Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - https://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*	ALSA stuff
  52 * cs4215_*	CS4215 codec specific stuff
  53 * dbri_*	DBRI high-level stuff
  54 * other	DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/of_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
 
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT	(1<<0)
  95#define D_GEN	(1<<1)
  96#define D_CMD	(1<<2)
  97#define D_MM	(1<<3)
  98#define D_USR	(1<<4)
  99#define D_DESC	(1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static const char * const cmds[] = {
 107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif				/* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 119				    (intr << 27) |	\
 120				    value)
 121
 122/***************************************************************************
 123	CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127	__u8 data[4];		/* Data mode: Time slots 5-8 */
 128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 129	__u8 onboard;
 130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 131	volatile __u32 status;
 132	volatile __u32 version;
 133	__u8 precision;		/* In bits, either 8 or 16 */
 134	__u8 channels;		/* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 144				/* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16	0
 150#define CS4215_DFR_ULAW		1
 151#define CS4215_DFR_ALAW		2
 152#define CS4215_DFR_LINEAR8	3
 153#define CS4215_DFR_STEREO	(1<<2)
 154static struct {
 155	unsigned short freq;
 156	unsigned char xtal;
 157	unsigned char csval;
 158} CS4215_FREQ[] = {
 159	{  8000, (1 << 4), (0 << 3) },
 160	{ 16000, (1 << 4), (1 << 3) },
 161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 162	{ 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165	{ 48000, (1 << 4), (6 << 3) },
 166	{  9600, (1 << 4), (7 << 3) },
 167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 168	{ 11025, (2 << 4), (1 << 3) },
 169	{ 18900, (2 << 4), (2 << 3) },
 170	{ 22050, (2 << 4), (3 << 3) },
 171	{ 37800, (2 << 4), (4 << 3) },
 172	{ 44100, (2 << 4), (5 << 3) },
 173	{ 33075, (2 << 4), (6 << 3) },
 174	{  6615, (2 << 4), (7 << 3) },
 175	{ 0, 0, 0}
 176};
 177
 178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128	(1<<2)
 187#define CS4215_BSEL_256	(2<<2)
 188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE	(1<<6)	/* Line Out Enable */
 216#define CS4215_HE	(1<<7)	/* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE	(1<<6)	/* Speaker Enable */
 221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 228#define CS4215_PIO1	(1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235		DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0	0x00		/* Status and Control */
 240#define REG1	0x04		/* Mode and Interrupt */
 241#define REG2	0x08		/* Parallel IO */
 242#define REG3	0x0c		/* Test */
 243#define REG8	0x20		/* Command Queue Pointer */
 244#define REG9	0x24		/* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS	64
 247#define DBRI_INT_BLK	64
 248#define DBRI_NO_DESCS	64
 249#define DBRI_NO_PIPES	32
 250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC	0
 253#define DBRI_PLAY	1
 254#define DBRI_NO_STREAMS	2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259	volatile __u32 word1;
 260	__u32 ba;	/* Transmit/Receive Buffer Address */
 261	__u32 nda;	/* Next Descriptor Address */
 262	volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)	\
 275	((u32)(unsigned long)		\
 276	 (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281	u32 sdp;		/* SDP command word */
 282	int nextpipe;		/* Next pipe in linked list */
 283	int length;		/* Length of timeslot (bits) */
 284	int first_desc;		/* Index of first descriptor */
 285	int desc;		/* Index of active descriptor */
 286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291	struct snd_pcm_substream *substream;
 292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 293	int size;		/* Size of DMA buffer             */
 294	size_t offset;		/* offset in user buffer          */
 295	int pipe;		/* Data pipe used                 */
 296	int left_gain;		/* mixer elements                 */
 297	int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302	int regs_size, irq;	/* Needed for unload */
 303	struct platform_device *op;	/* OF device info */
 304	spinlock_t lock;
 305
 306	struct dbri_dma *dma;	/* Pointer to our DMA block */
 307	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
 308
 309	void __iomem *regs;	/* dbri HW regs */
 310	int dbri_irqp;		/* intr queue pointer */
 311
 312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 315	s32 *cmdptr;		/* Pointer to the last queued cmd */
 316
 317	int chi_bpf;
 318
 319	struct cs4215 mm;	/* mmcodec special info */
 320				/* per stream (playback/record) info */
 321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME		63	/* Output volume */
 325#define DBRI_MAX_GAIN		15	/* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P		(1<<15)	/* Program command & queue pointer valid */
 329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 332#define D_X		(1<<7)	/* Sanity Timer Disable */
 333#define D_T		(1<<6)	/* Permit activation of the TE interface */
 334#define D_N		(1<<5)	/* Permit activation of the NT interface */
 335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 337#define D_D		(1<<2)	/* Disable Master Mode */
 338#define D_H		(1<<1)	/* Halt for Analysis */
 339#define D_R		(1<<0)	/* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END	(1<<8)	/* Byte Order */
 343#define D_BIG_END	(0<<8)	/* Byte Order */
 344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 355#define D_ENPIO		(0xf0)	/* Enable all the pins */
 356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT		0x0	/* Stop execution */
 363#define D_PAUSE		0x1	/* Flush long pipes */
 364#define D_JUMP		0x2	/* New command queue */
 365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 366#define D_REX		0x4	/* Report command execution via interrupt */
 367#define D_SDP		0x5	/* Setup Data Pipe */
 368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS		0x7	/* Define Time Slot */
 370#define D_SSP		0x8	/* Set short Data Pipe */
 371#define D_CHI		0x9	/* Set CHI Global Mode */
 372#define D_NT		0xa	/* NT Command */
 373#define D_TE		0xb	/* TE Command */
 374#define D_CDEC		0xc	/* Codec setup */
 375#define D_TEST		0xd	/* No comment */
 376#define D_CDM		0xe	/* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM	(0<<13)	/* To/from memory */
 391#define D_SDP_HDLC	(2<<13)
 392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 393#define D_SDP_SER	(4<<13)	/* Serial to serial */
 394#define D_SDP_FIXED	(6<<13)	/* Short only */
 395#define D_SDP_MODE(v)	((v)&(7<<13))
 396
 397#define D_SDP_TO_SER	(1<<12)	/* Direction */
 398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 401#define D_SDP_P		(1<<10)	/* Pointer Valid */
 402#define D_SDP_A		(1<<8)	/* Abort */
 403#define D_SDP_C		(1<<7)	/* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 416#define D_TS_DI		(1<<13)	/* Data Invert */
 417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD	(1<<11)	/* Frame Drive */
 431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 439#define D_NT_FT		(1<<12)	/* Fixed Timing */
 440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 442#define D_NT_ACT	(1<<9)	/* Activate Interface */
 443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 446#define D_NT_FACT	(1<<1)	/* Force Activation */
 447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 456#define D_TEST_SIZE(v)	((v)<<11)	/* */
 457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC	0x6	/* Microprocessor test */
 459#define D_TEST_SER	0x7	/* Serial-Controller test */
 460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP	0xe	/* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL	5	/* End of List */
 480#define D_INTR_CMDI	6	/* Command has bean read */
 481#define D_INTR_XCMP	8	/* Transmission of frame complete */
 482#define D_INTR_SBRI	9	/* BRI status change info */
 483#define D_INTR_FXDT	10	/* Fixed data change */
 484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT	12	/* Dropped by frame slip */
 487#define D_INTR_RBYT	13	/* Repeated by frame slip */
 488#define D_INTR_LINT	14	/* Lost Interrupt */
 489#define D_INTR_UNDR	15	/* DMA underrun */
 490
 491#define D_INTR_TE	32
 492#define D_INTR_NT	34
 493#define D_INTR_CHI	36
 494#define D_INTR_CMD	38
 495
 496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)	((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 501
 502#define D_P_0		0	/* TE receive anchor */
 503#define D_P_1		1	/* TE transmit anchor */
 504#define D_P_2		2	/* NT transmit anchor */
 505#define D_P_3		3	/* NT receive anchor */
 506#define D_P_4		4	/* CHI send data */
 507#define D_P_5		5	/* CHI receive data */
 508#define D_P_6		6	/* */
 509#define D_P_7		7	/* */
 510#define D_P_8		8	/* */
 511#define D_P_9		9	/* */
 512#define D_P_10		10	/* */
 513#define D_P_11		11	/* */
 514#define D_P_12		12	/* */
 515#define D_P_13		13	/* */
 516#define D_P_14		14	/* */
 517#define D_P_15		15	/* */
 518#define D_P_16		16	/* CHI anchor pipe */
 519#define D_P_17		17	/* CHI send */
 520#define D_P_18		18	/* CHI receive */
 521#define D_P_19		19	/* CHI receive */
 522#define D_P_20		20	/* CHI receive */
 523#define D_P_21		21	/* */
 524#define D_P_22		22	/* */
 525#define D_P_23		23	/* */
 526#define D_P_24		24	/* */
 527#define D_P_25		25	/* */
 528#define D_P_26		26	/* */
 529#define D_P_27		27	/* */
 530#define D_P_28		28	/* */
 531#define D_P_29		29	/* */
 532#define D_P_30		30	/* */
 533#define D_P_31		31	/* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 547			/* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)				\
 566		(substream->stream ==				\
 567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)	\
 571		&dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579	switch (len) {
 580	case 32:
 581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 582		fallthrough;
 583	case 16:
 584		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 585		fallthrough;
 586	case 8:
 587		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 588		fallthrough;
 589	case 4:
 590		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 591		fallthrough;
 592	case 2:
 593		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 594	case 1:
 595	case 0:
 596		break;
 597	default:
 598		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 599	}
 600
 601	return b;
 602}
 603
 604/*
 605****************************************************************************
 606************** DBRI initialization and command synchronization *************
 607****************************************************************************
 608
 609Commands are sent to the DBRI by building a list of them in memory,
 610then writing the address of the first list item to DBRI register 8.
 611The list is terminated with a WAIT command, which generates a
 612CPU interrupt to signal completion.
 613
 614Since the DBRI can run in parallel with the CPU, several means of
 615synchronization present themselves. The method implemented here uses
 616the dbri_cmdwait() to wait for execution of batch of sent commands.
 617
 618A circular command buffer is used here. A new command is being added
 619while another can be executed. The scheme works by adding two WAIT commands
 620after each sent batch of commands. When the next batch is prepared it is
 621added after the WAIT commands then the WAITs are replaced with single JUMP
 622command to the new batch. Then the DBRI is forced to reread the last WAIT
 623command (replaced by the JUMP by then). If the DBRI is still executing
 624previous commands the request to reread the WAIT command is ignored.
 625
 626Every time a routine wants to write commands to the DBRI, it must
 627first call dbri_cmdlock() and get pointer to a free space in
 628dbri->dma->cmd buffer. After this, the commands can be written to
 629the buffer, and dbri_cmdsend() is called with the final pointer value
 630to send them to the DBRI.
 631
 632*/
 633
 634#define MAXLOOPS 20
 635/*
 636 * Wait for the current command string to execute
 637 */
 638static void dbri_cmdwait(struct snd_dbri *dbri)
 639{
 640	int maxloops = MAXLOOPS;
 641	unsigned long flags;
 642
 643	/* Delay if previous commands are still being processed */
 644	spin_lock_irqsave(&dbri->lock, flags);
 645	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 646		spin_unlock_irqrestore(&dbri->lock, flags);
 647		msleep_interruptible(1);
 648		spin_lock_irqsave(&dbri->lock, flags);
 649	}
 650	spin_unlock_irqrestore(&dbri->lock, flags);
 651
 652	if (maxloops == 0)
 653		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 654	else
 655		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 656			MAXLOOPS - maxloops - 1);
 657}
 658/*
 659 * Lock the command queue and return pointer to space for len cmd words
 660 * It locks the cmdlock spinlock.
 661 */
 662static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 663{
 664	u32 dvma_addr = (u32)dbri->dma_dvma;
 665
 666	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 667	len += 2;
 668	spin_lock(&dbri->cmdlock);
 669	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 670		return dbri->cmdptr + 2;
 671	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 672		return dbri->dma->cmd;
 673	else
 674		printk(KERN_ERR "DBRI: no space for commands.");
 675
 676	return NULL;
 677}
 678
 679/*
 680 * Send prepared cmd string. It works by writing a JUMP cmd into
 681 * the last WAIT cmd and force DBRI to reread the cmd.
 682 * The JUMP cmd points to the new cmd string.
 683 * It also releases the cmdlock spinlock.
 684 *
 685 * Lock must be held before calling this.
 686 */
 687static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 688{
 689	u32 dvma_addr = (u32)dbri->dma_dvma;
 690	s32 tmp, addr;
 691	static int wait_id = 0;
 692
 693	wait_id++;
 694	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 695	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 696	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 697
 698	/* Replace the last command with JUMP */
 699	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 700	*(dbri->cmdptr+1) = addr;
 701	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 702
 703#ifdef DBRI_DEBUG
 704	if (cmd > dbri->cmdptr) {
 705		s32 *ptr;
 706
 707		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 708			dprintk(D_CMD, "cmd: %lx:%08x\n",
 709				(unsigned long)ptr, *ptr);
 710	} else {
 711		s32 *ptr = dbri->cmdptr;
 712
 713		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 714		ptr++;
 715		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 716		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 717			dprintk(D_CMD, "cmd: %lx:%08x\n",
 718				(unsigned long)ptr, *ptr);
 719	}
 720#endif
 721
 722	/* Reread the last command */
 723	tmp = sbus_readl(dbri->regs + REG0);
 724	tmp |= D_P;
 725	sbus_writel(tmp, dbri->regs + REG0);
 726
 727	dbri->cmdptr = cmd;
 728	spin_unlock(&dbri->cmdlock);
 729}
 730
 731/* Lock must be held when calling this */
 732static void dbri_reset(struct snd_dbri *dbri)
 733{
 734	int i;
 735	u32 tmp;
 736
 737	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 738		sbus_readl(dbri->regs + REG0),
 739		sbus_readl(dbri->regs + REG2),
 740		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 741
 742	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 743	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 744		udelay(10);
 745
 746	/* A brute approach - DBRI falls back to working burst size by itself
 747	 * On SS20 D_S does not work, so do not try so high. */
 748	tmp = sbus_readl(dbri->regs + REG0);
 749	tmp |= D_G | D_E;
 750	tmp &= ~D_S;
 751	sbus_writel(tmp, dbri->regs + REG0);
 752}
 753
 754/* Lock must not be held before calling this */
 755static void dbri_initialize(struct snd_dbri *dbri)
 756{
 757	u32 dvma_addr = (u32)dbri->dma_dvma;
 758	s32 *cmd;
 759	u32 dma_addr;
 760	unsigned long flags;
 761	int n;
 762
 763	spin_lock_irqsave(&dbri->lock, flags);
 764
 765	dbri_reset(dbri);
 766
 767	/* Initialize pipes */
 768	for (n = 0; n < DBRI_NO_PIPES; n++)
 769		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 770
 771	spin_lock_init(&dbri->cmdlock);
 772	/*
 773	 * Initialize the interrupt ring buffer.
 774	 */
 775	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 776	dbri->dma->intr[0] = dma_addr;
 777	dbri->dbri_irqp = 1;
 778	/*
 779	 * Set up the interrupt queue
 780	 */
 781	spin_lock(&dbri->cmdlock);
 782	cmd = dbri->cmdptr = dbri->dma->cmd;
 783	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 784	*(cmd++) = dma_addr;
 785	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 786	dbri->cmdptr = cmd;
 787	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 788	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 790	sbus_writel(dma_addr, dbri->regs + REG8);
 791	spin_unlock(&dbri->cmdlock);
 792
 793	spin_unlock_irqrestore(&dbri->lock, flags);
 794	dbri_cmdwait(dbri);
 795}
 796
 797/*
 798****************************************************************************
 799************************** DBRI data pipe management ***********************
 800****************************************************************************
 801
 802While DBRI control functions use the command and interrupt buffers, the
 803main data path takes the form of data pipes, which can be short (command
 804and interrupt driven), or long (attached to DMA buffers).  These functions
 805provide a rudimentary means of setting up and managing the DBRI's pipes,
 806but the calling functions have to make sure they respect the pipes' linked
 807list ordering, among other things.  The transmit and receive functions
 808here interface closely with the transmit and receive interrupt code.
 809
 810*/
 811static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 812{
 813	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 814}
 815
 816/* reset_pipe(dbri, pipe)
 817 *
 818 * Called on an in-use pipe to clear anything being transmitted or received
 819 * Lock must be held before calling this.
 820 */
 821static void reset_pipe(struct snd_dbri *dbri, int pipe)
 822{
 823	int sdp;
 824	int desc;
 825	s32 *cmd;
 826
 827	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 828		printk(KERN_ERR "DBRI: reset_pipe called with "
 829			"illegal pipe number\n");
 830		return;
 831	}
 832
 833	sdp = dbri->pipes[pipe].sdp;
 834	if (sdp == 0) {
 835		printk(KERN_ERR "DBRI: reset_pipe called "
 836			"on uninitialized pipe\n");
 837		return;
 838	}
 839
 840	cmd = dbri_cmdlock(dbri, 3);
 841	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 842	*(cmd++) = 0;
 843	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 844	dbri_cmdsend(dbri, cmd, 3);
 845
 846	desc = dbri->pipes[pipe].first_desc;
 847	if (desc >= 0)
 848		do {
 849			dbri->dma->desc[desc].ba = 0;
 850			dbri->dma->desc[desc].nda = 0;
 851			desc = dbri->next_desc[desc];
 852		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 853
 854	dbri->pipes[pipe].desc = -1;
 855	dbri->pipes[pipe].first_desc = -1;
 856}
 857
 858/*
 859 * Lock must be held before calling this.
 860 */
 861static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 862{
 863	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 864		printk(KERN_ERR "DBRI: setup_pipe called "
 865			"with illegal pipe number\n");
 866		return;
 867	}
 868
 869	if ((sdp & 0xf800) != sdp) {
 870		printk(KERN_ERR "DBRI: setup_pipe called "
 871			"with strange SDP value\n");
 872		/* sdp &= 0xf800; */
 873	}
 874
 875	/* If this is a fixed receive pipe, arrange for an interrupt
 876	 * every time its data changes
 877	 */
 878	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 879		sdp |= D_SDP_CHANGE;
 880
 881	sdp |= D_PIPE(pipe);
 882	dbri->pipes[pipe].sdp = sdp;
 883	dbri->pipes[pipe].desc = -1;
 884	dbri->pipes[pipe].first_desc = -1;
 885
 886	reset_pipe(dbri, pipe);
 887}
 888
 889/*
 890 * Lock must be held before calling this.
 891 */
 892static void link_time_slot(struct snd_dbri *dbri, int pipe,
 893			   int prevpipe, int nextpipe,
 894			   int length, int cycle)
 895{
 896	s32 *cmd;
 897	int val;
 898
 899	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 900			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 901			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 902		printk(KERN_ERR
 903		    "DBRI: link_time_slot called with illegal pipe number\n");
 904		return;
 905	}
 906
 907	if (dbri->pipes[pipe].sdp == 0
 908			|| dbri->pipes[prevpipe].sdp == 0
 909			|| dbri->pipes[nextpipe].sdp == 0) {
 910		printk(KERN_ERR "DBRI: link_time_slot called "
 911			"on uninitialized pipe\n");
 912		return;
 913	}
 914
 915	dbri->pipes[prevpipe].nextpipe = pipe;
 916	dbri->pipes[pipe].nextpipe = nextpipe;
 917	dbri->pipes[pipe].length = length;
 918
 919	cmd = dbri_cmdlock(dbri, 4);
 920
 921	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 922		/* Deal with CHI special case:
 923		 * "If transmission on edges 0 or 1 is desired, then cycle n
 924		 *  (where n = # of bit times per frame...) must be used."
 925		 *                  - DBRI data sheet, page 11
 926		 */
 927		if (prevpipe == 16 && cycle == 0)
 928			cycle = dbri->chi_bpf;
 929
 930		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 931		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 932		*(cmd++) = 0;
 933		*(cmd++) =
 934		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 935	} else {
 936		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 937		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 938		*(cmd++) =
 939		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 940		*(cmd++) = 0;
 941	}
 942	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 943
 944	dbri_cmdsend(dbri, cmd, 4);
 945}
 946
 947#if 0
 948/*
 949 * Lock must be held before calling this.
 950 */
 951static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 952			     enum in_or_out direction, int prevpipe,
 953			     int nextpipe)
 954{
 955	s32 *cmd;
 956	int val;
 957
 958	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 959			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 960			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 961		printk(KERN_ERR
 962		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 963		return;
 964	}
 965
 966	cmd = dbri_cmdlock(dbri, 4);
 967
 968	if (direction == PIPEinput) {
 969		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 970		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 971		*(cmd++) = D_TS_NEXT(nextpipe);
 972		*(cmd++) = 0;
 973	} else {
 974		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 975		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 976		*(cmd++) = 0;
 977		*(cmd++) = D_TS_NEXT(nextpipe);
 978	}
 979	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 980
 981	dbri_cmdsend(dbri, cmd, 4);
 982}
 983#endif
 984
 985/* xmit_fixed() / recv_fixed()
 986 *
 987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 988 * expected to change much, and which we don't need to buffer.
 989 * The DBRI only interrupts us when the data changes (receive pipes),
 990 * or only changes the data when this function is called (transmit pipes).
 991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 992 *
 993 * These function operate on a 32-bit field, no matter how large
 994 * the actual time slot is.  The interrupt handler takes care of bit
 995 * ordering and alignment.  An 8-bit time slot will always end up
 996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 997 * depending on the settings passed to setup_pipe().
 998 *
 999 * Lock must not be held before calling it.
1000 */
1001static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002{
1003	s32 *cmd;
1004	unsigned long flags;
1005
1006	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008		return;
1009	}
1010
1011	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012		printk(KERN_ERR "DBRI: xmit_fixed: "
1013			"Uninitialized pipe %d\n", pipe);
1014		return;
1015	}
1016
1017	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019		return;
1020	}
1021
1022	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024			pipe);
1025		return;
1026	}
1027
1028	/* DBRI short pipes always transmit LSB first */
1029
1030	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031		data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033	cmd = dbri_cmdlock(dbri, 3);
1034
1035	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036	*(cmd++) = data;
1037	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039	spin_lock_irqsave(&dbri->lock, flags);
1040	dbri_cmdsend(dbri, cmd, 3);
1041	spin_unlock_irqrestore(&dbri->lock, flags);
1042	dbri_cmdwait(dbri);
1043
1044}
1045
1046static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047{
1048	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049		printk(KERN_ERR "DBRI: recv_fixed called with "
1050			"illegal pipe number\n");
1051		return;
1052	}
1053
1054	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055		printk(KERN_ERR "DBRI: recv_fixed called on "
1056			"non-fixed pipe %d\n", pipe);
1057		return;
1058	}
1059
1060	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061		printk(KERN_ERR "DBRI: recv_fixed called on "
1062			"transmit pipe %d\n", pipe);
1063		return;
1064	}
1065
1066	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067}
1068
1069/* setup_descs()
1070 *
1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072 * with a DMA buffer.
1073 *
1074 * Only pipe numbers 0-15 can be used in this mode.
1075 *
1076 * This function takes a stream number pointing to a data buffer,
1077 * and work by building chains of descriptors which identify the
1078 * data buffers.  Buffers too large for a single descriptor will
1079 * be spread across multiple descriptors.
1080 *
1081 * All descriptors create a ring buffer.
1082 *
1083 * Lock must be held before calling this.
1084 */
1085static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086{
1087	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088	u32 dvma_addr = (u32)dbri->dma_dvma;
1089	__u32 dvma_buffer;
1090	int desc;
1091	int len;
1092	int first_desc = -1;
1093	int last_desc = -1;
1094
1095	if (info->pipe < 0 || info->pipe > 15) {
1096		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097		return -2;
1098	}
1099
1100	if (dbri->pipes[info->pipe].sdp == 0) {
1101		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102		       info->pipe);
1103		return -2;
1104	}
1105
1106	dvma_buffer = info->dvma_buffer;
1107	len = info->size;
1108
1109	if (streamno == DBRI_PLAY) {
1110		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111			printk(KERN_ERR "DBRI: setup_descs: "
1112				"Called on receive pipe %d\n", info->pipe);
1113			return -2;
1114		}
1115	} else {
1116		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117			printk(KERN_ERR
1118			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1119			     info->pipe);
1120			return -2;
1121		}
1122		/* Should be able to queue multiple buffers
1123		 * to receive on a pipe
1124		 */
1125		if (pipe_active(dbri, info->pipe)) {
1126			printk(KERN_ERR "DBRI: recv_on_pipe: "
1127				"Called on active pipe %d\n", info->pipe);
1128			return -2;
1129		}
1130
1131		/* Make sure buffer size is multiple of four */
1132		len &= ~3;
1133	}
1134
1135	/* Free descriptors if pipe has any */
1136	desc = dbri->pipes[info->pipe].first_desc;
1137	if (desc >= 0)
1138		do {
1139			dbri->dma->desc[desc].ba = 0;
1140			dbri->dma->desc[desc].nda = 0;
