Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/dma-mapping.h>
12#include <linux/genalloc.h>
13#include <linux/vmalloc.h>
14#ifdef CONFIG_X86
15#include <asm/set_memory.h>
16#endif
17#include <sound/memalloc.h>
18#include "memalloc_local.h"
19
20static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
21
22/* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */
23static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab,
24 gfp_t default_gfp)
25{
26 if (!dmab->dev.dev)
27 return default_gfp;
28 else
29 return (__force gfp_t)(unsigned long)dmab->dev.dev;
30}
31
32static int __snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
33{
34 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
35
36 if (WARN_ON_ONCE(!ops || !ops->alloc))
37 return -EINVAL;
38 return ops->alloc(dmab, size);
39}
40
41/**
42 * snd_dma_alloc_pages - allocate the buffer area according to the given type
43 * @type: the DMA buffer type
44 * @device: the device pointer
45 * @size: the buffer size to allocate
46 * @dmab: buffer allocation record to store the allocated data
47 *
48 * Calls the memory-allocator function for the corresponding
49 * buffer type.
50 *
51 * Return: Zero if the buffer with the given size is allocated successfully,
52 * otherwise a negative value on error.
53 */
54int snd_dma_alloc_pages(int type, struct device *device, size_t size,
55 struct snd_dma_buffer *dmab)
56{
57 int err;
58
59 if (WARN_ON(!size))
60 return -ENXIO;
61 if (WARN_ON(!dmab))
62 return -ENXIO;
63
64 size = PAGE_ALIGN(size);
65 dmab->dev.type = type;
66 dmab->dev.dev = device;
67 dmab->bytes = 0;
68 dmab->area = NULL;
69 dmab->addr = 0;
70 dmab->private_data = NULL;
71 err = __snd_dma_alloc_pages(dmab, size);
72 if (err < 0)
73 return err;
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78}
79EXPORT_SYMBOL(snd_dma_alloc_pages);
80
81/**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98{
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/**
131 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
132 * @dmab: buffer allocation information
133 * @area: VM area information
134 */
135int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
136 struct vm_area_struct *area)
137{
138 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
139
140 if (ops && ops->mmap)
141 return ops->mmap(dmab, area);
142 else
143 return -ENOENT;
144}
145EXPORT_SYMBOL(snd_dma_buffer_mmap);
146
147/**
148 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
149 * @dmab: buffer allocation information
150 * @offset: offset in the ring buffer
151 */
152dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
153{
154 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
155
156 if (ops && ops->get_addr)
157 return ops->get_addr(dmab, offset);
158 else
159 return dmab->addr + offset;
160}
161EXPORT_SYMBOL(snd_sgbuf_get_addr);
162
163/**
164 * snd_sgbuf_get_page - return the physical page at the corresponding offset
165 * @dmab: buffer allocation information
166 * @offset: offset in the ring buffer
167 */
168struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
169{
170 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
171
172 if (ops && ops->get_page)
173 return ops->get_page(dmab, offset);
174 else
175 return virt_to_page(dmab->area + offset);
176}
177EXPORT_SYMBOL(snd_sgbuf_get_page);
178
179/**
180 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
181 * on sg-buffer
182 * @dmab: buffer allocation information
183 * @ofs: offset in the ring buffer
184 * @size: the requested size
185 */
186unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
187 unsigned int ofs, unsigned int size)
188{
189 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
190
191 if (ops && ops->get_chunk_size)
192 return ops->get_chunk_size(dmab, ofs, size);
193 else
194 return size;
195}
196EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
197
198/*
199 * Continuous pages allocator
200 */
201static int snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
