8865	 * Computing avg_load makes sense only when group is fully busy or
 8866	 * overloaded
 8867	 */
 8868	if (sgs->group_type == group_fully_busy ||
 8869		sgs->group_type == group_overloaded)
 8870		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 8871				sgs->group_capacity;
 8872}
 8873
 8874static bool update_pick_idlest(struct sched_group *idlest,
 8875			       struct sg_lb_stats *idlest_sgs,
 8876			       struct sched_group *group,
 8877			       struct sg_lb_stats *sgs)
 8878{
 8879	if (sgs->group_type < idlest_sgs->group_type)
 8880		return true;
 8881
 8882	if (sgs->group_type > idlest_sgs->group_type)
 8883		return false;
 8884
 8885	/*
 8886	 * The candidate and the current idlest group are the same type of
 8887	 * group. Let check which one is the idlest according to the type.
 8888	 */
 8889
 8890	switch (sgs->group_type) {
 8891	case group_overloaded:
 8892	case group_fully_busy:
 8893		/* Select the group with lowest avg_load. */
 8894		if (idlest_sgs->avg_load <= sgs->avg_load)
 8895			return false;
 8896		break;
 8897
 8898	case group_imbalanced:
 8899	case group_asym_packing:
 8900		/* Those types are not used in the slow wakeup path */
 8901		return false;
 8902
 8903	case group_misfit_task:
 8904		/* Select group with the highest max capacity */
 8905		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
 8906			return false;
 8907		break;
 8908
 8909	case group_has_spare:
 8910		/* Select group with most idle CPUs */
 8911		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
 8912			return false;
 8913
 8914		/* Select group with lowest group_util */
 8915		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
 8916			idlest_sgs->group_util <= sgs->group_util)
 8917			return false;
 8918
 8919		break;
 8920	}
 8921
 8922	return true;
 8923}
 8924
 8925/*
 8926 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
 8927 * This is an approximation as the number of running tasks may not be
 8928 * related to the number of busy CPUs due to sched_setaffinity.
 8929 */
 8930static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
 8931{
 8932	return (dst_running < (dst_weight >> 2));
 8933}
 8934
 8935/*
 8936 * find_idlest_group() finds and returns the least busy CPU group within the
 8937 * domain.
 8938 *
 8939 * Assumes p is allowed on at least one CPU in sd.
 8940 */
 8941static struct sched_group *
 8942find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 8943{
 8944	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
 8945	struct sg_lb_stats local_sgs, tmp_sgs;
 8946	struct sg_lb_stats *sgs;
 8947	unsigned long imbalance;
 8948	struct sg_lb_stats idlest_sgs = {
 8949			.avg_load = UINT_MAX,
 8950			.group_type = group_overloaded,
 8951	};
 8952
 8953	do {
 8954		int local_group;
 8955
 8956		/* Skip over this group if it has no CPUs allowed */
 8957		if (!cpumask_intersects(sched_group_span(group),
 8958					p->cpus_ptr))
 8959			continue;
 8960
 8961		/* Skip over this group if no cookie matched */
 8962		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
 8963			continue;
 8964
 8965		local_group = cpumask_test_cpu(this_cpu,
 8966					       sched_group_span(group));
 8967
 8968		if (local_group) {
 8969			sgs = &local_sgs;
 8970			local = group;
 8971		} else {
 8972			sgs = &tmp_sgs;
 8973		}
 8974
 8975		update_sg_wakeup_stats(sd, group, sgs, p);
 8976
 8977		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
 8978			idlest = group;
 8979			idlest_sgs = *sgs;
 8980		}
 8981
 8982	} while (group = group->next, group != sd->groups);
 8983
 8984
 8985	/* There is no idlest group to push tasks to */
 8986	if (!idlest)
 8987		return NULL;
 8988
 8989	/* The local group has been skipped because of CPU affinity */
 8990	if (!local)
 8991		return idlest;
 8992
 8993	/*
 8994	 * If the local group is idler than the selected idlest group
 8995	 * don't try and push the task.
 8996	 */
 8997	if (local_sgs.group_type < idlest_sgs.group_type)
 8998		return NULL;
 8999
 9000	/*
 9001	 * If the local group is busier than the selected idlest group
 9002	 * try and push the task.
 9003	 */
 9004	if (local_sgs.group_type > idlest_sgs.group_type)
 9005		return idlest;
 9006
 9007	switch (local_sgs.group_type) {
 9008	case group_overloaded:
 9009	case group_fully_busy:
 9010
 9011		/* Calculate allowed imbalance based on load */
 9012		imbalance = scale_load_down(NICE_0_LOAD) *
 9013				(sd->imbalance_pct-100) / 100;
 9014
 9015		/*
 9016		 * When comparing groups across NUMA domains, it's possible for
 9017		 * the local domain to be very lightly loaded relative to the
 9018		 * remote domains but "imbalance" skews the comparison making
 9019		 * remote CPUs look much more favourable. When considering
 9020		 * cross-domain, add imbalance to the load on the remote node
 9021		 * and consider staying local.
 9022		 */
 9023
 9024		if ((sd->flags & SD_NUMA) &&
 9025		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
 9026			return NULL;
 9027
 9028		/*
 9029		 * If the local group is less loaded than the selected
 9030		 * idlest group don't try and push any tasks.
 9031		 */
 9032		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
 9033			return NULL;
 9034
 9035		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
 9036			return NULL;
 9037		break;
 9038
 9039	case group_imbalanced:
 9040	case group_asym_packing:
 9041		/* Those type are not used in the slow wakeup path */
 9042		return NULL;
 9043
 9044	case group_misfit_task:
 9045		/* Select group with the highest max capacity */
 9046		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
 9047			return NULL;
 9048		break;
 9049
 9050	case group_has_spare:
 9051		if (sd->flags & SD_NUMA) {
 9052#ifdef CONFIG_NUMA_BALANCING
 9053			int idlest_cpu;
 9054			/*
 9055			 * If there is spare capacity at NUMA, try to select
 9056			 * the preferred node
 9057			 */
 9058			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
 9059				return NULL;
 9060
 9061			idlest_cpu = cpumask_first(sched_group_span(idlest));
 9062			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
 9063				return idlest;
 9064#endif
 9065			/*
 9066			 * Otherwise, keep the task on this node to stay close
 9067			 * its wakeup source and improve locality. If there is
 9068			 * a real need of migration, periodic load balance will
 9069			 * take care of it.
 9070			 */
 9071			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
 9072				return NULL;
 9073		}
 9074
 9075		/*
 9076		 * Select group with highest number of idle CPUs. We could also
 9077		 * compare the utilization which is more stable but it can end
 9078		 * up that the group has less spare capacity but finally more
 9079		 * idle CPUs which means more opportunity to run task.
 9080		 */
 9081		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
 9082			return NULL;
 9083		break;
 9084	}
 9085
 9086	return idlest;
 9087}
 9088
 9089/**
 9090 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 9091 * @env: The load balancing environment.
 9092 * @sds: variable to hold the statistics for this sched_domain.
 9093 */
 9094
 9095static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
 9096{
 9097	struct sched_domain *child = env->sd->child;
 9098	struct sched_group *sg = env->sd->groups;
 9099	struct sg_lb_stats *local = &sds->local_stat;
 9100	struct sg_lb_stats tmp_sgs;
 9101	int sg_status = 0;
 
 
 
 
 
 9102
 9103	do {
 9104		struct sg_lb_stats *sgs = &tmp_sgs;
 9105		int local_group;
 9106
 9107		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
 9108		if (local_group) {
 9109			sds->local = sg;
 9110			sgs = local;
 9111
 9112			if (env->idle != CPU_NEWLY_IDLE ||
 9113			    time_after_eq(jiffies, sg->sgc->next_update))
 9114				update_group_capacity(env->sd, env->dst_cpu);
 9115		}
 9116
 9117		update_sg_lb_stats(env, sg, sgs, &sg_status);
 9118
 9119		if (local_group)
 9120			goto next_group;
 9121
 
 
 
 
 
 
 
 
 
 
 
 
 
 9122
 9123		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
 9124			sds->busiest = sg;
 9125			sds->busiest_stat = *sgs;
 9126		}
 9127
 9128next_group:
 9129		/* Now, start updating sd_lb_stats */
 9130		sds->total_load += sgs->group_load;
 9131		sds->total_capacity += sgs->group_capacity;
 9132
 9133		sg = sg->next;
 9134	} while (sg != env->sd->groups);
 9135
 9136	/* Tag domain that child domain prefers tasks go to siblings first */
 9137	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
 9138
 9139
 9140	if (env->sd->flags & SD_NUMA)
 9141		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 
 9142
 9143	if (!env->sd->parent) {
 9144		struct root_domain *rd = env->dst_rq->rd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9145
 9146		/* update overload indicator if we are at root domain */
 9147		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
 9148
 9149		/* Update over-utilization (tipping point, U >= 0) indicator */
 9150		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
 9151		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
 9152	} else if (sg_status & SG_OVERUTILIZED) {
 9153		struct root_domain *rd = env->dst_rq->rd;
 9154
 9155		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
 9156		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
 9157	}
 9158}
 9159
 9160#define NUMA_IMBALANCE_MIN 2
 
 
 9161
 9162static inline long adjust_numa_imbalance(int imbalance,
 9163				int dst_running, int dst_weight)
 
 
 
 
 
 
 
 
 
 
 9164{
 9165	if (!allow_numa_imbalance(dst_running, dst_weight))
 9166		return imbalance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9167
 9168	/*
 9169	 * Allow a small imbalance based on a simple pair of communicating
 9170	 * tasks that remain local when the destination is lightly loaded.
 
 9171	 */
 9172	if (imbalance <= NUMA_IMBALANCE_MIN)
 9173		return 0;
 9174
 9175	return imbalance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9176}
 9177
 9178/**
 9179 * calculate_imbalance - Calculate the amount of imbalance present within the
 9180 *			 groups of a given sched_domain during load balance.
 9181 * @env: load balance environment
 9182 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 9183 */
 9184static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
 9185{
 
 9186	struct sg_lb_stats *local, *busiest;
 9187
 9188	local = &sds->local_stat;
 9189	busiest = &sds->busiest_stat;
 9190
 9191	if (busiest->group_type == group_misfit_task) {
 9192		/* Set imbalance to allow misfit tasks to be balanced. */
 9193		env->migration_type = migrate_misfit;
 9194		env->imbalance = 1;
 9195		return;
 9196	}
 9197
 9198	if (busiest->group_type == group_asym_packing) {
 9199		/*
 9200		 * In case of asym capacity, we will try to migrate all load to
 9201		 * the preferred CPU.
 9202		 */
 9203		env->migration_type = migrate_task;
 9204		env->imbalance = busiest->sum_h_nr_running;
 9205		return;
 9206	}
 9207
 9208	if (busiest->group_type == group_imbalanced) {
 9209		/*
 9210		 * In the group_imb case we cannot rely on group-wide averages
 9211		 * to ensure CPU-load equilibrium, try to move any task to fix
 9212		 * the imbalance. The next load balance will take care of
 9213		 * balancing back the system.
 9214		 */
 9215		env->migration_type = migrate_task;
 9216		env->imbalance = 1;
 9217		return;
 9218	}
 9219
 9220	/*
 9221	 * Try to use spare capacity of local group without overloading it or
 9222	 * emptying busiest.
 
 9223	 */
 9224	if (local->group_type == group_has_spare) {
 9225		if ((busiest->group_type > group_fully_busy) &&
 9226		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
 9227			/*
 9228			 * If busiest is overloaded, try to fill spare
 9229			 * capacity. This might end up creating spare capacity
 9230			 * in busiest or busiest still being overloaded but
 9231			 * there is no simple way to directly compute the
 9232			 * amount of load to migrate in order to balance the
 9233			 * system.
 9234			 */
 9235			env->migration_type = migrate_util;
 9236			env->imbalance = max(local->group_capacity, local->group_util) -
 9237					 local->group_util;
 9238
 9239			/*
 9240			 * In some cases, the group's utilization is max or even
 9241			 * higher than capacity because of migrations but the
 9242			 * local CPU is (newly) idle. There is at least one
 9243			 * waiting task in this overloaded busiest group. Let's
 9244			 * try to pull it.
 9245			 */
 9246			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
 9247				env->migration_type = migrate_task;
 9248				env->imbalance = 1;
 9249			}
 9250
 9251			return;
 9252		}
 9253
 9254		if (busiest->group_weight == 1 || sds->prefer_sibling) {
 9255			unsigned int nr_diff = busiest->sum_nr_running;
 9256			/*
 9257			 * When prefer sibling, evenly spread running tasks on
 9258			 * groups.
 9259			 */
 9260			env->migration_type = migrate_task;
 9261			lsub_positive(&nr_diff, local->sum_nr_running);
 9262			env->imbalance = nr_diff >> 1;
 9263		} else {
 9264
 9265			/*
 9266			 * If there is no overload, we just want to even the number of
 9267			 * idle cpus.
 9268			 */
 9269			env->migration_type = migrate_task;
 9270			env->imbalance = max_t(long, 0, (local->idle_cpus -
 9271						 busiest->idle_cpus) >> 1);
 9272		}
 9273
 9274		/* Consider allowing a small imbalance between NUMA groups */
 9275		if (env->sd->flags & SD_NUMA) {
 9276			env->imbalance = adjust_numa_imbalance(env->imbalance,
 9277				busiest->sum_nr_running, busiest->group_weight);
 9278		}
 9279
 9280		return;
 9281	}
 9282
 9283	/*
 9284	 * Local is fully busy but has to take more load to relieve the
 9285	 * busiest group
 9286	 */
 9287	if (local->group_type < group_overloaded) {
 9288		/*
 9289		 * Local will become overloaded so the avg_load metrics are
 9290		 * finally needed.
 
 9291		 */
 
 
 9292
 9293		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
 9294				  local->group_capacity;
 9295
 9296		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
 9297				sds->total_capacity;
 9298		/*
 9299		 * If the local group is more loaded than the selected
 9300		 * busiest group don't try to pull any tasks.
 9301		 */
 9302		if (local->avg_load >= busiest->avg_load) {
 9303			env->imbalance = 0;
 9304			return;
 9305		}
 9306	}
 9307
 9308	/*
 9309	 * Both group are or will become overloaded and we're trying to get all
 9310	 * the CPUs to the average_load, so we don't want to push ourselves
 9311	 * above the average load, nor do we wish to reduce the max loaded CPU
 9312	 * below the average load. At the same time, we also don't want to
 9313	 * reduce the group load below the group capacity. Thus we look for
 9314	 * the minimum possible imbalance.
 9315	 */
 9316	env->migration_type = migrate_load;
 
 
 9317	env->imbalance = min(
 9318		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
 9319		(sds->avg_load - local->avg_load) * local->group_capacity
 9320	) / SCHED_CAPACITY_SCALE;
 
 
 
 
 
 
 
 
 
 9321}
 9322
 9323/******* find_busiest_group() helpers end here *********************/
 9324
 9325/*
 9326 * Decision matrix according to the local and busiest group type:
 9327 *
 9328 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
 9329 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
 9330 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
 9331 * misfit_task      force     N/A        N/A    N/A  force      force
 9332 * asym_packing     force     force      N/A    N/A  force      force
 9333 * imbalanced       force     force      N/A    N/A  force      force
 9334 * overloaded       force     force      N/A    N/A  force      avg_load
 9335 *
 9336 * N/A :      Not Applicable because already filtered while updating
 9337 *            statistics.
 9338 * balanced : The system is balanced for these 2 groups.
 9339 * force :    Calculate the imbalance as load migration is probably needed.
 9340 * avg_load : Only if imbalance is significant enough.
 9341 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
 9342 *            different in groups.
 9343 */
 9344
 9345/**
 9346 * find_busiest_group - Returns the busiest group within the sched_domain
 9347 * if there is an imbalance.
 
 
 
 9348 *
 9349 * Also calculates the amount of runnable load which should be moved
 9350 * to restore balance.
 9351 *
 9352 * @env: The load balancing environment.
 9353 *
 9354 * Return:	- The busiest group if imbalance exists.
 
 
 
 9355 */
 9356static struct sched_group *find_busiest_group(struct lb_env *env)
 9357{
 9358	struct sg_lb_stats *local, *busiest;
 9359	struct sd_lb_stats sds;
 9360
 9361	init_sd_lb_stats(&sds);
 9362
 9363	/*
 9364	 * Compute the various statistics relevant for load balancing at
 9365	 * this level.
 9366	 */
 9367	update_sd_lb_stats(env, &sds);
 9368
 9369	if (sched_energy_enabled()) {
 9370		struct root_domain *rd = env->dst_rq->rd;
 9371
 9372		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
 9373			goto out_balanced;
 9374	}
 9375
 9376	local = &sds.local_stat;
 9377	busiest = &sds.busiest_stat;
 9378
 
 
 
 
 9379	/* There is no busy sibling group to pull tasks from */
 9380	if (!sds.busiest)
 9381		goto out_balanced;
 9382
 9383	/* Misfit tasks should be dealt with regardless of the avg load */
 9384	if (busiest->group_type == group_misfit_task)
 9385		goto force_balance;
 9386
 9387	/* ASYM feature bypasses nice load balance check */
 9388	if (busiest->group_type == group_asym_packing)
 9389		goto force_balance;
 9390
 9391	/*
 9392	 * If the busiest group is imbalanced the below checks don't
 9393	 * work because they assume all things are equal, which typically
 9394	 * isn't true due to cpus_ptr constraints and the like.
 9395	 */
 9396	if (busiest->group_type == group_imbalanced)
 
 
 
 
 
 9397		goto force_balance;
 9398
 9399	/*
 9400	 * If the local group is busier than the selected busiest group
 9401	 * don't try and pull any tasks.
 9402	 */
 9403	if (local->group_type > busiest->group_type)
 9404		goto out_balanced;
 9405
 9406	/*
 9407	 * When groups are overloaded, use the avg_load to ensure fairness
 9408	 * between tasks.
 9409	 */
 9410	if (local->group_type == group_overloaded) {
 9411		/*
 9412		 * If the local group is more loaded than the selected
 9413		 * busiest group don't try to pull any tasks.
 9414		 */
 9415		if (local->avg_load >= busiest->avg_load)
 9416			goto out_balanced;
 9417
 9418		/* XXX broken for overlapping NUMA groups */
 9419		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
 9420				sds.total_capacity;
 9421
 
 9422		/*
 9423		 * Don't pull any tasks if this group is already above the
 9424		 * domain average load.
 
 
 9425		 */
 9426		if (local->avg_load >= sds.avg_load)
 
 9427			goto out_balanced;
 9428
 9429		/*
 9430		 * If the busiest group is more loaded, use imbalance_pct to be
 9431		 * conservative.
 9432		 */
 9433		if (100 * busiest->avg_load <=
 9434				env->sd->imbalance_pct * local->avg_load)
 9435			goto out_balanced;
 9436	}
 9437
 9438	/* Try to move all excess tasks to child's sibling domain */
 9439	if (sds.prefer_sibling && local->group_type == group_has_spare &&
 9440	    busiest->sum_nr_running > local->sum_nr_running + 1)
 9441		goto force_balance;
 9442
 9443	if (busiest->group_type != group_overloaded) {
 9444		if (env->idle == CPU_NOT_IDLE)
 9445			/*
 9446			 * If the busiest group is not overloaded (and as a
 9447			 * result the local one too) but this CPU is already
 9448			 * busy, let another idle CPU try to pull task.
 9449			 */
 9450			goto out_balanced;
 9451
 9452		if (busiest->group_weight > 1 &&
 9453		    local->idle_cpus <= (busiest->idle_cpus + 1))
 9454			/*
 9455			 * If the busiest group is not overloaded
 9456			 * and there is no imbalance between this and busiest
 9457			 * group wrt idle CPUs, it is balanced. The imbalance
 9458			 * becomes significant if the diff is greater than 1
 9459			 * otherwise we might end up to just move the imbalance
 9460			 * on another group. Of course this applies only if
 9461			 * there is more than 1 CPU per group.
 9462			 */
 9463			goto out_balanced;
 9464
 9465		if (busiest->sum_h_nr_running == 1)
 9466			/*
 9467			 * busiest doesn't have any tasks waiting to run
 9468			 */
 9469			goto out_balanced;
 9470	}
 9471
 9472force_balance:
 9473	/* Looks like there is an imbalance. Compute it */
 9474	calculate_imbalance(env, &sds);
 9475	return env->imbalance ? sds.busiest : NULL;
 9476
 9477out_balanced:
 9478	env->imbalance = 0;
 9479	return NULL;
 9480}
 9481
 9482/*
 9483 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
 9484 */
 9485static struct rq *find_busiest_queue(struct lb_env *env,
 9486				     struct sched_group *group)
 9487{
 9488	struct rq *busiest = NULL, *rq;
 9489	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
 9490	unsigned int busiest_nr = 0;
 9491	int i;
 9492
 9493	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 9494		unsigned long capacity, load, util;
 9495		unsigned int nr_running;
 9496		enum fbq_type rt;
 9497
 9498		rq = cpu_rq(i);
 9499		rt = fbq_classify_rq(rq);
 9500
 9501		/*
 9502		 * We classify groups/runqueues into three groups:
 9503		 *  - regular: there are !numa tasks
 9504		 *  - remote:  there are numa tasks that run on the 'wrong' node
 9505		 *  - all:     there is no distinction
 9506		 *
 9507		 * In order to avoid migrating ideally placed numa tasks,
 9508		 * ignore those when there's better options.
 9509		 *
 9510		 * If we ignore the actual busiest queue to migrate another
 9511		 * task, the next balance pass can still reduce the busiest
 9512		 * queue by moving tasks around inside the node.
 9513		 *
 9514		 * If we cannot move enough load due to this classification
 9515		 * the next pass will adjust the group classification and
 9516		 * allow migration of more tasks.
 9517		 *
 9518		 * Both cases only affect the total convergence complexity.
 9519		 */
 9520		if (rt > env->fbq_type)
 9521			continue;
 9522
 9523		nr_running = rq->cfs.h_nr_running;
 9524		if (!nr_running)
 9525			continue;
 
 9526
 9527		capacity = capacity_of(i);
 9528
 9529		/*
 9530		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
 9531		 * eventually lead to active_balancing high->low capacity.
 9532		 * Higher per-CPU capacity is considered better than balancing
 9533		 * average load.
 9534		 */
 9535		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
 9536		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
 9537		    nr_running == 1)
 9538			continue;
 9539
 9540		switch (env->migration_type) {
 9541		case migrate_load:
 9542			/*
 9543			 * When comparing with load imbalance, use cpu_load()
 9544			 * which is not scaled with the CPU capacity.
 9545			 */
 9546			load = cpu_load(rq);
 9547
 9548			if (nr_running == 1 && load > env->imbalance &&
 9549			    !check_cpu_capacity(rq, env->sd))
 9550				break;
 9551
 9552			/*
 9553			 * For the load comparisons with the other CPUs,
 9554			 * consider the cpu_load() scaled with the CPU
 9555			 * capacity, so that the load can be moved away
 9556			 * from the CPU that is potentially running at a
 9557			 * lower capacity.
 9558			 *
 9559			 * Thus we're looking for max(load_i / capacity_i),
 9560			 * crosswise multiplication to rid ourselves of the
 9561			 * division works out to:
 9562			 * load_i * capacity_j > load_j * capacity_i;
 9563			 * where j is our previous maximum.
 9564			 */
 9565			if (load * busiest_capacity > busiest_load * capacity) {
 9566				busiest_load = load;
 9567				busiest_capacity = capacity;
 9568				busiest = rq;
 9569			}
 9570			break;
 9571
 9572		case migrate_util:
 9573			util = cpu_util(cpu_of(rq));
 9574
 9575			/*
 9576			 * Don't try to pull utilization from a CPU with one
 9577			 * running task. Whatever its utilization, we will fail
 9578			 * detach the task.
 9579			 */
 9580			if (nr_running <= 1)
 9581				continue;
 9582
 9583			if (busiest_util < util) {
 9584				busiest_util = util;
 9585				busiest = rq;
 9586			}
 9587			break;
 9588
 9589		case migrate_task:
 9590			if (busiest_nr < nr_running) {
 9591				busiest_nr = nr_running;
 9592				busiest = rq;
 9593			}
 9594			break;
 9595
 9596		case migrate_misfit:
 9597			/*
 9598			 * For ASYM_CPUCAPACITY domains with misfit tasks we
 9599			 * simply seek the "biggest" misfit task.
 9600			 */
 9601			if (rq->misfit_task_load > busiest_load) {
 9602				busiest_load = rq->misfit_task_load;
 9603				busiest = rq;
 9604			}
 9605
 9606			break;
 9607
 9608		}
 9609	}
 9610
 9611	return busiest;
 9612}
 9613
 9614/*
 9615 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 9616 * so long as it is large enough.
 9617 */
 9618#define MAX_PINNED_INTERVAL	512
 9619
 9620static inline bool
 9621asym_active_balance(struct lb_env *env)
 9622{
 9623	/*
 9624	 * ASYM_PACKING needs to force migrate tasks from busy but
 9625	 * lower priority CPUs in order to pack all tasks in the
 9626	 * highest priority CPUs.
 9627	 */
 9628	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
 9629	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
 9630}
 9631
 9632static inline bool
 9633imbalanced_active_balance(struct lb_env *env)
 9634{
 9635	struct sched_domain *sd = env->sd;
 9636
 9637	/*
 9638	 * The imbalanced case includes the case of pinned tasks preventing a fair
 9639	 * distribution of the load on the system but also the even distribution of the
 9640	 * threads on a system with spare capacity
 9641	 */
 9642	if ((env->migration_type == migrate_task) &&
 9643	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
 9644		return 1;
 9645
 9646	return 0;
 9647}
 9648
 9649static int need_active_balance(struct lb_env *env)
 9650{
 9651	struct sched_domain *sd = env->sd;
 9652
 9653	if (asym_active_balance(env))
 9654		return 1;
 9655
 9656	if (imbalanced_active_balance(env))
 9657		return 1;
 9658
 9659	/*
 9660	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
 9661	 * It's worth migrating the task if the src_cpu's capacity is reduced
 9662	 * because of other sched_class or IRQs if more capacity stays
 9663	 * available on dst_cpu.
 9664	 */
 9665	if ((env->idle != CPU_NOT_IDLE) &&
 9666	    (env->src_rq->cfs.h_nr_running == 1)) {
 9667		if ((check_cpu_capacity(env->src_rq, sd)) &&
 9668		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
 9669			return 1;
 9670	}
 9671
 9672	if (env->migration_type == migrate_misfit)
 9673		return 1;
 9674
 9675	return 0;
 9676}
 9677
 9678static int active_load_balance_cpu_stop(void *data);
 9679
 9680static int should_we_balance(struct lb_env *env)
 9681{
 9682	struct sched_group *sg = env->sd->groups;
 9683	int cpu;
 9684
 9685	/*
 9686	 * Ensure the balancing environment is consistent; can happen
 9687	 * when the softirq triggers 'during' hotplug.
 9688	 */
 9689	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
 9690		return 0;
 9691
 9692	/*
 9693	 * In the newly idle case, we will allow all the CPUs
 9694	 * to do the newly idle load balance.
 9695	 */
 9696	if (env->idle == CPU_NEWLY_IDLE)
 9697		return 1;
 9698
 9699	/* Try to find first idle CPU */
 9700	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
 9701		if (!idle_cpu(cpu))
 
 
 9702			continue;
 9703
 9704		/* Are we the first idle CPU? */
 9705		return cpu == env->dst_cpu;
 9706	}
 9707
 9708	/* Are we the first CPU of this group ? */
 9709	return group_balance_cpu(sg) == env->dst_cpu;
 
 
 
 
 
 
 9710}
 9711
 9712/*
 9713 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 9714 * tasks if there is an imbalance.
 9715 */
 9716static int load_balance(int this_cpu, struct rq *this_rq,
 9717			struct sched_domain *sd, enum cpu_idle_type idle,
 9718			int *continue_balancing)
 9719{
 9720	int ld_moved, cur_ld_moved, active_balance = 0;
 9721	struct sched_domain *sd_parent = sd->parent;
 9722	struct sched_group *group;
 9723	struct rq *busiest;
 9724	struct rq_flags rf;
 9725	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
 9726
 9727	struct lb_env env = {
 9728		.sd		= sd,
 9729		.dst_cpu	= this_cpu,
 9730		.dst_rq		= this_rq,
 9731		.dst_grpmask    = sched_group_span(sd->groups),
 9732		.idle		= idle,
 9733		.loop_break	= sched_nr_migrate_break,
 9734		.cpus		= cpus,
 9735		.fbq_type	= all,
 9736		.tasks		= LIST_HEAD_INIT(env.tasks),
 9737	};
 9738
 9739	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
 
 
 
 
 
 
 
 9740
 9741	schedstat_inc(sd->lb_count[idle]);
 9742
 9743redo:
 9744	if (!should_we_balance(&env)) {
 9745		*continue_balancing = 0;
 9746		goto out_balanced;
 9747	}
 9748
 9749	group = find_busiest_group(&env);
 9750	if (!group) {
 9751		schedstat_inc(sd->lb_nobusyg[idle]);
 9752		goto out_balanced;
 9753	}
 9754
 9755	busiest = find_busiest_queue(&env, group);
 9756	if (!busiest) {
 9757		schedstat_inc(sd->lb_nobusyq[idle]);
 9758		goto out_balanced;
 9759	}
 9760
 9761	BUG_ON(busiest == env.dst_rq);
 9762
 9763	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
 9764
 9765	env.src_cpu = busiest->cpu;
 9766	env.src_rq = busiest;
 9767
 9768	ld_moved = 0;
 9769	/* Clear this flag as soon as we find a pullable task */
 9770	env.flags |= LBF_ALL_PINNED;
 9771	if (busiest->nr_running > 1) {
 9772		/*
 9773		 * Attempt to move tasks. If find_busiest_group has found
 9774		 * an imbalance but busiest->nr_running <= 1, the group is
 9775		 * still unbalanced. ld_moved simply stays zero, so it is
 9776		 * correctly treated as an imbalance.
 9777		 */
 
 
 
 9778		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
 9779
 9780more_balance:
 9781		rq_lock_irqsave(busiest, &rf);
 9782		update_rq_clock(busiest);
 9783
 9784		/*
 9785		 * cur_ld_moved - load moved in current iteration
 9786		 * ld_moved     - cumulative load moved across iterations
 9787		 */
 9788		cur_ld_moved = detach_tasks(&env);
 
 
 
 9789
 9790		/*
 9791		 * We've detached some tasks from busiest_rq. Every
 9792		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
 9793		 * unlock busiest->lock, and we are able to be sure
 9794		 * that nobody can manipulate the tasks in parallel.
 9795		 * See task_rq_lock() family for the details.
 9796		 */
 9797
 9798		rq_unlock(busiest, &rf);
 9799
 9800		if (cur_ld_moved) {
 9801			attach_tasks(&env);
 9802			ld_moved += cur_ld_moved;
 9803		}
 9804
 9805		local_irq_restore(rf.flags);
 9806
 9807		if (env.flags & LBF_NEED_BREAK) {
 9808			env.flags &= ~LBF_NEED_BREAK;
 9809			goto more_balance;
 9810		}
 9811
 9812		/*
 9813		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
 9814		 * us and move them to an alternate dst_cpu in our sched_group
 9815		 * where they can run. The upper limit on how many times we
 9816		 * iterate on same src_cpu is dependent on number of CPUs in our
 9817		 * sched_group.
 9818		 *
 9819		 * This changes load balance semantics a bit on who can move
 9820		 * load to a given_cpu. In addition to the given_cpu itself
 9821		 * (or a ilb_cpu acting on its behalf where given_cpu is
 9822		 * nohz-idle), we now have balance_cpu in a position to move
 9823		 * load to given_cpu. In rare situations, this may cause
 9824		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
 9825		 * _independently_ and at _same_ time to move some load to
 9826		 * given_cpu) causing excess load to be moved to given_cpu.
 9827		 * This however should not happen so much in practice and
 9828		 * moreover subsequent load balance cycles should correct the
 9829		 * excess load moved.
 9830		 */
 9831		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
 9832
 9833			/* Prevent to re-select dst_cpu via env's CPUs */
 9834			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
 9835
 9836			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
 9837			env.dst_cpu	 = env.new_dst_cpu;
 9838			env.flags	&= ~LBF_DST_PINNED;
 9839			env.loop	 = 0;
 9840			env.loop_break	 = sched_nr_migrate_break;
 9841
 9842			/*
 9843			 * Go back to "more_balance" rather than "redo" since we
 9844			 * need to continue with same src_cpu.
 9845			 */
 9846			goto more_balance;
 9847		}
 9848
 9849		/*
 9850		 * We failed to reach balance because of affinity.
 9851		 */
 9852		if (sd_parent) {
 9853			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 9854
 9855			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
 9856				*group_imbalance = 1;
 
 
 9857		}
 9858
 9859		/* All tasks on this runqueue were pinned by CPU affinity */
 9860		if (unlikely(env.flags & LBF_ALL_PINNED)) {
 9861			__cpumask_clear_cpu(cpu_of(busiest), cpus);
 9862			/*
 9863			 * Attempting to continue load balancing at the current
 9864			 * sched_domain level only makes sense if there are
 9865			 * active CPUs remaining as possible busiest CPUs to
 9866			 * pull load from which are not contained within the
 9867			 * destination group that is receiving any migrated
 9868			 * load.
 9869			 */
 9870			if (!cpumask_subset(cpus, env.dst_grpmask)) {
 9871				env.loop = 0;
 9872				env.loop_break = sched_nr_migrate_break;
 9873				goto redo;
 9874			}
 9875			goto out_all_pinned;
 9876		}
 9877	}
 9878
 9879	if (!ld_moved) {
 9880		schedstat_inc(sd->lb_failed[idle]);
 9881		/*
 9882		 * Increment the failure counter only on periodic balance.
 9883		 * We do not want newidle balance, which can be very
 9884		 * frequent, pollute the failure counter causing
 9885		 * excessive cache_hot migrations and active balances.
 9886		 */
 9887		if (idle != CPU_NEWLY_IDLE)
 9888			sd->nr_balance_failed++;
 9889
 9890		if (need_active_balance(&env)) {
 9891			unsigned long flags;
 9892
 9893			raw_spin_rq_lock_irqsave(busiest, flags);
 9894
 9895			/*
 9896			 * Don't kick the active_load_balance_cpu_stop,
 9897			 * if the curr task on busiest CPU can't be
 9898			 * moved to this_cpu:
 9899			 */
 9900			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
 9901				raw_spin_rq_unlock_irqrestore(busiest, flags);
 
 
 
 9902				goto out_one_pinned;
 9903			}
 9904
 9905			/* Record that we found at least one task that could run on this_cpu */
 9906			env.flags &= ~LBF_ALL_PINNED;
 9907
 9908			/*
 9909			 * ->active_balance synchronizes accesses to
 9910			 * ->active_balance_work.  Once set, it's cleared
 9911			 * only after active load balance is finished.
 9912			 */
 9913			if (!busiest->active_balance) {
 9914				busiest->active_balance = 1;
 9915				busiest->push_cpu = this_cpu;
 9916				active_balance = 1;
 9917			}
 9918			raw_spin_rq_unlock_irqrestore(busiest, flags);
 9919
 9920			if (active_balance) {
 9921				stop_one_cpu_nowait(cpu_of(busiest),
 9922					active_load_balance_cpu_stop, busiest,
 9923					&busiest->active_balance_work);
 9924			}
 
 
 
 
 
 
 9925		}
 9926	} else {
 9927		sd->nr_balance_failed = 0;
 9928	}
 9929
 9930	if (likely(!active_balance) || need_active_balance(&env)) {
 9931		/* We were unbalanced, so reset the balancing interval */
 9932		sd->balance_interval = sd->min_interval;
 
 
 
 
 
 
 
 
 
 9933	}
 9934
 9935	goto out;
 9936
 9937out_balanced:
 9938	/*
 9939	 * We reach balance although we may have faced some affinity
 9940	 * constraints. Clear the imbalance flag only if other tasks got
 9941	 * a chance to move and fix the imbalance.
 9942	 */
 9943	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
 9944		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 9945
 9946		if (*group_imbalance)
 9947			*group_imbalance = 0;
 9948	}
 9949
 9950out_all_pinned:
 9951	/*
 9952	 * We reach balance because all tasks are pinned at this level so
 9953	 * we can't migrate them. Let the imbalance flag set so parent level
 9954	 * can try to migrate them.
 9955	 */
 9956	schedstat_inc(sd->lb_balanced[idle]);
 9957
 9958	sd->nr_balance_failed = 0;
 9959
 9960out_one_pinned:
 9961	ld_moved = 0;
 9962
 9963	/*
 9964	 * newidle_balance() disregards balance intervals, so we could
 9965	 * repeatedly reach this code, which would lead to balance_interval
 9966	 * skyrocketing in a short amount of time. Skip the balance_interval
 9967	 * increase logic to avoid that.
 9968	 */
 9969	if (env.idle == CPU_NEWLY_IDLE)
 9970		goto out;
 9971
 9972	/* tune up the balancing interval */
 9973	if ((env.flags & LBF_ALL_PINNED &&
 9974	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
 9975	    sd->balance_interval < sd->max_interval)
 9976		sd->balance_interval *= 2;
 
 
 9977out:
 9978	return ld_moved;
 9979}
 9980
 9981static inline unsigned long
 9982get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 
 
 
 9983{
 9984	unsigned long interval = sd->balance_interval;
 
 
 
 
 
 
 9985
 9986	if (cpu_busy)
 9987		interval *= sd->busy_factor;
 
 
 
 9988
 9989	/* scale ms to jiffies */
 9990	interval = msecs_to_jiffies(interval);
 9991
 9992	/*
 9993	 * Reduce likelihood of busy balancing at higher domains racing with
 9994	 * balancing at lower domains by preventing their balancing periods
 9995	 * from being multiples of each other.
 9996	 */
 9997	if (cpu_busy)
 9998		interval -= 1;
 9999
10000	interval = clamp(interval, 1UL, max_load_balance_interval);
 
 
 
 
 
10001
10002	return interval;
10003}
10004
10005static inline void
10006update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10007{
10008	unsigned long interval, next;
10009
10010	/* used by idle balance, so cpu_busy = 0 */
10011	interval = get_sd_balance_interval(sd, 0);
10012	next = sd->last_balance + interval;
10013
10014	if (time_after(*next_balance, next))
10015		*next_balance = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10016}
10017
10018/*
10019 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10020 * running tasks off the busiest CPU onto idle CPUs. It requires at
10021 * least 1 task to be running on each physical CPU where possible, and
10022 * avoids physical / logical imbalances.
10023 */
10024static int active_load_balance_cpu_stop(void *data)
10025{
10026	struct rq *busiest_rq = data;
10027	int busiest_cpu = cpu_of(busiest_rq);
10028	int target_cpu = busiest_rq->push_cpu;
10029	struct rq *target_rq = cpu_rq(target_cpu);
10030	struct sched_domain *sd;
10031	struct task_struct *p = NULL;
10032	struct rq_flags rf;
10033
10034	rq_lock_irq(busiest_rq, &rf);
10035	/*
10036	 * Between queueing the stop-work and running it is a hole in which
10037	 * CPUs can become inactive. We should not move tasks from or to
10038	 * inactive CPUs.
10039	 */
10040	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10041		goto out_unlock;
10042
10043	/* Make sure the requested CPU hasn't gone down in the meantime: */
10044	if (unlikely(busiest_cpu != smp_processor_id() ||
10045		     !busiest_rq->active_balance))
10046		goto out_unlock;
10047
10048	/* Is there any task to move? */
10049	if (busiest_rq->nr_running <= 1)
10050		goto out_unlock;
10051
10052	/*
10053	 * This condition is "impossible", if it occurs
10054	 * we need to fix it. Originally reported by
10055	 * Bjorn Helgaas on a 128-CPU setup.
10056	 */
10057	BUG_ON(busiest_rq == target_rq);
10058
 
