Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This is a maximally equidistributed combined Tausworthe generator
  4 * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
  5 *
  6 * lfsr113 version:
  7 *
  8 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
  9 *
 10 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
 11 * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
 12 * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
 13 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
 14 *
 15 * The period of this generator is about 2^113 (see erratum paper).
 16 *
 17 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 18 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
 19 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 20 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 21 *
 22 * There is an erratum in the paper "Tables of Maximally Equidistributed
 23 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
 24 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 25 *
 26 *      ... the k_j most significant bits of z_j must be non-zero,
 27 *      for each j. (Note: this restriction also applies to the
 28 *      computer code given in [4], but was mistakenly not mentioned
 29 *      in that paper.)
 30 *
 31 * This affects the seeding procedure by imposing the requirement
 32 * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
 33 */
 34
 35#include <linux/types.h>
 36#include <linux/percpu.h>
 37#include <linux/export.h>
 38#include <linux/jiffies.h>
 39#include <linux/random.h>
 40#include <linux/sched.h>
 41#include <linux/bitops.h>
 42#include <asm/unaligned.h>
 43#include <trace/events/random.h>
 44
 45/**
 46 *	prandom_u32_state - seeded pseudo-random number generator.
 47 *	@state: pointer to state structure holding seeded state.
 48 *
 49 *	This is used for pseudo-randomness with no outside seeding.
 50 *	For more random results, use prandom_u32().
 51 */
 52u32 prandom_u32_state(struct rnd_state *state)
 53{
 54#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
 55	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
 56	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
 57	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
 58	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
 59
 60	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
 61}
 62EXPORT_SYMBOL(prandom_u32_state);
 63
 64/**
 65 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 66 *
 67 *	@state: pointer to state structure holding seeded state.
 68 *	@buf: where to copy the pseudo-random bytes to
 69 *	@bytes: the requested number of bytes
 70 *
 71 *	This is used for pseudo-randomness with no outside seeding.
 72 *	For more random results, use prandom_bytes().
 73 */
 74void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
 75{
 76	u8 *ptr = buf;
 77
 78	while (bytes >= sizeof(u32)) {
 79		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
 80		ptr += sizeof(u32);
 81		bytes -= sizeof(u32);
 82	}
 83
 84	if (bytes > 0) {
 85		u32 rem = prandom_u32_state(state);
 86		do {
 87			*ptr++ = (u8) rem;
 88			bytes--;
 89			rem >>= BITS_PER_BYTE;
 90		} while (bytes > 0);
 91	}
 92}
 93EXPORT_SYMBOL(prandom_bytes_state);
 94
 95static void prandom_warmup(struct rnd_state *state)
 96{
 97	/* Calling RNG ten times to satisfy recurrence condition */