1141			desc = dbri->next_desc[desc];
1142		} while (desc != -1 &&
1143			 desc != dbri->pipes[info->pipe].first_desc);
1144
1145	dbri->pipes[info->pipe].desc = -1;
1146	dbri->pipes[info->pipe].first_desc = -1;
1147
1148	desc = 0;
1149	while (len > 0) {
1150		int mylen;
1151
1152		for (; desc < DBRI_NO_DESCS; desc++) {
1153			if (!dbri->dma->desc[desc].ba)
1154				break;
1155		}
1156
1157		if (desc == DBRI_NO_DESCS) {
1158			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159			return -1;
1160		}
1161
1162		if (len > DBRI_TD_MAXCNT)
1163			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1164		else
1165			mylen = len;
1166
1167		if (mylen > period)
1168			mylen = period;
1169
1170		dbri->next_desc[desc] = -1;
1171		dbri->dma->desc[desc].ba = dvma_buffer;
1172		dbri->dma->desc[desc].nda = 0;
1173
1174		if (streamno == DBRI_PLAY) {
1175			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176			dbri->dma->desc[desc].word4 = 0;
1177			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178		} else {
1179			dbri->dma->desc[desc].word1 = 0;
1180			dbri->dma->desc[desc].word4 =
1181			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182		}
1183
1184		if (first_desc == -1)
1185			first_desc = desc;
1186		else {
1187			dbri->next_desc[last_desc] = desc;
1188			dbri->dma->desc[last_desc].nda =
1189			    dvma_addr + dbri_dma_off(desc, desc);
1190		}
1191
1192		last_desc = desc;
1193		dvma_buffer += mylen;
1194		len -= mylen;
1195	}
1196
1197	if (first_desc == -1 || last_desc == -1) {
1198		printk(KERN_ERR "DBRI: setup_descs: "
1199			" Not enough descriptors available\n");
1200		return -1;
1201	}
1202
1203	dbri->dma->desc[last_desc].nda =
1204	    dvma_addr + dbri_dma_off(desc, first_desc);
1205	dbri->next_desc[last_desc] = first_desc;
1206	dbri->pipes[info->pipe].first_desc = first_desc;
1207	dbri->pipes[info->pipe].desc = first_desc;
1208
1209#ifdef DBRI_DEBUG
1210	for (desc = first_desc; desc != -1;) {
1211		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212			desc,
1213			dbri->dma->desc[desc].word1,
1214			dbri->dma->desc[desc].ba,
1215			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216			desc = dbri->next_desc[desc];
1217			if (desc == first_desc)
1218				break;
1219	}
1220#endif
1221	return 0;
1222}
1223
1224/*
1225****************************************************************************
1226************************** DBRI - CHI interface ****************************
1227****************************************************************************
1228
1229The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230multiplexed serial interface which the DBRI can operate in either master
1231(give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233*/
1234
1235enum master_or_slave { CHImaster, CHIslave };
1236
1237/*
1238 * Lock must not be held before calling it.
1239 */
1240static void reset_chi(struct snd_dbri *dbri,
1241		      enum master_or_slave master_or_slave,
1242		      int bits_per_frame)
1243{
1244	s32 *cmd;
1245	int val;
1246
1247	/* Set CHI Anchor: Pipe 16 */
1248
1249	cmd = dbri_cmdlock(dbri, 4);
1250	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256	dbri_cmdsend(dbri, cmd, 4);
1257
1258	dbri->pipes[16].sdp = 1;
1259	dbri->pipes[16].nextpipe = 16;
1260
1261	cmd = dbri_cmdlock(dbri, 4);
1262
1263	if (master_or_slave == CHIslave) {
1264		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265		 *
1266		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267		 * IR     = give immediate CHI status interrupt
1268		 * EN     = give CHI status interrupt upon change
1269		 */
1270		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271	} else {
1272		/* Setup DBRI for CHI Master - generate clock, FS
1273		 *
1274		 * BPF				=  bits per 8 kHz frame
1275		 * 12.288 MHz / CHICM_divisor	= clock rate
1276		 * FD = 1 - drive CHIFS on rising edge of CHICK
1277		 */
1278		int clockrate = bits_per_frame * 8;
1279		int divisor = 12288 / clockrate;
1280
1281		if (divisor > 255 || divisor * clockrate != 12288)
1282			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283				"in setup_chi\n");
1284
1285		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286				    | D_CHI_BPF(bits_per_frame));
1287	}
1288
1289	dbri->chi_bpf = bits_per_frame;
1290
1291	/* CHI Data Mode
1292	 *
1293	 * RCE   =  0 - receive on falling edge of CHICK
1294	 * XCE   =  1 - transmit on rising edge of CHICK
1295	 * XEN   =  1 - enable transmitter
1296	 * REN   =  1 - enable receiver
1297	 */
1298
1299	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303	dbri_cmdsend(dbri, cmd, 4);
1304}
1305
1306/*
1307****************************************************************************
1308*********************** CS4215 audio codec management **********************
1309****************************************************************************
1310
1311In the standard SPARC audio configuration, the CS4215 codec is attached
1312to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314 * Lock must not be held before calling it.
1315
1316*/
1317static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318{
1319	unsigned long flags;
1320
1321	spin_lock_irqsave(&dbri->lock, flags);
1322	/*
1323	 * Data mode:
1324	 * Pipe  4: Send timeslots 1-4 (audio data)
1325	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326	 * Pipe  6: Receive timeslots 1-4 (audio data)
1327	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328	 *          interrupt, and the rest of the data (slot 5 and 8) is
1329	 *          not relevant for us (only for doublechecking).
1330	 *
1331	 * Control mode:
1332	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333	 * Pipe 18: Receive timeslot 1 (clb).
1334	 * Pipe 19: Receive timeslot 7 (version).
1335	 */
1336
1337	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345	spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347	dbri_cmdwait(dbri);
1348}
1349
1350static int cs4215_init_data(struct cs4215 *mm)
1351{
1352	/*
1353	 * No action, memory resetting only.
1354	 *
1355	 * Data Time Slot 5-8
1356	 * Speaker,Line and Headphone enable. Gain set to the half.
1357	 * Input is mike.
1358	 */
1359	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364	/*
1365	 * Control Time Slot 1-4
1366	 * 0: Default I/O voltage scale
1367	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369	 * 3: Tests disabled
1370	 */
1371	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374	mm->ctrl[3] = 0;
1375
1376	mm->status = 0;
1377	mm->version = 0xff;
1378	mm->precision = 8;	/* For ULAW */
1379	mm->channels = 1;
1380
1381	return 0;
1382}
1383
1384static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385{
1386	if (muted) {
1387		dbri->mm.data[0] |= 63;
1388		dbri->mm.data[1] |= 63;
1389		dbri->mm.data[2] &= ~15;
1390		dbri->mm.data[3] &= ~15;
1391	} else {
1392		/* Start by setting the playback attenuation. */
1393		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394		int left_gain = info->left_gain & 0x3f;
1395		int right_gain = info->right_gain & 0x3f;
1396
1397		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1398		dbri->mm.data[1] &= ~0x3f;
1399		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402		/* Now set the recording gain. */
1403		info = &dbri->stream_info[DBRI_REC];
1404		left_gain = info->left_gain & 0xf;
1405		right_gain = info->right_gain & 0xf;
1406		dbri->mm.data[2] |= CS4215_LG(left_gain);
1407		dbri->mm.data[3] |= CS4215_RG(right_gain);
1408	}
1409
1410	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411}
1412
1413/*
1414 * Set the CS4215 to data mode.
1415 */
1416static void cs4215_open(struct snd_dbri *dbri)
1417{
1418	int data_width;
1419	u32 tmp;
1420	unsigned long flags;
1421
1422	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423		dbri->mm.channels, dbri->mm.precision);
1424
1425	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426	 * to make sure this takes.  This avoids clicking noises.
1427	 */
1428
1429	cs4215_setdata(dbri, 1);
1430	udelay(125);
1431
1432	/*
1433	 * Data mode:
1434	 * Pipe  4: Send timeslots 1-4 (audio data)
1435	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436	 * Pipe  6: Receive timeslots 1-4 (audio data)
1437	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438	 *          interrupt, and the rest of the data (slot 5 and 8) is
1439	 *          not relevant for us (only for doublechecking).
1440	 *
1441	 * Just like in control mode, the time slots are all offset by eight
1442	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443	 * even if it's the CHI master.  Don't ask me...
1444	 */
1445	spin_lock_irqsave(&dbri->lock, flags);
1446	tmp = sbus_readl(dbri->regs + REG0);
1447	tmp &= ~(D_C);		/* Disable CHI */
1448	sbus_writel(tmp, dbri->regs + REG0);
1449
1450	/* Switch CS4215 to data mode - set PIO3 to 1 */
1451	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454	reset_chi(dbri, CHIslave, 128);
1455
1456	/* Note: this next doesn't work for 8-bit stereo, because the two
1457	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458	 * (See CS4215 datasheet Fig 15)
1459	 *
1460	 * DBRI non-contiguous mode would be required to make this work.
1461	 */
1462	data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469	/* FIXME: enable CHI after _setdata? */
1470	tmp = sbus_readl(dbri->regs + REG0);
1471	tmp |= D_C;		/* Enable CHI */
1472	sbus_writel(tmp, dbri->regs + REG0);
1473	spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475	cs4215_setdata(dbri, 0);
1476}
1477
1478/*
1479 * Send the control information (i.e. audio format)
1480 */
1481static int cs4215_setctrl(struct snd_dbri *dbri)
1482{
1483	int i, val;
1484	u32 tmp;
1485	unsigned long flags;
1486
1487	/* FIXME - let the CPU do something useful during these delays */
1488
1489	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490	 * to make sure this takes.  This avoids clicking noises.
1491	 */
1492	cs4215_setdata(dbri, 1);
1493	udelay(125);
1494
1495	/*
1496	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498	 */
1499	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500	sbus_writel(val, dbri->regs + REG2);
1501	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502	udelay(34);
1503
1504	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1505	 * operate as CHI master, supplying clocking and frame synchronization.
1506	 *
1507	 * In Data mode, however, the CS4215 must be CHI master to insure
1508	 * that its data stream is synchronous with its codec.
1509	 *
1510	 * The upshot of all this?  We start by putting the DBRI into master
1511	 * mode, program the CS4215 in Control mode, then switch the CS4215
1512	 * into Data mode and put the DBRI into slave mode.  Various timing
1513	 * requirements must be observed along the way.
1514	 *
1515	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516	 * others?), the addressing of the CS4215's time slots is
1517	 * offset by eight bits, so we add eight to all the "cycle"
1518	 * values in the Define Time Slot (DTS) commands.  This is
1519	 * done in hardware by a TI 248 that delays the DBRI->4215
1520	 * frame sync signal by eight clock cycles.  Anybody know why?
1521	 */
1522	spin_lock_irqsave(&dbri->lock, flags);
1523	tmp = sbus_readl(dbri->regs + REG0);
1524	tmp &= ~D_C;		/* Disable CHI */
1525	sbus_writel(tmp, dbri->regs + REG0);
1526
1527	reset_chi(dbri, CHImaster, 128);
1528
1529	/*
1530	 * Control mode:
1531	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532	 * Pipe 18: Receive timeslot 1 (clb).
1533	 * Pipe 19: Receive timeslot 7 (version).
1534	 */
1535
1536	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539	spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545	spin_lock_irqsave(&dbri->lock, flags);
1546	tmp = sbus_readl(dbri->regs + REG0);
1547	tmp |= D_C;		/* Enable CHI */
1548	sbus_writel(tmp, dbri->regs + REG0);
1549	spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552		msleep_interruptible(1);
1553
1554	if (i == 0) {
1555		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556			dbri->mm.status);
1557		return -1;
1558	}
1559
1560	/* Disable changes to our copy of the version number, as we are about
1561	 * to leave control mode.
1562	 */
1563	recv_fixed(dbri, 19, NULL);
1564
1565	/* Terminate CS4215 control mode - data sheet says
1566	 * "Set CLB=1 and send two more frames of valid control info"
1567	 */
1568	dbri->mm.ctrl[0] |= CS4215_CLB;
1569	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572	udelay(250);
1573
1574	cs4215_setdata(dbri, 0);
1575
1576	return 0;
1577}
1578
1579/*
1580 * Setup the codec with the sampling rate, audio format and number of
1581 * channels.
1582 * As part of the process we resend the settings for the data
1583 * timeslots as well.
1584 */
1585static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586			  snd_pcm_format_t format, unsigned int channels)
1587{
1588	int freq_idx;
1589	int ret = 0;
1590
1591	/* Lookup index for this rate */
1592	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593		if (CS4215_FREQ[freq_idx].freq == rate)
1594			break;
1595	}
1596	if (CS4215_FREQ[freq_idx].freq != rate) {
1597		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598		return -1;
1599	}
1600
1601	switch (format) {
1602	case SNDRV_PCM_FORMAT_MU_LAW:
1603		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604		dbri->mm.precision = 8;
1605		break;
1606	case SNDRV_PCM_FORMAT_A_LAW:
1607		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608		dbri->mm.precision = 8;
1609		break;
1610	case SNDRV_PCM_FORMAT_U8:
1611		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612		dbri->mm.precision = 8;
1613		break;
1614	case SNDRV_PCM_FORMAT_S16_BE:
1615		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616		dbri->mm.precision = 16;
1617		break;
1618	default:
1619		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620		return -1;
1621	}
1622
1623	/* Add rate parameters */
1624	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625	dbri->mm.ctrl[2] = CS4215_XCLK |
1626	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628	dbri->mm.channels = channels;
1629	if (channels == 2)
1630		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632	ret = cs4215_setctrl(dbri);
1633	if (ret == 0)
1634		cs4215_open(dbri);	/* set codec to data mode */
1635
1636	return ret;
1637}
1638
1639/*
1640 *
1641 */
1642static int cs4215_init(struct snd_dbri *dbri)
1643{
1644	u32 reg2 = sbus_readl(dbri->regs + REG2);
1645	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647	/* Look for the cs4215 chips */
1648	if (reg2 & D_PIO2) {
1649		dprintk(D_MM, "Onboard CS4215 detected\n");
1650		dbri->mm.onboard = 1;
1651	}
1652	if (reg2 & D_PIO0) {
1653		dprintk(D_MM, "Speakerbox detected\n");
1654		dbri->mm.onboard = 0;
1655
1656		if (reg2 & D_PIO2) {
1657			printk(KERN_INFO "DBRI: Using speakerbox / "
1658			       "ignoring onboard mmcodec.\n");
1659			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660		}
1661	}
1662
1663	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665		return -EIO;
1666	}
1667
1668	cs4215_setup_pipes(dbri);
1669	cs4215_init_data(&dbri->mm);
1670
1671	/* Enable capture of the status & version timeslots. */
1672	recv_fixed(dbri, 18, &dbri->mm.status);
1673	recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678			dbri->mm.offset);
1679		return -EIO;
1680	}
1681	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683	return 0;
1684}
1685
1686/*
1687****************************************************************************
1688*************************** DBRI interrupt handler *************************
1689****************************************************************************
1690
1691The DBRI communicates with the CPU mainly via a circular interrupt
1692buffer.  When an interrupt is signaled, the CPU walks through the
1693buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694Complicated interrupts are handled by dedicated functions (which
1695appear first in this file).  Any pending interrupts can be serviced by
1696calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697interrupts are disabled.
1698
1699*/
1700
1701/* xmit_descs()
1702 *
1703 * Starts transmitting the current TD's for recording/playing.
1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
1705 */
1706static void xmit_descs(struct snd_dbri *dbri)
1707{
1708	struct dbri_streaminfo *info;
1709	u32 dvma_addr;
1710	s32 *cmd;
1711	unsigned long flags;
1712	int first_td;
1713
1714	if (dbri == NULL)
1715		return;		/* Disabled */
1716
1717	dvma_addr = (u32)dbri->dma_dvma;
1718	info = &dbri->stream_info[DBRI_REC];
1719	spin_lock_irqsave(&dbri->lock, flags);
1720
1721	if (info->pipe >= 0) {
1722		first_td = dbri->pipes[info->pipe].first_desc;
1723
1724		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726		/* Stream could be closed by the time we run. */
1727		if (first_td >= 0) {
1728			cmd = dbri_cmdlock(dbri, 2);
1729			*(cmd++) = DBRI_CMD(D_SDP, 0,
1730					    dbri->pipes[info->pipe].sdp
1731					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732			*(cmd++) = dvma_addr +
1733				   dbri_dma_off(desc, first_td);
1734			dbri_cmdsend(dbri, cmd, 2);
1735
1736			/* Reset our admin of the pipe. */
1737			dbri->pipes[info->pipe].desc = first_td;
1738		}
1739	}
1740
1741	info = &dbri->stream_info[DBRI_PLAY];
1742
1743	if (info->pipe >= 0) {
1744		first_td = dbri->pipes[info->pipe].first_desc;
1745
1746		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748		/* Stream could be closed by the time we run. */
1749		if (first_td >= 0) {
1750			cmd = dbri_cmdlock(dbri, 2);
1751			*(cmd++) = DBRI_CMD(D_SDP, 0,
1752					    dbri->pipes[info->pipe].sdp
1753					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754			*(cmd++) = dvma_addr +
1755				   dbri_dma_off(desc, first_td);
1756			dbri_cmdsend(dbri, cmd, 2);
1757
1758			/* Reset our admin of the pipe. */
1759			dbri->pipes[info->pipe].desc = first_td;
1760		}
1761	}
1762
1763	spin_unlock_irqrestore(&dbri->lock, flags);
1764}
1765
1766/* transmission_complete_intr()
1767 *
1768 * Called by main interrupt handler when DBRI signals transmission complete
1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770 *
1771 * Walks through the pipe's list of transmit buffer descriptors and marks
1772 * them as available. Stops when the first descriptor is found without
1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774 *
1775 * The DMA buffers are not released. They form a ring buffer and
1776 * they are filled by ALSA while others are transmitted by DMA.
1777 *
1778 */
1779
1780static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781{
1782	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783	int td = dbri->pipes[pipe].desc;
1784	int status;
1785
1786	while (td >= 0) {
1787		if (td >= DBRI_NO_DESCS) {
1788			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789			return;
1790		}
1791
1792		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793		if (!(status & DBRI_TD_TBC))
1794			break;
1795
1796		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1799		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801		td = dbri->next_desc[td];
1802		dbri->pipes[pipe].desc = td;
1803	}
1804
1805	/* Notify ALSA */
1806	spin_unlock(&dbri->lock);
1807	snd_pcm_period_elapsed(info->substream);
1808	spin_lock(&dbri->lock);
1809}
1810
1811static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812{
1813	struct dbri_streaminfo *info;
1814	int rd = dbri->pipes[pipe].desc;
1815	s32 status;
1816
1817	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819		return;
1820	}
1821
1822	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823	status = dbri->dma->desc[rd].word1;
1824	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1825
1826	info = &dbri->stream_info[DBRI_REC];
1827	info->offset += DBRI_RD_CNT(status);
1828
1829	/* FIXME: Check status */
1830
1831	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834	/* Notify ALSA */
1835	spin_unlock(&dbri->lock);
1836	snd_pcm_period_elapsed(info->substream);
1837	spin_lock(&dbri->lock);
1838}
1839
1840static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841{
1842	int val = D_INTR_GETVAL(x);
1843	int channel = D_INTR_GETCHAN(x);
1844	int command = D_INTR_GETCMD(x);
1845	int code = D_INTR_GETCODE(x);
1846#ifdef DBRI_DEBUG
1847	int rval = D_INTR_GETRVAL(x);
1848#endif
1849
1850	if (channel == D_INTR_CMD) {
1851		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852			cmds[command], val);
1853	} else {
1854		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855			channel, code, rval);
1856	}
1857
1858	switch (code) {
1859	case D_INTR_CMDI:
1860		if (command != D_WAIT)
1861			printk(KERN_ERR "DBRI: Command read interrupt\n");
1862		break;
1863	case D_INTR_BRDY:
1864		reception_complete_intr(dbri, channel);
1865		break;
1866	case D_INTR_XCMP:
1867	case D_INTR_MINT:
1868		transmission_complete_intr(dbri, channel);
1869		break;
1870	case D_INTR_UNDR:
1871		/* UNDR - Transmission underrun
1872		 * resend SDP command with clear pipe bit (C) set
1873		 */
1874		{
1875	/* FIXME: do something useful in case of underrun */
1876			printk(KERN_ERR "DBRI: Underrun error\n");
1877#if 0
1878			s32 *cmd;
1879			int pipe = channel;
1880			int td = dbri->pipes[pipe].desc;
1881
1882			dbri->dma->desc[td].word4 = 0;
1883			cmd = dbri_cmdlock(dbri, NoGetLock);
1884			*(cmd++) = DBRI_CMD(D_SDP, 0,
1885					    dbri->pipes[pipe].sdp
1886					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888			dbri_cmdsend(dbri, cmd);
1889#endif
1890		}
1891		break;
1892	case D_INTR_FXDT:
1893		/* FXDT - Fixed data change */
1894		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895			val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897		if (dbri->pipes[channel].recv_fixed_ptr)
1898			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1899		break;
1900	default:
1901		if (channel != D_INTR_CMD)
1902			printk(KERN_WARNING
1903			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904	}
1905}
1906
1907/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908 * buffer until it finds a zero word (indicating nothing more to do
1909 * right now).  Non-zero words require processing and are handed off
1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
1911 */
1912static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913{
1914	s32 x;
1915
1916	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917		dbri->dma->intr[dbri->dbri_irqp] = 0;
1918		dbri->dbri_irqp++;
1919		if (dbri->dbri_irqp == DBRI_INT_BLK)
1920			dbri->dbri_irqp = 1;
1921
1922		dbri_process_one_interrupt(dbri, x);
1923	}
1924}
1925
1926static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927{
1928	struct snd_dbri *dbri = dev_id;
1929	static int errcnt = 0;
1930	int x;
1931
1932	if (dbri == NULL)
1933		return IRQ_NONE;
1934	spin_lock(&dbri->lock);
1935
1936	/*
1937	 * Read it, so the interrupt goes away.
1938	 */
1939	x = sbus_readl(dbri->regs + REG1);
1940
1941	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942		u32 tmp;
1943
1944		if (x & D_MRR)
1945			printk(KERN_ERR
1946			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947			       x);
1948		if (x & D_MLE)
1949			printk(KERN_ERR
1950			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951			       x);
1952		if (x & D_LBG)
1953			printk(KERN_ERR
1954			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955		if (x & D_MBE)
1956			printk(KERN_ERR
1957			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959		/* Some of these SBus errors cause the chip's SBus circuitry
1960		 * to be disabled, so just re-enable and try to keep going.
1961		 *
1962		 * The only one I've seen is MRR, which will be triggered
1963		 * if you let a transmit pipe underrun, then try to CDP it.
1964		 *
1965		 * If these things persist, we reset the chip.
1966		 */
1967		if ((++errcnt) % 10 == 0) {
1968			dprintk(D_INT, "Interrupt errors exceeded.\n");
1969			dbri_reset(dbri);
1970		} else {
1971			tmp = sbus_readl(dbri->regs + REG0);
1972			tmp &= ~(D_D);
1973			sbus_writel(tmp, dbri->regs + REG0);
1974		}
1975	}
1976
1977	dbri_process_interrupt_buffer(dbri);
1978
1979	spin_unlock(&dbri->lock);
1980
1981	return IRQ_HANDLED;
1982}
1983
1984/****************************************************************************
1985		PCM Interface
1986****************************************************************************/
1987static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988	.info		= SNDRV_PCM_INFO_MMAP |
1989			  SNDRV_PCM_INFO_INTERLEAVED |
1990			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991			  SNDRV_PCM_INFO_MMAP_VALID |
1992			  SNDRV_PCM_INFO_BATCH,
1993	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1994			  SNDRV_PCM_FMTBIT_A_LAW |
1995			  SNDRV_PCM_FMTBIT_U8 |
1996			  SNDRV_PCM_FMTBIT_S16_BE,
1997	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998	.rate_min		= 5512,
1999	.rate_max		= 48000,
2000	.channels_min		= 1,
2001	.channels_max		= 2,
2002	.buffer_bytes_max	= 64 * 1024,
2003	.period_bytes_min	= 1,
2004	.period_bytes_max	= DBRI_TD_MAXCNT,
2005	.periods_min		= 1,
2006	.periods_max		= 1024,
2007};
2008
2009static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010			      struct snd_pcm_hw_rule *rule)
2011{
2012	struct snd_interval *c = hw_param_interval(params,
2013				SNDRV_PCM_HW_PARAM_CHANNELS);
2014	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015	struct snd_mask fmt;
2016
2017	snd_mask_any(&fmt);
2018	if (c->min > 1) {
2019		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020		return snd_mask_refine(f, &fmt);
2021	}
2022	return 0;
2023}
2024
2025static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026				struct snd_pcm_hw_rule *rule)
2027{
2028	struct snd_interval *c = hw_param_interval(params,
2029				SNDRV_PCM_HW_PARAM_CHANNELS);
2030	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031	struct snd_interval ch;
2032
2033	snd_interval_any(&ch);
2034	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035		ch.min = 1;
2036		ch.max = 1;
2037		ch.integer = 1;
2038		return snd_interval_refine(c, &ch);
2039	}
2040	return 0;
2041}
2042
2043static int snd_dbri_open(struct snd_pcm_substream *substream)
2044{
2045	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046	struct snd_pcm_runtime *runtime = substream->runtime;
2047	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048	unsigned long flags;
2049
2050	dprintk(D_USR, "open audio output.\n");
2051	runtime->hw = snd_dbri_pcm_hw;
2052
2053	spin_lock_irqsave(&dbri->lock, flags);
2054	info->substream = substream;
2055	info->offset = 0;
2056	info->dvma_buffer = 0;
2057	info->pipe = -1;
2058	spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062			    -1);
2063	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064			    snd_hw_rule_channels, NULL,
2065			    SNDRV_PCM_HW_PARAM_CHANNELS,
2066			    -1);
2067
2068	cs4215_open(dbri);
2069
2070	return 0;
2071}
2072
2073static int snd_dbri_close(struct snd_pcm_substream *substream)
2074{
2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078	dprintk(D_USR, "close audio output.\n");
2079	info->substream = NULL;
2080	info->offset = 0;
2081
2082	return 0;
2083}
2084
2085static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086			      struct snd_pcm_hw_params *hw_params)
2087{
2088	struct snd_pcm_runtime *runtime = substream->runtime;
2089	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091	int direction;
2092	int ret;
2093
2094	/* set sampling rate, audio format and number of channels */
2095	ret = cs4215_prepare(dbri, params_rate(hw_params),
2096			     params_format(hw_params),
2097			     params_channels(hw_params));
2098	if (ret != 0)
2099		return ret;
2100
 