 
 
10059	/* Search for an sd spanning us and the target CPU. */
10060	rcu_read_lock();
10061	for_each_domain(target_cpu, sd) {
10062		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10063			break;
 
10064	}
10065
10066	if (likely(sd)) {
10067		struct lb_env env = {
10068			.sd		= sd,
10069			.dst_cpu	= target_cpu,
10070			.dst_rq		= target_rq,
10071			.src_cpu	= busiest_rq->cpu,
10072			.src_rq		= busiest_rq,
10073			.idle		= CPU_IDLE,
10074			.flags		= LBF_ACTIVE_LB,
10075		};
10076
10077		schedstat_inc(sd->alb_count);
10078		update_rq_clock(busiest_rq);
10079
10080		p = detach_one_task(&env);
10081		if (p) {
10082			schedstat_inc(sd->alb_pushed);
10083			/* Active balancing done, reset the failure counter. */
10084			sd->nr_balance_failed = 0;
10085		} else {
10086			schedstat_inc(sd->alb_failed);
10087		}
10088	}
10089	rcu_read_unlock();
 
10090out_unlock:
10091	busiest_rq->active_balance = 0;
10092	rq_unlock(busiest_rq, &rf);
10093
10094	if (p)
10095		attach_one_task(target_rq, p);
10096
10097	local_irq_enable();
10098
10099	return 0;
10100}
10101
10102static DEFINE_SPINLOCK(balancing);
10103
10104/*
10105 * Scale the max load_balance interval with the number of CPUs in the system.
10106 * This trades load-balance latency on larger machines for less cross talk.
10107 */
10108void update_max_interval(void)
10109{
10110	max_load_balance_interval = HZ*num_online_cpus()/10;
10111}
10112
10113/*
10114 * It checks each scheduling domain to see if it is due to be balanced,
10115 * and initiates a balancing operation if so.
10116 *
10117 * Balancing parameters are set up in init_sched_domains.
10118 */
10119static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10120{
10121	int continue_balancing = 1;
10122	int cpu = rq->cpu;
10123	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10124	unsigned long interval;
10125	struct sched_domain *sd;
10126	/* Earliest time when we have to do rebalance again */
10127	unsigned long next_balance = jiffies + 60*HZ;
10128	int update_next_balance = 0;
10129	int need_serialize, need_decay = 0;
10130	u64 max_cost = 0;
10131
10132	rcu_read_lock();
10133	for_each_domain(cpu, sd) {
10134		/*
10135		 * Decay the newidle max times here because this is a regular
10136		 * visit to all the domains. Decay ~1% per second.
10137		 */
10138		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10139			sd->max_newidle_lb_cost =
10140				(sd->max_newidle_lb_cost * 253) / 256;
10141			sd->next_decay_max_lb_cost = jiffies + HZ;
10142			need_decay = 1;
10143		}
10144		max_cost += sd->max_newidle_lb_cost;
10145
10146		/*
10147		 * Stop the load balance at this level. There is another
10148		 * CPU in our sched group which is doing load balancing more
10149		 * actively.
10150		 */
10151		if (!continue_balancing) {
10152			if (need_decay)
10153				continue;
10154			break;
10155		}
10156
10157		interval = get_sd_balance_interval(sd, busy);
10158
10159		need_serialize = sd->flags & SD_SERIALIZE;
10160		if (need_serialize) {
10161			if (!spin_trylock(&balancing))
10162				goto out;
10163		}
10164
10165		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10166			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10167				/*
10168				 * The LBF_DST_PINNED logic could have changed
10169				 * env->dst_cpu, so we can't know our idle
10170				 * state even if we migrated tasks. Update it.
10171				 */
10172				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10173				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10174			}
10175			sd->last_balance = jiffies;
10176			interval = get_sd_balance_interval(sd, busy);
10177		}
10178		if (need_serialize)
10179			spin_unlock(&balancing);
10180out:
10181		if (time_after(next_balance, sd->last_balance + interval)) {
10182			next_balance = sd->last_balance + interval;
10183			update_next_balance = 1;
10184		}
10185	}
10186	if (need_decay) {
10187		/*
10188		 * Ensure the rq-wide value also decays but keep it at a
10189		 * reasonable floor to avoid funnies with rq->avg_idle.
10190		 */
10191		rq->max_idle_balance_cost =
10192			max((u64)sysctl_sched_migration_cost, max_cost);
10193	}
10194	rcu_read_unlock();
10195
10196	/*
10197	 * next_balance will be updated only when there is a need.
10198	 * When the cpu is attached to null domain for ex, it will not be
10199	 * updated.
10200	 */
10201	if (likely(update_next_balance))
10202		rq->next_balance = next_balance;
10203
10204}
10205
10206static inline int on_null_domain(struct rq *rq)
10207{
10208	return unlikely(!rcu_dereference_sched(rq->sd));
10209}
10210
10211#ifdef CONFIG_NO_HZ_COMMON
10212/*
10213 * idle load balancing details
10214 * - When one of the busy CPUs notice that there may be an idle rebalancing
10215 *   needed, they will kick the idle load balancer, which then does idle
10216 *   load balancing for all the idle CPUs.
10217 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10218 *   anywhere yet.
10219 */
 
 
 
 
 
10220
10221static inline int find_new_ilb(void)
10222{
10223	int ilb;
10224
10225	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10226			      housekeeping_cpumask(HK_FLAG_MISC)) {
10227
10228		if (ilb == smp_processor_id())
10229			continue;
10230
10231		if (idle_cpu(ilb))
10232			return ilb;
10233	}
10234
10235	return nr_cpu_ids;
10236}
10237
10238/*
10239 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10240 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
 
10241 */
10242static void kick_ilb(unsigned int flags)
10243{
10244	int ilb_cpu;
10245
10246	/*
10247	 * Increase nohz.next_balance only when if full ilb is triggered but
10248	 * not if we only update stats.
10249	 */
10250	if (flags & NOHZ_BALANCE_KICK)
10251		nohz.next_balance = jiffies+1;
10252
10253	ilb_cpu = find_new_ilb();
10254
10255	if (ilb_cpu >= nr_cpu_ids)
10256		return;
10257
10258	/*
10259	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10260	 * the first flag owns it; cleared by nohz_csd_func().
10261	 */
10262	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10263	if (flags & NOHZ_KICK_MASK)
10264		return;
10265
10266	/*
10267	 * This way we generate an IPI on the target CPU which
 
10268	 * is idle. And the softirq performing nohz idle load balance
10269	 * will be run before returning from the IPI.
10270	 */
10271	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
 
10272}
10273
10274/*
10275 * Current decision point for kicking the idle load balancer in the presence
10276 * of idle CPUs in the system.
10277 */
10278static void nohz_balancer_kick(struct rq *rq)
10279{
10280	unsigned long now = jiffies;
10281	struct sched_domain_shared *sds;
10282	struct sched_domain *sd;
10283	int nr_busy, i, cpu = rq->cpu;
10284	unsigned int flags = 0;
10285
10286	if (unlikely(rq->idle_balance))
10287		return;
10288
10289	/*
10290	 * We may be recently in ticked or tickless idle mode. At the first
10291	 * busy tick after returning from idle, we will update the busy stats.
10292	 */
10293	nohz_balance_exit_idle(rq);
10294
10295	/*
10296	 * None are in tickless mode and hence no need for NOHZ idle load
10297	 * balancing.
10298	 */
10299	if (likely(!atomic_read(&nohz.nr_cpus)))
10300		return;
10301
10302	if (READ_ONCE(nohz.has_blocked) &&
10303	    time_after(now, READ_ONCE(nohz.next_blocked)))
10304		flags = NOHZ_STATS_KICK;
10305
10306	if (time_before(now, nohz.next_balance))
10307		goto out;
10308
10309	if (rq->nr_running >= 2) {
10310		flags = NOHZ_KICK_MASK;
10311		goto out;
10312	}
10313
10314	rcu_read_lock();
10315
10316	sd = rcu_dereference(rq->sd);
10317	if (sd) {
10318		/*
10319		 * If there's a CFS task and the current CPU has reduced
10320		 * capacity; kick the ILB to see if there's a better CPU to run
10321		 * on.
10322		 */
10323		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10324			flags = NOHZ_KICK_MASK;
10325			goto unlock;
10326		}
10327	}
10328
10329	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10330	if (sd) {
10331		/*
10332		 * When ASYM_PACKING; see if there's a more preferred CPU
10333		 * currently idle; in which case, kick the ILB to move tasks
10334		 * around.
10335		 */
10336		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10337			if (sched_asym_prefer(i, cpu)) {
10338				flags = NOHZ_KICK_MASK;
10339				goto unlock;
10340			}
10341		}
10342	}
10343
10344	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10345	if (sd) {
10346		/*
10347		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10348		 * to run the misfit task on.
10349		 */
10350		if (check_misfit_status(rq, sd)) {
10351			flags = NOHZ_KICK_MASK;
10352			goto unlock;
10353		}
10354
10355		/*
10356		 * For asymmetric systems, we do not want to nicely balance
10357		 * cache use, instead we want to embrace asymmetry and only
10358		 * ensure tasks have enough CPU capacity.
10359		 *
10360		 * Skip the LLC logic because it's not relevant in that case.
10361		 */
10362		goto unlock;
10363	}
10364
10365	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10366	if (sds) {
10367		/*
10368		 * If there is an imbalance between LLC domains (IOW we could
10369		 * increase the overall cache use), we need some less-loaded LLC
10370		 * domain to pull some load. Likewise, we may need to spread
10371		 * load within the current LLC domain (e.g. packed SMT cores but
10372		 * other CPUs are idle). We can't really know from here how busy
10373		 * the others are - so just get a nohz balance going if it looks
10374		 * like this LLC domain has tasks we could move.
10375		 */
10376		nr_busy = atomic_read(&sds->nr_busy_cpus);
10377		if (nr_busy > 1) {
10378			flags = NOHZ_KICK_MASK;
10379			goto unlock;
10380		}
10381	}
10382unlock:
10383	rcu_read_unlock();
10384out:
10385	if (flags)
10386		kick_ilb(flags);
10387}
10388
10389static void set_cpu_sd_state_busy(int cpu)
10390{
10391	struct sched_domain *sd;
 
10392
10393	rcu_read_lock();
10394	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10395
10396	if (!sd || !sd->nohz_idle)
10397		goto unlock;
10398	sd->nohz_idle = 0;
10399
10400	atomic_inc(&sd->shared->nr_busy_cpus);
10401unlock:
10402	rcu_read_unlock();
10403}
10404
10405void nohz_balance_exit_idle(struct rq *rq)
10406{
10407	SCHED_WARN_ON(rq != this_rq());
10408
10409	if (likely(!rq->nohz_tick_stopped))
10410		return;
10411
10412	rq->nohz_tick_stopped = 0;
10413	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10414	atomic_dec(&nohz.nr_cpus);
10415
10416	set_cpu_sd_state_busy(rq->cpu);
10417}
10418
10419static void set_cpu_sd_state_idle(int cpu)
10420{
10421	struct sched_domain *sd;
 
10422
10423	rcu_read_lock();
10424	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10425
10426	if (!sd || sd->nohz_idle)
10427		goto unlock;
10428	sd->nohz_idle = 1;
10429
10430	atomic_dec(&sd->shared->nr_busy_cpus);
10431unlock:
10432	rcu_read_unlock();
10433}
10434
10435/*
10436 * This routine will record that the CPU is going idle with tick stopped.
10437 * This info will be used in performing idle load balancing in the future.
10438 */
10439void nohz_balance_enter_idle(int cpu)
10440{
10441	struct rq *rq = cpu_rq(cpu);
10442
10443	SCHED_WARN_ON(cpu != smp_processor_id());
10444
10445	/* If this CPU is going down, then nothing needs to be done: */
10446	if (!cpu_active(cpu))
10447		return;
10448
10449	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10450	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10451		return;
10452
10453	/*
10454	 * Can be set safely without rq->lock held
10455	 * If a clear happens, it will have evaluated last additions because
10456	 * rq->lock is held during the check and the clear
10457	 */
10458	rq->has_blocked_load = 1;
10459
10460	/*
10461	 * The tick is still stopped but load could have been added in the
10462	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10463	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10464	 * of nohz.has_blocked can only happen after checking the new load
10465	 */
10466	if (rq->nohz_tick_stopped)
10467		goto out;
10468
10469	/* If we're a completely isolated CPU, we don't play: */
10470	if (on_null_domain(rq))
10471		return;
10472
10473	rq->nohz_tick_stopped = 1;
10474
10475	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10476	atomic_inc(&nohz.nr_cpus);
10477
10478	/*
10479	 * Ensures that if nohz_idle_balance() fails to observe our
10480	 * @idle_cpus_mask store, it must observe the @has_blocked
10481	 * store.
10482	 */
10483	smp_mb__after_atomic();
10484
10485	set_cpu_sd_state_idle(cpu);
10486
10487out:
10488	/*
10489	 * Each time a cpu enter idle, we assume that it has blocked load and
10490	 * enable the periodic update of the load of idle cpus
10491	 */
10492	WRITE_ONCE(nohz.has_blocked, 1);
10493}
10494
10495static bool update_nohz_stats(struct rq *rq)
 
10496{
10497	unsigned int cpu = rq->cpu;
10498
10499	if (!rq->has_blocked_load)
10500		return false;
10501
10502	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10503		return false;
10504
10505	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10506		return true;
10507
10508	update_blocked_averages(cpu);
10509
10510	return rq->has_blocked_load;
 
 
 
 
 
 
10511}
10512
10513/*
10514 * Internal function that runs load balance for all idle cpus. The load balance
10515 * can be a simple update of blocked load or a complete load balance with
10516 * tasks movement depending of flags.
 
10517 */
10518static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10519			       enum cpu_idle_type idle)
10520{
 
 
 
 
10521	/* Earliest time when we have to do rebalance again */
10522	unsigned long now = jiffies;
10523	unsigned long next_balance = now + 60*HZ;
10524	bool has_blocked_load = false;
10525	int update_next_balance = 0;
10526	int this_cpu = this_rq->cpu;
10527	int balance_cpu;
10528	struct rq *rq;
10529
10530	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10531
10532	/*
10533	 * We assume there will be no idle load after this update and clear
10534	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10535	 * set the has_blocked flag and trig another update of idle load.
10536	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10537	 * setting the flag, we are sure to not clear the state and not
10538	 * check the load of an idle cpu.
10539	 */
10540	WRITE_ONCE(nohz.has_blocked, 0);
10541
10542	/*
10543	 * Ensures that if we miss the CPU, we must see the has_blocked
10544	 * store from nohz_balance_enter_idle().
10545	 */
10546	smp_mb();
10547
10548	/*
10549	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10550	 * chance for other idle cpu to pull load.
10551	 */
10552	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10553		if (!idle_cpu(balance_cpu))
10554			continue;
10555
 
 
10556		/*
10557		 * If this CPU gets work to do, stop the load balancing
10558		 * work being done for other CPUs. Next load
10559		 * balancing owner will pick it up.
10560		 */
10561		if (need_resched()) {
10562			has_blocked_load = true;
10563			goto abort;
 
 
10564		}
 
10565
10566		rq = cpu_rq(balance_cpu);
10567
10568		has_blocked_load |= update_nohz_stats(rq);
10569
10570		/*
10571		 * If time for next balance is due,
10572		 * do the balance.
 
10573		 */
10574		if (time_after_eq(jiffies, rq->next_balance)) {
10575			struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
10576
10577			rq_lock_irqsave(rq, &rf);
10578			update_rq_clock(rq);
10579			rq_unlock_irqrestore(rq, &rf);
10580
10581			if (flags & NOHZ_BALANCE_KICK)
10582				rebalance_domains(rq, CPU_IDLE);
 
10583		}
10584
10585		if (time_after(next_balance, rq->next_balance)) {
10586			next_balance = rq->next_balance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10587			update_next_balance = 1;
10588		}
10589	}
 
 
 
 
 
 
 
 
 
10590
10591	/*
10592	 * next_balance will be updated only when there is a need.
10593	 * When the CPU is attached to null domain for ex, it will not be
10594	 * updated.
10595	 */
10596	if (likely(update_next_balance))
10597		nohz.next_balance = next_balance;
10598
10599	WRITE_ONCE(nohz.next_blocked,
10600		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10601
10602abort:
10603	/* There is still blocked load, enable periodic update */
10604	if (has_blocked_load)
10605		WRITE_ONCE(nohz.has_blocked, 1);
10606}
10607
 
10608/*
10609 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10610 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10611 */
10612static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10613{
10614	unsigned int flags = this_rq->nohz_idle_balance;
10615
10616	if (!flags)
10617		return false;
10618
10619	this_rq->nohz_idle_balance = 0;
10620
10621	if (idle != CPU_IDLE)
10622		return false;
10623
10624	_nohz_idle_balance(this_rq, flags, idle);
10625
10626	return true;
10627}
10628
10629/*
10630 * Check if we need to run the ILB for updating blocked load before entering
10631 * idle state.
10632 */
10633void nohz_run_idle_balance(int cpu)
10634{
10635	unsigned int flags;
10636
10637	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10638
10639	/*
10640	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10641	 * (ie NOHZ_STATS_KICK set) and will do the same.
10642	 */
10643	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10644		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10645}
10646
10647static void nohz_newidle_balance(struct rq *this_rq)
10648{
10649	int this_cpu = this_rq->cpu;
 
 
10650
10651	/*
10652	 * This CPU doesn't want to be disturbed by scheduler
10653	 * housekeeping
10654	 */
10655	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10656		return;
10657
10658	/* Will wake up very soon. No time for doing anything else*/
10659	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10660		return;
10661
10662	/* Don't need to update blocked load of idle CPUs*/
10663	if (!READ_ONCE(nohz.has_blocked) ||
10664	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10665		return;
 
 
 
10666
10667	/*
10668	 * Set the need to trigger ILB in order to update blocked load
10669	 * before entering idle state.
10670	 */
10671	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10672}
10673
10674#else /* !CONFIG_NO_HZ_COMMON */
10675static inline void nohz_balancer_kick(struct rq *rq) { }
 
 
10676
10677static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10678{
10679	return false;
10680}
10681
10682static inline void nohz_newidle_balance(struct rq *this_rq) { }
10683#endif /* CONFIG_NO_HZ_COMMON */
 
 
 
 
 
10684
10685/*
10686 * newidle_balance is called by schedule() if this_cpu is about to become
10687 * idle. Attempts to pull tasks from other CPUs.
10688 *
10689 * Returns:
10690 *   < 0 - we released the lock and there are !fair tasks present
10691 *     0 - failed, no new tasks
10692 *   > 0 - success, new (fair) tasks present
10693 */
10694static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10695{
10696	unsigned long next_balance = jiffies + HZ;
10697	int this_cpu = this_rq->cpu;
10698	struct sched_domain *sd;
10699	int pulled_task = 0;
10700	u64 curr_cost = 0;
10701
10702	update_misfit_status(NULL, this_rq);
10703
10704	/*
10705	 * There is a task waiting to run. No need to search for one.
10706	 * Return 0; the task will be enqueued when switching to idle.
10707	 */
10708	if (this_rq->ttwu_pending)
10709		return 0;
10710
10711	/*
10712	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10713	 * measure the duration of idle_balance() as idle time.
10714	 */
10715	this_rq->idle_stamp = rq_clock(this_rq);
 
10716
10717	/*
10718	 * Do not pull tasks towards !active CPUs...
 
10719	 */
10720	if (!cpu_active(this_cpu))
10721		return 0;
10722
10723	/*
10724	 * This is OK, because current is on_cpu, which avoids it being picked
10725	 * for load-balance and preemption/IRQs are still disabled avoiding
10726	 * further scheduler activity on it and we're being very careful to
10727	 * re-start the picking loop.
10728	 */
10729	rq_unpin_lock(this_rq, rf);
10730
10731	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10732	    !READ_ONCE(this_rq->rd->overload)) {
10733
10734		rcu_read_lock();
10735		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10736		if (sd)
10737			update_next_balance(sd, &next_balance);
10738		rcu_read_unlock();
10739
10740		goto out;
10741	}
10742
10743	raw_spin_rq_unlock(this_rq);
 
10744
10745	update_blocked_averages(this_cpu);
10746	rcu_read_lock();
10747	for_each_domain(this_cpu, sd) {
10748		int continue_balancing = 1;
10749		u64 t0, domain_cost;
10750
10751		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10752			update_next_balance(sd, &next_balance);
10753			break;
10754		}
10755
10756		if (sd->flags & SD_BALANCE_NEWIDLE) {
10757			t0 = sched_clock_cpu(this_cpu);
10758
10759			pulled_task = load_balance(this_cpu, this_rq,
10760						   sd, CPU_NEWLY_IDLE,
10761						   &continue_balancing);
10762
10763			domain_cost = sched_clock_cpu(this_cpu) - t0;
10764			if (domain_cost > sd->max_newidle_lb_cost)
10765				sd->max_newidle_lb_cost = domain_cost;
10766
10767			curr_cost += domain_cost;
10768		}
10769
10770		update_next_balance(sd, &next_balance);
10771
10772		/*
10773		 * Stop searching for tasks to pull if there are
10774		 * now runnable tasks on this rq.
10775		 */
10776		if (pulled_task || this_rq->nr_running > 0 ||
10777		    this_rq->ttwu_pending)
10778			break;
10779	}
10780	rcu_read_unlock();
10781
10782	raw_spin_rq_lock(this_rq);
10783
10784	if (curr_cost > this_rq->max_idle_balance_cost)
10785		this_rq->max_idle_balance_cost = curr_cost;
10786
10787	/*
10788	 * While browsing the domains, we released the rq lock, a task could
10789	 * have been enqueued in the meantime. Since we're not going idle,
10790	 * pretend we pulled a task.
10791	 */
10792	if (this_rq->cfs.h_nr_running && !pulled_task)
10793		pulled_task = 1;
10794
10795	/* Is there a task of a high priority class? */
10796	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10797		pulled_task = -1;
10798
10799out:
10800	/* Move the next balance forward */
10801	if (time_after(this_rq->next_balance, next_balance))
10802		this_rq->next_balance = next_balance;
10803
10804	if (pulled_task)
10805		this_rq->idle_stamp = 0;
10806	else
10807		nohz_newidle_balance(this_rq);
10808
10809	rq_repin_lock(this_rq, rf);
10810
10811	return pulled_task;
 
 
 
10812}
 
 
 
10813
10814/*
10815 * run_rebalance_domains is triggered when needed from the scheduler tick.
10816 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10817 */
10818static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10819{
10820	struct rq *this_rq = this_rq();
10821	enum cpu_idle_type idle = this_rq->idle_balance ?
10822						CPU_IDLE : CPU_NOT_IDLE;
10823
 
 
10824	/*
10825	 * If this CPU has a pending nohz_balance_kick, then do the
10826	 * balancing on behalf of the other idle CPUs whose ticks are
10827	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10828	 * give the idle CPUs a chance to load balance. Else we may
10829	 * load balance only within the local sched_domain hierarchy
10830	 * and abort nohz_idle_balance altogether if we pull some load.
10831	 */
10832	if (nohz_idle_balance(this_rq, idle))
10833		return;
10834
10835	/* normal load balance */
10836	update_blocked_averages(this_rq->cpu);
10837	rebalance_domains(this_rq, idle);
10838}
10839
10840/*
10841 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10842 */
10843void trigger_load_balance(struct rq *rq)
10844{
10845	/*
10846	 * Don't need to rebalance while attached to NULL domain or
10847	 * runqueue CPU is not active
10848	 */
10849	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10850		return;
10851
10852	if (time_after_eq(jiffies, rq->next_balance))
10853		raise_softirq(SCHED_SOFTIRQ);
10854
10855	nohz_balancer_kick(rq);
 
 
10856}
10857
10858static void rq_online_fair(struct rq *rq)
10859{
10860	update_sysctl();
10861
10862	update_runtime_enabled(rq);
10863}
10864
10865static void rq_offline_fair(struct rq *rq)
10866{
10867	update_sysctl();
10868
10869	/* Ensure any throttled groups are reachable by pick_next_task */
10870	unthrottle_offline_cfs_rqs(rq);
10871}
10872
10873#endif /* CONFIG_SMP */
10874
10875#ifdef CONFIG_SCHED_CORE
10876static inline bool
10877__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10878{
10879	u64 slice = sched_slice(cfs_rq_of(se), se);
10880	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10881
10882	return (rtime * min_nr_tasks > slice);
10883}
10884
10885#define MIN_NR_TASKS_DURING_FORCEIDLE	2
10886static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10887{
10888	if (!sched_core_enabled(rq))
10889		return;
10890
10891	/*
10892	 * If runqueue has only one task which used up its slice and
10893	 * if the sibling is forced idle, then trigger schedule to
10894	 * give forced idle task a chance.
10895	 *
10896	 * sched_slice() considers only this active rq and it gets the
10897	 * whole slice. But during force idle, we have siblings acting
10898	 * like a single runqueue and hence we need to consider runnable
10899	 * tasks on this CPU and the forced idle CPU. Ideally, we should
10900	 * go through the forced idle rq, but that would be a perf hit.
10901	 * We can assume that the forced idle CPU has at least
10902	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10903	 * if we need to give up the CPU.
10904	 */
10905	if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10906	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10907		resched_curr(rq);
10908}
10909
10910/*
10911 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10912 */
10913static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10914{
10915	for_each_sched_entity(se) {
10916		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10917
10918		if (forceidle) {
10919			if (cfs_rq->forceidle_seq == fi_seq)
10920				break;
10921			cfs_rq->forceidle_seq = fi_seq;
10922		}
10923
10924		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10925	}
10926}
10927
10928void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10929{
10930	struct sched_entity *se = &p->se;
10931
10932	if (p->sched_class != &fair_sched_class)
10933		return;
10934
10935	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10936}
10937
10938bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10939{
10940	struct rq *rq = task_rq(a);
10941	struct sched_entity *sea = &a->se;
10942	struct sched_entity *seb = &b->se;
10943	struct cfs_rq *cfs_rqa;
10944	struct cfs_rq *cfs_rqb;
10945	s64 delta;
10946
10947	SCHED_WARN_ON(task_rq(b)->core != rq->core);
10948
10949#ifdef CONFIG_FAIR_GROUP_SCHED
10950	/*
10951	 * Find an se in the hierarchy for tasks a and b, such that the se's
10952	 * are immediate siblings.
10953	 */
10954	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10955		int sea_depth = sea->depth;
10956		int seb_depth = seb->depth;
10957
10958		if (sea_depth >= seb_depth)
10959			sea = parent_entity(sea);
10960		if (sea_depth <= seb_depth)
10961			seb = parent_entity(seb);
10962	}
10963
10964	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10965	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10966
10967	cfs_rqa = sea->cfs_rq;
10968	cfs_rqb = seb->cfs_rq;
10969#else
10970	cfs_rqa = &task_rq(a)->cfs;
10971	cfs_rqb = &task_rq(b)->cfs;
10972#endif
10973
10974	/*
10975	 * Find delta after normalizing se's vruntime with its cfs_rq's
10976	 * min_vruntime_fi, which would have been updated in prior calls
10977	 * to se_fi_update().
10978	 */
10979	delta = (s64)(sea->vruntime - seb->vruntime) +
10980		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10981
10982	return delta > 0;
10983}
10984#else
10985static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10986#endif
10987
10988/*
10989 * scheduler tick hitting a task of our scheduling class.
10990 *
10991 * NOTE: This function can be called remotely by the tick offload that
10992 * goes along full dynticks. Therefore no local assumption can be made
10993 * and everything must be accessed through the @rq and @curr passed in
10994 * parameters.
10995 */
10996static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10997{
10998	struct cfs_rq *cfs_rq;
10999	struct sched_entity *se = &curr->se;
11000
11001	for_each_sched_entity(se) {
11002		cfs_rq = cfs_rq_of(se);
11003		entity_tick(cfs_rq, se, queued);
11004	}
11005
11006	if (static_branch_unlikely(&sched_numa_balancing))
11007		task_tick_numa(rq, curr);
11008
11009	update_misfit_status(curr, rq);
11010	update_overutilized_status(task_rq(curr));
11011
11012	task_tick_core(rq, curr);
11013}
11014
11015/*
11016 * called on fork with the child task as argument from the parent's context
11017 *  - child not yet on the tasklist
11018 *  - preemption disabled
11019 */
11020static void task_fork_fair(struct task_struct *p)
11021{
11022	struct cfs_rq *cfs_rq;
11023	struct sched_entity *se = &p->se, *curr;
 
11024	struct rq *rq = this_rq();
11025	struct rq_flags rf;
 
 
11026
11027	rq_lock(rq, &rf);
11028	update_rq_clock(rq);
11029
11030	cfs_rq = task_cfs_rq(current);
11031	curr = cfs_rq->curr;
11032	if (curr) {
11033		update_curr(cfs_rq);
 
 
 
 
 
 
 
 
 
 
 
 
11034		se->vruntime = curr->vruntime;
11035	}
11036	place_entity(cfs_rq, se, 1);
11037
11038	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11039		/*
11040		 * Upon rescheduling, sched_class::put_prev_task() will place
11041		 * 'current' within the tree based on its new key value.
11042		 */
11043		swap(curr->vruntime, se->vruntime);
11044		resched_curr(rq);
11045	}
11046
11047	se->vruntime -= cfs_rq->min_vruntime;
11048	rq_unlock(rq, &rf);
 
11049}
11050
11051/*
11052 * Priority of the task has changed. Check to see if we preempt
11053 * the current task.
11054 */
11055static void
11056prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11057{
11058	if (!task_on_rq_queued(p))
11059		return;
11060
11061	if (rq->cfs.nr_running == 1)
11062		return;
11063
11064	/*
11065	 * Reschedule if we are currently running on this runqueue and
11066	 * our priority decreased, or if we are not currently running on
11067	 * this runqueue and our priority is higher than the current's
11068	 */
11069	if (task_current(rq, p)) {
11070		if (p->prio > oldprio)
11071			resched_curr(rq);
11072	} else
11073		check_preempt_curr(rq, p, 0);
11074}
11075
11076static inline bool vruntime_normalized(struct task_struct *p)
11077{
11078	struct sched_entity *se = &p->se;
 
11079
11080	/*
11081	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11082	 * the dequeue_entity(.flags=0) will already have normalized the
11083	 * vruntime.
11084	 */
11085	if (p->on_rq)
11086		return true;
11087
11088	/*
11089	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11090	 * But there are some cases where it has already been normalized:
11091	 *
11092	 * - A forked child which is waiting for being woken up by
11093	 *   wake_up_new_task().
11094	 * - A task which has been woken up by try_to_wake_up() and
11095	 *   waiting for actually being woken up by sched_ttwu_pending().
11096	 */
11097	if (!se->sum_exec_runtime ||
11098	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11099		return true;
11100
11101	return false;
11102}
11103
11104#ifdef CONFIG_FAIR_GROUP_SCHED
11105/*
11106 * Propagate the changes of the sched_entity across the tg tree to make it
11107 * visible to the root
11108 */
11109static void propagate_entity_cfs_rq(struct sched_entity *se)
11110{
11111	struct cfs_rq *cfs_rq;
11112
11113	list_add_leaf_cfs_rq(cfs_rq_of(se));
11114
11115	/* Start to propagate at parent */
11116	se = se->parent;
11117
11118	for_each_sched_entity(se) {
11119		cfs_rq = cfs_rq_of(se);
11120
11121		if (!cfs_rq_throttled(cfs_rq)){
11122			update_load_avg(cfs_rq, se, UPDATE_TG);
11123			list_add_leaf_cfs_rq(cfs_rq);
11124			continue;
11125		}
11126
11127		if (list_add_leaf_cfs_rq(cfs_rq))
11128			break;
 
 
 
 
 
 
 
11129	}
11130}
11131#else
11132static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11133#endif
11134
11135static void detach_entity_cfs_rq(struct sched_entity *se)
11136{
11137	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11138
11139	/* Catch up with the cfs_rq and remove our load when we leave */
11140	update_load_avg(cfs_rq, se, 0);
11141	detach_entity_load_avg(cfs_rq, se);
11142	update_tg_load_avg(cfs_rq);
11143	propagate_entity_cfs_rq(se);
11144}
11145
11146static void attach_entity_cfs_rq(struct sched_entity *se)
 
 
 
11147{
11148	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11149
11150#ifdef CONFIG_FAIR_GROUP_SCHED
11151	/*
11152	 * Since the real-depth could have been changed (only FAIR
11153	 * class maintain depth value), reset depth properly.
11154	 */
11155	se->depth = se->parent ? se->parent->depth + 1 : 0;
11156#endif
 
 
11157
11158	/* Synchronize entity with its cfs_rq */
11159	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11160	attach_entity_load_avg(cfs_rq, se);
11161	update_tg_load_avg(cfs_rq);
11162	propagate_entity_cfs_rq(se);
11163}
11164
11165static void detach_task_cfs_rq(struct task_struct *p)
11166{
11167	struct sched_entity *se = &p->se;
11168	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11169
11170	if (!vruntime_normalized(p)) {
11171		/*
11172		 * Fix up our vruntime so that the current sleep doesn't
11173		 * cause 'unlimited' sleep bonus.
11174		 */
11175		place_entity(cfs_rq, se, 0);
11176		se->vruntime -= cfs_rq->min_vruntime;
11177	}
11178
11179	detach_entity_cfs_rq(se);
11180}
11181
11182static void attach_task_cfs_rq(struct task_struct *p)
11183{
11184	struct sched_entity *se = &p->se;
11185	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11186
11187	attach_entity_cfs_rq(se);
11188
11189	if (!vruntime_normalized(p))
11190		se->vruntime += cfs_rq->min_vruntime;
11191}
11192
11193static void switched_from_fair(struct rq *rq, struct task_struct *p)
11194{
11195	detach_task_cfs_rq(p);
11196}
11197
11198static void switched_to_fair(struct rq *rq, struct task_struct *p)
11199{
11200	attach_task_cfs_rq(p);
11201
11202	if (task_on_rq_queued(p)) {
11203		/*
11204		 * We were most likely switched from sched_rt, so
11205		 * kick off the schedule if running, otherwise just see
11206		 * if we can still preempt the current task.
11207		 */
11208		if (task_current(rq, p))
11209			resched_curr(rq);
11210		else
11211			check_preempt_curr(rq, p, 0);
11212	}
11213}
11214
11215/* Account for a task changing its policy or group.
11216 *
11217 * This routine is mostly called to set cfs_rq->curr field when a task
11218 * migrates between groups/classes.
11219 */
11220static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11221{
11222	struct sched_entity *se = &p->se;
11223
11224#ifdef CONFIG_SMP
11225	if (task_on_rq_queued(p)) {
11226		/*
11227		 * Move the next running task to the front of the list, so our
11228		 * cfs_tasks list becomes MRU one.
11229		 */
11230		list_move(&se->group_node, &rq->cfs_tasks);
11231	}
11232#endif
11233
11234	for_each_sched_entity(se) {
11235		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11236
11237		set_next_entity(cfs_rq, se);
11238		/* ensure bandwidth has been allocated on our new cfs_rq */
11239		account_cfs_rq_runtime(cfs_rq, 0);
11240	}
11241}
11242
11243void init_cfs_rq(struct cfs_rq *cfs_rq)
11244{
11245	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11246	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11247#ifndef CONFIG_64BIT
11248	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11249#endif
11250#ifdef CONFIG_SMP
11251	raw_spin_lock_init(&cfs_rq->removed.lock);
 
11252#endif
11253}
11254
11255#ifdef CONFIG_FAIR_GROUP_SCHED
11256static void task_set_group_fair(struct task_struct *p)
11257{
11258	struct sched_entity *se = &p->se;
 
11259
11260	set_task_rq(p, task_cpu(p));
11261	se->depth = se->parent ? se->parent->depth + 1 : 0;
11262}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11263
11264static void task_move_group_fair(struct task_struct *p)
11265{
11266	detach_task_cfs_rq(p);
11267	set_task_rq(p, task_cpu(p));
11268
 
 
 
11269#ifdef CONFIG_SMP
11270	/* Tell se's cfs_rq has been changed -- migrated */
11271	p->se.avg.last_update_time = 0;
 
 
 
 
 
11272#endif
11273	attach_task_cfs_rq(p);
11274}
11275
11276static void task_change_group_fair(struct task_struct *p, int type)
11277{
11278	switch (type) {
11279	case TASK_SET_GROUP:
11280		task_set_group_fair(p);
11281		break;
11282
11283	case TASK_MOVE_GROUP:
11284		task_move_group_fair(p);
11285		break;
11286	}
11287}
11288
11289void free_fair_sched_group(struct task_group *tg)
11290{
11291	int i;
11292
11293	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11294
11295	for_each_possible_cpu(i) {
11296		if (tg->cfs_rq)
11297			kfree(tg->cfs_rq[i]);
11298		if (tg->se)
11299			kfree(tg->se[i]);
11300	}
11301
11302	kfree(tg->cfs_rq);
11303	kfree(tg->se);
11304}
11305
11306int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11307{
11308	struct sched_entity *se;
11309	struct cfs_rq *cfs_rq;
 
11310	int i;
11311
11312	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11313	if (!tg->cfs_rq)
11314		goto err;
11315	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11316	if (!tg->se)
11317		goto err;
11318
11319	tg->shares = NICE_0_LOAD;
11320
11321	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11322
11323	for_each_possible_cpu(i) {
11324		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11325				      GFP_KERNEL, cpu_to_node(i));
11326		if (!cfs_rq)
11327			goto err;
11328
11329		se = kzalloc_node(sizeof(struct sched_entity),
11330				  GFP_KERNEL, cpu_to_node(i));
11331		if (!se)
11332			goto err_free_rq;
11333
11334		init_cfs_rq(cfs_rq);
11335		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11336		init_entity_runnable_average(se);
11337	}
11338
11339	return 1;
11340
11341err_free_rq:
11342	kfree(cfs_rq);
11343err:
11344	return 0;
11345}
11346
11347void online_fair_sched_group(struct task_group *tg)
11348{
11349	struct sched_entity *se;
11350	struct rq_flags rf;
11351	struct rq *rq;
11352	int i;
11353
11354	for_each_possible_cpu(i) {
11355		rq = cpu_rq(i);
11356		se = tg->se[i];
11357		rq_lock_irq(rq, &rf);
11358		update_rq_clock(rq);
11359		attach_entity_cfs_rq(se);
11360		sync_throttle(tg, i);
11361		rq_unlock_irq(rq, &rf);
11362	}
11363}
11364
11365void unregister_fair_sched_group(struct task_group *tg)
11366{
 