 98	prandom_u32_state(state);
 99	prandom_u32_state(state);
100	prandom_u32_state(state);
101	prandom_u32_state(state);
102	prandom_u32_state(state);
103	prandom_u32_state(state);
104	prandom_u32_state(state);
105	prandom_u32_state(state);
106	prandom_u32_state(state);
107	prandom_u32_state(state);
108}
109
110void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
111{
112	int i;
113
114	for_each_possible_cpu(i) {
115		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
116		u32 seeds[4];
117
118		get_random_bytes(&seeds, sizeof(seeds));
119		state->s1 = __seed(seeds[0],   2U);
120		state->s2 = __seed(seeds[1],   8U);
121		state->s3 = __seed(seeds[2],  16U);
122		state->s4 = __seed(seeds[3], 128U);
123
124		prandom_warmup(state);
125	}
126}
127EXPORT_SYMBOL(prandom_seed_full_state);
128
129#ifdef CONFIG_RANDOM32_SELFTEST
130static struct prandom_test1 {
131	u32 seed;
132	u32 result;
133} test1[] = {
134	{ 1U, 3484351685U },
135	{ 2U, 2623130059U },
136	{ 3U, 3125133893U },
137	{ 4U,  984847254U },
138};
139
140static struct prandom_test2 {
141	u32 seed;
142	u32 iteration;
143	u32 result;
144} test2[] = {
145	/* Test cases against taus113 from GSL library. */
146	{  931557656U, 959U, 2975593782U },
147	{ 1339693295U, 876U, 3887776532U },
148	{ 1545556285U, 961U, 1615538833U },
149	{  601730776U, 723U, 1776162651U },
150	{ 1027516047U, 687U,  511983079U },
151	{  416526298U, 700U,  916156552U },
152	{ 1395522032U, 652U, 2222063676U },
153	{  366221443U, 617U, 2992857763U },
154	{ 1539836965U, 714U, 3783265725U },
155	{  556206671U, 994U,  799626459U },
156	{  684907218U, 799U,  367789491U },
157	{ 2121230701U, 931U, 2115467001U },
158	{ 1668516451U, 644U, 3620590685U },
159	{  768046066U, 883U, 2034077390U },
160	{ 1989159136U, 833U, 1195767305U },
161	{  536585145U, 996U, 3577259204U },
162	{ 1008129373U, 642U, 1478080776U },
163	{ 1740775604U, 939U, 1264980372U },
164	{ 1967883163U, 508U,   10734624U },
165	{ 1923019697U, 730U, 3821419629U },
166	{  442079932U, 560U, 3440032343U },
167	{ 1961302714U, 845U,  841962572U },
168	{ 2030205964U, 962U, 1325144227U },
169	{ 1160407529U, 507U,  240940858U },
170	{  635482502U, 779U, 4200489746U },
171	{ 1252788931U, 699U,  867195434U },
172	{ 1961817131U, 719U,  668237657U },
173	{ 1071468216U, 983U,  917876630U },
174	{ 1281848367U, 932U, 1003100039U },
175	{  582537119U, 780U, 1127273778U },
176	{ 1973672777U, 853U, 1071368872U },
177	{ 1896756996U, 762U, 1127851055U },
178	{  847917054U, 500U, 1717499075U },
179	{ 1240520510U, 951U, 2849576657U },
180	{ 1685071682U, 567U, 1961810396U },
181	{ 1516232129U, 557U,    3173877U },
182	{ 1208118903U, 612U, 1613145022U },
183	{ 1817269927U, 693U, 4279122573U },
184	{ 1510091701U, 717U,  638191229U },
185	{  365916850U, 807U,  600424314U },
186	{  399324359U, 702U, 1803598116U },
187	{ 1318480274U, 779U, 2074237022U },
188	{  697758115U, 840U, 1483639402U },
189	{ 1696507773U, 840U,  577415447U },
190	{ 2081979121U, 981U, 3041486449U },
191	{  955646687U, 742U, 3846494357U },
192	{ 1250683506U, 749U,  836419859U },
193	{  595003102U, 534U,  366794109U },
194	{   47485338U, 558U, 3521120834U },
195	{  619433479U, 610U, 3991783875U },
196	{  704096520U, 518U, 4139493852U },
197	{ 1712224984U, 606U, 2393312003U },
198	{ 1318233152U, 922U, 3880361134U },
