Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/blkdev.h>
52#include <linux/task_io_accounting_ops.h>
53#include <linux/tracehook.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/random.h>
64#include <linux/rcuwait.h>
65#include <linux/compat.h>
66#include <linux/io_uring.h>
67
68#include <linux/uaccess.h>
69#include <asm/unistd.h>
70#include <asm/mmu_context.h>
71
72static void __unhash_process(struct task_struct *p, bool group_dead)
73{
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87}
88
89/*
90 * This function expects the tasklist_lock write-locked.
91 */
92static void __exit_signal(struct task_struct *tsk)
93{
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *tty;
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104#ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108#endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165}
166
167static void delayed_put_task_struct(struct rcu_head *rhp)
168{
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
174}
175
176void put_task_struct_rcu_user(struct task_struct *task)
177{
178 if (refcount_dec_and_test(&task->rcu_users))
179 call_rcu(&task->rcu, delayed_put_task_struct);
180}
181
182void release_task(struct task_struct *p)
183{
184 struct task_struct *leader;
185 struct pid *thread_pid;
186 int zap_leader;
187repeat:
188 /* don't need to get the RCU readlock here - the process is dead and
189 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 rcu_read_lock();
191 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
192 rcu_read_unlock();
193
194 cgroup_release(p);
195
196 write_lock_irq(&tasklist_lock);
197 ptrace_release_task(p);
198 thread_pid = get_pid(p->thread_pid);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 seccomp_filter_release(p);
222 proc_flush_pid(thread_pid);
223 put_pid(thread_pid);
224 release_thread(p);
225 put_task_struct_rcu_user(p);
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230}
231
232int rcuwait_wake_up(struct rcuwait *w)
233{
234 int ret = 0;
235 struct task_struct *task;
236
237 rcu_read_lock();
238
239 /*
240 * Order condition vs @task, such that everything prior to the load
241 * of @task is visible. This is the condition as to why the user called
242 * rcuwait_wake() in the first place. Pairs with set_current_state()
243 * barrier (A) in rcuwait_wait_event().
244 *
245 * WAIT WAKE
246 * [S] tsk = current [S] cond = true
247 * MB (A) MB (B)
248 * [L] cond [L] tsk
249 */
250 smp_mb(); /* (B) */
251
252 task = rcu_dereference(w->task);
253 if (task)
254 ret = wake_up_process(task);
255 rcu_read_unlock();
256
257 return ret;
258}
259EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260
261/*
262 * Determine if a process group is "orphaned", according to the POSIX
263 * definition in 2.2.2.52. Orphaned process groups are not to be affected
264 * by terminal-generated stop signals. Newly orphaned process groups are
265 * to receive a SIGHUP and a SIGCONT.
266 *
267 * "I ask you, have you ever known what it is to be an orphan?"
268 */
269static int will_become_orphaned_pgrp(struct pid *pgrp,
270 struct task_struct *ignored_task)
271{
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if ((p == ignored_task) ||
276 (p->exit_state && thread_group_empty(p)) ||
277 is_global_init(p->real_parent))
278 continue;
279
280 if (task_pgrp(p->real_parent) != pgrp &&
281 task_session(p->real_parent) == task_session(p))
282 return 0;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return 1;
286}
287
288int is_current_pgrp_orphaned(void)
289{
290 int retval;
291
292 read_lock(&tasklist_lock);
293 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294 read_unlock(&tasklist_lock);
295
296 return retval;
297}
298
299static bool has_stopped_jobs(struct pid *pgrp)
300{
301 struct task_struct *p;
302
303 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304 if (p->signal->flags & SIGNAL_STOP_STOPPED)
305 return true;
306 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307
308 return false;
309}
310
311/*
312 * Check to see if any process groups have become orphaned as
313 * a result of our exiting, and if they have any stopped jobs,
314 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315 */
316static void
317kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318{
319 struct pid *pgrp = task_pgrp(tsk);
320 struct task_struct *ignored_task = tsk;
321
322 if (!parent)
323 /* exit: our father is in a different pgrp than
324 * we are and we were the only connection outside.
325 */
326 parent = tsk->real_parent;
327 else
328 /* reparent: our child is in a different pgrp than
329 * we are, and it was the only connection outside.
330 */
331 ignored_task = NULL;
332
333 if (task_pgrp(parent) != pgrp &&
334 task_session(parent) == task_session(tsk) &&
335 will_become_orphaned_pgrp(pgrp, ignored_task) &&
336 has_stopped_jobs(pgrp)) {
337 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339 }
340}
341
342#ifdef CONFIG_MEMCG
343/*
344 * A task is exiting. If it owned this mm, find a new owner for the mm.
345 */
346void mm_update_next_owner(struct mm_struct *mm)
347{
348 struct task_struct *c, *g, *p = current;
349
350retry:
351 /*
352 * If the exiting or execing task is not the owner, it's
353 * someone else's problem.
354 */
355 if (mm->owner != p)
356 return;
357 /*
358 * The current owner is exiting/execing and there are no other
359 * candidates. Do not leave the mm pointing to a possibly
360 * freed task structure.
361 */
362 if (atomic_read(&mm->mm_users) <= 1) {
363 WRITE_ONCE(mm->owner, NULL);
364 return;
365 }
366
367 read_lock(&tasklist_lock);
368 /*
369 * Search in the children
370 */
371 list_for_each_entry(c, &p->children, sibling) {
372 if (c->mm == mm)
373 goto assign_new_owner;
374 }
375
376 /*
377 * Search in the siblings
378 */
379 list_for_each_entry(c, &p->real_parent->children, sibling) {
380 if (c->mm == mm)
381 goto assign_new_owner;
382 }
383
384 /*
385 * Search through everything else, we should not get here often.
386 */
387 for_each_process(g) {
388 if (g->flags & PF_KTHREAD)
389 continue;
390 for_each_thread(g, c) {
391 if (c->mm == mm)
392 goto assign_new_owner;
393 if (c->mm)
394 break;
395 }
396 }
397 read_unlock(&tasklist_lock);
398 /*
399 * We found no owner yet mm_users > 1: this implies that we are
400 * most likely racing with swapoff (try_to_unuse()) or /proc or
401 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
402 */
403 WRITE_ONCE(mm->owner, NULL);
404 return;
405
406assign_new_owner:
407 BUG_ON(c == p);
408 get_task_struct(c);
409 /*
410 * The task_lock protects c->mm from changing.
411 * We always want mm->owner->mm == mm
412 */
413 task_lock(c);
414 /*
415 * Delay read_unlock() till we have the task_lock()
416 * to ensure that c does not slip away underneath us
417 */
418 read_unlock(&tasklist_lock);
419 if (c->mm != mm) {
420 task_unlock(c);
421 put_task_struct(c);
422 goto retry;
423 }
424 WRITE_ONCE(mm->owner, c);
425 task_unlock(c);
426 put_task_struct(c);
427}
428#endif /* CONFIG_MEMCG */
429
430/*
431 * Turn us into a lazy TLB process if we
432 * aren't already..
433 */
434static void exit_mm(void)
435{
436 struct mm_struct *mm = current->mm;
437 struct core_state *core_state;
438
439 exit_mm_release(current, mm);
440 if (!mm)
441 return;
442 sync_mm_rss(mm);
443 /*
444 * Serialize with any possible pending coredump.
445 * We must hold mmap_lock around checking core_state
446 * and clearing tsk->mm. The core-inducing thread
447 * will increment ->nr_threads for each thread in the
448 * group with ->mm != NULL.
449 */
450 mmap_read_lock(mm);
451 core_state = mm->core_state;
452 if (core_state) {
453 struct core_thread self;
454
455 mmap_read_unlock(mm);
456
457 self.task = current;
458 if (self.task->flags & PF_SIGNALED)
459 self.next = xchg(&core_state->dumper.next, &self);
460 else
461 self.task = NULL;
462 /*
463 * Implies mb(), the result of xchg() must be visible
464 * to core_state->dumper.
465 */
466 if (atomic_dec_and_test(&core_state->nr_threads))
467 complete(&core_state->startup);
468
469 for (;;) {
470 set_current_state(TASK_UNINTERRUPTIBLE);
471 if (!self.task) /* see coredump_finish() */
472 break;
473 freezable_schedule();
474 }
475 __set_current_state(TASK_RUNNING);
476 mmap_read_lock(mm);
477 }
478 mmgrab(mm);
479 BUG_ON(mm != current->active_mm);
480 /* more a memory barrier than a real lock */
481 task_lock(current);
482 /*
483 * When a thread stops operating on an address space, the loop
484 * in membarrier_private_expedited() may not observe that
485 * tsk->mm, and the loop in membarrier_global_expedited() may
486 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
487 * rq->membarrier_state, so those would not issue an IPI.
488 * Membarrier requires a memory barrier after accessing
489 * user-space memory, before clearing tsk->mm or the
490 * rq->membarrier_state.
491 */
492 smp_mb__after_spinlock();
493 local_irq_disable();
494 current->mm = NULL;
495 membarrier_update_current_mm(NULL);
496 enter_lazy_tlb(mm, current);
497 local_irq_enable();
498 task_unlock(current);
499 mmap_read_unlock(mm);
500 mm_update_next_owner(mm);
501 mmput(mm);
502 if (test_thread_flag(TIF_MEMDIE))
503 exit_oom_victim();
504}
505
506static struct task_struct *find_alive_thread(struct task_struct *p)
507{
508 struct task_struct *t;
509
510 for_each_thread(p, t) {
511 if (!(t->flags & PF_EXITING))
512 return t;
513 }
514 return NULL;
515}
516
517static struct task_struct *find_child_reaper(struct task_struct *father,
518 struct list_head *dead)
519 __releases(&tasklist_lock)
520 __acquires(&tasklist_lock)
521{
522 struct pid_namespace *pid_ns = task_active_pid_ns(father);
523 struct task_struct *reaper = pid_ns->child_reaper;
524 struct task_struct *p, *n;
525
526 if (likely(reaper != father))
527 return reaper;
528
529 reaper = find_alive_thread(father);
530 if (reaper) {
531 pid_ns->child_reaper = reaper;
532 return reaper;
533 }
534
535 write_unlock_irq(&tasklist_lock);
536
537 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
538 list_del_init(&p->ptrace_entry);
539 release_task(p);
540 }
541
542 zap_pid_ns_processes(pid_ns);
543 write_lock_irq(&tasklist_lock);
544
545 return father;
546}
547
548/*
549 * When we die, we re-parent all our children, and try to:
550 * 1. give them to another thread in our thread group, if such a member exists
551 * 2. give it to the first ancestor process which prctl'd itself as a
552 * child_subreaper for its children (like a service manager)
553 * 3. give it to the init process (PID 1) in our pid namespace
554 */
555static struct task_struct *find_new_reaper(struct task_struct *father,
556 struct task_struct *child_reaper)
557{
558 struct task_struct *thread, *reaper;
559
560 thread = find_alive_thread(father);
561 if (thread)
562 return thread;
563
564 if (father->signal->has_child_subreaper) {
565 unsigned int ns_level = task_pid(father)->level;
566 /*
567 * Find the first ->is_child_subreaper ancestor in our pid_ns.
568 * We can't check reaper != child_reaper to ensure we do not
569 * cross the namespaces, the exiting parent could be injected
570 * by setns() + fork().
