Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <asm/reg.h>
  17#include <asm/pmc.h>
  18#include <asm/machdep.h>
  19#include <asm/firmware.h>
  20#include <asm/ptrace.h>
  21
  22struct cpu_hw_events {
  23	int n_events;
  24	int n_percpu;
  25	int disabled;
  26	int n_added;
  27	int n_limited;
  28	u8  pmcs_enabled;
  29	struct perf_event *event[MAX_HWEVENTS];
  30	u64 events[MAX_HWEVENTS];
  31	unsigned int flags[MAX_HWEVENTS];
  32	unsigned long mmcr[3];
  33	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  34	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  35	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  36	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  37	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  38
  39	unsigned int group_flag;
  40	int n_txn_start;
  41};
  42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  43
  44struct power_pmu *ppmu;
  45
  46/*
  47 * Normally, to ignore kernel events we set the FCS (freeze counters
  48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  49 * hypervisor bit set in the MSR, or if we are running on a processor
  50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  51 * then we need to use the FCHV bit to ignore kernel events.
  52 */
  53static unsigned int freeze_events_kernel = MMCR0_FCS;
  54
  55/*
  56 * 32-bit doesn't have MMCRA but does have an MMCR2,
  57 * and a few other names are different.
  58 */
  59#ifdef CONFIG_PPC32
  60
  61#define MMCR0_FCHV		0
  62#define MMCR0_PMCjCE		MMCR0_PMCnCE
  63
  64#define SPRN_MMCRA		SPRN_MMCR2
  65#define MMCRA_SAMPLE_ENABLE	0
  66
  67static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  68{
  69	return 0;
  70}
  71static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  72static inline u32 perf_get_misc_flags(struct pt_regs *regs)
  73{
  74	return 0;
  75}
  76static inline void perf_read_regs(struct pt_regs *regs) { }
  77static inline int perf_intr_is_nmi(struct pt_regs *regs)
  78{
  79	return 0;
  80}
  81
  82#endif /* CONFIG_PPC32 */
  83
  84/*
  85 * Things that are specific to 64-bit implementations.
  86 */
  87#ifdef CONFIG_PPC64
  88
  89static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  90{
  91	unsigned long mmcra = regs->dsisr;
  92
  93	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
  94		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
  95		if (slot > 1)
  96			return 4 * (slot - 1);
  97	}
  98	return 0;
  99}
 100
 101/*
 102 * The user wants a data address recorded.
 103 * If we're not doing instruction sampling, give them the SDAR
 104 * (sampled data address).  If we are doing instruction sampling, then
 105 * only give them the SDAR if it corresponds to the instruction
 106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
 107 * bit in MMCRA.
 108 */
 109static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 110{
 111	unsigned long mmcra = regs->dsisr;
 112	unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
 113		POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
 114
 115	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
 116		*addrp = mfspr(SPRN_SDAR);
 117}
 118
 119static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 120{
 121	unsigned long mmcra = regs->dsisr;
 122	unsigned long sihv = MMCRA_SIHV;
 123	unsigned long sipr = MMCRA_SIPR;
 124
 125	if (TRAP(regs) != 0xf00)
 126		return 0;	/* not a PMU interrupt */
 127
 128	if (ppmu->flags & PPMU_ALT_SIPR) {
 129		sihv = POWER6_MMCRA_SIHV;
 130		sipr = POWER6_MMCRA_SIPR;
 131	}
 132
 133	/* PR has priority over HV, so order below is important */
 134	if (mmcra & sipr)
 135		return PERF_RECORD_MISC_USER;
 136	if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
 137		return PERF_RECORD_MISC_HYPERVISOR;
 138	return PERF_RECORD_MISC_KERNEL;
 139}
 140
 141/*
 142 * Overload regs->dsisr to store MMCRA so we only need to read it once
 143 * on each interrupt.
 144 */
 145static inline void perf_read_regs(struct pt_regs *regs)
 146{
 147	regs->dsisr = mfspr(SPRN_MMCRA);
 148}
 149
 150/*
 151 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 152 * it as an NMI.
 153 */
 154static inline int perf_intr_is_nmi(struct pt_regs *regs)
 155{
 156	return !regs->softe;
 157}
 158
 159#endif /* CONFIG_PPC64 */
 160
 161static void perf_event_interrupt(struct pt_regs *regs);
 162
 163void perf_event_print_debug(void)
 164{
 165}
 166
 167/*
 168 * Read one performance monitor counter (PMC).
 169 */
 170static unsigned long read_pmc(int idx)
 171{
 172	unsigned long val;
 173
 174	switch (idx) {
 175	case 1:
 176		val = mfspr(SPRN_PMC1);
 177		break;
 178	case 2:
 179		val = mfspr(SPRN_PMC2);
 180		break;
 181	case 3:
 182		val = mfspr(SPRN_PMC3);
 183		break;
 184	case 4:
 185		val = mfspr(SPRN_PMC4);
 186		break;
 187	case 5:
 188		val = mfspr(SPRN_PMC5);
 189		break;
 190	case 6:
 191		val = mfspr(SPRN_PMC6);
 192		break;
 193#ifdef CONFIG_PPC64
 194	case 7:
 195		val = mfspr(SPRN_PMC7);
 196		break;
 197	case 8:
 198		val = mfspr(SPRN_PMC8);
 199		break;
 200#endif /* CONFIG_PPC64 */
 201	default:
 202		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 203		val = 0;
 204	}
 205	return val;
 206}
 207
 208/*
 209 * Write one PMC.