202{
203 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL);
204
205 dmab->area = alloc_pages_exact(size, gfp);
206 return 0;
207}
208
209static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
210{
211 free_pages_exact(dmab->area, dmab->bytes);
212}
213
214static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
215 struct vm_area_struct *area)
216{
217 return remap_pfn_range(area, area->vm_start,
218 page_to_pfn(virt_to_page(dmab->area)),
219 area->vm_end - area->vm_start,
220 area->vm_page_prot);
221}
222
223static const struct snd_malloc_ops snd_dma_continuous_ops = {
224 .alloc = snd_dma_continuous_alloc,
225 .free = snd_dma_continuous_free,
226 .mmap = snd_dma_continuous_mmap,
227};
228
229/*
230 * VMALLOC allocator
231 */
232static int snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
233{
234 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM);
235
236 dmab->area = __vmalloc(size, gfp);
237 return 0;
238}
239
240static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
241{
242 vfree(dmab->area);
243}
244
245static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
246 struct vm_area_struct *area)
247{
248 return remap_vmalloc_range(area, dmab->area, 0);
249}
250
251static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
252 size_t offset)
253{
254 return page_to_phys(vmalloc_to_page(dmab->area + offset)) +
255 offset % PAGE_SIZE;
256}
257
258static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
259 size_t offset)
260{
261 return vmalloc_to_page(dmab->area + offset);
262}
263
264static unsigned int
265snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
266 unsigned int ofs, unsigned int size)
267{
268 ofs %= PAGE_SIZE;
269 size += ofs;
270 if (size > PAGE_SIZE)
271 size = PAGE_SIZE;
272 return size - ofs;
273}
274
275static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
276 .alloc = snd_dma_vmalloc_alloc,
277 .free = snd_dma_vmalloc_free,
278 .mmap = snd_dma_vmalloc_mmap,
279 .get_addr = snd_dma_vmalloc_get_addr,
280 .get_page = snd_dma_vmalloc_get_page,
281 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
282};
283
284#ifdef CONFIG_HAS_DMA
285/*
286 * IRAM allocator
287 */
288#ifdef CONFIG_GENERIC_ALLOCATOR
289static int snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
290{
291 struct device *dev = dmab->dev.dev;
292 struct gen_pool *pool;
293
294 if (dev->of_node) {
295 pool = of_gen_pool_get(dev->of_node, "iram", 0);
296 /* Assign the pool into private_data field */
297 dmab->private_data = pool;
298
299 dmab->area = gen_pool_dma_alloc_align(pool, size, &dmab->addr,
300 PAGE_SIZE);
301 if (dmab->area)
302 return 0;
303 }
304
305 /* Internal memory might have limited size and no enough space,
306 * so if we fail to malloc, try to fetch memory traditionally.
307 */
308 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
309 return __snd_dma_alloc_pages(dmab, size);
310}
311
312static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
313{
314 struct gen_pool *pool = dmab->private_data;
315
316 if (pool && dmab->area)
317 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
318}
319
320static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
321 struct vm_area_struct *area)
322{
323 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
324 return remap_pfn_range(area, area->vm_start,
325 dmab->addr >> PAGE_SHIFT,
326 area->vm_end - area->vm_start,
327 area->vm_page_prot);
328}
329
330static const struct snd_malloc_ops snd_dma_iram_ops = {
331 .alloc = snd_dma_iram_alloc,
332 .free = snd_dma_iram_free,
333 .mmap = snd_dma_iram_mmap,
334};
335#endif /* CONFIG_GENERIC_ALLOCATOR */
336
337/*
338 * Coherent device pages allocator
339 */
340static int snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
341{
342 gfp_t gfp_flags;
343
344 gfp_flags = GFP_KERNEL
345 | __GFP_COMP /* compound page lets parts be mapped */
346 | __GFP_NORETRY /* don't trigger OOM-killer */
347 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