199	{  855572992U, 761U, 1472974787U },
200	{   64721421U, 703U,  683860550U },
201	{  678931758U, 840U,  380616043U },
202	{  692711973U, 778U, 1382361947U },
203	{  677703619U, 530U, 2826914161U },
204	{   92393223U, 586U, 1522128471U },
205	{ 1222592920U, 743U, 3466726667U },
206	{  358288986U, 695U, 1091956998U },
207	{ 1935056945U, 958U,  514864477U },
208	{  735675993U, 990U, 1294239989U },
209	{ 1560089402U, 897U, 2238551287U },
210	{   70616361U, 829U,   22483098U },
211	{  368234700U, 731U, 2913875084U },
212	{   20221190U, 879U, 1564152970U },
213	{  539444654U, 682U, 1835141259U },
214	{ 1314987297U, 840U, 1801114136U },
215	{ 2019295544U, 645U, 3286438930U },
216	{  469023838U, 716U, 1637918202U },
217	{ 1843754496U, 653U, 2562092152U },
218	{  400672036U, 809U, 4264212785U },
219	{  404722249U, 965U, 2704116999U },
220	{  600702209U, 758U,  584979986U },
221	{  519953954U, 667U, 2574436237U },
222	{ 1658071126U, 694U, 2214569490U },
223	{  420480037U, 749U, 3430010866U },
224	{  690103647U, 969U, 3700758083U },
225	{ 1029424799U, 937U, 3787746841U },
226	{ 2012608669U, 506U, 3362628973U },
227	{ 1535432887U, 998U,   42610943U },
228	{ 1330635533U, 857U, 3040806504U },
229	{ 1223800550U, 539U, 3954229517U },
230	{ 1322411537U, 680U, 3223250324U },
231	{ 1877847898U, 945U, 2915147143U },
232	{ 1646356099U, 874U,  965988280U },
233	{  805687536U, 744U, 4032277920U },
234	{ 1948093210U, 633U, 1346597684U },
235	{  392609744U, 783U, 1636083295U },
236	{  690241304U, 770U, 1201031298U },
237	{ 1360302965U, 696U, 1665394461U },
238	{ 1220090946U, 780U, 1316922812U },
239	{  447092251U, 500U, 3438743375U },
240	{ 1613868791U, 592U,  828546883U },
241	{  523430951U, 548U, 2552392304U },
242	{  726692899U, 810U, 1656872867U },
243	{ 1364340021U, 836U, 3710513486U },
244	{ 1986257729U, 931U,  935013962U },
245	{  407983964U, 921U,  728767059U },
246};
247
248static u32 __extract_hwseed(void)
249{
250	unsigned int val = 0;
251
252	(void)(arch_get_random_seed_int(&val) ||
253	       arch_get_random_int(&val));
254
255	return val;
256}
257
258static void prandom_seed_early(struct rnd_state *state, u32 seed,
259			       bool mix_with_hwseed)
260{
261#define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
262#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
263	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
264	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
265	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
266	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
267}
268
269static int __init prandom_state_selftest(void)
270{
271	int i, j, errors = 0, runs = 0;
272	bool error = false;
273
274	for (i = 0; i < ARRAY_SIZE(test1); i++) {
275		struct rnd_state state;
276
277		prandom_seed_early(&state, test1[i].seed, false);
278		prandom_warmup(&state);
279
280		if (test1[i].result != prandom_u32_state(&state))
281			error = true;
282	}
283
284	if (error)
285		pr_warn("prandom: seed boundary self test failed\n");
286	else
287		pr_info("prandom: seed boundary self test passed\n");
288
289	for (i = 0; i < ARRAY_SIZE(test2); i++) {
290		struct rnd_state state;
291
292		prandom_seed_early(&state, test2[i].seed, false);
293		prandom_warmup(&state);
294
295		for (j = 0; j < test2[i].iteration - 1; j++)
296			prandom_u32_state(&state);
 