 210 */
 211static void write_pmc(int idx, unsigned long val)
 212{
 213	switch (idx) {
 214	case 1:
 215		mtspr(SPRN_PMC1, val);
 216		break;
 217	case 2:
 218		mtspr(SPRN_PMC2, val);
 219		break;
 220	case 3:
 221		mtspr(SPRN_PMC3, val);
 222		break;
 223	case 4:
 224		mtspr(SPRN_PMC4, val);
 225		break;
 226	case 5:
 227		mtspr(SPRN_PMC5, val);
 228		break;
 229	case 6:
 230		mtspr(SPRN_PMC6, val);
 231		break;
 232#ifdef CONFIG_PPC64
 233	case 7:
 234		mtspr(SPRN_PMC7, val);
 235		break;
 236	case 8:
 237		mtspr(SPRN_PMC8, val);
 238		break;
 239#endif /* CONFIG_PPC64 */
 240	default:
 241		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 242	}
 243}
 244
 245/*
 246 * Check if a set of events can all go on the PMU at once.
 247 * If they can't, this will look at alternative codes for the events
 248 * and see if any combination of alternative codes is feasible.
 249 * The feasible set is returned in event_id[].
 250 */
 251static int power_check_constraints(struct cpu_hw_events *cpuhw,
 252				   u64 event_id[], unsigned int cflags[],
 253				   int n_ev)
 254{
 255	unsigned long mask, value, nv;
 256	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 257	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 258	int i, j;
 259	unsigned long addf = ppmu->add_fields;
 260	unsigned long tadd = ppmu->test_adder;
 261
 262	if (n_ev > ppmu->n_counter)
 263		return -1;
 264
 265	/* First see if the events will go on as-is */
 266	for (i = 0; i < n_ev; ++i) {
 267		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 268		    && !ppmu->limited_pmc_event(event_id[i])) {
 269			ppmu->get_alternatives(event_id[i], cflags[i],
 270					       cpuhw->alternatives[i]);
 271			event_id[i] = cpuhw->alternatives[i][0];
 272		}
 273		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 274					 &cpuhw->avalues[i][0]))
 275			return -1;
 276	}
 277	value = mask = 0;
 278	for (i = 0; i < n_ev; ++i) {
 279		nv = (value | cpuhw->avalues[i][0]) +
 280			(value & cpuhw->avalues[i][0] & addf);
 281		if ((((nv + tadd) ^ value) & mask) != 0 ||
 282		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 283		     cpuhw->amasks[i][0]) != 0)
 284			break;
 285		value = nv;
 286		mask |= cpuhw->amasks[i][0];
 287	}
 288	if (i == n_ev)
 289		return 0;	/* all OK */
 290
 291	/* doesn't work, gather alternatives... */
 292	if (!ppmu->get_alternatives)
 293		return -1;
 294	for (i = 0; i < n_ev; ++i) {
 295		choice[i] = 0;
 296		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 297						  cpuhw->alternatives[i]);
 298		for (j = 1; j < n_alt[i]; ++j)
 299			ppmu->get_constraint(cpuhw->alternatives[i][j],
 300					     &cpuhw->amasks[i][j],
 301					     &cpuhw->avalues[i][j]);
 302	}
 303
 304	/* enumerate all possibilities and see if any will work */
 305	i = 0;
 306	j = -1;
 307	value = mask = nv = 0;
 308	while (i < n_ev) {
 309		if (j >= 0) {
 310			/* we're backtracking, restore context */
 311			value = svalues[i];
 312			mask = smasks[i];
 313			j = choice[i];
 314		}
 315		/*
 316		 * See if any alternative k for event_id i,
 317		 * where k > j, will satisfy the constraints.
 318		 */
 319		while (++j < n_alt[i]) {
 320			nv = (value | cpuhw->avalues[i][j]) +
 321				(value & cpuhw->avalues[i][j] & addf);
 322			if ((((nv + tadd) ^ value) & mask) == 0 &&
 323			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 324			     & cpuhw->amasks[i][j]) == 0)
 325				break;
 326		}
 327		if (j >= n_alt[i]) {
 328			/*
 329			 * No feasible alternative, backtrack
 330			 * to event_id i-1 and continue enumerating its
 331			 * alternatives from where we got up to.
 332			 */
 333			if (--i < 0)
 334				return -1;
 335		} else {
 336			/*
 337			 * Found a feasible alternative for event_id i,
 338			 * remember where we got up to with this event_id,
 339			 * go on to the next event_id, and start with
 340			 * the first alternative for it.
 341			 */
 342			choice[i] = j;
 343			svalues[i] = value;
 344			smasks[i] = mask;
 345			value = nv;
 346			mask |= cpuhw->amasks[i][j];
 347			++i;
 348			j = -1;
 349		}
 350	}
 351
 352	/* OK, we have a feasible combination, tell the caller the solution */
 353	for (i = 0; i < n_ev; ++i)
 354		event_id[i] = cpuhw->alternatives[i][choice[i]];
 355	return 0;
 356}
 357
 358/*
 359 * Check if newly-added events have consistent settings for
 360 * exclude_{user,kernel,hv} with each other and any previously
 361 * added events.
