Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 11#include <asm/switch_to.h>
 12#include <linux/uaccess.h>
 13#include <asm/inst.h>
 14
 15/* Functions in vector.S */
 16extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 17extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 18extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 19extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 20extern void vrefp(vector128 *dst, vector128 *src);
 21extern void vrsqrtefp(vector128 *dst, vector128 *src);
 22extern void vexptep(vector128 *dst, vector128 *src);
 23
 24static unsigned int exp2s[8] = {
 25	0x800000,
 26	0x8b95c2,
 27	0x9837f0,
 28	0xa5fed7,
 29	0xb504f3,
 30	0xc5672a,
 31	0xd744fd,
 32	0xeac0c7
 33};
 34
 35/*
 36 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 37 * single-precision floating-point representation of x.
 38 */
 39static unsigned int eexp2(unsigned int s)
 40{
 41	int exp, pwr;
 42	unsigned int mant, frac;
 43
 44	/* extract exponent field from input */
 45	exp = ((s >> 23) & 0xff) - 127;
 46	if (exp > 7) {
 47		/* check for NaN input */
 48		if (exp == 128 && (s & 0x7fffff) != 0)
 49			return s | 0x400000;	/* return QNaN */
 50		/* 2^-big = 0, 2^+big = +Inf */
 51		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 52	}
 53	if (exp < -23)
 54		return 0x3f800000;	/* 1.0 */
 55
 56	/* convert to fixed point integer in 9.23 representation */
 57	pwr = (s & 0x7fffff) | 0x800000;
 58	if (exp > 0)
 59		pwr <<= exp;
 60	else
 61		pwr >>= -exp;
 62	if (s & 0x80000000)
 63		pwr = -pwr;
 64
 65	/* extract integer part, which becomes exponent part of result */
 66	exp = (pwr >> 23) + 126;
 67	if (exp >= 254)
 68		return 0x7f800000;
 69	if (exp < -23)
 70		return 0;
 71
 72	/* table lookup on top 3 bits of fraction to get mantissa */
 73	mant = exp2s[(pwr >> 20) & 7];
 74
 75	/* linear interpolation using remaining 20 bits of fraction */
 76	asm("mulhwu %0,%1,%2" : "=r" (frac)
 77	    : "r" (pwr << 12), "r" (0x172b83ff));
 78	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 79	mant += frac;
 80
 81	if (exp >= 0)
 82		return mant + (exp << 23);
 83
 84	/* denormalized result */
 85	exp = -exp;
 86	mant += 1 << (exp - 1);
 87	return mant >> exp;
 88}
 89
 90/*
 91 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 92 * single-precision floating-point representation of x.
 93 */
 94static unsigned int elog2(unsigned int s)
 95{
 96	int exp, mant, lz, frac;
 97
 98	exp = s & 0x7f800000;
 99	mant = s & 0x7fffff;
100	if (exp == 0x7f800000) {	/* Inf or NaN */
101		if (mant != 0)
102			s |= 0x400000;	/* turn NaN into QNaN */
103		return s;
104	}
105	if ((exp | mant) == 0)		/* +0 or -0 */
106		return 0xff800000;	/* return -Inf */
107
108	if (exp == 0) {
109		/* denormalized */
110		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
111		mant <<= lz - 8;
112		exp = (-118 - lz) << 23;
113	} else {
114		mant |= 0x800000;
115		exp -= 127 << 23;
116	}
117
118	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
119		exp |= 0x400000;			/* 0.5 * 2^23 */
120		asm("mulhwu %0,%1,%2" : "=r" (mant)
121		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
122	}
123	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
124		exp |= 0x200000;			/* 0.25 * 2^23 */
125		asm("mulhwu %0,%1,%2" : "=r" (mant)
126		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
127	}
128	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
129		exp |= 0x100000;			/* 0.125 * 2^23 */
130		asm("mulhwu %0,%1,%2" : "=r" (mant)
131		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
132	}
133	if (mant > 0x800000) {				/* 1.0 * 2^23 */
134		/* calculate (mant - 1) * 1.381097463 */
135		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
136		asm("mulhwu %0,%1,%2" : "=r" (frac)
137		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
138		exp += frac;
139	}
140	s = exp & 0x80000000;
141	if (exp != 0) {
142		if (s)
143			exp = -exp;
144		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
145		lz = 8 - lz;
146		if (lz > 0)
147			exp >>= lz;
148		else if (lz < 0)
149			exp <<= -lz;