 
 
 
 
 
2101	/* hw_params can get called multiple times. Only map the DMA once.
2102	 */
2103	if (info->dvma_buffer == 0) {
2104		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105			direction = DMA_TO_DEVICE;
2106		else
2107			direction = DMA_FROM_DEVICE;
2108
2109		info->dvma_buffer =
2110			dma_map_single(&dbri->op->dev,
2111				       runtime->dma_area,
2112				       params_buffer_bytes(hw_params),
2113				       direction);
2114	}
2115
2116	direction = params_buffer_bytes(hw_params);
2117	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118		direction, info->dvma_buffer);
2119	return 0;
2120}
2121
2122static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123{
2124	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126	int direction;
2127
2128	dprintk(D_USR, "hw_free.\n");
2129
2130	/* hw_free can get called multiple times. Only unmap the DMA once.
2131	 */
2132	if (info->dvma_buffer) {
2133		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134			direction = DMA_TO_DEVICE;
2135		else
2136			direction = DMA_FROM_DEVICE;
2137
2138		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139				 substream->runtime->buffer_size, direction);
2140		info->dvma_buffer = 0;
2141	}
2142	if (info->pipe != -1) {
2143		reset_pipe(dbri, info->pipe);
2144		info->pipe = -1;
2145	}
2146
2147	return 0;
2148}
2149
2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151{
2152	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154	int ret;
2155
2156	info->size = snd_pcm_lib_buffer_bytes(substream);
2157	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158		info->pipe = 4;	/* Send pipe */
2159	else
2160		info->pipe = 6;	/* Receive pipe */
2161
2162	spin_lock_irq(&dbri->lock);
2163	info->offset = 0;
2164
2165	/* Setup the all the transmit/receive descriptors to cover the
2166	 * whole DMA buffer.
2167	 */
2168	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169			  snd_pcm_lib_period_bytes(substream));
2170
2171	spin_unlock_irq(&dbri->lock);
2172
2173	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174	return ret;
2175}
2176
2177static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178{
2179	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181	int ret = 0;
2182
2183	switch (cmd) {
2184	case SNDRV_PCM_TRIGGER_START:
2185		dprintk(D_USR, "start audio, period is %d bytes\n",
2186			(int)snd_pcm_lib_period_bytes(substream));
2187		/* Re-submit the TDs. */
2188		xmit_descs(dbri);
2189		break;
2190	case SNDRV_PCM_TRIGGER_STOP:
2191		dprintk(D_USR, "stop audio.\n");
2192		reset_pipe(dbri, info->pipe);
2193		break;
2194	default:
2195		ret = -EINVAL;
2196	}
2197
2198	return ret;
2199}
2200
2201static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202{
2203	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205	snd_pcm_uframes_t ret;
2206
2207	ret = bytes_to_frames(substream->runtime, info->offset)
2208		% substream->runtime->buffer_size;
2209	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210		ret, substream->runtime->buffer_size);
2211	return ret;
2212}
2213
2214static const struct snd_pcm_ops snd_dbri_ops = {
2215	.open = snd_dbri_open,
2216	.close = snd_dbri_close,
 