348 dmab->area = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr,
349 gfp_flags);
350#ifdef CONFIG_X86
351 if (dmab->area && dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
352 set_memory_wc((unsigned long)dmab->area,
353 PAGE_ALIGN(size) >> PAGE_SHIFT);
354#endif
355 return 0;
356}
357
358static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
359{
360#ifdef CONFIG_X86
361 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
362 set_memory_wb((unsigned long)dmab->area,
363 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
364#endif
365 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
366}
367
368static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
369 struct vm_area_struct *area)
370{
371 return dma_mmap_coherent(dmab->dev.dev, area,
372 dmab->area, dmab->addr, dmab->bytes);
373}
374
375static const struct snd_malloc_ops snd_dma_dev_ops = {
376 .alloc = snd_dma_dev_alloc,
377 .free = snd_dma_dev_free,
378 .mmap = snd_dma_dev_mmap,
379};
380#endif /* CONFIG_HAS_DMA */
381
382/*
383 * Entry points
384 */
385static const struct snd_malloc_ops *dma_ops[] = {
386 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
387 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
388#ifdef CONFIG_HAS_DMA
389 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
390 [SNDRV_DMA_TYPE_DEV_UC] = &snd_dma_dev_ops,
391#ifdef CONFIG_GENERIC_ALLOCATOR
392 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
393#endif /* CONFIG_GENERIC_ALLOCATOR */
394#endif /* CONFIG_HAS_DMA */
395#ifdef CONFIG_SND_DMA_SGBUF
396 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
397 [SNDRV_DMA_TYPE_DEV_UC_SG] = &snd_dma_sg_ops,
398#endif
399};
400
401static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
402{
403 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
404 dmab->dev.type >= ARRAY_SIZE(dma_ops)))
405 return NULL;
406 return dma_ops[dmab->dev.type];
407}
1/*
2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3 * Takashi Iwai <tiwai@suse.de>
4 *
5 * Generic memory allocators
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/proc_fs.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/seq_file.h>
31#include <asm/uaccess.h>
32#include <linux/dma-mapping.h>
33#include <linux/moduleparam.h>
34#include <linux/mutex.h>
35#include <sound/memalloc.h>
36
37
38MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
39MODULE_DESCRIPTION("Memory allocator for ALSA system.");
40MODULE_LICENSE("GPL");
41
42
43/*
44 */
45
46static DEFINE_MUTEX(list_mutex);
47static LIST_HEAD(mem_list_head);
48
49/* buffer preservation list */
50struct snd_mem_list {
51 struct snd_dma_buffer buffer;
52 unsigned int id;
53 struct list_head list;
54};
55
56/* id for pre-allocated buffers */
57#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
58
59/*
60 *
61 * Generic memory allocators
62 *
63 */
64
65static long snd_allocated_pages; /* holding the number of allocated pages */
66
67static inline void inc_snd_pages(int order)
68{
69 snd_allocated_pages += 1 << order;
70}
71
72static inline void dec_snd_pages(int order)
73{
74 snd_allocated_pages -= 1 << order;
75}
76
77/**
78 * snd_malloc_pages - allocate pages with the given size
79 * @size: the size to allocate in bytes
80 * @gfp_flags: the allocation conditions, GFP_XXX
81 *
82 * Allocates the physically contiguous pages with the given size.
83 *
84 * Returns the pointer of the buffer, or NULL if no enoguh memory.
85 */
86void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
87{
88 int pg;
89 void *res;
90
91 if (WARN_ON(!size))
92 return NULL;
93 if (WARN_ON(!gfp_flags))
94 return NULL;
95 gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
96 pg = get_order(size);
97 if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
98 inc_snd_pages(pg);
99 return res;
100}
101
102/**
103 * snd_free_pages - release the pages
104 * @ptr: the buffer pointer to release
105 * @size: the allocated buffer size
106 *
107 * Releases the buffer allocated via snd_malloc_pages().