 
297
298		if (test2[i].result != prandom_u32_state(&state))
299			errors++;
 
 
300
301		runs++;
302		cond_resched();
303	}
304
305	if (errors)
306		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
307	else
308		pr_info("prandom: %d self tests passed\n", runs);
309	return 0;
310}
311core_initcall(prandom_state_selftest);
312#endif
313
314/*
315 * The prandom_u32() implementation is now completely separate from the
316 * prandom_state() functions, which are retained (for now) for compatibility.
317 *
318 * Because of (ab)use in the networking code for choosing random TCP/UDP port
319 * numbers, which open DoS possibilities if guessable, we want something
320 * stronger than a standard PRNG.  But the performance requirements of
321 * the network code do not allow robust crypto for this application.
322 *
323 * So this is a homebrew Junior Spaceman implementation, based on the
324 * lowest-latency trustworthy crypto primitive available, SipHash.
325 * (The authors of SipHash have not been consulted about this abuse of
326 * their work.)
327 *
328 * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
329 * one word of output.  This abbreviated version uses 2 rounds per word
330 * of output.
331 */
332
333struct siprand_state {
334	unsigned long v0;
335	unsigned long v1;
336	unsigned long v2;
337	unsigned long v3;
338};
339
340static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
341DEFINE_PER_CPU(unsigned long, net_rand_noise);
342EXPORT_PER_CPU_SYMBOL(net_rand_noise);
343
344/*
345 * This is the core CPRNG function.  As "pseudorandom", this is not used
346 * for truly valuable things, just intended to be a PITA to guess.
347 * For maximum speed, we do just two SipHash rounds per word.  This is
348 * the same rate as 4 rounds per 64 bits that SipHash normally uses,
349 * so hopefully it's reasonably secure.
350 *
351 * There are two changes from the official SipHash finalization:
352 * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
353 *   they are there only to make the output rounds distinct from the input
354 *   rounds, and this application has no input rounds.
355 * - Rather than returning v0^v1^v2^v3, return v1+v3.
356 *   If you look at the SipHash round, the last operation on v3 is
357 *   "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
358 *   Likewise "v1 ^= v2".  (The rotate of v2 makes a difference, but
359 *   it still cancels out half of the bits in v2 for no benefit.)
360 *   Second, since the last combining operation was xor, continue the
361 *   pattern of alternating xor/add for a tiny bit of extra non-linearity.
362 */
363static inline u32 siprand_u32(struct siprand_state *s)
364{
365	unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
366	unsigned long n = raw_cpu_read(net_rand_noise);
367
368	v3 ^= n;
369	PRND_SIPROUND(v0, v1, v2, v3);
370	PRND_SIPROUND(v0, v1, v2, v3);
371	v0 ^= n;
372	s->v0 = v0;  s->v1 = v1;  s->v2 = v2;  s->v3 = v3;
373	return v1 + v3;
374}
375
 