150		s += ((lz + 126) << 23) + exp;
151	}
152	return s;
153}
154
155#define VSCR_SAT	1
156
157static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
158{
159	int exp, mant;
160
161	exp = (x >> 23) & 0xff;
162	mant = x & 0x7fffff;
163	if (exp == 255 && mant != 0)
164		return 0;		/* NaN -> 0 */
165	exp = exp - 127 + scale;
166	if (exp < 0)
167		return 0;		/* round towards zero */
168	if (exp >= 31) {
169		/* saturate, unless the result would be -2^31 */
170		if (x + (scale << 23) != 0xcf000000)
171			*vscrp |= VSCR_SAT;
172		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
173	}
174	mant |= 0x800000;
175	mant = (mant << 7) >> (30 - exp);
176	return (x & 0x80000000)? -mant: mant;
177}
178
179static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
180{
181	int exp;
182	unsigned int mant;
183
184	exp = (x >> 23) & 0xff;
185	mant = x & 0x7fffff;
186	if (exp == 255 && mant != 0)
187		return 0;		/* NaN -> 0 */
188	exp = exp - 127 + scale;
189	if (exp < 0)
190		return 0;		/* round towards zero */
191	if (x & 0x80000000) {
192		/* negative => saturate to 0 */
193		*vscrp |= VSCR_SAT;
194		return 0;
195	}
196	if (exp >= 32) {
197		/* saturate */
198		*vscrp |= VSCR_SAT;
199		return 0xffffffff;
200	}
201	mant |= 0x800000;
202	mant = (mant << 8) >> (31 - exp);
203	return mant;
204}
205
206/* Round to floating integer, towards 0 */
207static unsigned int rfiz(unsigned int x)
208{
209	int exp;
210
211	exp = ((x >> 23) & 0xff) - 127;
212	if (exp == 128 && (x & 0x7fffff) != 0)
213		return x | 0x400000;	/* NaN -> make it a QNaN */
214	if (exp >= 23)
215		return x;		/* it's an integer already (or Inf) */
216	if (exp < 0)
217		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
218	return x & ~(0x7fffff >> exp);
219}
220
221/* Round to floating integer, towards +/- Inf */
222static unsigned int rfii(unsigned int x)
223{
224	int exp, mask;
225
226	exp = ((x >> 23) & 0xff) - 127;
227	if (exp == 128 && (x & 0x7fffff) != 0)
228		return x | 0x400000;	/* NaN -> make it a QNaN */
229	if (exp >= 23)
230		return x;		/* it's an integer already (or Inf) */
231	if ((x & 0x7fffffff) == 0)
232		return x;		/* +/-0 -> +/-0 */
233	if (exp < 0)
234		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
235		return (x & 0x80000000) | 0x3f800000;
236	mask = 0x7fffff >> exp;
237	/* mantissa overflows into exponent - that's OK,
238	   it can't overflow into the sign bit */
239	return (x + mask) & ~mask;
240}
241
242/* Round to floating integer, to nearest */
243static unsigned int rfin(unsigned int x)
244{
245	int exp, half;
246
247	exp = ((x >> 23) & 0xff) - 127;
248	if (exp == 128 && (x & 0x7fffff) != 0)
249		return x | 0x400000;	/* NaN -> make it a QNaN */
250	if (exp >= 23)
251		return x;		/* it's an integer already (or Inf) */
252	if (exp < -1)
253		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
254	if (exp == -1)
255		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
256		return (x & 0x80000000) | 0x3f800000;
257	half = 0x400000 >> exp;
258	/* add 0.5 to the magnitude and chop off the fraction bits */
259	return (x + half) & ~(0x7fffff >> exp);
260}
261
262int emulate_altivec(struct pt_regs *regs)
263{
264	struct ppc_inst instr;
265	unsigned int i, word;
266	unsigned int va, vb, vc, vd;
267	vector128 *vrs;
268
269	if (get_user_instr(instr, (void __user *)regs->nip))
270		return -EFAULT;
271
272	word = ppc_inst_val(instr);
273	if (ppc_inst_primary_opcode(instr) != 4)
274		return -EINVAL;		/* not an altivec instruction */
275	vd = (word >> 21) & 0x1f;
276	va = (word >> 16) & 0x1f;
277	vb = (word >> 11) & 0x1f;
278	vc = (word >> 6) & 0x1f;
279
280	vrs = current->thread.vr_state.vr;
281	switch (word & 0x3f) {
282	case 10:
283		switch (vc) {
284		case 0:	/* vaddfp */
285			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
286			break;
287		case 1:	/* vsubfp */
288			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
289			break;
290		case 4:	/* vrefp */
291			vrefp(&vrs[vd], &vrs[vb]);
292			break;
293		case 5:	/* vrsqrtefp */
294			vrsqrtefp(&vrs[vd], &vrs[vb]);
295			break;
296		case 6:	/* vexptefp */
