Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   4 *
   5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   6 *
   7 * Thanks to Essential Communication for providing us with hardware
   8 * and very comprehensive documentation without which I would not have
   9 * been able to write this driver. A special thank you to John Gibbon
  10 * for sorting out the legal issues, with the NDA, allowing the code to
  11 * be released under the GPL.
  12 *
  13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  14 * stupid bugs in my code.
  15 *
  16 * Softnet support and various other patches from Val Henson of
  17 * ODS/Essential.
  18 *
  19 * PCI DMA mapping code partly based on work by Francois Romieu.
  20 */
  21
  22
  23#define DEBUG 1
  24#define RX_DMA_SKBUFF 1
  25#define PKT_COPY_THRESHOLD 512
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/pci.h>
  32#include <linux/kernel.h>
  33#include <linux/netdevice.h>
  34#include <linux/hippidevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/delay.h>
  37#include <linux/mm.h>
  38#include <linux/slab.h>
  39#include <net/sock.h>
  40
  41#include <asm/cache.h>
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/irq.h>
  45#include <linux/uaccess.h>
  46
  47#define rr_if_busy(dev)     netif_queue_stopped(dev)
  48#define rr_if_running(dev)  netif_running(dev)
  49
  50#include "rrunner.h"
  51
  52#define RUN_AT(x) (jiffies + (x))
  53
  54
  55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  57MODULE_LICENSE("GPL");
  58
  59static const char version[] =
  60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  61
  62
  63static const struct net_device_ops rr_netdev_ops = {
  64	.ndo_open 		= rr_open,
  65	.ndo_stop		= rr_close,
  66	.ndo_do_ioctl		= rr_ioctl,
  67	.ndo_start_xmit		= rr_start_xmit,
  68	.ndo_set_mac_address	= hippi_mac_addr,
  69};
  70
  71/*
  72 * Implementation notes:
  73 *
  74 * The DMA engine only allows for DMA within physical 64KB chunks of
  75 * memory. The current approach of the driver (and stack) is to use
  76 * linear blocks of memory for the skbuffs. However, as the data block
  77 * is always the first part of the skb and skbs are 2^n aligned so we
  78 * are guarantted to get the whole block within one 64KB align 64KB
  79 * chunk.
  80 *
  81 * On the long term, relying on being able to allocate 64KB linear
  82 * chunks of memory is not feasible and the skb handling code and the
  83 * stack will need to know about I/O vectors or something similar.
  84 */
  85
  86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  87{
  88	struct net_device *dev;
  89	static int version_disp;
  90	u8 pci_latency;
  91	struct rr_private *rrpriv;
  92	void *tmpptr;
  93	dma_addr_t ring_dma;
  94	int ret = -ENOMEM;
  95
  96	dev = alloc_hippi_dev(sizeof(struct rr_private));
  97	if (!dev)
  98		goto out3;
  99
 100	ret = pci_enable_device(pdev);
 101	if (ret) {
 102		ret = -ENODEV;
 103		goto out2;
 104	}
 105
 106	rrpriv = netdev_priv(dev);
 107
 108	SET_NETDEV_DEV(dev, &pdev->dev);
 109
 110	ret = pci_request_regions(pdev, "rrunner");
 111	if (ret < 0)
 112		goto out;
 113
 114	pci_set_drvdata(pdev, dev);
 115
 116	rrpriv->pci_dev = pdev;
 117
 118	spin_lock_init(&rrpriv->lock);
 119
 120	dev->netdev_ops = &rr_netdev_ops;
 121
 122	/* display version info if adapter is found */
 123	if (!version_disp) {
 124		/* set display flag to TRUE so that */
 125		/* we only display this string ONCE */
 126		version_disp = 1;
 127		printk(version);
 128	}
 129
 130	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 131	if (pci_latency <= 0x58){
 132		pci_latency = 0x58;
 133		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 134	}
 135
 136	pci_set_master(pdev);
 137
 138	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 139	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 140	       (unsigned long long)pci_resource_start(pdev, 0),
 141	       pdev->irq, pci_latency);
 142
 143	/*
 144	 * Remap the MMIO regs into kernel space.
 145	 */
 146	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 147	if (!rrpriv->regs) {
 148		printk(KERN_ERR "%s:  Unable to map I/O register, "
 149			"RoadRunner will be disabled.\n", dev->name);
 150		ret = -EIO;
 151		goto out;
 152	}
 153
 154	tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 155				    GFP_KERNEL);
 156	rrpriv->tx_ring = tmpptr;
 157	rrpriv->tx_ring_dma = ring_dma;
 158
 159	if (!tmpptr) {
 160		ret = -ENOMEM;
 161		goto out;
 162	}
 163
 164	tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 165				    GFP_KERNEL);
 166	rrpriv->rx_ring = tmpptr;
 167	rrpriv->rx_ring_dma = ring_dma;
 168
 169	if (!tmpptr) {
 170		ret = -ENOMEM;
 171		goto out;
 172	}
 173
 174	tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
 175				    GFP_KERNEL);
 176	rrpriv->evt_ring = tmpptr;
 177	rrpriv->evt_ring_dma = ring_dma;
 178
 179	if (!tmpptr) {
 180		ret = -ENOMEM;
 181		goto out;
 182	}
 183
 184	/*
 185	 * Don't access any register before this point!
 186	 */
 187#ifdef __BIG_ENDIAN
 188	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 189		&rrpriv->regs->HostCtrl);
 190#endif
 191	/*
 192	 * Need to add a case for little-endian 64-bit hosts here.
 193	 */
 194
 195	rr_init(dev);
 196
 197	ret = register_netdev(dev);
 198	if (ret)
 199		goto out;
 200	return 0;
 201
 202 out:
 203	if (rrpriv->evt_ring)
 204		dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
 205				  rrpriv->evt_ring_dma);
 206	if (rrpriv->rx_ring)
 207		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 208				  rrpriv->rx_ring_dma);
 209	if (rrpriv->tx_ring)
 210		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 211				  rrpriv->tx_ring_dma);
 212	if (rrpriv->regs)
 213		pci_iounmap(pdev, rrpriv->regs);
 214	if (pdev)
 215		pci_release_regions(pdev);
 216 out2:
 217	free_netdev(dev);
 218 out3:
 219	return ret;
 220}
 221
 222static void rr_remove_one(struct pci_dev *pdev)
 223{
 224	struct net_device *dev = pci_get_drvdata(pdev);
 225	struct rr_private *rr = netdev_priv(dev);
 226
 227	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 228		printk(KERN_ERR "%s: trying to unload running NIC\n",
 229		       dev->name);
 230		writel(HALT_NIC, &rr->regs->HostCtrl);
 231	}
 232
 233	unregister_netdev(dev);
 234	dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
 235			  rr->evt_ring_dma);
 236	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
 237			  rr->rx_ring_dma);
 238	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
 239			  rr->tx_ring_dma);
 240	pci_iounmap(pdev, rr->regs);
 241	pci_release_regions(pdev);
 242	pci_disable_device(pdev);
 243	free_netdev(dev);
 244}
 245
 246
 247/*
 248 * Commands are considered to be slow, thus there is no reason to
 249 * inline this.