 
 
376
377/**
378 *	prandom_u32 - pseudo random number generator
379 *
380 *	A 32 bit pseudo-random number is generated using a fast
381 *	algorithm suitable for simulation. This algorithm is NOT
382 *	considered safe for cryptographic use.
383 */
384u32 prandom_u32(void)
385{
386	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
387	u32 res = siprand_u32(state);
388
389	trace_prandom_u32(res);
390	put_cpu_ptr(&net_rand_state);
391	return res;
392}
393EXPORT_SYMBOL(prandom_u32);
394
395/**
396 *	prandom_bytes - get the requested number of pseudo-random bytes
397 *	@buf: where to copy the pseudo-random bytes to
398 *	@bytes: the requested number of bytes
399 */
400void prandom_bytes(void *buf, size_t bytes)
401{
402	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
403	u8 *ptr = buf;
404
405	while (bytes >= sizeof(u32)) {
406		put_unaligned(siprand_u32(state), (u32 *)ptr);
407		ptr += sizeof(u32);
408		bytes -= sizeof(u32);
409	}
410
411	if (bytes > 0) {
412		u32 rem = siprand_u32(state);
413
414		do {
415			*ptr++ = (u8)rem;
416			rem >>= BITS_PER_BYTE;
417		} while (--bytes > 0);
418	}
419	put_cpu_ptr(&net_rand_state);
420}
421EXPORT_SYMBOL(prandom_bytes);
422
423/**
424 *	prandom_seed - add entropy to pseudo random number generator
425 *	@entropy: entropy value
426 *
427 *	Add some additional seed material to the prandom pool.
428 *	The "entropy" is actually our IP address (the only caller is
429 *	the network code), not for unpredictability, but to ensure that
430 *	different machines are initialized differently.
431 */
432void prandom_seed(u32 entropy)
433{
434	int i;
435
436	add_device_randomness(&entropy, sizeof(entropy));
437
438	for_each_possible_cpu(i) {
439		struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
440		unsigned long v0 = state->v0, v1 = state->v1;
441		unsigned long v2 = state->v2, v3 = state->v3;
442
443		do {
444			v3 ^= entropy;
445			PRND_SIPROUND(v0, v1, v2, v3);
446			PRND_SIPROUND(v0, v1, v2, v3);
447			v0 ^= entropy;
448		} while (unlikely(!v0 || !v1 || !v2 || !v3));
449
450		WRITE_ONCE(state->v0, v0);
451		WRITE_ONCE(state->v1, v1);
452		WRITE_ONCE(state->v2, v2);
453		WRITE_ONCE(state->v3, v3);
454	}
455}
456EXPORT_SYMBOL(prandom_seed);
457
458/*
459 *	Generate some initially weak seeding values to allow
460 *	the prandom_u32() engine to be started.
461 */
462static int __init prandom_init_early(void)
463{
464	int i;
465	unsigned long v0, v1, v2, v3;
466
467	if (!arch_get_random_long(&v0))
468		v0 = jiffies;
469	if (!arch_get_random_long(&v1))
470		v1 = random_get_entropy();
471	v2 = v0 ^ PRND_K0;
472	v3 = v1 ^ PRND_K1;
473
474	for_each_possible_cpu(i) {
475		struct siprand_state *state;
476
477		v3 ^= i;
478		PRND_SIPROUND(v0, v1, v2, v3);
479		PRND_SIPROUND(v0, v1, v2, v3);
480		v0 ^= i;
481
482		state = per_cpu_ptr(&net_rand_state, i);
483		state->v0 = v0;  state->v1 = v1;
484		state->v2 = v2;  state->v3 = v3;
 
 
 
 
485	}
486
487	return 0;
488}
489core_initcall(prandom_init_early);
490
491
492/* Stronger reseeding when available, and periodically thereafter. */
493static void prandom_reseed(struct timer_list *unused);
494
495static DEFINE_TIMER(seed_timer, prandom_reseed);
496
497static void prandom_reseed(struct timer_list *unused)
 
 
 