571 * We check pid->level, this is slightly more efficient than
572 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
573 */
574 for (reaper = father->real_parent;
575 task_pid(reaper)->level == ns_level;
576 reaper = reaper->real_parent) {
577 if (reaper == &init_task)
578 break;
579 if (!reaper->signal->is_child_subreaper)
580 continue;
581 thread = find_alive_thread(reaper);
582 if (thread)
583 return thread;
584 }
585 }
586
587 return child_reaper;
588}
589
590/*
591* Any that need to be release_task'd are put on the @dead list.
592 */
593static void reparent_leader(struct task_struct *father, struct task_struct *p,
594 struct list_head *dead)
595{
596 if (unlikely(p->exit_state == EXIT_DEAD))
597 return;
598
599 /* We don't want people slaying init. */
600 p->exit_signal = SIGCHLD;
601
602 /* If it has exited notify the new parent about this child's death. */
603 if (!p->ptrace &&
604 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
605 if (do_notify_parent(p, p->exit_signal)) {
606 p->exit_state = EXIT_DEAD;
607 list_add(&p->ptrace_entry, dead);
608 }
609 }
610
611 kill_orphaned_pgrp(p, father);
612}
613
614/*
615 * This does two things:
616 *
617 * A. Make init inherit all the child processes
618 * B. Check to see if any process groups have become orphaned
619 * as a result of our exiting, and if they have any stopped
620 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
621 */
622static void forget_original_parent(struct task_struct *father,
623 struct list_head *dead)
624{
625 struct task_struct *p, *t, *reaper;
626
627 if (unlikely(!list_empty(&father->ptraced)))
628 exit_ptrace(father, dead);
629
630 /* Can drop and reacquire tasklist_lock */
631 reaper = find_child_reaper(father, dead);
632 if (list_empty(&father->children))
633 return;
634
635 reaper = find_new_reaper(father, reaper);
636 list_for_each_entry(p, &father->children, sibling) {
637 for_each_thread(p, t) {
638 RCU_INIT_POINTER(t->real_parent, reaper);
639 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
640 if (likely(!t->ptrace))
641 t->parent = t->real_parent;
642 if (t->pdeath_signal)
643 group_send_sig_info(t->pdeath_signal,
644 SEND_SIG_NOINFO, t,
645 PIDTYPE_TGID);
646 }
647 /*
648 * If this is a threaded reparent there is no need to
649 * notify anyone anything has happened.
650 */
651 if (!same_thread_group(reaper, father))
652 reparent_leader(father, p, dead);
653 }
654 list_splice_tail_init(&father->children, &reaper->children);
655}
656
657/*
658 * Send signals to all our closest relatives so that they know
659 * to properly mourn us..
660 */
661static void exit_notify(struct task_struct *tsk, int group_dead)
662{
663 bool autoreap;
664 struct task_struct *p, *n;
665 LIST_HEAD(dead);
666
667 write_lock_irq(&tasklist_lock);
668 forget_original_parent(tsk, &dead);
669
670 if (group_dead)
671 kill_orphaned_pgrp(tsk->group_leader, NULL);
672
673 tsk->exit_state = EXIT_ZOMBIE;
674 if (unlikely(tsk->ptrace)) {
675 int sig = thread_group_leader(tsk) &&
676 thread_group_empty(tsk) &&
677 !ptrace_reparented(tsk) ?
678 tsk->exit_signal : SIGCHLD;
679 autoreap = do_notify_parent(tsk, sig);
680 } else if (thread_group_leader(tsk)) {
681 autoreap = thread_group_empty(tsk) &&
682 do_notify_parent(tsk, tsk->exit_signal);
683 } else {
684 autoreap = true;
685 }
686
687 if (autoreap) {
688 tsk->exit_state = EXIT_DEAD;
689 list_add(&tsk->ptrace_entry, &dead);
690 }
691
692 /* mt-exec, de_thread() is waiting for group leader */
693 if (unlikely(tsk->signal->notify_count < 0))
694 wake_up_process(tsk->signal->group_exit_task);
695 write_unlock_irq(&tasklist_lock);
696
697 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
698 list_del_init(&p->ptrace_entry);
699 release_task(p);
700 }
701}
702
703#ifdef CONFIG_DEBUG_STACK_USAGE
704static void check_stack_usage(void)
705{
706 static DEFINE_SPINLOCK(low_water_lock);
707 static int lowest_to_date = THREAD_SIZE;
708 unsigned long free;
709
710 free = stack_not_used(current);
711
712 if (free >= lowest_to_date)
713 return;
714
715 spin_lock(&low_water_lock);
716 if (free < lowest_to_date) {
717 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
718 current->comm, task_pid_nr(current), free);
719 lowest_to_date = free;
720 }
721 spin_unlock(&low_water_lock);
722}
723#else
724static inline void check_stack_usage(void) {}
725#endif
726
727void __noreturn do_exit(long code)
728{
729 struct task_struct *tsk = current;
730 int group_dead;
731
732 /*
733 * We can get here from a kernel oops, sometimes with preemption off.
734 * Start by checking for critical errors.
735 * Then fix up important state like USER_DS and preemption.
736 * Then do everything else.
737 */
738
739 WARN_ON(blk_needs_flush_plug(tsk));
740
741 if (unlikely(in_interrupt()))
742 panic("Aiee, killing interrupt handler!");
743 if (unlikely(!tsk->pid))
744 panic("Attempted to kill the idle task!");
745
746 /*
747 * If do_exit is called because this processes oopsed, it's possible
748 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
749 * continuing. Amongst other possible reasons, this is to prevent
750 * mm_release()->clear_child_tid() from writing to a user-controlled
751 * kernel address.
752 */
753 force_uaccess_begin();
754
755 if (unlikely(in_atomic())) {
756 pr_info("note: %s[%d] exited with preempt_count %d\n",
757 current->comm, task_pid_nr(current),
758 preempt_count());
759 preempt_count_set(PREEMPT_ENABLED);
760 }
761
762 profile_task_exit(tsk);
763 kcov_task_exit(tsk);
764
765 ptrace_event(PTRACE_EVENT_EXIT, code);
766
767 validate_creds_for_do_exit(tsk);
768
769 /*
770 * We're taking recursive faults here in do_exit. Safest is to just
771 * leave this task alone and wait for reboot.
772 */
773 if (unlikely(tsk->flags & PF_EXITING)) {
774 pr_alert("Fixing recursive fault but reboot is needed!\n");
775 futex_exit_recursive(tsk);
776 set_current_state(TASK_UNINTERRUPTIBLE);
777 schedule();
778 }
779
780 io_uring_files_cancel(tsk->files);
781 exit_signals(tsk); /* sets PF_EXITING */
782
783 /* sync mm's RSS info before statistics gathering */
784 if (tsk->mm)
785 sync_mm_rss(tsk->mm);
786 acct_update_integrals(tsk);
787 group_dead = atomic_dec_and_test(&tsk->signal->live);
788 if (group_dead) {
789 /*
790 * If the last thread of global init has exited, panic
791 * immediately to get a useable coredump.
792 */
793 if (unlikely(is_global_init(tsk)))
794 panic("Attempted to kill init! exitcode=0x%08x\n",
795 tsk->signal->group_exit_code ?: (int)code);
796
797#ifdef CONFIG_POSIX_TIMERS
798 hrtimer_cancel(&tsk->signal->real_timer);
799 exit_itimers(tsk->signal);
800#endif
801 if (tsk->mm)
802 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
803 }
804 acct_collect(code, group_dead);
805 if (group_dead)
806 tty_audit_exit();
807 audit_free(tsk);
808
809 tsk->exit_code = code;
810 taskstats_exit(tsk, group_dead);
811
812 exit_mm();
813
814 if (group_dead)
815 acct_process();
816 trace_sched_process_exit(tsk);
817
818 exit_sem(tsk);
819 exit_shm(tsk);
820 exit_files(tsk);
821 exit_fs(tsk);
822 if (group_dead)
823 disassociate_ctty(1);
824 exit_task_namespaces(tsk);
825 exit_task_work(tsk);
826 exit_thread(tsk);
827
828 /*
829 * Flush inherited counters to the parent - before the parent
830 * gets woken up by child-exit notifications.
831 *
832 * because of cgroup mode, must be called before cgroup_exit()
833 */
834 perf_event_exit_task(tsk);
835
836 sched_autogroup_exit_task(tsk);
837 cgroup_exit(tsk);
838
839 /*
840 * FIXME: do that only when needed, using sched_exit tracepoint
841 */
842 flush_ptrace_hw_breakpoint(tsk);
843
844 exit_tasks_rcu_start();
845 exit_notify(tsk, group_dead);
846 proc_exit_connector(tsk);
847 mpol_put_task_policy(tsk);
848#ifdef CONFIG_FUTEX
849 if (unlikely(current->pi_state_cache))
850 kfree(current->pi_state_cache);
851#endif
852 /*
853 * Make sure we are holding no locks:
854 */
855 debug_check_no_locks_held();
856
857 if (tsk->io_context)
858 exit_io_context(tsk);
859
860 if (tsk->splice_pipe)
861 free_pipe_info(tsk->splice_pipe);
862
863 if (tsk->task_frag.page)
864 put_page(tsk->task_frag.page);
865
866 validate_creds_for_do_exit(tsk);
867
868 check_stack_usage();
869 preempt_disable();
870 if (tsk->nr_dirtied)
871 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
872 exit_rcu();
873 exit_tasks_rcu_finish();
874
875 lockdep_free_task(tsk);
876 do_task_dead();
877}
878EXPORT_SYMBOL_GPL(do_exit);
879
880void complete_and_exit(struct completion *comp, long code)
881{
882 if (comp)
883 complete(comp);
884
885 do_exit(code);
886}
887EXPORT_SYMBOL(complete_and_exit);
888
889SYSCALL_DEFINE1(exit, int, error_code)
890{
891 do_exit((error_code&0xff)<<8);
892}
893
894/*
895 * Take down every thread in the group. This is called by fatal signals
896 * as well as by sys_exit_group (below).
897 */
898void
899do_group_exit(int exit_code)
900{
901 struct signal_struct *sig = current->signal;
902
903 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
904
905 if (signal_group_exit(sig))
906 exit_code = sig->group_exit_code;
907 else if (!thread_group_empty(current)) {
908 struct sighand_struct *const sighand = current->sighand;
909
910 spin_lock_irq(&sighand->siglock);
911 if (signal_group_exit(sig))
912 /* Another thread got here before we took the lock. */
913 exit_code = sig->group_exit_code;
914 else {
915 sig->group_exit_code = exit_code;
916 sig->flags = SIGNAL_GROUP_EXIT;
917 zap_other_threads(current);
918 }
919 spin_unlock_irq(&sighand->siglock);
920 }
921
922 do_exit(exit_code);
923 /* NOTREACHED */
924}
925
926/*
927 * this kills every thread in the thread group. Note that any externally
928 * wait4()-ing process will get the correct exit code - even if this
929 * thread is not the thread group leader.