 250 */
 251static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 252{
 253	struct rr_regs __iomem *regs;
 254	u32 idx;
 255
 256	regs = rrpriv->regs;
 257	/*
 258	 * This is temporary - it will go away in the final version.
 259	 * We probably also want to make this function inline.
 260	 */
 261	if (readl(&regs->HostCtrl) & NIC_HALTED){
 262		printk("issuing command for halted NIC, code 0x%x, "
 263		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 264		if (readl(&regs->Mode) & FATAL_ERR)
 265			printk("error codes Fail1 %02x, Fail2 %02x\n",
 266			       readl(&regs->Fail1), readl(&regs->Fail2));
 267	}
 268
 269	idx = rrpriv->info->cmd_ctrl.pi;
 270
 271	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 272	wmb();
 273
 274	idx = (idx - 1) % CMD_RING_ENTRIES;
 275	rrpriv->info->cmd_ctrl.pi = idx;
 276	wmb();
 277
 278	if (readl(&regs->Mode) & FATAL_ERR)
 279		printk("error code %02x\n", readl(&regs->Fail1));
 280}
 281
 282
 283/*
 284 * Reset the board in a sensible manner. The NIC is already halted
 285 * when we get here and a spin-lock is held.
 286 */
 287static int rr_reset(struct net_device *dev)
 288{
 289	struct rr_private *rrpriv;
 290	struct rr_regs __iomem *regs;
 291	u32 start_pc;
 292	int i;
 293
 294	rrpriv = netdev_priv(dev);
 295	regs = rrpriv->regs;
 296
 297	rr_load_firmware(dev);
 298
 299	writel(0x01000000, &regs->TX_state);
 300	writel(0xff800000, &regs->RX_state);
 301	writel(0, &regs->AssistState);
 302	writel(CLEAR_INTA, &regs->LocalCtrl);
 303	writel(0x01, &regs->BrkPt);
 304	writel(0, &regs->Timer);
 305	writel(0, &regs->TimerRef);
 306	writel(RESET_DMA, &regs->DmaReadState);
 307	writel(RESET_DMA, &regs->DmaWriteState);
 308	writel(0, &regs->DmaWriteHostHi);
 309	writel(0, &regs->DmaWriteHostLo);
 310	writel(0, &regs->DmaReadHostHi);
 311	writel(0, &regs->DmaReadHostLo);
 312	writel(0, &regs->DmaReadLen);
 313	writel(0, &regs->DmaWriteLen);
 314	writel(0, &regs->DmaWriteLcl);
 315	writel(0, &regs->DmaWriteIPchecksum);
 316	writel(0, &regs->DmaReadLcl);
 317	writel(0, &regs->DmaReadIPchecksum);
 318	writel(0, &regs->PciState);
 319#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 320	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 321#elif (BITS_PER_LONG == 64)
 322	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 323#else
 324	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 325#endif
 326
 327#if 0
 328	/*
 329	 * Don't worry, this is just black magic.
 330	 */
 331	writel(0xdf000, &regs->RxBase);
 332	writel(0xdf000, &regs->RxPrd);
 333	writel(0xdf000, &regs->RxCon);
 334	writel(0xce000, &regs->TxBase);
 335	writel(0xce000, &regs->TxPrd);
 336	writel(0xce000, &regs->TxCon);
 337	writel(0, &regs->RxIndPro);
 338	writel(0, &regs->RxIndCon);
 339	writel(0, &regs->RxIndRef);
 340	writel(0, &regs->TxIndPro);
 341	writel(0, &regs->TxIndCon);
 342	writel(0, &regs->TxIndRef);
 343	writel(0xcc000, &regs->pad10[0]);
 344	writel(0, &regs->DrCmndPro);
 345	writel(0, &regs->DrCmndCon);
 346	writel(0, &regs->DwCmndPro);
 347	writel(0, &regs->DwCmndCon);
 348	writel(0, &regs->DwCmndRef);
 349	writel(0, &regs->DrDataPro);
 350	writel(0, &regs->DrDataCon);
 351	writel(0, &regs->DrDataRef);
 352	writel(0, &regs->DwDataPro);
 353	writel(0, &regs->DwDataCon);
 354	writel(0, &regs->DwDataRef);
 355#endif
 356
 357	writel(0xffffffff, &regs->MbEvent);
 358	writel(0, &regs->Event);
 359
 360	writel(0, &regs->TxPi);
 361	writel(0, &regs->IpRxPi);
 362
 363	writel(0, &regs->EvtCon);
 364	writel(0, &regs->EvtPrd);
 365
 366	rrpriv->info->evt_ctrl.pi = 0;
 367
 368	for (i = 0; i < CMD_RING_ENTRIES; i++)
 369		writel(0, &regs->CmdRing[i]);
 370
 371/*
 372 * Why 32 ? is this not cache line size dependent?
 373 */
 374	writel(RBURST_64|WBURST_64, &regs->PciState);
 375	wmb();
 376
 377	start_pc = rr_read_eeprom_word(rrpriv,
 378			offsetof(struct eeprom, rncd_info.FwStart));
 379
 380#if (DEBUG > 1)
 381	printk("%s: Executing firmware at address 0x%06x\n",
 382	       dev->name, start_pc);
 383#endif
 384
 385	writel(start_pc + 0x800, &regs->Pc);
 386	wmb();
 387	udelay(5);
 388
 389	writel(start_pc, &regs->Pc);
 390	wmb();
 391
 392	return 0;
 393}
 394
 395
 396/*
 397 * Read a string from the EEPROM.