 362 */
 363static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 364			  int n_prev, int n_new)
 365{
 366	int eu = 0, ek = 0, eh = 0;
 367	int i, n, first;
 368	struct perf_event *event;
 369
 370	n = n_prev + n_new;
 371	if (n <= 1)
 372		return 0;
 373
 374	first = 1;
 375	for (i = 0; i < n; ++i) {
 376		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 377			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 378			continue;
 379		}
 380		event = ctrs[i];
 381		if (first) {
 382			eu = event->attr.exclude_user;
 383			ek = event->attr.exclude_kernel;
 384			eh = event->attr.exclude_hv;
 385			first = 0;
 386		} else if (event->attr.exclude_user != eu ||
 387			   event->attr.exclude_kernel != ek ||
 388			   event->attr.exclude_hv != eh) {
 389			return -EAGAIN;
 390		}
 391	}
 392
 393	if (eu || ek || eh)
 394		for (i = 0; i < n; ++i)
 395			if (cflags[i] & PPMU_LIMITED_PMC_OK)
 396				cflags[i] |= PPMU_LIMITED_PMC_REQD;
 397
 398	return 0;
 399}
 400
 401static u64 check_and_compute_delta(u64 prev, u64 val)
 402{
 403	u64 delta = (val - prev) & 0xfffffffful;
 404
 405	/*
 406	 * POWER7 can roll back counter values, if the new value is smaller
 407	 * than the previous value it will cause the delta and the counter to
 408	 * have bogus values unless we rolled a counter over.  If a coutner is
 409	 * rolled back, it will be smaller, but within 256, which is the maximum
 410	 * number of events to rollback at once.  If we dectect a rollback
 411	 * return 0.  This can lead to a small lack of precision in the
 412	 * counters.
 413	 */
 414	if (prev > val && (prev - val) < 256)
 415		delta = 0;
 416
 417	return delta;
 418}
 419
 420static void power_pmu_read(struct perf_event *event)
 421{
 422	s64 val, delta, prev;
 423
 424	if (event->hw.state & PERF_HES_STOPPED)
 425		return;
 426
 427	if (!event->hw.idx)
 428		return;
 429	/*
 430	 * Performance monitor interrupts come even when interrupts
 431	 * are soft-disabled, as long as interrupts are hard-enabled.
 432	 * Therefore we treat them like NMIs.
 433	 */
 434	do {
 435		prev = local64_read(&event->hw.prev_count);
 436		barrier();
 437		val = read_pmc(event->hw.idx);
 438		delta = check_and_compute_delta(prev, val);
 439		if (!delta)
 440			return;
 441	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
 442
 443	local64_add(delta, &event->count);
 444	local64_sub(delta, &event->hw.period_left);
 445}
 446
 447/*
 448 * On some machines, PMC5 and PMC6 can't be written, don't respect
 449 * the freeze conditions, and don't generate interrupts.  This tells
 450 * us if `event' is using such a PMC.
 451 */
 452static int is_limited_pmc(int pmcnum)
 453{
 454	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
 455		&& (pmcnum == 5 || pmcnum == 6);
 456}
 457
 458static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
 459				    unsigned long pmc5, unsigned long pmc6)
 460{
 461	struct perf_event *event;
 462	u64 val, prev, delta;
 463	int i;
 464
 465	for (i = 0; i < cpuhw->n_limited; ++i) {
 466		event = cpuhw->limited_counter[i];
 467		if (!event->hw.idx)
 468			continue;
 469		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 470		prev = local64_read(&event->hw.prev_count);
 471		event->hw.idx = 0;
 472		delta = check_and_compute_delta(prev, val);
 473		if (delta)
 474			local64_add(delta, &event->count);
 475	}
 476}
 477
 478static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
 479				  unsigned long pmc5, unsigned long pmc6)
 480{
 481	struct perf_event *event;
 482	u64 val, prev;
 483	int i;
 484
 485	for (i = 0; i < cpuhw->n_limited; ++i) {
 486		event = cpuhw->limited_counter[i];
 487		event->hw.idx = cpuhw->limited_hwidx[i];
 488		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 489		prev = local64_read(&event->hw.prev_count);
 490		if (check_and_compute_delta(prev, val))
 491			local64_set(&event->hw.prev_count, val);
 492		perf_event_update_userpage(event);
 493	}
 494}
 495
 496/*
 497 * Since limited events don't respect the freeze conditions, we
 498 * have to read them immediately after freezing or unfreezing the
 499 * other events.  We try to keep the values from the limited
 500 * events as consistent as possible by keeping the delay (in
 501 * cycles and instructions) between freezing/unfreezing and reading
 502 * the limited events as small and consistent as possible.
 503 * Therefore, if any limited events are in use, we read them
 504 * both, and always in the same order, to minimize variability,
 505 * and do it inside the same asm that writes MMCR0.
 506 */
 507static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
 508{
 509	unsigned long pmc5, pmc6;
 510
 511	if (!cpuhw->n_limited) {
 512		mtspr(SPRN_MMCR0, mmcr0);
 513		return;
 514	}
 515
 516	/*
 517	 * Write MMCR0, then read PMC5 and PMC6 immediately.
 518	 * To ensure we don't get a performance monitor interrupt
 519	 * between writing MMCR0 and freezing/thawing the limited
 520	 * events, we first write MMCR0 with the event overflow
 521	 * interrupt enable bits turned off.
 522	 */
 523	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
 524		     : "=&r" (pmc5), "=&r" (pmc6)
 525		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
 526		       "i" (SPRN_MMCR0),
 527		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
 528
 529	if (mmcr0 & MMCR0_FC)
 530		freeze_limited_counters(cpuhw, pmc5, pmc6);
 531	else
 532		thaw_limited_counters(cpuhw, pmc5, pmc6);
 533
 534	/*
 535	 * Write the full MMCR0 including the event overflow interrupt
 536	 * enable bits, if necessary.
 537	 */
 538	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
 539		mtspr(SPRN_MMCR0, mmcr0);
 540}
 541
 542/*
 543 * Disable all events to prevent PMU interrupts and to allow
 544 * events to be added or removed.