2217	.hw_params = snd_dbri_hw_params,
2218	.hw_free = snd_dbri_hw_free,
2219	.prepare = snd_dbri_prepare,
2220	.trigger = snd_dbri_trigger,
2221	.pointer = snd_dbri_pointer,
2222};
2223
2224static int snd_dbri_pcm(struct snd_card *card)
2225{
2226	struct snd_pcm *pcm;
2227	int err;
2228
2229	err = snd_pcm_new(card,
2230			  /* ID */	    "sun_dbri",
2231			  /* device */	    0,
2232			  /* playback count */ 1,
2233			  /* capture count */  1, &pcm);
2234	if (err < 0)
2235		return err;
2236
2237	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240	pcm->private_data = card->private_data;
2241	pcm->info_flags = 0;
2242	strcpy(pcm->name, card->shortname);
2243
2244	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245				       NULL, 64 * 1024, 64 * 1024);
 
 
 
 
2246	return 0;
2247}
2248
2249/*****************************************************************************
2250			Mixer interface
2251*****************************************************************************/
2252
2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254				  struct snd_ctl_elem_info *uinfo)
2255{
2256	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257	uinfo->count = 2;
2258	uinfo->value.integer.min = 0;
2259	if (kcontrol->private_value == DBRI_PLAY)
2260		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261	else
2262		uinfo->value.integer.max = DBRI_MAX_GAIN;
2263	return 0;
2264}
2265
2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267				 struct snd_ctl_elem_value *ucontrol)
2268{
2269	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270	struct dbri_streaminfo *info;
2271
2272	if (snd_BUG_ON(!dbri))
2273		return -EINVAL;
2274	info = &dbri->stream_info[kcontrol->private_value];
2275
2276	ucontrol->value.integer.value[0] = info->left_gain;
2277	ucontrol->value.integer.value[1] = info->right_gain;
2278	return 0;
2279}
2280
2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282				 struct snd_ctl_elem_value *ucontrol)
2283{
2284	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285	struct dbri_streaminfo *info =
2286				&dbri->stream_info[kcontrol->private_value];
2287	unsigned int vol[2];
2288	int changed = 0;
2289
2290	vol[0] = ucontrol->value.integer.value[0];
2291	vol[1] = ucontrol->value.integer.value[1];
2292	if (kcontrol->private_value == DBRI_PLAY) {
2293		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294			return -EINVAL;
2295	} else {
2296		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297			return -EINVAL;
2298	}
2299
2300	if (info->left_gain != vol[0]) {
2301		info->left_gain = vol[0];
2302		changed = 1;
2303	}
2304	if (info->right_gain != vol[1]) {
2305		info->right_gain = vol[1];
2306		changed = 1;
2307	}
2308	if (changed) {
2309		/* First mute outputs, and wait 1/8000 sec (125 us)
2310		 * to make sure this takes.  This avoids clicking noises.
2311		 */
2312		cs4215_setdata(dbri, 1);
2313		udelay(125);
2314		cs4215_setdata(dbri, 0);
2315	}
2316	return changed;
2317}
2318
2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320				  struct snd_ctl_elem_info *uinfo)
2321{
2322	int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324	uinfo->type = (mask == 1) ?
2325	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326	uinfo->count = 1;
2327	uinfo->value.integer.min = 0;
2328	uinfo->value.integer.max = mask;
2329	return 0;
2330}
2331
2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333				 struct snd_ctl_elem_value *ucontrol)
2334{
2335	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336	int elem = kcontrol->private_value & 0xff;
2337	int shift = (kcontrol->private_value >> 8) & 0xff;
2338	int mask = (kcontrol->private_value >> 16) & 0xff;
2339	int invert = (kcontrol->private_value >> 24) & 1;
2340
2341	if (snd_BUG_ON(!dbri))
2342		return -EINVAL;
2343
2344	if (elem < 4)
2345		ucontrol->value.integer.value[0] =
2346		    (dbri->mm.data[elem] >> shift) & mask;
2347	else
2348		ucontrol->value.integer.value[0] =
2349		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351	if (invert == 1)
2352		ucontrol->value.integer.value[0] =
2353		    mask - ucontrol->value.integer.value[0];
2354	return 0;
2355}
2356
2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358				 struct snd_ctl_elem_value *ucontrol)
2359{
2360	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361	int elem = kcontrol->private_value & 0xff;
2362	int shift = (kcontrol->private_value >> 8) & 0xff;
2363	int mask = (kcontrol->private_value >> 16) & 0xff;
2364	int invert = (kcontrol->private_value >> 24) & 1;
2365	int changed = 0;
2366	unsigned short val;
2367
2368	if (snd_BUG_ON(!dbri))
2369		return -EINVAL;
2370
2371	val = (ucontrol->value.integer.value[0] & mask);
2372	if (invert == 1)
2373		val = mask - val;
2374	val <<= shift;
2375
2376	if (elem < 4) {
2377		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378				       ~(mask << shift)) | val;
2379		changed = (val != dbri->mm.data[elem]);
2380	} else {
2381		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382					   ~(mask << shift)) | val;
2383		changed = (val != dbri->mm.ctrl[elem - 4]);
2384	}
2385
2386	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387		"mixer-value=%ld, mm-value=0x%x\n",
2388		mask, changed, ucontrol->value.integer.value[0],
2389		dbri->mm.data[elem & 3]);
2390
2391	if (changed) {
2392		/* First mute outputs, and wait 1/8000 sec (125 us)
2393		 * to make sure this takes.  This avoids clicking noises.
2394		 */
2395		cs4215_setdata(dbri, 1);
2396		udelay(125);
2397		cs4215_setdata(dbri, 0);
2398	}
2399	return changed;
2400}
2401
2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
2404   number of bits. invert is a boolean for use with attenuation.
2405 */
2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2408  .info = snd_cs4215_info_single,				\
2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2411			((invert) << 24) },
2412
2413static const struct snd_kcontrol_new dbri_controls[] = {
2414	{
2415	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416	 .name  = "Playback Volume",
2417	 .info  = snd_cs4215_info_volume,
2418	 .get   = snd_cs4215_get_volume,
2419	 .put   = snd_cs4215_put_volume,
2420	 .private_value = DBRI_PLAY,
2421	 },
2422	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425	{
2426	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427	 .name  = "Capture Volume",
2428	 .info  = snd_cs4215_info_volume,
2429	 .get   = snd_cs4215_get_volume,
2430	 .put   = snd_cs4215_put_volume,
2431	 .private_value = DBRI_REC,
2432	 },
2433	/* FIXME: mic/line switch */
2434	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438};
2439
2440static int snd_dbri_mixer(struct snd_card *card)
2441{
2442	int idx, err;
2443	struct snd_dbri *dbri;
2444
2445	if (snd_BUG_ON(!card || !card->private_data))
2446		return -EINVAL;
2447	dbri = card->private_data;
2448
2449	strcpy(card->mixername, card->shortname);
2450
2451	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452		err = snd_ctl_add(card,
2453				snd_ctl_new1(&dbri_controls[idx], dbri));
2454		if (err < 0)
2455			return err;
2456	}
2457
2458	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459		dbri->stream_info[idx].left_gain = 0;
2460		dbri->stream_info[idx].right_gain = 0;
2461	}
2462
2463	return 0;
2464}
2465
2466/****************************************************************************
2467			/proc interface
2468****************************************************************************/
2469static void dbri_regs_read(struct snd_info_entry *entry,
2470			   struct snd_info_buffer *buffer)
2471{
2472	struct snd_dbri *dbri = entry->private_data;
2473
2474	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478}
2479
2480#ifdef DBRI_DEBUG
2481static void dbri_debug_read(struct snd_info_entry *entry,
2482			    struct snd_info_buffer *buffer)
2483{
2484	struct snd_dbri *dbri = entry->private_data;
2485	int pipe;
2486	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488	for (pipe = 0; pipe < 32; pipe++) {
2489		if (pipe_active(dbri, pipe)) {
2490			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491			snd_iprintf(buffer,
2492				    "Pipe %d: %s SDP=0x%x desc=%d, "
2493				    "len=%d next %d\n",
2494				    pipe,
2495				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496								 "input",
2497				    pptr->sdp, pptr->desc,
2498				    pptr->length, pptr->nextpipe);
2499		}
2500	}
2501}
2502#endif
2503
2504static void snd_dbri_proc(struct snd_card *card)
2505{
2506	struct snd_dbri *dbri = card->private_data;
 
 
 
 
2507
2508	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509#ifdef DBRI_DEBUG
2510	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
 
 
 
2511#endif
2512}
2513
2514/*
2515****************************************************************************
2516**************************** Initialization ********************************
2517****************************************************************************
2518*/
2519static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521static int snd_dbri_create(struct snd_card *card,
2522			   struct platform_device *op,
2523			   int irq, int dev)
2524{
2525	struct snd_dbri *dbri = card->private_data;
2526	int err;
2527
2528	spin_lock_init(&dbri->lock);
2529	dbri->op = op;
2530	dbri->irq = irq;
2531
2532	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533				       &dbri->dma_dvma, GFP_KERNEL);
 
2534	if (!dbri->dma)
2535		return -ENOMEM;
 
2536
2537	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538		dbri->dma, dbri->dma_dvma);
2539
2540	/* Map the registers into memory. */
2541	dbri->regs_size = resource_size(&op->resource[0]);
2542	dbri->regs = of_ioremap(&op->resource[0], 0,
2543				dbri->regs_size, "DBRI Registers");
2544	if (!dbri->regs) {
2545		printk(KERN_ERR "DBRI: could not allocate registers\n");
2546		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547				  (void *)dbri->dma, dbri->dma_dvma);
2548		return -EIO;
2549	}
2550
2551	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552			  "DBRI audio", dbri);
2553	if (err) {
2554		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557				  (void *)dbri->dma, dbri->dma_dvma);
2558		return err;
2559	}
2560
2561	/* Do low level initialization of the DBRI and CS4215 chips */
2562	dbri_initialize(dbri);
2563	err = cs4215_init(dbri);
2564	if (err) {
2565		snd_dbri_free(dbri);
2566		return err;
2567	}
2568
2569	return 0;
2570}
2571
2572static void snd_dbri_free(struct snd_dbri *dbri)
2573{
2574	dprintk(D_GEN, "snd_dbri_free\n");
2575	dbri_reset(dbri);
2576
2577	if (dbri->irq)
2578		free_irq(dbri->irq, dbri);
2579
2580	if (dbri->regs)
2581		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583	if (dbri->dma)
2584		dma_free_coherent(&dbri->op->dev,
2585				  sizeof(struct dbri_dma),
2586				  (void *)dbri->dma, dbri->dma_dvma);
2587}
2588
2589static int dbri_probe(struct platform_device *op)
2590{
2591	struct snd_dbri *dbri;
2592	struct resource *rp;
2593	struct snd_card *card;
2594	static int dev = 0;
2595	int irq;
2596	int err;
2597
2598	if (dev >= SNDRV_CARDS)
2599		return -ENODEV;
2600	if (!enable[dev]) {
2601		dev++;
2602		return -ENOENT;
2603	}
2604
2605	irq = op->archdata.irqs[0];
2606	if (irq <= 0) {
2607		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608		return -ENODEV;
2609	}
2610
2611	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612			   sizeof(struct snd_dbri), &card);
2613	if (err < 0)
2614		return err;
2615
2616	strcpy(card->driver, "DBRI");
2617	strcpy(card->shortname, "Sun DBRI");
2618	rp = &op->resource[0];
2619	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620		card->shortname,
2621		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623	err = snd_dbri_create(card, op, irq, dev);
2624	if (err < 0) {
2625		snd_card_free(card);
2626		return err;
2627	}
2628
2629	dbri = card->private_data;
2630	err = snd_dbri_pcm(card);
2631	if (err < 0)
2632		goto _err;
2633
2634	err = snd_dbri_mixer(card);
2635	if (err < 0)
2636		goto _err;
2637
2638	/* /proc file handling */
2639	snd_dbri_proc(card);
2640	dev_set_drvdata(&op->dev, card);
2641
2642	err = snd_card_register(card);
2643	if (err < 0)
2644		goto _err;
2645
2646	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647	       dev, dbri->regs,
2648	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649	dev++;
2650
2651	return 0;
2652
2653_err:
2654	snd_dbri_free(dbri);
2655	snd_card_free(card);
2656	return err;
2657}
2658
2659static int dbri_remove(struct platform_device *op)
2660{
2661	struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663	snd_dbri_free(card->private_data);
2664	snd_card_free(card);
2665
 
 
2666	return 0;
2667}
2668
2669static const struct of_device_id dbri_match[] = {
2670	{
2671		.name = "SUNW,DBRIe",
2672	},
2673	{
2674		.name = "SUNW,DBRIf",
2675	},
2676	{},
2677};
2678
2679MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681static struct platform_driver dbri_sbus_driver = {
2682	.driver = {
2683		.name = "dbri",
 
2684		.of_match_table = dbri_match,
2685	},
2686	.probe		= dbri_probe,
2687	.remove		= dbri_remove,
2688};
2689
2690module_platform_driver(dbri_sbus_driver);
 
 
 
 
 
 
 
 
 
 
 
 
v3.1
 
   1/*
   2 * Driver for DBRI sound chip found on Sparcs.
   3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   4 *
   5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   6 *
   7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
   9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  10 *
  11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  12 * on Sun SPARCStation 10, 20, LX and Voyager models.
  13 *
  14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  15 *   data time multiplexer with ISDN support (aka T7259)
  16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  18 *   Documentation:
  19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  20 *     Sparc Technology Business (courtesy of Sun Support)
  21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  22 *     available from the Lucent (formerly AT&T microelectronics) home
  23 *     page.
  24 *   - http://www.freesoft.org/Linux/DBRI/
  25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  27 *   Documentation: from the Crystal Semiconductor home page.
  28 *
  29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  30 * memory and a serial device (long pipes, no. 0-15) or between two serial
  31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  32 * device (short pipes).
  33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  34 * The timeslots are linked to 6 circular lists, one for each direction for
  35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  36 * (the second one is a monitor/tee pipe, valid only for serial input).
  37 *
  38 * The mmcodec is connected via the CHI bus and needs the data & some
  39 * parameters (volume, output selection) time multiplexed in 8 byte
  40 * chunks. It also has a control mode, which serves for audio format setting.
  41 *
  42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  45 * audio devices. But the SUN HW group decided against it, at least on my
  46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  47 * connected.
  48 *
  49 * I've tried to stick to the following function naming conventions:
  50 * snd_*	ALSA stuff
  51 * cs4215_*	CS4215 codec specific stuff
  52 * dbri_*	DBRI high-level stuff
  53 * other	DBRI low-level stuff
  54 */
  55
  56#include <linux/interrupt.h>
  57#include <linux/delay.h>
  58#include <linux/irq.h>
  59#include <linux/io.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/gfp.h>
  62
  63#include <sound/core.h>
  64#include <sound/pcm.h>
  65#include <sound/pcm_params.h>
  66#include <sound/info.h>
  67#include <sound/control.h>
  68#include <sound/initval.h>
  69
  70#include <linux/of.h>
  71#include <linux/of_device.h>
  72#include <linux/atomic.h>
 