 398 */
 399static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 400				unsigned long offset,
 401				unsigned char *buf,
 402				unsigned long length)
 403{
 404	struct rr_regs __iomem *regs = rrpriv->regs;
 405	u32 misc, io, host, i;
 406
 407	io = readl(&regs->ExtIo);
 408	writel(0, &regs->ExtIo);
 409	misc = readl(&regs->LocalCtrl);
 410	writel(0, &regs->LocalCtrl);
 411	host = readl(&regs->HostCtrl);
 412	writel(host | HALT_NIC, &regs->HostCtrl);
 413	mb();
 414
 415	for (i = 0; i < length; i++){
 416		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 417		mb();
 418		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 419		mb();
 420	}
 421
 422	writel(host, &regs->HostCtrl);
 423	writel(misc, &regs->LocalCtrl);
 424	writel(io, &regs->ExtIo);
 425	mb();
 426	return i;
 427}
 428
 429
 430/*
 431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 432 * it to our CPU byte-order.
 433 */
 434static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 435			    size_t offset)
 436{
 437	__be32 word;
 438
 439	if ((rr_read_eeprom(rrpriv, offset,
 440			    (unsigned char *)&word, 4) == 4))
 441		return be32_to_cpu(word);
 442	return 0;
 443}
 444
 445
 446/*
 447 * Write a string to the EEPROM.
 448 *
 449 * This is only called when the firmware is not running.
 450 */
 451static unsigned int write_eeprom(struct rr_private *rrpriv,
 452				 unsigned long offset,
 453				 unsigned char *buf,
 454				 unsigned long length)
 455{
 456	struct rr_regs __iomem *regs = rrpriv->regs;
 457	u32 misc, io, data, i, j, ready, error = 0;
 458
 459	io = readl(&regs->ExtIo);
 460	writel(0, &regs->ExtIo);
 461	misc = readl(&regs->LocalCtrl);
 462	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 463	mb();
 464
 465	for (i = 0; i < length; i++){
 466		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 467		mb();
 468		data = buf[i] << 24;
 469		/*
 470		 * Only try to write the data if it is not the same
 471		 * value already.
 472		 */
 473		if ((readl(&regs->WinData) & 0xff000000) != data){
 474			writel(data, &regs->WinData);
 475			ready = 0;
 476			j = 0;
 477			mb();
 478			while(!ready){
 479				udelay(20);
 480				if ((readl(&regs->WinData) & 0xff000000) ==
 481				    data)
 482					ready = 1;
 483				mb();
 484				if (j++ > 5000){
 485					printk("data mismatch: %08x, "
 486					       "WinData %08x\n", data,
 487					       readl(&regs->WinData));
 488					ready = 1;
 489					error = 1;
 490				}
 491			}
 492		}
 493	}
 494
 495	writel(misc, &regs->LocalCtrl);
 496	writel(io, &regs->ExtIo);
 497	mb();
 498
 499	return error;
 500}
 501
 502
 503static int rr_init(struct net_device *dev)
 504{
 505	struct rr_private *rrpriv;
 506	struct rr_regs __iomem *regs;
 507	u32 sram_size, rev;
 508
 509	rrpriv = netdev_priv(dev);
 510	regs = rrpriv->regs;
 511
 512	rev = readl(&regs->FwRev);
 513	rrpriv->fw_rev = rev;
 514	if (rev > 0x00020024)
 515		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 516		       ((rev >> 8) & 0xff), (rev & 0xff));
 517	else if (rev >= 0x00020000) {
 518		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 519		       "later is recommended)\n", (rev >> 16),
 520		       ((rev >> 8) & 0xff), (rev & 0xff));
 521	}else{
 522		printk("  Firmware revision too old: %i.%i.%i, please "
 523		       "upgrade to 2.0.37 or later.\n",
 524		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 525	}
 526
 527#if (DEBUG > 2)
 528	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 529#endif
 530
 531	/*
 532	 * Read the hardware address from the eeprom.  The HW address
 533	 * is not really necessary for HIPPI but awfully convenient.
 534	 * The pointer arithmetic to put it in dev_addr is ugly, but
 535	 * Donald Becker does it this way for the GigE version of this
 536	 * card and it's shorter and more portable than any
 537	 * other method I've seen.  -VAL
 538	 */
 539
 540	*(__be16 *)(dev->dev_addr) =
 541	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 542	*(__be32 *)(dev->dev_addr+2) =
 543	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 544
 545	printk("  MAC: %pM\n", dev->dev_addr);
 546
 547	sram_size = rr_read_eeprom_word(rrpriv, 8);
 548	printk("  SRAM size 0x%06x\n", sram_size);
 549
 550	return 0;
 551}
 552
 553
 554static int rr_init1(struct net_device *dev)
 555{
 556	struct rr_private *rrpriv;
 557	struct rr_regs __iomem *regs;
 558	unsigned long myjif, flags;
 559	struct cmd cmd;
 560	u32 hostctrl;
 561	int ecode = 0;
 562	short i;
 563
 564	rrpriv = netdev_priv(dev);
 565	regs = rrpriv->regs;
 566
 567	spin_lock_irqsave(&rrpriv->lock, flags);
 568
 569	hostctrl = readl(&regs->HostCtrl);
 570	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 571	wmb();
 572
 573	if (hostctrl & PARITY_ERR){
 574		printk("%s: Parity error halting NIC - this is serious!\n",
 575		       dev->name);
 576		spin_unlock_irqrestore(&rrpriv->lock, flags);
 577		ecode = -EFAULT;
 578		goto error;
 579	}
 580
 581	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 582	set_infoaddr(regs, rrpriv->info_dma);
 583
 584	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 585	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 586	rrpriv->info->evt_ctrl.mode = 0;
 587	rrpriv->info->evt_ctrl.pi = 0;
 588	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 589
 590	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 591	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 592	rrpriv->info->cmd_ctrl.mode = 0;
 593	rrpriv->info->cmd_ctrl.pi = 15;
 594
 595	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 596		writel(0, &regs->CmdRing[i]);
 597	}
 598
 599	for (i = 0; i < TX_RING_ENTRIES; i++) {
 600		rrpriv->tx_ring[i].size = 0;
 601		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 602		rrpriv->tx_skbuff[i] = NULL;
 603	}
 604	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 605	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 606	rrpriv->info->tx_ctrl.mode = 0;
 607	rrpriv->info->tx_ctrl.pi = 0;
 608	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 609
 610	/*
 611	 * Set dirty_tx before we start receiving interrupts, otherwise
 612	 * the interrupt handler might think it is supposed to process
 613	 * tx ints before we are up and running, which may cause a null
 614	 * pointer access in the int handler.