 545 */
 546static void power_pmu_disable(struct pmu *pmu)
 547{
 548	struct cpu_hw_events *cpuhw;
 549	unsigned long flags;
 550
 551	if (!ppmu)
 552		return;
 553	local_irq_save(flags);
 554	cpuhw = &__get_cpu_var(cpu_hw_events);
 555
 556	if (!cpuhw->disabled) {
 557		cpuhw->disabled = 1;
 558		cpuhw->n_added = 0;
 559
 560		/*
 561		 * Check if we ever enabled the PMU on this cpu.
 562		 */
 563		if (!cpuhw->pmcs_enabled) {
 564			ppc_enable_pmcs();
 565			cpuhw->pmcs_enabled = 1;
 566		}
 567
 568		/*
 569		 * Disable instruction sampling if it was enabled
 570		 */
 571		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 572			mtspr(SPRN_MMCRA,
 573			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 574			mb();
 575		}
 576
 577		/*
 578		 * Set the 'freeze counters' bit.
 579		 * The barrier is to make sure the mtspr has been
 580		 * executed and the PMU has frozen the events
 581		 * before we return.
 582		 */
 583		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
 584		mb();
 585	}
 586	local_irq_restore(flags);
 587}
 588
 589/*
 590 * Re-enable all events if disable == 0.
 591 * If we were previously disabled and events were added, then
 592 * put the new config on the PMU.
 593 */
 594static void power_pmu_enable(struct pmu *pmu)
 595{
 596	struct perf_event *event;
 597	struct cpu_hw_events *cpuhw;
 598	unsigned long flags;
 599	long i;
 600	unsigned long val;
 601	s64 left;
 602	unsigned int hwc_index[MAX_HWEVENTS];
 603	int n_lim;
 604	int idx;
 605
 606	if (!ppmu)
 607		return;
 608	local_irq_save(flags);
 609	cpuhw = &__get_cpu_var(cpu_hw_events);
 610	if (!cpuhw->disabled) {
 611		local_irq_restore(flags);
 612		return;
 613	}
 614	cpuhw->disabled = 0;
 615
 616	/*
 617	 * If we didn't change anything, or only removed events,
 618	 * no need to recalculate MMCR* settings and reset the PMCs.
 619	 * Just reenable the PMU with the current MMCR* settings
 620	 * (possibly updated for removal of events).
 621	 */
 622	if (!cpuhw->n_added) {
 623		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 624		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 625		if (cpuhw->n_events == 0)
 626			ppc_set_pmu_inuse(0);
 627		goto out_enable;
 628	}
 629
 630	/*
 631	 * Compute MMCR* values for the new set of events
 632	 */
 633	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
 634			       cpuhw->mmcr)) {
 635		/* shouldn't ever get here */
 636		printk(KERN_ERR "oops compute_mmcr failed\n");
 637		goto out;
 638	}
 639
 640	/*
 641	 * Add in MMCR0 freeze bits corresponding to the
 642	 * attr.exclude_* bits for the first event.
 643	 * We have already checked that all events have the
 644	 * same values for these bits as the first event.
 645	 */
 646	event = cpuhw->event[0];
 647	if (event->attr.exclude_user)
 648		cpuhw->mmcr[0] |= MMCR0_FCP;
 649	if (event->attr.exclude_kernel)
 650		cpuhw->mmcr[0] |= freeze_events_kernel;
 651	if (event->attr.exclude_hv)
 652		cpuhw->mmcr[0] |= MMCR0_FCHV;
 653
 654	/*
 655	 * Write the new configuration to MMCR* with the freeze
 656	 * bit set and set the hardware events to their initial values.
 657	 * Then unfreeze the events.
 658	 */
 659	ppc_set_pmu_inuse(1);
 660	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 661	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 662	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
 663				| MMCR0_FC);
 664
 665	/*
 666	 * Read off any pre-existing events that need to move
 667	 * to another PMC.
 668	 */
 669	for (i = 0; i < cpuhw->n_events; ++i) {
 670		event = cpuhw->event[i];
 671		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
 672			power_pmu_read(event);
 673			write_pmc(event->hw.idx, 0);
 674			event->hw.idx = 0;
 675		}
 676	}
 677
 678	/*
 679	 * Initialize the PMCs for all the new and moved events.
 680	 */
 681	cpuhw->n_limited = n_lim = 0;
 682	for (i = 0; i < cpuhw->n_events; ++i) {
 683		event = cpuhw->event[i];
 684		if (event->hw.idx)
 685			continue;
 686		idx = hwc_index[i] + 1;
 687		if (is_limited_pmc(idx)) {
 688			cpuhw->limited_counter[n_lim] = event;
 689			cpuhw->limited_hwidx[n_lim] = idx;
 690			++n_lim;
 691			continue;
 692		}
 693		val = 0;
 694		if (event->hw.sample_period) {
 695			left = local64_read(&event->hw.period_left);
 696			if (left < 0x80000000L)
 697				val = 0x80000000L - left;
 698		}
 699		local64_set(&event->hw.prev_count, val);
 700		event->hw.idx = idx;
 701		if (event->hw.state & PERF_HES_STOPPED)
 702			val = 0;
 703		write_pmc(idx, val);
 704		perf_event_update_userpage(event);
 705	}
 706	cpuhw->n_limited = n_lim;
 707	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
 708
 709 out_enable:
 710	mb();
 711	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
 712
 713	/*
 714	 * Enable instruction sampling if necessary
 715	 */
 716	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 717		mb();
 718		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
 719	}
 720
 721 out:
 722	local_irq_restore(flags);
 723}
 724
 725static int collect_events(struct perf_event *group, int max_count,
 726			  struct perf_event *ctrs[], u64 *events,
 727			  unsigned int *flags)
 728{
 729	int n = 0;
 730	struct perf_event *event;
 731
 732	if (!is_software_event(group)) {
 733		if (n >= max_count)
 734			return -1;
 735		ctrs[n] = group;
 736		flags[n] = group->hw.event_base;
 737		events[n++] = group->hw.config;
 738	}
 739	list_for_each_entry(event, &group->sibling_list, group_entry) {
 740		if (!is_software_event(event) &&
 741		    event->state != PERF_EVENT_STATE_OFF) {
 742			if (n >= max_count)
 743				return -1;
 744			ctrs[n] = event;
 745			flags[n] = event->hw.event_base;
 746			events[n++] = event->hw.config;
 747		}
 748	}
 749	return n;
 750}
 751
 752/*
 753 * Add a event to the PMU.