11367	unsigned long flags;
11368	struct rq *rq;
11369	int cpu;
11370
11371	for_each_possible_cpu(cpu) {
11372		if (tg->se[cpu])
11373			remove_entity_load_avg(tg->se[cpu]);
11374
11375		/*
11376		 * Only empty task groups can be destroyed; so we can speculatively
11377		 * check on_list without danger of it being re-added.
11378		 */
11379		if (!tg->cfs_rq[cpu]->on_list)
11380			continue;
11381
11382		rq = cpu_rq(cpu);
11383
11384		raw_spin_rq_lock_irqsave(rq, flags);
11385		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11386		raw_spin_rq_unlock_irqrestore(rq, flags);
11387	}
11388}
11389
11390void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11391			struct sched_entity *se, int cpu,
11392			struct sched_entity *parent)
11393{
11394	struct rq *rq = cpu_rq(cpu);
11395
11396	cfs_rq->tg = tg;
11397	cfs_rq->rq = rq;
11398	init_cfs_rq_runtime(cfs_rq);
11399
11400	tg->cfs_rq[cpu] = cfs_rq;
11401	tg->se[cpu] = se;
11402
11403	/* se could be NULL for root_task_group */
11404	if (!se)
11405		return;
11406
11407	if (!parent) {
11408		se->cfs_rq = &rq->cfs;
11409		se->depth = 0;
11410	} else {
11411		se->cfs_rq = parent->my_q;
11412		se->depth = parent->depth + 1;
11413	}
11414
11415	se->my_q = cfs_rq;
11416	/* guarantee group entities always have weight */
11417	update_load_set(&se->load, NICE_0_LOAD);
11418	se->parent = parent;
11419}
11420
11421static DEFINE_MUTEX(shares_mutex);
11422
11423int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11424{
11425	int i;
 
11426
11427	/*
11428	 * We can't change the weight of the root cgroup.
11429	 */
11430	if (!tg->se[0])
11431		return -EINVAL;
11432
11433	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11434
11435	mutex_lock(&shares_mutex);
11436	if (tg->shares == shares)
11437		goto done;
11438
11439	tg->shares = shares;
11440	for_each_possible_cpu(i) {
11441		struct rq *rq = cpu_rq(i);
11442		struct sched_entity *se = tg->se[i];
11443		struct rq_flags rf;
11444
 
11445		/* Propagate contribution to hierarchy */
11446		rq_lock_irqsave(rq, &rf);
 
 
11447		update_rq_clock(rq);
11448		for_each_sched_entity(se) {
11449			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11450			update_cfs_group(se);
11451		}
11452		rq_unlock_irqrestore(rq, &rf);
11453	}
11454
11455done:
11456	mutex_unlock(&shares_mutex);
11457	return 0;
11458}
11459#else /* CONFIG_FAIR_GROUP_SCHED */
11460
11461void free_fair_sched_group(struct task_group *tg) { }
11462
11463int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11464{
11465	return 1;
11466}
11467
11468void online_fair_sched_group(struct task_group *tg) { }
11469
11470void unregister_fair_sched_group(struct task_group *tg) { }
11471
11472#endif /* CONFIG_FAIR_GROUP_SCHED */
11473
11474
11475static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11476{
11477	struct sched_entity *se = &task->se;
11478	unsigned int rr_interval = 0;
11479
11480	/*
11481	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11482	 * idle runqueue:
11483	 */
11484	if (rq->cfs.load.weight)
11485		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11486
11487	return rr_interval;
11488}
11489
11490/*
11491 * All the scheduling class methods:
11492 */
11493DEFINE_SCHED_CLASS(fair) = {
11494
11495	.enqueue_task		= enqueue_task_fair,
11496	.dequeue_task		= dequeue_task_fair,
11497	.yield_task		= yield_task_fair,
11498	.yield_to_task		= yield_to_task_fair,
11499
11500	.check_preempt_curr	= check_preempt_wakeup,
11501
11502	.pick_next_task		= __pick_next_task_fair,
11503	.put_prev_task		= put_prev_task_fair,
11504	.set_next_task          = set_next_task_fair,
11505
11506#ifdef CONFIG_SMP
11507	.balance		= balance_fair,
11508	.pick_task		= pick_task_fair,
11509	.select_task_rq		= select_task_rq_fair,
11510	.migrate_task_rq	= migrate_task_rq_fair,
11511
11512	.rq_online		= rq_online_fair,
11513	.rq_offline		= rq_offline_fair,
11514
11515	.task_dead		= task_dead_fair,
11516	.set_cpus_allowed	= set_cpus_allowed_common,
11517#endif
11518
 
11519	.task_tick		= task_tick_fair,
11520	.task_fork		= task_fork_fair,
11521
11522	.prio_changed		= prio_changed_fair,
11523	.switched_from		= switched_from_fair,
11524	.switched_to		= switched_to_fair,
11525
11526	.get_rr_interval	= get_rr_interval_fair,
11527
11528	.update_curr		= update_curr_fair,
11529
11530#ifdef CONFIG_FAIR_GROUP_SCHED
11531	.task_change_group	= task_change_group_fair,
11532#endif
11533
11534#ifdef CONFIG_UCLAMP_TASK
11535	.uclamp_enabled		= 1,
11536#endif
11537};
11538
11539#ifdef CONFIG_SCHED_DEBUG
11540void print_cfs_stats(struct seq_file *m, int cpu)
11541{
11542	struct cfs_rq *cfs_rq, *pos;
11543
11544	rcu_read_lock();
11545	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11546		print_cfs_rq(m, cpu, cfs_rq);
11547	rcu_read_unlock();
11548}
11549
11550#ifdef CONFIG_NUMA_BALANCING
11551void show_numa_stats(struct task_struct *p, struct seq_file *m)
11552{
11553	int node;
11554	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11555	struct numa_group *ng;
11556
11557	rcu_read_lock();
11558	ng = rcu_dereference(p->numa_group);
11559	for_each_online_node(node) {
11560		if (p->numa_faults) {
11561			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11562			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11563		}
11564		if (ng) {
11565			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11566			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11567		}
11568		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11569	}
11570	rcu_read_unlock();
11571}
11572#endif /* CONFIG_NUMA_BALANCING */
11573#endif /* CONFIG_SCHED_DEBUG */
11574
11575__init void init_sched_fair_class(void)
11576{
11577#ifdef CONFIG_SMP
11578	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11579
11580#ifdef CONFIG_NO_HZ_COMMON
11581	nohz.next_balance = jiffies;
11582	nohz.next_blocked = jiffies;
11583	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 
11584#endif
11585#endif /* SMP */
11586
11587}
11588
11589/*
11590 * Helper functions to facilitate extracting info from tracepoints.
11591 */
11592
11593const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11594{
11595#ifdef CONFIG_SMP
11596	return cfs_rq ? &cfs_rq->avg : NULL;
11597#else
11598	return NULL;
11599#endif
11600}
11601EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11602
11603char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11604{
11605	if (!cfs_rq) {
11606		if (str)
11607			strlcpy(str, "(null)", len);
11608		else
11609			return NULL;
11610	}
11611
11612	cfs_rq_tg_path(cfs_rq, str, len);
11613	return str;
11614}
11615EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11616
11617int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11618{
11619	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11620}
11621EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11622
11623const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11624{
11625#ifdef CONFIG_SMP
11626	return rq ? &rq->avg_rt : NULL;
11627#else
11628	return NULL;
11629#endif
11630}
11631EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11632
11633const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11634{
11635#ifdef CONFIG_SMP
11636	return rq ? &rq->avg_dl : NULL;
11637#else
11638	return NULL;
11639#endif
11640}
11641EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11642
11643const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11644{
11645#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11646	return rq ? &rq->avg_irq : NULL;
11647#else
11648	return NULL;
11649#endif
11650}
11651EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11652
11653int sched_trace_rq_cpu(struct rq *rq)
11654{
11655	return rq ? cpu_of(rq) : -1;
11656}
11657EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11658
11659int sched_trace_rq_cpu_capacity(struct rq *rq)
11660{
11661	return rq ?
11662#ifdef CONFIG_SMP
11663		rq->cpu_capacity
11664#else
11665		SCHED_CAPACITY_SCALE
11666#endif
11667		: -1;
11668}
11669EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11670
11671const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11672{
11673#ifdef CONFIG_SMP
11674	return rd ? rd->span : NULL;
11675#else
11676	return NULL;
11677#endif
11678}
11679EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11680
11681int sched_trace_rq_nr_running(struct rq *rq)
11682{
11683        return rq ? rq->nr_running : -1;
11684}
11685EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
v3.15
 
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/slab.h>
  27#include <linux/profile.h>
  28#include <linux/interrupt.h>
  29#include <linux/mempolicy.h>
  30#include <linux/migrate.h>
  31#include <linux/task_work.h>
  32
  33#include <trace/events/sched.h>
  34
  35#include "sched.h"
  36
  37/*
  38 * Targeted preemption latency for CPU-bound tasks:
  39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  40 *
  41 * NOTE: this latency value is not the same as the concept of
  42 * 'timeslice length' - timeslices in CFS are of variable length
  43 * and have no persistent notion like in traditional, time-slice
  44 * based scheduling concepts.
  45 *
  46 * (to see the precise effective timeslice length of your workload,
  47 *  run vmstat and monitor the context-switches (cs) field)
 
 
  48 */
  49unsigned int sysctl_sched_latency = 6000000ULL;
  50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  51
  52/*
  53 * The initial- and re-scaling of tunables is configurable
  54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  55 *
  56 * Options are:
  57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 
 
 
  60 */
  61enum sched_tunable_scaling sysctl_sched_tunable_scaling
  62	= SCHED_TUNABLESCALING_LOG;
  63
  64/*
  65 * Minimal preemption granularity for CPU-bound tasks:
 
  66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  67 */
  68unsigned int sysctl_sched_min_granularity = 750000ULL;
  69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  70
  71/*
  72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  73 */
  74static unsigned int sched_nr_latency = 8;
  75
  76/*
  77 * After fork, child runs first. If set to 0 (default) then
  78 * parent will (try to) run first.
  79 */
  80unsigned int sysctl_sched_child_runs_first __read_mostly;
  81
  82/*
  83 * SCHED_OTHER wake-up granularity.
  84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  85 *
  86 * This option delays the preemption effects of decoupled workloads
  87 * and reduces their over-scheduling. Synchronous workloads will still
  88 * have immediate wakeup/sleep latencies.
 
 
  89 */
  90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  92
  93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95/*
  96 * The exponential sliding  window over which load is averaged for shares
  97 * distribution.
  98 * (default: 10msec)
  99 */
 100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 
 
 
 
 
 
 
 
 
 101
 102#ifdef CONFIG_CFS_BANDWIDTH
 103/*
 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 105 * each time a cfs_rq requests quota.
 106 *
 107 * Note: in the case that the slice exceeds the runtime remaining (either due
 108 * to consumption or the quota being specified to be smaller than the slice)
 109 * we will always only issue the remaining available time.
 110 *
 111 * default: 5 msec, units: microseconds
 112  */
 113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 114#endif
 115
 116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 117{
 118	lw->weight += inc;
 119	lw->inv_weight = 0;
 120}
 121
 122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 123{
 124	lw->weight -= dec;
 125	lw->inv_weight = 0;
 126}
 127
 128static inline void update_load_set(struct load_weight *lw, unsigned long w)
 129{
 130	lw->weight = w;
 131	lw->inv_weight = 0;
 132}
 133
 134/*
 135 * Increase the granularity value when there are more CPUs,
 136 * because with more CPUs the 'effective latency' as visible
 137 * to users decreases. But the relationship is not linear,
 138 * so pick a second-best guess by going with the log2 of the
 139 * number of CPUs.
 140 *
 141 * This idea comes from the SD scheduler of Con Kolivas:
 142 */
 143static int get_update_sysctl_factor(void)
 144{
 145	unsigned int cpus = min_t(int, num_online_cpus(), 8);
 146	unsigned int factor;
 147
 148	switch (sysctl_sched_tunable_scaling) {
 149	case SCHED_TUNABLESCALING_NONE:
 150		factor = 1;
 151		break;
 152	case SCHED_TUNABLESCALING_LINEAR:
 153		factor = cpus;
 154		break;
 155	case SCHED_TUNABLESCALING_LOG:
 156	default:
 157		factor = 1 + ilog2(cpus);
 158		break;
 159	}
 160
 161	return factor;
 162}
 163
 164static void update_sysctl(void)
 165{
 166	unsigned int factor = get_update_sysctl_factor();
 167
 168#define SET_SYSCTL(name) \
 169	(sysctl_##name = (factor) * normalized_sysctl_##name)
 170	SET_SYSCTL(sched_min_granularity);
 171	SET_SYSCTL(sched_latency);
 172	SET_SYSCTL(sched_wakeup_granularity);
 173#undef SET_SYSCTL
 174}
 175
 176void sched_init_granularity(void)
 177{
 178	update_sysctl();
 179}
 180
 181#define WMULT_CONST	(~0U)
 182#define WMULT_SHIFT	32
 183
 184static void __update_inv_weight(struct load_weight *lw)
 185{
 186	unsigned long w;
 187
 188	if (likely(lw->inv_weight))
 189		return;
 190
 191	w = scale_load_down(lw->weight);
 192
 193	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 194		lw->inv_weight = 1;
 195	else if (unlikely(!w))
 196		lw->inv_weight = WMULT_CONST;
 197	else
 198		lw->inv_weight = WMULT_CONST / w;
 199}
 200
 201/*
 202 * delta_exec * weight / lw.weight
 203 *   OR
 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 205 *
 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 209 *
 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 212 */
 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 214{
 215	u64 fact = scale_load_down(weight);
 
 216	int shift = WMULT_SHIFT;
 
 217
 218	__update_inv_weight(lw);
 219
 220	if (unlikely(fact >> 32)) {
 221		while (fact >> 32) {
 222			fact >>= 1;
 223			shift--;
 224		}
 225	}
 226
 227	/* hint to use a 32x32->64 mul */
 228	fact = (u64)(u32)fact * lw->inv_weight;
 229
 230	while (fact >> 32) {
 231		fact >>= 1;
 232		shift--;
 
 233	}
 234
 235	return mul_u64_u32_shr(delta_exec, fact, shift);
 236}
 237
 238
 239const struct sched_class fair_sched_class;
 240
 241/**************************************************************
 242 * CFS operations on generic schedulable entities:
 243 */
 244
 245#ifdef CONFIG_FAIR_GROUP_SCHED
 246
 247/* cpu runqueue to which this cfs_rq is attached */
 248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 249{
 250	return cfs_rq->rq;
 251}
 252
 253/* An entity is a task if it doesn't "own" a runqueue */
 254#define entity_is_task(se)	(!se->my_q)
 255
 256static inline struct task_struct *task_of(struct sched_entity *se)
 257{
 258#ifdef CONFIG_SCHED_DEBUG
 259	WARN_ON_ONCE(!entity_is_task(se));
 260#endif
 261	return container_of(se, struct task_struct, se);
 262}
 263
 264/* Walk up scheduling entities hierarchy */
 265#define for_each_sched_entity(se) \
 266		for (; se; se = se->parent)
 267
 268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 269{
 270	return p->se.cfs_rq;
 
 
 
 
 
 
 
 
 271}
 272
 273/* runqueue on which this entity is (to be) queued */
 274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 275{
 276	return se->cfs_rq;
 277}
 278
 279/* runqueue "owned" by this group */
 280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 281{
 282	return grp->my_q;
 283}
 284
 285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 286				       int force_update);
 287
 288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 289{
 290	if (!cfs_rq->on_list) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291		/*
 292		 * Ensure we either appear before our parent (if already
 293		 * enqueued) or force our parent to appear after us when it is
 294		 * enqueued.  The fact that we always enqueue bottom-up
 295		 * reduces this to two cases.
 296		 */
 297		if (cfs_rq->tg->parent &&
 298		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 299			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 300				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 301		} else {
 302			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 303				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 304		}
 305
 306		cfs_rq->on_list = 1;
 307		/* We should have no load, but we need to update last_decay. */
 308		update_cfs_rq_blocked_load(cfs_rq, 0);
 
 
 
 
 
 
 
 
 
 
 309	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 313{
 314	if (cfs_rq->on_list) {
 
 
 
 
 
 
 
 
 
 
 
 
 315		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 316		cfs_rq->on_list = 0;
 317	}
 318}
 319
 
 
 
 
 
 320/* Iterate thr' all leaf cfs_rq's on a runqueue */
 321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 322	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 
 323
 324/* Do the two (enqueued) entities belong to the same group ? */
 325static inline struct cfs_rq *
 326is_same_group(struct sched_entity *se, struct sched_entity *pse)
 327{
 328	if (se->cfs_rq == pse->cfs_rq)
 329		return se->cfs_rq;
 330
 331	return NULL;
 332}
 333
 334static inline struct sched_entity *parent_entity(struct sched_entity *se)
 335{
 336	return se->parent;
 337}
 338
 339static void
 340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 341{
 342	int se_depth, pse_depth;
 343
 344	/*
 345	 * preemption test can be made between sibling entities who are in the
 346	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 347	 * both tasks until we find their ancestors who are siblings of common
 348	 * parent.
 349	 */
 350
 351	/* First walk up until both entities are at same depth */
 352	se_depth = (*se)->depth;
 353	pse_depth = (*pse)->depth;
 354
 355	while (se_depth > pse_depth) {
 356		se_depth--;
 357		*se = parent_entity(*se);
 358	}
 359
 360	while (pse_depth > se_depth) {
 361		pse_depth--;
 362		*pse = parent_entity(*pse);
 363	}
 364
 365	while (!is_same_group(*se, *pse)) {
 366		*se = parent_entity(*se);
 367		*pse = parent_entity(*pse);
 368	}
 369}
 370
 371#else	/* !CONFIG_FAIR_GROUP_SCHED */
 372
 373static inline struct task_struct *task_of(struct sched_entity *se)
 374{
 375	return container_of(se, struct task_struct, se);
 376}
 377
 378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 379{
 380	return container_of(cfs_rq, struct rq, cfs);
 381}
 382
 383#define entity_is_task(se)	1
 384
 385#define for_each_sched_entity(se) \
 386		for (; se; se = NULL)
 387
 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 389{
 390	return &task_rq(p)->cfs;
 
 391}
 392
 393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 394{
 395	struct task_struct *p = task_of(se);
 396	struct rq *rq = task_rq(p);
 397
 398	return &rq->cfs;
 399}
 400
 401/* runqueue "owned" by this group */
 402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 403{
 404	return NULL;
 405}
 406
 407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 408{
 409}
 410
 411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 412{
 413}
 414
 415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 416		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 417
 418static inline struct sched_entity *parent_entity(struct sched_entity *se)
 419{
 420	return NULL;
 421}
 422
 423static inline void
 424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 425{
 426}
 427
 428#endif	/* CONFIG_FAIR_GROUP_SCHED */
 429
 430static __always_inline
 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 432
 433/**************************************************************
 434 * Scheduling class tree data structure manipulation methods:
 435 */
 436
 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 438{
 439	s64 delta = (s64)(vruntime - max_vruntime);
 440	if (delta > 0)
 441		max_vruntime = vruntime;
 442
 443	return max_vruntime;
 444}
 445
 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 447{
 448	s64 delta = (s64)(vruntime - min_vruntime);
 449	if (delta < 0)
 450		min_vruntime = vruntime;
 451
 452	return min_vruntime;
 453}
 454
 455static inline int entity_before(struct sched_entity *a,
 456				struct sched_entity *b)
 457{
 458	return (s64)(a->vruntime - b->vruntime) < 0;
 459}
 460
 
 
 
 461static void update_min_vruntime(struct cfs_rq *cfs_rq)
 462{
 
 
 
 463	u64 vruntime = cfs_rq->min_vruntime;
 464
 465	if (cfs_rq->curr)
 466		vruntime = cfs_rq->curr->vruntime;
 
 
 
 
 467
 468	if (cfs_rq->rb_leftmost) {
 469		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 470						   struct sched_entity,
 471						   run_node);
 472
 473		if (!cfs_rq->curr)
 474			vruntime = se->vruntime;
 475		else
 476			vruntime = min_vruntime(vruntime, se->vruntime);
 477	}
 478
 479	/* ensure we never gain time by being placed backwards. */
 480	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 481#ifndef CONFIG_64BIT
 482	smp_wmb();
 483	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 484#endif
 485}
 486
 
 
 
 
 
 487/*
 488 * Enqueue an entity into the rb-tree:
 489 */
 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 491{
 492	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 493	struct rb_node *parent = NULL;
 494	struct sched_entity *entry;
 495	int leftmost = 1;
 496
 497	/*
 498	 * Find the right place in the rbtree:
 499	 */
 500	while (*link) {
 501		parent = *link;
 502		entry = rb_entry(parent, struct sched_entity, run_node);
 503		/*
 504		 * We dont care about collisions. Nodes with
 505		 * the same key stay together.
 506		 */
 507		if (entity_before(se, entry)) {
 508			link = &parent->rb_left;
 509		} else {
 510			link = &parent->rb_right;
 511			leftmost = 0;
 512		}
 513	}
 514
 515	/*
 516	 * Maintain a cache of leftmost tree entries (it is frequently
 517	 * used):
 518	 */
 519	if (leftmost)
 520		cfs_rq->rb_leftmost = &se->run_node;
 521
 522	rb_link_node(&se->run_node, parent, link);
 523	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 524}
 525
 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 527{
 528	if (cfs_rq->rb_leftmost == &se->run_node) {
 529		struct rb_node *next_node;
 530
 531		next_node = rb_next(&se->run_node);
 532		cfs_rq->rb_leftmost = next_node;
 533	}
 534
 535	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 536}
 537
 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 539{
 540	struct rb_node *left = cfs_rq->rb_leftmost;
 541
 542	if (!left)
 543		return NULL;
 544
 545	return rb_entry(left, struct sched_entity, run_node);
 546}
 547
 548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 549{
 550	struct rb_node *next = rb_next(&se->run_node);
 551
 552	if (!next)
 553		return NULL;
 554
 555	return rb_entry(next, struct sched_entity, run_node);
 556}
 557
 558#ifdef CONFIG_SCHED_DEBUG
 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 560{
 561	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 562
 563	if (!last)
 564		return NULL;
 565
 566	return rb_entry(last, struct sched_entity, run_node);
 567}
 568
 569/**************************************************************
 570 * Scheduling class statistics methods:
 571 */
 572
 573int sched_proc_update_handler(struct ctl_table *table, int write,
 574		void __user *buffer, size_t *lenp,
 575		loff_t *ppos)
 576{
 577	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 578	int factor = get_update_sysctl_factor();
 579
 580	if (ret || !write)
 581		return ret;
 582
 583	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 584					sysctl_sched_min_granularity);
 585
 586#define WRT_SYSCTL(name) \
 587	(normalized_sysctl_##name = sysctl_##name / (factor))
 588	WRT_SYSCTL(sched_min_granularity);
 589	WRT_SYSCTL(sched_latency);
 590	WRT_SYSCTL(sched_wakeup_granularity);
 591#undef WRT_SYSCTL
 592
 593	return 0;
 594}
 595#endif
 596
 597/*
 598 * delta /= w
 599 */
 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 601{
 602	if (unlikely(se->load.weight != NICE_0_LOAD))
 603		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 604
 605	return delta;
 606}
 607
 608/*
 609 * The idea is to set a period in which each task runs once.
 610 *
 611 * When there are too many tasks (sched_nr_latency) we have to stretch
 612 * this period because otherwise the slices get too small.
 613 *
 614 * p = (nr <= nl) ? l : l*nr/nl
 615 */
 616static u64 __sched_period(unsigned long nr_running)
 617{
 618	u64 period = sysctl_sched_latency;
 619	unsigned long nr_latency = sched_nr_latency;
 620
 621	if (unlikely(nr_running > nr_latency)) {
 622		period = sysctl_sched_min_granularity;
 623		period *= nr_running;
 624	}
 625
 626	return period;
 627}
 628
 629/*
 630 * We calculate the wall-time slice from the period by taking a part
 631 * proportional to the weight.
 632 *
 633 * s = p*P[w/rw]
 634 */
 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 636{
 637	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 
 
 
 
 
 
 638
 639	for_each_sched_entity(se) {
 640		struct load_weight *load;
 641		struct load_weight lw;
 642
 643		cfs_rq = cfs_rq_of(se);
 644		load = &cfs_rq->load;
 645
 646		if (unlikely(!se->on_rq)) {
 647			lw = cfs_rq->load;
 648
 649			update_load_add(&lw, se->load.weight);
 650			load = &lw;
 651		}
 652		slice = __calc_delta(slice, se->load.weight, load);
 653	}
 
 
 
 
 654	return slice;
 655}
 656
 657/*
 658 * We calculate the vruntime slice of a to-be-inserted task.
 659 *
 660 * vs = s/w
 661 */
 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 663{
 664	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 665}
 666
 
 667#ifdef CONFIG_SMP
 
 
 668static unsigned long task_h_load(struct task_struct *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670static inline void __update_task_entity_contrib(struct sched_entity *se);
 671
 672/* Give new task start runnable values to heavy its load in infant time */
 673void init_task_runnable_average(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674{
 675	u32 slice;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677	p->se.avg.decay_count = 0;
 678	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
 679	p->se.avg.runnable_avg_sum = slice;
 680	p->se.avg.runnable_avg_period = slice;
 681	__update_task_entity_contrib(&p->se);
 
 682}
 683#else
 684void init_task_runnable_average(struct task_struct *p)
 685{
 686}
 687#endif
 688
 689/*
 690 * Update the current task's runtime statistics.
 691 */
 692static void update_curr(struct cfs_rq *cfs_rq)
 693{
 694	struct sched_entity *curr = cfs_rq->curr;
 695	u64 now = rq_clock_task(rq_of(cfs_rq));
 696	u64 delta_exec;
 697
 698	if (unlikely(!curr))
 699		return;
 700
 701	delta_exec = now - curr->exec_start;
 702	if (unlikely((s64)delta_exec <= 0))
 703		return;
 704
 705	curr->exec_start = now;
 706
 707	schedstat_set(curr->statistics.exec_max,
 708		      max(delta_exec, curr->statistics.exec_max));
 709
 710	curr->sum_exec_runtime += delta_exec;
 711	schedstat_add(cfs_rq, exec_clock, delta_exec);
 712
 713	curr->vruntime += calc_delta_fair(delta_exec, curr);
 714	update_min_vruntime(cfs_rq);
 715
 716	if (entity_is_task(curr)) {
 717		struct task_struct *curtask = task_of(curr);
 718
 719		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 720		cpuacct_charge(curtask, delta_exec);
 721		account_group_exec_runtime(curtask, delta_exec);
 722	}
 723
 724	account_cfs_rq_runtime(cfs_rq, delta_exec);
 725}
 726
 
 
 
 
 
 727static inline void
 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 729{
 730	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 732
 733/*
 734 * Task is being enqueued - update stats:
 735 */
 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 737{
 
 
 
 738	/*
 739	 * Are we enqueueing a waiting task? (for current tasks
 740	 * a dequeue/enqueue event is a NOP)
 741	 */
 742	if (se != cfs_rq->curr)
 743		update_stats_wait_start(cfs_rq, se);
 744}
 745
 746static void
 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 748{
 749	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 750			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 751	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 752	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 753			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 754#ifdef CONFIG_SCHEDSTATS
 755	if (entity_is_task(se)) {
 756		trace_sched_stat_wait(task_of(se),
 757			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 758	}
 759#endif
 760	schedstat_set(se->statistics.wait_start, 0);
 761}
 762
 763static inline void
 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 765{
 
 
 
 
 766	/*
 767	 * Mark the end of the wait period if dequeueing a
 768	 * waiting task:
 769	 */
 770	if (se != cfs_rq->curr)
 771		update_stats_wait_end(cfs_rq, se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772}
 773
 774/*
 775 * We are picking a new current task - update its stats:
 776 */
 777static inline void
 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 779{
 780	/*
 781	 * We are starting a new run period:
 782	 */
 783	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 784}
 785
 786/**************************************************
 787 * Scheduling class queueing methods:
 788 */
 789
 790#ifdef CONFIG_NUMA_BALANCING
 791/*
 792 * Approximate time to scan a full NUMA task in ms. The task scan period is
 793 * calculated based on the tasks virtual memory size and
 794 * numa_balancing_scan_size.
 795 */
 796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 798
 799/* Portion of address space to scan in MB */
 800unsigned int sysctl_numa_balancing_scan_size = 256;
 801
 802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 803unsigned int sysctl_numa_balancing_scan_delay = 1000;
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805static unsigned int task_nr_scan_windows(struct task_struct *p)
 806{
 807	unsigned long rss = 0;
 808	unsigned long nr_scan_pages;
 809
 810	/*
 811	 * Calculations based on RSS as non-present and empty pages are skipped
 812	 * by the PTE scanner and NUMA hinting faults should be trapped based
 813	 * on resident pages
 814	 */
 815	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 816	rss = get_mm_rss(p->mm);
 817	if (!rss)
 818		rss = nr_scan_pages;
 819
 820	rss = round_up(rss, nr_scan_pages);
 821	return rss / nr_scan_pages;
 822}
 823
 824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 825#define MAX_SCAN_WINDOW 2560
 826
 827static unsigned int task_scan_min(struct task_struct *p)
 828{
 
 829	unsigned int scan, floor;
 830	unsigned int windows = 1;
 831
 832	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
 833		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
 834	floor = 1000 / windows;
 835
 836	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 837	return max_t(unsigned int, floor, scan);
 838}
 839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840static unsigned int task_scan_max(struct task_struct *p)
 841{
 842	unsigned int smin = task_scan_min(p);
 843	unsigned int smax;
 
 844
 845	/* Watch for min being lower than max due to floor calculations */
 846	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	return max(smin, smax);
 848}
 849
 850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 851{
 852	rq->nr_numa_running += (p->numa_preferred_nid != -1);
 853	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 854}
 855
 856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 857{
 858	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 859	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 860}
 861
 862struct numa_group {
 863	atomic_t refcount;
 864
 865	spinlock_t lock; /* nr_tasks, tasks */
 866	int nr_tasks;
 867	pid_t gid;
 868	struct list_head task_list;
 869
 870	struct rcu_head rcu;
 871	nodemask_t active_nodes;
 872	unsigned long total_faults;
 873	/*
 874	 * Faults_cpu is used to decide whether memory should move
 875	 * towards the CPU. As a consequence, these stats are weighted
 876	 * more by CPU use than by memory faults.
 877	 */
 878	unsigned long *faults_cpu;
 879	unsigned long faults[0];
 880};
 881
 882/* Shared or private faults. */
 883#define NR_NUMA_HINT_FAULT_TYPES 2
 884
 885/* Memory and CPU locality */
 886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 887
 888/* Averaged statistics, and temporary buffers. */
 889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 890
 891pid_t task_numa_group_id(struct task_struct *p)
 892{
 893	return p->numa_group ? p->numa_group->gid : 0;
 
 
 
 
 
 
 
 
 
 894}
 895
 896static inline int task_faults_idx(int nid, int priv)
 
 
 
 
 
 
 897{
 898	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
 899}
 900
 901static inline unsigned long task_faults(struct task_struct *p, int nid)
 902{
 903	if (!p->numa_faults_memory)
 904		return 0;
 905
 906	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
 907		p->numa_faults_memory[task_faults_idx(nid, 1)];
 908}
 909
 910static inline unsigned long group_faults(struct task_struct *p, int nid)
 911{
 912	if (!p->numa_group)
 
 
 913		return 0;
 914
 915	return p->numa_group->faults[task_faults_idx(nid, 0)] +
 916		p->numa_group->faults[task_faults_idx(nid, 1)];
 917}
 918
 919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 920{
 921	return group->faults_cpu[task_faults_idx(nid, 0)] +
 922		group->faults_cpu[task_faults_idx(nid, 1)];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923}
 924
 925/*
 926 * These return the fraction of accesses done by a particular task, or
 927 * task group, on a particular numa node.  The group weight is given a
 928 * larger multiplier, in order to group tasks together that are almost
 929 * evenly spread out between numa nodes.
 930 */
 931static inline unsigned long task_weight(struct task_struct *p, int nid)
 
 932{
 933	unsigned long total_faults;
 934
 935	if (!p->numa_faults_memory)
 936		return 0;
 937
 938	total_faults = p->total_numa_faults;
 939
 940	if (!total_faults)
 941		return 0;
 942
 943	return 1000 * task_faults(p, nid) / total_faults;
 
 
 
 944}
 945
 946static inline unsigned long group_weight(struct task_struct *p, int nid)
 
 947{
 948	if (!p->numa_group || !p->numa_group->total_faults)
 
 
 
 
 
 
 
 
 949		return 0;
 950
 951	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
 
 
 
 952}
 953
 954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 955				int src_nid, int dst_cpu)
 956{
 957	struct numa_group *ng = p->numa_group;
 958	int dst_nid = cpu_to_node(dst_cpu);
 959	int last_cpupid, this_cpupid;
 960
 961	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 
 
 
 
 
 
 
 
 
 
 
 962
 963	/*
 964	 * Multi-stage node selection is used in conjunction with a periodic
 965	 * migration fault to build a temporal task<->page relation. By using
 966	 * a two-stage filter we remove short/unlikely relations.
 967	 *
 968	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 969	 * a task's usage of a particular page (n_p) per total usage of this
 970	 * page (n_t) (in a given time-span) to a probability.
 971	 *
 972	 * Our periodic faults will sample this probability and getting the
 973	 * same result twice in a row, given these samples are fully
 974	 * independent, is then given by P(n)^2, provided our sample period
 975	 * is sufficiently short compared to the usage pattern.
 976	 *
 977	 * This quadric squishes small probabilities, making it less likely we
 978	 * act on an unlikely task<->page relation.
 979	 */
 980	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
 981	if (!cpupid_pid_unset(last_cpupid) &&
 982				cpupid_to_nid(last_cpupid) != dst_nid)
 983		return false;
 984
 985	/* Always allow migrate on private faults */
 986	if (cpupid_match_pid(p, last_cpupid))
 987		return true;
 988
 989	/* A shared fault, but p->numa_group has not been set up yet. */
 990	if (!ng)
 991		return true;
 992
 993	/*
 994	 * Do not migrate if the destination is not a node that
 995	 * is actively used by this numa group.
 996	 */
 997	if (!node_isset(dst_nid, ng->active_nodes))
 998		return false;
 
 999
1000	/*
1001	 * Source is a node that is not actively used by this
1002	 * numa group, while the destination is. Migrate.
 
 
 
 
1003	 */
1004	if (!node_isset(src_nid, ng->active_nodes))
1005		return true;
 
1006
 
 
 
 
 
 
 
 
 
 
 
1007	/*
1008	 * Both source and destination are nodes in active
1009	 * use by this numa group. Maximize memory bandwidth
1010	 * by migrating from more heavily used groups, to less
1011	 * heavily used ones, spreading the load around.
1012	 * Use a 1/4 hysteresis to avoid spurious page movement.
1013	 */
1014	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
1017static unsigned long weighted_cpuload(const int cpu);
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023/* Cached statistics for all CPUs within a node */
1024struct numa_stats {
1025	unsigned long nr_running;
1026	unsigned long load;
1027
 
1028	/* Total compute capacity of CPUs on a node */
1029	unsigned long power;
1030
1031	/* Approximate capacity in terms of runnable tasks on a node */
1032	unsigned long capacity;
1033	int has_capacity;
1034};
1035
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
1041	int cpu, cpus = 0;
 
1042
1043	memset(ns, 0, sizeof(*ns));
1044	for_each_cpu(cpu, cpumask_of_node(nid)) {
1045		struct rq *rq = cpu_rq(cpu);
1046
1047		ns->nr_running += rq->nr_running;
1048		ns->load += weighted_cpuload(cpu);
1049		ns->power += power_of(cpu);
1050
1051		cpus++;
 
1052	}
 
1053
1054	/*
1055	 * If we raced with hotplug and there are no CPUs left in our mask
1056	 * the @ns structure is NULL'ed and task_numa_compare() will
1057	 * not find this node attractive.
1058	 *
1059	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060	 * and bail there.
1061	 */
1062	if (!cpus)
1063		return;
1064
1065	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067	ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
1070struct task_numa_env {
1071	struct task_struct *p;
1072
1073	int src_cpu, src_nid;
1074	int dst_cpu, dst_nid;
1075
1076	struct numa_stats src_stats, dst_stats;
1077
1078	int imbalance_pct;
 
1079
1080	struct task_struct *best_task;
1081	long best_imp;
1082	int best_cpu;
1083};
1084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085static void task_numa_assign(struct task_numa_env *env,
1086			     struct task_struct *p, long imp)
1087{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088	if (env->best_task)
1089		put_task_struct(env->best_task);
1090	if (p)
1091		get_task_struct(p);
1092
1093	env->best_task = p;
1094	env->best_imp = imp;
1095	env->best_cpu = env->dst_cpu;
1096}
1097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
1104static void task_numa_compare(struct task_numa_env *env,
1105			      long taskimp, long groupimp)
1106{
1107	struct rq *src_rq = cpu_rq(env->src_cpu);
1108	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 
1109	struct task_struct *cur;
1110	long dst_load, src_load;
 
 
1111	long load;
1112	long imp = (groupimp > 0) ? groupimp : taskimp;
 
 
 
1113
1114	rcu_read_lock();
1115	cur = ACCESS_ONCE(dst_rq->curr);
1116	if (cur->pid == 0) /* idle */
1117		cur = NULL;
1118
1119	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120	 * "imp" is the fault differential for the source task between the
1121	 * source and destination node. Calculate the total differential for
1122	 * the source task and potential destination task. The more negative
1123	 * the value is, the more rmeote accesses that would be expected to
1124	 * be incurred if the tasks were swapped.
 