 615	 */
 616	rrpriv->tx_full = 0;
 617	rrpriv->cur_rx = 0;
 618	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 619
 620	rr_reset(dev);
 621
 622	/* Tuning values */
 623	writel(0x5000, &regs->ConRetry);
 624	writel(0x100, &regs->ConRetryTmr);
 625	writel(0x500000, &regs->ConTmout);
 626 	writel(0x60, &regs->IntrTmr);
 627	writel(0x500000, &regs->TxDataMvTimeout);
 628	writel(0x200000, &regs->RxDataMvTimeout);
 629 	writel(0x80, &regs->WriteDmaThresh);
 630 	writel(0x80, &regs->ReadDmaThresh);
 631
 632	rrpriv->fw_running = 0;
 633	wmb();
 634
 635	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 636	writel(hostctrl, &regs->HostCtrl);
 637	wmb();
 638
 639	spin_unlock_irqrestore(&rrpriv->lock, flags);
 640
 641	for (i = 0; i < RX_RING_ENTRIES; i++) {
 642		struct sk_buff *skb;
 643		dma_addr_t addr;
 644
 645		rrpriv->rx_ring[i].mode = 0;
 646		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 647		if (!skb) {
 648			printk(KERN_WARNING "%s: Unable to allocate memory "
 649			       "for receive ring - halting NIC\n", dev->name);
 650			ecode = -ENOMEM;
 651			goto error;
 652		}
 653		rrpriv->rx_skbuff[i] = skb;
 654		addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
 655				      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
 656		/*
 657		 * Sanity test to see if we conflict with the DMA
 658		 * limitations of the Roadrunner.
 659		 */
 660		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 661			printk("skb alloc error\n");
 662
 663		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 664		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 665	}
 666
 667	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 668	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 669	rrpriv->rx_ctrl[4].mode = 8;
 670	rrpriv->rx_ctrl[4].pi = 0;
 671	wmb();
 672	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 673
 674	udelay(1000);
 675
 676	/*
 677	 * Now start the FirmWare.
 678	 */
 679	cmd.code = C_START_FW;
 680	cmd.ring = 0;
 681	cmd.index = 0;
 682
 683	rr_issue_cmd(rrpriv, &cmd);
 684
 685	/*
 686	 * Give the FirmWare time to chew on the `get running' command.
 687	 */
 688	myjif = jiffies + 5 * HZ;
 689	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 690		cpu_relax();
 691
 692	netif_start_queue(dev);
 693
 694	return ecode;
 695
 696 error:
 697	/*
 698	 * We might have gotten here because we are out of memory,
 699	 * make sure we release everything we allocated before failing
 700	 */
 701	for (i = 0; i < RX_RING_ENTRIES; i++) {
 702		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 703
 704		if (skb) {
 705			dma_unmap_single(&rrpriv->pci_dev->dev,
 706					 rrpriv->rx_ring[i].addr.addrlo,
 707					 dev->mtu + HIPPI_HLEN,
 708					 DMA_FROM_DEVICE);
 709			rrpriv->rx_ring[i].size = 0;
 710			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 711			dev_kfree_skb(skb);
 712			rrpriv->rx_skbuff[i] = NULL;
 713		}
 714	}
 715	return ecode;
 716}
 717
 718
 719/*
 720 * All events are considered to be slow (RX/TX ints do not generate
 721 * events) and are handled here, outside the main interrupt handler,
 722 * to reduce the size of the handler.
 723 */
 724static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 725{
 726	struct rr_private *rrpriv;
 727	struct rr_regs __iomem *regs;
 728	u32 tmp;
 729
 730	rrpriv = netdev_priv(dev);
 731	regs = rrpriv->regs;
 732
 733	while (prodidx != eidx){
 734		switch (rrpriv->evt_ring[eidx].code){
 735		case E_NIC_UP:
 736			tmp = readl(&regs->FwRev);
 737			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 738			       "up and running\n", dev->name,
 739			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 740			rrpriv->fw_running = 1;
 741			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 742			wmb();
 743			break;
 744		case E_LINK_ON:
 745			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 746			break;
 747		case E_LINK_OFF:
 748			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 749			break;
 750		case E_RX_IDLE:
 751			printk(KERN_WARNING "%s: RX data not moving\n",
 752			       dev->name);
 753			goto drop;
 754		case E_WATCHDOG:
 755			printk(KERN_INFO "%s: The watchdog is here to see "
 756			       "us\n", dev->name);
 757			break;
 758		case E_INTERN_ERR:
 759			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 760			       dev->name);
 761			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 762			       &regs->HostCtrl);
 763			wmb();
 764			break;
 765		case E_HOST_ERR:
 766			printk(KERN_ERR "%s: Host software error\n",
 767			       dev->name);
 768			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 769			       &regs->HostCtrl);
 770			wmb();
 771			break;
 772		/*
 773		 * TX events.
 774		 */
 775		case E_CON_REJ:
 776			printk(KERN_WARNING "%s: Connection rejected\n",
 777			       dev->name);
 778			dev->stats.tx_aborted_errors++;
 779			break;
 780		case E_CON_TMOUT:
 781			printk(KERN_WARNING "%s: Connection timeout\n",
 782			       dev->name);
 783			break;
 784		case E_DISC_ERR:
 785			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 786			       dev->name);
 787			dev->stats.tx_aborted_errors++;
 788			break;
 789		case E_INT_PRTY:
 790			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 791			       dev->name);
 792			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 793			       &regs->HostCtrl);
 794			wmb();
 795			break;
 796		case E_TX_IDLE:
 797			printk(KERN_WARNING "%s: Transmitter idle\n",
 798			       dev->name);
 799			break;
 800		case E_TX_LINK_DROP:
 801			printk(KERN_WARNING "%s: Link lost during transmit\n",
 802			       dev->name);
 803			dev->stats.tx_aborted_errors++;
 804			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 805			       &regs->HostCtrl);
 806			wmb();
 807			break;
 808		case E_TX_INV_RNG:
 809			printk(KERN_ERR "%s: Invalid send ring block\n",
 810			       dev->name);
 811			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 812			       &regs->HostCtrl);
 813			wmb();
 814			break;
 815		case E_TX_INV_BUF:
 816			printk(KERN_ERR "%s: Invalid send buffer address\n",
 817			       dev->name);
 818			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 819			       &regs->HostCtrl);
 820			wmb();
 821			break;
 822		case E_TX_INV_DSC:
 823			printk(KERN_ERR "%s: Invalid descriptor address\n",
 824			       dev->name);
 825			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 826			       &regs->HostCtrl);
 827			wmb();
 828			break;
 829		/*
 830		 * RX events.