  73
  74MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  75MODULE_DESCRIPTION("Sun DBRI");
  76MODULE_LICENSE("GPL");
  77MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  78
  79static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  80static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  81/* Enable this card */
  82static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  83
  84module_param_array(index, int, NULL, 0444);
  85MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  86module_param_array(id, charp, NULL, 0444);
  87MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  88module_param_array(enable, bool, NULL, 0444);
  89MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  90
  91#undef DBRI_DEBUG
  92
  93#define D_INT	(1<<0)
  94#define D_GEN	(1<<1)
  95#define D_CMD	(1<<2)
  96#define D_MM	(1<<3)
  97#define D_USR	(1<<4)
  98#define D_DESC	(1<<5)
  99
 100static int dbri_debug;
 101module_param(dbri_debug, int, 0644);
 102MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 103
 104#ifdef DBRI_DEBUG
 105static char *cmds[] = {
 106	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 107	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 108};
 109
 110#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 111
 112#else
 113#define dprintk(a, x...) do { } while (0)
 114
 115#endif				/* DBRI_DEBUG */
 116
 117#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 118				    (intr << 27) |	\
 119				    value)
 120
 121/***************************************************************************
 122	CS4215 specific definitions and structures
 123****************************************************************************/
 124
 125struct cs4215 {
 126	__u8 data[4];		/* Data mode: Time slots 5-8 */
 127	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 128	__u8 onboard;
 129	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 130	volatile __u32 status;
 131	volatile __u32 version;
 132	__u8 precision;		/* In bits, either 8 or 16 */
 133	__u8 channels;		/* 1 or 2 */
 134};
 135
 136/*
 137 * Control mode first
 138 */
 139
 140/* Time Slot 1, Status register */
 141#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 142#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 143				/* 0: line: 2.8V, speaker 8V */
 144#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 145#define CS4215_RSRVD_1  (1<<5)
 146
 147/* Time Slot 2, Data Format Register */
 148#define CS4215_DFR_LINEAR16	0
 149#define CS4215_DFR_ULAW		1
 150#define CS4215_DFR_ALAW		2
 151#define CS4215_DFR_LINEAR8	3
 152#define CS4215_DFR_STEREO	(1<<2)
 153static struct {
 154	unsigned short freq;
 155	unsigned char xtal;
 156	unsigned char csval;
 157} CS4215_FREQ[] = {
 158	{  8000, (1 << 4), (0 << 3) },
 159	{ 16000, (1 << 4), (1 << 3) },
 160	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 161	{ 32000, (1 << 4), (3 << 3) },
 162     /* {    NA, (1 << 4), (4 << 3) }, */
 163     /* {    NA, (1 << 4), (5 << 3) }, */
 164	{ 48000, (1 << 4), (6 << 3) },
 165	{  9600, (1 << 4), (7 << 3) },
 166	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 167	{ 11025, (2 << 4), (1 << 3) },
 168	{ 18900, (2 << 4), (2 << 3) },
 169	{ 22050, (2 << 4), (3 << 3) },
 170	{ 37800, (2 << 4), (4 << 3) },
 171	{ 44100, (2 << 4), (5 << 3) },
 172	{ 33075, (2 << 4), (6 << 3) },
 173	{  6615, (2 << 4), (7 << 3) },
 174	{ 0, 0, 0}
 175};
 176
 177#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 178
 179#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 180
 181/* Time Slot 3, Serial Port Control register */
 182#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 183#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 184#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 185#define CS4215_BSEL_128	(1<<2)
 186#define CS4215_BSEL_256	(2<<2)
 187#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 188#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 189#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 190#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 191#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 192
 193/* Time Slot 4, Test Register */
 194#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 195#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 196
 197/* Time Slot 5, Parallel Port Register */
 198/* Read only here and the same as the in data mode */
 199
 200/* Time Slot 6, Reserved  */
 201
 202/* Time Slot 7, Version Register  */
 203#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 204
 205/* Time Slot 8, Reserved  */
 206
 207/*
 208 * Data mode
 209 */
 210/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 211
 212/* Time Slot 5, Output Setting  */
 213#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 214#define CS4215_LE	(1<<6)	/* Line Out Enable */
 215#define CS4215_HE	(1<<7)	/* Headphone Enable */
 216
 217/* Time Slot 6, Output Setting  */
 218#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 219#define CS4215_SE	(1<<6)	/* Speaker Enable */
 220#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 221
 222/* Time Slot 7, Input Setting */
 223#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 224#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 225#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 226#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 227#define CS4215_PIO1	(1<<7)
 228
 229/* Time Slot 8, Input Setting */
 230#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 231#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 232
 233/***************************************************************************
 234		DBRI specific definitions and structures
 235****************************************************************************/
 236
 237/* DBRI main registers */
 238#define REG0	0x00		/* Status and Control */
 239#define REG1	0x04		/* Mode and Interrupt */
 240#define REG2	0x08		/* Parallel IO */
 241#define REG3	0x0c		/* Test */
 242#define REG8	0x20		/* Command Queue Pointer */
 243#define REG9	0x24		/* Interrupt Queue Pointer */
 244
 245#define DBRI_NO_CMDS	64
 246#define DBRI_INT_BLK	64
 247#define DBRI_NO_DESCS	64
 248#define DBRI_NO_PIPES	32
 249#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 250
 251#define DBRI_REC	0
 252#define DBRI_PLAY	1
 253#define DBRI_NO_STREAMS	2
 254
 255/* One transmit/receive descriptor */
 256/* When ba != 0 descriptor is used */
 257struct dbri_mem {
 258	volatile __u32 word1;
 259	__u32 ba;	/* Transmit/Receive Buffer Address */
 260	__u32 nda;	/* Next Descriptor Address */
 261	volatile __u32 word4;
 262};
 263
 264/* This structure is in a DMA region where it can accessed by both
 265 * the CPU and the DBRI
 266 */
 267struct dbri_dma {
 268	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 269	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 270	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 271};
 272
 273#define dbri_dma_off(member, elem)	\
 274	((u32)(unsigned long)		\
 275	 (&(((struct dbri_dma *)0)->member[elem])))
 276
 277enum in_or_out { PIPEinput, PIPEoutput };
 278
 279struct dbri_pipe {
 280	u32 sdp;		/* SDP command word */
 281	int nextpipe;		/* Next pipe in linked list */
 282	int length;		/* Length of timeslot (bits) */
 283	int first_desc;		/* Index of first descriptor */
 284	int desc;		/* Index of active descriptor */
 285	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 286};
 287
 288/* Per stream (playback or record) information */
 289struct dbri_streaminfo {
 290	struct snd_pcm_substream *substream;
 291	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 292	int size;		/* Size of DMA buffer             */
 293	size_t offset;		/* offset in user buffer          */
 294	int pipe;		/* Data pipe used                 */
 295	int left_gain;		/* mixer elements                 */
 296	int right_gain;
 297};
 298
 299/* This structure holds the information for both chips (DBRI & CS4215) */
 300struct snd_dbri {
 301	int regs_size, irq;	/* Needed for unload */
 302	struct platform_device *op;	/* OF device info */
 303	spinlock_t lock;
 304
 305	struct dbri_dma *dma;	/* Pointer to our DMA block */
 306	u32 dma_dvma;		/* DBRI visible DMA address */
 307
 308	void __iomem *regs;	/* dbri HW regs */
 309	int dbri_irqp;		/* intr queue pointer */
 310
 311	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 312	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 313	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 314	s32 *cmdptr;		/* Pointer to the last queued cmd */
 315
 316	int chi_bpf;
 317
 318	struct cs4215 mm;	/* mmcodec special info */
 319				/* per stream (playback/record) info */
 320	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 321};
 322
 323#define DBRI_MAX_VOLUME		63	/* Output volume */
 324#define DBRI_MAX_GAIN		15	/* Input gain */
 325
 326/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 327#define D_P		(1<<15)	/* Program command & queue pointer valid */
 328#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 329#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 330#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 331#define D_X		(1<<7)	/* Sanity Timer Disable */
 332#define D_T		(1<<6)	/* Permit activation of the TE interface */
 333#define D_N		(1<<5)	/* Permit activation of the NT interface */
 334#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 335#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 336#define D_D		(1<<2)	/* Disable Master Mode */
 337#define D_H		(1<<1)	/* Halt for Analysis */
 338#define D_R		(1<<0)	/* Soft Reset */
 339
 340/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 341#define D_LITTLE_END	(1<<8)	/* Byte Order */
 342#define D_BIG_END	(0<<8)	/* Byte Order */
 343#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 344#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 345#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 346#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 347#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 348
 349/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 350#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 351#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 352#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 353#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 354#define D_ENPIO		(0xf0)	/* Enable all the pins */
 355#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 356#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 357#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 358#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 359
 360/* DBRI Commands (Page 20) */
 361#define D_WAIT		0x0	/* Stop execution */
 362#define D_PAUSE		0x1	/* Flush long pipes */
 363#define D_JUMP		0x2	/* New command queue */
 364#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 365#define D_REX		0x4	/* Report command execution via interrupt */
 366#define D_SDP		0x5	/* Setup Data Pipe */
 367#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 368#define D_DTS		0x7	/* Define Time Slot */
 369#define D_SSP		0x8	/* Set short Data Pipe */
 370#define D_CHI		0x9	/* Set CHI Global Mode */
 371#define D_NT		0xa	/* NT Command */
 372#define D_TE		0xb	/* TE Command */
 373#define D_CDEC		0xc	/* Codec setup */
 374#define D_TEST		0xd	/* No comment */
 375#define D_CDM		0xe	/* CHI Data mode command */
 376
 377/* Special bits for some commands */
 378#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 379
 380/* Setup Data Pipe */
 381/* IRM */
 382#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 383#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 384#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 385#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 386#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 387
 388/* Pipe data MODE */
 389#define D_SDP_MEM	(0<<13)	/* To/from memory */
 390#define D_SDP_HDLC	(2<<13)
 391#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 392#define D_SDP_SER	(4<<13)	/* Serial to serial */
 393#define D_SDP_FIXED	(6<<13)	/* Short only */
 394#define D_SDP_MODE(v)	((v)&(7<<13))
 395
 396#define D_SDP_TO_SER	(1<<12)	/* Direction */
 397#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 398#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 399#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 400#define D_SDP_P		(1<<10)	/* Pointer Valid */
 401#define D_SDP_A		(1<<8)	/* Abort */
 402#define D_SDP_C		(1<<7)	/* Clear */
 403
 404/* Define Time Slot */
 405#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 406#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 407#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 408#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 409#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 410#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 411
 412/* Time Slot defines */
 413#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 414#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 415#define D_TS_DI		(1<<13)	/* Data Invert */
 416#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 417#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 418#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 419#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 420#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 421#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 422
 423/* Concentration Highway Interface Modes */
 424#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 425#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 426#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 427#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 428#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 429#define D_CHI_FD	(1<<11)	/* Frame Drive */
 430#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 431
 432/* NT: These are here for completeness */
 433#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 434#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 435#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 436#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 437#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 438#define D_NT_FT		(1<<12)	/* Fixed Timing */
 439#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 440#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 441#define D_NT_ACT	(1<<9)	/* Activate Interface */
 442#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 443#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 444#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 445#define D_NT_FACT	(1<<1)	/* Force Activation */
 446#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 447
 448/* Codec Setup */
 449#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 450#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 451#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 452
 453/* Test */
 454#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 455#define D_TEST_SIZE(v)	((v)<<11)	/* */
 456#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 457#define D_TEST_PROC	0x6	/* Microprocessor test */
 458#define D_TEST_SER	0x7	/* Serial-Controller test */
 459#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 460#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 461#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 462#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 463#define D_TEST_DUMP	0xe	/* ROM Dump */
 464
 465/* CHI Data Mode */
 466#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 467#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 468#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 469#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 470#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 471#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 472
 473/* The Interrupts */
 474#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 475#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 476#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 477#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 478#define D_INTR_EOL	5	/* End of List */
 479#define D_INTR_CMDI	6	/* Command has bean read */
 480#define D_INTR_XCMP	8	/* Transmission of frame complete */
 481#define D_INTR_SBRI	9	/* BRI status change info */
 482#define D_INTR_FXDT	10	/* Fixed data change */
 483#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 484#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 485#define D_INTR_DBYT	12	/* Dropped by frame slip */
 486#define D_INTR_RBYT	13	/* Repeated by frame slip */
 487#define D_INTR_LINT	14	/* Lost Interrupt */
 488#define D_INTR_UNDR	15	/* DMA underrun */
 489
 490#define D_INTR_TE	32
 491#define D_INTR_NT	34
 492#define D_INTR_CHI	36
 493#define D_INTR_CMD	38
 494
 495#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 496#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 497#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 498#define D_INTR_GETVAL(v)	((v) & 0xffff)
 499#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 500
 501#define D_P_0		0	/* TE receive anchor */
 502#define D_P_1		1	/* TE transmit anchor */
 503#define D_P_2		2	/* NT transmit anchor */
 504#define D_P_3		3	/* NT receive anchor */
 505#define D_P_4		4	/* CHI send data */
 506#define D_P_5		5	/* CHI receive data */
 507#define D_P_6		6	/* */
 508#define D_P_7		7	/* */
 509#define D_P_8		8	/* */
 510#define D_P_9		9	/* */
 511#define D_P_10		10	/* */
 512#define D_P_11		11	/* */
 513#define D_P_12		12	/* */
 514#define D_P_13		13	/* */
 515#define D_P_14		14	/* */
 516#define D_P_15		15	/* */
 517#define D_P_16		16	/* CHI anchor pipe */
 518#define D_P_17		17	/* CHI send */
 519#define D_P_18		18	/* CHI receive */
 520#define D_P_19		19	/* CHI receive */
 521#define D_P_20		20	/* CHI receive */
 522#define D_P_21		21	/* */
 523#define D_P_22		22	/* */
 524#define D_P_23		23	/* */
 525#define D_P_24		24	/* */
 526#define D_P_25		25	/* */
 527#define D_P_26		26	/* */
 528#define D_P_27		27	/* */
 529#define D_P_28		28	/* */
 530#define D_P_29		29	/* */
 531#define D_P_30		30	/* */
 532#define D_P_31		31	/* */
 533
 534/* Transmit descriptor defines */
 535#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 536#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 537#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 538#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 539#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 540#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 541#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 542#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 543#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 544#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 545#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 546			/* Maximum buffer size per TD: almost 8KB */
 547#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 548
 549/* Receive descriptor defines */
 550#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 551#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 552#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 553#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 554#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 555#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 556#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 557#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 558#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 559#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 560#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 561
 562/* stream_info[] access */
 563/* Translate the ALSA direction into the array index */
 564#define DBRI_STREAMNO(substream)				\
 565		(substream->stream ==				\
 566		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 567
 568/* Return a pointer to dbri_streaminfo */
 569#define DBRI_STREAM(dbri, substream)	\
 570		&dbri->stream_info[DBRI_STREAMNO(substream)]
 571
 572/*
 573 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 574 * So we have to reverse the bits. Note: not all bit lengths are supported
 575 */
 576static __u32 reverse_bytes(__u32 b, int len)
 577{
 578	switch (len) {
 579	case 32:
 580		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 
 581	case 16:
 582		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 
 583	case 8:
 584		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 
 585	case 4:
 586		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 
 587	case 2:
 588		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 589	case 1:
 590	case 0:
 591		break;
 592	default:
 593		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 594	};
 595
 596	return b;
 597}
 598
 599/*
 600****************************************************************************
 601************** DBRI initialization and command synchronization *************
 602****************************************************************************
 603
 604Commands are sent to the DBRI by building a list of them in memory,
 605then writing the address of the first list item to DBRI register 8.
 606The list is terminated with a WAIT command, which generates a
 607CPU interrupt to signal completion.
 608
 609Since the DBRI can run in parallel with the CPU, several means of
 610synchronization present themselves. The method implemented here uses
 611the dbri_cmdwait() to wait for execution of batch of sent commands.
 612
 613A circular command buffer is used here. A new command is being added
 614while another can be executed. The scheme works by adding two WAIT commands
 615after each sent batch of commands. When the next batch is prepared it is
 616added after the WAIT commands then the WAITs are replaced with single JUMP
 617command to the new batch. The the DBRI is forced to reread the last WAIT
 618command (replaced by the JUMP by then). If the DBRI is still executing
 619previous commands the request to reread the WAIT command is ignored.
 620
 621Every time a routine wants to write commands to the DBRI, it must
 622first call dbri_cmdlock() and get pointer to a free space in
 623dbri->dma->cmd buffer. After this, the commands can be written to
 624the buffer, and dbri_cmdsend() is called with the final pointer value
 625to send them to the DBRI.
 626
 627*/
 628
 629#define MAXLOOPS 20
 630/*
 631 * Wait for the current command string to execute
 632 */
 633static void dbri_cmdwait(struct snd_dbri *dbri)
 634{
 635	int maxloops = MAXLOOPS;
 636	unsigned long flags;
 637
 638	/* Delay if previous commands are still being processed */
 639	spin_lock_irqsave(&dbri->lock, flags);
 640	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 641		spin_unlock_irqrestore(&dbri->lock, flags);
 642		msleep_interruptible(1);
 643		spin_lock_irqsave(&dbri->lock, flags);
 644	}
 645	spin_unlock_irqrestore(&dbri->lock, flags);
 646
 647	if (maxloops == 0)
 648		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 649	else
 650		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 651			MAXLOOPS - maxloops - 1);
 652}
 653/*
 654 * Lock the command queue and return pointer to space for len cmd words
 655 * It locks the cmdlock spinlock.
 656 */
 657static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 658{
 
 
 659	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 660	len += 2;
 661	spin_lock(&dbri->cmdlock);
 662	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 663		return dbri->cmdptr + 2;
 664	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
 665		return dbri->dma->cmd;
 666	else
 667		printk(KERN_ERR "DBRI: no space for commands.");
 668
 669	return NULL;
 670}
 671
 672/*
 673 * Send prepared cmd string. It works by writing a JUMP cmd into
 674 * the last WAIT cmd and force DBRI to reread the cmd.
 675 * The JUMP cmd points to the new cmd string.
 676 * It also releases the cmdlock spinlock.
 677 *
 678 * Lock must be held before calling this.
 679 */
 680static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 681{
 
 682	s32 tmp, addr;
 683	static int wait_id = 0;
 684
 685	wait_id++;
 686	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 687	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 688	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 689
 690	/* Replace the last command with JUMP */
 691	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 692	*(dbri->cmdptr+1) = addr;
 693	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 694
 695#ifdef DBRI_DEBUG
 696	if (cmd > dbri->cmdptr) {
 697		s32 *ptr;
 698
 699		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 700			dprintk(D_CMD, "cmd: %lx:%08x\n",
 701				(unsigned long)ptr, *ptr);
 702	} else {
 703		s32 *ptr = dbri->cmdptr;
 704
 705		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 706		ptr++;
 707		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 708		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 709			dprintk(D_CMD, "cmd: %lx:%08x\n",
 710				(unsigned long)ptr, *ptr);
 711	}
 712#endif
 713
 714	/* Reread the last command */
 715	tmp = sbus_readl(dbri->regs + REG0);
 716	tmp |= D_P;
 717	sbus_writel(tmp, dbri->regs + REG0);
 718
 719	dbri->cmdptr = cmd;
 720	spin_unlock(&dbri->cmdlock);
 721}
 722
 723/* Lock must be held when calling this */
 724static void dbri_reset(struct snd_dbri *dbri)
 725{
 726	int i;
 727	u32 tmp;
 728
 729	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 730		sbus_readl(dbri->regs + REG0),
 731		sbus_readl(dbri->regs + REG2),
 732		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 733
 734	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 735	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 736		udelay(10);
 737
 738	/* A brute approach - DBRI falls back to working burst size by itself
 739	 * On SS20 D_S does not work, so do not try so high. */
 740	tmp = sbus_readl(dbri->regs + REG0);
 741	tmp |= D_G | D_E;
 742	tmp &= ~D_S;
 743	sbus_writel(tmp, dbri->regs + REG0);
 744}
 745
 746/* Lock must not be held before calling this */
 747static void __devinit dbri_initialize(struct snd_dbri *dbri)
 748{
 