 
 
1125	 */
1126	if (cur) {
1127		/* Skip this swap candidate if cannot move to the source cpu */
1128		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129			goto unlock;
1130
 
 
 
 
 
 
1131		/*
1132		 * If dst and source tasks are in the same NUMA group, or not
1133		 * in any group then look only at task weights.
1134		 */
1135		if (cur->numa_group == env->p->numa_group) {
1136			imp = taskimp + task_weight(cur, env->src_nid) -
1137			      task_weight(cur, env->dst_nid);
1138			/*
1139			 * Add some hysteresis to prevent swapping the
1140			 * tasks within a group over tiny differences.
1141			 */
1142			if (cur->numa_group)
1143				imp -= imp/16;
1144		} else {
1145			/*
1146			 * Compare the group weights. If a task is all by
1147			 * itself (not part of a group), use the task weight
1148			 * instead.
1149			 */
1150			if (env->p->numa_group)
1151				imp = groupimp;
1152			else
1153				imp = taskimp;
1154
1155			if (cur->numa_group)
1156				imp += group_weight(cur, env->src_nid) -
1157				       group_weight(cur, env->dst_nid);
1158			else
1159				imp += task_weight(cur, env->src_nid) -
1160				       task_weight(cur, env->dst_nid);
1161		}
1162	}
1163
1164	if (imp < env->best_imp)
1165		goto unlock;
 
1166
1167	if (!cur) {
1168		/* Is there capacity at our destination? */
1169		if (env->src_stats.has_capacity &&
1170		    !env->dst_stats.has_capacity)
1171			goto unlock;
 
 
 
1172
1173		goto balance;
 
 
 
1174	}
1175
1176	/* Balance doesn't matter much if we're running a task per cpu */
1177	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
 
 
 
 
1178		goto assign;
 
 
 
 
 
 
 
 
 
 
1179
1180	/*
1181	 * In the overloaded case, try and keep the load balanced.
1182	 */
1183balance:
1184	dst_load = env->dst_stats.load;
1185	src_load = env->src_stats.load;
1186
1187	/* XXX missing power terms */
1188	load = task_h_load(env->p);
1189	dst_load += load;
1190	src_load -= load;
1191
1192	if (cur) {
1193		load = task_h_load(cur);
1194		dst_load -= load;
1195		src_load += load;
1196	}
1197
1198	/* make src_load the smaller */
1199	if (dst_load < src_load)
1200		swap(dst_load, src_load);
1201
1202	if (src_load * env->imbalance_pct < dst_load * 100)
1203		goto unlock;
1204
1205assign:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206	task_numa_assign(env, cur, imp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207unlock:
1208	rcu_read_unlock();
 
 
1209}
1210
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212				long taskimp, long groupimp)
1213{
 
1214	int cpu;
1215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217		/* Skip this CPU if the source task cannot migrate */
1218		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219			continue;
1220
1221		env->dst_cpu = cpu;
1222		task_numa_compare(env, taskimp, groupimp);
 
1223	}
1224}
1225
1226static int task_numa_migrate(struct task_struct *p)
1227{
1228	struct task_numa_env env = {
1229		.p = p,
1230
1231		.src_cpu = task_cpu(p),
1232		.src_nid = task_node(p),
1233
1234		.imbalance_pct = 112,
1235
1236		.best_task = NULL,
1237		.best_imp = 0,
1238		.best_cpu = -1
1239	};
 
1240	struct sched_domain *sd;
1241	unsigned long taskweight, groupweight;
1242	int nid, ret;
1243	long taskimp, groupimp;
 
 
 
1244
1245	/*
1246	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247	 * imbalance and would be the first to start moving tasks about.
1248	 *
1249	 * And we want to avoid any moving of tasks about, as that would create
1250	 * random movement of tasks -- counter the numa conditions we're trying
1251	 * to satisfy here.
1252	 */
1253	rcu_read_lock();
1254	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255	if (sd)
1256		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257	rcu_read_unlock();
1258
1259	/*
1260	 * Cpusets can break the scheduler domain tree into smaller
1261	 * balance domains, some of which do not cross NUMA boundaries.
1262	 * Tasks that are "trapped" in such domains cannot be migrated
1263	 * elsewhere, so there is no point in (re)trying.
1264	 */
1265	if (unlikely(!sd)) {
1266		p->numa_preferred_nid = task_node(p);
1267		return -EINVAL;
1268	}
1269
1270	taskweight = task_weight(p, env.src_nid);
1271	groupweight = group_weight(p, env.src_nid);
1272	update_numa_stats(&env.src_stats, env.src_nid);
1273	env.dst_nid = p->numa_preferred_nid;
1274	taskimp = task_weight(p, env.dst_nid) - taskweight;
1275	groupimp = group_weight(p, env.dst_nid) - groupweight;
1276	update_numa_stats(&env.dst_stats, env.dst_nid);
1277
1278	/* If the preferred nid has capacity, try to use it. */
1279	if (env.dst_stats.has_capacity)
1280		task_numa_find_cpu(&env, taskimp, groupimp);
1281
1282	/* No space available on the preferred nid. Look elsewhere. */
1283	if (env.best_cpu == -1) {
 
 
 
 
 
 
 
 
 
 
1284		for_each_online_node(nid) {
1285			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286				continue;
1287
 
 
 
 
 
 
 
1288			/* Only consider nodes where both task and groups benefit */
1289			taskimp = task_weight(p, nid) - taskweight;
1290			groupimp = group_weight(p, nid) - groupweight;
1291			if (taskimp < 0 && groupimp < 0)
1292				continue;
1293
 
1294			env.dst_nid = nid;
1295			update_numa_stats(&env.dst_stats, env.dst_nid);
1296			task_numa_find_cpu(&env, taskimp, groupimp);
1297		}
1298	}
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300	/* No better CPU than the current one was found. */
1301	if (env.best_cpu == -1)
 
1302		return -EAGAIN;
 
1303
1304	sched_setnuma(p, env.dst_nid);
1305
1306	/*
1307	 * Reset the scan period if the task is being rescheduled on an
1308	 * alternative node to recheck if the tasks is now properly placed.
1309	 */
1310	p->numa_scan_period = task_scan_min(p);
1311
1312	if (env.best_task == NULL) {
1313		ret = migrate_task_to(p, env.best_cpu);
 
1314		if (ret != 0)
1315			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316		return ret;
1317	}
1318
1319	ret = migrate_swap(p, env.best_task);
 
 
1320	if (ret != 0)
1321		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322	put_task_struct(env.best_task);
1323	return ret;
1324}
1325
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
 
 
1329	/* This task has no NUMA fault statistics yet */
1330	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331		return;
1332
1333	/* Periodically retry migrating the task to the preferred node */
1334	p->numa_migrate_retry = jiffies + HZ;
 
1335
1336	/* Success if task is already running on preferred CPU */
1337	if (task_node(p) == p->numa_preferred_nid)
1338		return;
1339
1340	/* Otherwise, try migrate to a CPU on the preferred node */
1341	task_numa_migrate(p);
1342}
1343
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357	unsigned long faults, max_faults = 0;
1358	int nid;
1359
1360	for_each_online_node(nid) {
1361		faults = group_faults_cpu(numa_group, nid);
1362		if (faults > max_faults)
1363			max_faults = faults;
1364	}
1365
1366	for_each_online_node(nid) {
1367		faults = group_faults_cpu(numa_group, nid);
1368		if (!node_isset(nid, numa_group->active_nodes)) {
1369			if (faults > max_faults * 6 / 16)
1370				node_set(nid, numa_group->active_nodes);
1371		} else if (faults < max_faults * 3 / 16)
1372			node_clear(nid, numa_group->active_nodes);
1373	}
 
 
 
1374}
1375
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393			unsigned long shared, unsigned long private)
1394{
1395	unsigned int period_slot;
1396	int ratio;
1397	int diff;
1398
1399	unsigned long remote = p->numa_faults_locality[0];
1400	unsigned long local = p->numa_faults_locality[1];
1401
1402	/*
1403	 * If there were no record hinting faults then either the task is
1404	 * completely idle or all activity is areas that are not of interest
1405	 * to automatic numa balancing. Scan slower
 
 
1406	 */
1407	if (local + shared == 0) {
1408		p->numa_scan_period = min(p->numa_scan_period_max,
1409			p->numa_scan_period << 1);
1410
1411		p->mm->numa_next_scan = jiffies +
1412			msecs_to_jiffies(p->numa_scan_period);
1413
1414		return;
1415	}
1416
1417	/*
1418	 * Prepare to scale scan period relative to the current period.
1419	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1420	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422	 */
1423	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426		int slot = ratio - NUMA_PERIOD_THRESHOLD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427		if (!slot)
1428			slot = 1;
1429		diff = slot * period_slot;
1430	} else {
1431		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433		/*
1434		 * Scale scan rate increases based on sharing. There is an
1435		 * inverse relationship between the degree of sharing and
1436		 * the adjustment made to the scanning period. Broadly
1437		 * speaking the intent is that there is little point
1438		 * scanning faster if shared accesses dominate as it may
1439		 * simply bounce migrations uselessly
1440		 */
1441		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443	}
1444
1445	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446			task_scan_min(p), task_scan_max(p));
1447	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459	u64 runtime, delta, now;
1460	/* Use the start of this time slice to avoid calculations. */
1461	now = p->se.exec_start;
1462	runtime = p->se.sum_exec_runtime;
1463
1464	if (p->last_task_numa_placement) {
1465		delta = runtime - p->last_sum_exec_runtime;
1466		*period = now - p->last_task_numa_placement;
 
 
 
 
1467	} else {
1468		delta = p->se.avg.runnable_avg_sum;
1469		*period = p->se.avg.runnable_avg_period;
1470	}
1471
1472	p->last_sum_exec_runtime = runtime;
1473	p->last_task_numa_placement = now;
1474
1475	return delta;
1476}
1477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478static void task_numa_placement(struct task_struct *p)
1479{
1480	int seq, nid, max_nid = -1, max_group_nid = -1;
1481	unsigned long max_faults = 0, max_group_faults = 0;
1482	unsigned long fault_types[2] = { 0, 0 };
1483	unsigned long total_faults;
1484	u64 runtime, period;
1485	spinlock_t *group_lock = NULL;
 
1486
1487	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
 
 
 
 
 
1488	if (p->numa_scan_seq == seq)
1489		return;
1490	p->numa_scan_seq = seq;
1491	p->numa_scan_period_max = task_scan_max(p);
1492
1493	total_faults = p->numa_faults_locality[0] +
1494		       p->numa_faults_locality[1];
1495	runtime = numa_get_avg_runtime(p, &period);
1496
1497	/* If the task is part of a group prevent parallel updates to group stats */
1498	if (p->numa_group) {
1499		group_lock = &p->numa_group->lock;
 
1500		spin_lock_irq(group_lock);
1501	}
1502
1503	/* Find the node with the highest number of faults */
1504	for_each_online_node(nid) {
 
 
1505		unsigned long faults = 0, group_faults = 0;
1506		int priv, i;
1507
1508		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509			long diff, f_diff, f_weight;
1510
1511			i = task_faults_idx(nid, priv);
 
 
 
1512
1513			/* Decay existing window, copy faults since last scan */
1514			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515			fault_types[priv] += p->numa_faults_buffer_memory[i];
1516			p->numa_faults_buffer_memory[i] = 0;
1517
1518			/*
1519			 * Normalize the faults_from, so all tasks in a group
1520			 * count according to CPU use, instead of by the raw
1521			 * number of faults. Tasks with little runtime have
1522			 * little over-all impact on throughput, and thus their
1523			 * faults are less important.
1524			 */
1525			f_weight = div64_u64(runtime << 16, period + 1);
1526			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527				   (total_faults + 1);
1528			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529			p->numa_faults_buffer_cpu[i] = 0;
1530
1531			p->numa_faults_memory[i] += diff;
1532			p->numa_faults_cpu[i] += f_diff;
1533			faults += p->numa_faults_memory[i];
1534			p->total_numa_faults += diff;
1535			if (p->numa_group) {
1536				/* safe because we can only change our own group */
1537				p->numa_group->faults[i] += diff;
1538				p->numa_group->faults_cpu[i] += f_diff;
1539				p->numa_group->total_faults += diff;
1540				group_faults += p->numa_group->faults[i];
 
 
 
 
 
 
1541			}
1542		}
1543
1544		if (faults > max_faults) {
1545			max_faults = faults;
 
 
 
 
 
1546			max_nid = nid;
1547		}
1548
1549		if (group_faults > max_group_faults) {
1550			max_group_faults = group_faults;
1551			max_group_nid = nid;
1552		}
1553	}
1554
1555	update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
1557	if (p->numa_group) {
1558		update_numa_active_node_mask(p->numa_group);
1559		/*
1560		 * If the preferred task and group nids are different,
1561		 * iterate over the nodes again to find the best place.
1562		 */
1563		if (max_nid != max_group_nid) {
1564			unsigned long weight, max_weight = 0;
1565
1566			for_each_online_node(nid) {
1567				weight = task_weight(p, nid) + group_weight(p, nid);
1568				if (weight > max_weight) {
1569					max_weight = weight;
1570					max_nid = nid;
1571				}
1572			}
1573		}
1574
1575		spin_unlock_irq(group_lock);
 
1576	}
1577
1578	/* Preferred node as the node with the most faults */
1579	if (max_faults && max_nid != p->numa_preferred_nid) {
1580		/* Update the preferred nid and migrate task if possible */
1581		sched_setnuma(p, max_nid);
1582		numa_migrate_preferred(p);
1583	}
 
 
1584}
1585
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588	return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593	if (atomic_dec_and_test(&grp->refcount))
1594		kfree_rcu(grp, rcu);
1595}
1596
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598			int *priv)
1599{
1600	struct numa_group *grp, *my_grp;
1601	struct task_struct *tsk;
1602	bool join = false;
1603	int cpu = cpupid_to_cpu(cpupid);
1604	int i;
1605
1606	if (unlikely(!p->numa_group)) {
1607		unsigned int size = sizeof(struct numa_group) +
1608				    4*nr_node_ids*sizeof(unsigned long);
1609
1610		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611		if (!grp)
1612			return;
1613
1614		atomic_set(&grp->refcount, 1);
 
 
1615		spin_lock_init(&grp->lock);
1616		INIT_LIST_HEAD(&grp->task_list);
1617		grp->gid = p->pid;
1618		/* Second half of the array tracks nids where faults happen */
1619		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620						nr_node_ids;
1621
1622		node_set(task_node(current), grp->active_nodes);
1623
1624		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625			grp->faults[i] = p->numa_faults_memory[i];
1626
1627		grp->total_faults = p->total_numa_faults;
1628
1629		list_add(&p->numa_entry, &grp->task_list);
1630		grp->nr_tasks++;
1631		rcu_assign_pointer(p->numa_group, grp);
1632	}
1633
1634	rcu_read_lock();
1635	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637	if (!cpupid_match_pid(tsk, cpupid))
1638		goto no_join;
1639
1640	grp = rcu_dereference(tsk->numa_group);
1641	if (!grp)
1642		goto no_join;
1643
1644	my_grp = p->numa_group;
1645	if (grp == my_grp)
1646		goto no_join;
1647
1648	/*
1649	 * Only join the other group if its bigger; if we're the bigger group,
1650	 * the other task will join us.
1651	 */
1652	if (my_grp->nr_tasks > grp->nr_tasks)
1653		goto no_join;
1654
1655	/*
1656	 * Tie-break on the grp address.
1657	 */
1658	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659		goto no_join;
1660
1661	/* Always join threads in the same process. */
1662	if (tsk->mm == current->mm)
1663		join = true;
1664
1665	/* Simple filter to avoid false positives due to PID collisions */
1666	if (flags & TNF_SHARED)
1667		join = true;
1668
1669	/* Update priv based on whether false sharing was detected */
1670	*priv = !join;
1671
1672	if (join && !get_numa_group(grp))
1673		goto no_join;
1674
1675	rcu_read_unlock();
1676
1677	if (!join)
1678		return;
1679
1680	BUG_ON(irqs_disabled());
1681	double_lock_irq(&my_grp->lock, &grp->lock);
1682
1683	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684		my_grp->faults[i] -= p->numa_faults_memory[i];
1685		grp->faults[i] += p->numa_faults_memory[i];
1686	}
1687	my_grp->total_faults -= p->total_numa_faults;
1688	grp->total_faults += p->total_numa_faults;
1689
1690	list_move(&p->numa_entry, &grp->task_list);
1691	my_grp->nr_tasks--;
1692	grp->nr_tasks++;
1693
1694	spin_unlock(&my_grp->lock);
1695	spin_unlock_irq(&grp->lock);
1696
1697	rcu_assign_pointer(p->numa_group, grp);
1698
1699	put_numa_group(my_grp);
1700	return;
1701
1702no_join:
1703	rcu_read_unlock();
1704	return;
1705}
1706
1707void task_numa_free(struct task_struct *p)
1708{
1709	struct numa_group *grp = p->numa_group;
1710	void *numa_faults = p->numa_faults_memory;
 
 
 
 
 
 
 
 
1711	unsigned long flags;
1712	int i;
1713
 
 
 
1714	if (grp) {
1715		spin_lock_irqsave(&grp->lock, flags);
1716		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717			grp->faults[i] -= p->numa_faults_memory[i];
1718		grp->total_faults -= p->total_numa_faults;
1719
1720		list_del(&p->numa_entry);
1721		grp->nr_tasks--;
1722		spin_unlock_irqrestore(&grp->lock, flags);
1723		rcu_assign_pointer(p->numa_group, NULL);
1724		put_numa_group(grp);
1725	}
1726
1727	p->numa_faults_memory = NULL;
1728	p->numa_faults_buffer_memory = NULL;
1729	p->numa_faults_cpu= NULL;
1730	p->numa_faults_buffer_cpu = NULL;
1731	kfree(numa_faults);
 
 
 
1732}
1733
1734/*
1735 * Got a PROT_NONE fault for a page on @node.
1736 */
1737void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1738{
1739	struct task_struct *p = current;
1740	bool migrated = flags & TNF_MIGRATED;
1741	int cpu_node = task_node(current);
 
 
1742	int priv;
1743
1744	if (!numabalancing_enabled)
1745		return;
1746
1747	/* for example, ksmd faulting in a user's mm */
1748	if (!p->mm)
1749		return;
1750
1751	/* Do not worry about placement if exiting */
1752	if (p->state == TASK_DEAD)
1753		return;
1754
1755	/* Allocate buffer to track faults on a per-node basis */
1756	if (unlikely(!p->numa_faults_memory)) {
1757		int size = sizeof(*p->numa_faults_memory) *
1758			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1759
1760		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1761		if (!p->numa_faults_memory)
1762			return;
1763
1764		BUG_ON(p->numa_faults_buffer_memory);
1765		/*
1766		 * The averaged statistics, shared & private, memory & cpu,
1767		 * occupy the first half of the array. The second half of the
1768		 * array is for current counters, which are averaged into the
1769		 * first set by task_numa_placement.
1770		 */
1771		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1772		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1773		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1774		p->total_numa_faults = 0;
1775		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1776	}
1777
1778	/*
1779	 * First accesses are treated as private, otherwise consider accesses
1780	 * to be private if the accessing pid has not changed
1781	 */
1782	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783		priv = 1;
1784	} else {
1785		priv = cpupid_match_pid(p, last_cpupid);
1786		if (!priv && !(flags & TNF_NO_GROUP))
1787			task_numa_group(p, last_cpupid, flags, &priv);
1788	}
1789
1790	task_numa_placement(p);
 
 
 
 
 
 
 
 
 
 
1791
1792	/*
1793	 * Retry task to preferred node migration periodically, in case it
1794	 * case it previously failed, or the scheduler moved us.
1795	 */
1796	if (time_after(jiffies, p->numa_migrate_retry))
 
1797		numa_migrate_preferred(p);
 
1798
1799	if (migrated)
1800		p->numa_pages_migrated += pages;
 
 
1801
1802	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1803	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1804	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1805}
1806
1807static void reset_ptenuma_scan(struct task_struct *p)
1808{
1809	ACCESS_ONCE(p->mm->numa_scan_seq)++;
 
 
 
 
 
 
 
 
1810	p->mm->numa_scan_offset = 0;
1811}
1812
1813/*
1814 * The expensive part of numa migration is done from task_work context.
1815 * Triggered from task_tick_numa().
1816 */
1817void task_numa_work(struct callback_head *work)
1818{
1819	unsigned long migrate, next_scan, now = jiffies;
1820	struct task_struct *p = current;
1821	struct mm_struct *mm = p->mm;
 
1822	struct vm_area_struct *vma;
1823	unsigned long start, end;
1824	unsigned long nr_pte_updates = 0;
1825	long pages;
1826
1827	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1828
1829	work->next = work; /* protect against double add */
1830	/*
1831	 * Who cares about NUMA placement when they're dying.
1832	 *
1833	 * NOTE: make sure not to dereference p->mm before this check,
1834	 * exit_task_work() happens _after_ exit_mm() so we could be called
1835	 * without p->mm even though we still had it when we enqueued this
1836	 * work.
1837	 */
1838	if (p->flags & PF_EXITING)
1839		return;
1840
1841	if (!mm->numa_next_scan) {
1842		mm->numa_next_scan = now +
1843			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844	}
1845
1846	/*
1847	 * Enforce maximal scan/migration frequency..
1848	 */
1849	migrate = mm->numa_next_scan;
1850	if (time_before(now, migrate))
1851		return;
1852
1853	if (p->numa_scan_period == 0) {
1854		p->numa_scan_period_max = task_scan_max(p);
1855		p->numa_scan_period = task_scan_min(p);
1856	}
1857
1858	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1859	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1860		return;
1861
1862	/*
1863	 * Delay this task enough that another task of this mm will likely win
1864	 * the next time around.
1865	 */
1866	p->node_stamp += 2 * TICK_NSEC;
1867
1868	start = mm->numa_scan_offset;
1869	pages = sysctl_numa_balancing_scan_size;
1870	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 
1871	if (!pages)
1872		return;
1873
1874	down_read(&mm->mmap_sem);
 
 
1875	vma = find_vma(mm, start);
1876	if (!vma) {
1877		reset_ptenuma_scan(p);
1878		start = 0;
1879		vma = mm->mmap;
1880	}
1881	for (; vma; vma = vma->vm_next) {
1882		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
 
1883			continue;
 
1884
1885		/*
1886		 * Shared library pages mapped by multiple processes are not
1887		 * migrated as it is expected they are cache replicated. Avoid
1888		 * hinting faults in read-only file-backed mappings or the vdso
1889		 * as migrating the pages will be of marginal benefit.
1890		 */
1891		if (!vma->vm_mm ||
1892		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1893			continue;
1894
1895		/*
1896		 * Skip inaccessible VMAs to avoid any confusion between
1897		 * PROT_NONE and NUMA hinting ptes
1898		 */
1899		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1900			continue;
1901
1902		do {
1903			start = max(start, vma->vm_start);
1904			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1905			end = min(end, vma->vm_end);
1906			nr_pte_updates += change_prot_numa(vma, start, end);
1907
1908			/*
1909			 * Scan sysctl_numa_balancing_scan_size but ensure that
1910			 * at least one PTE is updated so that unused virtual
1911			 * address space is quickly skipped.
 
 
 
1912			 */
1913			if (nr_pte_updates)
1914				pages -= (end - start) >> PAGE_SHIFT;
 
1915
1916			start = end;
1917			if (pages <= 0)
1918				goto out;
1919
1920			cond_resched();
1921		} while (end != vma->vm_end);
1922	}
1923
1924out:
1925	/*
1926	 * It is possible to reach the end of the VMA list but the last few
1927	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1928	 * would find the !migratable VMA on the next scan but not reset the
1929	 * scanner to the start so check it now.
1930	 */
1931	if (vma)
1932		mm->numa_scan_offset = start;
1933	else
1934		reset_ptenuma_scan(p);
1935	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936}
1937
1938/*
1939 * Drive the periodic memory faults..
1940 */
1941void task_tick_numa(struct rq *rq, struct task_struct *curr)
1942{
1943	struct callback_head *work = &curr->numa_work;
1944	u64 period, now;
1945
1946	/*
1947	 * We don't care about NUMA placement if we don't have memory.
1948	 */
1949	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1950		return;
1951
1952	/*
1953	 * Using runtime rather than walltime has the dual advantage that
1954	 * we (mostly) drive the selection from busy threads and that the
1955	 * task needs to have done some actual work before we bother with
1956	 * NUMA placement.
1957	 */
1958	now = curr->se.sum_exec_runtime;
1959	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1960
1961	if (now - curr->node_stamp > period) {
1962		if (!curr->node_stamp)
1963			curr->numa_scan_period = task_scan_min(curr);
1964		curr->node_stamp += period;
1965
1966		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1967			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1968			task_work_add(curr, work, true);
1969		}
1970	}
1971}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972#else
1973static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1974{
1975}
1976
1977static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1978{
1979}
1980
1981static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1982{
1983}
 
 
 
 
 
1984#endif /* CONFIG_NUMA_BALANCING */
1985
1986static void
1987account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1988{
1989	update_load_add(&cfs_rq->load, se->load.weight);
1990	if (!parent_entity(se))
1991		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1992#ifdef CONFIG_SMP
1993	if (entity_is_task(se)) {
1994		struct rq *rq = rq_of(cfs_rq);
1995
1996		account_numa_enqueue(rq, task_of(se));
1997		list_add(&se->group_node, &rq->cfs_tasks);
1998	}
1999#endif
2000	cfs_rq->nr_running++;
2001}
2002
2003static void
2004account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2005{
2006	update_load_sub(&cfs_rq->load, se->load.weight);
2007	if (!parent_entity(se))
2008		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2009	if (entity_is_task(se)) {
2010		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2011		list_del_init(&se->group_node);
2012	}
 
2013	cfs_rq->nr_running--;
2014}
2015
2016#ifdef CONFIG_FAIR_GROUP_SCHED
2017# ifdef CONFIG_SMP
2018static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2019{
2020	long tg_weight;
2021
2022	/*
2023	 * Use this CPU's actual weight instead of the last load_contribution
2024	 * to gain a more accurate current total weight. See
2025	 * update_cfs_rq_load_contribution().
2026	 */
2027	tg_weight = atomic_long_read(&tg->load_avg);
2028	tg_weight -= cfs_rq->tg_load_contrib;
2029	tg_weight += cfs_rq->load.weight;
2030
2031	return tg_weight;
2032}
2033
2034static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 
2035{
2036	long tg_weight, load, shares;
2037
2038	tg_weight = calc_tg_weight(tg, cfs_rq);
2039	load = cfs_rq->load.weight;
2040
2041	shares = (tg->shares * load);
2042	if (tg_weight)
2043		shares /= tg_weight;
2044
2045	if (shares < MIN_SHARES)
2046		shares = MIN_SHARES;
2047	if (shares > tg->shares)
2048		shares = tg->shares;
2049
2050	return shares;
2051}
2052# else /* CONFIG_SMP */
2053static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2054{
2055	return tg->shares;
2056}
2057# endif /* CONFIG_SMP */
2058static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2059			    unsigned long weight)
2060{
2061	if (se->on_rq) {
2062		/* commit outstanding execution time */
2063		if (cfs_rq->curr == se)
2064			update_curr(cfs_rq);
2065		account_entity_dequeue(cfs_rq, se);
2066	}
 
2067
2068	update_load_set(&se->load, weight);
2069
 
 
 
 
 
 
 
 
 
2070	if (se->on_rq)
2071		account_entity_enqueue(cfs_rq, se);
 
 
 
 
 
 
 
 
 
 
 
 
2072}
2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2075
2076static void update_cfs_shares(struct cfs_rq *cfs_rq)
 
 
 
 
2077{
2078	struct task_group *tg;
2079	struct sched_entity *se;
2080	long shares;
2081
2082	tg = cfs_rq->tg;
2083	se = tg->se[cpu_of(rq_of(cfs_rq))];
2084	if (!se || throttled_hierarchy(cfs_rq))
 
2085		return;
 
2086#ifndef CONFIG_SMP
2087	if (likely(se->load.weight == tg->shares))
 
 
2088		return;
 
 
2089#endif
2090	shares = calc_cfs_shares(cfs_rq, tg);
2091
2092	reweight_entity(cfs_rq_of(se), se, shares);
2093}
 
2094#else /* CONFIG_FAIR_GROUP_SCHED */
2095static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2096{
2097}
2098#endif /* CONFIG_FAIR_GROUP_SCHED */
2099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100#ifdef CONFIG_SMP
 
2101/*
2102 * We choose a half-life close to 1 scheduling period.
2103 * Note: The tables below are dependent on this value.
 
 
 
 
2104 */
2105#define LOAD_AVG_PERIOD 32
2106#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2107#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2108
2109/* Precomputed fixed inverse multiplies for multiplication by y^n */
2110static const u32 runnable_avg_yN_inv[] = {
2111	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2112	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2113	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2114	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2115	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2116	0x85aac367, 0x82cd8698,
2117};
 
2118
2119/*
2120 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2121 * over-estimates when re-combining.
2122 */
2123static const u32 runnable_avg_yN_sum[] = {
2124	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2125	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2126	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2127};
2128
2129/*
2130 * Approximate:
2131 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2132 */
2133static __always_inline u64 decay_load(u64 val, u64 n)
2134{
2135	unsigned int local_n;
 
2136
2137	if (!n)
2138		return val;
2139	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2140		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141
2142	/* after bounds checking we can collapse to 32-bit */
2143	local_n = n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2144
2145	/*
2146	 * As y^PERIOD = 1/2, we can combine
2147	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2148	 * With a look-up table which covers k^n (n<PERIOD)
2149	 *
2150	 * To achieve constant time decay_load.
2151	 */
2152	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2153		val >>= local_n / LOAD_AVG_PERIOD;
2154		local_n %= LOAD_AVG_PERIOD;
 
 
 
2155	}
2156
2157	val *= runnable_avg_yN_inv[local_n];
2158	/* We don't use SRR here since we always want to round down. */
2159	return val >> 32;
2160}
2161
2162/*
2163 * For updates fully spanning n periods, the contribution to runnable
2164 * average will be: \Sum 1024*y^n
2165 *
2166 * We can compute this reasonably efficiently by combining:
2167 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2168 */
2169static u32 __compute_runnable_contrib(u64 n)
 
2170{
2171	u32 contrib = 0;
 
2172
2173	if (likely(n <= LOAD_AVG_PERIOD))
2174		return runnable_avg_yN_sum[n];
2175	else if (unlikely(n >= LOAD_AVG_MAX_N))
2176		return LOAD_AVG_MAX;
2177
2178	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2179	do {
2180		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2181		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183		n -= LOAD_AVG_PERIOD;
2184	} while (n > LOAD_AVG_PERIOD);
2185
2186	contrib = decay_load(contrib, n);
2187	return contrib + runnable_avg_yN_sum[n];
 
 
 
 
 
 
 
2188}
2189
 
2190/*
2191 * We can represent the historical contribution to runnable average as the
2192 * coefficients of a geometric series.  To do this we sub-divide our runnable
2193 * history into segments of approximately 1ms (1024us); label the segment that
2194 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 
 
 
 
 
 
 
 
 
 
2195 *
2196 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2197 *      p0            p1           p2
2198 *     (now)       (~1ms ago)  (~2ms ago)
2199 *
2200 * Let u_i denote the fraction of p_i that the entity was runnable.
 
2201 *
2202 * We then designate the fractions u_i as our co-efficients, yielding the
2203 * following representation of historical load:
2204 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2205 *
2206 * We choose y based on the with of a reasonably scheduling period, fixing:
2207 *   y^32 = 0.5
2208 *
2209 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2210 * approximately half as much as the contribution to load within the last ms
2211 * (u_0).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212 *
2213 * When a period "rolls over" and we have new u_0`, multiplying the previous
2214 * sum again by y is sufficient to update:
2215 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2216 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2217 */
2218static __always_inline int __update_entity_runnable_avg(u64 now,
2219							struct sched_avg *sa,
2220							int runnable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221{
2222	u64 delta, periods;
2223	u32 runnable_contrib;
2224	int delta_w, decayed = 0;
 
 
 
 
 
 
2225
2226	delta = now - sa->last_runnable_update;
2227	/*
2228	 * This should only happen when time goes backwards, which it
2229	 * unfortunately does during sched clock init when we swap over to TSC.
2230	 */
2231	if ((s64)delta < 0) {
2232		sa->last_runnable_update = now;
2233		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234	}
2235
2236	/*
2237	 * Use 1024ns as the unit of measurement since it's a reasonable
2238	 * approximation of 1us and fast to compute.
 
 
2239	 */
2240	delta >>= 10;
 
 
 
 
 
 
 
 
2241	if (!delta)
2242		return 0;
2243	sa->last_runnable_update = now;
2244
2245	/* delta_w is the amount already accumulated against our next period */
2246	delta_w = sa->runnable_avg_period % 1024;
2247	if (delta + delta_w >= 1024) {
2248		/* period roll-over */
2249		decayed = 1;
2250
2251		/*
2252		 * Now that we know we're crossing a period boundary, figure
2253		 * out how much from delta we need to complete the current
2254		 * period and accrue it.
2255		 */
2256		delta_w = 1024 - delta_w;
2257		if (runnable)
2258			sa->runnable_avg_sum += delta_w;
2259		sa->runnable_avg_period += delta_w;
2260
2261		delta -= delta_w;
2262
2263		/* Figure out how many additional periods this update spans */
2264		periods = delta / 1024;
2265		delta %= 1024;
2266
2267		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2268						  periods + 1);
2269		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2270						     periods + 1);
2271
2272		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2273		runnable_contrib = __compute_runnable_contrib(periods);
2274		if (runnable)
2275			sa->runnable_avg_sum += runnable_contrib;
2276		sa->runnable_avg_period += runnable_contrib;
2277	}
2278
2279	/* Remainder of delta accrued against u_0` */
2280	if (runnable)
2281		sa->runnable_avg_sum += delta;
2282	sa->runnable_avg_period += delta;
2283
2284	return decayed;
 
 
 
2285}
2286
2287/* Synchronize an entity's decay with its parenting cfs_rq.*/
2288static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2289{
2290	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2291	u64 decays = atomic64_read(&cfs_rq->decay_counter);
 
 
2292
2293	decays -= se->avg.decay_count;
2294	if (!decays)
2295		return 0;
2296
2297	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2298	se->avg.decay_count = 0;
 
2299
2300	return decays;
2301}
2302
2303#ifdef CONFIG_FAIR_GROUP_SCHED
2304static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2305						 int force_update)
2306{
2307	struct task_group *tg = cfs_rq->tg;
2308	long tg_contrib;
2309
2310	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2311	tg_contrib -= cfs_rq->tg_load_contrib;
2312
2313	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2314		atomic_long_add(tg_contrib, &tg->load_avg);
2315		cfs_rq->tg_load_contrib += tg_contrib;
2316	}
2317}
2318
2319/*
2320 * Aggregate cfs_rq runnable averages into an equivalent task_group
2321 * representation for computing load contributions.
2322 */
2323static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2324						  struct cfs_rq *cfs_rq)
2325{
2326	struct task_group *tg = cfs_rq->tg;
2327	long contrib;
2328
2329	/* The fraction of a cpu used by this cfs_rq */
2330	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2331			  sa->runnable_avg_period + 1);
2332	contrib -= cfs_rq->tg_runnable_contrib;
 
 
2333
2334	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2335		atomic_add(contrib, &tg->runnable_avg);
2336		cfs_rq->tg_runnable_contrib += contrib;
2337	}
2338}
2339
2340static inline void __update_group_entity_contrib(struct sched_entity *se)
2341{
2342	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2343	struct task_group *tg = cfs_rq->tg;
2344	int runnable_avg;
2345
2346	u64 contrib;
2347
2348	contrib = cfs_rq->tg_load_contrib * tg->shares;
2349	se->avg.load_avg_contrib = div_u64(contrib,
2350				     atomic_long_read(&tg->load_avg) + 1);
2351
2352	/*
2353	 * For group entities we need to compute a correction term in the case
2354	 * that they are consuming <1 cpu so that we would contribute the same
2355	 * load as a task of equal weight.
2356	 *
2357	 * Explicitly co-ordinating this measurement would be expensive, but
2358	 * fortunately the sum of each cpus contribution forms a usable
2359	 * lower-bound on the true value.
2360	 *
2361	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2362	 * (and the sum represents true value) or they are disjoint and we are
2363	 * understating by the aggregate of their overlap.
2364	 *
2365	 * Extending this to N cpus, for a given overlap, the maximum amount we
2366	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2367	 * cpus that overlap for this interval and w_i is the interval width.
2368	 *
2369	 * On a small machine; the first term is well-bounded which bounds the
2370	 * total error since w_i is a subset of the period.  Whereas on a
2371	 * larger machine, while this first term can be larger, if w_i is the
2372	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2373	 * our upper bound of 1-cpu.
2374	 */
2375	runnable_avg = atomic_read(&tg->runnable_avg);
2376	if (runnable_avg < NICE_0_LOAD) {
2377		se->avg.load_avg_contrib *= runnable_avg;
2378		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2379	}
2380}
2381
2382static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
 
 
 
 
2383{
2384	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2385	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2386}
2387#else /* CONFIG_FAIR_GROUP_SCHED */
2388static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2389						 int force_update) {}
2390static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391						  struct cfs_rq *cfs_rq) {}
2392static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2393static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2394#endif /* CONFIG_FAIR_GROUP_SCHED */
2395
2396static inline void __update_task_entity_contrib(struct sched_entity *se)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397{
2398	u32 contrib;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399
2400	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2401	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2402	contrib /= (se->avg.runnable_avg_period + 1);
2403	se->avg.load_avg_contrib = scale_load(contrib);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404}
2405
2406/* Compute the current contribution to load_avg by se, return any delta */
2407static long __update_entity_load_avg_contrib(struct sched_entity *se)
 
 
 
 
 
 
 
2408{
2409	long old_contrib = se->avg.load_avg_contrib;
 
 
 
 
2410
2411	if (entity_is_task(se)) {
2412		__update_task_entity_contrib(se);
2413	} else {
2414		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2415		__update_group_entity_contrib(se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416	}
2417
2418	return se->avg.load_avg_contrib - old_contrib;
 
 
 
 
 
 
 
 
 
 
2419}
2420
2421static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2422						 long load_contrib)
 
 
 
 
 
 
 
2423{
2424	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2425		cfs_rq->blocked_load_avg -= load_contrib;
2426	else
2427		cfs_rq->blocked_load_avg = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2428}
2429
2430static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 
 
 
 
 
2431
2432/* Update a sched_entity's runnable average */
2433static inline void update_entity_load_avg(struct sched_entity *se,
2434					  int update_cfs_rq)
2435{
2436	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2437	long contrib_delta;
2438	u64 now;
2439
2440	/*
2441	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2442	 * case they are the parent of a throttled hierarchy.
2443	 */
2444	if (entity_is_task(se))
2445		now = cfs_rq_clock_task(cfs_rq);
2446	else
2447		now = cfs_rq_clock_task(group_cfs_rq(se));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448
2449	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2450		return;
 
 
 
2451
2452	contrib_delta = __update_entity_load_avg_contrib(se);
 
 
 
 
2453
2454	if (!update_cfs_rq)
2455		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456
2457	if (se->on_rq)
2458		cfs_rq->runnable_load_avg += contrib_delta;
2459	else
2460		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2461}
2462
2463/*
2464 * Decay the load contributed by all blocked children and account this so that
2465 * their contribution may appropriately discounted when they wake up.
2466 */
2467static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2468{
2469	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2470	u64 decays;
2471
2472	decays = now - cfs_rq->last_decay;
2473	if (!decays && !force_update)
2474		return;
 
 
2475
2476	if (atomic_long_read(&cfs_rq->removed_load)) {
2477		unsigned long removed_load;
2478		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2479		subtract_blocked_load_contrib(cfs_rq, removed_load);
2480	}
2481
2482	if (decays) {
2483		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2484						      decays);
2485		atomic64_add(decays, &cfs_rq->decay_counter);
2486		cfs_rq->last_decay = now;
2487	}
 