 831		 */
 832		case E_RX_RNG_OUT:
 833			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 834			break;
 835
 836		case E_RX_PAR_ERR:
 837			printk(KERN_WARNING "%s: Receive parity error\n",
 838			       dev->name);
 839			goto drop;
 840		case E_RX_LLRC_ERR:
 841			printk(KERN_WARNING "%s: Receive LLRC error\n",
 842			       dev->name);
 843			goto drop;
 844		case E_PKT_LN_ERR:
 845			printk(KERN_WARNING "%s: Receive packet length "
 846			       "error\n", dev->name);
 847			goto drop;
 848		case E_DTA_CKSM_ERR:
 849			printk(KERN_WARNING "%s: Data checksum error\n",
 850			       dev->name);
 851			goto drop;
 852		case E_SHT_BST:
 853			printk(KERN_WARNING "%s: Unexpected short burst "
 854			       "error\n", dev->name);
 855			goto drop;
 856		case E_STATE_ERR:
 857			printk(KERN_WARNING "%s: Recv. state transition"
 858			       " error\n", dev->name);
 859			goto drop;
 860		case E_UNEXP_DATA:
 861			printk(KERN_WARNING "%s: Unexpected data error\n",
 862			       dev->name);
 863			goto drop;
 864		case E_LST_LNK_ERR:
 865			printk(KERN_WARNING "%s: Link lost error\n",
 866			       dev->name);
 867			goto drop;
 868		case E_FRM_ERR:
 869			printk(KERN_WARNING "%s: Framing Error\n",
 870			       dev->name);
 871			goto drop;
 872		case E_FLG_SYN_ERR:
 873			printk(KERN_WARNING "%s: Flag sync. lost during "
 874			       "packet\n", dev->name);
 875			goto drop;
 876		case E_RX_INV_BUF:
 877			printk(KERN_ERR "%s: Invalid receive buffer "
 878			       "address\n", dev->name);
 879			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 880			       &regs->HostCtrl);
 881			wmb();
 882			break;
 883		case E_RX_INV_DSC:
 884			printk(KERN_ERR "%s: Invalid receive descriptor "
 885			       "address\n", dev->name);
 886			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 887			       &regs->HostCtrl);
 888			wmb();
 889			break;
 890		case E_RNG_BLK:
 891			printk(KERN_ERR "%s: Invalid ring block\n",
 892			       dev->name);
 893			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 894			       &regs->HostCtrl);
 895			wmb();
 896			break;
 897		drop:
 898			/* Label packet to be dropped.
 899			 * Actual dropping occurs in rx
 900			 * handling.
 901			 *
 902			 * The index of packet we get to drop is
 903			 * the index of the packet following
 904			 * the bad packet. -kbf
 905			 */
 906			{
 907				u16 index = rrpriv->evt_ring[eidx].index;
 908				index = (index + (RX_RING_ENTRIES - 1)) %
 909					RX_RING_ENTRIES;
 910				rrpriv->rx_ring[index].mode |=
 911					(PACKET_BAD | PACKET_END);
 912			}
 913			break;
 914		default:
 915			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 916			       dev->name, rrpriv->evt_ring[eidx].code);
 917		}
 918		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 919	}
 920
 921	rrpriv->info->evt_ctrl.pi = eidx;
 922	wmb();
 923	return eidx;
 924}
 925
 926
 927static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 928{
 929	struct rr_private *rrpriv = netdev_priv(dev);
 930	struct rr_regs __iomem *regs = rrpriv->regs;
 931
 932	do {
 933		struct rx_desc *desc;
 934		u32 pkt_len;
 935
 936		desc = &(rrpriv->rx_ring[index]);
 937		pkt_len = desc->size;
 938#if (DEBUG > 2)
 939		printk("index %i, rxlimit %i\n", index, rxlimit);
 940		printk("len %x, mode %x\n", pkt_len, desc->mode);
 941#endif
 942		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 943			dev->stats.rx_dropped++;
 944			goto defer;
 945		}
 946
 947		if (pkt_len > 0){
 948			struct sk_buff *skb, *rx_skb;
 949
 950			rx_skb = rrpriv->rx_skbuff[index];
 951
 952			if (pkt_len < PKT_COPY_THRESHOLD) {
 953				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 954				if (skb == NULL){
 955					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 956					dev->stats.rx_dropped++;
 957					goto defer;
 958				} else {
 959					dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
 960								desc->addr.addrlo,
 961								pkt_len,
 962								DMA_FROM_DEVICE);
 963
 964					skb_put_data(skb, rx_skb->data,
 965						     pkt_len);
 966
 967					dma_sync_single_for_device(&rrpriv->pci_dev->dev,
 968								   desc->addr.addrlo,
 969								   pkt_len,
 970								   DMA_FROM_DEVICE);
 971				}
 972			}else{
 973				struct sk_buff *newskb;
 974
 975				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 976					GFP_ATOMIC);
 977				if (newskb){
 978					dma_addr_t addr;
 979
 980					dma_unmap_single(&rrpriv->pci_dev->dev,
 981							 desc->addr.addrlo,
 982							 dev->mtu + HIPPI_HLEN,
 983							 DMA_FROM_DEVICE);
 984					skb = rx_skb;
 985					skb_put(skb, pkt_len);
 986					rrpriv->rx_skbuff[index] = newskb;
 987					addr = dma_map_single(&rrpriv->pci_dev->dev,
 988							      newskb->data,
 989							      dev->mtu + HIPPI_HLEN,
 990							      DMA_FROM_DEVICE);
 991					set_rraddr(&desc->addr, addr);
 992				} else {
 993					printk("%s: Out of memory, deferring "
 994					       "packet\n", dev->name);
 995					dev->stats.rx_dropped++;
 996					goto defer;
 997				}
 998			}
 999			skb->protocol = hippi_type_trans(skb, dev);
1000
1001			netif_rx(skb);		/* send it up */
1002
1003			dev->stats.rx_packets++;
1004			dev->stats.rx_bytes += pkt_len;
1005		}
1006	defer:
1007		desc->mode = 0;
1008		desc->size = dev->mtu + HIPPI_HLEN;
1009
1010		if ((index & 7) == 7)
1011			writel(index, &regs->IpRxPi);
1012
1013		index = (index + 1) % RX_RING_ENTRIES;
1014	} while(index != rxlimit);
1015
1016	rrpriv->cur_rx = index;
1017	wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023	struct rr_private *rrpriv;
1024	struct rr_regs __iomem *regs;
1025	struct net_device *dev = (struct net_device *)dev_id;
1026	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028	rrpriv = netdev_priv(dev);
1029	regs = rrpriv->regs;
1030
1031	if (!(readl(&regs->HostCtrl) & RR_INT))