 754 * If all events are not already frozen, then we disable and
 755 * re-enable the PMU in order to get hw_perf_enable to do the
 756 * actual work of reconfiguring the PMU.
 757 */
 758static int power_pmu_add(struct perf_event *event, int ef_flags)
 759{
 760	struct cpu_hw_events *cpuhw;
 761	unsigned long flags;
 762	int n0;
 763	int ret = -EAGAIN;
 764
 765	local_irq_save(flags);
 766	perf_pmu_disable(event->pmu);
 767
 768	/*
 769	 * Add the event to the list (if there is room)
 770	 * and check whether the total set is still feasible.
 771	 */
 772	cpuhw = &__get_cpu_var(cpu_hw_events);
 773	n0 = cpuhw->n_events;
 774	if (n0 >= ppmu->n_counter)
 775		goto out;
 776	cpuhw->event[n0] = event;
 777	cpuhw->events[n0] = event->hw.config;
 778	cpuhw->flags[n0] = event->hw.event_base;
 779
 780	if (!(ef_flags & PERF_EF_START))
 781		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 782
 783	/*
 784	 * If group events scheduling transaction was started,
 785	 * skip the schedulability test here, it will be performed
 786	 * at commit time(->commit_txn) as a whole
 787	 */
 788	if (cpuhw->group_flag & PERF_EVENT_TXN)
 789		goto nocheck;
 790
 791	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
 792		goto out;
 793	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
 794		goto out;
 795	event->hw.config = cpuhw->events[n0];
 796
 797nocheck:
 798	++cpuhw->n_events;
 799	++cpuhw->n_added;
 800
 801	ret = 0;
 802 out:
 803	perf_pmu_enable(event->pmu);
 804	local_irq_restore(flags);
 805	return ret;
 806}
 807
 808/*
 809 * Remove a event from the PMU.
 810 */
 811static void power_pmu_del(struct perf_event *event, int ef_flags)
 812{
 813	struct cpu_hw_events *cpuhw;
 814	long i;
 815	unsigned long flags;
 816
 817	local_irq_save(flags);
 818	perf_pmu_disable(event->pmu);
 819
 820	power_pmu_read(event);
 821
 822	cpuhw = &__get_cpu_var(cpu_hw_events);
 823	for (i = 0; i < cpuhw->n_events; ++i) {
 824		if (event == cpuhw->event[i]) {
 825			while (++i < cpuhw->n_events) {
 826				cpuhw->event[i-1] = cpuhw->event[i];
 827				cpuhw->events[i-1] = cpuhw->events[i];
 828				cpuhw->flags[i-1] = cpuhw->flags[i];
 829			}
 830			--cpuhw->n_events;
 831			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
 832			if (event->hw.idx) {
 833				write_pmc(event->hw.idx, 0);
 834				event->hw.idx = 0;
 835			}
 836			perf_event_update_userpage(event);
 837			break;
 838		}
 839	}
 840	for (i = 0; i < cpuhw->n_limited; ++i)
 841		if (event == cpuhw->limited_counter[i])
 842			break;
 843	if (i < cpuhw->n_limited) {
 844		while (++i < cpuhw->n_limited) {
 845			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
 846			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
 847		}
 848		--cpuhw->n_limited;
 849	}
 850	if (cpuhw->n_events == 0) {
 851		/* disable exceptions if no events are running */
 852		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
 853	}
 854
 855	perf_pmu_enable(event->pmu);
 856	local_irq_restore(flags);
 857}
 858
 859/*
 860 * POWER-PMU does not support disabling individual counters, hence
 861 * program their cycle counter to their max value and ignore the interrupts.
 862 */
 863
 864static void power_pmu_start(struct perf_event *event, int ef_flags)
 865{
 866	unsigned long flags;
 867	s64 left;
 868
 869	if (!event->hw.idx || !event->hw.sample_period)
 870		return;
 871
 872	if (!(event->hw.state & PERF_HES_STOPPED))
 873		return;
 874
 875	if (ef_flags & PERF_EF_RELOAD)
 876		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 877
 878	local_irq_save(flags);
 879	perf_pmu_disable(event->pmu);
 880
 881	event->hw.state = 0;
 882	left = local64_read(&event->hw.period_left);
 883	write_pmc(event->hw.idx, left);
 884
 885	perf_event_update_userpage(event);
 886	perf_pmu_enable(event->pmu);
 887	local_irq_restore(flags);
 888}
 889
 890static void power_pmu_stop(struct perf_event *event, int ef_flags)
 891{
 892	unsigned long flags;
 893
 894	if (!event->hw.idx || !event->hw.sample_period)
 895		return;
 896
 897	if (event->hw.state & PERF_HES_STOPPED)
 898		return;
 899
 900	local_irq_save(flags);
 901	perf_pmu_disable(event->pmu);
 902
 903	power_pmu_read(event);
 904	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 905	write_pmc(event->hw.idx, 0);
 906
 907	perf_event_update_userpage(event);
 908	perf_pmu_enable(event->pmu);
 909	local_irq_restore(flags);
 910}
 911
 912/*
 913 * Start group events scheduling transaction
 914 * Set the flag to make pmu::enable() not perform the
 915 * schedulability test, it will be performed at commit time
 916 */
 917void power_pmu_start_txn(struct pmu *pmu)
 918{
 919	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 920
 921	perf_pmu_disable(pmu);
 922	cpuhw->group_flag |= PERF_EVENT_TXN;
 923	cpuhw->n_txn_start = cpuhw->n_events;
 924}
 925
 926/*
 927 * Stop group events scheduling transaction
 928 * Clear the flag and pmu::enable() will perform the
 929 * schedulability test.