 749	s32 *cmd;
 750	u32 dma_addr;
 751	unsigned long flags;
 752	int n;
 753
 754	spin_lock_irqsave(&dbri->lock, flags);
 755
 756	dbri_reset(dbri);
 757
 758	/* Initialize pipes */
 759	for (n = 0; n < DBRI_NO_PIPES; n++)
 760		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 761
 762	spin_lock_init(&dbri->cmdlock);
 763	/*
 764	 * Initialize the interrupt ring buffer.
 765	 */
 766	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
 767	dbri->dma->intr[0] = dma_addr;
 768	dbri->dbri_irqp = 1;
 769	/*
 770	 * Set up the interrupt queue
 771	 */
 772	spin_lock(&dbri->cmdlock);
 773	cmd = dbri->cmdptr = dbri->dma->cmd;
 774	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 775	*(cmd++) = dma_addr;
 776	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 777	dbri->cmdptr = cmd;
 778	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 779	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 780	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
 781	sbus_writel(dma_addr, dbri->regs + REG8);
 782	spin_unlock(&dbri->cmdlock);
 783
 784	spin_unlock_irqrestore(&dbri->lock, flags);
 785	dbri_cmdwait(dbri);
 786}
 787
 788/*
 789****************************************************************************
 790************************** DBRI data pipe management ***********************
 791****************************************************************************
 792
 793While DBRI control functions use the command and interrupt buffers, the
 794main data path takes the form of data pipes, which can be short (command
 795and interrupt driven), or long (attached to DMA buffers).  These functions
 796provide a rudimentary means of setting up and managing the DBRI's pipes,
 797but the calling functions have to make sure they respect the pipes' linked
 798list ordering, among other things.  The transmit and receive functions
 799here interface closely with the transmit and receive interrupt code.
 800
 801*/
 802static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 803{
 804	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 805}
 806
 807/* reset_pipe(dbri, pipe)
 808 *
 809 * Called on an in-use pipe to clear anything being transmitted or received
 810 * Lock must be held before calling this.
 811 */
 812static void reset_pipe(struct snd_dbri *dbri, int pipe)
 813{
 814	int sdp;
 815	int desc;
 816	s32 *cmd;
 817
 818	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 819		printk(KERN_ERR "DBRI: reset_pipe called with "
 820			"illegal pipe number\n");
 821		return;
 822	}
 823
 824	sdp = dbri->pipes[pipe].sdp;
 825	if (sdp == 0) {
 826		printk(KERN_ERR "DBRI: reset_pipe called "
 827			"on uninitialized pipe\n");
 828		return;
 829	}
 830
 831	cmd = dbri_cmdlock(dbri, 3);
 832	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 833	*(cmd++) = 0;
 834	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 835	dbri_cmdsend(dbri, cmd, 3);
 836
 837	desc = dbri->pipes[pipe].first_desc;
 838	if (desc >= 0)
 839		do {
 840			dbri->dma->desc[desc].ba = 0;
 841			dbri->dma->desc[desc].nda = 0;
 842			desc = dbri->next_desc[desc];
 843		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 844
 845	dbri->pipes[pipe].desc = -1;
 846	dbri->pipes[pipe].first_desc = -1;
 847}
 848
 849/*
 850 * Lock must be held before calling this.
 851 */
 852static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 853{
 854	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 855		printk(KERN_ERR "DBRI: setup_pipe called "
 856			"with illegal pipe number\n");
 857		return;
 858	}
 859
 860	if ((sdp & 0xf800) != sdp) {
 861		printk(KERN_ERR "DBRI: setup_pipe called "
 862			"with strange SDP value\n");
 863		/* sdp &= 0xf800; */
 864	}
 865
 866	/* If this is a fixed receive pipe, arrange for an interrupt
 867	 * every time its data changes
 868	 */
 869	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 870		sdp |= D_SDP_CHANGE;
 871
 872	sdp |= D_PIPE(pipe);
 873	dbri->pipes[pipe].sdp = sdp;
 874	dbri->pipes[pipe].desc = -1;
 875	dbri->pipes[pipe].first_desc = -1;
 876
 877	reset_pipe(dbri, pipe);
 878}
 879
 880/*
 881 * Lock must be held before calling this.
 882 */
 883static void link_time_slot(struct snd_dbri *dbri, int pipe,
 884			   int prevpipe, int nextpipe,
 885			   int length, int cycle)
 886{
 887	s32 *cmd;
 888	int val;
 889
 890	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 891			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 892			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 893		printk(KERN_ERR
 894		    "DBRI: link_time_slot called with illegal pipe number\n");
 895		return;
 896	}
 897
 898	if (dbri->pipes[pipe].sdp == 0
 899			|| dbri->pipes[prevpipe].sdp == 0
 900			|| dbri->pipes[nextpipe].sdp == 0) {
 901		printk(KERN_ERR "DBRI: link_time_slot called "
 902			"on uninitialized pipe\n");
 903		return;
 904	}
 905
 906	dbri->pipes[prevpipe].nextpipe = pipe;
 907	dbri->pipes[pipe].nextpipe = nextpipe;
 908	dbri->pipes[pipe].length = length;
 909
 910	cmd = dbri_cmdlock(dbri, 4);
 911
 912	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 913		/* Deal with CHI special case:
 914		 * "If transmission on edges 0 or 1 is desired, then cycle n
 915		 *  (where n = # of bit times per frame...) must be used."
 916		 *                  - DBRI data sheet, page 11
 917		 */
 918		if (prevpipe == 16 && cycle == 0)
 919			cycle = dbri->chi_bpf;
 920
 921		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 922		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 923		*(cmd++) = 0;
 924		*(cmd++) =
 925		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 926	} else {
 927		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 928		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 929		*(cmd++) =
 930		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 931		*(cmd++) = 0;
 932	}
 933	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 934
 935	dbri_cmdsend(dbri, cmd, 4);
 936}
 937
 938#if 0
 939/*
 940 * Lock must be held before calling this.
 941 */
 942static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 943			     enum in_or_out direction, int prevpipe,
 944			     int nextpipe)
 945{
 946	s32 *cmd;
 947	int val;
 948
 949	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 950			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 951			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 952		printk(KERN_ERR
 953		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 954		return;
 955	}
 956
 957	cmd = dbri_cmdlock(dbri, 4);
 958
 959	if (direction == PIPEinput) {
 960		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 961		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 962		*(cmd++) = D_TS_NEXT(nextpipe);
 963		*(cmd++) = 0;
 964	} else {
 965		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 966		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 967		*(cmd++) = 0;
 968		*(cmd++) = D_TS_NEXT(nextpipe);
 969	}
 970	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 971
 972	dbri_cmdsend(dbri, cmd, 4);
 973}
 974#endif
 975
 976/* xmit_fixed() / recv_fixed()
 977 *
 978 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 979 * expected to change much, and which we don't need to buffer.
 980 * The DBRI only interrupts us when the data changes (receive pipes),
 981 * or only changes the data when this function is called (transmit pipes).
 982 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 983 *
 984 * These function operate on a 32-bit field, no matter how large
 985 * the actual time slot is.  The interrupt handler takes care of bit
 986 * ordering and alignment.  An 8-bit time slot will always end up
 987 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 988 * depending on the settings passed to setup_pipe().
 989 *
 990 * Lock must not be held before calling it.
 991 */
 992static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 993{
 994	s32 *cmd;
 995	unsigned long flags;
 996
 997	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
 998		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
 999		return;
1000	}
1001
1002	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1003		printk(KERN_ERR "DBRI: xmit_fixed: "
1004			"Uninitialized pipe %d\n", pipe);
1005		return;
1006	}
1007
1008	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1010		return;
1011	}
1012
1013	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1014		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1015			pipe);
1016		return;
1017	}
1018
1019	/* DBRI short pipes always transmit LSB first */
1020
1021	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1022		data = reverse_bytes(data, dbri->pipes[pipe].length);
1023
1024	cmd = dbri_cmdlock(dbri, 3);
1025
1026	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1027	*(cmd++) = data;
1028	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1029
1030	spin_lock_irqsave(&dbri->lock, flags);
1031	dbri_cmdsend(dbri, cmd, 3);
1032	spin_unlock_irqrestore(&dbri->lock, flags);
1033	dbri_cmdwait(dbri);
1034
1035}
1036
1037static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1038{
1039	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1040		printk(KERN_ERR "DBRI: recv_fixed called with "
1041			"illegal pipe number\n");
1042		return;
1043	}
1044
1045	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1046		printk(KERN_ERR "DBRI: recv_fixed called on "
1047			"non-fixed pipe %d\n", pipe);
1048		return;
1049	}
1050
1051	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1052		printk(KERN_ERR "DBRI: recv_fixed called on "
1053			"transmit pipe %d\n", pipe);
1054		return;
1055	}
1056
1057	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1058}
1059
1060/* setup_descs()
1061 *
1062 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1063 * with a DMA buffer.
1064 *
1065 * Only pipe numbers 0-15 can be used in this mode.
1066 *
1067 * This function takes a stream number pointing to a data buffer,
1068 * and work by building chains of descriptors which identify the
1069 * data buffers.  Buffers too large for a single descriptor will
1070 * be spread across multiple descriptors.
1071 *
1072 * All descriptors create a ring buffer.
1073 *
1074 * Lock must be held before calling this.
1075 */
1076static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1077{
1078	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
 
1079	__u32 dvma_buffer;
1080	int desc;
1081	int len;
1082	int first_desc = -1;
1083	int last_desc = -1;
1084
1085	if (info->pipe < 0 || info->pipe > 15) {
1086		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1087		return -2;
1088	}
1089
1090	if (dbri->pipes[info->pipe].sdp == 0) {
1091		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1092		       info->pipe);
1093		return -2;
1094	}
1095
1096	dvma_buffer = info->dvma_buffer;
1097	len = info->size;
1098
1099	if (streamno == DBRI_PLAY) {
1100		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1101			printk(KERN_ERR "DBRI: setup_descs: "
1102				"Called on receive pipe %d\n", info->pipe);
1103			return -2;
1104		}
1105	} else {
1106		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1107			printk(KERN_ERR
1108			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1109			     info->pipe);
1110			return -2;
1111		}
1112		/* Should be able to queue multiple buffers
1113		 * to receive on a pipe
1114		 */
1115		if (pipe_active(dbri, info->pipe)) {
1116			printk(KERN_ERR "DBRI: recv_on_pipe: "
1117				"Called on active pipe %d\n", info->pipe);
1118			return -2;
1119		}
1120
1121		/* Make sure buffer size is multiple of four */
1122		len &= ~3;
1123	}
1124
1125	/* Free descriptors if pipe has any */
1126	desc = dbri->pipes[info->pipe].first_desc;
1127	if (desc >= 0)
1128		do {
1129			dbri->dma->desc[desc].ba = 0;
1130			dbri->dma->desc[desc].nda = 0;
1131			desc = dbri->next_desc[desc];
1132		} while (desc != -1 &&
1133			 desc != dbri->pipes[info->pipe].first_desc);
1134
1135	dbri->pipes[info->pipe].desc = -1;
1136	dbri->pipes[info->pipe].first_desc = -1;
1137
1138	desc = 0;
1139	while (len > 0) {
1140		int mylen;
1141
1142		for (; desc < DBRI_NO_DESCS; desc++) {
1143			if (!dbri->dma->desc[desc].ba)
1144				break;
1145		}
1146
1147		if (desc == DBRI_NO_DESCS) {
1148			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1149			return -1;
1150		}
1151
1152		if (len > DBRI_TD_MAXCNT)
1153			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1154		else
1155			mylen = len;
1156
1157		if (mylen > period)
1158			mylen = period;
1159
1160		dbri->next_desc[desc] = -1;
1161		dbri->dma->desc[desc].ba = dvma_buffer;
1162		dbri->dma->desc[desc].nda = 0;
1163
1164		if (streamno == DBRI_PLAY) {
1165			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1166			dbri->dma->desc[desc].word4 = 0;
1167			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1168		} else {
1169			dbri->dma->desc[desc].word1 = 0;
1170			dbri->dma->desc[desc].word4 =
1171			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1172		}
1173
1174		if (first_desc == -1)
1175			first_desc = desc;
1176		else {
1177			dbri->next_desc[last_desc] = desc;
1178			dbri->dma->desc[last_desc].nda =
1179			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1180		}
1181
1182		last_desc = desc;
1183		dvma_buffer += mylen;
1184		len -= mylen;
1185	}
1186
1187	if (first_desc == -1 || last_desc == -1) {
1188		printk(KERN_ERR "DBRI: setup_descs: "
1189			" Not enough descriptors available\n");
1190		return -1;
1191	}
1192
1193	dbri->dma->desc[last_desc].nda =
1194	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1195	dbri->next_desc[last_desc] = first_desc;
1196	dbri->pipes[info->pipe].first_desc = first_desc;
1197	dbri->pipes[info->pipe].desc = first_desc;
1198
1199#ifdef DBRI_DEBUG
1200	for (desc = first_desc; desc != -1;) {
1201		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1202			desc,
1203			dbri->dma->desc[desc].word1,
1204			dbri->dma->desc[desc].ba,
1205			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1206			desc = dbri->next_desc[desc];
1207			if (desc == first_desc)
1208				break;
1209	}
1210#endif
1211	return 0;
1212}
1213
1214/*
1215****************************************************************************
1216************************** DBRI - CHI interface ****************************
1217****************************************************************************
1218
1219The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1220multiplexed serial interface which the DBRI can operate in either master
1221(give clock/frame sync) or slave (take clock/frame sync) mode.
1222
1223*/
1224
1225enum master_or_slave { CHImaster, CHIslave };
1226
1227/*
1228 * Lock must not be held before calling it.
1229 */
1230static void reset_chi(struct snd_dbri *dbri,
1231		      enum master_or_slave master_or_slave,
1232		      int bits_per_frame)
1233{
1234	s32 *cmd;
1235	int val;
1236
1237	/* Set CHI Anchor: Pipe 16 */
1238
1239	cmd = dbri_cmdlock(dbri, 4);
1240	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1241		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1242	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1243	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246	dbri_cmdsend(dbri, cmd, 4);
1247
1248	dbri->pipes[16].sdp = 1;
1249	dbri->pipes[16].nextpipe = 16;
1250
1251	cmd = dbri_cmdlock(dbri, 4);
1252
1253	if (master_or_slave == CHIslave) {
1254		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1255		 *
1256		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1257		 * IR     = give immediate CHI status interrupt
1258		 * EN     = give CHI status interrupt upon change
1259		 */
1260		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1261	} else {
1262		/* Setup DBRI for CHI Master - generate clock, FS
1263		 *
1264		 * BPF				=  bits per 8 kHz frame
1265		 * 12.288 MHz / CHICM_divisor	= clock rate
1266		 * FD = 1 - drive CHIFS on rising edge of CHICK
1267		 */
1268		int clockrate = bits_per_frame * 8;
1269		int divisor = 12288 / clockrate;
1270
1271		if (divisor > 255 || divisor * clockrate != 12288)
1272			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1273				"in setup_chi\n");
1274
1275		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276				    | D_CHI_BPF(bits_per_frame));
1277	}
1278
1279	dbri->chi_bpf = bits_per_frame;
1280
1281	/* CHI Data Mode
1282	 *
1283	 * RCE   =  0 - receive on falling edge of CHICK
1284	 * XCE   =  1 - transmit on rising edge of CHICK
1285	 * XEN   =  1 - enable transmitter
1286	 * REN   =  1 - enable receiver
1287	 */
1288
1289	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1292
1293	dbri_cmdsend(dbri, cmd, 4);
1294}
1295
1296/*
1297****************************************************************************
1298*********************** CS4215 audio codec management **********************
1299****************************************************************************
1300
1301In the standard SPARC audio configuration, the CS4215 codec is attached
1302to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1303
1304 * Lock must not be held before calling it.
1305
1306*/
1307static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1308{
1309	unsigned long flags;
1310
1311	spin_lock_irqsave(&dbri->lock, flags);
1312	/*
1313	 * Data mode:
1314	 * Pipe  4: Send timeslots 1-4 (audio data)
1315	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1316	 * Pipe  6: Receive timeslots 1-4 (audio data)
1317	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1318	 *          interrupt, and the rest of the data (slot 5 and 8) is
1319	 *          not relevant for us (only for doublechecking).
1320	 *
1321	 * Control mode:
1322	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1323	 * Pipe 18: Receive timeslot 1 (clb).
1324	 * Pipe 19: Receive timeslot 7 (version).
1325	 */
1326
1327	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1328	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1329	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1330	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1331
1332	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335	spin_unlock_irqrestore(&dbri->lock, flags);
1336
1337	dbri_cmdwait(dbri);
1338}
1339
1340static __devinit int cs4215_init_data(struct cs4215 *mm)
1341{
1342	/*
1343	 * No action, memory resetting only.
1344	 *
1345	 * Data Time Slot 5-8
1346	 * Speaker,Line and Headphone enable. Gain set to the half.
1347	 * Input is mike.
1348	 */
1349	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1350	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1351	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1352	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1353
1354	/*
1355	 * Control Time Slot 1-4
1356	 * 0: Default I/O voltage scale
1357	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1358	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1359	 * 3: Tests disabled
1360	 */
1361	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1362	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1363	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1364	mm->ctrl[3] = 0;
1365
1366	mm->status = 0;
1367	mm->version = 0xff;
1368	mm->precision = 8;	/* For ULAW */
1369	mm->channels = 1;
1370
1371	return 0;
1372}
1373
1374static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1375{
1376	if (muted) {
1377		dbri->mm.data[0] |= 63;
1378		dbri->mm.data[1] |= 63;
1379		dbri->mm.data[2] &= ~15;
1380		dbri->mm.data[3] &= ~15;
1381	} else {
1382		/* Start by setting the playback attenuation. */
1383		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1384		int left_gain = info->left_gain & 0x3f;
1385		int right_gain = info->right_gain & 0x3f;
1386
1387		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1388		dbri->mm.data[1] &= ~0x3f;
1389		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391
1392		/* Now set the recording gain. */
1393		info = &dbri->stream_info[DBRI_REC];
1394		left_gain = info->left_gain & 0xf;
1395		right_gain = info->right_gain & 0xf;
1396		dbri->mm.data[2] |= CS4215_LG(left_gain);
1397		dbri->mm.data[3] |= CS4215_RG(right_gain);
1398	}
1399
1400	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1401}
1402
1403/*
1404 * Set the CS4215 to data mode.
1405 */
1406static void cs4215_open(struct snd_dbri *dbri)
1407{
1408	int data_width;
1409	u32 tmp;
1410	unsigned long flags;
1411
1412	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1413		dbri->mm.channels, dbri->mm.precision);
1414
1415	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1416	 * to make sure this takes.  This avoids clicking noises.
1417	 */
1418
1419	cs4215_setdata(dbri, 1);
1420	udelay(125);
1421
1422	/*
1423	 * Data mode:
1424	 * Pipe  4: Send timeslots 1-4 (audio data)
1425	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1426	 * Pipe  6: Receive timeslots 1-4 (audio data)
1427	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1428	 *          interrupt, and the rest of the data (slot 5 and 8) is
1429	 *          not relevant for us (only for doublechecking).
1430	 *
1431	 * Just like in control mode, the time slots are all offset by eight
1432	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1433	 * even if it's the CHI master.  Don't ask me...
1434	 */
1435	spin_lock_irqsave(&dbri->lock, flags);
1436	tmp = sbus_readl(dbri->regs + REG0);
1437	tmp &= ~(D_C);		/* Disable CHI */
1438	sbus_writel(tmp, dbri->regs + REG0);
1439
1440	/* Switch CS4215 to data mode - set PIO3 to 1 */
1441	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1442		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1443
1444	reset_chi(dbri, CHIslave, 128);
1445
1446	/* Note: this next doesn't work for 8-bit stereo, because the two
1447	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1448	 * (See CS4215 datasheet Fig 15)
1449	 *
1450	 * DBRI non-contiguous mode would be required to make this work.
1451	 */
1452	data_width = dbri->mm.channels * dbri->mm.precision;
1453
1454	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1455	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1456	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1457	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1458
1459	/* FIXME: enable CHI after _setdata? */
1460	tmp = sbus_readl(dbri->regs + REG0);
1461	tmp |= D_C;		/* Enable CHI */
1462	sbus_writel(tmp, dbri->regs + REG0);
1463	spin_unlock_irqrestore(&dbri->lock, flags);
1464
1465	cs4215_setdata(dbri, 0);
1466}
1467
1468/*
1469 * Send the control information (i.e. audio format)
1470 */
1471static int cs4215_setctrl(struct snd_dbri *dbri)
1472{
1473	int i, val;
1474	u32 tmp;
1475	unsigned long flags;
1476
1477	/* FIXME - let the CPU do something useful during these delays */
1478
1479	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1480	 * to make sure this takes.  This avoids clicking noises.
1481	 */
1482	cs4215_setdata(dbri, 1);
1483	udelay(125);
1484
1485	/*
1486	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1487	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1488	 */
1489	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1490	sbus_writel(val, dbri->regs + REG2);
1491	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1492	udelay(34);
1493
1494	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1495	 * operate as CHI master, supplying clocking and frame synchronization.
1496	 *
1497	 * In Data mode, however, the CS4215 must be CHI master to insure
1498	 * that its data stream is synchronous with its codec.
1499	 *
1500	 * The upshot of all this?  We start by putting the DBRI into master
1501	 * mode, program the CS4215 in Control mode, then switch the CS4215
1502	 * into Data mode and put the DBRI into slave mode.  Various timing
1503	 * requirements must be observed along the way.
1504	 *
1505	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1506	 * others?), the addressing of the CS4215's time slots is
1507	 * offset by eight bits, so we add eight to all the "cycle"
1508	 * values in the Define Time Slot (DTS) commands.  This is
1509	 * done in hardware by a TI 248 that delays the DBRI->4215
1510	 * frame sync signal by eight clock cycles.  Anybody know why?
1511	 */
1512	spin_lock_irqsave(&dbri->lock, flags);
1513	tmp = sbus_readl(dbri->regs + REG0);
1514	tmp &= ~D_C;		/* Disable CHI */
1515	sbus_writel(tmp, dbri->regs + REG0);
1516
1517	reset_chi(dbri, CHImaster, 128);
1518
1519	/*
1520	 * Control mode:
1521	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1522	 * Pipe 18: Receive timeslot 1 (clb).
1523	 * Pipe 19: Receive timeslot 7 (version).
1524	 */
1525
1526	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1527	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1528	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1529	spin_unlock_irqrestore(&dbri->lock, flags);
1530
1531	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1534
1535	spin_lock_irqsave(&dbri->lock, flags);
1536	tmp = sbus_readl(dbri->regs + REG0);
1537	tmp |= D_C;		/* Enable CHI */
1538	sbus_writel(tmp, dbri->regs + REG0);
1539	spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1542		msleep_interruptible(1);
1543
1544	if (i == 0) {
1545		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1546			dbri->mm.status);
1547		return -1;
1548	}
1549
1550	/* Disable changes to our copy of the version number, as we are about
1551	 * to leave control mode.
1552	 */
1553	recv_fixed(dbri, 19, NULL);
1554
1555	/* Terminate CS4215 control mode - data sheet says
1556	 * "Set CLB=1 and send two more frames of valid control info"
1557	 */
1558	dbri->mm.ctrl[0] |= CS4215_CLB;
1559	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1560
1561	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1562	udelay(250);
1563
1564	cs4215_setdata(dbri, 0);
1565
1566	return 0;
1567}
1568
1569/*
1570 * Setup the codec with the sampling rate, audio format and number of
1571 * channels.
1572 * As part of the process we resend the settings for the data
1573 * timeslots as well.
1574 */
1575static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1576			  snd_pcm_format_t format, unsigned int channels)
1577{
1578	int freq_idx;
1579	int ret = 0;
1580
1581	/* Lookup index for this rate */
1582	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1583		if (CS4215_FREQ[freq_idx].freq == rate)
1584			break;
1585	}
1586	if (CS4215_FREQ[freq_idx].freq != rate) {
1587		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1588		return -1;
1589	}
1590
1591	switch (format) {
1592	case SNDRV_PCM_FORMAT_MU_LAW:
1593		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1594		dbri->mm.precision = 8;
1595		break;
1596	case SNDRV_PCM_FORMAT_A_LAW:
1597		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1598		dbri->mm.precision = 8;
1599		break;
1600	case SNDRV_PCM_FORMAT_U8:
1601		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1602		dbri->mm.precision = 8;
1603		break;
1604	case SNDRV_PCM_FORMAT_S16_BE:
1605		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1606		dbri->mm.precision = 16;
1607		break;
1608	default:
1609		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1610		return -1;
1611	}
1612
1613	/* Add rate parameters */
1614	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1615	dbri->mm.ctrl[2] = CS4215_XCLK |
1616	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1617
1618	dbri->mm.channels = channels;
1619	if (channels == 2)
1620		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1621
1622	ret = cs4215_setctrl(dbri);
1623	if (ret == 0)
1624		cs4215_open(dbri);	/* set codec to data mode */
1625
1626	return ret;
1627}
1628
1629/*
1630 *
1631 */
1632static __devinit int cs4215_init(struct snd_dbri *dbri)
1633{
1634	u32 reg2 = sbus_readl(dbri->regs + REG2);
1635	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1636
1637	/* Look for the cs4215 chips */
1638	if (reg2 & D_PIO2) {
1639		dprintk(D_MM, "Onboard CS4215 detected\n");
1640		dbri->mm.onboard = 1;
1641	}
1642	if (reg2 & D_PIO0) {
1643		dprintk(D_MM, "Speakerbox detected\n");
1644		dbri->mm.onboard = 0;
1645
1646		if (reg2 & D_PIO2) {
1647			printk(KERN_INFO "DBRI: Using speakerbox / "
1648			       "ignoring onboard mmcodec.\n");
1649			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1650		}
1651	}
1652
1653	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1654		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1655		return -EIO;
1656	}
1657
1658	cs4215_setup_pipes(dbri);
1659	cs4215_init_data(&dbri->mm);
1660
1661	/* Enable capture of the status & version timeslots. */
1662	recv_fixed(dbri, 18, &dbri->mm.status);
1663	recv_fixed(dbri, 19, &dbri->mm.version);
1664
1665	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668			dbri->mm.offset);
1669		return -EIO;
1670	}
1671	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1672
1673	return 0;
1674}
1675
1676/*
1677****************************************************************************
1678*************************** DBRI interrupt handler *************************
1679****************************************************************************
1680
1681The DBRI communicates with the CPU mainly via a circular interrupt
1682buffer.  When an interrupt is signaled, the CPU walks through the
1683buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684Complicated interrupts are handled by dedicated functions (which
1685appear first in this file).  Any pending interrupts can be serviced by
1686calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687interrupts are disabled.
1688
1689*/
1690
1691/* xmit_descs()
1692 *
1693 * Starts transmitting the current TD's for recording/playing.
1694 * For playback, ALSA has filled the DMA memory with new data (we hope).
1695 */
1696static void xmit_descs(struct snd_dbri *dbri)
1697{
1698	struct dbri_streaminfo *info;
 