1032		return IRQ_NONE;
1033
1034	spin_lock(&rrpriv->lock);
1035
1036	prodidx = readl(&regs->EvtPrd);
1037	txcsmr = (prodidx >> 8) & 0xff;
1038	rxlimit = (prodidx >> 16) & 0xff;
1039	prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043	       prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045	/*
1046	 * Order here is important.  We must handle events
1047	 * before doing anything else in order to catch
1048	 * such things as LLRC errors, etc -kbf
1049	 */
1050
1051	eidx = rrpriv->info->evt_ctrl.pi;
1052	if (prodidx != eidx)
1053		eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055	rxindex = rrpriv->cur_rx;
1056	if (rxindex != rxlimit)
1057		rx_int(dev, rxlimit, rxindex);
1058
1059	txcon = rrpriv->dirty_tx;
1060	if (txcsmr != txcon) {
1061		do {
1062			/* Due to occational firmware TX producer/consumer out
1063			 * of sync. error need to check entry in ring -kbf
1064			 */
1065			if(rrpriv->tx_skbuff[txcon]){
1066				struct tx_desc *desc;
1067				struct sk_buff *skb;
1068
1069				desc = &(rrpriv->tx_ring[txcon]);
1070				skb = rrpriv->tx_skbuff[txcon];
1071
1072				dev->stats.tx_packets++;
1073				dev->stats.tx_bytes += skb->len;
1074
1075				dma_unmap_single(&rrpriv->pci_dev->dev,
1076						 desc->addr.addrlo, skb->len,
1077						 DMA_TO_DEVICE);
1078				dev_kfree_skb_irq(skb);
1079
1080				rrpriv->tx_skbuff[txcon] = NULL;
1081				desc->size = 0;
1082				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083				desc->mode = 0;
1084			}
1085			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086		} while (txcsmr != txcon);
1087		wmb();
1088
1089		rrpriv->dirty_tx = txcon;
1090		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092		     != rrpriv->dirty_tx)){
1093			rrpriv->tx_full = 0;
1094			netif_wake_queue(dev);
1095		}
1096	}
1097
1098	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099	writel(eidx, &regs->EvtCon);
1100	wmb();
1101
1102	spin_unlock(&rrpriv->lock);
1103	return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107			     struct net_device *dev)
1108{
1109	int i;
1110
1111	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114		if (skb) {
1115			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117			dma_unmap_single(&rrpriv->pci_dev->dev,
1118					 desc->addr.addrlo, skb->len,
1119					 DMA_TO_DEVICE);
1120			desc->size = 0;
1121			set_rraddr(&desc->addr, 0);
1122			dev_kfree_skb(skb);
1123			rrpriv->tx_skbuff[i] = NULL;
1124		}
1125	}
1126}
1127
1128
1129static inline void rr_raz_rx(struct rr_private *rrpriv,
1130			     struct net_device *dev)
1131{
1132	int i;
1133
1134	for (i = 0; i < RX_RING_ENTRIES; i++) {
1135		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136
1137		if (skb) {
1138			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139
1140			dma_unmap_single(&rrpriv->pci_dev->dev,
1141					 desc->addr.addrlo,
1142					 dev->mtu + HIPPI_HLEN,
1143					 DMA_FROM_DEVICE);
1144			desc->size = 0;
1145			set_rraddr(&desc->addr, 0);
1146			dev_kfree_skb(skb);
1147			rrpriv->rx_skbuff[i] = NULL;
1148		}
1149	}
1150}
1151
1152static void rr_timer(struct timer_list *t)
1153{
1154	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156	struct rr_regs __iomem *regs = rrpriv->regs;
1157	unsigned long flags;
1158
1159	if (readl(&regs->HostCtrl) & NIC_HALTED){
1160		printk("%s: Restarting nic\n", dev->name);
1161		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162		memset(rrpriv->info, 0, sizeof(struct rr_info));
1163		wmb();
1164
1165		rr_raz_tx(rrpriv, dev);
1166		rr_raz_rx(rrpriv, dev);
1167
1168		if (rr_init1(dev)) {
1169			spin_lock_irqsave(&rrpriv->lock, flags);
1170			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171			       &regs->HostCtrl);
1172			spin_unlock_irqrestore(&rrpriv->lock, flags);
1173		}
1174	}
1175	rrpriv->timer.expires = RUN_AT(5*HZ);
1176	add_timer(&rrpriv->timer);
1177}
1178
1179
1180static int rr_open(struct net_device *dev)
1181{
1182	struct rr_private *rrpriv = netdev_priv(dev);
1183	struct pci_dev *pdev = rrpriv->pci_dev;
1184	struct rr_regs __iomem *regs;
1185	int ecode = 0;
1186	unsigned long flags;
1187	dma_addr_t dma_addr;
1188
1189	regs = rrpriv->regs;
1190
1191	if (rrpriv->fw_rev < 0x00020000) {
1192		printk(KERN_WARNING "%s: trying to configure device with "
1193		       "obsolete firmware\n", dev->name);
1194		ecode = -EBUSY;
1195		goto error;
1196	}
1197
1198	rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199					     256 * sizeof(struct ring_ctrl),
1200					     &dma_addr, GFP_KERNEL);
1201	if (!rrpriv->rx_ctrl) {
1202		ecode = -ENOMEM;
1203		goto error;
1204	}
1205	rrpriv->rx_ctrl_dma = dma_addr;
1206
1207	rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208					  &dma_addr, GFP_KERNEL);
1209	if (!rrpriv->info) {
1210		ecode = -ENOMEM;
1211		goto error;
1212	}
1213	rrpriv->info_dma = dma_addr;
1214	wmb();
1215
1216	spin_lock_irqsave(&rrpriv->lock, flags);
1217	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218	readl(&regs->HostCtrl);
1219	spin_unlock_irqrestore(&rrpriv->lock, flags);
1220
1221	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223		       dev->name, pdev->irq);
1224		ecode = -EAGAIN;
1225		goto error;
1226	}
1227
1228	if ((ecode = rr_init1(dev)))
1229		goto error;
1230
1231	/* Set the timer to switch to check for link beat and perhaps switch
1232	   to an alternate media type. */
1233	timer_setup(&rrpriv->timer, rr_timer, 0);
1234	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235	add_timer(&rrpriv->timer);
1236
1237	netif_start_queue(dev);
1238
1239	return ecode;
1240
1241 error:
1242	spin_lock_irqsave(&rrpriv->lock, flags);
1243	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244	spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246	if (rrpriv->info) {
1247		dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248				  rrpriv->info, rrpriv->info_dma);