930 */
931SYSCALL_DEFINE1(exit_group, int, error_code)
932{
933 do_group_exit((error_code & 0xff) << 8);
934 /* NOTREACHED */
935 return 0;
936}
937
938struct waitid_info {
939 pid_t pid;
940 uid_t uid;
941 int status;
942 int cause;
943};
944
945struct wait_opts {
946 enum pid_type wo_type;
947 int wo_flags;
948 struct pid *wo_pid;
949
950 struct waitid_info *wo_info;
951 int wo_stat;
952 struct rusage *wo_rusage;
953
954 wait_queue_entry_t child_wait;
955 int notask_error;
956};
957
958static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
959{
960 return wo->wo_type == PIDTYPE_MAX ||
961 task_pid_type(p, wo->wo_type) == wo->wo_pid;
962}
963
964static int
965eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
966{
967 if (!eligible_pid(wo, p))
968 return 0;
969
970 /*
971 * Wait for all children (clone and not) if __WALL is set or
972 * if it is traced by us.
973 */
974 if (ptrace || (wo->wo_flags & __WALL))
975 return 1;
976
977 /*
978 * Otherwise, wait for clone children *only* if __WCLONE is set;
979 * otherwise, wait for non-clone children *only*.
980 *
981 * Note: a "clone" child here is one that reports to its parent
982 * using a signal other than SIGCHLD, or a non-leader thread which
983 * we can only see if it is traced by us.
984 */
985 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
986 return 0;
987
988 return 1;
989}
990
991/*
992 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
993 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
994 * the lock and this task is uninteresting. If we return nonzero, we have
995 * released the lock and the system call should return.
996 */
997static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
998{
999 int state, status;
1000 pid_t pid = task_pid_vnr(p);
1001 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1002 struct waitid_info *infop;
1003
1004 if (!likely(wo->wo_flags & WEXITED))
1005 return 0;
1006
1007 if (unlikely(wo->wo_flags & WNOWAIT)) {
1008 status = p->exit_code;
1009 get_task_struct(p);
1010 read_unlock(&tasklist_lock);
1011 sched_annotate_sleep();
1012 if (wo->wo_rusage)
1013 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1014 put_task_struct(p);
1015 goto out_info;
1016 }
1017 /*
1018 * Move the task's state to DEAD/TRACE, only one thread can do this.
1019 */
1020 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1021 EXIT_TRACE : EXIT_DEAD;
1022 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1023 return 0;
1024 /*
1025 * We own this thread, nobody else can reap it.
1026 */
1027 read_unlock(&tasklist_lock);
1028 sched_annotate_sleep();
1029
1030 /*
1031 * Check thread_group_leader() to exclude the traced sub-threads.
1032 */
1033 if (state == EXIT_DEAD && thread_group_leader(p)) {
1034 struct signal_struct *sig = p->signal;
1035 struct signal_struct *psig = current->signal;
1036 unsigned long maxrss;
1037 u64 tgutime, tgstime;
1038
1039 /*
1040 * The resource counters for the group leader are in its
1041 * own task_struct. Those for dead threads in the group
1042 * are in its signal_struct, as are those for the child
1043 * processes it has previously reaped. All these
1044 * accumulate in the parent's signal_struct c* fields.
1045 *
1046 * We don't bother to take a lock here to protect these
1047 * p->signal fields because the whole thread group is dead
1048 * and nobody can change them.
1049 *
1050 * psig->stats_lock also protects us from our sub-theads
1051 * which can reap other children at the same time. Until
1052 * we change k_getrusage()-like users to rely on this lock
1053 * we have to take ->siglock as well.
1054 *
1055 * We use thread_group_cputime_adjusted() to get times for
1056 * the thread group, which consolidates times for all threads
1057 * in the group including the group leader.
1058 */
1059 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1060 spin_lock_irq(¤t->sighand->siglock);
1061 write_seqlock(&psig->stats_lock);
1062 psig->cutime += tgutime + sig->cutime;
1063 psig->cstime += tgstime + sig->cstime;
1064 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1065 psig->cmin_flt +=
1066 p->min_flt + sig->min_flt + sig->cmin_flt;
1067 psig->cmaj_flt +=
1068 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1069 psig->cnvcsw +=
1070 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1071 psig->cnivcsw +=
1072 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1073 psig->cinblock +=
1074 task_io_get_inblock(p) +
1075 sig->inblock + sig->cinblock;
1076 psig->coublock +=
1077 task_io_get_oublock(p) +
1078 sig->oublock + sig->coublock;
1079 maxrss = max(sig->maxrss, sig->cmaxrss);
1080 if (psig->cmaxrss < maxrss)
1081 psig->cmaxrss = maxrss;
1082 task_io_accounting_add(&psig->ioac, &p->ioac);
1083 task_io_accounting_add(&psig->ioac, &sig->ioac);
1084 write_sequnlock(&psig->stats_lock);
1085 spin_unlock_irq(¤t->sighand->siglock);
1086 }
1087
1088 if (wo->wo_rusage)
1089 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1090 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1091 ? p->signal->group_exit_code : p->exit_code;
1092 wo->wo_stat = status;
1093
1094 if (state == EXIT_TRACE) {
1095 write_lock_irq(&tasklist_lock);
1096 /* We dropped tasklist, ptracer could die and untrace */
1097 ptrace_unlink(p);
1098
1099 /* If parent wants a zombie, don't release it now */
1100 state = EXIT_ZOMBIE;
1101 if (do_notify_parent(p, p->exit_signal))
1102 state = EXIT_DEAD;
1103 p->exit_state = state;
1104 write_unlock_irq(&tasklist_lock);
1105 }
1106 if (state == EXIT_DEAD)
1107 release_task(p);
1108
1109out_info:
1110 infop = wo->wo_info;
1111 if (infop) {
1112 if ((status & 0x7f) == 0) {
1113 infop->cause = CLD_EXITED;
1114 infop->status = status >> 8;
1115 } else {
1116 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1117 infop->status = status & 0x7f;
1118 }
1119 infop->pid = pid;
1120 infop->uid = uid;
1121 }
1122
1123 return pid;
1124}
1125
1126static int *task_stopped_code(struct task_struct *p, bool ptrace)
1127{
1128 if (ptrace) {
1129 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1130 return &p->exit_code;
1131 } else {
1132 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1133 return &p->signal->group_exit_code;
1134 }
1135 return NULL;
1136}
1137
1138/**
1139 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1140 * @wo: wait options
1141 * @ptrace: is the wait for ptrace
1142 * @p: task to wait for
1143 *
1144 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145 *
1146 * CONTEXT:
1147 * read_lock(&tasklist_lock), which is released if return value is
1148 * non-zero. Also, grabs and releases @p->sighand->siglock.
1149 *
1150 * RETURNS:
1151 * 0 if wait condition didn't exist and search for other wait conditions
1152 * should continue. Non-zero return, -errno on failure and @p's pid on
1153 * success, implies that tasklist_lock is released and wait condition
1154 * search should terminate.
1155 */
1156static int wait_task_stopped(struct wait_opts *wo,
1157 int ptrace, struct task_struct *p)
1158{
1159 struct waitid_info *infop;
1160 int exit_code, *p_code, why;
1161 uid_t uid = 0; /* unneeded, required by compiler */
1162 pid_t pid;
1163
1164 /*
1165 * Traditionally we see ptrace'd stopped tasks regardless of options.
1166 */
1167 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1168 return 0;
1169
1170 if (!task_stopped_code(p, ptrace))
1171 return 0;
1172
1173 exit_code = 0;
1174 spin_lock_irq(&p->sighand->siglock);
1175
1176 p_code = task_stopped_code(p, ptrace);
1177 if (unlikely(!p_code))
1178 goto unlock_sig;
1179
1180 exit_code = *p_code;
1181 if (!exit_code)
1182 goto unlock_sig;
1183
1184 if (!unlikely(wo->wo_flags & WNOWAIT))
1185 *p_code = 0;
1186
1187 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1188unlock_sig:
1189 spin_unlock_irq(&p->sighand->siglock);
1190 if (!exit_code)
1191 return 0;
1192
1193 /*
1194 * Now we are pretty sure this task is interesting.
1195 * Make sure it doesn't get reaped out from under us while we
1196 * give up the lock and then examine it below. We don't want to
1197 * keep holding onto the tasklist_lock while we call getrusage and
1198 * possibly take page faults for user memory.
1199 */
1200 get_task_struct(p);
1201 pid = task_pid_vnr(p);
1202 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1203 read_unlock(&tasklist_lock);
1204 sched_annotate_sleep();
1205 if (wo->wo_rusage)
1206 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1207 put_task_struct(p);
1208
1209 if (likely(!(wo->wo_flags & WNOWAIT)))
1210 wo->wo_stat = (exit_code << 8) | 0x7f;
1211
1212 infop = wo->wo_info;
1213 if (infop) {
1214 infop->cause = why;
1215 infop->status = exit_code;
1216 infop->pid = pid;
1217 infop->uid = uid;
1218 }
1219 return pid;
1220}
1221
1222/*
1223 * Handle do_wait work for one task in a live, non-stopped state.
1224 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1225 * the lock and this task is uninteresting. If we return nonzero, we have
1226 * released the lock and the system call should return.
1227 */
1228static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1229{
1230 struct waitid_info *infop;
1231 pid_t pid;
1232 uid_t uid;
1233
1234 if (!unlikely(wo->wo_flags & WCONTINUED))
1235 return 0;
1236
1237 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1238 return 0;
1239
1240 spin_lock_irq(&p->sighand->siglock);
1241 /* Re-check with the lock held. */
1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1243 spin_unlock_irq(&p->sighand->siglock);
1244 return 0;
1245 }
1246 if (!unlikely(wo->wo_flags & WNOWAIT))
1247 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1248 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 spin_unlock_irq(&p->sighand->siglock);
1250
1251 pid = task_pid_vnr(p);
1252 get_task_struct(p);
1253 read_unlock(&tasklist_lock);
1254 sched_annotate_sleep();
1255 if (wo->wo_rusage)
1256 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1257 put_task_struct(p);
1258
1259 infop = wo->wo_info;
1260 if (!infop) {
1261 wo->wo_stat = 0xffff;
1262 } else {
1263 infop->cause = CLD_CONTINUED;
1264 infop->pid = pid;
1265 infop->uid = uid;
1266 infop->status = SIGCONT;
1267 }
1268 return pid;
1269}
1270
1271/*
1272 * Consider @p for a wait by @parent.
1273 *
1274 * -ECHILD should be in ->notask_error before the first call.
1275 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1276 * Returns zero if the search for a child should continue;
1277 * then ->notask_error is 0 if @p is an eligible child,
1278 * or still -ECHILD.
1279 */
1280static int wait_consider_task(struct wait_opts *wo, int ptrace,
1281 struct task_struct *p)
1282{
1283 /*
1284 * We can race with wait_task_zombie() from another thread.
1285 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1286 * can't confuse the checks below.
1287 */
1288 int exit_state = READ_ONCE(p->exit_state);
1289 int ret;
1290
1291 if (unlikely(exit_state == EXIT_DEAD))
1292 return 0;
1293
1294 ret = eligible_child(wo, ptrace, p);
1295 if (!ret)
1296 return ret;
1297
1298 if (unlikely(exit_state == EXIT_TRACE)) {
1299 /*
1300 * ptrace == 0 means we are the natural parent. In this case
1301 * we should clear notask_error, debugger will notify us.