1699	s32 *cmd;
1700	unsigned long flags;
1701	int first_td;
1702
1703	if (dbri == NULL)
1704		return;		/* Disabled */
1705
 
1706	info = &dbri->stream_info[DBRI_REC];
1707	spin_lock_irqsave(&dbri->lock, flags);
1708
1709	if (info->pipe >= 0) {
1710		first_td = dbri->pipes[info->pipe].first_desc;
1711
1712		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1713
1714		/* Stream could be closed by the time we run. */
1715		if (first_td >= 0) {
1716			cmd = dbri_cmdlock(dbri, 2);
1717			*(cmd++) = DBRI_CMD(D_SDP, 0,
1718					    dbri->pipes[info->pipe].sdp
1719					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1720			*(cmd++) = dbri->dma_dvma +
1721				   dbri_dma_off(desc, first_td);
1722			dbri_cmdsend(dbri, cmd, 2);
1723
1724			/* Reset our admin of the pipe. */
1725			dbri->pipes[info->pipe].desc = first_td;
1726		}
1727	}
1728
1729	info = &dbri->stream_info[DBRI_PLAY];
1730
1731	if (info->pipe >= 0) {
1732		first_td = dbri->pipes[info->pipe].first_desc;
1733
1734		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1735
1736		/* Stream could be closed by the time we run. */
1737		if (first_td >= 0) {
1738			cmd = dbri_cmdlock(dbri, 2);
1739			*(cmd++) = DBRI_CMD(D_SDP, 0,
1740					    dbri->pipes[info->pipe].sdp
1741					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1742			*(cmd++) = dbri->dma_dvma +
1743				   dbri_dma_off(desc, first_td);
1744			dbri_cmdsend(dbri, cmd, 2);
1745
1746			/* Reset our admin of the pipe. */
1747			dbri->pipes[info->pipe].desc = first_td;
1748		}
1749	}
1750
1751	spin_unlock_irqrestore(&dbri->lock, flags);
1752}
1753
1754/* transmission_complete_intr()
1755 *
1756 * Called by main interrupt handler when DBRI signals transmission complete
1757 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1758 *
1759 * Walks through the pipe's list of transmit buffer descriptors and marks
1760 * them as available. Stops when the first descriptor is found without
1761 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1762 *
1763 * The DMA buffers are not released. They form a ring buffer and
1764 * they are filled by ALSA while others are transmitted by DMA.
1765 *
1766 */
1767
1768static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1769{
1770	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1771	int td = dbri->pipes[pipe].desc;
1772	int status;
1773
1774	while (td >= 0) {
1775		if (td >= DBRI_NO_DESCS) {
1776			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1777			return;
1778		}
1779
1780		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1781		if (!(status & DBRI_TD_TBC))
1782			break;
1783
1784		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1785
1786		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1787		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1788
1789		td = dbri->next_desc[td];
1790		dbri->pipes[pipe].desc = td;
1791	}
1792
1793	/* Notify ALSA */
1794	spin_unlock(&dbri->lock);
1795	snd_pcm_period_elapsed(info->substream);
1796	spin_lock(&dbri->lock);
1797}
1798
1799static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1800{
1801	struct dbri_streaminfo *info;
1802	int rd = dbri->pipes[pipe].desc;
1803	s32 status;
1804
1805	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1806		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1807		return;
1808	}
1809
1810	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1811	status = dbri->dma->desc[rd].word1;
1812	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1813
1814	info = &dbri->stream_info[DBRI_REC];
1815	info->offset += DBRI_RD_CNT(status);
1816
1817	/* FIXME: Check status */
1818
1819	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1820		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1821
1822	/* Notify ALSA */
1823	spin_unlock(&dbri->lock);
1824	snd_pcm_period_elapsed(info->substream);
1825	spin_lock(&dbri->lock);
1826}
1827
1828static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1829{
1830	int val = D_INTR_GETVAL(x);
1831	int channel = D_INTR_GETCHAN(x);
1832	int command = D_INTR_GETCMD(x);
1833	int code = D_INTR_GETCODE(x);
1834#ifdef DBRI_DEBUG
1835	int rval = D_INTR_GETRVAL(x);
1836#endif
1837
1838	if (channel == D_INTR_CMD) {
1839		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1840			cmds[command], val);
1841	} else {
1842		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1843			channel, code, rval);
1844	}
1845
1846	switch (code) {
1847	case D_INTR_CMDI:
1848		if (command != D_WAIT)
1849			printk(KERN_ERR "DBRI: Command read interrupt\n");
1850		break;
1851	case D_INTR_BRDY:
1852		reception_complete_intr(dbri, channel);
1853		break;
1854	case D_INTR_XCMP:
1855	case D_INTR_MINT:
1856		transmission_complete_intr(dbri, channel);
1857		break;
1858	case D_INTR_UNDR:
1859		/* UNDR - Transmission underrun
1860		 * resend SDP command with clear pipe bit (C) set
1861		 */
1862		{
1863	/* FIXME: do something useful in case of underrun */
1864			printk(KERN_ERR "DBRI: Underrun error\n");
1865#if 0
1866			s32 *cmd;
1867			int pipe = channel;
1868			int td = dbri->pipes[pipe].desc;
1869
1870			dbri->dma->desc[td].word4 = 0;
1871			cmd = dbri_cmdlock(dbri, NoGetLock);
1872			*(cmd++) = DBRI_CMD(D_SDP, 0,
1873					    dbri->pipes[pipe].sdp
1874					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1875			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1876			dbri_cmdsend(dbri, cmd);
1877#endif
1878		}
1879		break;
1880	case D_INTR_FXDT:
1881		/* FXDT - Fixed data change */
1882		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1883			val = reverse_bytes(val, dbri->pipes[channel].length);
1884
1885		if (dbri->pipes[channel].recv_fixed_ptr)
1886			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1887		break;
1888	default:
1889		if (channel != D_INTR_CMD)
1890			printk(KERN_WARNING
1891			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1892	}
1893}
1894
1895/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1896 * buffer until it finds a zero word (indicating nothing more to do
1897 * right now).  Non-zero words require processing and are handed off
1898 * to dbri_process_one_interrupt AFTER advancing the pointer.
1899 */
1900static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1901{
1902	s32 x;
1903
1904	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1905		dbri->dma->intr[dbri->dbri_irqp] = 0;
1906		dbri->dbri_irqp++;
1907		if (dbri->dbri_irqp == DBRI_INT_BLK)
1908			dbri->dbri_irqp = 1;
1909
1910		dbri_process_one_interrupt(dbri, x);
1911	}
1912}
1913
1914static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1915{
1916	struct snd_dbri *dbri = dev_id;
1917	static int errcnt = 0;
1918	int x;
1919
1920	if (dbri == NULL)
1921		return IRQ_NONE;
1922	spin_lock(&dbri->lock);
1923
1924	/*
1925	 * Read it, so the interrupt goes away.
1926	 */
1927	x = sbus_readl(dbri->regs + REG1);
1928
1929	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1930		u32 tmp;
1931
1932		if (x & D_MRR)
1933			printk(KERN_ERR
1934			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1935			       x);
1936		if (x & D_MLE)
1937			printk(KERN_ERR
1938			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1939			       x);
1940		if (x & D_LBG)
1941			printk(KERN_ERR
1942			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1943		if (x & D_MBE)
1944			printk(KERN_ERR
1945			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1946
1947		/* Some of these SBus errors cause the chip's SBus circuitry
1948		 * to be disabled, so just re-enable and try to keep going.
1949		 *
1950		 * The only one I've seen is MRR, which will be triggered
1951		 * if you let a transmit pipe underrun, then try to CDP it.
1952		 *
1953		 * If these things persist, we reset the chip.
1954		 */
1955		if ((++errcnt) % 10 == 0) {
1956			dprintk(D_INT, "Interrupt errors exceeded.\n");
1957			dbri_reset(dbri);
1958		} else {
1959			tmp = sbus_readl(dbri->regs + REG0);
1960			tmp &= ~(D_D);
1961			sbus_writel(tmp, dbri->regs + REG0);
1962		}
1963	}
1964
1965	dbri_process_interrupt_buffer(dbri);
1966
1967	spin_unlock(&dbri->lock);
1968
1969	return IRQ_HANDLED;
1970}
1971
1972/****************************************************************************
1973		PCM Interface
1974****************************************************************************/
1975static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1976	.info		= SNDRV_PCM_INFO_MMAP |
1977			  SNDRV_PCM_INFO_INTERLEAVED |
1978			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1979			  SNDRV_PCM_INFO_MMAP_VALID |
1980			  SNDRV_PCM_INFO_BATCH,
1981	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1982			  SNDRV_PCM_FMTBIT_A_LAW |
1983			  SNDRV_PCM_FMTBIT_U8 |
1984			  SNDRV_PCM_FMTBIT_S16_BE,
1985	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1986	.rate_min		= 5512,
1987	.rate_max		= 48000,
1988	.channels_min		= 1,
1989	.channels_max		= 2,
1990	.buffer_bytes_max	= 64 * 1024,
1991	.period_bytes_min	= 1,
1992	.period_bytes_max	= DBRI_TD_MAXCNT,
1993	.periods_min		= 1,
1994	.periods_max		= 1024,
1995};
1996
1997static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1998			      struct snd_pcm_hw_rule *rule)
1999{
2000	struct snd_interval *c = hw_param_interval(params,
2001				SNDRV_PCM_HW_PARAM_CHANNELS);
2002	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2003	struct snd_mask fmt;
2004
2005	snd_mask_any(&fmt);
2006	if (c->min > 1) {
2007		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2008		return snd_mask_refine(f, &fmt);
2009	}
2010	return 0;
2011}
2012
2013static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2014				struct snd_pcm_hw_rule *rule)
2015{
2016	struct snd_interval *c = hw_param_interval(params,
2017				SNDRV_PCM_HW_PARAM_CHANNELS);
2018	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2019	struct snd_interval ch;
2020
2021	snd_interval_any(&ch);
2022	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2023		ch.min = 1;
2024		ch.max = 1;
2025		ch.integer = 1;
2026		return snd_interval_refine(c, &ch);
2027	}
2028	return 0;
2029}
2030
2031static int snd_dbri_open(struct snd_pcm_substream *substream)
2032{
2033	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2034	struct snd_pcm_runtime *runtime = substream->runtime;
2035	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2036	unsigned long flags;
2037
2038	dprintk(D_USR, "open audio output.\n");
2039	runtime->hw = snd_dbri_pcm_hw;
2040
2041	spin_lock_irqsave(&dbri->lock, flags);
2042	info->substream = substream;
2043	info->offset = 0;
2044	info->dvma_buffer = 0;
2045	info->pipe = -1;
2046	spin_unlock_irqrestore(&dbri->lock, flags);
2047
2048	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2049			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2050			    -1);
2051	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2052			    snd_hw_rule_channels, NULL,
2053			    SNDRV_PCM_HW_PARAM_CHANNELS,
2054			    -1);
2055
2056	cs4215_open(dbri);
2057
2058	return 0;
2059}
2060
2061static int snd_dbri_close(struct snd_pcm_substream *substream)
2062{
2063	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2064	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2065
2066	dprintk(D_USR, "close audio output.\n");
2067	info->substream = NULL;
2068	info->offset = 0;
2069
2070	return 0;
2071}
2072
2073static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2074			      struct snd_pcm_hw_params *hw_params)
2075{
2076	struct snd_pcm_runtime *runtime = substream->runtime;
2077	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2078	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2079	int direction;
2080	int ret;
2081
2082	/* set sampling rate, audio format and number of channels */
2083	ret = cs4215_prepare(dbri, params_rate(hw_params),
2084			     params_format(hw_params),
2085			     params_channels(hw_params));
2086	if (ret != 0)
2087		return ret;
2088
2089	if ((ret = snd_pcm_lib_malloc_pages(substream,
2090				params_buffer_bytes(hw_params))) < 0) {
2091		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2092		return ret;
2093	}
2094
2095	/* hw_params can get called multiple times. Only map the DMA once.
2096	 */
2097	if (info->dvma_buffer == 0) {
2098		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2099			direction = DMA_TO_DEVICE;
2100		else
2101			direction = DMA_FROM_DEVICE;
2102
2103		info->dvma_buffer =
2104			dma_map_single(&dbri->op->dev,
2105				       runtime->dma_area,
2106				       params_buffer_bytes(hw_params),
2107				       direction);
2108	}
2109
2110	direction = params_buffer_bytes(hw_params);
2111	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2112		direction, info->dvma_buffer);
2113	return 0;
2114}
2115
2116static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2117{
2118	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2119	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2120	int direction;
2121
2122	dprintk(D_USR, "hw_free.\n");
2123
2124	/* hw_free can get called multiple times. Only unmap the DMA once.
2125	 */
2126	if (info->dvma_buffer) {
2127		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2128			direction = DMA_TO_DEVICE;
2129		else
2130			direction = DMA_FROM_DEVICE;
2131
2132		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2133				 substream->runtime->buffer_size, direction);
2134		info->dvma_buffer = 0;
2135	}
2136	if (info->pipe != -1) {
2137		reset_pipe(dbri, info->pipe);
2138		info->pipe = -1;
2139	}
2140
2141	return snd_pcm_lib_free_pages(substream);
2142}
2143
2144static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2145{
2146	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148	int ret;
2149
2150	info->size = snd_pcm_lib_buffer_bytes(substream);
2151	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2152		info->pipe = 4;	/* Send pipe */
2153	else
2154		info->pipe = 6;	/* Receive pipe */
2155
2156	spin_lock_irq(&dbri->lock);
2157	info->offset = 0;
2158
2159	/* Setup the all the transmit/receive descriptors to cover the
2160	 * whole DMA buffer.
2161	 */
2162	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2163			  snd_pcm_lib_period_bytes(substream));
2164
2165	spin_unlock_irq(&dbri->lock);
2166
2167	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2168	return ret;
2169}
2170
2171static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2172{
2173	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2174	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2175	int ret = 0;
2176
2177	switch (cmd) {
2178	case SNDRV_PCM_TRIGGER_START:
2179		dprintk(D_USR, "start audio, period is %d bytes\n",
2180			(int)snd_pcm_lib_period_bytes(substream));
2181		/* Re-submit the TDs. */
2182		xmit_descs(dbri);
2183		break;
2184	case SNDRV_PCM_TRIGGER_STOP:
2185		dprintk(D_USR, "stop audio.\n");
2186		reset_pipe(dbri, info->pipe);
2187		break;
2188	default:
2189		ret = -EINVAL;
2190	}
2191
2192	return ret;
2193}
2194
2195static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2196{
2197	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2198	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2199	snd_pcm_uframes_t ret;
2200
2201	ret = bytes_to_frames(substream->runtime, info->offset)
2202		% substream->runtime->buffer_size;
2203	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2204		ret, substream->runtime->buffer_size);
2205	return ret;
2206}
2207
2208static struct snd_pcm_ops snd_dbri_ops = {
2209	.open = snd_dbri_open,
2210	.close = snd_dbri_close,
2211	.ioctl = snd_pcm_lib_ioctl,
2212	.hw_params = snd_dbri_hw_params,
2213	.hw_free = snd_dbri_hw_free,
2214	.prepare = snd_dbri_prepare,
2215	.trigger = snd_dbri_trigger,
2216	.pointer = snd_dbri_pointer,
2217};
2218
2219static int __devinit snd_dbri_pcm(struct snd_card *card)
2220{
2221	struct snd_pcm *pcm;
2222	int err;
2223
2224	if ((err = snd_pcm_new(card,
2225			       /* ID */		    "sun_dbri",
2226			       /* device */	    0,
2227			       /* playback count */ 1,
2228			       /* capture count */  1, &pcm)) < 0)
 