2488
2489	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
 
 
2490}
2491
2492/* Add the load generated by se into cfs_rq's child load-average */
2493static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2494						  struct sched_entity *se,
2495						  int wakeup)
2496{
2497	/*
2498	 * We track migrations using entity decay_count <= 0, on a wake-up
2499	 * migration we use a negative decay count to track the remote decays
2500	 * accumulated while sleeping.
2501	 *
2502	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2503	 * are seen by enqueue_entity_load_avg() as a migration with an already
2504	 * constructed load_avg_contrib.
2505	 */
2506	if (unlikely(se->avg.decay_count <= 0)) {
2507		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2508		if (se->avg.decay_count) {
2509			/*
2510			 * In a wake-up migration we have to approximate the
2511			 * time sleeping.  This is because we can't synchronize
2512			 * clock_task between the two cpus, and it is not
2513			 * guaranteed to be read-safe.  Instead, we can
2514			 * approximate this using our carried decays, which are
2515			 * explicitly atomically readable.
2516			 */
2517			se->avg.last_runnable_update -= (-se->avg.decay_count)
2518							<< 20;
2519			update_entity_load_avg(se, 0);
2520			/* Indicate that we're now synchronized and on-rq */
2521			se->avg.decay_count = 0;
2522		}
2523		wakeup = 0;
2524	} else {
2525		__synchronize_entity_decay(se);
2526	}
2527
2528	/* migrated tasks did not contribute to our blocked load */
2529	if (wakeup) {
2530		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2531		update_entity_load_avg(se, 0);
2532	}
2533
2534	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2535	/* we force update consideration on load-balancer moves */
2536	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2537}
2538
2539/*
2540 * Remove se's load from this cfs_rq child load-average, if the entity is
2541 * transitioning to a blocked state we track its projected decay using
2542 * blocked_load_avg.
2543 */
2544static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2545						  struct sched_entity *se,
2546						  int sleep)
2547{
2548	update_entity_load_avg(se, 1);
2549	/* we force update consideration on load-balancer moves */
2550	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2551
2552	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2553	if (sleep) {
2554		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2555		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2556	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2557}
2558
2559/*
2560 * Update the rq's load with the elapsed running time before entering
2561 * idle. if the last scheduled task is not a CFS task, idle_enter will
2562 * be the only way to update the runnable statistic.
2563 */
2564void idle_enter_fair(struct rq *this_rq)
2565{
2566	update_rq_runnable_avg(this_rq, 1);
2567}
2568
2569/*
2570 * Update the rq's load with the elapsed idle time before a task is
2571 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2572 * be the only way to update the runnable statistic.
2573 */
2574void idle_exit_fair(struct rq *this_rq)
 
 
 
2575{
2576	update_rq_runnable_avg(this_rq, 0);
2577}
 
 
 
 
 
 
2578
2579static int idle_balance(struct rq *this_rq);
 
2580
2581#else /* CONFIG_SMP */
 
 
 
2582
2583static inline void update_entity_load_avg(struct sched_entity *se,
2584					  int update_cfs_rq) {}
2585static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2586static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2587					   struct sched_entity *se,
2588					   int wakeup) {}
2589static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2590					   struct sched_entity *se,
2591					   int sleep) {}
2592static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2593					      int force_update) {}
2594
2595static inline int idle_balance(struct rq *rq)
 
2596{
2597	return 0;
 
 
 
 
 
 
 
 
 
 
2598}
2599
2600#endif /* CONFIG_SMP */
2601
2602static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 
 
 
 
 
 
 
2603{
2604#ifdef CONFIG_SCHEDSTATS
2605	struct task_struct *tsk = NULL;
2606
2607	if (entity_is_task(se))
2608		tsk = task_of(se);
 
 
 
 
2609
2610	if (se->statistics.sleep_start) {
2611		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2612
2613		if ((s64)delta < 0)
2614			delta = 0;
 
 
 
 
2615
2616		if (unlikely(delta > se->statistics.sleep_max))
2617			se->statistics.sleep_max = delta;
 
 
 
 
 
2618
2619		se->statistics.sleep_start = 0;
2620		se->statistics.sum_sleep_runtime += delta;
2621
2622		if (tsk) {
2623			account_scheduler_latency(tsk, delta >> 10, 1);
2624			trace_sched_stat_sleep(tsk, delta);
 
 
 
 
 
 
2625		}
2626	}
2627	if (se->statistics.block_start) {
2628		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2629
2630		if ((s64)delta < 0)
2631			delta = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632
2633		if (unlikely(delta > se->statistics.block_max))
2634			se->statistics.block_max = delta;
2635
2636		se->statistics.block_start = 0;
2637		se->statistics.sum_sleep_runtime += delta;
 
 
2638
2639		if (tsk) {
2640			if (tsk->in_iowait) {
2641				se->statistics.iowait_sum += delta;
2642				se->statistics.iowait_count++;
2643				trace_sched_stat_iowait(tsk, delta);
2644			}
2645
2646			trace_sched_stat_blocked(tsk, delta);
 
 
 
2647
2648			/*
2649			 * Blocking time is in units of nanosecs, so shift by
2650			 * 20 to get a milliseconds-range estimation of the
2651			 * amount of time that the task spent sleeping:
2652			 */
2653			if (unlikely(prof_on == SLEEP_PROFILING)) {
2654				profile_hits(SLEEP_PROFILING,
2655						(void *)get_wchan(tsk),
2656						delta >> 20);
2657			}
2658			account_scheduler_latency(tsk, delta >> 10, 0);
2659		}
2660	}
2661#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662}
2663
 
 
 
 
 
 
 
 
 
 
 
 
 
2664static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666#ifdef CONFIG_SCHED_DEBUG
2667	s64 d = se->vruntime - cfs_rq->min_vruntime;
2668
2669	if (d < 0)
2670		d = -d;
2671
2672	if (d > 3*sysctl_sched_latency)
2673		schedstat_inc(cfs_rq, nr_spread_over);
2674#endif
2675}
2676
2677static void
2678place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2679{
2680	u64 vruntime = cfs_rq->min_vruntime;
2681
2682	/*
2683	 * The 'current' period is already promised to the current tasks,
2684	 * however the extra weight of the new task will slow them down a
2685	 * little, place the new task so that it fits in the slot that
2686	 * stays open at the end.
2687	 */
2688	if (initial && sched_feat(START_DEBIT))
2689		vruntime += sched_vslice(cfs_rq, se);
2690
2691	/* sleeps up to a single latency don't count. */
2692	if (!initial) {
2693		unsigned long thresh = sysctl_sched_latency;
2694
2695		/*
2696		 * Halve their sleep time's effect, to allow
2697		 * for a gentler effect of sleepers:
2698		 */
2699		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2700			thresh >>= 1;
2701
2702		vruntime -= thresh;
2703	}
2704
2705	/* ensure we never gain time by being placed backwards. */
2706	se->vruntime = max_vruntime(se->vruntime, vruntime);
2707}
2708
2709static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711static void
2712enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2713{
 
 
 
2714	/*
2715	 * Update the normalized vruntime before updating min_vruntime
2716	 * through calling update_curr().
2717	 */
2718	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2719		se->vruntime += cfs_rq->min_vruntime;
2720
 
 
2721	/*
2722	 * Update run-time statistics of the 'current'.
 
 
 
2723	 */
2724	update_curr(cfs_rq);
2725	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
 
 
 
 
 
 
 
 
 
 
 
 
2726	account_entity_enqueue(cfs_rq, se);
2727	update_cfs_shares(cfs_rq);
2728
2729	if (flags & ENQUEUE_WAKEUP) {
2730		place_entity(cfs_rq, se, 0);
2731		enqueue_sleeper(cfs_rq, se);
2732	}
2733
2734	update_stats_enqueue(cfs_rq, se);
 
2735	check_spread(cfs_rq, se);
2736	if (se != cfs_rq->curr)
2737		__enqueue_entity(cfs_rq, se);
2738	se->on_rq = 1;
2739
2740	if (cfs_rq->nr_running == 1) {
 
 
 
 
 
2741		list_add_leaf_cfs_rq(cfs_rq);
 
 
2742		check_enqueue_throttle(cfs_rq);
2743	}
2744}
2745
2746static void __clear_buddies_last(struct sched_entity *se)
2747{
2748	for_each_sched_entity(se) {
2749		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2750		if (cfs_rq->last != se)
2751			break;
2752
2753		cfs_rq->last = NULL;
2754	}
2755}
2756
2757static void __clear_buddies_next(struct sched_entity *se)
2758{
2759	for_each_sched_entity(se) {
2760		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2761		if (cfs_rq->next != se)
2762			break;
2763
2764		cfs_rq->next = NULL;
2765	}
2766}
2767
2768static void __clear_buddies_skip(struct sched_entity *se)
2769{
2770	for_each_sched_entity(se) {
2771		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2772		if (cfs_rq->skip != se)
2773			break;
2774
2775		cfs_rq->skip = NULL;
2776	}
2777}
2778
2779static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2780{
2781	if (cfs_rq->last == se)
2782		__clear_buddies_last(se);
2783
2784	if (cfs_rq->next == se)
2785		__clear_buddies_next(se);
2786
2787	if (cfs_rq->skip == se)
2788		__clear_buddies_skip(se);
2789}
2790
2791static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792
2793static void
2794dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795{
2796	/*
2797	 * Update run-time statistics of the 'current'.
2798	 */
2799	update_curr(cfs_rq);
2800	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2801
2802	update_stats_dequeue(cfs_rq, se);
2803	if (flags & DEQUEUE_SLEEP) {
2804#ifdef CONFIG_SCHEDSTATS
2805		if (entity_is_task(se)) {
2806			struct task_struct *tsk = task_of(se);
 
 
 
 
 
2807
2808			if (tsk->state & TASK_INTERRUPTIBLE)
2809				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2810			if (tsk->state & TASK_UNINTERRUPTIBLE)
2811				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2812		}
2813#endif
2814	}
2815
2816	clear_buddies(cfs_rq, se);
2817
2818	if (se != cfs_rq->curr)
2819		__dequeue_entity(cfs_rq, se);
2820	se->on_rq = 0;
2821	account_entity_dequeue(cfs_rq, se);
2822
2823	/*
2824	 * Normalize the entity after updating the min_vruntime because the
2825	 * update can refer to the ->curr item and we need to reflect this
2826	 * movement in our normalized position.
 
2827	 */
2828	if (!(flags & DEQUEUE_SLEEP))
2829		se->vruntime -= cfs_rq->min_vruntime;
2830
2831	/* return excess runtime on last dequeue */
2832	return_cfs_rq_runtime(cfs_rq);
2833
2834	update_min_vruntime(cfs_rq);
2835	update_cfs_shares(cfs_rq);
 
 
 
 
 
 
 
 
2836}
2837
2838/*
2839 * Preempt the current task with a newly woken task if needed:
2840 */
2841static void
2842check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2843{
2844	unsigned long ideal_runtime, delta_exec;
2845	struct sched_entity *se;
2846	s64 delta;
2847
2848	ideal_runtime = sched_slice(cfs_rq, curr);
2849	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2850	if (delta_exec > ideal_runtime) {
2851		resched_task(rq_of(cfs_rq)->curr);
2852		/*
2853		 * The current task ran long enough, ensure it doesn't get
2854		 * re-elected due to buddy favours.
2855		 */
2856		clear_buddies(cfs_rq, curr);
2857		return;
2858	}
2859
2860	/*
2861	 * Ensure that a task that missed wakeup preemption by a
2862	 * narrow margin doesn't have to wait for a full slice.
2863	 * This also mitigates buddy induced latencies under load.
2864	 */
2865	if (delta_exec < sysctl_sched_min_granularity)
2866		return;
2867
2868	se = __pick_first_entity(cfs_rq);
2869	delta = curr->vruntime - se->vruntime;
2870
2871	if (delta < 0)
2872		return;
2873
2874	if (delta > ideal_runtime)
2875		resched_task(rq_of(cfs_rq)->curr);
2876}
2877
2878static void
2879set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2880{
 
 
2881	/* 'current' is not kept within the tree. */
2882	if (se->on_rq) {
2883		/*
2884		 * Any task has to be enqueued before it get to execute on
2885		 * a CPU. So account for the time it spent waiting on the
2886		 * runqueue.
2887		 */
2888		update_stats_wait_end(cfs_rq, se);
2889		__dequeue_entity(cfs_rq, se);
 
2890	}
2891
2892	update_stats_curr_start(cfs_rq, se);
2893	cfs_rq->curr = se;
2894#ifdef CONFIG_SCHEDSTATS
2895	/*
2896	 * Track our maximum slice length, if the CPU's load is at
2897	 * least twice that of our own weight (i.e. dont track it
2898	 * when there are only lesser-weight tasks around):
2899	 */
2900	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2901		se->statistics.slice_max = max(se->statistics.slice_max,
2902			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 
 
2903	}
2904#endif
2905	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2906}
2907
2908static int
2909wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2910
2911/*
2912 * Pick the next process, keeping these things in mind, in this order:
2913 * 1) keep things fair between processes/task groups
2914 * 2) pick the "next" process, since someone really wants that to run
2915 * 3) pick the "last" process, for cache locality
2916 * 4) do not run the "skip" process, if something else is available
2917 */
2918static struct sched_entity *
2919pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2920{
2921	struct sched_entity *left = __pick_first_entity(cfs_rq);
2922	struct sched_entity *se;
2923
2924	/*
2925	 * If curr is set we have to see if its left of the leftmost entity
2926	 * still in the tree, provided there was anything in the tree at all.
2927	 */
2928	if (!left || (curr && entity_before(curr, left)))
2929		left = curr;
2930
2931	se = left; /* ideally we run the leftmost entity */
2932
2933	/*
2934	 * Avoid running the skip buddy, if running something else can
2935	 * be done without getting too unfair.
2936	 */
2937	if (cfs_rq->skip == se) {
2938		struct sched_entity *second;
2939
2940		if (se == curr) {
2941			second = __pick_first_entity(cfs_rq);
2942		} else {
2943			second = __pick_next_entity(se);
2944			if (!second || (curr && entity_before(curr, second)))
2945				second = curr;
2946		}
2947
2948		if (second && wakeup_preempt_entity(second, left) < 1)
2949			se = second;
2950	}
2951
2952	/*
2953	 * Prefer last buddy, try to return the CPU to a preempted task.
2954	 */
2955	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
 
 
 
 
 
2956		se = cfs_rq->last;
2957
2958	/*
2959	 * Someone really wants this to run. If it's not unfair, run it.
2960	 */
2961	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2962		se = cfs_rq->next;
2963
2964	clear_buddies(cfs_rq, se);
2965
2966	return se;
2967}
2968
2969static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2970
2971static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2972{
2973	/*
2974	 * If still on the runqueue then deactivate_task()
2975	 * was not called and update_curr() has to be done:
2976	 */
2977	if (prev->on_rq)
2978		update_curr(cfs_rq);
2979
2980	/* throttle cfs_rqs exceeding runtime */
2981	check_cfs_rq_runtime(cfs_rq);
2982
2983	check_spread(cfs_rq, prev);
 
2984	if (prev->on_rq) {
2985		update_stats_wait_start(cfs_rq, prev);
2986		/* Put 'current' back into the tree. */
2987		__enqueue_entity(cfs_rq, prev);
2988		/* in !on_rq case, update occurred at dequeue */
2989		update_entity_load_avg(prev, 1);
2990	}
2991	cfs_rq->curr = NULL;
2992}
2993
2994static void
2995entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2996{
2997	/*
2998	 * Update run-time statistics of the 'current'.
2999	 */
3000	update_curr(cfs_rq);
3001
3002	/*
3003	 * Ensure that runnable average is periodically updated.
3004	 */
3005	update_entity_load_avg(curr, 1);
3006	update_cfs_rq_blocked_load(cfs_rq, 1);
3007	update_cfs_shares(cfs_rq);
3008
3009#ifdef CONFIG_SCHED_HRTICK
3010	/*
3011	 * queued ticks are scheduled to match the slice, so don't bother
3012	 * validating it and just reschedule.
3013	 */
3014	if (queued) {
3015		resched_task(rq_of(cfs_rq)->curr);
3016		return;
3017	}
3018	/*
3019	 * don't let the period tick interfere with the hrtick preemption
3020	 */
3021	if (!sched_feat(DOUBLE_TICK) &&
3022			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3023		return;
3024#endif
3025
3026	if (cfs_rq->nr_running > 1)
3027		check_preempt_tick(cfs_rq, curr);
3028}
3029
3030
3031/**************************************************
3032 * CFS bandwidth control machinery
3033 */
3034
3035#ifdef CONFIG_CFS_BANDWIDTH
3036
3037#ifdef HAVE_JUMP_LABEL
3038static struct static_key __cfs_bandwidth_used;
3039
3040static inline bool cfs_bandwidth_used(void)
3041{
3042	return static_key_false(&__cfs_bandwidth_used);
3043}
3044
3045void cfs_bandwidth_usage_inc(void)
3046{
3047	static_key_slow_inc(&__cfs_bandwidth_used);
3048}
3049
3050void cfs_bandwidth_usage_dec(void)
3051{
3052	static_key_slow_dec(&__cfs_bandwidth_used);
3053}
3054#else /* HAVE_JUMP_LABEL */
3055static bool cfs_bandwidth_used(void)
3056{
3057	return true;
3058}
3059
3060void cfs_bandwidth_usage_inc(void) {}
3061void cfs_bandwidth_usage_dec(void) {}
3062#endif /* HAVE_JUMP_LABEL */
3063
3064/*
3065 * default period for cfs group bandwidth.
3066 * default: 0.1s, units: nanoseconds
3067 */
3068static inline u64 default_cfs_period(void)
3069{
3070	return 100000000ULL;
3071}
3072
3073static inline u64 sched_cfs_bandwidth_slice(void)
3074{
3075	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3076}
3077
3078/*
3079 * Replenish runtime according to assigned quota and update expiration time.
3080 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3081 * additional synchronization around rq->lock.
3082 *
3083 * requires cfs_b->lock
3084 */
3085void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3086{
3087	u64 now;
3088
3089	if (cfs_b->quota == RUNTIME_INF)
3090		return;
3091
3092	now = sched_clock_cpu(smp_processor_id());
3093	cfs_b->runtime = cfs_b->quota;
3094	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3095}
3096
3097static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3098{
3099	return &tg->cfs_bandwidth;
3100}
3101
3102/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3103static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
 
3104{
3105	if (unlikely(cfs_rq->throttle_count))
3106		return cfs_rq->throttled_clock_task;
3107
3108	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3109}
3110
3111/* returns 0 on failure to allocate runtime */
3112static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113{
3114	struct task_group *tg = cfs_rq->tg;
3115	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3116	u64 amount = 0, min_amount, expires;
3117
3118	/* note: this is a positive sum as runtime_remaining <= 0 */
3119	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3120
3121	raw_spin_lock(&cfs_b->lock);
3122	if (cfs_b->quota == RUNTIME_INF)
3123		amount = min_amount;
3124	else {
3125		/*
3126		 * If the bandwidth pool has become inactive, then at least one
3127		 * period must have elapsed since the last consumption.
3128		 * Refresh the global state and ensure bandwidth timer becomes
3129		 * active.
3130		 */
3131		if (!cfs_b->timer_active) {
3132			__refill_cfs_bandwidth_runtime(cfs_b);
3133			__start_cfs_bandwidth(cfs_b, false);
3134		}
3135
3136		if (cfs_b->runtime > 0) {
3137			amount = min(cfs_b->runtime, min_amount);
3138			cfs_b->runtime -= amount;
3139			cfs_b->idle = 0;
3140		}
3141	}
3142	expires = cfs_b->runtime_expires;
3143	raw_spin_unlock(&cfs_b->lock);
3144
3145	cfs_rq->runtime_remaining += amount;
3146	/*
3147	 * we may have advanced our local expiration to account for allowed
3148	 * spread between our sched_clock and the one on which runtime was
3149	 * issued.
3150	 */
3151	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3152		cfs_rq->runtime_expires = expires;
3153
3154	return cfs_rq->runtime_remaining > 0;
3155}
3156
3157/*
3158 * Note: This depends on the synchronization provided by sched_clock and the
3159 * fact that rq->clock snapshots this value.
3160 */
3161static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162{
3163	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 
3164
3165	/* if the deadline is ahead of our clock, nothing to do */
3166	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3167		return;
3168
3169	if (cfs_rq->runtime_remaining < 0)
3170		return;
3171
3172	/*
3173	 * If the local deadline has passed we have to consider the
3174	 * possibility that our sched_clock is 'fast' and the global deadline
3175	 * has not truly expired.
3176	 *
3177	 * Fortunately we can check determine whether this the case by checking
3178	 * whether the global deadline has advanced.
3179	 */
3180
3181	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3182		/* extend local deadline, drift is bounded above by 2 ticks */
3183		cfs_rq->runtime_expires += TICK_NSEC;
3184	} else {
3185		/* global deadline is ahead, expiration has passed */
3186		cfs_rq->runtime_remaining = 0;
3187	}
3188}
3189
3190static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3191{
3192	/* dock delta_exec before expiring quota (as it could span periods) */
3193	cfs_rq->runtime_remaining -= delta_exec;
3194	expire_cfs_rq_runtime(cfs_rq);
3195
3196	if (likely(cfs_rq->runtime_remaining > 0))
3197		return;
3198
 
 
3199	/*
3200	 * if we're unable to extend our runtime we resched so that the active
3201	 * hierarchy can be throttled
3202	 */
3203	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3204		resched_task(rq_of(cfs_rq)->curr);
3205}
3206
3207static __always_inline
3208void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3209{
3210	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3211		return;
3212
3213	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3214}
3215
3216static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3217{
3218	return cfs_bandwidth_used() && cfs_rq->throttled;
3219}
3220
3221/* check whether cfs_rq, or any parent, is throttled */
3222static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3223{
3224	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3225}
3226
3227/*
3228 * Ensure that neither of the group entities corresponding to src_cpu or
3229 * dest_cpu are members of a throttled hierarchy when performing group
3230 * load-balance operations.
3231 */
3232static inline int throttled_lb_pair(struct task_group *tg,
3233				    int src_cpu, int dest_cpu)
3234{
3235	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3236
3237	src_cfs_rq = tg->cfs_rq[src_cpu];
3238	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3239
3240	return throttled_hierarchy(src_cfs_rq) ||
3241	       throttled_hierarchy(dest_cfs_rq);
3242}
3243
3244/* updated child weight may affect parent so we have to do this bottom up */
3245static int tg_unthrottle_up(struct task_group *tg, void *data)
3246{
3247	struct rq *rq = data;
3248	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3249
3250	cfs_rq->throttle_count--;
3251#ifdef CONFIG_SMP
3252	if (!cfs_rq->throttle_count) {
3253		/* adjust cfs_rq_clock_task() */
3254		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3255					     cfs_rq->throttled_clock_task;
 
 
 
 
3256	}
3257#endif
3258
3259	return 0;
3260}
3261
3262static int tg_throttle_down(struct task_group *tg, void *data)
3263{
3264	struct rq *rq = data;
3265	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3266
3267	/* group is entering throttled state, stop time */
3268	if (!cfs_rq->throttle_count)
3269		cfs_rq->throttled_clock_task = rq_clock_task(rq);
 
 
3270	cfs_rq->throttle_count++;
3271
3272	return 0;
3273}
3274
3275static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3276{
3277	struct rq *rq = rq_of(cfs_rq);
3278	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3279	struct sched_entity *se;
3280	long task_delta, dequeue = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281
3282	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3283
3284	/* freeze hierarchy runnable averages while throttled */
3285	rcu_read_lock();
3286	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3287	rcu_read_unlock();
3288
3289	task_delta = cfs_rq->h_nr_running;
 
3290	for_each_sched_entity(se) {
3291		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3292		/* throttled entity or throttle-on-deactivate */
3293		if (!se->on_rq)
 
 
 
 
 
 
 
 
 
 
3294			break;
 
 
 
 
 
 
 
 
 
 
 
3295
3296		if (dequeue)
3297			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3298		qcfs_rq->h_nr_running -= task_delta;
3299
3300		if (qcfs_rq->load.weight)
3301			dequeue = 0;
3302	}
3303
3304	if (!se)
3305		rq->nr_running -= task_delta;
3306
 
 
 
 
 
3307	cfs_rq->throttled = 1;
3308	cfs_rq->throttled_clock = rq_clock(rq);
3309	raw_spin_lock(&cfs_b->lock);
3310	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3311	if (!cfs_b->timer_active)
3312		__start_cfs_bandwidth(cfs_b, false);
3313	raw_spin_unlock(&cfs_b->lock);
3314}
3315
3316void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3317{
3318	struct rq *rq = rq_of(cfs_rq);
3319	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3320	struct sched_entity *se;
3321	int enqueue = 1;
3322	long task_delta;
3323
3324	se = cfs_rq->tg->se[cpu_of(rq)];
3325
3326	cfs_rq->throttled = 0;
3327
3328	update_rq_clock(rq);
3329
3330	raw_spin_lock(&cfs_b->lock);
3331	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3332	list_del_rcu(&cfs_rq->throttled_list);
3333	raw_spin_unlock(&cfs_b->lock);
3334
3335	/* update hierarchical throttle state */
3336	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3337
3338	if (!cfs_rq->load.weight)
 
 
 
3339		return;
 
3340
3341	task_delta = cfs_rq->h_nr_running;
 
3342	for_each_sched_entity(se) {
3343		if (se->on_rq)
3344			enqueue = 0;
 
 
 
 
 
3345
 
 
 
 
 
 
3346		cfs_rq = cfs_rq_of(se);
3347		if (enqueue)
3348			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
 
 
3349		cfs_rq->h_nr_running += task_delta;
 
3350
 
 
3351		if (cfs_rq_throttled(cfs_rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3352			break;
3353	}
3354
3355	if (!se)
3356		rq->nr_running += task_delta;
3357
3358	/* determine whether we need to wake up potentially idle cpu */
3359	if (rq->curr == rq->idle && rq->cfs.nr_running)
3360		resched_task(rq->curr);
3361}
3362
3363static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3364		u64 remaining, u64 expires)
3365{
3366	struct cfs_rq *cfs_rq;
3367	u64 runtime = remaining;
3368
3369	rcu_read_lock();
3370	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3371				throttled_list) {
3372		struct rq *rq = rq_of(cfs_rq);
 
3373
3374		raw_spin_lock(&rq->lock);
3375		if (!cfs_rq_throttled(cfs_rq))
3376			goto next;
3377
 
 
 
 
3378		runtime = -cfs_rq->runtime_remaining + 1;
3379		if (runtime > remaining)
3380			runtime = remaining;
3381		remaining -= runtime;
 
 
3382
3383		cfs_rq->runtime_remaining += runtime;
3384		cfs_rq->runtime_expires = expires;
3385
3386		/* we check whether we're throttled above */
3387		if (cfs_rq->runtime_remaining > 0)
3388			unthrottle_cfs_rq(cfs_rq);
3389
3390next:
3391		raw_spin_unlock(&rq->lock);
3392
3393		if (!remaining)
3394			break;
3395	}
3396	rcu_read_unlock();
3397
3398	return remaining;
3399}
3400
3401/*
3402 * Responsible for refilling a task_group's bandwidth and unthrottling its
3403 * cfs_rqs as appropriate. If there has been no activity within the last
3404 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3405 * used to track this state.
3406 */
3407static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3408{
3409	u64 runtime, runtime_expires;
3410	int idle = 1, throttled;
3411
3412	raw_spin_lock(&cfs_b->lock);
3413	/* no need to continue the timer with no bandwidth constraint */
3414	if (cfs_b->quota == RUNTIME_INF)
3415		goto out_unlock;
3416
3417	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3418	/* idle depends on !throttled (for the case of a large deficit) */
3419	idle = cfs_b->idle && !throttled;
3420	cfs_b->nr_periods += overrun;
3421
3422	/* if we're going inactive then everything else can be deferred */
3423	if (idle)
3424		goto out_unlock;
3425
3426	/*
3427	 * if we have relooped after returning idle once, we need to update our
3428	 * status as actually running, so that other cpus doing
3429	 * __start_cfs_bandwidth will stop trying to cancel us.
3430	 */
3431	cfs_b->timer_active = 1;
3432
3433	__refill_cfs_bandwidth_runtime(cfs_b);
3434
3435	if (!throttled) {
3436		/* mark as potentially idle for the upcoming period */
3437		cfs_b->idle = 1;
3438		goto out_unlock;
3439	}
3440
3441	/* account preceding periods in which throttling occurred */
3442	cfs_b->nr_throttled += overrun;
3443
3444	/*
3445	 * There are throttled entities so we must first use the new bandwidth
3446	 * to unthrottle them before making it generally available.  This
3447	 * ensures that all existing debts will be paid before a new cfs_rq is
3448	 * allowed to run.
3449	 */
3450	runtime = cfs_b->runtime;
3451	runtime_expires = cfs_b->runtime_expires;
3452	cfs_b->runtime = 0;
3453
3454	/*
3455	 * This check is repeated as we are holding onto the new bandwidth
3456	 * while we unthrottle.  This can potentially race with an unthrottled
3457	 * group trying to acquire new bandwidth from the global pool.
3458	 */
3459	while (throttled && runtime > 0) {
3460		raw_spin_unlock(&cfs_b->lock);
3461		/* we can't nest cfs_b->lock while distributing bandwidth */
3462		runtime = distribute_cfs_runtime(cfs_b, runtime,
3463						 runtime_expires);
3464		raw_spin_lock(&cfs_b->lock);
3465
3466		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467	}
3468
3469	/* return (any) remaining runtime */
3470	cfs_b->runtime = runtime;
3471	/*
3472	 * While we are ensured activity in the period following an
3473	 * unthrottle, this also covers the case in which the new bandwidth is
3474	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3475	 * timer to remain active while there are any throttled entities.)
3476	 */
3477	cfs_b->idle = 0;
3478out_unlock:
3479	if (idle)
3480		cfs_b->timer_active = 0;
3481	raw_spin_unlock(&cfs_b->lock);
3482
3483	return idle;
 
 
 
3484}
3485
3486/* a cfs_rq won't donate quota below this amount */
3487static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3488/* minimum remaining period time to redistribute slack quota */
3489static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3490/* how long we wait to gather additional slack before distributing */
3491static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3492
3493/*
3494 * Are we near the end of the current quota period?
3495 *
3496 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3497 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3498 * migrate_hrtimers, base is never cleared, so we are fine.
3499 */
3500static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3501{
3502	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3503	u64 remaining;
3504
3505	/* if the call-back is running a quota refresh is already occurring */
3506	if (hrtimer_callback_running(refresh_timer))
3507		return 1;
3508
3509	/* is a quota refresh about to occur? */
3510	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3511	if (remaining < min_expire)
3512		return 1;
3513
3514	return 0;
3515}
3516
3517static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3518{
3519	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3520
3521	/* if there's a quota refresh soon don't bother with slack */
3522	if (runtime_refresh_within(cfs_b, min_left))
3523		return;
3524
3525	start_bandwidth_timer(&cfs_b->slack_timer,
3526				ns_to_ktime(cfs_bandwidth_slack_period));
 
 
 
 
 
 
3527}
3528
3529/* we know any runtime found here is valid as update_curr() precedes return */
3530static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3531{
3532	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3534
3535	if (slack_runtime <= 0)
3536		return;
3537
3538	raw_spin_lock(&cfs_b->lock);
3539	if (cfs_b->quota != RUNTIME_INF &&
3540	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3541		cfs_b->runtime += slack_runtime;
3542
3543		/* we are under rq->lock, defer unthrottling using a timer */
3544		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3545		    !list_empty(&cfs_b->throttled_cfs_rq))
3546			start_cfs_slack_bandwidth(cfs_b);
3547	}
3548	raw_spin_unlock(&cfs_b->lock);
3549
3550	/* even if it's not valid for return we don't want to try again */
3551	cfs_rq->runtime_remaining -= slack_runtime;
3552}
3553
3554static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3555{
3556	if (!cfs_bandwidth_used())
3557		return;
3558
3559	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3560		return;
3561
3562	__return_cfs_rq_runtime(cfs_rq);
3563}
3564
3565/*
3566 * This is done with a timer (instead of inline with bandwidth return) since
3567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3568 */
3569static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3570{
3571	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3572	u64 expires;
3573
3574	/* confirm we're still not at a refresh boundary */
3575	raw_spin_lock(&cfs_b->lock);
 
 
3576	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3577		raw_spin_unlock(&cfs_b->lock);
3578		return;
3579	}
3580
3581	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3582		runtime = cfs_b->runtime;
3583		cfs_b->runtime = 0;
3584	}
3585	expires = cfs_b->runtime_expires;
3586	raw_spin_unlock(&cfs_b->lock);
3587
3588	if (!runtime)
3589		return;
3590
3591	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3592
3593	raw_spin_lock(&cfs_b->lock);
3594	if (expires == cfs_b->runtime_expires)
3595		cfs_b->runtime = runtime;
3596	raw_spin_unlock(&cfs_b->lock);
3597}
3598
3599/*
3600 * When a group wakes up we want to make sure that its quota is not already
3601 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3602 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3603 */
3604static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3605{
3606	if (!cfs_bandwidth_used())
3607		return;
3608
3609	/* an active group must be handled by the update_curr()->put() path */
3610	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3611		return;
3612
3613	/* ensure the group is not already throttled */
3614	if (cfs_rq_throttled(cfs_rq))
3615		return;
3616
3617	/* update runtime allocation */
3618	account_cfs_rq_runtime(cfs_rq, 0);
3619	if (cfs_rq->runtime_remaining <= 0)
3620		throttle_cfs_rq(cfs_rq);
3621}
3622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3623/* conditionally throttle active cfs_rq's from put_prev_entity() */
3624static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3625{
3626	if (!cfs_bandwidth_used())
3627		return false;
3628
3629	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3630		return false;
3631
3632	/*
3633	 * it's possible for a throttled entity to be forced into a running
3634	 * state (e.g. set_curr_task), in this case we're finished.
3635	 */
3636	if (cfs_rq_throttled(cfs_rq))
3637		return true;
3638
3639	throttle_cfs_rq(cfs_rq);
3640	return true;
3641}
3642
3643static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3644{
3645	struct cfs_bandwidth *cfs_b =
3646		container_of(timer, struct cfs_bandwidth, slack_timer);
 
3647	do_sched_cfs_slack_timer(cfs_b);
3648
3649	return HRTIMER_NORESTART;
3650}
3651
 
 
3652static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3653{
3654	struct cfs_bandwidth *cfs_b =
3655		container_of(timer, struct cfs_bandwidth, period_timer);
3656	ktime_t now;
3657	int overrun;
3658	int idle = 0;
 
3659
 
3660	for (;;) {
3661		now = hrtimer_cb_get_time(timer);
3662		overrun = hrtimer_forward(timer, now, cfs_b->period);
3663
3664		if (!overrun)
3665			break;
3666
3667		idle = do_sched_cfs_period_timer(cfs_b, overrun);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668	}
 
 
 
3669
3670	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3671}
3672
3673void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3674{
3675	raw_spin_lock_init(&cfs_b->lock);
3676	cfs_b->runtime = 0;
3677	cfs_b->quota = RUNTIME_INF;
3678	cfs_b->period = ns_to_ktime(default_cfs_period());
 
3679
3680	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3681	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682	cfs_b->period_timer.function = sched_cfs_period_timer;
3683	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3684	cfs_b->slack_timer.function = sched_cfs_slack_timer;
 
3685}
3686
3687static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3688{
3689	cfs_rq->runtime_enabled = 0;
3690	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3691}
3692
3693/* requires cfs_b->lock, may release to reprogram timer */
3694void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3695{
3696	/*
3697	 * The timer may be active because we're trying to set a new bandwidth
3698	 * period or because we're racing with the tear-down path
3699	 * (timer_active==0 becomes visible before the hrtimer call-back
3700	 * terminates).  In either case we ensure that it's re-programmed
3701	 */
3702	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3703	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3704		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3705		raw_spin_unlock(&cfs_b->lock);
3706		cpu_relax();
3707		raw_spin_lock(&cfs_b->lock);
3708		/* if someone else restarted the timer then we're done */
3709		if (!force && cfs_b->timer_active)
3710			return;
3711	}
3712
3713	cfs_b->timer_active = 1;
3714	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
 
3715}
3716
3717static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3718{
 
 
 
 
3719	hrtimer_cancel(&cfs_b->period_timer);
3720	hrtimer_cancel(&cfs_b->slack_timer);
3721}
3722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3723static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3724{
3725	struct cfs_rq *cfs_rq;
 
 
3726
3727	for_each_leaf_cfs_rq(rq, cfs_rq) {
3728		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 
3729
3730		if (!cfs_rq->runtime_enabled)
3731			continue;
3732
3733		/*
3734		 * clock_task is not advancing so we just need to make sure
3735		 * there's some valid quota amount
3736		 */
3737		cfs_rq->runtime_remaining = cfs_b->quota;
 
 
 
 
 
 
3738		if (cfs_rq_throttled(cfs_rq))
3739			unthrottle_cfs_rq(cfs_rq);
3740	}
 
3741}
3742
3743#else /* CONFIG_CFS_BANDWIDTH */
3744static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
 
3745{
3746	return rq_clock_task(rq_of(cfs_rq));
3747}
3748
3749static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3750static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3751static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 
3752static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3753
3754static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3755{
3756	return 0;
3757}
3758
3759static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760{
3761	return 0;
3762}
3763
3764static inline int throttled_lb_pair(struct task_group *tg,
3765				    int src_cpu, int dest_cpu)
3766{
3767	return 0;
3768}
3769
3770void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3771
3772#ifdef CONFIG_FAIR_GROUP_SCHED
3773static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3774#endif
3775
3776static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3777{
3778	return NULL;
3779}
3780static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 
3781static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3782
3783#endif /* CONFIG_CFS_BANDWIDTH */
3784
3785/**************************************************
3786 * CFS operations on tasks:
3787 */
3788
3789#ifdef CONFIG_SCHED_HRTICK
3790static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3791{
3792	struct sched_entity *se = &p->se;
3793	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3794
3795	WARN_ON(task_rq(p) != rq);
3796
3797	if (cfs_rq->nr_running > 1) {
3798		u64 slice = sched_slice(cfs_rq, se);
3799		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3800		s64 delta = slice - ran;
3801
3802		if (delta < 0) {
3803			if (rq->curr == p)
3804				resched_task(p);
3805			return;
3806		}
3807
3808		/*
3809		 * Don't schedule slices shorter than 10000ns, that just
3810		 * doesn't make sense. Rely on vruntime for fairness.
3811		 */
3812		if (rq->curr != p)
3813			delta = max_t(s64, 10000LL, delta);
3814
3815		hrtick_start(rq, delta);
3816	}
3817}
3818
3819/*
3820 * called from enqueue/dequeue and updates the hrtick when the
3821 * current task is from our class and nr_running is low enough
3822 * to matter.
3823 */
3824static void hrtick_update(struct rq *rq)
3825{
3826	struct task_struct *curr = rq->curr;
3827
3828	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3829		return;
3830
3831	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3832		hrtick_start_fair(rq, curr);
3833}
3834#else /* !CONFIG_SCHED_HRTICK */
3835static inline void
3836hrtick_start_fair(struct rq *rq, struct task_struct *p)
3837{
3838}
3839
3840static inline void hrtick_update(struct rq *rq)
3841{
3842}
3843#endif
3844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845/*
3846 * The enqueue_task method is called before nr_running is
3847 * increased. Here we update the fair scheduling stats and
3848 * then put the task into the rbtree:
3849 */
3850static void
3851enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3852{
3853	struct cfs_rq *cfs_rq;
3854	struct sched_entity *se = &p->se;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3855
3856	for_each_sched_entity(se) {
3857		if (se->on_rq)
3858			break;
3859		cfs_rq = cfs_rq_of(se);
3860		enqueue_entity(cfs_rq, se, flags);
3861
3862		/*
3863		 * end evaluation on encountering a throttled cfs_rq
3864		 *
3865		 * note: in the case of encountering a throttled cfs_rq we will
3866		 * post the final h_nr_running increment below.
3867		*/
3868		if (cfs_rq_throttled(cfs_rq))
3869			break;
3870		cfs_rq->h_nr_running++;
3871
3872		flags = ENQUEUE_WAKEUP;
3873	}
3874
3875	for_each_sched_entity(se) {
3876		cfs_rq = cfs_rq_of(se);
 
 
 
 
 
3877		cfs_rq->h_nr_running++;
 
3878
 
3879		if (cfs_rq_throttled(cfs_rq))
3880			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881
3882		update_cfs_shares(cfs_rq);
3883		update_entity_load_avg(se, 1);
 
3884	}
3885
3886	if (!se) {
3887		update_rq_runnable_avg(rq, rq->nr_running);
3888		inc_nr_running(rq);
3889	}
3890	hrtick_update(rq);
3891}
3892
3893static void set_next_buddy(struct sched_entity *se);
3894
3895/*
3896 * The dequeue_task method is called before nr_running is
3897 * decreased. We remove the task from the rbtree and
3898 * update the fair scheduling stats:
3899 */
3900static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901{
3902	struct cfs_rq *cfs_rq;
3903	struct sched_entity *se = &p->se;
3904	int task_sleep = flags & DEQUEUE_SLEEP;
 
 
 
 
3905
3906	for_each_sched_entity(se) {
3907		cfs_rq = cfs_rq_of(se);
3908		dequeue_entity(cfs_rq, se, flags);
3909
3910		/*
3911		 * end evaluation on encountering a throttled cfs_rq
3912		 *
3913		 * note: in the case of encountering a throttled cfs_rq we will
3914		 * post the final h_nr_running decrement below.
3915		*/
3916		if (cfs_rq_throttled(cfs_rq))
3917			break;
3918		cfs_rq->h_nr_running--;
3919
3920		/* Don't dequeue parent if it has other entities besides us */
3921		if (cfs_rq->load.weight) {
 
 
3922			/*
3923			 * Bias pick_next to pick a task from this cfs_rq, as
3924			 * p is sleeping when it is within its sched_slice.
3925			 */
3926			if (task_sleep && parent_entity(se))
3927				set_next_buddy(parent_entity(se));
3928
3929			/* avoid re-evaluating load for this entity */
3930			se = parent_entity(se);
3931			break;
3932		}
3933		flags |= DEQUEUE_SLEEP;
3934	}
3935
3936	for_each_sched_entity(se) {
3937		cfs_rq = cfs_rq_of(se);
 
 
 
 
 
3938		cfs_rq->h_nr_running--;
 
3939
 
3940		if (cfs_rq_throttled(cfs_rq))
3941			break;
3942
3943		update_cfs_shares(cfs_rq);
3944		update_entity_load_avg(se, 1);
3945	}
3946
3947	if (!se) {
3948		dec_nr_running(rq);
3949		update_rq_runnable_avg(rq, 1);
3950	}
 
 
 
 
 
3951	hrtick_update(rq);
3952}
3953
3954#ifdef CONFIG_SMP
3955/* Used instead of source_load when we know the type == 0 */
3956static unsigned long weighted_cpuload(const int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3957{
3958	return cpu_rq(cpu)->cfs.runnable_load_avg;
3959}
3960
3961/*
3962 * Return a low guess at the load of a migration-source cpu weighted
3963 * according to the scheduling class and "nice" value.
 