1302 */
1303 if (likely(!ptrace))
1304 wo->notask_error = 0;
1305 return 0;
1306 }
1307
1308 if (likely(!ptrace) && unlikely(p->ptrace)) {
1309 /*
1310 * If it is traced by its real parent's group, just pretend
1311 * the caller is ptrace_do_wait() and reap this child if it
1312 * is zombie.
1313 *
1314 * This also hides group stop state from real parent; otherwise
1315 * a single stop can be reported twice as group and ptrace stop.
1316 * If a ptracer wants to distinguish these two events for its
1317 * own children it should create a separate process which takes
1318 * the role of real parent.
1319 */
1320 if (!ptrace_reparented(p))
1321 ptrace = 1;
1322 }
1323
1324 /* slay zombie? */
1325 if (exit_state == EXIT_ZOMBIE) {
1326 /* we don't reap group leaders with subthreads */
1327 if (!delay_group_leader(p)) {
1328 /*
1329 * A zombie ptracee is only visible to its ptracer.
1330 * Notification and reaping will be cascaded to the
1331 * real parent when the ptracer detaches.
1332 */
1333 if (unlikely(ptrace) || likely(!p->ptrace))
1334 return wait_task_zombie(wo, p);
1335 }
1336
1337 /*
1338 * Allow access to stopped/continued state via zombie by
1339 * falling through. Clearing of notask_error is complex.
1340 *
1341 * When !@ptrace:
1342 *
1343 * If WEXITED is set, notask_error should naturally be
1344 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1345 * so, if there are live subthreads, there are events to
1346 * wait for. If all subthreads are dead, it's still safe
1347 * to clear - this function will be called again in finite
1348 * amount time once all the subthreads are released and
1349 * will then return without clearing.
1350 *
1351 * When @ptrace:
1352 *
1353 * Stopped state is per-task and thus can't change once the
1354 * target task dies. Only continued and exited can happen.
1355 * Clear notask_error if WCONTINUED | WEXITED.
1356 */
1357 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1358 wo->notask_error = 0;
1359 } else {
1360 /*
1361 * @p is alive and it's gonna stop, continue or exit, so
1362 * there always is something to wait for.
1363 */
1364 wo->notask_error = 0;
1365 }
1366
1367 /*
1368 * Wait for stopped. Depending on @ptrace, different stopped state
1369 * is used and the two don't interact with each other.
1370 */
1371 ret = wait_task_stopped(wo, ptrace, p);
1372 if (ret)
1373 return ret;
1374
1375 /*
1376 * Wait for continued. There's only one continued state and the
1377 * ptracer can consume it which can confuse the real parent. Don't
1378 * use WCONTINUED from ptracer. You don't need or want it.
1379 */
1380 return wait_task_continued(wo, p);
1381}
1382
1383/*
1384 * Do the work of do_wait() for one thread in the group, @tsk.
1385 *
1386 * -ECHILD should be in ->notask_error before the first call.
1387 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1388 * Returns zero if the search for a child should continue; then
1389 * ->notask_error is 0 if there were any eligible children,
1390 * or still -ECHILD.
1391 */
1392static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1393{
1394 struct task_struct *p;
1395
1396 list_for_each_entry(p, &tsk->children, sibling) {
1397 int ret = wait_consider_task(wo, 0, p);
1398
1399 if (ret)
1400 return ret;
1401 }
1402
1403 return 0;
1404}
1405
1406static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1407{
1408 struct task_struct *p;
1409
1410 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1411 int ret = wait_consider_task(wo, 1, p);
1412
1413 if (ret)
1414 return ret;
1415 }
1416
1417 return 0;
1418}
1419
1420static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1421 int sync, void *key)
1422{
1423 struct wait_opts *wo = container_of(wait, struct wait_opts,
1424 child_wait);
1425 struct task_struct *p = key;
1426
1427 if (!eligible_pid(wo, p))
1428 return 0;
1429
1430 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1431 return 0;
1432
1433 return default_wake_function(wait, mode, sync, key);
1434}
1435
1436void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1437{
1438 __wake_up_sync_key(&parent->signal->wait_chldexit,
1439 TASK_INTERRUPTIBLE, p);
1440}
1441
1442static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1443 struct task_struct *target)
1444{
1445 struct task_struct *parent =
1446 !ptrace ? target->real_parent : target->parent;
1447
1448 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1449 same_thread_group(current, parent));
1450}
1451
1452/*
1453 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1454 * and tracee lists to find the target task.
1455 */
1456static int do_wait_pid(struct wait_opts *wo)
1457{
1458 bool ptrace;
1459 struct task_struct *target;
1460 int retval;
1461
1462 ptrace = false;
1463 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1464 if (target && is_effectively_child(wo, ptrace, target)) {
1465 retval = wait_consider_task(wo, ptrace, target);
1466 if (retval)
1467 return retval;
1468 }
1469
1470 ptrace = true;
1471 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1472 if (target && target->ptrace &&
1473 is_effectively_child(wo, ptrace, target)) {
1474 retval = wait_consider_task(wo, ptrace, target);
1475 if (retval)
1476 return retval;
1477 }
1478
1479 return 0;
1480}
1481
1482static long do_wait(struct wait_opts *wo)
1483{
1484 int retval;
1485
1486 trace_sched_process_wait(wo->wo_pid);
1487
1488 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1489 wo->child_wait.private = current;
1490 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1491repeat:
1492 /*
1493 * If there is nothing that can match our criteria, just get out.
1494 * We will clear ->notask_error to zero if we see any child that
1495 * might later match our criteria, even if we are not able to reap
1496 * it yet.
1497 */
1498 wo->notask_error = -ECHILD;
1499 if ((wo->wo_type < PIDTYPE_MAX) &&
1500 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1501 goto notask;
1502
1503 set_current_state(TASK_INTERRUPTIBLE);
1504 read_lock(&tasklist_lock);
1505
1506 if (wo->wo_type == PIDTYPE_PID) {
1507 retval = do_wait_pid(wo);
1508 if (retval)
1509 goto end;
1510 } else {
1511 struct task_struct *tsk = current;
1512
1513 do {
1514 retval = do_wait_thread(wo, tsk);
1515 if (retval)
1516 goto end;
1517
1518 retval = ptrace_do_wait(wo, tsk);
1519 if (retval)
1520 goto end;
1521
1522 if (wo->wo_flags & __WNOTHREAD)
1523 break;
1524 } while_each_thread(current, tsk);
1525 }
1526 read_unlock(&tasklist_lock);
1527
1528notask:
1529 retval = wo->notask_error;
1530 if (!retval && !(wo->wo_flags & WNOHANG)) {
1531 retval = -ERESTARTSYS;
1532 if (!signal_pending(current)) {
1533 schedule();
1534 goto repeat;
1535 }
1536 }
1537end:
1538 __set_current_state(TASK_RUNNING);
1539 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1540 return retval;
1541}
1542
1543static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1544 int options, struct rusage *ru)
1545{
1546 struct wait_opts wo;
1547 struct pid *pid = NULL;
1548 enum pid_type type;
1549 long ret;
1550 unsigned int f_flags = 0;
1551
1552 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1553 __WNOTHREAD|__WCLONE|__WALL))
1554 return -EINVAL;
1555 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1556 return -EINVAL;
1557
1558 switch (which) {
1559 case P_ALL:
1560 type = PIDTYPE_MAX;
1561 break;
1562 case P_PID:
1563 type = PIDTYPE_PID;
1564 if (upid <= 0)
1565 return -EINVAL;
1566
1567 pid = find_get_pid(upid);
1568 break;
1569 case P_PGID:
1570 type = PIDTYPE_PGID;
1571 if (upid < 0)
1572 return -EINVAL;
1573
1574 if (upid)
1575 pid = find_get_pid(upid);
1576 else
1577 pid = get_task_pid(current, PIDTYPE_PGID);
1578 break;
1579 case P_PIDFD:
1580 type = PIDTYPE_PID;
1581 if (upid < 0)
1582 return -EINVAL;
1583
1584 pid = pidfd_get_pid(upid, &f_flags);
1585 if (IS_ERR(pid))
1586 return PTR_ERR(pid);
1587
1588 break;
1589 default:
1590 return -EINVAL;
1591 }
1592
1593 wo.wo_type = type;
1594 wo.wo_pid = pid;
1595 wo.wo_flags = options;
1596 wo.wo_info = infop;
1597 wo.wo_rusage = ru;
1598 if (f_flags & O_NONBLOCK)
1599 wo.wo_flags |= WNOHANG;
1600
1601 ret = do_wait(&wo);
1602 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1603 ret = -EAGAIN;
1604
1605 put_pid(pid);
1606 return ret;
1607}
1608
1609SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1610 infop, int, options, struct rusage __user *, ru)
1611{
1612 struct rusage r;
1613 struct waitid_info info = {.status = 0};
1614 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1615 int signo = 0;
1616
1617 if (err > 0) {
1618 signo = SIGCHLD;
1619 err = 0;
1620 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1621 return -EFAULT;
1622 }
1623 if (!infop)
1624 return err;
1625
1626 if (!user_write_access_begin(infop, sizeof(*infop)))
1627 return -EFAULT;
1628
1629 unsafe_put_user(signo, &infop->si_signo, Efault);
1630 unsafe_put_user(0, &infop->si_errno, Efault);
1631 unsafe_put_user(info.cause, &infop->si_code, Efault);
1632 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1633 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1634 unsafe_put_user(info.status, &infop->si_status, Efault);
1635 user_write_access_end();
1636 return err;
1637Efault:
1638 user_write_access_end();
1639 return -EFAULT;
1640}
1641
1642long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1643 struct rusage *ru)
1644{
1645 struct wait_opts wo;
1646 struct pid *pid = NULL;
1647 enum pid_type type;
1648 long ret;
1649
1650 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1651 __WNOTHREAD|__WCLONE|__WALL))
1652 return -EINVAL;
1653
1654 /* -INT_MIN is not defined */
1655 if (upid == INT_MIN)
1656 return -ESRCH;
1657
1658 if (upid == -1)
1659 type = PIDTYPE_MAX;
1660 else if (upid < 0) {
1661 type = PIDTYPE_PGID;
1662 pid = find_get_pid(-upid);
1663 } else if (upid == 0) {
1664 type = PIDTYPE_PGID;
1665 pid = get_task_pid(current, PIDTYPE_PGID);
1666 } else /* upid > 0 */ {
1667 type = PIDTYPE_PID;
1668 pid = find_get_pid(upid);
1669 }
1670
1671 wo.wo_type = type;
1672 wo.wo_pid = pid;
1673 wo.wo_flags = options | WEXITED;
1674 wo.wo_info = NULL;
1675 wo.wo_stat = 0;
1676 wo.wo_rusage = ru;
1677 ret = do_wait(&wo);
1678 put_pid(pid);
1679 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1680 ret = -EFAULT;
1681
1682 return ret;
1683}
1684
1685int kernel_wait(pid_t pid, int *stat)
1686{
1687 struct wait_opts wo = {
1688 .wo_type = PIDTYPE_PID,
1689 .wo_pid = find_get_pid(pid),
1690 .wo_flags = WEXITED,
1691 };
1692 int ret;
1693
1694 ret = do_wait(&wo);
1695 if (ret > 0 && wo.wo_stat)
1696 *stat = wo.wo_stat;
1697 put_pid(wo.wo_pid);
1698 return ret;
1699}
1700
1701SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1702 int, options, struct rusage __user *, ru)
1703{
1704 struct rusage r;
1705 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1706
1707 if (err > 0) {
1708 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1709 return -EFAULT;
1710 }
1711 return err;
1712}
1713
1714#ifdef __ARCH_WANT_SYS_WAITPID
1715
1716/*
1717 * sys_waitpid() remains for compatibility. waitpid() should be
1718 * implemented by calling sys_wait4() from libc.a.