1249		rrpriv->info = NULL;
1250	}
1251	if (rrpriv->rx_ctrl) {
1252		dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253				  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254		rrpriv->rx_ctrl = NULL;
1255	}
1256
1257	netif_stop_queue(dev);
1258
1259	return ecode;
1260}
1261
1262
1263static void rr_dump(struct net_device *dev)
1264{
1265	struct rr_private *rrpriv;
1266	struct rr_regs __iomem *regs;
1267	u32 index, cons;
1268	short i;
1269	int len;
1270
1271	rrpriv = netdev_priv(dev);
1272	regs = rrpriv->regs;
1273
1274	printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1278	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1279	       rrpriv->info->tx_ctrl.pi);
1280
1281	printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
1283	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284	cons = rrpriv->dirty_tx;
1285	printk("TX ring index %i, TX consumer %i\n",
1286	       index, cons);
1287
1288	if (rrpriv->tx_skbuff[index]){
1289		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291		for (i = 0; i < len; i++){
1292			if (!(i & 7))
1293				printk("\n");
1294			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295		}
1296		printk("\n");
1297	}
1298
1299	if (rrpriv->tx_skbuff[cons]){
1300		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303		       rrpriv->tx_ring[cons].mode,
1304		       rrpriv->tx_ring[cons].size,
1305		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306		       rrpriv->tx_skbuff[cons]->data,
1307		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308		for (i = 0; i < len; i++){
1309			if (!(i & 7))
1310				printk("\n");
1311			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312		}
1313		printk("\n");
1314	}
1315
1316	printk("dumping TX ring info:\n");
1317	for (i = 0; i < TX_RING_ENTRIES; i++)
1318		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319		       rrpriv->tx_ring[i].mode,
1320		       rrpriv->tx_ring[i].size,
1321		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323}
1324
1325
1326static int rr_close(struct net_device *dev)
1327{
1328	struct rr_private *rrpriv = netdev_priv(dev);
1329	struct rr_regs __iomem *regs = rrpriv->regs;
1330	struct pci_dev *pdev = rrpriv->pci_dev;
1331	unsigned long flags;
1332	u32 tmp;
1333	short i;
1334
1335	netif_stop_queue(dev);
1336
1337
1338	/*
1339	 * Lock to make sure we are not cleaning up while another CPU
1340	 * is handling interrupts.
1341	 */
1342	spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344	tmp = readl(&regs->HostCtrl);
1345	if (tmp & NIC_HALTED){
1346		printk("%s: NIC already halted\n", dev->name);
1347		rr_dump(dev);
1348	}else{
1349		tmp |= HALT_NIC | RR_CLEAR_INT;
1350		writel(tmp, &regs->HostCtrl);
1351		readl(&regs->HostCtrl);
1352	}
1353
1354	rrpriv->fw_running = 0;
1355
1356	del_timer_sync(&rrpriv->timer);
1357
1358	writel(0, &regs->TxPi);
1359	writel(0, &regs->IpRxPi);
1360
1361	writel(0, &regs->EvtCon);
1362	writel(0, &regs->EvtPrd);
1363
1364	for (i = 0; i < CMD_RING_ENTRIES; i++)
1365		writel(0, &regs->CmdRing[i]);
1366
1367	rrpriv->info->tx_ctrl.entries = 0;
1368	rrpriv->info->cmd_ctrl.pi = 0;
1369	rrpriv->info->evt_ctrl.pi = 0;
1370	rrpriv->rx_ctrl[4].entries = 0;
1371
1372	rr_raz_tx(rrpriv, dev);
1373	rr_raz_rx(rrpriv, dev);
1374
1375	dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1376			  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377	rrpriv->rx_ctrl = NULL;
1378
1379	dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1380			  rrpriv->info_dma);
1381	rrpriv->info = NULL;
1382
1383	spin_unlock_irqrestore(&rrpriv->lock, flags);
1384	free_irq(pdev->irq, dev);
1385
1386	return 0;
1387}
1388
1389
1390static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391				 struct net_device *dev)
1392{
1393	struct rr_private *rrpriv = netdev_priv(dev);
1394	struct rr_regs __iomem *regs = rrpriv->regs;
1395	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1396	struct ring_ctrl *txctrl;
1397	unsigned long flags;
1398	u32 index, len = skb->len;
1399	u32 *ifield;
1400	struct sk_buff *new_skb;
1401
1402	if (readl(&regs->Mode) & FATAL_ERR)
1403		printk("error codes Fail1 %02x, Fail2 %02x\n",
1404		       readl(&regs->Fail1), readl(&regs->Fail2));
1405
1406	/*
1407	 * We probably need to deal with tbusy here to prevent overruns.
1408	 */
1409
1410	if (skb_headroom(skb) < 8){
1411		printk("incoming skb too small - reallocating\n");
1412		if (!(new_skb = dev_alloc_skb(len + 8))) {
1413			dev_kfree_skb(skb);
1414			netif_wake_queue(dev);
1415			return NETDEV_TX_OK;
1416		}
1417		skb_reserve(new_skb, 8);
1418		skb_put(new_skb, len);
1419		skb_copy_from_linear_data(skb, new_skb->data, len);
1420		dev_kfree_skb(skb);
1421		skb = new_skb;
1422	}
1423
1424	ifield = skb_push(skb, 8);
1425
1426	ifield[0] = 0;
1427	ifield[1] = hcb->ifield;
1428
1429	/*
1430	 * We don't need the lock before we are actually going to start
1431	 * fiddling with the control blocks.
1432	 */
1433	spin_lock_irqsave(&rrpriv->lock, flags);
1434
1435	txctrl = &rrpriv->info->tx_ctrl;
1436
1437	index = txctrl->pi;
1438
1439	rrpriv->tx_skbuff[index] = skb;
1440	set_rraddr(&rrpriv->tx_ring[index].addr,
1441		   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1442	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445	wmb();
1446	writel(txctrl->pi, &regs->TxPi);
1447
1448	if (txctrl->pi == rrpriv->dirty_tx){
1449		rrpriv->tx_full = 1;
1450		netif_stop_queue(dev);
1451	}
1452
1453	spin_unlock_irqrestore(&rrpriv->lock, flags);
1454
1455	return NETDEV_TX_OK;
1456}
1457
1458
1459/*
1460 * Read the firmware out of the EEPROM and put it into the SRAM
1461 * (or from user space - later)
1462 *
1463 * This operation requires the NIC to be halted and is performed with
1464 * interrupts disabled and with the spinlock hold.