 
 
 
 
3964 *
3965 * We want to under-estimate the load of migration sources, to
3966 * balance conservatively.
 
3967 */
3968static unsigned long source_load(int cpu, int type)
3969{
3970	struct rq *rq = cpu_rq(cpu);
3971	unsigned long total = weighted_cpuload(cpu);
3972
3973	if (type == 0 || !sched_feat(LB_BIAS))
3974		return total;
 
3975
3976	return min(rq->cpu_load[type-1], total);
3977}
3978
3979/*
3980 * Return a high guess at the load of a migration-target cpu weighted
3981 * according to the scheduling class and "nice" value.
3982 */
3983static unsigned long target_load(int cpu, int type)
3984{
3985	struct rq *rq = cpu_rq(cpu);
3986	unsigned long total = weighted_cpuload(cpu);
3987
3988	if (type == 0 || !sched_feat(LB_BIAS))
3989		return total;
3990
3991	return max(rq->cpu_load[type-1], total);
3992}
3993
3994static unsigned long power_of(int cpu)
3995{
3996	return cpu_rq(cpu)->cpu_power;
3997}
3998
3999static unsigned long cpu_avg_load_per_task(int cpu)
4000{
4001	struct rq *rq = cpu_rq(cpu);
4002	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4003	unsigned long load_avg = rq->cfs.runnable_load_avg;
 
 
 
 
 
 
 
 
 
4004
4005	if (nr_running)
4006		return load_avg / nr_running;
4007
4008	return 0;
 
 
4009}
4010
4011static void record_wakee(struct task_struct *p)
4012{
4013	/*
4014	 * Rough decay (wiping) for cost saving, don't worry
4015	 * about the boundary, really active task won't care
4016	 * about the loss.
4017	 */
4018	if (jiffies > current->wakee_flip_decay_ts + HZ) {
4019		current->wakee_flips = 0;
4020		current->wakee_flip_decay_ts = jiffies;
4021	}
4022
4023	if (current->last_wakee != p) {
4024		current->last_wakee = p;
4025		current->wakee_flips++;
4026	}
4027}
4028
4029static void task_waking_fair(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4030{
4031	struct sched_entity *se = &p->se;
4032	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4033	u64 min_vruntime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4034
4035#ifndef CONFIG_64BIT
4036	u64 min_vruntime_copy;
 
4037
4038	do {
4039		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4040		smp_rmb();
4041		min_vruntime = cfs_rq->min_vruntime;
4042	} while (min_vruntime != min_vruntime_copy);
4043#else
4044	min_vruntime = cfs_rq->min_vruntime;
4045#endif
4046
4047	se->vruntime -= min_vruntime;
4048	record_wakee(p);
4049}
4050
4051#ifdef CONFIG_FAIR_GROUP_SCHED
4052/*
4053 * effective_load() calculates the load change as seen from the root_task_group
 
4054 *
4055 * Adding load to a group doesn't make a group heavier, but can cause movement
4056 * of group shares between cpus. Assuming the shares were perfectly aligned one
4057 * can calculate the shift in shares.
4058 *
4059 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4060 * on this @cpu and results in a total addition (subtraction) of @wg to the
4061 * total group weight.
4062 *
4063 * Given a runqueue weight distribution (rw_i) we can compute a shares
4064 * distribution (s_i) using:
4065 *
4066 *   s_i = rw_i / \Sum rw_j						(1)
4067 *
4068 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4069 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4070 * shares distribution (s_i):
4071 *
4072 *   rw_i = {   2,   4,   1,   0 }
4073 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4074 *
4075 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4076 * task used to run on and the CPU the waker is running on), we need to
4077 * compute the effect of waking a task on either CPU and, in case of a sync
4078 * wakeup, compute the effect of the current task going to sleep.
4079 *
4080 * So for a change of @wl to the local @cpu with an overall group weight change
4081 * of @wl we can compute the new shares distribution (s'_i) using:
4082 *
4083 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4084 *
4085 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4086 * differences in waking a task to CPU 0. The additional task changes the
4087 * weight and shares distributions like:
4088 *
4089 *   rw'_i = {   3,   4,   1,   0 }
4090 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4091 *
4092 * We can then compute the difference in effective weight by using:
4093 *
4094 *   dw_i = S * (s'_i - s_i)						(3)
4095 *
4096 * Where 'S' is the group weight as seen by its parent.
4097 *
4098 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4099 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4100 * 4/7) times the weight of the group.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4101 */
4102static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4103{
4104	struct sched_entity *se = tg->se[cpu];
 
 
 
 
 
4105
4106	if (!tg->parent)	/* the trivial, non-cgroup case */
4107		return wl;
 
4108
4109	for_each_sched_entity(se) {
4110		long w, W;
4111
4112		tg = se->my_q->tg;
 
 
4113
4114		/*
4115		 * W = @wg + \Sum rw_j
 
 
4116		 */
4117		W = wg + calc_tg_weight(tg, se->my_q);
 
 
 
 
 
4118
4119		/*
4120		 * w = rw_i + @wl
4121		 */
4122		w = se->my_q->load.weight + wl;
4123
4124		/*
4125		 * wl = S * s'_i; see (2)
4126		 */
4127		if (W > 0 && w < W)
4128			wl = (w * tg->shares) / W;
4129		else
4130			wl = tg->shares;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131
4132		/*
4133		 * Per the above, wl is the new se->load.weight value; since
4134		 * those are clipped to [MIN_SHARES, ...) do so now. See
4135		 * calc_cfs_shares().
4136		 */
4137		if (wl < MIN_SHARES)
4138			wl = MIN_SHARES;
4139
4140		/*
4141		 * wl = dw_i = S * (s'_i - s_i); see (3)
 
4142		 */
4143		wl -= se->load.weight;
4144
4145		/*
4146		 * Recursively apply this logic to all parent groups to compute
4147		 * the final effective load change on the root group. Since
4148		 * only the @tg group gets extra weight, all parent groups can
4149		 * only redistribute existing shares. @wl is the shift in shares
4150		 * resulting from this level per the above.
4151		 */
4152		wg = 0;
4153	}
4154
4155	return wl;
4156}
4157#else
4158
4159static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
 
 
 
 
 
 
4160{
4161	return wl;
4162}
 
 
 
 
 
 
4163
4164#endif
 
4165
4166static int wake_wide(struct task_struct *p)
4167{
4168	int factor = this_cpu_read(sd_llc_size);
 
4169
4170	/*
4171	 * Yeah, it's the switching-frequency, could means many wakee or
4172	 * rapidly switch, use factor here will just help to automatically
4173	 * adjust the loose-degree, so bigger node will lead to more pull.
4174	 */
4175	if (p->wakee_flips > factor) {
4176		/*
4177		 * wakee is somewhat hot, it needs certain amount of cpu
4178		 * resource, so if waker is far more hot, prefer to leave
4179		 * it alone.
4180		 */
4181		if (current->wakee_flips > (factor * p->wakee_flips))
4182			return 1;
4183	}
4184
4185	return 0;
 
 
 
 
 
 
 
 
4186}
4187
4188static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 
 
 
4189{
4190	s64 this_load, load;
4191	int idx, this_cpu, prev_cpu;
4192	unsigned long tl_per_task;
4193	struct task_group *tg;
4194	unsigned long weight;
4195	int balanced;
4196
4197	/*
4198	 * If we wake multiple tasks be careful to not bounce
4199	 * ourselves around too much.
4200	 */
4201	if (wake_wide(p))
4202		return 0;
4203
4204	idx	  = sd->wake_idx;
4205	this_cpu  = smp_processor_id();
4206	prev_cpu  = task_cpu(p);
4207	load	  = source_load(prev_cpu, idx);
4208	this_load = target_load(this_cpu, idx);
4209
4210	/*
4211	 * If sync wakeup then subtract the (maximum possible)
4212	 * effect of the currently running task from the load
4213	 * of the current CPU:
4214	 */
4215	if (sync) {
4216		tg = task_group(current);
4217		weight = current->se.load.weight;
4218
4219		this_load += effective_load(tg, this_cpu, -weight, -weight);
4220		load += effective_load(tg, prev_cpu, 0, -weight);
4221	}
4222
4223	tg = task_group(p);
4224	weight = p->se.load.weight;
 
 
 
 
 
4225
4226	/*
4227	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4228	 * due to the sync cause above having dropped this_load to 0, we'll
4229	 * always have an imbalance, but there's really nothing you can do
4230	 * about that, so that's good too.
4231	 *
4232	 * Otherwise check if either cpus are near enough in load to allow this
4233	 * task to be woken on this_cpu.
4234	 */
4235	if (this_load > 0) {
4236		s64 this_eff_load, prev_eff_load;
 
 
 
4237
4238		this_eff_load = 100;
4239		this_eff_load *= power_of(prev_cpu);
4240		this_eff_load *= this_load +
4241			effective_load(tg, this_cpu, weight, weight);
4242
4243		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4244		prev_eff_load *= power_of(this_cpu);
4245		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4246
4247		balanced = this_eff_load <= prev_eff_load;
4248	} else
4249		balanced = true;
 
 
 
4250
4251	/*
4252	 * If the currently running task will sleep within
4253	 * a reasonable amount of time then attract this newly
4254	 * woken task:
4255	 */
4256	if (sync && balanced)
4257		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
4258
4259	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4260	tl_per_task = cpu_avg_load_per_task(this_cpu);
 
4261
4262	if (balanced ||
4263	    (this_load <= load &&
4264	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4265		/*
4266		 * This domain has SD_WAKE_AFFINE and
4267		 * p is cache cold in this domain, and
4268		 * there is no bad imbalance.
4269		 */
4270		schedstat_inc(sd, ttwu_move_affine);
4271		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4272
4273		return 1;
 
 
 
 
4274	}
4275	return 0;
 
 
 
 
 
4276}
4277
4278/*
4279 * find_idlest_group finds and returns the least busy CPU group within the
4280 * domain.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4281 */
4282static struct sched_group *
4283find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4284		  int this_cpu, int sd_flag)
4285{
4286	struct sched_group *idlest = NULL, *group = sd->groups;
4287	unsigned long min_load = ULONG_MAX, this_load = 0;
4288	int load_idx = sd->forkexec_idx;
4289	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4290
4291	if (sd_flag & SD_BALANCE_WAKE)
4292		load_idx = sd->wake_idx;
4293
4294	do {
4295		unsigned long load, avg_load;
4296		int local_group;
4297		int i;
4298
4299		/* Skip over this group if it has no CPUs allowed */
4300		if (!cpumask_intersects(sched_group_cpus(group),
4301					tsk_cpus_allowed(p)))
4302			continue;
4303
4304		local_group = cpumask_test_cpu(this_cpu,
4305					       sched_group_cpus(group));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306
4307		/* Tally up the load of all CPUs in the group */
4308		avg_load = 0;
 
4309
4310		for_each_cpu(i, sched_group_cpus(group)) {
4311			/* Bias balancing toward cpus of our domain */
4312			if (local_group)
4313				load = source_load(i, load_idx);
4314			else
4315				load = target_load(i, load_idx);
4316
4317			avg_load += load;
4318		}
4319
4320		/* Adjust by relative CPU power of the group */
4321		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4322
4323		if (local_group) {
4324			this_load = avg_load;
4325		} else if (avg_load < min_load) {
4326			min_load = avg_load;
4327			idlest = group;
4328		}
4329	} while (group = group->next, group != sd->groups);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4330
4331	if (!idlest || 100*this_load < imbalance*min_load)
4332		return NULL;
4333	return idlest;
 
 
 
4334}
4335
4336/*
4337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 
4338 */
4339static int
4340find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4341{
4342	unsigned long load, min_load = ULONG_MAX;
4343	int idlest = -1;
4344	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
4345
4346	/* Traverse only the allowed CPUs */
4347	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4348		load = weighted_cpuload(i);
 
 
 
 
 
4349
4350		if (load < min_load || (load == min_load && i == this_cpu)) {
4351			min_load = load;
4352			idlest = i;
4353		}
4354	}
4355
4356	return idlest;
4357}
4358
4359/*
4360 * Try and locate an idle CPU in the sched_domain.
 
 
 
 
4361 */
4362static int select_idle_sibling(struct task_struct *p, int target)
 
4363{
4364	struct sched_domain *sd;
4365	struct sched_group *sg;
4366	int i = task_cpu(p);
 
 
4367
4368	if (idle_cpu(target))
4369		return target;
4370
4371	/*
4372	 * If the prevous cpu is cache affine and idle, don't be stupid.
 
 
 
 
 
 
4373	 */
4374	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4375		return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4376
4377	/*
4378	 * Otherwise, iterate the domains and find an elegible idle cpu.
 
4379	 */
4380	sd = rcu_dereference(per_cpu(sd_llc, target));
4381	for_each_lower_domain(sd) {
4382		sg = sd->groups;
4383		do {
4384			if (!cpumask_intersects(sched_group_cpus(sg),
4385						tsk_cpus_allowed(p)))
4386				goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4387
4388			for_each_cpu(i, sched_group_cpus(sg)) {
4389				if (i == target || !idle_cpu(i))
4390					goto next;
 
 
 
 
 
 
 
4391			}
 
4392
4393			target = cpumask_first_and(sched_group_cpus(sg),
4394					tsk_cpus_allowed(p));
4395			goto done;
4396next:
4397			sg = sg->next;
4398		} while (sg != sd->groups);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4399	}
4400done:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401	return target;
4402}
4403
4404/*
4405 * select_task_rq_fair: Select target runqueue for the waking task in domains
4406 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4407 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4408 *
4409 * Balances load by selecting the idlest cpu in the idlest group, or under
4410 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4411 *
4412 * Returns the target cpu number.
4413 *
4414 * preempt must be disabled.
4415 */
4416static int
4417select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4418{
4419	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
 
4420	int cpu = smp_processor_id();
4421	int new_cpu = cpu;
4422	int want_affine = 0;
4423	int sync = wake_flags & WF_SYNC;
 
 
 
 
 
 
 
 
4424
4425	if (p->nr_cpus_allowed == 1)
4426		return prev_cpu;
 
 
 
 
4427
4428	if (sd_flag & SD_BALANCE_WAKE) {
4429		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4430			want_affine = 1;
4431		new_cpu = prev_cpu;
4432	}
4433
4434	rcu_read_lock();
4435	for_each_domain(cpu, tmp) {
4436		if (!(tmp->flags & SD_LOAD_BALANCE))
4437			continue;
4438
4439		/*
4440		 * If both cpu and prev_cpu are part of this domain,
4441		 * cpu is a valid SD_WAKE_AFFINE target.
4442		 */
4443		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4444		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4445			affine_sd = tmp;
 
 
 
4446			break;
4447		}
4448
4449		if (tmp->flags & sd_flag)
4450			sd = tmp;
 
 
4451	}
4452
4453	if (affine_sd) {
4454		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4455			prev_cpu = cpu;
4456
4457		new_cpu = select_idle_sibling(p, prev_cpu);
4458		goto unlock;
4459	}
4460
4461	while (sd) {
4462		struct sched_group *group;
4463		int weight;
4464
4465		if (!(sd->flags & sd_flag)) {
4466			sd = sd->child;
4467			continue;
4468		}
4469
4470		group = find_idlest_group(sd, p, cpu, sd_flag);
4471		if (!group) {
4472			sd = sd->child;
4473			continue;
4474		}
4475
4476		new_cpu = find_idlest_cpu(group, p, cpu);
4477		if (new_cpu == -1 || new_cpu == cpu) {
4478			/* Now try balancing at a lower domain level of cpu */
4479			sd = sd->child;
4480			continue;
4481		}
4482
4483		/* Now try balancing at a lower domain level of new_cpu */
4484		cpu = new_cpu;
4485		weight = sd->span_weight;
4486		sd = NULL;
4487		for_each_domain(cpu, tmp) {
4488			if (weight <= tmp->span_weight)
4489				break;
4490			if (tmp->flags & sd_flag)
4491				sd = tmp;
4492		}
4493		/* while loop will break here if sd == NULL */
4494	}
4495unlock:
4496	rcu_read_unlock();
4497
4498	return new_cpu;
4499}
4500
 
 
4501/*
4502 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4503 * cfs_rq_of(p) references at time of call are still valid and identify the
4504 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4505 * other assumptions, including the state of rq->lock, should be made.
4506 */
4507static void
4508migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4509{
4510	struct sched_entity *se = &p->se;
4511	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512
4513	/*
4514	 * Load tracking: accumulate removed load so that it can be processed
4515	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4516	 * to blocked load iff they have a positive decay-count.  It can never
4517	 * be negative here since on-rq tasks have decay-count == 0.
4518	 */
4519	if (se->avg.decay_count) {
4520		se->avg.decay_count = -__synchronize_entity_decay(se);
4521		atomic_long_add(se->avg.load_avg_contrib,
4522						&cfs_rq->removed_load);
4523	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4524}
4525#endif /* CONFIG_SMP */
4526
4527static unsigned long
4528wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4529{
4530	unsigned long gran = sysctl_sched_wakeup_granularity;
4531
4532	/*
4533	 * Since its curr running now, convert the gran from real-time
4534	 * to virtual-time in his units.
4535	 *
4536	 * By using 'se' instead of 'curr' we penalize light tasks, so
4537	 * they get preempted easier. That is, if 'se' < 'curr' then
4538	 * the resulting gran will be larger, therefore penalizing the
4539	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4540	 * be smaller, again penalizing the lighter task.
4541	 *
4542	 * This is especially important for buddies when the leftmost
4543	 * task is higher priority than the buddy.
4544	 */
4545	return calc_delta_fair(gran, se);
4546}
4547
4548/*
4549 * Should 'se' preempt 'curr'.
4550 *
4551 *             |s1
4552 *        |s2
4553 *   |s3
4554 *         g
4555 *      |<--->|c
4556 *
4557 *  w(c, s1) = -1
4558 *  w(c, s2) =  0
4559 *  w(c, s3) =  1
4560 *
4561 */
4562static int
4563wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4564{
4565	s64 gran, vdiff = curr->vruntime - se->vruntime;
4566
4567	if (vdiff <= 0)
4568		return -1;
4569
4570	gran = wakeup_gran(curr, se);
4571	if (vdiff > gran)
4572		return 1;
4573
4574	return 0;
4575}
4576
4577static void set_last_buddy(struct sched_entity *se)
4578{
4579	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4580		return;
4581
4582	for_each_sched_entity(se)
 
 
4583		cfs_rq_of(se)->last = se;
 
4584}
4585
4586static void set_next_buddy(struct sched_entity *se)
4587{
4588	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4589		return;
4590
4591	for_each_sched_entity(se)
 
 
4592		cfs_rq_of(se)->next = se;
 
4593}
4594
4595static void set_skip_buddy(struct sched_entity *se)
4596{
4597	for_each_sched_entity(se)
4598		cfs_rq_of(se)->skip = se;
4599}
4600
4601/*
4602 * Preempt the current task with a newly woken task if needed:
4603 */
4604static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4605{
4606	struct task_struct *curr = rq->curr;
4607	struct sched_entity *se = &curr->se, *pse = &p->se;
4608	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4609	int scale = cfs_rq->nr_running >= sched_nr_latency;
4610	int next_buddy_marked = 0;
4611
4612	if (unlikely(se == pse))
4613		return;
4614
4615	/*
4616	 * This is possible from callers such as move_task(), in which we
4617	 * unconditionally check_prempt_curr() after an enqueue (which may have
4618	 * lead to a throttle).  This both saves work and prevents false
4619	 * next-buddy nomination below.
4620	 */
4621	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4622		return;
4623
4624	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4625		set_next_buddy(pse);
4626		next_buddy_marked = 1;
4627	}
4628
4629	/*
4630	 * We can come here with TIF_NEED_RESCHED already set from new task
4631	 * wake up path.
4632	 *
4633	 * Note: this also catches the edge-case of curr being in a throttled
4634	 * group (e.g. via set_curr_task), since update_curr() (in the
4635	 * enqueue of curr) will have resulted in resched being set.  This
4636	 * prevents us from potentially nominating it as a false LAST_BUDDY
4637	 * below.
4638	 */
4639	if (test_tsk_need_resched(curr))
4640		return;
4641
4642	/* Idle tasks are by definition preempted by non-idle tasks. */
4643	if (unlikely(curr->policy == SCHED_IDLE) &&
4644	    likely(p->policy != SCHED_IDLE))
4645		goto preempt;
4646
4647	/*
4648	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4649	 * is driven by the tick):
4650	 */
4651	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4652		return;
4653
4654	find_matching_se(&se, &pse);
4655	update_curr(cfs_rq_of(se));
4656	BUG_ON(!pse);
4657	if (wakeup_preempt_entity(se, pse) == 1) {
4658		/*
4659		 * Bias pick_next to pick the sched entity that is
4660		 * triggering this preemption.
4661		 */
4662		if (!next_buddy_marked)
4663			set_next_buddy(pse);
4664		goto preempt;
4665	}
4666
4667	return;
4668
4669preempt:
4670	resched_task(curr);
4671	/*
4672	 * Only set the backward buddy when the current task is still
4673	 * on the rq. This can happen when a wakeup gets interleaved
4674	 * with schedule on the ->pre_schedule() or idle_balance()
4675	 * point, either of which can * drop the rq lock.
4676	 *
4677	 * Also, during early boot the idle thread is in the fair class,
4678	 * for obvious reasons its a bad idea to schedule back to it.
4679	 */
4680	if (unlikely(!se->on_rq || curr == rq->idle))
4681		return;
4682
4683	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4684		set_last_buddy(se);
4685}
4686
4687static struct task_struct *
4688pick_next_task_fair(struct rq *rq, struct task_struct *prev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4689{
4690	struct cfs_rq *cfs_rq = &rq->cfs;
4691	struct sched_entity *se;
4692	struct task_struct *p;
4693	int new_tasks;
4694
4695again:
4696#ifdef CONFIG_FAIR_GROUP_SCHED
4697	if (!cfs_rq->nr_running)
4698		goto idle;
4699
4700	if (prev->sched_class != &fair_sched_class)
 
4701		goto simple;
4702
4703	/*
4704	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4705	 * likely that a next task is from the same cgroup as the current.
4706	 *
4707	 * Therefore attempt to avoid putting and setting the entire cgroup
4708	 * hierarchy, only change the part that actually changes.
4709	 */
4710
4711	do {
4712		struct sched_entity *curr = cfs_rq->curr;
4713
4714		/*
4715		 * Since we got here without doing put_prev_entity() we also
4716		 * have to consider cfs_rq->curr. If it is still a runnable
4717		 * entity, update_curr() will update its vruntime, otherwise
4718		 * forget we've ever seen it.
4719		 */
4720		if (curr && curr->on_rq)
4721			update_curr(cfs_rq);
4722		else
4723			curr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
4724
4725		/*
4726		 * This call to check_cfs_rq_runtime() will do the throttle and
4727		 * dequeue its entity in the parent(s). Therefore the 'simple'
4728		 * nr_running test will indeed be correct.
4729		 */
4730		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4731			goto simple;
4732
4733		se = pick_next_entity(cfs_rq, curr);
4734		cfs_rq = group_cfs_rq(se);
4735	} while (cfs_rq);
4736
4737	p = task_of(se);
4738
4739	/*
4740	 * Since we haven't yet done put_prev_entity and if the selected task
4741	 * is a different task than we started out with, try and touch the
4742	 * least amount of cfs_rqs.
4743	 */
4744	if (prev != p) {
4745		struct sched_entity *pse = &prev->se;
4746
4747		while (!(cfs_rq = is_same_group(se, pse))) {
4748			int se_depth = se->depth;
4749			int pse_depth = pse->depth;
4750
4751			if (se_depth <= pse_depth) {
4752				put_prev_entity(cfs_rq_of(pse), pse);
4753				pse = parent_entity(pse);
4754			}
4755			if (se_depth >= pse_depth) {
4756				set_next_entity(cfs_rq_of(se), se);
4757				se = parent_entity(se);
4758			}
4759		}
4760
4761		put_prev_entity(cfs_rq, pse);
4762		set_next_entity(cfs_rq, se);
4763	}
4764
4765	if (hrtick_enabled(rq))
4766		hrtick_start_fair(rq, p);
4767
4768	return p;
4769simple:
4770	cfs_rq = &rq->cfs;
4771#endif
4772
4773	if (!cfs_rq->nr_running)
4774		goto idle;
4775
4776	put_prev_task(rq, prev);
4777
4778	do {
4779		se = pick_next_entity(cfs_rq, NULL);
4780		set_next_entity(cfs_rq, se);
4781		cfs_rq = group_cfs_rq(se);
4782	} while (cfs_rq);
4783
4784	p = task_of(se);
4785
4786	if (hrtick_enabled(rq))
 
 
 
 
 
 
 
 
 
 
4787		hrtick_start_fair(rq, p);
4788
 
 
4789	return p;
4790
4791idle:
4792	new_tasks = idle_balance(rq);
 
 
 
 
4793	/*
4794	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4795	 * possible for any higher priority task to appear. In that case we
4796	 * must re-start the pick_next_entity() loop.
4797	 */
4798	if (new_tasks < 0)
4799		return RETRY_TASK;
4800
4801	if (new_tasks > 0)
4802		goto again;
4803
 
 
 
 
 
 
4804	return NULL;
4805}
4806
 
 
 
 
 
4807/*
4808 * Account for a descheduled task:
4809 */
4810static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4811{
4812	struct sched_entity *se = &prev->se;
4813	struct cfs_rq *cfs_rq;
4814
4815	for_each_sched_entity(se) {
4816		cfs_rq = cfs_rq_of(se);
4817		put_prev_entity(cfs_rq, se);
4818	}
4819}
4820
4821/*
4822 * sched_yield() is very simple
4823 *
4824 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4825 */
4826static void yield_task_fair(struct rq *rq)
4827{
4828	struct task_struct *curr = rq->curr;
4829	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4830	struct sched_entity *se = &curr->se;
4831
4832	/*
4833	 * Are we the only task in the tree?
4834	 */
4835	if (unlikely(rq->nr_running == 1))
4836		return;
4837
4838	clear_buddies(cfs_rq, se);
4839
4840	if (curr->policy != SCHED_BATCH) {
4841		update_rq_clock(rq);
4842		/*
4843		 * Update run-time statistics of the 'current'.
4844		 */
4845		update_curr(cfs_rq);
4846		/*
4847		 * Tell update_rq_clock() that we've just updated,
4848		 * so we don't do microscopic update in schedule()
4849		 * and double the fastpath cost.
4850		 */
4851		 rq->skip_clock_update = 1;
4852	}
4853
4854	set_skip_buddy(se);
4855}
4856
4857static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4858{
4859	struct sched_entity *se = &p->se;
4860
4861	/* throttled hierarchies are not runnable */
4862	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4863		return false;
4864
4865	/* Tell the scheduler that we'd really like pse to run next. */
4866	set_next_buddy(se);
4867
4868	yield_task_fair(rq);
4869
4870	return true;
4871}
4872
4873#ifdef CONFIG_SMP
4874/**************************************************
4875 * Fair scheduling class load-balancing methods.
4876 *
4877 * BASICS
4878 *
4879 * The purpose of load-balancing is to achieve the same basic fairness the
4880 * per-cpu scheduler provides, namely provide a proportional amount of compute
4881 * time to each task. This is expressed in the following equation:
4882 *
4883 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4884 *
4885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4886 * W_i,0 is defined as:
4887 *
4888 *   W_i,0 = \Sum_j w_i,j                                             (2)
4889 *
4890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4891 * is derived from the nice value as per prio_to_weight[].
4892 *
4893 * The weight average is an exponential decay average of the instantaneous
4894 * weight:
4895 *
4896 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4897 *
4898 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4900 * can also include other factors [XXX].
4901 *
4902 * To achieve this balance we define a measure of imbalance which follows
4903 * directly from (1):
4904 *
4905 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
4906 *
4907 * We them move tasks around to minimize the imbalance. In the continuous
4908 * function space it is obvious this converges, in the discrete case we get
4909 * a few fun cases generally called infeasible weight scenarios.
4910 *
4911 * [XXX expand on:
4912 *     - infeasible weights;
4913 *     - local vs global optima in the discrete case. ]
4914 *
4915 *
4916 * SCHED DOMAINS
4917 *
4918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4919 * for all i,j solution, we create a tree of cpus that follows the hardware
4920 * topology where each level pairs two lower groups (or better). This results
4921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4922 * tree to only the first of the previous level and we decrease the frequency
4923 * of load-balance at each level inv. proportional to the number of cpus in
4924 * the groups.
4925 *
4926 * This yields:
4927 *
4928 *     log_2 n     1     n
4929 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
4930 *     i = 0      2^i   2^i
4931 *                               `- size of each group
4932 *         |         |     `- number of cpus doing load-balance
4933 *         |         `- freq
4934 *         `- sum over all levels
4935 *
4936 * Coupled with a limit on how many tasks we can migrate every balance pass,
4937 * this makes (5) the runtime complexity of the balancer.
4938 *
4939 * An important property here is that each CPU is still (indirectly) connected
4940 * to every other cpu in at most O(log n) steps:
4941 *
4942 * The adjacency matrix of the resulting graph is given by:
4943 *
4944 *             log_2 n     
4945 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
4946 *             k = 0
4947 *
4948 * And you'll find that:
4949 *
4950 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
4951 *
4952 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4953 * The task movement gives a factor of O(m), giving a convergence complexity
4954 * of:
4955 *
4956 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
4957 *
4958 *
4959 * WORK CONSERVING
4960 *
4961 * In order to avoid CPUs going idle while there's still work to do, new idle
4962 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4963 * tree itself instead of relying on other CPUs to bring it work.
4964 *
4965 * This adds some complexity to both (5) and (8) but it reduces the total idle
4966 * time.
4967 *
4968 * [XXX more?]
4969 *
4970 *
4971 * CGROUPS
4972 *
4973 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4974 *
4975 *                                s_k,i
4976 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
4977 *                                 S_k
4978 *
4979 * Where
4980 *
4981 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
4982 *
4983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4984 *
4985 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4986 * property.
4987 *
4988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4989 *      rewrite all of this once again.]
4990 */ 
4991
4992static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4993
4994enum fbq_type { regular, remote, all };
4995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4996#define LBF_ALL_PINNED	0x01
4997#define LBF_NEED_BREAK	0x02
4998#define LBF_DST_PINNED  0x04
4999#define LBF_SOME_PINNED	0x08
 
5000
5001struct lb_env {
5002	struct sched_domain	*sd;
5003
5004	struct rq		*src_rq;
5005	int			src_cpu;
5006
5007	int			dst_cpu;
5008	struct rq		*dst_rq;
5009
5010	struct cpumask		*dst_grpmask;
5011	int			new_dst_cpu;
5012	enum cpu_idle_type	idle;
5013	long			imbalance;
5014	/* The set of CPUs under consideration for load-balancing */
5015	struct cpumask		*cpus;
5016
5017	unsigned int		flags;
5018
5019	unsigned int		loop;
5020	unsigned int		loop_break;
5021	unsigned int		loop_max;
5022
5023	enum fbq_type		fbq_type;
 
 
5024};
5025
5026/*
5027 * move_task - move a task from one runqueue to another runqueue.
5028 * Both runqueues must be locked.
5029 */
5030static void move_task(struct task_struct *p, struct lb_env *env)
5031{
5032	deactivate_task(env->src_rq, p, 0);
5033	set_task_cpu(p, env->dst_cpu);
5034	activate_task(env->dst_rq, p, 0);
5035	check_preempt_curr(env->dst_rq, p, 0);
5036}
5037
5038/*
5039 * Is this task likely cache-hot:
5040 */
5041static int
5042task_hot(struct task_struct *p, u64 now)
5043{
5044	s64 delta;
5045
 
 
5046	if (p->sched_class != &fair_sched_class)
5047		return 0;
5048
5049	if (unlikely(p->policy == SCHED_IDLE))
 
 
 
 
5050		return 0;
5051
5052	/*
5053	 * Buddy candidates are cache hot:
5054	 */
5055	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5056			(&p->se == cfs_rq_of(&p->se)->next ||
5057			 &p->se == cfs_rq_of(&p->se)->last))
5058		return 1;
5059
5060	if (sysctl_sched_migration_cost == -1)
5061		return 1;
 
 
 
 
 
 
 
 
5062	if (sysctl_sched_migration_cost == 0)
5063		return 0;
5064
5065	delta = now - p->se.exec_start;
5066
5067	return delta < (s64)sysctl_sched_migration_cost;
5068}
5069
5070#ifdef CONFIG_NUMA_BALANCING
5071/* Returns true if the destination node has incurred more faults */
5072static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
 
 
 
 
5073{
5074	int src_nid, dst_nid;
 
 
 
 
 
5075
5076	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5077	    !(env->sd->flags & SD_NUMA)) {
5078		return false;
5079	}
5080
5081	src_nid = cpu_to_node(env->src_cpu);
5082	dst_nid = cpu_to_node(env->dst_cpu);
5083
5084	if (src_nid == dst_nid)
5085		return false;
 
 
 
 
 
 
 
 
5086
5087	/* Always encourage migration to the preferred node. */
5088	if (dst_nid == p->numa_preferred_nid)
5089		return true;
5090
5091	/* If both task and group weight improve, this move is a winner. */
5092	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5093	    group_weight(p, dst_nid) > group_weight(p, src_nid))
5094		return true;
5095
5096	return false;
5097}
5098
5099
5100static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5101{
5102	int src_nid, dst_nid;
5103
5104	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5105		return false;
5106
5107	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5108		return false;
5109
5110	src_nid = cpu_to_node(env->src_cpu);
5111	dst_nid = cpu_to_node(env->dst_cpu);
5112
5113	if (src_nid == dst_nid)
5114		return false;
5115
5116	/* Migrating away from the preferred node is always bad. */
5117	if (src_nid == p->numa_preferred_nid)
5118		return true;
5119
5120	/* If either task or group weight get worse, don't do it. */
5121	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5122	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5123		return true;
5124
5125	return false;
5126}
5127
5128#else
5129static inline bool migrate_improves_locality(struct task_struct *p,
5130					     struct lb_env *env)
5131{
5132	return false;
5133}
5134
5135static inline bool migrate_degrades_locality(struct task_struct *p,
5136					     struct lb_env *env)
5137{
5138	return false;
5139}
5140#endif
5141
5142/*
5143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5144 */
5145static
5146int can_migrate_task(struct task_struct *p, struct lb_env *env)
5147{
5148	int tsk_cache_hot = 0;
 
 
 
5149	/*
5150	 * We do not migrate tasks that are:
5151	 * 1) throttled_lb_pair, or
5152	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5153	 * 3) running (obviously), or
5154	 * 4) are cache-hot on their current CPU.
5155	 */
5156	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5157		return 0;
5158
5159	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
 
 
 
 
5160		int cpu;
5161
5162		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5163
5164		env->flags |= LBF_SOME_PINNED;
5165
5166		/*
5167		 * Remember if this task can be migrated to any other cpu in
5168		 * our sched_group. We may want to revisit it if we couldn't
5169		 * meet load balance goals by pulling other tasks on src_cpu.
5170		 *
5171		 * Also avoid computing new_dst_cpu if we have already computed
5172		 * one in current iteration.
 
 
5173		 */
5174		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
 
5175			return 0;
5176
5177		/* Prevent to re-select dst_cpu via env's cpus */
5178		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5179			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5180				env->flags |= LBF_DST_PINNED;
5181				env->new_dst_cpu = cpu;
5182				break;
5183			}
5184		}
5185
5186		return 0;
5187	}
5188
5189	/* Record that we found atleast one task that could run on dst_cpu */
5190	env->flags &= ~LBF_ALL_PINNED;
5191
5192	if (task_running(env->src_rq, p)) {
5193		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5194		return 0;
5195	}
5196
5197	/*
5198	 * Aggressive migration if:
5199	 * 1) destination numa is preferred
5200	 * 2) task is cache cold, or
5201	 * 3) too many balance attempts have failed.
5202	 */
5203	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5204	if (!tsk_cache_hot)
5205		tsk_cache_hot = migrate_degrades_locality(p, env);
5206
5207	if (migrate_improves_locality(p, env)) {
5208#ifdef CONFIG_SCHEDSTATS
5209		if (tsk_cache_hot) {
5210			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5211			schedstat_inc(p, se.statistics.nr_forced_migrations);
 
 
 
 
5212		}
5213#endif
5214		return 1;
5215	}
5216
5217	if (!tsk_cache_hot ||
5218		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
 
5219
5220		if (tsk_cache_hot) {
5221			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5222			schedstat_inc(p, se.statistics.nr_forced_migrations);
5223		}
 
 
5224
5225		return 1;
5226	}
5227
5228	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5229	return 0;
5230}
5231
5232/*
5233 * move_one_task tries to move exactly one task from busiest to this_rq, as
5234 * part of active balancing operations within "domain".
5235 * Returns 1 if successful and 0 otherwise.
5236 *
5237 * Called with both runqueues locked.
5238 */
5239static int move_one_task(struct lb_env *env)
5240{
5241	struct task_struct *p, *n;
 
 
5242
5243	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
 
5244		if (!can_migrate_task(p, env))
5245			continue;
5246
5247		move_task(p, env);
 
5248		/*
5249		 * Right now, this is only the second place move_task()
5250		 * is called, so we can safely collect move_task()
5251		 * stats here rather than inside move_task().
 