1719 */
1720SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1721{
1722 return kernel_wait4(pid, stat_addr, options, NULL);
1723}
1724
1725#endif
1726
1727#ifdef CONFIG_COMPAT
1728COMPAT_SYSCALL_DEFINE4(wait4,
1729 compat_pid_t, pid,
1730 compat_uint_t __user *, stat_addr,
1731 int, options,
1732 struct compat_rusage __user *, ru)
1733{
1734 struct rusage r;
1735 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1736 if (err > 0) {
1737 if (ru && put_compat_rusage(&r, ru))
1738 return -EFAULT;
1739 }
1740 return err;
1741}
1742
1743COMPAT_SYSCALL_DEFINE5(waitid,
1744 int, which, compat_pid_t, pid,
1745 struct compat_siginfo __user *, infop, int, options,
1746 struct compat_rusage __user *, uru)
1747{
1748 struct rusage ru;
1749 struct waitid_info info = {.status = 0};
1750 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1751 int signo = 0;
1752 if (err > 0) {
1753 signo = SIGCHLD;
1754 err = 0;
1755 if (uru) {
1756 /* kernel_waitid() overwrites everything in ru */
1757 if (COMPAT_USE_64BIT_TIME)
1758 err = copy_to_user(uru, &ru, sizeof(ru));
1759 else
1760 err = put_compat_rusage(&ru, uru);
1761 if (err)
1762 return -EFAULT;
1763 }
1764 }
1765
1766 if (!infop)
1767 return err;
1768
1769 if (!user_write_access_begin(infop, sizeof(*infop)))
1770 return -EFAULT;
1771
1772 unsafe_put_user(signo, &infop->si_signo, Efault);
1773 unsafe_put_user(0, &infop->si_errno, Efault);
1774 unsafe_put_user(info.cause, &infop->si_code, Efault);
1775 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1776 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1777 unsafe_put_user(info.status, &infop->si_status, Efault);
1778 user_write_access_end();
1779 return err;
1780Efault:
1781 user_write_access_end();
1782 return -EFAULT;
1783}
1784#endif
1785
1786/**
1787 * thread_group_exited - check that a thread group has exited
1788 * @pid: tgid of thread group to be checked.
1789 *
1790 * Test if the thread group represented by tgid has exited (all
1791 * threads are zombies, dead or completely gone).
1792 *
1793 * Return: true if the thread group has exited. false otherwise.
1794 */
1795bool thread_group_exited(struct pid *pid)
1796{
1797 struct task_struct *task;
1798 bool exited;
1799
1800 rcu_read_lock();
1801 task = pid_task(pid, PIDTYPE_PID);
1802 exited = !task ||
1803 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1804 rcu_read_unlock();
1805
1806 return exited;
1807}
1808EXPORT_SYMBOL(thread_group_exited);
1809
1810__weak void abort(void)
1811{
1812 BUG();
1813
1814 /* if that doesn't kill us, halt */
1815 panic("Oops failed to kill thread");
1816}
1817EXPORT_SYMBOL(abort);
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/freezer.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct * tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78}
79
80/*
81 * This function expects the tasklist_lock write-locked.
82 */
83static void __exit_signal(struct task_struct *tsk)
84{
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159}
160
161static void delayed_put_task_struct(struct rcu_head *rhp)
162{
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168}
169
170
171void release_task(struct task_struct * p)
172{
173 struct task_struct *leader;
174 int zap_leader;
175repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213}
214
215/*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222struct pid *session_of_pgrp(struct pid *pgrp)
223{
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234}
235
236/*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245{
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260}
261
262int is_current_pgrp_orphaned(void)
263{
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271}
272
273static bool has_stopped_jobs(struct pid *pgrp)
274{
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283}
284
285/*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290static void
291kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292{
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314}
315
316/*
317 * Let kernel threads use this to say that they allow a certain signal.
318 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 */
320int allow_signal(int sig)
321{
322 if (!valid_signal(sig) || sig < 1)
323 return -EINVAL;
324
325 spin_lock_irq(¤t->sighand->siglock);
326 /* This is only needed for daemonize()'ed kthreads */
327 sigdelset(¤t->blocked, sig);
328 /*
329 * Kernel threads handle their own signals. Let the signal code
330 * know it'll be handled, so that they don't get converted to
331 * SIGKILL or just silently dropped.
332 */
333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
334 recalc_sigpending();
335 spin_unlock_irq(¤t->sighand->siglock);
336 return 0;
337}
338
339EXPORT_SYMBOL(allow_signal);
340
341int disallow_signal(int sig)
342{
343 if (!valid_signal(sig) || sig < 1)
344 return -EINVAL;
345
346 spin_lock_irq(¤t->sighand->siglock);
347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
348 recalc_sigpending();
349 spin_unlock_irq(¤t->sighand->siglock);
350 return 0;
351}
352
353EXPORT_SYMBOL(disallow_signal);
354
355#ifdef CONFIG_MM_OWNER
356/*
357 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 */
359void mm_update_next_owner(struct mm_struct *mm)
360{
361 struct task_struct *c, *g, *p = current;
362
363retry:
364 /*
365 * If the exiting or execing task is not the owner, it's
366 * someone else's problem.
367 */
368 if (mm->owner != p)
369 return;
370 /*
371 * The current owner is exiting/execing and there are no other
372 * candidates. Do not leave the mm pointing to a possibly
373 * freed task structure.
374 */
375 if (atomic_read(&mm->mm_users) <= 1) {
376 mm->owner = NULL;
377 return;
378 }
379
380 read_lock(&tasklist_lock);
381 /*
382 * Search in the children
383 */
384 list_for_each_entry(c, &p->children, sibling) {
385 if (c->mm == mm)
386 goto assign_new_owner;
387 }
388
389 /*
390 * Search in the siblings
391 */
392 list_for_each_entry(c, &p->real_parent->children, sibling) {
393 if (c->mm == mm)
394 goto assign_new_owner;
395 }
396
397 /*
398 * Search through everything else. We should not get
399 * here often
400 */
401 do_each_thread(g, c) {
402 if (c->mm == mm)
403 goto assign_new_owner;
404 } while_each_thread(g, c);
405
406 read_unlock(&tasklist_lock);
407 /*
408 * We found no owner yet mm_users > 1: this implies that we are
409 * most likely racing with swapoff (try_to_unuse()) or /proc or
410 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
411 */
412 mm->owner = NULL;
413 return;
414
415assign_new_owner:
416 BUG_ON(c == p);
417 get_task_struct(c);
418 /*
419 * The task_lock protects c->mm from changing.
420 * We always want mm->owner->mm == mm
421 */
422 task_lock(c);
423 /*
424 * Delay read_unlock() till we have the task_lock()
425 * to ensure that c does not slip away underneath us
426 */
427 read_unlock(&tasklist_lock);
428 if (c->mm != mm) {
429 task_unlock(c);
430 put_task_struct(c);
431 goto retry;
432 }
433 mm->owner = c;
434 task_unlock(c);
435 put_task_struct(c);
436}
437#endif /* CONFIG_MM_OWNER */
438
439/*
440 * Turn us into a lazy TLB process if we
441 * aren't already..
442 */
443static void exit_mm(struct task_struct * tsk)
444{
445 struct mm_struct *mm = tsk->mm;
446 struct core_state *core_state;
447
448 mm_release(tsk, mm);
449 if (!mm)
450 return;
451 sync_mm_rss(mm);
452 /*
453 * Serialize with any possible pending coredump.
454 * We must hold mmap_sem around checking core_state
455 * and clearing tsk->mm. The core-inducing thread
456 * will increment ->nr_threads for each thread in the
457 * group with ->mm != NULL.
458 */
459 down_read(&mm->mmap_sem);
460 core_state = mm->core_state;
461 if (core_state) {
462 struct core_thread self;
463 up_read(&mm->mmap_sem);
464
465 self.task = tsk;
466 self.next = xchg(&core_state->dumper.next, &self);
467 /*
468 * Implies mb(), the result of xchg() must be visible
469 * to core_state->dumper.
470 */
471 if (atomic_dec_and_test(&core_state->nr_threads))
472 complete(&core_state->startup);
473
474 for (;;) {
475 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
476 if (!self.task) /* see coredump_finish() */
477 break;
478 freezable_schedule();
479 }
480 __set_task_state(tsk, TASK_RUNNING);
481 down_read(&mm->mmap_sem);
482 }
483 atomic_inc(&mm->mm_count);
484 BUG_ON(mm != tsk->active_mm);
485 /* more a memory barrier than a real lock */
486 task_lock(tsk);
487 tsk->mm = NULL;
488 up_read(&mm->mmap_sem);
489 enter_lazy_tlb(mm, current);
490 task_unlock(tsk);
491 mm_update_next_owner(mm);
492 mmput(mm);
493}
494
495/*
496 * When we die, we re-parent all our children, and try to:
497 * 1. give them to another thread in our thread group, if such a member exists
498 * 2. give it to the first ancestor process which prctl'd itself as a
499 * child_subreaper for its children (like a service manager)
500 * 3. give it to the init process (PID 1) in our pid namespace
501 */
502static struct task_struct *find_new_reaper(struct task_struct *father)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505{
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *thread;
508
509 thread = father;
510 while_each_thread(father, thread) {
511 if (thread->flags & PF_EXITING)
512 continue;
513 if (unlikely(pid_ns->child_reaper == father))
514 pid_ns->child_reaper = thread;
515 return thread;
516 }
517
518 if (unlikely(pid_ns->child_reaper == father)) {
519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?:
523 father->exit_code);
524 }
525
526 zap_pid_ns_processes(pid_ns);
527 write_lock_irq(&tasklist_lock);
528 } else if (father->signal->has_child_subreaper) {
529 struct task_struct *reaper;
530
531 /*
532 * Find the first ancestor marked as child_subreaper.
533 * Note that the code below checks same_thread_group(reaper,
534 * pid_ns->child_reaper). This is what we need to DTRT in a
535 * PID namespace. However we still need the check above, see
536 * http://marc.info/?l=linux-kernel&m=131385460420380
537 */
538 for (reaper = father->real_parent;
539 reaper != &init_task;
540 reaper = reaper->real_parent) {
541 if (same_thread_group(reaper, pid_ns->child_reaper))
542 break;
543 if (!reaper->signal->is_child_subreaper)
544 continue;
545 thread = reaper;
546 do {
547 if (!(thread->flags & PF_EXITING))
548 return reaper;
549 } while_each_thread(reaper, thread);
550 }
551 }
552
553 return pid_ns->child_reaper;
554}
555
556/*
557* Any that need to be release_task'd are put on the @dead list.
558 */
559static void reparent_leader(struct task_struct *father, struct task_struct *p,
560 struct list_head *dead)
561{
562 list_move_tail(&p->sibling, &p->real_parent->children);
563
564 if (p->exit_state == EXIT_DEAD)
565 return;
566 /*
567 * If this is a threaded reparent there is no need to
568 * notify anyone anything has happened.