 930 */
 931void power_pmu_cancel_txn(struct pmu *pmu)
 932{
 933	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 934
 935	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 936	perf_pmu_enable(pmu);
 937}
 938
 939/*
 940 * Commit group events scheduling transaction
 941 * Perform the group schedulability test as a whole
 942 * Return 0 if success
 943 */
 944int power_pmu_commit_txn(struct pmu *pmu)
 945{
 946	struct cpu_hw_events *cpuhw;
 947	long i, n;
 948
 949	if (!ppmu)
 950		return -EAGAIN;
 951	cpuhw = &__get_cpu_var(cpu_hw_events);
 952	n = cpuhw->n_events;
 953	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
 954		return -EAGAIN;
 955	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
 956	if (i < 0)
 957		return -EAGAIN;
 958
 959	for (i = cpuhw->n_txn_start; i < n; ++i)
 960		cpuhw->event[i]->hw.config = cpuhw->events[i];
 961
 962	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 963	perf_pmu_enable(pmu);
 964	return 0;
 965}
 966
 967/*
 968 * Return 1 if we might be able to put event on a limited PMC,
 969 * or 0 if not.
 970 * A event can only go on a limited PMC if it counts something
 971 * that a limited PMC can count, doesn't require interrupts, and
 972 * doesn't exclude any processor mode.
 973 */
 974static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
 975				 unsigned int flags)
 976{
 977	int n;
 978	u64 alt[MAX_EVENT_ALTERNATIVES];
 979
 980	if (event->attr.exclude_user
 981	    || event->attr.exclude_kernel
 982	    || event->attr.exclude_hv
 983	    || event->attr.sample_period)
 984		return 0;
 985
 986	if (ppmu->limited_pmc_event(ev))
 987		return 1;
 988
 989	/*
 990	 * The requested event_id isn't on a limited PMC already;
 991	 * see if any alternative code goes on a limited PMC.
 992	 */
 993	if (!ppmu->get_alternatives)
 994		return 0;
 995
 996	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
 997	n = ppmu->get_alternatives(ev, flags, alt);
 998
 999	return n > 0;
1000}
1001
1002/*
1003 * Find an alternative event_id that goes on a normal PMC, if possible,
1004 * and return the event_id code, or 0 if there is no such alternative.
1005 * (Note: event_id code 0 is "don't count" on all machines.)
1006 */
1007static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1008{
1009	u64 alt[MAX_EVENT_ALTERNATIVES];
1010	int n;
1011
1012	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1013	n = ppmu->get_alternatives(ev, flags, alt);
1014	if (!n)
1015		return 0;
1016	return alt[0];
1017}
1018
1019/* Number of perf_events counting hardware events */
1020static atomic_t num_events;
1021/* Used to avoid races in calling reserve/release_pmc_hardware */
1022static DEFINE_MUTEX(pmc_reserve_mutex);
1023
1024/*
1025 * Release the PMU if this is the last perf_event.
1026 */
1027static void hw_perf_event_destroy(struct perf_event *event)
1028{
1029	if (!atomic_add_unless(&num_events, -1, 1)) {
1030		mutex_lock(&pmc_reserve_mutex);
1031		if (atomic_dec_return(&num_events) == 0)
1032			release_pmc_hardware();
1033		mutex_unlock(&pmc_reserve_mutex);
1034	}
1035}
1036
1037/*
1038 * Translate a generic cache event_id config to a raw event_id code.
1039 */
1040static int hw_perf_cache_event(u64 config, u64 *eventp)
1041{
1042	unsigned long type, op, result;
1043	int ev;
1044
1045	if (!ppmu->cache_events)
1046		return -EINVAL;
1047
1048	/* unpack config */
1049	type = config & 0xff;
1050	op = (config >> 8) & 0xff;
1051	result = (config >> 16) & 0xff;
1052
1053	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1054	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1055	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1056		return -EINVAL;
1057
1058	ev = (*ppmu->cache_events)[type][op][result];
1059	if (ev == 0)
1060		return -EOPNOTSUPP;
1061	if (ev == -1)
1062		return -EINVAL;
1063	*eventp = ev;
1064	return 0;
1065}
1066
1067static int power_pmu_event_init(struct perf_event *event)
1068{
1069	u64 ev;
1070	unsigned long flags;
1071	struct perf_event *ctrs[MAX_HWEVENTS];
1072	u64 events[MAX_HWEVENTS];
1073	unsigned int cflags[MAX_HWEVENTS];
1074	int n;
1075	int err;
1076	struct cpu_hw_events *cpuhw;
1077
1078	if (!ppmu)
1079		return -ENOENT;
1080
1081	switch (event->attr.type) {
1082	case PERF_TYPE_HARDWARE:
1083		ev = event->attr.config;
1084		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1085			return -EOPNOTSUPP;
1086		ev = ppmu->generic_events[ev];
1087		break;
1088	case PERF_TYPE_HW_CACHE:
1089		err = hw_perf_cache_event(event->attr.config, &ev);
1090		if (err)
1091			return err;
1092		break;
1093	case PERF_TYPE_RAW:
1094		ev = event->attr.config;
1095		break;
1096	default:
1097		return -ENOENT;
1098	}
1099
1100	event->hw.config_base = ev;
1101	event->hw.idx = 0;
1102
1103	/*
1104	 * If we are not running on a hypervisor, force the
1105	 * exclude_hv bit to 0 so that we don't care what
1106	 * the user set it to.