5252		 */
5253		schedstat_inc(env->sd, lb_gained[env->idle]);
5254		return 1;
5255	}
5256	return 0;
5257}
5258
5259static const unsigned int sched_nr_migrate_break = 32;
5260
5261/*
5262 * move_tasks tries to move up to imbalance weighted load from busiest to
5263 * this_rq, as part of a balancing operation within domain "sd".
5264 * Returns 1 if successful and 0 otherwise.
5265 *
5266 * Called with both runqueues locked.
5267 */
5268static int move_tasks(struct lb_env *env)
5269{
5270	struct list_head *tasks = &env->src_rq->cfs_tasks;
 
5271	struct task_struct *p;
5272	unsigned long load;
5273	int pulled = 0;
 
 
 
 
 
 
 
 
 
 
5274
5275	if (env->imbalance <= 0)
5276		return 0;
5277
5278	while (!list_empty(tasks)) {
5279		p = list_first_entry(tasks, struct task_struct, se.group_node);
 
 
 
 
 
 
 
5280
5281		env->loop++;
5282		/* We've more or less seen every task there is, call it quits */
5283		if (env->loop > env->loop_max)
5284			break;
5285
5286		/* take a breather every nr_migrate tasks */
5287		if (env->loop > env->loop_break) {
5288			env->loop_break += sched_nr_migrate_break;
5289			env->flags |= LBF_NEED_BREAK;
5290			break;
5291		}
5292
5293		if (!can_migrate_task(p, env))
5294			goto next;
5295
5296		load = task_h_load(p);
 
 
 
 
 
 
 
 
 
5297
5298		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5299			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5300
5301		if ((load / 2) > env->imbalance)
5302			goto next;
5303
5304		move_task(p, env);
5305		pulled++;
5306		env->imbalance -= load;
5307
5308#ifdef CONFIG_PREEMPT
5309		/*
5310		 * NEWIDLE balancing is a source of latency, so preemptible
5311		 * kernels will stop after the first task is pulled to minimize
5312		 * the critical section.
5313		 */
5314		if (env->idle == CPU_NEWLY_IDLE)
5315			break;
5316#endif
5317
5318		/*
5319		 * We only want to steal up to the prescribed amount of
5320		 * weighted load.
5321		 */
5322		if (env->imbalance <= 0)
5323			break;
5324
5325		continue;
5326next:
5327		list_move_tail(&p->se.group_node, tasks);
5328	}
5329
5330	/*
5331	 * Right now, this is one of only two places move_task() is called,
5332	 * so we can safely collect move_task() stats here rather than
5333	 * inside move_task().
5334	 */
5335	schedstat_add(env->sd, lb_gained[env->idle], pulled);
 
 
 
 
 
 
 
 
 
 
5336
5337	return pulled;
 
 
5338}
5339
5340#ifdef CONFIG_FAIR_GROUP_SCHED
5341/*
5342 * update tg->load_weight by folding this cpu's load_avg
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5343 */
5344static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5345{
5346	struct sched_entity *se = tg->se[cpu];
5347	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
 
5348
5349	/* throttled entities do not contribute to load */
5350	if (throttled_hierarchy(cfs_rq))
5351		return;
5352
5353	update_cfs_rq_blocked_load(cfs_rq, 1);
 
 
5354
5355	if (se) {
5356		update_entity_load_avg(se, 1);
5357		/*
5358		 * We pivot on our runnable average having decayed to zero for
5359		 * list removal.  This generally implies that all our children
5360		 * have also been removed (modulo rounding error or bandwidth
5361		 * control); however, such cases are rare and we can fix these
5362		 * at enqueue.
5363		 *
5364		 * TODO: fix up out-of-order children on enqueue.
5365		 */
5366		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5367			list_del_leaf_cfs_rq(cfs_rq);
5368	} else {
5369		struct rq *rq = rq_of(cfs_rq);
5370		update_rq_runnable_avg(rq, rq->nr_running);
5371	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5372}
5373
5374static void update_blocked_averages(int cpu)
 
 
5375{
5376	struct rq *rq = cpu_rq(cpu);
5377	struct cfs_rq *cfs_rq;
5378	unsigned long flags;
5379
5380	raw_spin_lock_irqsave(&rq->lock, flags);
5381	update_rq_clock(rq);
5382	/*
5383	 * Iterates the task_group tree in a bottom up fashion, see
5384	 * list_add_leaf_cfs_rq() for details.
5385	 */
5386	for_each_leaf_cfs_rq(rq, cfs_rq) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5387		/*
5388		 * Note: We may want to consider periodically releasing
5389		 * rq->lock about these updates so that creating many task
5390		 * groups does not result in continually extending hold time.
5391		 */
5392		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
 
 
 
 
 
5393	}
5394
5395	raw_spin_unlock_irqrestore(&rq->lock, flags);
5396}
5397
5398/*
5399 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5400 * This needs to be done in a top-down fashion because the load of a child
5401 * group is a fraction of its parents load.
5402 */
5403static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5404{
5405	struct rq *rq = rq_of(cfs_rq);
5406	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5407	unsigned long now = jiffies;
5408	unsigned long load;
5409
5410	if (cfs_rq->last_h_load_update == now)
5411		return;
5412
5413	cfs_rq->h_load_next = NULL;
5414	for_each_sched_entity(se) {
5415		cfs_rq = cfs_rq_of(se);
5416		cfs_rq->h_load_next = se;
5417		if (cfs_rq->last_h_load_update == now)
5418			break;
5419	}
5420
5421	if (!se) {
5422		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5423		cfs_rq->last_h_load_update = now;
5424	}
5425
5426	while ((se = cfs_rq->h_load_next) != NULL) {
5427		load = cfs_rq->h_load;
5428		load = div64_ul(load * se->avg.load_avg_contrib,
5429				cfs_rq->runnable_load_avg + 1);
5430		cfs_rq = group_cfs_rq(se);
5431		cfs_rq->h_load = load;
5432		cfs_rq->last_h_load_update = now;
5433	}
5434}
5435
5436static unsigned long task_h_load(struct task_struct *p)
5437{
5438	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5439
5440	update_cfs_rq_h_load(cfs_rq);
5441	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5442			cfs_rq->runnable_load_avg + 1);
5443}
5444#else
5445static inline void update_blocked_averages(int cpu)
5446{
 
 
 
 
 
 
 
 
5447}
5448
5449static unsigned long task_h_load(struct task_struct *p)
5450{
5451	return p->se.avg.load_avg_contrib;
5452}
5453#endif
5454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5455/********** Helpers for find_busiest_group ************************/
 
5456/*
5457 * sg_lb_stats - stats of a sched_group required for load_balancing
5458 */
5459struct sg_lb_stats {
5460	unsigned long avg_load; /*Avg load across the CPUs of the group */
5461	unsigned long group_load; /* Total load over the CPUs of the group */
5462	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5463	unsigned long load_per_task;
5464	unsigned long group_power;
5465	unsigned int sum_nr_running; /* Nr tasks running in the group */
5466	unsigned int group_capacity;
5467	unsigned int idle_cpus;
5468	unsigned int group_weight;
5469	int group_imb; /* Is there an imbalance in the group ? */
5470	int group_has_capacity; /* Is there extra capacity in the group? */
 
5471#ifdef CONFIG_NUMA_BALANCING
5472	unsigned int nr_numa_running;
5473	unsigned int nr_preferred_running;
5474#endif
5475};
5476
5477/*
5478 * sd_lb_stats - Structure to store the statistics of a sched_domain
5479 *		 during load balancing.
5480 */
5481struct sd_lb_stats {
5482	struct sched_group *busiest;	/* Busiest group in this sd */
5483	struct sched_group *local;	/* Local group in this sd */
5484	unsigned long total_load;	/* Total load of all groups in sd */
5485	unsigned long total_pwr;	/* Total power of all groups in sd */
5486	unsigned long avg_load;	/* Average load across all groups in sd */
 
5487
5488	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5489	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5490};
5491
5492static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5493{
5494	/*
5495	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5496	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5497	 * We must however clear busiest_stat::avg_load because
5498	 * update_sd_pick_busiest() reads this before assignment.
 
5499	 */
5500	*sds = (struct sd_lb_stats){
5501		.busiest = NULL,
5502		.local = NULL,
5503		.total_load = 0UL,
5504		.total_pwr = 0UL,
5505		.busiest_stat = {
5506			.avg_load = 0UL,
 
5507		},
5508	};
5509}
5510
5511/**
5512 * get_sd_load_idx - Obtain the load index for a given sched domain.
5513 * @sd: The sched_domain whose load_idx is to be obtained.
5514 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5515 *
5516 * Return: The load index.
5517 */
5518static inline int get_sd_load_idx(struct sched_domain *sd,
5519					enum cpu_idle_type idle)
5520{
5521	int load_idx;
 
 
 
5522
5523	switch (idle) {
5524	case CPU_NOT_IDLE:
5525		load_idx = sd->busy_idx;
5526		break;
5527
5528	case CPU_NEWLY_IDLE:
5529		load_idx = sd->newidle_idx;
5530		break;
5531	default:
5532		load_idx = sd->idle_idx;
5533		break;
5534	}
5535
5536	return load_idx;
5537}
5538
5539static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5540{
5541	return SCHED_POWER_SCALE;
5542}
5543
5544unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5545{
5546	return default_scale_freq_power(sd, cpu);
5547}
5548
5549static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5550{
5551	unsigned long weight = sd->span_weight;
5552	unsigned long smt_gain = sd->smt_gain;
5553
5554	smt_gain /= weight;
5555
5556	return smt_gain;
5557}
5558
5559unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5560{
5561	return default_scale_smt_power(sd, cpu);
5562}
5563
5564static unsigned long scale_rt_power(int cpu)
5565{
5566	struct rq *rq = cpu_rq(cpu);
5567	u64 total, available, age_stamp, avg;
5568
5569	/*
5570	 * Since we're reading these variables without serialization make sure
5571	 * we read them once before doing sanity checks on them.
5572	 */
5573	age_stamp = ACCESS_ONCE(rq->age_stamp);
5574	avg = ACCESS_ONCE(rq->rt_avg);
 
 
 
5575
5576	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5577
5578	if (unlikely(total < avg)) {
5579		/* Ensures that power won't end up being negative */
5580		available = 0;
5581	} else {
5582		available = total - avg;
5583	}
5584
5585	if (unlikely((s64)total < SCHED_POWER_SCALE))
5586		total = SCHED_POWER_SCALE;
5587
5588	total >>= SCHED_POWER_SHIFT;
5589
5590	return div_u64(available, total);
5591}
5592
5593static void update_cpu_power(struct sched_domain *sd, int cpu)
5594{
5595	unsigned long weight = sd->span_weight;
5596	unsigned long power = SCHED_POWER_SCALE;
5597	struct sched_group *sdg = sd->groups;
5598
5599	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5600		if (sched_feat(ARCH_POWER))
5601			power *= arch_scale_smt_power(sd, cpu);
5602		else
5603			power *= default_scale_smt_power(sd, cpu);
5604
5605		power >>= SCHED_POWER_SHIFT;
5606	}
5607
5608	sdg->sgp->power_orig = power;
5609
5610	if (sched_feat(ARCH_POWER))
5611		power *= arch_scale_freq_power(sd, cpu);
5612	else
5613		power *= default_scale_freq_power(sd, cpu);
5614
5615	power >>= SCHED_POWER_SHIFT;
5616
5617	power *= scale_rt_power(cpu);
5618	power >>= SCHED_POWER_SHIFT;
5619
5620	if (!power)
5621		power = 1;
5622
5623	cpu_rq(cpu)->cpu_power = power;
5624	sdg->sgp->power = power;
5625}
5626
5627void update_group_power(struct sched_domain *sd, int cpu)
5628{
5629	struct sched_domain *child = sd->child;
5630	struct sched_group *group, *sdg = sd->groups;
5631	unsigned long power, power_orig;
5632	unsigned long interval;
5633
5634	interval = msecs_to_jiffies(sd->balance_interval);
5635	interval = clamp(interval, 1UL, max_load_balance_interval);
5636	sdg->sgp->next_update = jiffies + interval;
5637
5638	if (!child) {
5639		update_cpu_power(sd, cpu);
5640		return;
5641	}
5642
5643	power_orig = power = 0;
 
 
5644
5645	if (child->flags & SD_OVERLAP) {
5646		/*
5647		 * SD_OVERLAP domains cannot assume that child groups
5648		 * span the current group.
5649		 */
5650
5651		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5652			struct sched_group_power *sgp;
5653			struct rq *rq = cpu_rq(cpu);
5654
5655			/*
5656			 * build_sched_domains() -> init_sched_groups_power()
5657			 * gets here before we've attached the domains to the
5658			 * runqueues.
5659			 *
5660			 * Use power_of(), which is set irrespective of domains
5661			 * in update_cpu_power().
5662			 *
5663			 * This avoids power/power_orig from being 0 and
5664			 * causing divide-by-zero issues on boot.
5665			 *
5666			 * Runtime updates will correct power_orig.
5667			 */
5668			if (unlikely(!rq->sd)) {
5669				power_orig += power_of(cpu);
5670				power += power_of(cpu);
5671				continue;
5672			}
5673
5674			sgp = rq->sd->groups->sgp;
5675			power_orig += sgp->power_orig;
5676			power += sgp->power;
5677		}
5678	} else  {
5679		/*
5680		 * !SD_OVERLAP domains can assume that child groups
5681		 * span the current group.
5682		 */ 
5683
5684		group = child->groups;
5685		do {
5686			power_orig += group->sgp->power_orig;
5687			power += group->sgp->power;
 
 
 
5688			group = group->next;
5689		} while (group != child->groups);
5690	}
5691
5692	sdg->sgp->power_orig = power_orig;
5693	sdg->sgp->power = power;
 
5694}
5695
5696/*
5697 * Try and fix up capacity for tiny siblings, this is needed when
5698 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5699 * which on its own isn't powerful enough.
5700 *
5701 * See update_sd_pick_busiest() and check_asym_packing().
5702 */
5703static inline int
5704fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5705{
5706	/*
5707	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5708	 */
5709	if (!(sd->flags & SD_SHARE_CPUPOWER))
5710		return 0;
5711
5712	/*
5713	 * If ~90% of the cpu_power is still there, we're good.
5714	 */
5715	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5716		return 1;
5717
5718	return 0;
 
 
 
5719}
5720
5721/*
5722 * Group imbalance indicates (and tries to solve) the problem where balancing
5723 * groups is inadequate due to tsk_cpus_allowed() constraints.
5724 *
5725 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5726 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5727 * Something like:
5728 *
5729 * 	{ 0 1 2 3 } { 4 5 6 7 }
5730 * 	        *     * * *
5731 *
5732 * If we were to balance group-wise we'd place two tasks in the first group and
5733 * two tasks in the second group. Clearly this is undesired as it will overload
5734 * cpu 3 and leave one of the cpus in the second group unused.
5735 *
5736 * The current solution to this issue is detecting the skew in the first group
5737 * by noticing the lower domain failed to reach balance and had difficulty
5738 * moving tasks due to affinity constraints.
5739 *
5740 * When this is so detected; this group becomes a candidate for busiest; see
5741 * update_sd_pick_busiest(). And calculate_imbalance() and
5742 * find_busiest_group() avoid some of the usual balance conditions to allow it
5743 * to create an effective group imbalance.
5744 *
5745 * This is a somewhat tricky proposition since the next run might not find the
5746 * group imbalance and decide the groups need to be balanced again. A most
5747 * subtle and fragile situation.
5748 */
5749
5750static inline int sg_imbalanced(struct sched_group *group)
5751{
5752	return group->sgp->imbalance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5753}
5754
5755/*
5756 * Compute the group capacity.
5757 *
5758 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5759 * first dividing out the smt factor and computing the actual number of cores
5760 * and limit power unit capacity with that.
 
5761 */
5762static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763{
5764	unsigned int capacity, smt, cpus;
5765	unsigned int power, power_orig;
 
 
 
5766
5767	power = group->sgp->power;
5768	power_orig = group->sgp->power_orig;
5769	cpus = group->group_weight;
5770
5771	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5772	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5773	capacity = cpus / smt; /* cores */
5774
5775	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5776	if (!capacity)
5777		capacity = fix_small_capacity(env->sd, group);
5778
5779	return capacity;
5780}
5781
5782/**
5783 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5784 * @env: The load balancing environment.
5785 * @group: sched_group whose statistics are to be updated.
5786 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5787 * @local_group: Does group contain this_cpu.
5788 * @sgs: variable to hold the statistics for this group.
 
5789 */
5790static inline void update_sg_lb_stats(struct lb_env *env,
5791			struct sched_group *group, int load_idx,
5792			int local_group, struct sg_lb_stats *sgs)
 
5793{
5794	unsigned long load;
5795	int i;
5796
5797	memset(sgs, 0, sizeof(*sgs));
5798
5799	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
 
 
5800		struct rq *rq = cpu_rq(i);
5801
5802		/* Bias balancing toward cpus of our domain */
5803		if (local_group)
5804			load = target_load(i, load_idx);
5805		else
5806			load = source_load(i, load_idx);
 
 
 
 
 
 
 
 
5807
5808		sgs->group_load += load;
5809		sgs->sum_nr_running += rq->nr_running;
5810#ifdef CONFIG_NUMA_BALANCING
5811		sgs->nr_numa_running += rq->nr_numa_running;
5812		sgs->nr_preferred_running += rq->nr_preferred_running;
5813#endif
5814		sgs->sum_weighted_load += weighted_cpuload(i);
5815		if (idle_cpu(i))
 
 
5816			sgs->idle_cpus++;
 
 
 
 
 
 
 
 
 
 
 
 
 
5817	}
5818
5819	/* Adjust by relative CPU power of the group */
5820	sgs->group_power = group->sgp->power;
5821	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
 
 
 
 
5822
5823	if (sgs->sum_nr_running)
5824		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5825
5826	sgs->group_weight = group->group_weight;
5827
5828	sgs->group_imb = sg_imbalanced(group);
5829	sgs->group_capacity = sg_capacity(env, group);
5830
5831	if (sgs->group_capacity > sgs->sum_nr_running)
5832		sgs->group_has_capacity = 1;
 
 
5833}
5834
5835/**
5836 * update_sd_pick_busiest - return 1 on busiest group
5837 * @env: The load balancing environment.
5838 * @sds: sched_domain statistics
5839 * @sg: sched_group candidate to be checked for being the busiest
5840 * @sgs: sched_group statistics
5841 *
5842 * Determine if @sg is a busier group than the previously selected
5843 * busiest group.
5844 *
5845 * Return: %true if @sg is a busier group than the previously selected
5846 * busiest group. %false otherwise.
5847 */
5848static bool update_sd_pick_busiest(struct lb_env *env,
5849				   struct sd_lb_stats *sds,
5850				   struct sched_group *sg,
5851				   struct sg_lb_stats *sgs)
5852{
5853	if (sgs->avg_load <= sds->busiest_stat.avg_load)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5854		return false;
5855
5856	if (sgs->sum_nr_running > sgs->group_capacity)
5857		return true;
5858
5859	if (sgs->group_imb)
5860		return true;
5861
5862	/*
5863	 * ASYM_PACKING needs to move all the work to the lowest
5864	 * numbered CPUs in the group, therefore mark all groups
5865	 * higher than ourself as busy.
5866	 */
5867	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5868	    env->dst_cpu < group_first_cpu(sg)) {
5869		if (!sds->busiest)
5870			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5871
5872		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5873			return true;
5874	}
5875
5876	return false;
 
 
 
 
 
 
 
 
 
 
 
5877}
5878
5879#ifdef CONFIG_NUMA_BALANCING
5880static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5881{
5882	if (sgs->sum_nr_running > sgs->nr_numa_running)
5883		return regular;
5884	if (sgs->sum_nr_running > sgs->nr_preferred_running)
5885		return remote;
5886	return all;
5887}
5888
5889static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5890{
5891	if (rq->nr_running > rq->nr_numa_running)
5892		return regular;
5893	if (rq->nr_running > rq->nr_preferred_running)
5894		return remote;
5895	return all;
5896}
5897#else
5898static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5899{
5900	return all;
5901}
5902
5903static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5904{
5905	return regular;
5906}
5907#endif /* CONFIG_NUMA_BALANCING */
5908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5909/**
5910 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5911 * @env: The load balancing environment.
5912 * @sds: variable to hold the statistics for this sched_domain.
5913 */
 
5914static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5915{
5916	struct sched_domain *child = env->sd->child;
5917	struct sched_group *sg = env->sd->groups;
 
5918	struct sg_lb_stats tmp_sgs;
5919	int load_idx, prefer_sibling = 0;
5920
5921	if (child && child->flags & SD_PREFER_SIBLING)
5922		prefer_sibling = 1;
5923
5924	load_idx = get_sd_load_idx(env->sd, env->idle);
5925
5926	do {
5927		struct sg_lb_stats *sgs = &tmp_sgs;
5928		int local_group;
5929
5930		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5931		if (local_group) {
5932			sds->local = sg;
5933			sgs = &sds->local_stat;
5934
5935			if (env->idle != CPU_NEWLY_IDLE ||
5936			    time_after_eq(jiffies, sg->sgp->next_update))
5937				update_group_power(env->sd, env->dst_cpu);
5938		}
5939
5940		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5941
5942		if (local_group)
5943			goto next_group;
5944
5945		/*
5946		 * In case the child domain prefers tasks go to siblings
5947		 * first, lower the sg capacity to one so that we'll try
5948		 * and move all the excess tasks away. We lower the capacity
5949		 * of a group only if the local group has the capacity to fit
5950		 * these excess tasks, i.e. nr_running < group_capacity. The
5951		 * extra check prevents the case where you always pull from the
5952		 * heaviest group when it is already under-utilized (possible
5953		 * with a large weight task outweighs the tasks on the system).
5954		 */
5955		if (prefer_sibling && sds->local &&
5956		    sds->local_stat.group_has_capacity)
5957			sgs->group_capacity = min(sgs->group_capacity, 1U);
5958
5959		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5960			sds->busiest = sg;
5961			sds->busiest_stat = *sgs;
5962		}
5963
5964next_group:
5965		/* Now, start updating sd_lb_stats */
5966		sds->total_load += sgs->group_load;
5967		sds->total_pwr += sgs->group_power;
5968
5969		sg = sg->next;
5970	} while (sg != env->sd->groups);
5971
 
 
 
 
5972	if (env->sd->flags & SD_NUMA)
5973		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5974}
5975
5976/**
5977 * check_asym_packing - Check to see if the group is packed into the
5978 *			sched doman.
5979 *
5980 * This is primarily intended to used at the sibling level.  Some
5981 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
5982 * case of POWER7, it can move to lower SMT modes only when higher
5983 * threads are idle.  When in lower SMT modes, the threads will
5984 * perform better since they share less core resources.  Hence when we
5985 * have idle threads, we want them to be the higher ones.
5986 *
5987 * This packing function is run on idle threads.  It checks to see if
5988 * the busiest CPU in this domain (core in the P7 case) has a higher
5989 * CPU number than the packing function is being run on.  Here we are
5990 * assuming lower CPU number will be equivalent to lower a SMT thread
5991 * number.
5992 *
5993 * Return: 1 when packing is required and a task should be moved to
5994 * this CPU.  The amount of the imbalance is returned in *imbalance.
5995 *
5996 * @env: The load balancing environment.
5997 * @sds: Statistics of the sched_domain which is to be packed
5998 */
5999static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6000{
6001	int busiest_cpu;
6002
6003	if (!(env->sd->flags & SD_ASYM_PACKING))
6004		return 0;
6005
6006	if (!sds->busiest)
6007		return 0;
 
 
 
6008
6009	busiest_cpu = group_first_cpu(sds->busiest);
6010	if (env->dst_cpu > busiest_cpu)
6011		return 0;
 
6012
6013	env->imbalance = DIV_ROUND_CLOSEST(
6014		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6015		SCHED_POWER_SCALE);
6016
6017	return 1;
6018}
6019
6020/**
6021 * fix_small_imbalance - Calculate the minor imbalance that exists
6022 *			amongst the groups of a sched_domain, during
6023 *			load balancing.
6024 * @env: The load balancing environment.
6025 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6026 */
6027static inline
6028void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6029{
6030	unsigned long tmp, pwr_now = 0, pwr_move = 0;
6031	unsigned int imbn = 2;
6032	unsigned long scaled_busy_load_per_task;
6033	struct sg_lb_stats *local, *busiest;
6034
6035	local = &sds->local_stat;
6036	busiest = &sds->busiest_stat;
6037
6038	if (!local->sum_nr_running)
6039		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6040	else if (busiest->load_per_task > local->load_per_task)
6041		imbn = 1;
6042
6043	scaled_busy_load_per_task =
6044		(busiest->load_per_task * SCHED_POWER_SCALE) /
6045		busiest->group_power;
6046
6047	if (busiest->avg_load + scaled_busy_load_per_task >=
6048	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6049		env->imbalance = busiest->load_per_task;
6050		return;
6051	}
6052
6053	/*
6054	 * OK, we don't have enough imbalance to justify moving tasks,
6055	 * however we may be able to increase total CPU power used by
6056	 * moving them.
6057	 */
 
 
6058
6059	pwr_now += busiest->group_power *
6060			min(busiest->load_per_task, busiest->avg_load);
6061	pwr_now += local->group_power *
6062			min(local->load_per_task, local->avg_load);
6063	pwr_now /= SCHED_POWER_SCALE;
6064
6065	/* Amount of load we'd subtract */
6066	if (busiest->avg_load > scaled_busy_load_per_task) {
6067		pwr_move += busiest->group_power *
6068			    min(busiest->load_per_task,
6069				busiest->avg_load - scaled_busy_load_per_task);
6070	}
6071
6072	/* Amount of load we'd add */
6073	if (busiest->avg_load * busiest->group_power <
6074	    busiest->load_per_task * SCHED_POWER_SCALE) {
6075		tmp = (busiest->avg_load * busiest->group_power) /
6076		      local->group_power;
6077	} else {
6078		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079		      local->group_power;
6080	}
6081	pwr_move += local->group_power *
6082		    min(local->load_per_task, local->avg_load + tmp);
6083	pwr_move /= SCHED_POWER_SCALE;
6084
6085	/* Move if we gain throughput */
6086	if (pwr_move > pwr_now)
6087		env->imbalance = busiest->load_per_task;
6088}
6089
6090/**
6091 * calculate_imbalance - Calculate the amount of imbalance present within the
6092 *			 groups of a given sched_domain during load balance.
6093 * @env: load balance environment
6094 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6095 */
6096static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6097{
6098	unsigned long max_pull, load_above_capacity = ~0UL;
6099	struct sg_lb_stats *local, *busiest;
6100
6101	local = &sds->local_stat;
6102	busiest = &sds->busiest_stat;
6103
6104	if (busiest->group_imb) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6105		/*
6106		 * In the group_imb case we cannot rely on group-wide averages
6107		 * to ensure cpu-load equilibrium, look at wider averages. XXX
 
 
6108		 */
6109		busiest->load_per_task =
6110			min(busiest->load_per_task, sds->avg_load);
 
6111	}
6112
6113	/*
6114	 * In the presence of smp nice balancing, certain scenarios can have
6115	 * max load less than avg load(as we skip the groups at or below
6116	 * its cpu_power, while calculating max_load..)
6117	 */
6118	if (busiest->avg_load <= sds->avg_load ||
6119	    local->avg_load >= sds->avg_load) {
6120		env->imbalance = 0;
6121		return fix_small_imbalance(env, sds);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6122	}
6123
6124	if (!busiest->group_imb) {
 
 
 
 
6125		/*
6126		 * Don't want to pull so many tasks that a group would go idle.
6127		 * Except of course for the group_imb case, since then we might
6128		 * have to drop below capacity to reach cpu-load equilibrium.
6129		 */
6130		load_above_capacity =
6131			(busiest->sum_nr_running - busiest->group_capacity);
6132
6133		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6134		load_above_capacity /= busiest->group_power;
 
 
 
 
 
 
 
 
 
 
 
6135	}
6136
6137	/*
6138	 * We're trying to get all the cpus to the average_load, so we don't
6139	 * want to push ourselves above the average load, nor do we wish to
6140	 * reduce the max loaded cpu below the average load. At the same time,
6141	 * we also don't want to reduce the group load below the group capacity
6142	 * (so that we can implement power-savings policies etc). Thus we look
6143	 * for the minimum possible imbalance.
6144	 */
6145	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6146
6147	/* How much load to actually move to equalise the imbalance */
6148	env->imbalance = min(
6149		max_pull * busiest->group_power,
6150		(sds->avg_load - local->avg_load) * local->group_power
6151	) / SCHED_POWER_SCALE;
6152
6153	/*
6154	 * if *imbalance is less than the average load per runnable task
6155	 * there is no guarantee that any tasks will be moved so we'll have
6156	 * a think about bumping its value to force at least one task to be
6157	 * moved
6158	 */
6159	if (env->imbalance < busiest->load_per_task)
6160		return fix_small_imbalance(env, sds);
6161}
6162
6163/******* find_busiest_group() helpers end here *********************/
6164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6165/**
6166 * find_busiest_group - Returns the busiest group within the sched_domain
6167 * if there is an imbalance. If there isn't an imbalance, and
6168 * the user has opted for power-savings, it returns a group whose
6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6170 * such a group exists.
6171 *
6172 * Also calculates the amount of weighted load which should be moved
6173 * to restore balance.
6174 *
6175 * @env: The load balancing environment.
6176 *
6177 * Return:	- The busiest group if imbalance exists.
6178 *		- If no imbalance and user has opted for power-savings balance,
6179 *		   return the least loaded group whose CPUs can be
6180 *		   put to idle by rebalancing its tasks onto our group.
6181 */
6182static struct sched_group *find_busiest_group(struct lb_env *env)
6183{
6184	struct sg_lb_stats *local, *busiest;
6185	struct sd_lb_stats sds;
6186
6187	init_sd_lb_stats(&sds);
6188
6189	/*
6190	 * Compute the various statistics relavent for load balancing at
6191	 * this level.
6192	 */
6193	update_sd_lb_stats(env, &sds);
 
 
 
 
 
 
 
 
6194	local = &sds.local_stat;
6195	busiest = &sds.busiest_stat;
6196
6197	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6198	    check_asym_packing(env, &sds))
6199		return sds.busiest;
6200
6201	/* There is no busy sibling group to pull tasks from */
6202	if (!sds.busiest || busiest->sum_nr_running == 0)
6203		goto out_balanced;
6204
6205	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
 
 
 
 
 
 
6206
6207	/*
6208	 * If the busiest group is imbalanced the below checks don't
6209	 * work because they assume all things are equal, which typically
6210	 * isn't true due to cpus_allowed constraints and the like.
6211	 */
6212	if (busiest->group_imb)
6213		goto force_balance;
6214
6215	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6216	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6217	    !busiest->group_has_capacity)
6218		goto force_balance;
6219
6220	/*
6221	 * If the local group is more busy than the selected busiest group
6222	 * don't try and pull any tasks.
6223	 */
6224	if (local->avg_load >= busiest->avg_load)
6225		goto out_balanced;
6226
6227	/*
6228	 * Don't pull any tasks if this group is already above the domain
6229	 * average load.
6230	 */
6231	if (local->avg_load >= sds.avg_load)
6232		goto out_balanced;
 
 
 
 
 
 
 
 
 
6233
6234	if (env->idle == CPU_IDLE) {
6235		/*
6236		 * This cpu is idle. If the busiest group load doesn't
6237		 * have more tasks than the number of available cpu's and
6238		 * there is no imbalance between this and busiest group
6239		 * wrt to idle cpu's, it is balanced.
6240		 */
6241		if ((local->idle_cpus < busiest->idle_cpus) &&
6242		    busiest->sum_nr_running <= busiest->group_weight)
6243			goto out_balanced;
6244	} else {
6245		/*
6246		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6247		 * imbalance_pct to be conservative.
6248		 */
6249		if (100 * busiest->avg_load <=
6250				env->sd->imbalance_pct * local->avg_load)
6251			goto out_balanced;
6252	}
6253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6254force_balance:
6255	/* Looks like there is an imbalance. Compute it */
6256	calculate_imbalance(env, &sds);
6257	return sds.busiest;
6258
6259out_balanced:
6260	env->imbalance = 0;
6261	return NULL;
6262}
6263
6264/*
6265 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6266 */
6267static struct rq *find_busiest_queue(struct lb_env *env,
6268				     struct sched_group *group)
6269{
6270	struct rq *busiest = NULL, *rq;
6271	unsigned long busiest_load = 0, busiest_power = 1;
 
6272	int i;
6273
6274	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6275		unsigned long power, capacity, wl;
 
6276		enum fbq_type rt;
6277
6278		rq = cpu_rq(i);
6279		rt = fbq_classify_rq(rq);
6280
6281		/*
6282		 * We classify groups/runqueues into three groups:
6283		 *  - regular: there are !numa tasks
6284		 *  - remote:  there are numa tasks that run on the 'wrong' node
6285		 *  - all:     there is no distinction
6286		 *
6287		 * In order to avoid migrating ideally placed numa tasks,
6288		 * ignore those when there's better options.
6289		 *
6290		 * If we ignore the actual busiest queue to migrate another
6291		 * task, the next balance pass can still reduce the busiest
6292		 * queue by moving tasks around inside the node.
6293		 *
6294		 * If we cannot move enough load due to this classification
6295		 * the next pass will adjust the group classification and
6296		 * allow migration of more tasks.
6297		 *
6298		 * Both cases only affect the total convergence complexity.
6299		 */
6300		if (rt > env->fbq_type)
6301			continue;
6302
6303		power = power_of(i);
6304		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6305		if (!capacity)
6306			capacity = fix_small_capacity(env->sd, group);
6307
6308		wl = weighted_cpuload(i);
6309
6310		/*
6311		 * When comparing with imbalance, use weighted_cpuload()
6312		 * which is not scaled with the cpu power.
 
 
6313		 */
6314		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
 
 
6315			continue;
6316
6317		/*
6318		 * For the load comparisons with the other cpu's, consider
6319		 * the weighted_cpuload() scaled with the cpu power, so that
6320		 * the load can be moved away from the cpu that is potentially
6321		 * running at a lower capacity.
6322		 *
6323		 * Thus we're looking for max(wl_i / power_i), crosswise
6324		 * multiplication to rid ourselves of the division works out
6325		 * to: wl_i * power_j > wl_j * power_i;  where j is our
6326		 * previous maximum.
6327		 */
6328		if (wl * busiest_power > busiest_load * power) {
6329			busiest_load = wl;
6330			busiest_power = power;
6331			busiest = rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6332		}
6333	}
6334
6335	return busiest;
6336}
6337
6338/*
6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6340 * so long as it is large enough.
6341 */
6342#define MAX_PINNED_INTERVAL	512
6343
6344/* Working cpumask for load_balance and load_balance_newidle. */
6345DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6346
6347static int need_active_balance(struct lb_env *env)
6348{
6349	struct sched_domain *sd = env->sd;
6350
6351	if (env->idle == CPU_NEWLY_IDLE) {
 
 
 
 
6352
6353		/*
6354		 * ASYM_PACKING needs to force migrate tasks from busy but
6355		 * higher numbered CPUs in order to pack all tasks in the
6356		 * lowest numbered CPUs.
6357		 */
6358		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
 
 
 
 
6359			return 1;
6360	}
6361
6362	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
 
 
 
6363}
6364
6365static int active_load_balance_cpu_stop(void *data);
6366
6367static int should_we_balance(struct lb_env *env)
6368{
6369	struct sched_group *sg = env->sd->groups;
6370	struct cpumask *sg_cpus, *sg_mask;
6371	int cpu, balance_cpu = -1;
 
 
 
 
 
 
6372
6373	/*
6374	 * In the newly idle case, we will allow all the cpu's
6375	 * to do the newly idle load balance.
6376	 */
6377	if (env->idle == CPU_NEWLY_IDLE)
6378		return 1;
6379
6380	sg_cpus = sched_group_cpus(sg);
6381	sg_mask = sched_group_mask(sg);
6382	/* Try to find first idle cpu */
6383	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6384		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6385			continue;
6386
6387		balance_cpu = cpu;
6388		break;
6389	}
6390
6391	if (balance_cpu == -1)
6392		balance_cpu = group_balance_cpu(sg);
6393
6394	/*
6395	 * First idle cpu or the first cpu(busiest) in this sched group
6396	 * is eligible for doing load balancing at this and above domains.
6397	 */
6398	return balance_cpu == env->dst_cpu;
6399}
6400
6401/*
6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6403 * tasks if there is an imbalance.
6404 */
6405static int load_balance(int this_cpu, struct rq *this_rq,
6406			struct sched_domain *sd, enum cpu_idle_type idle,
6407			int *continue_balancing)
6408{
6409	int ld_moved, cur_ld_moved, active_balance = 0;
6410	struct sched_domain *sd_parent = sd->parent;
6411	struct sched_group *group;
6412	struct rq *busiest;
6413	unsigned long flags;
6414	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6415
6416	struct lb_env env = {
6417		.sd		= sd,
6418		.dst_cpu	= this_cpu,
6419		.dst_rq		= this_rq,
6420		.dst_grpmask    = sched_group_cpus(sd->groups),
6421		.idle		= idle,
6422		.loop_break	= sched_nr_migrate_break,
6423		.cpus		= cpus,
6424		.fbq_type	= all,
 
6425	};
6426
6427	/*
6428	 * For NEWLY_IDLE load_balancing, we don't need to consider
6429	 * other cpus in our group
6430	 */
6431	if (idle == CPU_NEWLY_IDLE)
6432		env.dst_grpmask = NULL;
6433
6434	cpumask_copy(cpus, cpu_active_mask);
6435
6436	schedstat_inc(sd, lb_count[idle]);
6437
6438redo:
6439	if (!should_we_balance(&env)) {
6440		*continue_balancing = 0;
6441		goto out_balanced;
6442	}
6443
6444	group = find_busiest_group(&env);
6445	if (!group) {
6446		schedstat_inc(sd, lb_nobusyg[idle]);
6447		goto out_balanced;
6448	}
6449
6450	busiest = find_busiest_queue(&env, group);
6451	if (!busiest) {
6452		schedstat_inc(sd, lb_nobusyq[idle]);
6453		goto out_balanced;
6454	}
6455
6456	BUG_ON(busiest == env.dst_rq);
6457
6458	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
 
 
 
6459
6460	ld_moved = 0;
 
 
6461	if (busiest->nr_running > 1) {
6462		/*
6463		 * Attempt to move tasks. If find_busiest_group has found
6464		 * an imbalance but busiest->nr_running <= 1, the group is
6465		 * still unbalanced. ld_moved simply stays zero, so it is
6466		 * correctly treated as an imbalance.
6467		 */
6468		env.flags |= LBF_ALL_PINNED;
6469		env.src_cpu   = busiest->cpu;
6470		env.src_rq    = busiest;
6471		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472
6473more_balance:
6474		local_irq_save(flags);
6475		double_rq_lock(env.dst_rq, busiest);
6476
6477		/*
6478		 * cur_ld_moved - load moved in current iteration
6479		 * ld_moved     - cumulative load moved across iterations
6480		 */
6481		cur_ld_moved = move_tasks(&env);
6482		ld_moved += cur_ld_moved;
6483		double_rq_unlock(env.dst_rq, busiest);
6484		local_irq_restore(flags);
6485
6486		/*
6487		 * some other cpu did the load balance for us.
 