297			for (i = 0; i < 4; ++i)
298				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
299			break;
300		case 7:	/* vlogefp */
301			for (i = 0; i < 4; ++i)
302				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
303			break;
304		case 8:		/* vrfin */
305			for (i = 0; i < 4; ++i)
306				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
307			break;
308		case 9:		/* vrfiz */
309			for (i = 0; i < 4; ++i)
310				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
311			break;
312		case 10:	/* vrfip */
313			for (i = 0; i < 4; ++i) {
314				u32 x = vrs[vb].u[i];
315				x = (x & 0x80000000)? rfiz(x): rfii(x);
316				vrs[vd].u[i] = x;
317			}
318			break;
319		case 11:	/* vrfim */
320			for (i = 0; i < 4; ++i) {
321				u32 x = vrs[vb].u[i];
322				x = (x & 0x80000000)? rfii(x): rfiz(x);
323				vrs[vd].u[i] = x;
324			}
325			break;
326		case 14:	/* vctuxs */
327			for (i = 0; i < 4; ++i)
328				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
329					&current->thread.vr_state.vscr.u[3]);
330			break;
331		case 15:	/* vctsxs */
332			for (i = 0; i < 4; ++i)
333				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
334					&current->thread.vr_state.vscr.u[3]);
335			break;
336		default:
337			return -EINVAL;
338		}
339		break;
340	case 46:	/* vmaddfp */
341		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
342		break;
343	case 47:	/* vnmsubfp */
344		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
345		break;
346	default:
347		return -EINVAL;
348	}
349
350	return 0;
351}
v3.1
 
  1/*
  2 * Routines to emulate some Altivec/VMX instructions, specifically
  3 * those that can trap when given denormalized operands in Java mode.
  4 */
  5#include <linux/kernel.h>
  6#include <linux/errno.h>
  7#include <linux/sched.h>
  8#include <asm/ptrace.h>
  9#include <asm/processor.h>
 10#include <asm/uaccess.h>
 
 
 11
 12/* Functions in vector.S */
 13extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 14extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 15extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 16extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 17extern void vrefp(vector128 *dst, vector128 *src);
 18extern void vrsqrtefp(vector128 *dst, vector128 *src);
 19extern void vexptep(vector128 *dst, vector128 *src);
 20
 21static unsigned int exp2s[8] = {
 22	0x800000,
 23	0x8b95c2,
 24	0x9837f0,
 25	0xa5fed7,
 26	0xb504f3,
 27	0xc5672a,
 28	0xd744fd,
 29	0xeac0c7
 30};
 31
 32/*
 33 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 34 * single-precision floating-point representation of x.
 35 */
 36static unsigned int eexp2(unsigned int s)
 37{
 38	int exp, pwr;
 39	unsigned int mant, frac;
 40
 41	/* extract exponent field from input */
 42	exp = ((s >> 23) & 0xff) - 127;
 43	if (exp > 7) {
 44		/* check for NaN input */
 45		if (exp == 128 && (s & 0x7fffff) != 0)
 46			return s | 0x400000;	/* return QNaN */
 47		/* 2^-big = 0, 2^+big = +Inf */
 48		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 49	}
 50	if (exp < -23)
 51		return 0x3f800000;	/* 1.0 */
 52
 53	/* convert to fixed point integer in 9.23 representation */
 54	pwr = (s & 0x7fffff) | 0x800000;
 55	if (exp > 0)
 56		pwr <<= exp;
 57	else
 58		pwr >>= -exp;
 59	if (s & 0x80000000)
 60		pwr = -pwr;
 61
 62	/* extract integer part, which becomes exponent part of result */
 63	exp = (pwr >> 23) + 126;
 64	if (exp >= 254)
 65		return 0x7f800000;
 66	if (exp < -23)
 67		return 0;
 68
 69	/* table lookup on top 3 bits of fraction to get mantissa */
 70	mant = exp2s[(pwr >> 20) & 7];
 71
 72	/* linear interpolation using remaining 20 bits of fraction */
 73	asm("mulhwu %0,%1,%2" : "=r" (frac)
 74	    : "r" (pwr << 12), "r" (0x172b83ff));
 75	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 76	mant += frac;
 77
 78	if (exp >= 0)
 79		return mant + (exp << 23);
 80
 81	/* denormalized result */
 82	exp = -exp;
 83	mant += 1 << (exp - 1);
 84	return mant >> exp;
 85}
 86
 87/*
 88 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 89 * single-precision floating-point representation of x.