108 */
109void snd_free_pages(void *ptr, size_t size)
110{
111 int pg;
112
113 if (ptr == NULL)
114 return;
115 pg = get_order(size);
116 dec_snd_pages(pg);
117 free_pages((unsigned long) ptr, pg);
118}
119
120/*
121 *
122 * Bus-specific memory allocators
123 *
124 */
125
126#ifdef CONFIG_HAS_DMA
127/* allocate the coherent DMA pages */
128static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
129{
130 int pg;
131 void *res;
132 gfp_t gfp_flags;
133
134 if (WARN_ON(!dma))
135 return NULL;
136 pg = get_order(size);
137 gfp_flags = GFP_KERNEL
138 | __GFP_COMP /* compound page lets parts be mapped */
139 | __GFP_NORETRY /* don't trigger OOM-killer */
140 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
141 res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
142 if (res != NULL)
143 inc_snd_pages(pg);
144
145 return res;
146}
147
148/* free the coherent DMA pages */
149static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
150 dma_addr_t dma)
151{
152 int pg;
153
154 if (ptr == NULL)
155 return;
156 pg = get_order(size);
157 dec_snd_pages(pg);
158 dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
159}
160#endif /* CONFIG_HAS_DMA */
161
162/*
163 *
164 * ALSA generic memory management
165 *
166 */
167
168
169/**
170 * snd_dma_alloc_pages - allocate the buffer area according to the given type
171 * @type: the DMA buffer type
172 * @device: the device pointer
173 * @size: the buffer size to allocate
174 * @dmab: buffer allocation record to store the allocated data
175 *
176 * Calls the memory-allocator function for the corresponding
177 * buffer type.
178 *
179 * Returns zero if the buffer with the given size is allocated successfuly,
180 * other a negative value at error.
181 */
182int snd_dma_alloc_pages(int type, struct device *device, size_t size,
183 struct snd_dma_buffer *dmab)
184{
185 if (WARN_ON(!size))
186 return -ENXIO;
187 if (WARN_ON(!dmab))
188 return -ENXIO;
189
190 dmab->dev.type = type;
191 dmab->dev.dev = device;
192 dmab->bytes = 0;
193 switch (type) {
194 case SNDRV_DMA_TYPE_CONTINUOUS:
195 dmab->area = snd_malloc_pages(size,
196 (__force gfp_t)(unsigned long)device);
197 dmab->addr = 0;
198 break;
199#ifdef CONFIG_HAS_DMA
200 case SNDRV_DMA_TYPE_DEV:
201 dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
202 break;
203#endif
204#ifdef CONFIG_SND_DMA_SGBUF
205 case SNDRV_DMA_TYPE_DEV_SG:
206 snd_malloc_sgbuf_pages(device, size, dmab, NULL);
207 break;
208#endif
209 default:
210 printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
211 dmab->area = NULL;
212 dmab->addr = 0;
213 return -ENXIO;
214 }
215 if (! dmab->area)
216 return -ENOMEM;
217 dmab->bytes = size;
218 return 0;
219}
220
221/**
222 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
223 * @type: the DMA buffer type
224 * @device: the device pointer
225 * @size: the buffer size to allocate
226 * @dmab: buffer allocation record to store the allocated data
227 *
228 * Calls the memory-allocator function for the corresponding
229 * buffer type. When no space is left, this function reduces the size and
230 * tries to allocate again. The size actually allocated is stored in
231 * res_size argument.
232 *
233 * Returns zero if the buffer with the given size is allocated successfuly,
234 * other a negative value at error.
235 */
236int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
237 struct snd_dma_buffer *dmab)
238{
239 int err;
240
241 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
242 size_t aligned_size;
243 if (err != -ENOMEM)
244 return err;
245 if (size <= PAGE_SIZE)
246 return -ENOMEM;
247 aligned_size = PAGE_SIZE << get_order(size);
248 if (size != aligned_size)
249 size = aligned_size;
250 else
251 size >>= 1;
252 }
253 if (! dmab->area)
254 return -ENOMEM;
255 return 0;
256}
257
258
259/**
260 * snd_dma_free_pages - release the allocated buffer
261 * @dmab: the buffer allocation record to release
262 *
263 * Releases the allocated buffer via snd_dma_alloc_pages().