569 */
570 if (same_thread_group(p->real_parent, father))
571 return;
572
573 /* We don't want people slaying init. */
574 p->exit_signal = SIGCHLD;
575
576 /* If it has exited notify the new parent about this child's death. */
577 if (!p->ptrace &&
578 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
579 if (do_notify_parent(p, p->exit_signal)) {
580 p->exit_state = EXIT_DEAD;
581 list_move_tail(&p->sibling, dead);
582 }
583 }
584
585 kill_orphaned_pgrp(p, father);
586}
587
588static void forget_original_parent(struct task_struct *father)
589{
590 struct task_struct *p, *n, *reaper;
591 LIST_HEAD(dead_children);
592
593 write_lock_irq(&tasklist_lock);
594 /*
595 * Note that exit_ptrace() and find_new_reaper() might
596 * drop tasklist_lock and reacquire it.
597 */
598 exit_ptrace(father);
599 reaper = find_new_reaper(father);
600
601 list_for_each_entry_safe(p, n, &father->children, sibling) {
602 struct task_struct *t = p;
603 do {
604 t->real_parent = reaper;
605 if (t->parent == father) {
606 BUG_ON(t->ptrace);
607 t->parent = t->real_parent;
608 }
609 if (t->pdeath_signal)
610 group_send_sig_info(t->pdeath_signal,
611 SEND_SIG_NOINFO, t);
612 } while_each_thread(p, t);
613 reparent_leader(father, p, &dead_children);
614 }
615 write_unlock_irq(&tasklist_lock);
616
617 BUG_ON(!list_empty(&father->children));
618
619 list_for_each_entry_safe(p, n, &dead_children, sibling) {
620 list_del_init(&p->sibling);
621 release_task(p);
622 }
623}
624
625/*
626 * Send signals to all our closest relatives so that they know
627 * to properly mourn us..
628 */
629static void exit_notify(struct task_struct *tsk, int group_dead)
630{
631 bool autoreap;
632
633 /*
634 * This does two things:
635 *
636 * A. Make init inherit all the child processes
637 * B. Check to see if any process groups have become orphaned
638 * as a result of our exiting, and if they have any stopped
639 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
640 */
641 forget_original_parent(tsk);
642
643 write_lock_irq(&tasklist_lock);
644 if (group_dead)
645 kill_orphaned_pgrp(tsk->group_leader, NULL);
646
647 if (unlikely(tsk->ptrace)) {
648 int sig = thread_group_leader(tsk) &&
649 thread_group_empty(tsk) &&
650 !ptrace_reparented(tsk) ?
651 tsk->exit_signal : SIGCHLD;
652 autoreap = do_notify_parent(tsk, sig);
653 } else if (thread_group_leader(tsk)) {
654 autoreap = thread_group_empty(tsk) &&
655 do_notify_parent(tsk, tsk->exit_signal);
656 } else {
657 autoreap = true;
658 }
659
660 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
661
662 /* mt-exec, de_thread() is waiting for group leader */
663 if (unlikely(tsk->signal->notify_count < 0))
664 wake_up_process(tsk->signal->group_exit_task);
665 write_unlock_irq(&tasklist_lock);
666
667 /* If the process is dead, release it - nobody will wait for it */
668 if (autoreap)
669 release_task(tsk);
670}
671
672#ifdef CONFIG_DEBUG_STACK_USAGE
673static void check_stack_usage(void)
674{
675 static DEFINE_SPINLOCK(low_water_lock);
676 static int lowest_to_date = THREAD_SIZE;
677 unsigned long free;
678
679 free = stack_not_used(current);
680
681 if (free >= lowest_to_date)
682 return;
683
684 spin_lock(&low_water_lock);
685 if (free < lowest_to_date) {
686 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
687 "%lu bytes left\n",
688 current->comm, task_pid_nr(current), free);
689 lowest_to_date = free;
690 }
691 spin_unlock(&low_water_lock);
692}
693#else
694static inline void check_stack_usage(void) {}
695#endif
696
697void do_exit(long code)
698{
699 struct task_struct *tsk = current;
700 int group_dead;
701
702 profile_task_exit(tsk);
703
704 WARN_ON(blk_needs_flush_plug(tsk));
705
706 if (unlikely(in_interrupt()))
707 panic("Aiee, killing interrupt handler!");
708 if (unlikely(!tsk->pid))
709 panic("Attempted to kill the idle task!");
710
711 /*
712 * If do_exit is called because this processes oopsed, it's possible
713 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
714 * continuing. Amongst other possible reasons, this is to prevent
715 * mm_release()->clear_child_tid() from writing to a user-controlled
716 * kernel address.
717 */
718 set_fs(USER_DS);
719
720 ptrace_event(PTRACE_EVENT_EXIT, code);
721
722 validate_creds_for_do_exit(tsk);
723
724 /*
725 * We're taking recursive faults here in do_exit. Safest is to just
726 * leave this task alone and wait for reboot.
727 */
728 if (unlikely(tsk->flags & PF_EXITING)) {
729 printk(KERN_ALERT
730 "Fixing recursive fault but reboot is needed!\n");
731 /*
732 * We can do this unlocked here. The futex code uses
733 * this flag just to verify whether the pi state
734 * cleanup has been done or not. In the worst case it
735 * loops once more. We pretend that the cleanup was
736 * done as there is no way to return. Either the
737 * OWNER_DIED bit is set by now or we push the blocked
738 * task into the wait for ever nirwana as well.
739 */
740 tsk->flags |= PF_EXITPIDONE;
741 set_current_state(TASK_UNINTERRUPTIBLE);
742 schedule();
743 }
744
745 exit_signals(tsk); /* sets PF_EXITING */
746 /*
747 * tsk->flags are checked in the futex code to protect against
748 * an exiting task cleaning up the robust pi futexes.
749 */
750 smp_mb();
751 raw_spin_unlock_wait(&tsk->pi_lock);
752
753 if (unlikely(in_atomic()))
754 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
755 current->comm, task_pid_nr(current),
756 preempt_count());
757
758 acct_update_integrals(tsk);
759 /* sync mm's RSS info before statistics gathering */
760 if (tsk->mm)
761 sync_mm_rss(tsk->mm);
762 group_dead = atomic_dec_and_test(&tsk->signal->live);
763 if (group_dead) {
764 hrtimer_cancel(&tsk->signal->real_timer);
765 exit_itimers(tsk->signal);
766 if (tsk->mm)
767 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
768 }
769 acct_collect(code, group_dead);
770 if (group_dead)
771 tty_audit_exit();
772 audit_free(tsk);
773
774 tsk->exit_code = code;
775 taskstats_exit(tsk, group_dead);
776
777 exit_mm(tsk);
778
779 if (group_dead)
780 acct_process();
781 trace_sched_process_exit(tsk);
782
783 exit_sem(tsk);
784 exit_shm(tsk);
785 exit_files(tsk);
786 exit_fs(tsk);
787 if (group_dead)
788 disassociate_ctty(1);
789 exit_task_namespaces(tsk);
790 exit_task_work(tsk);
791 exit_thread();
792
793 /*
794 * Flush inherited counters to the parent - before the parent
795 * gets woken up by child-exit notifications.
796 *
797 * because of cgroup mode, must be called before cgroup_exit()
798 */
799 perf_event_exit_task(tsk);
800
801 cgroup_exit(tsk);
802
803 module_put(task_thread_info(tsk)->exec_domain->module);
804
805 /*
806 * FIXME: do that only when needed, using sched_exit tracepoint
807 */
808 flush_ptrace_hw_breakpoint(tsk);
809
810 exit_notify(tsk, group_dead);
811 proc_exit_connector(tsk);
812#ifdef CONFIG_NUMA
813 task_lock(tsk);
814 mpol_put(tsk->mempolicy);
815 tsk->mempolicy = NULL;
816 task_unlock(tsk);
817#endif
818#ifdef CONFIG_FUTEX
819 if (unlikely(current->pi_state_cache))
820 kfree(current->pi_state_cache);
821#endif
822 /*
823 * Make sure we are holding no locks:
824 */
825 debug_check_no_locks_held();
826 /*
827 * We can do this unlocked here. The futex code uses this flag
828 * just to verify whether the pi state cleanup has been done
829 * or not. In the worst case it loops once more.
830 */
831 tsk->flags |= PF_EXITPIDONE;
832
833 if (tsk->io_context)
834 exit_io_context(tsk);
835
836 if (tsk->splice_pipe)
837 free_pipe_info(tsk->splice_pipe);
838
839 if (tsk->task_frag.page)
840 put_page(tsk->task_frag.page);
841
842 validate_creds_for_do_exit(tsk);
843
844 check_stack_usage();
845 preempt_disable();
846 if (tsk->nr_dirtied)
847 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
848 exit_rcu();
849
850 /*
851 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
852 * when the following two conditions become true.
853 * - There is race condition of mmap_sem (It is acquired by
854 * exit_mm()), and
855 * - SMI occurs before setting TASK_RUNINNG.
856 * (or hypervisor of virtual machine switches to other guest)
857 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
858 *
859 * To avoid it, we have to wait for releasing tsk->pi_lock which
860 * is held by try_to_wake_up()
861 */
862 smp_mb();
863 raw_spin_unlock_wait(&tsk->pi_lock);
864
865 /* causes final put_task_struct in finish_task_switch(). */
866 tsk->state = TASK_DEAD;
867 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
868 schedule();
869 BUG();
870 /* Avoid "noreturn function does return". */
871 for (;;)
872 cpu_relax(); /* For when BUG is null */
873}
874
875EXPORT_SYMBOL_GPL(do_exit);
876
877void complete_and_exit(struct completion *comp, long code)
878{
879 if (comp)
880 complete(comp);
881
882 do_exit(code);
883}
884
885EXPORT_SYMBOL(complete_and_exit);
886
887SYSCALL_DEFINE1(exit, int, error_code)
888{
889 do_exit((error_code&0xff)<<8);
890}
891
892/*
893 * Take down every thread in the group. This is called by fatal signals
894 * as well as by sys_exit_group (below).
895 */
896void
897do_group_exit(int exit_code)
898{
899 struct signal_struct *sig = current->signal;
900
901 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
902
903 if (signal_group_exit(sig))
904 exit_code = sig->group_exit_code;
905 else if (!thread_group_empty(current)) {
906 struct sighand_struct *const sighand = current->sighand;
907 spin_lock_irq(&sighand->siglock);
908 if (signal_group_exit(sig))
909 /* Another thread got here before we took the lock. */
910 exit_code = sig->group_exit_code;
911 else {
912 sig->group_exit_code = exit_code;
913 sig->flags = SIGNAL_GROUP_EXIT;
914 zap_other_threads(current);
915 }
916 spin_unlock_irq(&sighand->siglock);
917 }
918
919 do_exit(exit_code);
920 /* NOTREACHED */
921}
922
923/*
924 * this kills every thread in the thread group. Note that any externally
925 * wait4()-ing process will get the correct exit code - even if this
926 * thread is not the thread group leader.