1107	 */
1108	if (!firmware_has_feature(FW_FEATURE_LPAR))
1109		event->attr.exclude_hv = 0;
1110
1111	/*
1112	 * If this is a per-task event, then we can use
1113	 * PM_RUN_* events interchangeably with their non RUN_*
1114	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1115	 * XXX we should check if the task is an idle task.
1116	 */
1117	flags = 0;
1118	if (event->attach_state & PERF_ATTACH_TASK)
1119		flags |= PPMU_ONLY_COUNT_RUN;
1120
1121	/*
1122	 * If this machine has limited events, check whether this
1123	 * event_id could go on a limited event.
1124	 */
1125	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1126		if (can_go_on_limited_pmc(event, ev, flags)) {
1127			flags |= PPMU_LIMITED_PMC_OK;
1128		} else if (ppmu->limited_pmc_event(ev)) {
1129			/*
1130			 * The requested event_id is on a limited PMC,
1131			 * but we can't use a limited PMC; see if any
1132			 * alternative goes on a normal PMC.
1133			 */
1134			ev = normal_pmc_alternative(ev, flags);
1135			if (!ev)
1136				return -EINVAL;
1137		}
1138	}
1139
1140	/*
1141	 * If this is in a group, check if it can go on with all the
1142	 * other hardware events in the group.  We assume the event
1143	 * hasn't been linked into its leader's sibling list at this point.
1144	 */
1145	n = 0;
1146	if (event->group_leader != event) {
1147		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1148				   ctrs, events, cflags);
1149		if (n < 0)
1150			return -EINVAL;
1151	}
1152	events[n] = ev;
1153	ctrs[n] = event;
1154	cflags[n] = flags;
1155	if (check_excludes(ctrs, cflags, n, 1))
1156		return -EINVAL;
1157
1158	cpuhw = &get_cpu_var(cpu_hw_events);
1159	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1160	put_cpu_var(cpu_hw_events);
1161	if (err)
1162		return -EINVAL;
1163
1164	event->hw.config = events[n];
1165	event->hw.event_base = cflags[n];
1166	event->hw.last_period = event->hw.sample_period;
1167	local64_set(&event->hw.period_left, event->hw.last_period);
1168
1169	/*
1170	 * See if we need to reserve the PMU.
1171	 * If no events are currently in use, then we have to take a
1172	 * mutex to ensure that we don't race with another task doing
1173	 * reserve_pmc_hardware or release_pmc_hardware.
1174	 */
1175	err = 0;
1176	if (!atomic_inc_not_zero(&num_events)) {
1177		mutex_lock(&pmc_reserve_mutex);
1178		if (atomic_read(&num_events) == 0 &&
1179		    reserve_pmc_hardware(perf_event_interrupt))
1180			err = -EBUSY;
1181		else
1182			atomic_inc(&num_events);
1183		mutex_unlock(&pmc_reserve_mutex);
1184	}
1185	event->destroy = hw_perf_event_destroy;
1186
1187	return err;
1188}
1189
1190struct pmu power_pmu = {
1191	.pmu_enable	= power_pmu_enable,
1192	.pmu_disable	= power_pmu_disable,
1193	.event_init	= power_pmu_event_init,
1194	.add		= power_pmu_add,
1195	.del		= power_pmu_del,
1196	.start		= power_pmu_start,
1197	.stop		= power_pmu_stop,
1198	.read		= power_pmu_read,
1199	.start_txn	= power_pmu_start_txn,
1200	.cancel_txn	= power_pmu_cancel_txn,
1201	.commit_txn	= power_pmu_commit_txn,
1202};
1203
1204/*
1205 * A counter has overflowed; update its count and record
1206 * things if requested.  Note that interrupts are hard-disabled
1207 * here so there is no possibility of being interrupted.
1208 */
1209static void record_and_restart(struct perf_event *event, unsigned long val,
1210			       struct pt_regs *regs)
1211{
1212	u64 period = event->hw.sample_period;
1213	s64 prev, delta, left;
1214	int record = 0;
1215
1216	if (event->hw.state & PERF_HES_STOPPED) {
1217		write_pmc(event->hw.idx, 0);
1218		return;
1219	}
1220
1221	/* we don't have to worry about interrupts here */
1222	prev = local64_read(&event->hw.prev_count);
1223	delta = check_and_compute_delta(prev, val);
1224	local64_add(delta, &event->count);
1225
1226	/*
1227	 * See if the total period for this event has expired,
1228	 * and update for the next period.