264 */
265void snd_dma_free_pages(struct snd_dma_buffer *dmab)
266{
267 switch (dmab->dev.type) {
268 case SNDRV_DMA_TYPE_CONTINUOUS:
269 snd_free_pages(dmab->area, dmab->bytes);
270 break;
271#ifdef CONFIG_HAS_DMA
272 case SNDRV_DMA_TYPE_DEV:
273 snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
274 break;
275#endif
276#ifdef CONFIG_SND_DMA_SGBUF
277 case SNDRV_DMA_TYPE_DEV_SG:
278 snd_free_sgbuf_pages(dmab);
279 break;
280#endif
281 default:
282 printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
283 }
284}
285
286
287/**
288 * snd_dma_get_reserved - get the reserved buffer for the given device
289 * @dmab: the buffer allocation record to store
290 * @id: the buffer id
291 *
292 * Looks for the reserved-buffer list and re-uses if the same buffer
293 * is found in the list. When the buffer is found, it's removed from the free list.
294 *
295 * Returns the size of buffer if the buffer is found, or zero if not found.
296 */
297size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
298{
299 struct snd_mem_list *mem;
300
301 if (WARN_ON(!dmab))
302 return 0;
303
304 mutex_lock(&list_mutex);
305 list_for_each_entry(mem, &mem_list_head, list) {
306 if (mem->id == id &&
307 (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
308 ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
309 struct device *dev = dmab->dev.dev;
310 list_del(&mem->list);
311 *dmab = mem->buffer;
312 if (dmab->dev.dev == NULL)
313 dmab->dev.dev = dev;
314 kfree(mem);
315 mutex_unlock(&list_mutex);
316 return dmab->bytes;
317 }
318 }
319 mutex_unlock(&list_mutex);
320 return 0;
321}
322
323/**
324 * snd_dma_reserve_buf - reserve the buffer
325 * @dmab: the buffer to reserve
326 * @id: the buffer id
327 *
328 * Reserves the given buffer as a reserved buffer.
329 *
330 * Returns zero if successful, or a negative code at error.
331 */
332int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
333{
334 struct snd_mem_list *mem;
335
336 if (WARN_ON(!dmab))
337 return -EINVAL;
338 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
339 if (! mem)
340 return -ENOMEM;
341 mutex_lock(&list_mutex);
342 mem->buffer = *dmab;
343 mem->id = id;
344 list_add_tail(&mem->list, &mem_list_head);
345 mutex_unlock(&list_mutex);
346 return 0;
347}
348
349/*
350 * purge all reserved buffers
351 */
352static void free_all_reserved_pages(void)
353{
354 struct list_head *p;
355 struct snd_mem_list *mem;
356
357 mutex_lock(&list_mutex);
358 while (! list_empty(&mem_list_head)) {
359 p = mem_list_head.next;
360 mem = list_entry(p, struct snd_mem_list, list);
361 list_del(p);
362 snd_dma_free_pages(&mem->buffer);
363 kfree(mem);
364 }
365 mutex_unlock(&list_mutex);
366}
367
368
369#ifdef CONFIG_PROC_FS
370/*
371 * proc file interface
372 */
373#define SND_MEM_PROC_FILE "driver/snd-page-alloc"
374static struct proc_dir_entry *snd_mem_proc;
375
376static int snd_mem_proc_read(struct seq_file *seq, void *offset)
377{
378 long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
379 struct snd_mem_list *mem;
380 int devno;
381 static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG" };
382
383 mutex_lock(&list_mutex);
384 seq_printf(seq, "pages : %li bytes (%li pages per %likB)\n",
385 pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
386 devno = 0;
387 list_for_each_entry(mem, &mem_list_head, list) {
388 devno++;
389 seq_printf(seq, "buffer %d : ID %08x : type %s\n",
390 devno, mem->id, types[mem->buffer.dev.type]);
391 seq_printf(seq, " addr = 0x%lx, size = %d bytes\n",
392 (unsigned long)mem->buffer.addr,
393 (int)mem->buffer.bytes);
394 }
395 mutex_unlock(&list_mutex);
396 return 0;
397}
398
399static int snd_mem_proc_open(struct inode *inode, struct file *file)
400{
401 return single_open(file, snd_mem_proc_read, NULL);
402}
403
404/* FIXME: for pci only - other bus? */
405#ifdef CONFIG_PCI