 
498{
499	unsigned long expires;
500	int i;
501
502	/*
503	 * Reinitialize each CPU's PRNG with 128 bits of key.
504	 * No locking on the CPUs, but then somewhat random results are,
505	 * well, expected.
506	 */
507	for_each_possible_cpu(i) {
508		struct siprand_state *state;
509		unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
510		unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
511#if BITS_PER_LONG == 32
512		int j;
513
514		/*
515		 * On 32-bit machines, hash in two extra words to
516		 * approximate 128-bit key length.  Not that the hash
517		 * has that much security, but this prevents a trivial
518		 * 64-bit brute force.
519		 */
520		for (j = 0; j < 2; j++) {
521			unsigned long m = get_random_long();
522
523			v3 ^= m;
524			PRND_SIPROUND(v0, v1, v2, v3);
525			PRND_SIPROUND(v0, v1, v2, v3);
526			v0 ^= m;
527		}
528#endif
529		/*
530		 * Probably impossible in practice, but there is a
531		 * theoretical risk that a race between this reseeding
532		 * and the target CPU writing its state back could
533		 * create the all-zero SipHash fixed point.
534		 *
535		 * To ensure that never happens, ensure the state
536		 * we write contains no zero words.
537		 */
538		state = per_cpu_ptr(&net_rand_state, i);
539		WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
540		WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
541		WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
542		WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
543	}
544
545	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
546	expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
547	mod_timer(&seed_timer, expires);
548}
549
550/*
551 * The random ready callback can be called from almost any interrupt.
552 * To avoid worrying about whether it's safe to delay that interrupt
553 * long enough to seed all CPUs, just schedule an immediate timer event.
554 */
555static void prandom_timer_start(struct random_ready_callback *unused)
556{
557	mod_timer(&seed_timer, jiffies);
558}
559
560#ifdef CONFIG_RANDOM32_SELFTEST
561/* Principle: True 32-bit random numbers will all have 16 differing bits on
562 * average. For each 32-bit number, there are 601M numbers differing by 16
563 * bits, and 89% of the numbers differ by at least 12 bits. Note that more
564 * than 16 differing bits also implies a correlation with inverted bits. Thus
565 * we take 1024 random numbers and compare each of them to the other ones,
566 * counting the deviation of correlated bits to 16. Constants report 32,
567 * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
568 * u32 total, TEST_SIZE may be as large as 4096 samples.
569 */
570#define TEST_SIZE 1024
571static int __init prandom32_state_selftest(void)
572{
573	unsigned int x, y, bits, samples;
574	u32 xor, flip;
575	u32 total;
576	u32 *data;
577
578	data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
579	if (!data)
580		return 0;
581
582	for (samples = 0; samples < TEST_SIZE; samples++)
583		data[samples] = prandom_u32();
584
585	flip = total = 0;
586	for (x = 0; x < samples; x++) {
587		for (y = 0; y < samples; y++) {
588			if (x == y)
589				continue;
590			xor = data[x] ^ data[y];
591			flip |= xor;
592			bits = hweight32(xor);
593			total += (bits - 16) * (bits - 16);
594		}
595	}
596
597	/* We'll return the average deviation as 2*sqrt(corr/samples), which
598	 * is also sqrt(4*corr/samples) which provides a better resolution.
599	 */
600	bits = int_sqrt(total / (samples * (samples - 1)) * 4);
601	if (bits > 6)
602		pr_warn("prandom32: self test failed (at least %u bits"
603			" correlated, fixed_mask=%#x fixed_value=%#x\n",
604			bits, ~flip, data[0] & ~flip);
605	else
606		pr_info("prandom32: self test passed (less than %u bits"
607			" correlated)\n",
608			bits+1);
609	kfree(data);
610	return 0;
611}
612core_initcall(prandom32_state_selftest);
613#endif /*  CONFIG_RANDOM32_SELFTEST */
614
615/*
616 * Start periodic full reseeding as soon as strong
617 * random numbers are available.
618 */
619static int __init prandom_init_late(void)
620{
621	static struct random_ready_callback random_ready = {
622		.func = prandom_timer_start
623	};
624	int ret = add_random_ready_callback(&random_ready);
625
626	if (ret == -EALREADY) {
627		prandom_timer_start(&random_ready);
628		ret = 0;
629	}
630	return ret;
631}
632late_initcall(prandom_init_late);
v3.1
 
  1/*
  2  This is a maximally equidistributed combined Tausworthe generator
  3  based on code from GNU Scientific Library 1.5 (30 Jun 2004)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4
  5   x_n = (s1_n ^ s2_n ^ s3_n)
 
 
 
 
 
 
 
 
  6
  7   s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19))
  8   s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25))
  9   s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10
 11   The period of this generator is about 2^88.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12
 13   From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 14   Generators", Mathematics of Computation, 65, 213 (1996), 203--213.
 
 
 15
 16   This is available on the net from L'Ecuyer's home page,
 
 17
 18   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 19   ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 20
 21   There is an erratum in the paper "Tables of Maximally
 22   Equidistributed Combined LFSR Generators", Mathematics of
 23   Computation, 68, 225 (1999), 261--269:
 24   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 25
 26        ... the k_j most significant bits of z_j must be non-
 27        zero, for each j. (Note: this restriction also applies to the
 28        computer code given in [4], but was mistakenly not mentioned in
 29        that paper.)
 30
 31   This affects the seeding procedure by imposing the requirement
 32   s1 > 1, s2 > 7, s3 > 15.
 