1229	 */
1230	val = 0;
1231	left = local64_read(&event->hw.period_left) - delta;
1232	if (period) {
1233		if (left <= 0) {
1234			left += period;
1235			if (left <= 0)
1236				left = period;
1237			record = 1;
1238			event->hw.last_period = event->hw.sample_period;
1239		}
1240		if (left < 0x80000000LL)
1241			val = 0x80000000LL - left;
1242	}
1243
1244	write_pmc(event->hw.idx, val);
1245	local64_set(&event->hw.prev_count, val);
1246	local64_set(&event->hw.period_left, left);
1247	perf_event_update_userpage(event);
1248
1249	/*
1250	 * Finally record data if requested.
1251	 */
1252	if (record) {
1253		struct perf_sample_data data;
1254
1255		perf_sample_data_init(&data, ~0ULL);
1256		data.period = event->hw.last_period;
1257
1258		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1259			perf_get_data_addr(regs, &data.addr);
1260
1261		if (perf_event_overflow(event, &data, regs))
1262			power_pmu_stop(event, 0);
1263	}
1264}
1265
1266/*
1267 * Called from generic code to get the misc flags (i.e. processor mode)
1268 * for an event_id.
1269 */
1270unsigned long perf_misc_flags(struct pt_regs *regs)
1271{
1272	u32 flags = perf_get_misc_flags(regs);
1273
1274	if (flags)
1275		return flags;
1276	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1277		PERF_RECORD_MISC_KERNEL;
1278}
1279
1280/*
1281 * Called from generic code to get the instruction pointer
1282 * for an event_id.
1283 */
1284unsigned long perf_instruction_pointer(struct pt_regs *regs)
1285{
1286	unsigned long ip;
1287
1288	if (TRAP(regs) != 0xf00)
1289		return regs->nip;	/* not a PMU interrupt */
1290
1291	ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1292	return ip;
1293}
1294
1295static bool pmc_overflow(unsigned long val)
1296{
1297	if ((int)val < 0)
1298		return true;
1299
1300	/*
1301	 * Events on POWER7 can roll back if a speculative event doesn't
1302	 * eventually complete. Unfortunately in some rare cases they will
1303	 * raise a performance monitor exception. We need to catch this to
1304	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1305	 * cycles from overflow.
1306	 *
1307	 * We only do this if the first pass fails to find any overflowing
1308	 * PMCs because a user might set a period of less than 256 and we
1309	 * don't want to mistakenly reset them.
1310	 */
1311	if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1312		return true;
1313
1314	return false;
1315}
1316
1317/*
1318 * Performance monitor interrupt stuff
1319 */
1320static void perf_event_interrupt(struct pt_regs *regs)
1321{
1322	int i;
1323	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1324	struct perf_event *event;
1325	unsigned long val;
1326	int found = 0;
1327	int nmi;
1328
1329	if (cpuhw->n_limited)
1330		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1331					mfspr(SPRN_PMC6));
1332
1333	perf_read_regs(regs);
1334
1335	nmi = perf_intr_is_nmi(regs);
1336	if (nmi)
1337		nmi_enter();
1338	else
1339		irq_enter();
1340
1341	for (i = 0; i < cpuhw->n_events; ++i) {
1342		event = cpuhw->event[i];
1343		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1344			continue;
1345		val = read_pmc(event->hw.idx);
1346		if ((int)val < 0) {
1347			/* event has overflowed */
1348			found = 1;
1349			record_and_restart(event, val, regs);
1350		}
1351	}
1352
1353	/*
1354	 * In case we didn't find and reset the event that caused
1355	 * the interrupt, scan all events and reset any that are
1356	 * negative, to avoid getting continual interrupts.
1357	 * Any that we processed in the previous loop will not be negative.
1358	 */
1359	if (!found) {
1360		for (i = 0; i < ppmu->n_counter; ++i) {
1361			if (is_limited_pmc(i + 1))
1362				continue;
1363			val = read_pmc(i + 1);
1364			if (pmc_overflow(val))
1365				write_pmc(i + 1, 0);
1366		}
1367	}
1368
1369	/*
1370	 * Reset MMCR0 to its normal value.  This will set PMXE and
1371	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1372	 * and thus allow interrupts to occur again.
1373	 * XXX might want to use MSR.PM to keep the events frozen until
1374	 * we get back out of this interrupt.
1375	 */
1376	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1377
1378	if (nmi)
1379		nmi_exit();
1380	else
1381		irq_exit();
1382}
1383
1384static void power_pmu_setup(int cpu)
1385{
1386	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1387
1388	if (!ppmu)
1389		return;
1390	memset(cpuhw, 0, sizeof(*cpuhw));
1391	cpuhw->mmcr[0] = MMCR0_FC;
1392}
1393
1394static int __cpuinit
1395power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1396{
1397	unsigned int cpu = (long)hcpu;
1398
1399	switch (action & ~CPU_TASKS_FROZEN) {
1400	case CPU_UP_PREPARE:
1401		power_pmu_setup(cpu);
1402		break;
1403
1404	default:
1405		break;
1406	}
1407
1408	return NOTIFY_OK;
1409}
1410
1411int __cpuinit register_power_pmu(struct power_pmu *pmu)
1412{
1413	if (ppmu)
1414		return -EBUSY;		/* something's already registered */
1415
1416	ppmu = pmu;
1417	pr_info("%s performance monitor hardware support registered\n",
1418		pmu->name);
1419
1420#ifdef MSR_HV
1421	/*
1422	 * Use FCHV to ignore kernel events if MSR.HV is set.
1423	 */
1424	if (mfmsr() & MSR_HV)
1425		freeze_events_kernel = MMCR0_FCHV;
1426#endif /* CONFIG_PPC64 */
1427
1428	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1429	perf_cpu_notifier(power_pmu_notifier);
1430
1431	return 0;
1432}