1465 */
1466static int rr_load_firmware(struct net_device *dev)
1467{
1468	struct rr_private *rrpriv;
1469	struct rr_regs __iomem *regs;
1470	size_t eptr, segptr;
1471	int i, j;
1472	u32 localctrl, sptr, len, tmp;
1473	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1474
1475	rrpriv = netdev_priv(dev);
1476	regs = rrpriv->regs;
1477
1478	if (dev->flags & IFF_UP)
1479		return -EBUSY;
1480
1481	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1482		printk("%s: Trying to load firmware to a running NIC.\n",
1483		       dev->name);
1484		return -EBUSY;
1485	}
1486
1487	localctrl = readl(&regs->LocalCtrl);
1488	writel(0, &regs->LocalCtrl);
1489
1490	writel(0, &regs->EvtPrd);
1491	writel(0, &regs->RxPrd);
1492	writel(0, &regs->TxPrd);
1493
1494	/*
1495	 * First wipe the entire SRAM, otherwise we might run into all
1496	 * kinds of trouble ... sigh, this took almost all afternoon
1497	 * to track down ;-(
1498	 */
1499	io = readl(&regs->ExtIo);
1500	writel(0, &regs->ExtIo);
1501	sram_size = rr_read_eeprom_word(rrpriv, 8);
1502
1503	for (i = 200; i < sram_size / 4; i++){
1504		writel(i * 4, &regs->WinBase);
1505		mb();
1506		writel(0, &regs->WinData);
1507		mb();
1508	}
1509	writel(io, &regs->ExtIo);
1510	mb();
1511
1512	eptr = rr_read_eeprom_word(rrpriv,
1513		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1514	eptr = ((eptr & 0x1fffff) >> 3);
1515
1516	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1517	p2len = (p2len << 2);
1518	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1519	p2size = ((p2size & 0x1fffff) >> 3);
1520
1521	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522		printk("%s: eptr is invalid\n", dev->name);
1523		goto out;
1524	}
1525
1526	revision = rr_read_eeprom_word(rrpriv,
1527			offsetof(struct eeprom, manf.HeaderFmt));
1528
1529	if (revision != 1){
1530		printk("%s: invalid firmware format (%i)\n",
1531		       dev->name, revision);
1532		goto out;
1533	}
1534
1535	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1536	eptr +=4;
1537#if (DEBUG > 1)
1538	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539#endif
1540
1541	for (i = 0; i < nr_seg; i++){
1542		sptr = rr_read_eeprom_word(rrpriv, eptr);
1543		eptr += 4;
1544		len = rr_read_eeprom_word(rrpriv, eptr);
1545		eptr += 4;
1546		segptr = rr_read_eeprom_word(rrpriv, eptr);
1547		segptr = ((segptr & 0x1fffff) >> 3);
1548		eptr += 4;
1549#if (DEBUG > 1)
1550		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551		       dev->name, i, sptr, len, segptr);
1552#endif
1553		for (j = 0; j < len; j++){
1554			tmp = rr_read_eeprom_word(rrpriv, segptr);
1555			writel(sptr, &regs->WinBase);
1556			mb();
1557			writel(tmp, &regs->WinData);
1558			mb();
1559			segptr += 4;
1560			sptr += 4;
1561		}
1562	}
1563
1564out:
1565	writel(localctrl, &regs->LocalCtrl);
1566	mb();
1567	return 0;
1568}
1569
1570
1571static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572{
1573	struct rr_private *rrpriv;
1574	unsigned char *image, *oldimage;
1575	unsigned long flags;
1576	unsigned int i;
1577	int error = -EOPNOTSUPP;
1578
1579	rrpriv = netdev_priv(dev);
1580
1581	switch(cmd){
1582	case SIOCRRGFW:
1583		if (!capable(CAP_SYS_RAWIO)){
1584			return -EPERM;
1585		}
1586
1587		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1588		if (!image)
1589			return -ENOMEM;
1590
1591		if (rrpriv->fw_running){
1592			printk("%s: Firmware already running\n", dev->name);
1593			error = -EPERM;
1594			goto gf_out;
1595		}
1596
1597		spin_lock_irqsave(&rrpriv->lock, flags);
1598		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599		spin_unlock_irqrestore(&rrpriv->lock, flags);
1600		if (i != EEPROM_BYTES){
1601			printk(KERN_ERR "%s: Error reading EEPROM\n",
1602			       dev->name);
1603			error = -EFAULT;
1604			goto gf_out;
1605		}
1606		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607		if (error)
1608			error = -EFAULT;
1609	gf_out:
1610		kfree(image);
1611		return error;
1612
1613	case SIOCRRPFW:
1614		if (!capable(CAP_SYS_RAWIO)){
1615			return -EPERM;
1616		}
1617
1618		image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1619		if (IS_ERR(image))
1620			return PTR_ERR(image);
1621
1622		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1623		if (!oldimage) {
1624			kfree(image);
1625			return -ENOMEM;
1626		}
1627
1628		if (rrpriv->fw_running){
1629			printk("%s: Firmware already running\n", dev->name);
1630			error = -EPERM;
1631			goto wf_out;
1632		}
1633
1634		printk("%s: Updating EEPROM firmware\n", dev->name);
1635
1636		spin_lock_irqsave(&rrpriv->lock, flags);
1637		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1638		if (error)
1639			printk(KERN_ERR "%s: Error writing EEPROM\n",
1640			       dev->name);
1641
1642		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1643		spin_unlock_irqrestore(&rrpriv->lock, flags);
1644
1645		if (i != EEPROM_BYTES)
1646			printk(KERN_ERR "%s: Error reading back EEPROM "
1647			       "image\n", dev->name);
1648
1649		error = memcmp(image, oldimage, EEPROM_BYTES);
1650		if (error){
1651			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1652			       dev->name);
1653			error = -EFAULT;
1654		}
1655	wf_out:
1656		kfree(oldimage);
1657		kfree(image);
1658		return error;
1659
1660	case SIOCRRID:
1661		return put_user(0x52523032, (int __user *)rq->ifr_data);
1662	default:
1663		return error;
1664	}
1665}
1666
1667static const struct pci_device_id rr_pci_tbl[] = {
1668	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1669		PCI_ANY_ID, PCI_ANY_ID, },
1670	{ 0,}
1671};
1672MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1673
1674static struct pci_driver rr_driver = {
1675	.name		= "rrunner",
1676	.id_table	= rr_pci_tbl,
1677	.probe		= rr_init_one,
1678	.remove		= rr_remove_one,
1679};
1680
1681module_pci_driver(rr_driver);