2229		return err;
2230
2231	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2232	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2233
2234	pcm->private_data = card->private_data;
2235	pcm->info_flags = 0;
2236	strcpy(pcm->name, card->shortname);
2237
2238	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2239			SNDRV_DMA_TYPE_CONTINUOUS,
2240			snd_dma_continuous_data(GFP_KERNEL),
2241			64 * 1024, 64 * 1024)) < 0)
2242		return err;
2243
2244	return 0;
2245}
2246
2247/*****************************************************************************
2248			Mixer interface
2249*****************************************************************************/
2250
2251static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2252				  struct snd_ctl_elem_info *uinfo)
2253{
2254	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2255	uinfo->count = 2;
2256	uinfo->value.integer.min = 0;
2257	if (kcontrol->private_value == DBRI_PLAY)
2258		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2259	else
2260		uinfo->value.integer.max = DBRI_MAX_GAIN;
2261	return 0;
2262}
2263
2264static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2265				 struct snd_ctl_elem_value *ucontrol)
2266{
2267	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2268	struct dbri_streaminfo *info;
2269
2270	if (snd_BUG_ON(!dbri))
2271		return -EINVAL;
2272	info = &dbri->stream_info[kcontrol->private_value];
2273
2274	ucontrol->value.integer.value[0] = info->left_gain;
2275	ucontrol->value.integer.value[1] = info->right_gain;
2276	return 0;
2277}
2278
2279static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2280				 struct snd_ctl_elem_value *ucontrol)
2281{
2282	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2283	struct dbri_streaminfo *info =
2284				&dbri->stream_info[kcontrol->private_value];
2285	unsigned int vol[2];
2286	int changed = 0;
2287
2288	vol[0] = ucontrol->value.integer.value[0];
2289	vol[1] = ucontrol->value.integer.value[1];
2290	if (kcontrol->private_value == DBRI_PLAY) {
2291		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2292			return -EINVAL;
2293	} else {
2294		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2295			return -EINVAL;
2296	}
2297
2298	if (info->left_gain != vol[0]) {
2299		info->left_gain = vol[0];
2300		changed = 1;
2301	}
2302	if (info->right_gain != vol[1]) {
2303		info->right_gain = vol[1];
2304		changed = 1;
2305	}
2306	if (changed) {
2307		/* First mute outputs, and wait 1/8000 sec (125 us)
2308		 * to make sure this takes.  This avoids clicking noises.
2309		 */
2310		cs4215_setdata(dbri, 1);
2311		udelay(125);
2312		cs4215_setdata(dbri, 0);
2313	}
2314	return changed;
2315}
2316
2317static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2318				  struct snd_ctl_elem_info *uinfo)
2319{
2320	int mask = (kcontrol->private_value >> 16) & 0xff;
2321
2322	uinfo->type = (mask == 1) ?
2323	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2324	uinfo->count = 1;
2325	uinfo->value.integer.min = 0;
2326	uinfo->value.integer.max = mask;
2327	return 0;
2328}
2329
2330static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2331				 struct snd_ctl_elem_value *ucontrol)
2332{
2333	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2334	int elem = kcontrol->private_value & 0xff;
2335	int shift = (kcontrol->private_value >> 8) & 0xff;
2336	int mask = (kcontrol->private_value >> 16) & 0xff;
2337	int invert = (kcontrol->private_value >> 24) & 1;
2338
2339	if (snd_BUG_ON(!dbri))
2340		return -EINVAL;
2341
2342	if (elem < 4)
2343		ucontrol->value.integer.value[0] =
2344		    (dbri->mm.data[elem] >> shift) & mask;
2345	else
2346		ucontrol->value.integer.value[0] =
2347		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2348
2349	if (invert == 1)
2350		ucontrol->value.integer.value[0] =
2351		    mask - ucontrol->value.integer.value[0];
2352	return 0;
2353}
2354
2355static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2356				 struct snd_ctl_elem_value *ucontrol)
2357{
2358	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2359	int elem = kcontrol->private_value & 0xff;
2360	int shift = (kcontrol->private_value >> 8) & 0xff;
2361	int mask = (kcontrol->private_value >> 16) & 0xff;
2362	int invert = (kcontrol->private_value >> 24) & 1;
2363	int changed = 0;
2364	unsigned short val;
2365
2366	if (snd_BUG_ON(!dbri))
2367		return -EINVAL;
2368
2369	val = (ucontrol->value.integer.value[0] & mask);
2370	if (invert == 1)
2371		val = mask - val;
2372	val <<= shift;
2373
2374	if (elem < 4) {
2375		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2376				       ~(mask << shift)) | val;
2377		changed = (val != dbri->mm.data[elem]);
2378	} else {
2379		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2380					   ~(mask << shift)) | val;
2381		changed = (val != dbri->mm.ctrl[elem - 4]);
2382	}
2383
2384	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2385		"mixer-value=%ld, mm-value=0x%x\n",
2386		mask, changed, ucontrol->value.integer.value[0],
2387		dbri->mm.data[elem & 3]);
2388
2389	if (changed) {
2390		/* First mute outputs, and wait 1/8000 sec (125 us)
2391		 * to make sure this takes.  This avoids clicking noises.
2392		 */
2393		cs4215_setdata(dbri, 1);
2394		udelay(125);
2395		cs4215_setdata(dbri, 0);
2396	}
2397	return changed;
2398}
2399
2400/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2401   timeslots. Shift is the bit offset in the timeslot, mask defines the
2402   number of bits. invert is a boolean for use with attenuation.
2403 */
2404#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2405{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2406  .info = snd_cs4215_info_single,				\
2407  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2408  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2409			((invert) << 24) },
2410
2411static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2412	{
2413	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414	 .name  = "Playback Volume",
2415	 .info  = snd_cs4215_info_volume,
2416	 .get   = snd_cs4215_get_volume,
2417	 .put   = snd_cs4215_put_volume,
2418	 .private_value = DBRI_PLAY,
2419	 },
2420	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2421	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2422	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2423	{
2424	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425	 .name  = "Capture Volume",
2426	 .info  = snd_cs4215_info_volume,
2427	 .get   = snd_cs4215_get_volume,
2428	 .put   = snd_cs4215_put_volume,
2429	 .private_value = DBRI_REC,
2430	 },
2431	/* FIXME: mic/line switch */
2432	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2433	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2434	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2435	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2436};
2437
2438static int __devinit snd_dbri_mixer(struct snd_card *card)
2439{
2440	int idx, err;
2441	struct snd_dbri *dbri;
2442
2443	if (snd_BUG_ON(!card || !card->private_data))
2444		return -EINVAL;
2445	dbri = card->private_data;
2446
2447	strcpy(card->mixername, card->shortname);
2448
2449	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2450		err = snd_ctl_add(card,
2451				snd_ctl_new1(&dbri_controls[idx], dbri));
2452		if (err < 0)
2453			return err;
2454	}
2455
2456	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2457		dbri->stream_info[idx].left_gain = 0;
2458		dbri->stream_info[idx].right_gain = 0;
2459	}
2460
2461	return 0;
2462}
2463
2464/****************************************************************************
2465			/proc interface
2466****************************************************************************/
2467static void dbri_regs_read(struct snd_info_entry *entry,
2468			   struct snd_info_buffer *buffer)
2469{
2470	struct snd_dbri *dbri = entry->private_data;
2471
2472	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2473	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2474	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2475	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2476}
2477
2478#ifdef DBRI_DEBUG
2479static void dbri_debug_read(struct snd_info_entry *entry,
2480			    struct snd_info_buffer *buffer)
2481{
2482	struct snd_dbri *dbri = entry->private_data;
2483	int pipe;
2484	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2485
2486	for (pipe = 0; pipe < 32; pipe++) {
2487		if (pipe_active(dbri, pipe)) {
2488			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2489			snd_iprintf(buffer,
2490				    "Pipe %d: %s SDP=0x%x desc=%d, "
2491				    "len=%d next %d\n",
2492				    pipe,
2493				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2494								 "input",
2495				    pptr->sdp, pptr->desc,
2496				    pptr->length, pptr->nextpipe);
2497		}
2498	}
2499}
2500#endif
2501
2502static void __devinit snd_dbri_proc(struct snd_card *card)
2503{
2504	struct snd_dbri *dbri = card->private_data;
2505	struct snd_info_entry *entry;
2506
2507	if (!snd_card_proc_new(card, "regs", &entry))
2508		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2509
 
2510#ifdef DBRI_DEBUG
2511	if (!snd_card_proc_new(card, "debug", &entry)) {
2512		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2513		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2514	}
2515#endif
2516}
2517
2518/*
2519****************************************************************************
2520**************************** Initialization ********************************
2521****************************************************************************
2522*/
2523static void snd_dbri_free(struct snd_dbri *dbri);
2524
2525static int __devinit snd_dbri_create(struct snd_card *card,
2526				     struct platform_device *op,
2527				     int irq, int dev)
2528{
2529	struct snd_dbri *dbri = card->private_data;
2530	int err;
2531
2532	spin_lock_init(&dbri->lock);
2533	dbri->op = op;
2534	dbri->irq = irq;
2535
2536	dbri->dma = dma_alloc_coherent(&op->dev,
2537				       sizeof(struct dbri_dma),
2538				       &dbri->dma_dvma, GFP_ATOMIC);
2539	if (!dbri->dma)
2540		return -ENOMEM;
2541	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2542
2543	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2544		dbri->dma, dbri->dma_dvma);
2545
2546	/* Map the registers into memory. */
2547	dbri->regs_size = resource_size(&op->resource[0]);
2548	dbri->regs = of_ioremap(&op->resource[0], 0,
2549				dbri->regs_size, "DBRI Registers");
2550	if (!dbri->regs) {
2551		printk(KERN_ERR "DBRI: could not allocate registers\n");
2552		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2553				  (void *)dbri->dma, dbri->dma_dvma);
2554		return -EIO;
2555	}
2556
2557	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2558			  "DBRI audio", dbri);
2559	if (err) {
2560		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2561		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2562		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2563				  (void *)dbri->dma, dbri->dma_dvma);
2564		return err;
2565	}
2566
2567	/* Do low level initialization of the DBRI and CS4215 chips */
2568	dbri_initialize(dbri);
2569	err = cs4215_init(dbri);
2570	if (err) {
2571		snd_dbri_free(dbri);
2572		return err;
2573	}
2574
2575	return 0;
2576}
2577
2578static void snd_dbri_free(struct snd_dbri *dbri)
2579{
2580	dprintk(D_GEN, "snd_dbri_free\n");
2581	dbri_reset(dbri);
2582
2583	if (dbri->irq)
2584		free_irq(dbri->irq, dbri);
2585
2586	if (dbri->regs)
2587		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2588
2589	if (dbri->dma)
2590		dma_free_coherent(&dbri->op->dev,
2591				  sizeof(struct dbri_dma),
2592				  (void *)dbri->dma, dbri->dma_dvma);
2593}
2594
2595static int __devinit dbri_probe(struct platform_device *op)
2596{
2597	struct snd_dbri *dbri;
2598	struct resource *rp;
2599	struct snd_card *card;
2600	static int dev = 0;
2601	int irq;
2602	int err;
2603
2604	if (dev >= SNDRV_CARDS)
2605		return -ENODEV;
2606	if (!enable[dev]) {
2607		dev++;
2608		return -ENOENT;
2609	}
2610
2611	irq = op->archdata.irqs[0];
2612	if (irq <= 0) {
2613		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2614		return -ENODEV;
2615	}
2616
2617	err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2618			      sizeof(struct snd_dbri), &card);
2619	if (err < 0)
2620		return err;
2621
2622	strcpy(card->driver, "DBRI");
2623	strcpy(card->shortname, "Sun DBRI");
2624	rp = &op->resource[0];
2625	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2626		card->shortname,
2627		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2628
2629	err = snd_dbri_create(card, op, irq, dev);
2630	if (err < 0) {
2631		snd_card_free(card);
2632		return err;
2633	}
2634
2635	dbri = card->private_data;
2636	err = snd_dbri_pcm(card);
2637	if (err < 0)
2638		goto _err;
2639
2640	err = snd_dbri_mixer(card);
2641	if (err < 0)
2642		goto _err;
2643
2644	/* /proc file handling */
2645	snd_dbri_proc(card);
2646	dev_set_drvdata(&op->dev, card);
2647
2648	err = snd_card_register(card);
2649	if (err < 0)
2650		goto _err;
2651
2652	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2653	       dev, dbri->regs,
2654	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2655	dev++;
2656
2657	return 0;
2658
2659_err:
2660	snd_dbri_free(dbri);
2661	snd_card_free(card);
2662	return err;
2663}
2664
2665static int __devexit dbri_remove(struct platform_device *op)
2666{
2667	struct snd_card *card = dev_get_drvdata(&op->dev);
2668
2669	snd_dbri_free(card->private_data);
2670	snd_card_free(card);
2671
2672	dev_set_drvdata(&op->dev, NULL);
2673
2674	return 0;
2675}
2676
2677static const struct of_device_id dbri_match[] = {
2678	{
2679		.name = "SUNW,DBRIe",
2680	},
2681	{
2682		.name = "SUNW,DBRIf",
2683	},
2684	{},
2685};
2686
2687MODULE_DEVICE_TABLE(of, dbri_match);
2688
2689static struct platform_driver dbri_sbus_driver = {
2690	.driver = {
2691		.name = "dbri",
2692		.owner = THIS_MODULE,
2693		.of_match_table = dbri_match,
2694	},
2695	.probe		= dbri_probe,
2696	.remove		= __devexit_p(dbri_remove),
2697};
2698
2699/* Probe for the dbri chip and then attach the driver. */
2700static int __init dbri_init(void)
2701{
2702	return platform_driver_register(&dbri_sbus_driver);
2703}
2704
2705static void __exit dbri_exit(void)
2706{
2707	platform_driver_unregister(&dbri_sbus_driver);
2708}
2709
2710module_init(dbri_init);
2711module_exit(dbri_exit);