 
 
 
6488		 */
6489		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6490			resched_cpu(env.dst_cpu);
 
 
 
 
 
 
 
6491
6492		if (env.flags & LBF_NEED_BREAK) {
6493			env.flags &= ~LBF_NEED_BREAK;
6494			goto more_balance;
6495		}
6496
6497		/*
6498		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6499		 * us and move them to an alternate dst_cpu in our sched_group
6500		 * where they can run. The upper limit on how many times we
6501		 * iterate on same src_cpu is dependent on number of cpus in our
6502		 * sched_group.
6503		 *
6504		 * This changes load balance semantics a bit on who can move
6505		 * load to a given_cpu. In addition to the given_cpu itself
6506		 * (or a ilb_cpu acting on its behalf where given_cpu is
6507		 * nohz-idle), we now have balance_cpu in a position to move
6508		 * load to given_cpu. In rare situations, this may cause
6509		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6510		 * _independently_ and at _same_ time to move some load to
6511		 * given_cpu) causing exceess load to be moved to given_cpu.
6512		 * This however should not happen so much in practice and
6513		 * moreover subsequent load balance cycles should correct the
6514		 * excess load moved.
6515		 */
6516		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6517
6518			/* Prevent to re-select dst_cpu via env's cpus */
6519			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6520
6521			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6522			env.dst_cpu	 = env.new_dst_cpu;
6523			env.flags	&= ~LBF_DST_PINNED;
6524			env.loop	 = 0;
6525			env.loop_break	 = sched_nr_migrate_break;
6526
6527			/*
6528			 * Go back to "more_balance" rather than "redo" since we
6529			 * need to continue with same src_cpu.
6530			 */
6531			goto more_balance;
6532		}
6533
6534		/*
6535		 * We failed to reach balance because of affinity.
6536		 */
6537		if (sd_parent) {
6538			int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6539
6540			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6541				*group_imbalance = 1;
6542			} else if (*group_imbalance)
6543				*group_imbalance = 0;
6544		}
6545
6546		/* All tasks on this runqueue were pinned by CPU affinity */
6547		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6548			cpumask_clear_cpu(cpu_of(busiest), cpus);
6549			if (!cpumask_empty(cpus)) {
 
 
 
 
 
 
 
 
6550				env.loop = 0;
6551				env.loop_break = sched_nr_migrate_break;
6552				goto redo;
6553			}
6554			goto out_balanced;
6555		}
6556	}
6557
6558	if (!ld_moved) {
6559		schedstat_inc(sd, lb_failed[idle]);
6560		/*
6561		 * Increment the failure counter only on periodic balance.
6562		 * We do not want newidle balance, which can be very
6563		 * frequent, pollute the failure counter causing
6564		 * excessive cache_hot migrations and active balances.
6565		 */
6566		if (idle != CPU_NEWLY_IDLE)
6567			sd->nr_balance_failed++;
6568
6569		if (need_active_balance(&env)) {
6570			raw_spin_lock_irqsave(&busiest->lock, flags);
 
 
6571
6572			/* don't kick the active_load_balance_cpu_stop,
6573			 * if the curr task on busiest cpu can't be
6574			 * moved to this_cpu
 
6575			 */
6576			if (!cpumask_test_cpu(this_cpu,
6577					tsk_cpus_allowed(busiest->curr))) {
6578				raw_spin_unlock_irqrestore(&busiest->lock,
6579							    flags);
6580				env.flags |= LBF_ALL_PINNED;
6581				goto out_one_pinned;
6582			}
6583
 
 
 
6584			/*
6585			 * ->active_balance synchronizes accesses to
6586			 * ->active_balance_work.  Once set, it's cleared
6587			 * only after active load balance is finished.
6588			 */
6589			if (!busiest->active_balance) {
6590				busiest->active_balance = 1;
6591				busiest->push_cpu = this_cpu;
6592				active_balance = 1;
6593			}
6594			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6595
6596			if (active_balance) {
6597				stop_one_cpu_nowait(cpu_of(busiest),
6598					active_load_balance_cpu_stop, busiest,
6599					&busiest->active_balance_work);
6600			}
6601
6602			/*
6603			 * We've kicked active balancing, reset the failure
6604			 * counter.
6605			 */
6606			sd->nr_balance_failed = sd->cache_nice_tries+1;
6607		}
6608	} else
6609		sd->nr_balance_failed = 0;
 
6610
6611	if (likely(!active_balance)) {
6612		/* We were unbalanced, so reset the balancing interval */
6613		sd->balance_interval = sd->min_interval;
6614	} else {
6615		/*
6616		 * If we've begun active balancing, start to back off. This
6617		 * case may not be covered by the all_pinned logic if there
6618		 * is only 1 task on the busy runqueue (because we don't call
6619		 * move_tasks).
6620		 */
6621		if (sd->balance_interval < sd->max_interval)
6622			sd->balance_interval *= 2;
6623	}
6624
6625	goto out;
6626
6627out_balanced:
6628	schedstat_inc(sd, lb_balanced[idle]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6629
6630	sd->nr_balance_failed = 0;
6631
6632out_one_pinned:
 
 
 
 
 
 
 
 
 
 
 
6633	/* tune up the balancing interval */
6634	if (((env.flags & LBF_ALL_PINNED) &&
6635			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6636			(sd->balance_interval < sd->max_interval))
6637		sd->balance_interval *= 2;
6638
6639	ld_moved = 0;
6640out:
6641	return ld_moved;
6642}
6643
6644/*
6645 * idle_balance is called by schedule() if this_cpu is about to become
6646 * idle. Attempts to pull tasks from other CPUs.
6647 */
6648static int idle_balance(struct rq *this_rq)
6649{
6650	struct sched_domain *sd;
6651	int pulled_task = 0;
6652	unsigned long next_balance = jiffies + HZ;
6653	u64 curr_cost = 0;
6654	int this_cpu = this_rq->cpu;
6655
6656	idle_enter_fair(this_rq);
6657
6658	/*
6659	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6660	 * measure the duration of idle_balance() as idle time.
6661	 */
6662	this_rq->idle_stamp = rq_clock(this_rq);
6663
6664	if (this_rq->avg_idle < sysctl_sched_migration_cost)
6665		goto out;
6666
6667	/*
6668	 * Drop the rq->lock, but keep IRQ/preempt disabled.
 
 
6669	 */
6670	raw_spin_unlock(&this_rq->lock);
 
6671
6672	update_blocked_averages(this_cpu);
6673	rcu_read_lock();
6674	for_each_domain(this_cpu, sd) {
6675		unsigned long interval;
6676		int continue_balancing = 1;
6677		u64 t0, domain_cost;
6678
6679		if (!(sd->flags & SD_LOAD_BALANCE))
6680			continue;
6681
6682		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6683			break;
 
 
6684
6685		if (sd->flags & SD_BALANCE_NEWIDLE) {
6686			t0 = sched_clock_cpu(this_cpu);
 
6687
6688			/* If we've pulled tasks over stop searching: */
6689			pulled_task = load_balance(this_cpu, this_rq,
6690						   sd, CPU_NEWLY_IDLE,
6691						   &continue_balancing);
6692
6693			domain_cost = sched_clock_cpu(this_cpu) - t0;
6694			if (domain_cost > sd->max_newidle_lb_cost)
6695				sd->max_newidle_lb_cost = domain_cost;
6696
6697			curr_cost += domain_cost;
6698		}
6699
6700		interval = msecs_to_jiffies(sd->balance_interval);
6701		if (time_after(next_balance, sd->last_balance + interval))
6702			next_balance = sd->last_balance + interval;
6703		if (pulled_task)
6704			break;
6705	}
6706	rcu_read_unlock();
6707
6708	raw_spin_lock(&this_rq->lock);
6709
6710	if (curr_cost > this_rq->max_idle_balance_cost)
6711		this_rq->max_idle_balance_cost = curr_cost;
6712
6713	/*
6714	 * While browsing the domains, we released the rq lock, a task could
6715	 * have been enqueued in the meantime. Since we're not going idle,
6716	 * pretend we pulled a task.
6717	 */
6718	if (this_rq->cfs.h_nr_running && !pulled_task)
6719		pulled_task = 1;
6720
6721	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6722		/*
6723		 * We are going idle. next_balance may be set based on
6724		 * a busy processor. So reset next_balance.
6725		 */
6726		this_rq->next_balance = next_balance;
6727	}
6728
6729out:
6730	/* Is there a task of a high priority class? */
6731	if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6732	    ((this_rq->stop && this_rq->stop->on_rq) ||
6733	     this_rq->dl.dl_nr_running ||
6734	     (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6735		pulled_task = -1;
6736
6737	if (pulled_task) {
6738		idle_exit_fair(this_rq);
6739		this_rq->idle_stamp = 0;
6740	}
6741
6742	return pulled_task;
6743}
6744
6745/*
6746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6747 * running tasks off the busiest CPU onto idle CPUs. It requires at
6748 * least 1 task to be running on each physical CPU where possible, and
6749 * avoids physical / logical imbalances.
6750 */
6751static int active_load_balance_cpu_stop(void *data)
6752{
6753	struct rq *busiest_rq = data;
6754	int busiest_cpu = cpu_of(busiest_rq);
6755	int target_cpu = busiest_rq->push_cpu;
6756	struct rq *target_rq = cpu_rq(target_cpu);
6757	struct sched_domain *sd;
 
 
6758
6759	raw_spin_lock_irq(&busiest_rq->lock);
 
 
 
 
 
 
 
6760
6761	/* make sure the requested cpu hasn't gone down in the meantime */
6762	if (unlikely(busiest_cpu != smp_processor_id() ||
6763		     !busiest_rq->active_balance))
6764		goto out_unlock;
6765
6766	/* Is there any task to move? */
6767	if (busiest_rq->nr_running <= 1)
6768		goto out_unlock;
6769
6770	/*
6771	 * This condition is "impossible", if it occurs
6772	 * we need to fix it. Originally reported by
6773	 * Bjorn Helgaas on a 128-cpu setup.
6774	 */
6775	BUG_ON(busiest_rq == target_rq);
6776
6777	/* move a task from busiest_rq to target_rq */
6778	double_lock_balance(busiest_rq, target_rq);
6779
6780	/* Search for an sd spanning us and the target CPU. */
6781	rcu_read_lock();
6782	for_each_domain(target_cpu, sd) {
6783		if ((sd->flags & SD_LOAD_BALANCE) &&
6784		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6785				break;
6786	}
6787
6788	if (likely(sd)) {
6789		struct lb_env env = {
6790			.sd		= sd,
6791			.dst_cpu	= target_cpu,
6792			.dst_rq		= target_rq,
6793			.src_cpu	= busiest_rq->cpu,
6794			.src_rq		= busiest_rq,
6795			.idle		= CPU_IDLE,
 
6796		};
6797
6798		schedstat_inc(sd, alb_count);
 
6799
6800		if (move_one_task(&env))
6801			schedstat_inc(sd, alb_pushed);
6802		else
6803			schedstat_inc(sd, alb_failed);
 
 
 
 
6804	}
6805	rcu_read_unlock();
6806	double_unlock_balance(busiest_rq, target_rq);
6807out_unlock:
6808	busiest_rq->active_balance = 0;
6809	raw_spin_unlock_irq(&busiest_rq->lock);
 
 
 
 
 
 
6810	return 0;
6811}
6812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6813static inline int on_null_domain(struct rq *rq)
6814{
6815	return unlikely(!rcu_dereference_sched(rq->sd));
6816}
6817
6818#ifdef CONFIG_NO_HZ_COMMON
6819/*
6820 * idle load balancing details
6821 * - When one of the busy CPUs notice that there may be an idle rebalancing
6822 *   needed, they will kick the idle load balancer, which then does idle
6823 *   load balancing for all the idle CPUs.
 
 
6824 */
6825static struct {
6826	cpumask_var_t idle_cpus_mask;
6827	atomic_t nr_cpus;
6828	unsigned long next_balance;     /* in jiffy units */
6829} nohz ____cacheline_aligned;
6830
6831static inline int find_new_ilb(void)
6832{
6833	int ilb = cpumask_first(nohz.idle_cpus_mask);
 
 
 
6834
6835	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6836		return ilb;
 
 
 
 
6837
6838	return nr_cpu_ids;
6839}
6840
6841/*
6842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6844 * CPU (if there is one).
6845 */
6846static void nohz_balancer_kick(void)
6847{
6848	int ilb_cpu;
6849
6850	nohz.next_balance++;
 
 
 
 
 
6851
6852	ilb_cpu = find_new_ilb();
6853
6854	if (ilb_cpu >= nr_cpu_ids)
6855		return;
6856
6857	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
 
 
 
 
 
6858		return;
 
6859	/*
6860	 * Use smp_send_reschedule() instead of resched_cpu().
6861	 * This way we generate a sched IPI on the target cpu which
6862	 * is idle. And the softirq performing nohz idle load balance
6863	 * will be run before returning from the IPI.
6864	 */
6865	smp_send_reschedule(ilb_cpu);
6866	return;
6867}
6868
6869static inline void nohz_balance_exit_idle(int cpu)
 
 
 
 
6870{
6871	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872		/*
6873		 * Completely isolated CPUs don't ever set, so we must test.
 
6874		 */
6875		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6876			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6877			atomic_dec(&nohz.nr_cpus);
6878		}
6879		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
 
 
 
 
 
 
 
 
6880	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6881}
6882
6883static inline void set_cpu_sd_state_busy(void)
6884{
6885	struct sched_domain *sd;
6886	int cpu = smp_processor_id();
6887
6888	rcu_read_lock();
6889	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6890
6891	if (!sd || !sd->nohz_idle)
6892		goto unlock;
6893	sd->nohz_idle = 0;
6894
6895	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6896unlock:
6897	rcu_read_unlock();
6898}
6899
6900void set_cpu_sd_state_idle(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6901{
6902	struct sched_domain *sd;
6903	int cpu = smp_processor_id();
6904
6905	rcu_read_lock();
6906	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6907
6908	if (!sd || sd->nohz_idle)
6909		goto unlock;
6910	sd->nohz_idle = 1;
6911
6912	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6913unlock:
6914	rcu_read_unlock();
6915}
6916
6917/*
6918 * This routine will record that the cpu is going idle with tick stopped.
6919 * This info will be used in performing idle load balancing in the future.
6920 */
6921void nohz_balance_enter_idle(int cpu)
6922{
6923	/*
6924	 * If this cpu is going down, then nothing needs to be done.
6925	 */
 
 
6926	if (!cpu_active(cpu))
6927		return;
6928
6929	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
 
6930		return;
6931
6932	/*
6933	 * If we're a completely isolated CPU, we don't play.
 
 
6934	 */
6935	if (on_null_domain(cpu_rq(cpu)))
 
 
 
 
 
 
 
 
 
 
 
 
6936		return;
6937
 
 
6938	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6939	atomic_inc(&nohz.nr_cpus);
6940	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6941}
6942
6943static int sched_ilb_notifier(struct notifier_block *nfb,
6944					unsigned long action, void *hcpu)
6945{
6946	switch (action & ~CPU_TASKS_FROZEN) {
6947	case CPU_DYING:
6948		nohz_balance_exit_idle(smp_processor_id());
6949		return NOTIFY_OK;
6950	default:
6951		return NOTIFY_DONE;
6952	}
6953}
6954#endif
 
6955
6956static DEFINE_SPINLOCK(balancing);
6957
6958/*
6959 * Scale the max load_balance interval with the number of CPUs in the system.
6960 * This trades load-balance latency on larger machines for less cross talk.
6961 */
6962void update_max_interval(void)
6963{
6964	max_load_balance_interval = HZ*num_online_cpus()/10;
6965}
6966
6967/*
6968 * It checks each scheduling domain to see if it is due to be balanced,
6969 * and initiates a balancing operation if so.
6970 *
6971 * Balancing parameters are set up in init_sched_domains.
6972 */
6973static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 
6974{
6975	int continue_balancing = 1;
6976	int cpu = rq->cpu;
6977	unsigned long interval;
6978	struct sched_domain *sd;
6979	/* Earliest time when we have to do rebalance again */
6980	unsigned long next_balance = jiffies + 60*HZ;
 
 
6981	int update_next_balance = 0;
6982	int need_serialize, need_decay = 0;
6983	u64 max_cost = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6984
6985	update_blocked_averages(cpu);
 
 
 
 
 
 
6986
6987	rcu_read_lock();
6988	for_each_domain(cpu, sd) {
6989		/*
6990		 * Decay the newidle max times here because this is a regular
6991		 * visit to all the domains. Decay ~1% per second.
 
6992		 */
6993		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6994			sd->max_newidle_lb_cost =
6995				(sd->max_newidle_lb_cost * 253) / 256;
6996			sd->next_decay_max_lb_cost = jiffies + HZ;
6997			need_decay = 1;
6998		}
6999		max_cost += sd->max_newidle_lb_cost;
7000
7001		if (!(sd->flags & SD_LOAD_BALANCE))
7002			continue;
 
7003
7004		/*
7005		 * Stop the load balance at this level. There is another
7006		 * CPU in our sched group which is doing load balancing more
7007		 * actively.
7008		 */
7009		if (!continue_balancing) {
7010			if (need_decay)
7011				continue;
7012			break;
7013		}
7014
7015		interval = sd->balance_interval;
7016		if (idle != CPU_IDLE)
7017			interval *= sd->busy_factor;
7018
7019		/* scale ms to jiffies */
7020		interval = msecs_to_jiffies(interval);
7021		interval = clamp(interval, 1UL, max_load_balance_interval);
7022
7023		need_serialize = sd->flags & SD_SERIALIZE;
 
 
7024
7025		if (need_serialize) {
7026			if (!spin_trylock(&balancing))
7027				goto out;
7028		}
7029
7030		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7031			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7032				/*
7033				 * The LBF_DST_PINNED logic could have changed
7034				 * env->dst_cpu, so we can't know our idle
7035				 * state even if we migrated tasks. Update it.
7036				 */
7037				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7038			}
7039			sd->last_balance = jiffies;
7040		}
7041		if (need_serialize)
7042			spin_unlock(&balancing);
7043out:
7044		if (time_after(next_balance, sd->last_balance + interval)) {
7045			next_balance = sd->last_balance + interval;
7046			update_next_balance = 1;
7047		}
7048	}
7049	if (need_decay) {
7050		/*
7051		 * Ensure the rq-wide value also decays but keep it at a
7052		 * reasonable floor to avoid funnies with rq->avg_idle.
7053		 */
7054		rq->max_idle_balance_cost =
7055			max((u64)sysctl_sched_migration_cost, max_cost);
7056	}
7057	rcu_read_unlock();
7058
7059	/*
7060	 * next_balance will be updated only when there is a need.
7061	 * When the cpu is attached to null domain for ex, it will not be
7062	 * updated.
7063	 */
7064	if (likely(update_next_balance))
7065		rq->next_balance = next_balance;
 
 
 
 
 
 
 
 
7066}
7067
7068#ifdef CONFIG_NO_HZ_COMMON
7069/*
7070 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7071 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7072 */
7073static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7074{
7075	int this_cpu = this_rq->cpu;
7076	struct rq *rq;
7077	int balance_cpu;
7078
7079	if (idle != CPU_IDLE ||
7080	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7081		goto end;
 
 
 
7082
7083	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7084		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7085			continue;
7086
7087		/*
7088		 * If this cpu gets work to do, stop the load balancing
7089		 * work being done for other cpus. Next load
7090		 * balancing owner will pick it up.
7091		 */
7092		if (need_resched())
7093			break;
7094
7095		rq = cpu_rq(balance_cpu);
 
 
 
 
 
7096
7097		raw_spin_lock_irq(&rq->lock);
7098		update_rq_clock(rq);
7099		update_idle_cpu_load(rq);
7100		raw_spin_unlock_irq(&rq->lock);
7101
7102		rebalance_domains(rq, CPU_IDLE);
 
 
 
7103
7104		if (time_after(this_rq->next_balance, rq->next_balance))
7105			this_rq->next_balance = rq->next_balance;
7106	}
7107	nohz.next_balance = this_rq->next_balance;
7108end:
7109	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7110}
7111
7112/*
7113 * Current heuristic for kicking the idle load balancer in the presence
7114 * of an idle cpu is the system.
7115 *   - This rq has more than one task.
7116 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7117 *     busy cpu's exceeding the group's power.
7118 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7119 *     domain span are idle.
7120 */
7121static inline int nohz_kick_needed(struct rq *rq)
7122{
7123	unsigned long now = jiffies;
 
7124	struct sched_domain *sd;
7125	struct sched_group_power *sgp;
7126	int nr_busy, cpu = rq->cpu;
7127
7128	if (unlikely(rq->idle_balance))
 
 
 
 
 
 
7129		return 0;
7130
7131       /*
7132	* We may be recently in ticked or tickless idle mode. At the first
7133	* busy tick after returning from idle, we will update the busy stats.
7134	*/
7135	set_cpu_sd_state_busy();
7136	nohz_balance_exit_idle(cpu);
7137
7138	/*
7139	 * None are in tickless mode and hence no need for NOHZ idle load
7140	 * balancing.
7141	 */
7142	if (likely(!atomic_read(&nohz.nr_cpus)))
7143		return 0;
7144
7145	if (time_before(now, nohz.next_balance))
7146		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7147
7148	if (rq->nr_running >= 2)
7149		goto need_kick;
7150
 
7151	rcu_read_lock();
7152	sd = rcu_dereference(per_cpu(sd_busy, cpu));
 
 
 
 
 
 
 
 
 
 
7153
7154	if (sd) {
7155		sgp = sd->groups->sgp;
7156		nr_busy = atomic_read(&sgp->nr_busy_cpus);
 
 
 
 
 
 
 
 
 
7157
7158		if (nr_busy > 1)
7159			goto need_kick_unlock;
 
 
 
 
 
7160	}
 
7161
7162	sd = rcu_dereference(per_cpu(sd_asym, cpu));
 
 
 
7163
7164	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7165				  sched_domain_span(sd)) < cpu))
7166		goto need_kick_unlock;
 
 
 
 
 
 
 
 
7167
7168	rcu_read_unlock();
7169	return 0;
 
 
 
 
 
 
 
 
 
7170
7171need_kick_unlock:
7172	rcu_read_unlock();
7173need_kick:
7174	return 1;
7175}
7176#else
7177static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7178#endif
7179
7180/*
7181 * run_rebalance_domains is triggered when needed from the scheduler tick.
7182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7183 */
7184static void run_rebalance_domains(struct softirq_action *h)
7185{
7186	struct rq *this_rq = this_rq();
7187	enum cpu_idle_type idle = this_rq->idle_balance ?
7188						CPU_IDLE : CPU_NOT_IDLE;
7189
7190	rebalance_domains(this_rq, idle);
7191
7192	/*
7193	 * If this cpu has a pending nohz_balance_kick, then do the
7194	 * balancing on behalf of the other idle cpus whose ticks are
7195	 * stopped.
 
 
 
7196	 */
7197	nohz_idle_balance(this_rq, idle);
 
 
 
 
 
7198}
7199
7200/*
7201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7202 */
7203void trigger_load_balance(struct rq *rq)
7204{
7205	/* Don't need to rebalance while attached to NULL domain */
7206	if (unlikely(on_null_domain(rq)))
 
 
 
7207		return;
7208
7209	if (time_after_eq(jiffies, rq->next_balance))
7210		raise_softirq(SCHED_SOFTIRQ);
7211#ifdef CONFIG_NO_HZ_COMMON
7212	if (nohz_kick_needed(rq))
7213		nohz_balancer_kick();
7214#endif
7215}
7216
7217static void rq_online_fair(struct rq *rq)
7218{
7219	update_sysctl();
 
 
7220}
7221
7222static void rq_offline_fair(struct rq *rq)
7223{
7224	update_sysctl();
7225
7226	/* Ensure any throttled groups are reachable by pick_next_task */
7227	unthrottle_offline_cfs_rqs(rq);
7228}
7229
7230#endif /* CONFIG_SMP */
7231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7232/*
7233 * scheduler tick hitting a task of our scheduling class:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7234 */
7235static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7236{
7237	struct cfs_rq *cfs_rq;
7238	struct sched_entity *se = &curr->se;
7239
7240	for_each_sched_entity(se) {
7241		cfs_rq = cfs_rq_of(se);
7242		entity_tick(cfs_rq, se, queued);
7243	}
7244
7245	if (numabalancing_enabled)
7246		task_tick_numa(rq, curr);
7247
7248	update_rq_runnable_avg(rq, 1);
 
 
 
7249}
7250
7251/*
7252 * called on fork with the child task as argument from the parent's context
7253 *  - child not yet on the tasklist
7254 *  - preemption disabled
7255 */
7256static void task_fork_fair(struct task_struct *p)
7257{
7258	struct cfs_rq *cfs_rq;
7259	struct sched_entity *se = &p->se, *curr;
7260	int this_cpu = smp_processor_id();
7261	struct rq *rq = this_rq();
7262	unsigned long flags;
7263
7264	raw_spin_lock_irqsave(&rq->lock, flags);
7265
 
7266	update_rq_clock(rq);
7267
7268	cfs_rq = task_cfs_rq(current);
7269	curr = cfs_rq->curr;
7270
7271	/*
7272	 * Not only the cpu but also the task_group of the parent might have
7273	 * been changed after parent->se.parent,cfs_rq were copied to
7274	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7275	 * of child point to valid ones.
7276	 */
7277	rcu_read_lock();
7278	__set_task_cpu(p, this_cpu);
7279	rcu_read_unlock();
7280
7281	update_curr(cfs_rq);
7282
7283	if (curr)
7284		se->vruntime = curr->vruntime;
 
7285	place_entity(cfs_rq, se, 1);
7286
7287	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7288		/*
7289		 * Upon rescheduling, sched_class::put_prev_task() will place
7290		 * 'current' within the tree based on its new key value.
7291		 */
7292		swap(curr->vruntime, se->vruntime);
7293		resched_task(rq->curr);
7294	}
7295
7296	se->vruntime -= cfs_rq->min_vruntime;
7297
7298	raw_spin_unlock_irqrestore(&rq->lock, flags);
7299}
7300
7301/*
7302 * Priority of the task has changed. Check to see if we preempt
7303 * the current task.
7304 */
7305static void
7306prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7307{
7308	if (!p->se.on_rq)
 
 
 
7309		return;
7310
7311	/*
7312	 * Reschedule if we are currently running on this runqueue and
7313	 * our priority decreased, or if we are not currently running on
7314	 * this runqueue and our priority is higher than the current's
7315	 */
7316	if (rq->curr == p) {
7317		if (p->prio > oldprio)
7318			resched_task(rq->curr);
7319	} else
7320		check_preempt_curr(rq, p, 0);
7321}
7322
7323static void switched_from_fair(struct rq *rq, struct task_struct *p)
7324{
7325	struct sched_entity *se = &p->se;
7326	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7327
7328	/*
7329	 * Ensure the task's vruntime is normalized, so that when it's
7330	 * switched back to the fair class the enqueue_entity(.flags=0) will
7331	 * do the right thing.
 
 
 
 
 
 
 
7332	 *
7333	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7334	 * have normalized the vruntime, if it's !on_rq, then only when
7335	 * the task is sleeping will it still have non-normalized vruntime.
 
7336	 */
7337	if (!p->on_rq && p->state != TASK_RUNNING) {
7338		/*
7339		 * Fix up our vruntime so that the current sleep doesn't
7340		 * cause 'unlimited' sleep bonus.
7341		 */
7342		place_entity(cfs_rq, se, 0);
7343		se->vruntime -= cfs_rq->min_vruntime;
7344	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7345
7346#ifdef CONFIG_SMP
7347	/*
7348	* Remove our load from contribution when we leave sched_fair
7349	* and ensure we don't carry in an old decay_count if we
7350	* switch back.
7351	*/
7352	if (se->avg.decay_count) {
7353		__synchronize_entity_decay(se);
7354		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7355	}
 
 
 
7356#endif
 
 
 
 
 
 
 
 
 
 
7357}
7358
7359/*
7360 * We switched to the sched_fair class.
7361 */
7362static void switched_to_fair(struct rq *rq, struct task_struct *p)
7363{
7364	struct sched_entity *se = &p->se;
 
7365#ifdef CONFIG_FAIR_GROUP_SCHED
7366	/*
7367	 * Since the real-depth could have been changed (only FAIR
7368	 * class maintain depth value), reset depth properly.
7369	 */
7370	se->depth = se->parent ? se->parent->depth + 1 : 0;
7371#endif
7372	if (!se->on_rq)
7373		return;
7374
7375	/*
7376	 * We were most likely switched from sched_rt, so
7377	 * kick off the schedule if running, otherwise just see
7378	 * if we can still preempt the current task.
7379	 */
7380	if (rq->curr == p)
7381		resched_task(rq->curr);
7382	else
7383		check_preempt_curr(rq, p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7384}
7385
7386/* Account for a task changing its policy or group.
7387 *
7388 * This routine is mostly called to set cfs_rq->curr field when a task
7389 * migrates between groups/classes.
7390 */
7391static void set_curr_task_fair(struct rq *rq)
7392{
7393	struct sched_entity *se = &rq->curr->se;
 
 
 
 
 
 
 
 
 
 
7394
7395	for_each_sched_entity(se) {
7396		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7397
7398		set_next_entity(cfs_rq, se);
7399		/* ensure bandwidth has been allocated on our new cfs_rq */
7400		account_cfs_rq_runtime(cfs_rq, 0);
7401	}
7402}
7403
7404void init_cfs_rq(struct cfs_rq *cfs_rq)
7405{
7406	cfs_rq->tasks_timeline = RB_ROOT;
7407	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7408#ifndef CONFIG_64BIT
7409	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7410#endif
7411#ifdef CONFIG_SMP
7412	atomic64_set(&cfs_rq->decay_counter, 1);
7413	atomic_long_set(&cfs_rq->removed_load, 0);
7414#endif
7415}
7416
7417#ifdef CONFIG_FAIR_GROUP_SCHED
7418static void task_move_group_fair(struct task_struct *p, int on_rq)
7419{
7420	struct sched_entity *se = &p->se;
7421	struct cfs_rq *cfs_rq;
7422
7423	/*
7424	 * If the task was not on the rq at the time of this cgroup movement
7425	 * it must have been asleep, sleeping tasks keep their ->vruntime
7426	 * absolute on their old rq until wakeup (needed for the fair sleeper
7427	 * bonus in place_entity()).
7428	 *
7429	 * If it was on the rq, we've just 'preempted' it, which does convert
7430	 * ->vruntime to a relative base.
7431	 *
7432	 * Make sure both cases convert their relative position when migrating
7433	 * to another cgroup's rq. This does somewhat interfere with the
7434	 * fair sleeper stuff for the first placement, but who cares.
7435	 */
7436	/*
7437	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7438	 * But there are some cases where it has already been normalized:
7439	 *
7440	 * - Moving a forked child which is waiting for being woken up by
7441	 *   wake_up_new_task().
7442	 * - Moving a task which has been woken up by try_to_wake_up() and
7443	 *   waiting for actually being woken up by sched_ttwu_pending().
7444	 *
7445	 * To prevent boost or penalty in the new cfs_rq caused by delta
7446	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7447	 */
7448	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7449		on_rq = 1;
7450
7451	if (!on_rq)
7452		se->vruntime -= cfs_rq_of(se)->min_vruntime;
 
7453	set_task_rq(p, task_cpu(p));
7454	se->depth = se->parent ? se->parent->depth + 1 : 0;
7455	if (!on_rq) {
7456		cfs_rq = cfs_rq_of(se);
7457		se->vruntime += cfs_rq->min_vruntime;
7458#ifdef CONFIG_SMP
7459		/*
7460		 * migrate_task_rq_fair() will have removed our previous
7461		 * contribution, but we must synchronize for ongoing future
7462		 * decay.
7463		 */
7464		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7465		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7466#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
7467	}
7468}
7469
7470void free_fair_sched_group(struct task_group *tg)
7471{
7472	int i;
7473
7474	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7475
7476	for_each_possible_cpu(i) {
7477		if (tg->cfs_rq)
7478			kfree(tg->cfs_rq[i]);
7479		if (tg->se)
7480			kfree(tg->se[i]);
7481	}
7482
7483	kfree(tg->cfs_rq);
7484	kfree(tg->se);
7485}
7486
7487int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7488{
 
7489	struct cfs_rq *cfs_rq;
7490	struct sched_entity *se;
7491	int i;
7492
7493	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7494	if (!tg->cfs_rq)
7495		goto err;
7496	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7497	if (!tg->se)
7498		goto err;
7499
7500	tg->shares = NICE_0_LOAD;
7501
7502	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7503
7504	for_each_possible_cpu(i) {
7505		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7506				      GFP_KERNEL, cpu_to_node(i));
7507		if (!cfs_rq)
7508			goto err;
7509
7510		se = kzalloc_node(sizeof(struct sched_entity),
7511				  GFP_KERNEL, cpu_to_node(i));
7512		if (!se)
7513			goto err_free_rq;
7514
7515		init_cfs_rq(cfs_rq);
7516		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 
7517	}
7518
7519	return 1;
7520
7521err_free_rq:
7522	kfree(cfs_rq);
7523err:
7524	return 0;
7525}
7526
7527void unregister_fair_sched_group(struct task_group *tg, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7528{
7529	struct rq *rq = cpu_rq(cpu);
7530	unsigned long flags;
 
 
 
 
 
 
7531
7532	/*
7533	* Only empty task groups can be destroyed; so we can speculatively
7534	* check on_list without danger of it being re-added.
7535	*/
7536	if (!tg->cfs_rq[cpu]->on_list)
7537		return;
 
 
7538
7539	raw_spin_lock_irqsave(&rq->lock, flags);
7540	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7541	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
7542}
7543
7544void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7545			struct sched_entity *se, int cpu,
7546			struct sched_entity *parent)
7547{
7548	struct rq *rq = cpu_rq(cpu);
7549
7550	cfs_rq->tg = tg;
7551	cfs_rq->rq = rq;
7552	init_cfs_rq_runtime(cfs_rq);
7553
7554	tg->cfs_rq[cpu] = cfs_rq;
7555	tg->se[cpu] = se;
7556
7557	/* se could be NULL for root_task_group */
7558	if (!se)
7559		return;
7560
7561	if (!parent) {
7562		se->cfs_rq = &rq->cfs;
7563		se->depth = 0;
7564	} else {
7565		se->cfs_rq = parent->my_q;
7566		se->depth = parent->depth + 1;
7567	}
7568
7569	se->my_q = cfs_rq;
7570	/* guarantee group entities always have weight */
7571	update_load_set(&se->load, NICE_0_LOAD);
7572	se->parent = parent;
7573}
7574
7575static DEFINE_MUTEX(shares_mutex);
7576
7577int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7578{
7579	int i;
7580	unsigned long flags;
7581
7582	/*
7583	 * We can't change the weight of the root cgroup.
7584	 */
7585	if (!tg->se[0])
7586		return -EINVAL;
7587
7588	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7589
7590	mutex_lock(&shares_mutex);
7591	if (tg->shares == shares)
7592		goto done;
7593
7594	tg->shares = shares;
7595	for_each_possible_cpu(i) {
7596		struct rq *rq = cpu_rq(i);
7597		struct sched_entity *se;
 
7598
7599		se = tg->se[i];
7600		/* Propagate contribution to hierarchy */
7601		raw_spin_lock_irqsave(&rq->lock, flags);
7602
7603		/* Possible calls to update_curr() need rq clock */
7604		update_rq_clock(rq);
7605		for_each_sched_entity(se)
7606			update_cfs_shares(group_cfs_rq(se));
7607		raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
7608	}
7609
7610done:
7611	mutex_unlock(&shares_mutex);
7612	return 0;
7613}
7614#else /* CONFIG_FAIR_GROUP_SCHED */
7615
7616void free_fair_sched_group(struct task_group *tg) { }
7617
7618int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7619{
7620	return 1;
7621}
7622
7623void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
 
 
7624
7625#endif /* CONFIG_FAIR_GROUP_SCHED */
7626
7627
7628static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7629{
7630	struct sched_entity *se = &task->se;
7631	unsigned int rr_interval = 0;
7632
7633	/*
7634	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7635	 * idle runqueue:
7636	 */
7637	if (rq->cfs.load.weight)
7638		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7639
7640	return rr_interval;
7641}
7642
7643/*
7644 * All the scheduling class methods:
7645 */
7646const struct sched_class fair_sched_class = {
7647	.next			= &idle_sched_class,
7648	.enqueue_task		= enqueue_task_fair,
7649	.dequeue_task		= dequeue_task_fair,
7650	.yield_task		= yield_task_fair,
7651	.yield_to_task		= yield_to_task_fair,
7652
7653	.check_preempt_curr	= check_preempt_wakeup,
7654
7655	.pick_next_task		= pick_next_task_fair,
7656	.put_prev_task		= put_prev_task_fair,
 
7657
7658#ifdef CONFIG_SMP
 
 
7659	.select_task_rq		= select_task_rq_fair,
7660	.migrate_task_rq	= migrate_task_rq_fair,
7661
7662	.rq_online		= rq_online_fair,
7663	.rq_offline		= rq_offline_fair,
7664
7665	.task_waking		= task_waking_fair,
 
7666#endif
7667
7668	.set_curr_task          = set_curr_task_fair,
7669	.task_tick		= task_tick_fair,
7670	.task_fork		= task_fork_fair,
7671
7672	.prio_changed		= prio_changed_fair,
7673	.switched_from		= switched_from_fair,
7674	.switched_to		= switched_to_fair,
7675
7676	.get_rr_interval	= get_rr_interval_fair,
7677
 
 
7678#ifdef CONFIG_FAIR_GROUP_SCHED
7679	.task_move_group	= task_move_group_fair,
 
 
 
 
7680#endif
7681};
7682
7683#ifdef CONFIG_SCHED_DEBUG
7684void print_cfs_stats(struct seq_file *m, int cpu)
7685{
7686	struct cfs_rq *cfs_rq;
7687
7688	rcu_read_lock();
7689	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7690		print_cfs_rq(m, cpu, cfs_rq);
7691	rcu_read_unlock();
7692}
7693#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7694
7695__init void init_sched_fair_class(void)
7696{
7697#ifdef CONFIG_SMP
7698	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7699
7700#ifdef CONFIG_NO_HZ_COMMON
7701	nohz.next_balance = jiffies;
 
7702	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7703	cpu_notifier(sched_ilb_notifier, 0);
7704#endif
7705#endif /* SMP */
7706
7707}