406#define gettoken(bufp) strsep(bufp, " \t\n")
407
408static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
409 size_t count, loff_t * ppos)
410{
411 char buf[128];
412 char *token, *p;
413
414 if (count > sizeof(buf) - 1)
415 return -EINVAL;
416 if (copy_from_user(buf, buffer, count))
417 return -EFAULT;
418 buf[count] = '\0';
419
420 p = buf;
421 token = gettoken(&p);
422 if (! token || *token == '#')
423 return count;
424 if (strcmp(token, "add") == 0) {
425 char *endp;
426 int vendor, device, size, buffers;
427 long mask;
428 int i, alloced;
429 struct pci_dev *pci;
430
431 if ((token = gettoken(&p)) == NULL ||
432 (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
433 (token = gettoken(&p)) == NULL ||
434 (device = simple_strtol(token, NULL, 0)) <= 0 ||
435 (token = gettoken(&p)) == NULL ||
436 (mask = simple_strtol(token, NULL, 0)) < 0 ||
437 (token = gettoken(&p)) == NULL ||
438 (size = memparse(token, &endp)) < 64*1024 ||
439 size > 16*1024*1024 /* too big */ ||
440 (token = gettoken(&p)) == NULL ||
441 (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
442 buffers > 4) {
443 printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
444 return count;
445 }
446 vendor &= 0xffff;
447 device &= 0xffff;
448
449 alloced = 0;
450 pci = NULL;
451 while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
452 if (mask > 0 && mask < 0xffffffff) {
453 if (pci_set_dma_mask(pci, mask) < 0 ||
454 pci_set_consistent_dma_mask(pci, mask) < 0) {
455 printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
456 pci_dev_put(pci);
457 return count;
458 }
459 }
460 for (i = 0; i < buffers; i++) {
461 struct snd_dma_buffer dmab;
462 memset(&dmab, 0, sizeof(dmab));
463 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
464 size, &dmab) < 0) {
465 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
466 pci_dev_put(pci);
467 return count;
468 }
469 snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
470 }
471 alloced++;
472 }
473 if (! alloced) {
474 for (i = 0; i < buffers; i++) {
475 struct snd_dma_buffer dmab;
476 memset(&dmab, 0, sizeof(dmab));
477 /* FIXME: We can allocate only in ZONE_DMA
478 * without a device pointer!
479 */
480 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
481 size, &dmab) < 0) {
482 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
483 break;
484 }
485 snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
486 }
487 }
488 } else if (strcmp(token, "erase") == 0)
489 /* FIXME: need for releasing each buffer chunk? */
490 free_all_reserved_pages();
491 else
492 printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
493 return count;
494}
495#endif /* CONFIG_PCI */
496
497static const struct file_operations snd_mem_proc_fops = {
498 .owner = THIS_MODULE,
499 .open = snd_mem_proc_open,
500 .read = seq_read,
501#ifdef CONFIG_PCI
502 .write = snd_mem_proc_write,
503#endif
504 .llseek = seq_lseek,
505 .release = single_release,
506};
507
508#endif /* CONFIG_PROC_FS */
509
510/*
511 * module entry
512 */
513
514static int __init snd_mem_init(void)
515{
516#ifdef CONFIG_PROC_FS
517 snd_mem_proc = proc_create(SND_MEM_PROC_FILE, 0644, NULL,
518 &snd_mem_proc_fops);
519#endif
520 return 0;
521}
522
523static void __exit snd_mem_exit(void)
524{
525 remove_proc_entry(SND_MEM_PROC_FILE, NULL);
526 free_all_reserved_pages();
527 if (snd_allocated_pages > 0)
528 printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
529}
530
531
532module_init(snd_mem_init)
533module_exit(snd_mem_exit)
534
535
536/*
537 * exports
538 */
539EXPORT_SYMBOL(snd_dma_alloc_pages);
540EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
541EXPORT_SYMBOL(snd_dma_free_pages);
542
543EXPORT_SYMBOL(snd_dma_get_reserved_buf);
544EXPORT_SYMBOL(snd_dma_reserve_buf);
545
546EXPORT_SYMBOL(snd_malloc_pages);
547EXPORT_SYMBOL(snd_free_pages);