927 */
928SYSCALL_DEFINE1(exit_group, int, error_code)
929{
930 do_group_exit((error_code & 0xff) << 8);
931 /* NOTREACHED */
932 return 0;
933}
934
935struct wait_opts {
936 enum pid_type wo_type;
937 int wo_flags;
938 struct pid *wo_pid;
939
940 struct siginfo __user *wo_info;
941 int __user *wo_stat;
942 struct rusage __user *wo_rusage;
943
944 wait_queue_t child_wait;
945 int notask_error;
946};
947
948static inline
949struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
950{
951 if (type != PIDTYPE_PID)
952 task = task->group_leader;
953 return task->pids[type].pid;
954}
955
956static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
957{
958 return wo->wo_type == PIDTYPE_MAX ||
959 task_pid_type(p, wo->wo_type) == wo->wo_pid;
960}
961
962static int eligible_child(struct wait_opts *wo, struct task_struct *p)
963{
964 if (!eligible_pid(wo, p))
965 return 0;
966 /* Wait for all children (clone and not) if __WALL is set;
967 * otherwise, wait for clone children *only* if __WCLONE is
968 * set; otherwise, wait for non-clone children *only*. (Note:
969 * A "clone" child here is one that reports to its parent
970 * using a signal other than SIGCHLD.) */
971 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
972 && !(wo->wo_flags & __WALL))
973 return 0;
974
975 return 1;
976}
977
978static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
979 pid_t pid, uid_t uid, int why, int status)
980{
981 struct siginfo __user *infop;
982 int retval = wo->wo_rusage
983 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
984
985 put_task_struct(p);
986 infop = wo->wo_info;
987 if (infop) {
988 if (!retval)
989 retval = put_user(SIGCHLD, &infop->si_signo);
990 if (!retval)
991 retval = put_user(0, &infop->si_errno);
992 if (!retval)
993 retval = put_user((short)why, &infop->si_code);
994 if (!retval)
995 retval = put_user(pid, &infop->si_pid);
996 if (!retval)
997 retval = put_user(uid, &infop->si_uid);
998 if (!retval)
999 retval = put_user(status, &infop->si_status);
1000 }
1001 if (!retval)
1002 retval = pid;
1003 return retval;
1004}
1005
1006/*
1007 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1008 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1009 * the lock and this task is uninteresting. If we return nonzero, we have
1010 * released the lock and the system call should return.
1011 */
1012static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1013{
1014 unsigned long state;
1015 int retval, status, traced;
1016 pid_t pid = task_pid_vnr(p);
1017 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1018 struct siginfo __user *infop;
1019
1020 if (!likely(wo->wo_flags & WEXITED))
1021 return 0;
1022
1023 if (unlikely(wo->wo_flags & WNOWAIT)) {
1024 int exit_code = p->exit_code;
1025 int why;
1026
1027 get_task_struct(p);
1028 read_unlock(&tasklist_lock);
1029 if ((exit_code & 0x7f) == 0) {
1030 why = CLD_EXITED;
1031 status = exit_code >> 8;
1032 } else {
1033 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1034 status = exit_code & 0x7f;
1035 }
1036 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1037 }
1038
1039 traced = ptrace_reparented(p);
1040 /*
1041 * Move the task's state to DEAD/TRACE, only one thread can do this.
1042 */
1043 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1044 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1045 return 0;
1046 /*
1047 * It can be ptraced but not reparented, check
1048 * thread_group_leader() to filter out sub-threads.
1049 */
1050 if (likely(!traced) && thread_group_leader(p)) {
1051 struct signal_struct *psig;
1052 struct signal_struct *sig;
1053 unsigned long maxrss;
1054 cputime_t tgutime, tgstime;
1055
1056 /*
1057 * The resource counters for the group leader are in its
1058 * own task_struct. Those for dead threads in the group
1059 * are in its signal_struct, as are those for the child
1060 * processes it has previously reaped. All these
1061 * accumulate in the parent's signal_struct c* fields.
1062 *
1063 * We don't bother to take a lock here to protect these
1064 * p->signal fields, because they are only touched by
1065 * __exit_signal, which runs with tasklist_lock
1066 * write-locked anyway, and so is excluded here. We do
1067 * need to protect the access to parent->signal fields,
1068 * as other threads in the parent group can be right
1069 * here reaping other children at the same time.
1070 *
1071 * We use thread_group_cputime_adjusted() to get times for the thread
1072 * group, which consolidates times for all threads in the
1073 * group including the group leader.
1074 */
1075 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1076 spin_lock_irq(&p->real_parent->sighand->siglock);
1077 psig = p->real_parent->signal;
1078 sig = p->signal;
1079 psig->cutime += tgutime + sig->cutime;
1080 psig->cstime += tgstime + sig->cstime;
1081 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1082 psig->cmin_flt +=
1083 p->min_flt + sig->min_flt + sig->cmin_flt;
1084 psig->cmaj_flt +=
1085 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1086 psig->cnvcsw +=
1087 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1088 psig->cnivcsw +=
1089 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1090 psig->cinblock +=
1091 task_io_get_inblock(p) +
1092 sig->inblock + sig->cinblock;
1093 psig->coublock +=
1094 task_io_get_oublock(p) +
1095 sig->oublock + sig->coublock;
1096 maxrss = max(sig->maxrss, sig->cmaxrss);
1097 if (psig->cmaxrss < maxrss)
1098 psig->cmaxrss = maxrss;
1099 task_io_accounting_add(&psig->ioac, &p->ioac);
1100 task_io_accounting_add(&psig->ioac, &sig->ioac);
1101 spin_unlock_irq(&p->real_parent->sighand->siglock);
1102 }
1103
1104 /*
1105 * Now we are sure this task is interesting, and no other
1106 * thread can reap it because we its state == DEAD/TRACE.
1107 */
1108 read_unlock(&tasklist_lock);
1109
1110 retval = wo->wo_rusage
1111 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1112 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1113 ? p->signal->group_exit_code : p->exit_code;
1114 if (!retval && wo->wo_stat)
1115 retval = put_user(status, wo->wo_stat);
1116
1117 infop = wo->wo_info;
1118 if (!retval && infop)
1119 retval = put_user(SIGCHLD, &infop->si_signo);
1120 if (!retval && infop)
1121 retval = put_user(0, &infop->si_errno);
1122 if (!retval && infop) {
1123 int why;
1124
1125 if ((status & 0x7f) == 0) {
1126 why = CLD_EXITED;
1127 status >>= 8;
1128 } else {
1129 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1130 status &= 0x7f;
1131 }
1132 retval = put_user((short)why, &infop->si_code);
1133 if (!retval)
1134 retval = put_user(status, &infop->si_status);
1135 }
1136 if (!retval && infop)
1137 retval = put_user(pid, &infop->si_pid);
1138 if (!retval && infop)
1139 retval = put_user(uid, &infop->si_uid);
1140 if (!retval)
1141 retval = pid;
1142
1143 if (state == EXIT_TRACE) {
1144 write_lock_irq(&tasklist_lock);
1145 /* We dropped tasklist, ptracer could die and untrace */
1146 ptrace_unlink(p);
1147
1148 /* If parent wants a zombie, don't release it now */
1149 state = EXIT_ZOMBIE;
1150 if (do_notify_parent(p, p->exit_signal))
1151 state = EXIT_DEAD;
1152 p->exit_state = state;
1153 write_unlock_irq(&tasklist_lock);
1154 }
1155 if (state == EXIT_DEAD)
1156 release_task(p);
1157
1158 return retval;
1159}
1160
1161static int *task_stopped_code(struct task_struct *p, bool ptrace)
1162{
1163 if (ptrace) {
1164 if (task_is_stopped_or_traced(p) &&
1165 !(p->jobctl & JOBCTL_LISTENING))
1166 return &p->exit_code;
1167 } else {
1168 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1169 return &p->signal->group_exit_code;
1170 }
1171 return NULL;
1172}
1173
1174/**
1175 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1176 * @wo: wait options
1177 * @ptrace: is the wait for ptrace
1178 * @p: task to wait for
1179 *
1180 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1181 *
1182 * CONTEXT:
1183 * read_lock(&tasklist_lock), which is released if return value is
1184 * non-zero. Also, grabs and releases @p->sighand->siglock.
1185 *
1186 * RETURNS:
1187 * 0 if wait condition didn't exist and search for other wait conditions
1188 * should continue. Non-zero return, -errno on failure and @p's pid on
1189 * success, implies that tasklist_lock is released and wait condition
1190 * search should terminate.
1191 */
1192static int wait_task_stopped(struct wait_opts *wo,
1193 int ptrace, struct task_struct *p)
1194{
1195 struct siginfo __user *infop;
1196 int retval, exit_code, *p_code, why;
1197 uid_t uid = 0; /* unneeded, required by compiler */
1198 pid_t pid;
1199
1200 /*
1201 * Traditionally we see ptrace'd stopped tasks regardless of options.
1202 */
1203 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1204 return 0;
1205
1206 if (!task_stopped_code(p, ptrace))
1207 return 0;
1208
1209 exit_code = 0;
1210 spin_lock_irq(&p->sighand->siglock);
1211
1212 p_code = task_stopped_code(p, ptrace);
1213 if (unlikely(!p_code))
1214 goto unlock_sig;
1215
1216 exit_code = *p_code;
1217 if (!exit_code)
1218 goto unlock_sig;
1219
1220 if (!unlikely(wo->wo_flags & WNOWAIT))
1221 *p_code = 0;
1222
1223 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1224unlock_sig:
1225 spin_unlock_irq(&p->sighand->siglock);
1226 if (!exit_code)
1227 return 0;
1228
1229 /*
1230 * Now we are pretty sure this task is interesting.
1231 * Make sure it doesn't get reaped out from under us while we
1232 * give up the lock and then examine it below. We don't want to
1233 * keep holding onto the tasklist_lock while we call getrusage and
1234 * possibly take page faults for user memory.
1235 */
1236 get_task_struct(p);
1237 pid = task_pid_vnr(p);
1238 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1239 read_unlock(&tasklist_lock);
1240
1241 if (unlikely(wo->wo_flags & WNOWAIT))
1242 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1243
1244 retval = wo->wo_rusage
1245 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1246 if (!retval && wo->wo_stat)
1247 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1248
1249 infop = wo->wo_info;
1250 if (!retval && infop)
1251 retval = put_user(SIGCHLD, &infop->si_signo);
1252 if (!retval && infop)
1253 retval = put_user(0, &infop->si_errno);
1254 if (!retval && infop)
1255 retval = put_user((short)why, &infop->si_code);
1256 if (!retval && infop)
1257 retval = put_user(exit_code, &infop->si_status);
1258 if (!retval && infop)
1259 retval = put_user(pid, &infop->si_pid);
1260 if (!retval && infop)
1261 retval = put_user(uid, &infop->si_uid);
1262 if (!retval)
1263 retval = pid;
1264 put_task_struct(p);
1265
1266 BUG_ON(!retval);
1267 return retval;
1268}
1269
1270/*
1271 * Handle do_wait work for one task in a live, non-stopped state.
1272 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1273 * the lock and this task is uninteresting. If we return nonzero, we have
1274 * released the lock and the system call should return.