 90 */
 91static unsigned int elog2(unsigned int s)
 92{
 93	int exp, mant, lz, frac;
 94
 95	exp = s & 0x7f800000;
 96	mant = s & 0x7fffff;
 97	if (exp == 0x7f800000) {	/* Inf or NaN */
 98		if (mant != 0)
 99			s |= 0x400000;	/* turn NaN into QNaN */
100		return s;
101	}
102	if ((exp | mant) == 0)		/* +0 or -0 */
103		return 0xff800000;	/* return -Inf */
104
105	if (exp == 0) {
106		/* denormalized */
107		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
108		mant <<= lz - 8;
109		exp = (-118 - lz) << 23;
110	} else {
111		mant |= 0x800000;
112		exp -= 127 << 23;
113	}
114
115	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
116		exp |= 0x400000;			/* 0.5 * 2^23 */
117		asm("mulhwu %0,%1,%2" : "=r" (mant)
118		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
119	}
120	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
121		exp |= 0x200000;			/* 0.25 * 2^23 */
122		asm("mulhwu %0,%1,%2" : "=r" (mant)
123		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
124	}
125	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
126		exp |= 0x100000;			/* 0.125 * 2^23 */
127		asm("mulhwu %0,%1,%2" : "=r" (mant)
128		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
129	}
130	if (mant > 0x800000) {				/* 1.0 * 2^23 */
131		/* calculate (mant - 1) * 1.381097463 */
132		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
133		asm("mulhwu %0,%1,%2" : "=r" (frac)
134		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
135		exp += frac;
136	}
137	s = exp & 0x80000000;
138	if (exp != 0) {
139		if (s)
140			exp = -exp;
141		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
142		lz = 8 - lz;
143		if (lz > 0)
144			exp >>= lz;
145		else if (lz < 0)
146			exp <<= -lz;
147		s += ((lz + 126) << 23) + exp;
148	}
149	return s;
150}
151
152#define VSCR_SAT	1
153
154static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
155{
156	int exp, mant;
157
158	exp = (x >> 23) & 0xff;
159	mant = x & 0x7fffff;
160	if (exp == 255 && mant != 0)
161		return 0;		/* NaN -> 0 */
162	exp = exp - 127 + scale;
163	if (exp < 0)
164		return 0;		/* round towards zero */
165	if (exp >= 31) {
166		/* saturate, unless the result would be -2^31 */
167		if (x + (scale << 23) != 0xcf000000)
168			*vscrp |= VSCR_SAT;
169		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
170	}
171	mant |= 0x800000;
172	mant = (mant << 7) >> (30 - exp);
173	return (x & 0x80000000)? -mant: mant;
174}
175
176static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
177{
178	int exp;
179	unsigned int mant;
180
181	exp = (x >> 23) & 0xff;
182	mant = x & 0x7fffff;
183	if (exp == 255 && mant != 0)
184		return 0;		/* NaN -> 0 */
185	exp = exp - 127 + scale;
186	if (exp < 0)
187		return 0;		/* round towards zero */
188	if (x & 0x80000000) {
189		/* negative => saturate to 0 */
190		*vscrp |= VSCR_SAT;
191		return 0;
192	}
193	if (exp >= 32) {
194		/* saturate */
195		*vscrp |= VSCR_SAT;
196		return 0xffffffff;
197	}
198	mant |= 0x800000;
199	mant = (mant << 8) >> (31 - exp);
200	return mant;
201}
202
203/* Round to floating integer, towards 0 */
204static unsigned int rfiz(unsigned int x)
205{
206	int exp;
207
208	exp = ((x >> 23) & 0xff) - 127;
209	if (exp == 128 && (x & 0x7fffff) != 0)
210		return x | 0x400000;	/* NaN -> make it a QNaN */
211	if (exp >= 23)
212		return x;		/* it's an integer already (or Inf) */
213	if (exp < 0)
214		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
215	return x & ~(0x7fffff >> exp);
216}
217
218/* Round to floating integer, towards +/- Inf */
219static unsigned int rfii(unsigned int x)
220{
221	int exp, mask;
222
223	exp = ((x >> 23) & 0xff) - 127;