 33
 34*/
 
 
 
 
 
 
 
 35
 36#include <linux/types.h>
 37#include <linux/percpu.h>
 38#include <linux/module.h>
 39#include <linux/jiffies.h>
 40#include <linux/random.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 41
 42static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
 
 
 
 
 
 
 
 
 
 43
 44/**
 45 *	prandom32 - seeded pseudo-random number generator.
 46 *	@state: pointer to state structure holding seeded state.
 
 
 
 47 *
 48 *	This is used for pseudo-randomness with no outside seeding.
 49 *	For more random results, use random32().
 
 
 
 
 
 
 
 
 
 50 */
 51u32 prandom32(struct rnd_state *state)
 52{
 53#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
 
 54
 55	state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12);
 56	state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4);
 57	state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17);
 
 
 
 
 58
 59	return (state->s1 ^ state->s2 ^ state->s3);
 60}
 61EXPORT_SYMBOL(prandom32);
 62
 63/**
 64 *	random32 - pseudo random number generator
 65 *
 66 *	A 32 bit pseudo-random number is generated using a fast
 67 *	algorithm suitable for simulation. This algorithm is NOT
 68 *	considered safe for cryptographic use.
 69 */
 70u32 random32(void)
 71{
 72	unsigned long r;
 73	struct rnd_state *state = &get_cpu_var(net_rand_state);
 74	r = prandom32(state);
 75	put_cpu_var(state);
 76	return r;
 
 77}
 78EXPORT_SYMBOL(random32);
 79
 80/**
 81 *	srandom32 - add entropy to pseudo random number generator
 82 *	@seed: seed value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83 *
 84 *	Add some additional seeding to the random32() pool.
 
 
 
 85 */
 86void srandom32(u32 entropy)
 87{
 88	int i;
 89	/*
 90	 * No locking on the CPUs, but then somewhat random results are, well,
 91	 * expected.
 92	 */
 93	for_each_possible_cpu (i) {
 94		struct rnd_state *state = &per_cpu(net_rand_state, i);
 95		state->s1 = __seed(state->s1 ^ entropy, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 96	}
 97}
 98EXPORT_SYMBOL(srandom32);
 99
100/*
101 *	Generate some initially weak seeding values to allow
102 *	to start the random32() engine.
103 */
104static int __init random32_init(void)
105{
106	int i;
 
 
 
 
 
 
 
 
107
108	for_each_possible_cpu(i) {
109		struct rnd_state *state = &per_cpu(net_rand_state,i);
110
111#define LCG(x)	((x) * 69069)	/* super-duper LCG */
112		state->s1 = __seed(LCG(i + jiffies), 1);
113		state->s2 = __seed(LCG(state->s1), 7);
114		state->s3 = __seed(LCG(state->s2), 15);
115
116		/* "warm it up" */
117		prandom32(state);
118		prandom32(state);
119		prandom32(state);
120		prandom32(state);
121		prandom32(state);
122		prandom32(state);
123	}
 
124	return 0;
125}
126core_initcall(random32_init);
 
 
 
 
 
 
127
128/*
129 *	Generate better values after random number generator
130 *	is fully initialized.
131 */
132static int __init random32_reseed(void)
133{
 
134	int i;
135
 
 
 
 
 
136	for_each_possible_cpu(i) {
137		struct rnd_state *state = &per_cpu(net_rand_state,i);
138		u32 seeds[3];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
140		get_random_bytes(&seeds, sizeof(seeds));
141		state->s1 = __seed(seeds[0], 1);
142		state->s2 = __seed(seeds[1], 7);
143		state->s3 = __seed(seeds[2], 15);
 
 
 
 
 
144
145		/* mix it in */
146		prandom32(state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148	return 0;
149}
150late_initcall(random32_reseed);