1275 */
1276static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1277{
1278 int retval;
1279 pid_t pid;
1280 uid_t uid;
1281
1282 if (!unlikely(wo->wo_flags & WCONTINUED))
1283 return 0;
1284
1285 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1286 return 0;
1287
1288 spin_lock_irq(&p->sighand->siglock);
1289 /* Re-check with the lock held. */
1290 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1291 spin_unlock_irq(&p->sighand->siglock);
1292 return 0;
1293 }
1294 if (!unlikely(wo->wo_flags & WNOWAIT))
1295 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1296 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1297 spin_unlock_irq(&p->sighand->siglock);
1298
1299 pid = task_pid_vnr(p);
1300 get_task_struct(p);
1301 read_unlock(&tasklist_lock);
1302
1303 if (!wo->wo_info) {
1304 retval = wo->wo_rusage
1305 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1306 put_task_struct(p);
1307 if (!retval && wo->wo_stat)
1308 retval = put_user(0xffff, wo->wo_stat);
1309 if (!retval)
1310 retval = pid;
1311 } else {
1312 retval = wait_noreap_copyout(wo, p, pid, uid,
1313 CLD_CONTINUED, SIGCONT);
1314 BUG_ON(retval == 0);
1315 }
1316
1317 return retval;
1318}
1319
1320/*
1321 * Consider @p for a wait by @parent.
1322 *
1323 * -ECHILD should be in ->notask_error before the first call.
1324 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1325 * Returns zero if the search for a child should continue;
1326 * then ->notask_error is 0 if @p is an eligible child,
1327 * or another error from security_task_wait(), or still -ECHILD.
1328 */
1329static int wait_consider_task(struct wait_opts *wo, int ptrace,
1330 struct task_struct *p)
1331{
1332 int ret;
1333
1334 if (unlikely(p->exit_state == EXIT_DEAD))
1335 return 0;
1336
1337 ret = eligible_child(wo, p);
1338 if (!ret)
1339 return ret;
1340
1341 ret = security_task_wait(p);
1342 if (unlikely(ret < 0)) {
1343 /*
1344 * If we have not yet seen any eligible child,
1345 * then let this error code replace -ECHILD.
1346 * A permission error will give the user a clue
1347 * to look for security policy problems, rather
1348 * than for mysterious wait bugs.
1349 */
1350 if (wo->notask_error)
1351 wo->notask_error = ret;
1352 return 0;
1353 }
1354
1355 if (unlikely(p->exit_state == EXIT_TRACE)) {
1356 /*
1357 * ptrace == 0 means we are the natural parent. In this case
1358 * we should clear notask_error, debugger will notify us.
1359 */
1360 if (likely(!ptrace))
1361 wo->notask_error = 0;
1362 return 0;
1363 }
1364
1365 if (likely(!ptrace) && unlikely(p->ptrace)) {
1366 /*
1367 * If it is traced by its real parent's group, just pretend
1368 * the caller is ptrace_do_wait() and reap this child if it
1369 * is zombie.
1370 *
1371 * This also hides group stop state from real parent; otherwise
1372 * a single stop can be reported twice as group and ptrace stop.
1373 * If a ptracer wants to distinguish these two events for its
1374 * own children it should create a separate process which takes
1375 * the role of real parent.
1376 */
1377 if (!ptrace_reparented(p))
1378 ptrace = 1;
1379 }
1380
1381 /* slay zombie? */
1382 if (p->exit_state == EXIT_ZOMBIE) {
1383 /* we don't reap group leaders with subthreads */
1384 if (!delay_group_leader(p)) {
1385 /*
1386 * A zombie ptracee is only visible to its ptracer.
1387 * Notification and reaping will be cascaded to the
1388 * real parent when the ptracer detaches.
1389 */
1390 if (unlikely(ptrace) || likely(!p->ptrace))
1391 return wait_task_zombie(wo, p);
1392 }
1393
1394 /*
1395 * Allow access to stopped/continued state via zombie by
1396 * falling through. Clearing of notask_error is complex.
1397 *
1398 * When !@ptrace:
1399 *
1400 * If WEXITED is set, notask_error should naturally be
1401 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1402 * so, if there are live subthreads, there are events to
1403 * wait for. If all subthreads are dead, it's still safe
1404 * to clear - this function will be called again in finite
1405 * amount time once all the subthreads are released and
1406 * will then return without clearing.
1407 *
1408 * When @ptrace:
1409 *
1410 * Stopped state is per-task and thus can't change once the
1411 * target task dies. Only continued and exited can happen.
1412 * Clear notask_error if WCONTINUED | WEXITED.
1413 */
1414 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1415 wo->notask_error = 0;
1416 } else {
1417 /*
1418 * @p is alive and it's gonna stop, continue or exit, so
1419 * there always is something to wait for.
1420 */
1421 wo->notask_error = 0;
1422 }
1423
1424 /*
1425 * Wait for stopped. Depending on @ptrace, different stopped state
1426 * is used and the two don't interact with each other.
1427 */
1428 ret = wait_task_stopped(wo, ptrace, p);
1429 if (ret)
1430 return ret;
1431
1432 /*
1433 * Wait for continued. There's only one continued state and the
1434 * ptracer can consume it which can confuse the real parent. Don't
1435 * use WCONTINUED from ptracer. You don't need or want it.
1436 */
1437 return wait_task_continued(wo, p);
1438}
1439
1440/*
1441 * Do the work of do_wait() for one thread in the group, @tsk.
1442 *
1443 * -ECHILD should be in ->notask_error before the first call.
1444 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445 * Returns zero if the search for a child should continue; then
1446 * ->notask_error is 0 if there were any eligible children,
1447 * or another error from security_task_wait(), or still -ECHILD.
1448 */
1449static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1450{
1451 struct task_struct *p;
1452
1453 list_for_each_entry(p, &tsk->children, sibling) {
1454 int ret = wait_consider_task(wo, 0, p);
1455 if (ret)
1456 return ret;
1457 }
1458
1459 return 0;
1460}
1461
1462static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1463{
1464 struct task_struct *p;
1465
1466 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1467 int ret = wait_consider_task(wo, 1, p);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 return 0;
1473}
1474
1475static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1476 int sync, void *key)
1477{
1478 struct wait_opts *wo = container_of(wait, struct wait_opts,
1479 child_wait);
1480 struct task_struct *p = key;
1481
1482 if (!eligible_pid(wo, p))
1483 return 0;
1484
1485 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1486 return 0;
1487
1488 return default_wake_function(wait, mode, sync, key);
1489}
1490
1491void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1492{
1493 __wake_up_sync_key(&parent->signal->wait_chldexit,
1494 TASK_INTERRUPTIBLE, 1, p);
1495}
1496
1497static long do_wait(struct wait_opts *wo)
1498{
1499 struct task_struct *tsk;
1500 int retval;
1501
1502 trace_sched_process_wait(wo->wo_pid);
1503
1504 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1505 wo->child_wait.private = current;
1506 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1507repeat:
1508 /*
1509 * If there is nothing that can match our critiera just get out.
1510 * We will clear ->notask_error to zero if we see any child that
1511 * might later match our criteria, even if we are not able to reap
1512 * it yet.
1513 */
1514 wo->notask_error = -ECHILD;
1515 if ((wo->wo_type < PIDTYPE_MAX) &&
1516 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1517 goto notask;
1518
1519 set_current_state(TASK_INTERRUPTIBLE);
1520 read_lock(&tasklist_lock);
1521 tsk = current;
1522 do {
1523 retval = do_wait_thread(wo, tsk);
1524 if (retval)
1525 goto end;
1526
1527 retval = ptrace_do_wait(wo, tsk);
1528 if (retval)
1529 goto end;
1530
1531 if (wo->wo_flags & __WNOTHREAD)
1532 break;
1533 } while_each_thread(current, tsk);
1534 read_unlock(&tasklist_lock);
1535
1536notask:
1537 retval = wo->notask_error;
1538 if (!retval && !(wo->wo_flags & WNOHANG)) {
1539 retval = -ERESTARTSYS;
1540 if (!signal_pending(current)) {
1541 schedule();
1542 goto repeat;
1543 }
1544 }
1545end:
1546 __set_current_state(TASK_RUNNING);
1547 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1548 return retval;
1549}
1550
1551SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1552 infop, int, options, struct rusage __user *, ru)
1553{
1554 struct wait_opts wo;
1555 struct pid *pid = NULL;
1556 enum pid_type type;
1557 long ret;
1558
1559 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1560 return -EINVAL;
1561 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1562 return -EINVAL;
1563
1564 switch (which) {
1565 case P_ALL:
1566 type = PIDTYPE_MAX;
1567 break;
1568 case P_PID:
1569 type = PIDTYPE_PID;
1570 if (upid <= 0)
1571 return -EINVAL;
1572 break;
1573 case P_PGID:
1574 type = PIDTYPE_PGID;
1575 if (upid <= 0)
1576 return -EINVAL;
1577 break;
1578 default:
1579 return -EINVAL;
1580 }
1581
1582 if (type < PIDTYPE_MAX)
1583 pid = find_get_pid(upid);
1584
1585 wo.wo_type = type;
1586 wo.wo_pid = pid;
1587 wo.wo_flags = options;
1588 wo.wo_info = infop;
1589 wo.wo_stat = NULL;
1590 wo.wo_rusage = ru;
1591 ret = do_wait(&wo);
1592
1593 if (ret > 0) {
1594 ret = 0;
1595 } else if (infop) {
1596 /*
1597 * For a WNOHANG return, clear out all the fields
1598 * we would set so the user can easily tell the
1599 * difference.
1600 */
1601 if (!ret)
1602 ret = put_user(0, &infop->si_signo);
1603 if (!ret)
1604 ret = put_user(0, &infop->si_errno);
1605 if (!ret)
1606 ret = put_user(0, &infop->si_code);
1607 if (!ret)
1608 ret = put_user(0, &infop->si_pid);
1609 if (!ret)
1610 ret = put_user(0, &infop->si_uid);
1611 if (!ret)
1612 ret = put_user(0, &infop->si_status);
1613 }
1614
1615 put_pid(pid);
1616 return ret;
1617}
1618
1619SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1620 int, options, struct rusage __user *, ru)
1621{
1622 struct wait_opts wo;
1623 struct pid *pid = NULL;
1624 enum pid_type type;
1625 long ret;
1626
1627 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1628 __WNOTHREAD|__WCLONE|__WALL))
1629 return -EINVAL;
1630
1631 if (upid == -1)
1632 type = PIDTYPE_MAX;
1633 else if (upid < 0) {
1634 type = PIDTYPE_PGID;
1635 pid = find_get_pid(-upid);
1636 } else if (upid == 0) {
1637 type = PIDTYPE_PGID;
1638 pid = get_task_pid(current, PIDTYPE_PGID);
1639 } else /* upid > 0 */ {
1640 type = PIDTYPE_PID;
1641 pid = find_get_pid(upid);
1642 }
1643
1644 wo.wo_type = type;
1645 wo.wo_pid = pid;
1646 wo.wo_flags = options | WEXITED;
1647 wo.wo_info = NULL;
1648 wo.wo_stat = stat_addr;
1649 wo.wo_rusage = ru;
1650 ret = do_wait(&wo);
1651 put_pid(pid);
1652
1653 return ret;
1654}
1655
1656#ifdef __ARCH_WANT_SYS_WAITPID
1657
1658/*
1659 * sys_waitpid() remains for compatibility. waitpid() should be
1660 * implemented by calling sys_wait4() from libc.a.
1661 */
1662SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1663{
1664 return sys_wait4(pid, stat_addr, options, NULL);
1665}
1666
1667#endif