224	if (exp == 128 && (x & 0x7fffff) != 0)
225		return x | 0x400000;	/* NaN -> make it a QNaN */
226	if (exp >= 23)
227		return x;		/* it's an integer already (or Inf) */
228	if ((x & 0x7fffffff) == 0)
229		return x;		/* +/-0 -> +/-0 */
230	if (exp < 0)
231		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
232		return (x & 0x80000000) | 0x3f800000;
233	mask = 0x7fffff >> exp;
234	/* mantissa overflows into exponent - that's OK,
235	   it can't overflow into the sign bit */
236	return (x + mask) & ~mask;
237}
238
239/* Round to floating integer, to nearest */
240static unsigned int rfin(unsigned int x)
241{
242	int exp, half;
243
244	exp = ((x >> 23) & 0xff) - 127;
245	if (exp == 128 && (x & 0x7fffff) != 0)
246		return x | 0x400000;	/* NaN -> make it a QNaN */
247	if (exp >= 23)
248		return x;		/* it's an integer already (or Inf) */
249	if (exp < -1)
250		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
251	if (exp == -1)
252		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
253		return (x & 0x80000000) | 0x3f800000;
254	half = 0x400000 >> exp;
255	/* add 0.5 to the magnitude and chop off the fraction bits */
256	return (x + half) & ~(0x7fffff >> exp);
257}
258
259int emulate_altivec(struct pt_regs *regs)
260{
261	unsigned int instr, i;
 
262	unsigned int va, vb, vc, vd;
263	vector128 *vrs;
264
265	if (get_user(instr, (unsigned int __user *) regs->nip))
266		return -EFAULT;
267	if ((instr >> 26) != 4)
 
 
268		return -EINVAL;		/* not an altivec instruction */
269	vd = (instr >> 21) & 0x1f;
270	va = (instr >> 16) & 0x1f;
271	vb = (instr >> 11) & 0x1f;
272	vc = (instr >> 6) & 0x1f;
273
274	vrs = current->thread.vr;
275	switch (instr & 0x3f) {
276	case 10:
277		switch (vc) {
278		case 0:	/* vaddfp */
279			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
280			break;
281		case 1:	/* vsubfp */
282			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
283			break;
284		case 4:	/* vrefp */
285			vrefp(&vrs[vd], &vrs[vb]);
286			break;
287		case 5:	/* vrsqrtefp */
288			vrsqrtefp(&vrs[vd], &vrs[vb]);
289			break;
290		case 6:	/* vexptefp */
291			for (i = 0; i < 4; ++i)
292				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
293			break;
294		case 7:	/* vlogefp */
295			for (i = 0; i < 4; ++i)
296				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
297			break;
298		case 8:		/* vrfin */
299			for (i = 0; i < 4; ++i)
300				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
301			break;
302		case 9:		/* vrfiz */
303			for (i = 0; i < 4; ++i)
304				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
305			break;
306		case 10:	/* vrfip */
307			for (i = 0; i < 4; ++i) {
308				u32 x = vrs[vb].u[i];
309				x = (x & 0x80000000)? rfiz(x): rfii(x);
310				vrs[vd].u[i] = x;
311			}
312			break;
313		case 11:	/* vrfim */
314			for (i = 0; i < 4; ++i) {
315				u32 x = vrs[vb].u[i];
316				x = (x & 0x80000000)? rfii(x): rfiz(x);
317				vrs[vd].u[i] = x;
318			}
319			break;
320		case 14:	/* vctuxs */
321			for (i = 0; i < 4; ++i)
322				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
323						&current->thread.vscr.u[3]);
324			break;
325		case 15:	/* vctsxs */
326			for (i = 0; i < 4; ++i)
327				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
328						&current->thread.vscr.u[3]);
329			break;
330		default:
331			return -EINVAL;
332		}
333		break;
334	case 46:	/* vmaddfp */
335		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
336		break;
337	case 47:	/* vnmsubfp */
338		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
339		break;
340	default:
341		return -EINVAL;
342	}
343
344	return 0;
345}